Science.gov

Sample records for hydrogeologic regime y-12

  1. Calendar Year 1994 Groundwater Quality Report for the Bear Creek Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1995-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex (directions in this report are in reference to the Y-12 administrative grid system) within the Bear Creek Hydrogeologic Regime (Bear Creek Regime), one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in the Bear Creek Regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Martin Marietta Energy Systems, Inc. (Energy Systems) corporate policy. The annual GWQR for the Bear Creek Regime is completed in two parts. Part 1 (this report) consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 of the report, to be issued mid-year, will contain an evaluation of the data with respect to regime-wide groundwater quality, present the findings and status of ongoing hydrogeologic studies, describe changes in monitoring priorities, and present planned modifications to the groundwater sampling and analysis program for the following CY.

  2. Calendar year 1995 groundwater quality report for the Bear Creek Hydrogeologic Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the Groundwater Protection Program (GWPP) is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Part 1 (this report) consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 of the report, to be issued mid-year, will contain an evaluation of the data with respect to regime-wide groundwater quality, present the findings and status of ongoing hydrogeologic studies, describe changes in monitoring priorities, and present planned modifications to the groundwater sampling and analysis program for the following CY.

  3. Calendar year 1994 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1995-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). These sites lie within the boundaries of the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to protect local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy. The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with reporting requirements of Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring, the Part 1 GWQR is submitted to the Tennessee Department of Environment and Conservation (TDEC) by the RCRA reporting deadline (March 1 of the following CY); Energy Systems submitted the 1994 Part 1 GWQR for the Chestnut Ridge Regime to the TDEC in February 1995 (HSW Environmental Consultants, Inc. 1995a).

  4. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    Not Available

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste- management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of the three regimes defined for the purposes of groundwater quality monitoring and remediation (Figure 2). The Health, Safety, Environment, and Accountability (HSEA) Division of the Y-12 Plant Environmental Management Department manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  5. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    Not Available

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  6. Calendar year 1994 groundwater quality report for the Bear Creek hydrogeologic regime, Y-12 Plant, Oak Ridge, Tennessee. 1994 Groundwater quality data interpretations and proposed program modifications

    SciTech Connect

    1995-10-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste management facilities at the US Department of Energy (DOE) Y-12 Plant. These sites lie in Bear Creek Valley (BCV) west of the Y-12 Plant within the boundaries of the Bear Creek Hydrogeologic Regime which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring. The Environmental Management Department manages the groundwater monitoring activities under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to protect local groundwater resources. The annual GWQR for the Bear Creek Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, summarizes the status and findings of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

  7. Calendar year 1994 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1995-10-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several waste-management facilities and a petroleum fuel underground storage tank (UST) site at the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites lie within the boundaries of the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to ensure protection of local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy.

  8. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    SciTech Connect

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

  9. Calendar year 1994 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1994 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    1995-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y- 12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The GWQR for the Chestnut Ridge Regime is completed in two-parts: Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference containing the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Environment and Conservation (TDEC) by the RCRA reporting deadline (March 1 of the following CY). Part 2 of the annual groundwater report, to be issued mid-year, will contain a regime-wide evaluation of groundwater quality, present the findings and status of ongoing hydrogeologic studies, describe changes in monitoring priorities, and present planned modifications to the groundwater sampling and analysis activities.

  10. Y-12 Groundwater Protection Program Calendar Year 2000 Groundwater Monitoring Data Evaluation Report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2001-09-01

    This report presents an evaluation of the groundwater and surface water monitoring data obtained during calendar year (CY) 2000 from sampling locations in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) southeast of Oak Ridge, Tennessee (Figure A.1). Prepared by the Y-12 Groundwater Protection Program (GWPP), this monitoring data evaluation report addresses applicable provisions of DOE Order 5400.1 -- General Environmental Protection Program -- that require: (1) an evaluation of the quantity and quality of groundwater in areas that are, or could be, impacted by Y-12 operations, (2) an evaluation of the quality of surface water and groundwater where contaminants from Y-12 facilities are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) an evaluation of long-term trends in groundwater quality at Y-12. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1 (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). Illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  11. Calendar year 1996 annual groundwater monitoring report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with these waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry.

  12. Y-12 Groundwater Protection Program Calendar Year 2000 Groundwater Monitoring Data Evaluation Report for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2001-09-01

    This report presents an evaluation of the groundwater and surface water monitoring data obtained during calendar year (CY) 2000 in the Bear Creek Hydrogeologic Regime (Bear Creek Regime). The Bear Creek Regime encompasses many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee (Figure A.1). Prepared by the Y-12 Groundwater Protection Program (GWPP), this report addresses applicable provisions of DOE Order 5400.1 (General Environmental Protection Program) that require: (1) an evaluation of the quantity and quality of groundwater and surface water in areas that are, or could be, affected by Y-12 operations, (2) an evaluation of groundwater and surface water quality in areas where contaminants from Y-12 operations are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) an evaluation of long-term trends in groundwater quality at Y-12. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1 (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). Illustrations (maps and trend graphs) are presented in Appendix A. Brief data summary tables referenced in each section are contained within the sections. Supplemental information and extensive data tables are provided in Appendix B.

  13. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN.

  14. Calendar year 1994 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee: 1994 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    1995-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1994 calendar year (CY) at several waste-management facilities and a petroleum fuel underground storage tank (UST) site associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The sites addressed by this document are located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The East Fork Regime, which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant, encompasses the Y-12 Plant. The regime extends west from a surface water and shallow groundwater divide located near the west end of the plant to Scarboro Road (directions in this report are in reference to the Y-12 Plant grid system unless otherwise noted). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy.

  15. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    Not Available

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  16. Proposed modifications to the RCRA post-closure permit for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Bear Creek Hydrogeologic Regime (BCHR). These permit conditions define the requirements for RCRA post-closure corrective action groundwater monitoring at the S-3 Ponds, the Oil Landfarm, and the Bear Creek Burial Grounds (units A, C-West, and Walk-in Pits). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for the Bear Creek Valley (BCV) Watershed, (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA post-closure corrective action monitoring program during 1996, and (3) update applicable technical procedures with revised versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP). With these modifications, the Y-12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2.0 provides the technical justification for each proposed permit modification. The proposed changes to permit language are provided in Section 3.0 (S-3 Ponds), Section 4.0 (Oil Landfarm), and Section 5.0 (Bear Creek Burial Grounds). Sections 6.0 and 7.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the PCP Attachments.

  17. Evaluation of calendar year 1996 groundwater and surface water quality data for the Chesnut Ridge Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-08-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Chesnut Ridge Hydrogeologic Regime (Chesnut Ridge Regime) during calendar year (CY) 1996. The Chesnut Ridge Regime encompasses a section of Chesnut Ridge bordered by the US Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) to the north, Scarboro Road to the east, Bethel Valley Road to the south, and an unnamed drainage basin southwest of the Y-12 Plant. Groundwater quality monitoring is performed at hazardous and nonhazardous waste management facilities in the regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The CY 1996 monitoring data are presented in Calendar Year 1996 Annual Groundwater Monitoring Report for the Chesnut Ridge Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee, along with the required evaluations of applicable site-specific monitoring data (AJA Technical Services, Inc. 1997a). This report provides additional evaluation of the CY 1996 data with an emphasis on regime-wide groundwater geochemistry and long-term concentration trends of regulated and non-regulated monitoring parameters.

  18. Calendar year 1993 groundwater quality report for the Bear Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater and surface water quality data and calculated rate of contaminant migration, Part 1

    SciTech Connect

    Not Available

    1994-02-01

    This report contains groundwater and surface-water quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (Bear Creek Regime), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater and surface water report for the Bear Creek Regime is completed in two-parts; Part 1 (this report) containing the groundwater and surface-water quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater and surface-water quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  19. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    SciTech Connect

    Not Available

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  20. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications

    SciTech Connect

    1994-10-01

    This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year.

  1. Calendar year 1996 annual groundwater monitoring report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1996. The East Fork Regime encompasses several confirmed and suspected sources of groundwater contamination within industrialized areas of the US Department of Energy (DOE) Oak Ridge Y-12 Plant in Bear Creek Valley (BCV) southeast of Oak Ridge, Tennessee. Groundwater and surface water monitoring in the East Fork Regime are performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit for the East Fork Regime issued by the Tennessee Department of Environment and Conservation (TDEC) on August 30, 1996. The post-closure permit addresses post-closure monitoring requirements for two closed RCRA-regulated surface impoundments: the S-3 Ponds and New Hope Pond.

  2. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    SciTech Connect

    Not Available

    1994-02-01

    This report contains groundwater quality data obtained during the 1993 calendar year (CY) at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the East Fork Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with the Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  3. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-08-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The monitoring data were collected for the multiple programmatic purposes of the Y-12 Plant Groundwater Protection Program (GWPP) and have been reported in Calendar Year 1996 Annual Groundwater Monitoring Report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee. The Annual Monitoring report presents only the results of the monitoring data evaluations required for waste management sites addressed under the Resource Conservation and Recovery Act (RCRA) post-closure permit for the Bear Creek Regime. The Annual Monitoring Report also serves as a consolidated reference for the groundwater and surface water monitoring data obtained throughout the Bear Creek Regime under the auspices of the Y-12 GWPP. This report provides an evaluation of the CY 1996 monitoring data with an emphasis on regime-wide groundwater and surface water quality and long-term concentration trends of regulated and non-regulated monitoring parameters.

  4. Evaluation of Calendar Year 1997 Groundwater and Surface Water Quality Data For The Chestnut Ridge Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Jones, S.B.

    1998-09-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1997. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge bordered by the U.S. Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) to the north, Scarboro Road to the eas~ Bethel Valley Road to the south, and an unnamed drainage basin southwest of the Y-12 Plant (Figure 1). Groundwater quality monitoring is performed at hazardous and nonhazardous waste management facilities in the regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The CY 1997 monitoring data are presented in Calendar Year 1997 Annual Groundwater Monitoring Report for the Chestnut Ridge Hydrogeolo~"c Regime at the US. Department of Energy Y-12 Plant, Oak Ridge, Tennessee (MA Technical Services, Inc. 1998), which also presents results of site-specific monitoring data evaluations required under the Resource Conservation and Recovery Act (RCIL4) post-closure permit (PCP) for the Chestnut Ridge Regime

  5. Calendar Year 1997 Annual Groundwater Monitoring Report For The Upper East Fork Poplar Creek Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation Wd Recovery Act (RCRA) post-closure permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) at the U.S. Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. Issued by the Tennessee Department of Environment and Conservation (TDEC), the PCP defines the RCRA post-closure corrective action monitoring requirements for the portion of the groundwater contaminant plume that has migrated into the East Fork Regime ftom the S-3 Ponds, a closed RCW-regulated former surface impoundment located in Bear Creek Valley near the west end of the Y-12 Plant. In addition to the RCIL4 post-closure corrective action monitoring results, this report contains the groundwater and surface water monitoring data obtained during CY 1997 to fulfill requirements of DOE Order 5400.1.

  6. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1996. The East Fork Regime encompasses several confirmed and suspected sources of groundwater contamination within industrialized areas of the US Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) southeast of Oak Ridge, Tennessee. The CY 1996 groundwater and surface water monitoring data are presented in Calendar Year 1996 Annual Groundwater Monitoring Report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee, along with the required data evaluations specified in the Resource Conservation and Recovery Act (RCRA) post-closure permit for the East Fork Regime. This report provides additional evaluation of the CY 1996 groundwater and surface water monitoring data with an emphasis on regime-wide groundwater contamination and long-term concentration trends for regulated and non-regulated monitoring parameters.

  7. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1999-09-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1998. The East Fork Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality at the Y-12 Plant. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  8. Evaluation Of Calendar Year 1997 Groundwater and surface Water Quality Data For the Bear Creek Hydrogeologic regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Jones, S.B.

    1998-09-01

    This report presents an evaluation of the groundwater and surface water monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1997. The monitoring data were obtained in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit for the Bear Creek Regime and U.S. Department of Energy (DOE) Order 5400.1, and are reported ixx Calendar Year 1997 Annual Groundwater A40nitoringReport for the Bear Creek Hydrogeolo@"c Regime at the US. Department ofEnergy Y-12 Plant, Oak Ridge, Tennessee (AJA Technical Services, Inc. 1998a). This report provides an evaluation of the monitoring data with respect to historical results for each sampling location, the regime-wide extent of groundwater and surface water contamination, and long-term concentration trends for selected groundwater and surface water contaminants.

  9. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations and proposed program modifications

    SciTech Connect

    1996-08-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater monitoring data obtained during calendar year (CY) 1995 from monitoring wells and springs located at or near several hazardous and non-hazardous waste management facilities associated with the Y-12 Plant. These sites are within the boundaries of the Chestnut Ridge Hydrogeologic Regime, which is one of three hydrogeologic regimes defined for the purposes of the Y-12 Plant Groundwater Protection Program (GWPP). The objectives of the GWPP are to provide the monitoring data necessary for compliance with applicable federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. corporate policy. The following evaluation of the data is organized into background regulatory information and site descriptions, an overview of the hydrogeologic framework, a summary of the CY 1995 groundwater monitoring programs and associated sampling and analysis activities, analysis and interpretation of the data for inorganic, organic, and radiological analytes, a summary of conclusions and recommendations, and a list of cited references. Appendix A contains supporting maps, cross sections, diagrams, and graphs; data tables and summaries are in Appendix B. Detailed descriptions of the data screening and evaluation criteria are included in Appendix C.

  10. Calendar Year 1997 Annual Groundwater Monitoring Report For The Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Jones, S.B.

    1998-02-01

    This report contains the groundwater and surface water monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation and Recovery Act (RCIU) post- closure permit (PCP) for the Bear Creek Hydrogeologic Regime (Bear Creek Regime), and as otherwise required by U.S. Department of Energy (DOE) Order 5400.1. In July 1997, the Temessee Department of Environment and Conservation (TDEC) approved several modifications to the RCRA post-closure corrective action monitoring requirements specified in the PCP. This report has been prepared in accordimce with these modified requirements.

  11. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater and Surface Water Quality Data for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1999-09-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1998. The Bear Creek Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the figures (maps and trend graphs) and data tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  12. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1999-09-01

    The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of the U.S. Department of Energy (DOE) Y-12 Plant (Figure 1). Groundwater monitoring is performed at several hazardous and nonhazardous waste management facilities located in the regime per the requirements of applicable operating/post closure permits and governing state/federal regulations and guidelines, including DOE Order 5400.1A - General Environmental Protection Program. Applicable provisions of DOE Order 5400.1A require evaluation of available monitoring data with regard to: (1) groundwater quality in areas that are, or could be, affected by Y-12 Plant operations, (2) the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) long-term trends in groundwater quality at the Y-12 Plant. This report presents the results of these DOE Order 5400.1A evaluations based on available data for the network of monitoring wells and springs in the Chestnut Ridge Regime sampled during calendar year (CY) 1998. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  13. Calendar Year 1997 Annual Groundwater Monitoring Report For The Chestnut Ridge Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). In July 1997, the Tennessee Department of Environment and Conservation (TDEC) approved modifications to several of the permit conditions that address RCRA pow-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (Security Pits), and RCIU4 post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin) and Kerr Hollow Quarry. This report has been prepared in accordance with these modified permit requirements. Also included in this report are the groundwater and surface water monitoring data obtained during CY 1997 for the purposes ofi (1) detection monitoring at nonhazardous solid waste disposal facilities (SWDFS) in accordance with operating permits and applicable regulations, (2) monitoring in accordance with Comprehensive Environmental Response, Compensation, and Recove~ Act Records of Decision (now pefiormed under the Integrated Water Quality Program for the Oak Ridge Reservation), and (3) monitoring needed to comply with U.S. Department of Energy Order 5400.1.

  14. Proposed modifications to the RCRA post-closure permit for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-05-01

    This report presents proposed modifications to the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (permit number TNHW-088, EPA ID No. TN3 89 009 0001). The modifications are proposed to: (1) revise the current text for two of the Permit Conditions included in Permit Section II - General Facility Conditions, and (2) update the PCP with revised versions of the Y-12 Plant Groundwater Protection Program (GWPP) technical field procedures included in several of the Permit Attachments. The updated field procedures and editorial revisions are Class 1 permit modifications, as specified in Title 40, Code of Federal Regulations (CFR) {section}270.42; Appendix I - Classification of Permit Modifications. These modifications are summarized below.

  15. Addendum to the post-closure permit application for the Bear Creek hydrogeologic regime at the Y-12 plant: Walk-in pits

    SciTech Connect

    1995-04-01

    In June 1987, the Resource Conservation and Recovery Act (RCRA) Closure/Post-Closure Plan for the Bear Creek Burial Grounds (BCBG) located at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval.The Closure Plan has been modified and revised several times. This document is an addendum to the Post-Closure Permit Application submitted to TDEC in June, 1994. This addendum contains information on the Walk-In Pits of the BCBG which is meant to supplement the information provided in the Post-Closure Permit Application submitted for the BCBG. This document is not intended to be a stand-alone document.

  16. Proposed modifications to the RCRA post-closure permit for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (CRHR) (permit number TNHW-088, EPA ID No. TN3 89 009 0001). These permit conditions define the requirements for RCRA post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (CRSDB) and Kerr Hollow Quarry (KHQ), and RCRA post-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (CRSPs). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring at the CRSPs with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) record of decision (ROD), (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA monitoring programs during 1996, (3) replace several of the technical procedures included in the PCP with updated versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP), and (4) correct inaccurate regulatory citations and references to permit conditions and permit attachments. With these modifications, the Y- 12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2 provides the technical justification for each proposed permit modification. Section 3.0 contains proposed changes to Section II of the PCP. Modifications to site-specific permit conditions are presented in Section 4.0 (CRSDB), Section 5.0 (CRSPs), and Section 6.0 (KHQ). Sections 7.0 and 8.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the permit attachments.

  17. Post-closure permit application for the Upper East Fork Poplar Creek hydrogeologic regime at the Y-12 Plant: New Hope Pond and Eastern S-3 ponds plume. Revision 2

    SciTech Connect

    1995-02-01

    The intent of this Post-Closure, Permit Application (PCPA) is to satisfy the post-closure permitting requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-11. This application is for the entire Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is within the Bear Creek Valley (BCV). This PCPA has been prepared to include the entire East Fork Regime because, although there are numerous contaminant sources within the regime, the contaminant plumes throughout the East Fork Regime have coalesced and can no longer be distinguished as separate plumes. This PCPA focuses on two recognized Resource Conservation and Recovery Act (RCRA) interim status units: New Hope Pond (NHP) and the eastern S-3 Ponds plume. This PCPA presents data from groundwater assessment monitoring throughout the regime, performed since 1986. Using this data, this PCPA demonstrates that NHP is not a statistically discernible source of groundwater contaminants and that sites upgradient of NHP are the likely sources of groundwater contamination seen in the NHP vicinity. As such, this PCPA proposes a detection monitoring program to replace the current assessment monitoring program for NHP.

  18. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1999-03-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant.

  19. Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Elvado Environmental LLC

    2009-12-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted 'active' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted 'inactive' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on

  20. Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan

    SciTech Connect

    2006-12-01

    This document is the third revision of the 'Monitoring Well Inspection and Maintenance Plan' for groundwater wells associated with the US Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: (1) inspecting the physical condition of monitoring wells at Y-12; (2) identifying maintenance needs that extend the life of the well and assure well-head protection is in place, and (3) identifying wells that no longer meet acceptable monitoring-well design or well construction standards and require plugging and abandonment. The inspection and maintenance of groundwater monitoring wells is one of the primary management strategies of the Y-12 Groundwater Protection Program (GWPP) Management Plan, 'proactive stewardship of the extensive monitoring well network at Y-12' (BWXT 2004a). Effective stewardship, and a program of routine inspections of the physical condition of each monitoring well, ensures that representative water-quality monitoring and hydrologic data are able to be obtained from the well network. In accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP) for Groundwater Monitoring Wells at the Y-12 National Security Complex, Oak Ridge, Tennessee (BWXT 2006b), the status designation (active or inactive) for each well determines the scope and extent of well inspections and maintenance activities. This plan, in conjunction with the above document, formalizes the GWPP approach to focus available resources on monitoring wells which provide the most useful data. This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within the three hydrogeologic regimes: (1) the Bear Creek Hydrogeologic Regime (Bear Creek Regime); (2) the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime); and (3) the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of the

  1. Calendar Year 2002 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2003-03-31

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2002 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2002 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The sections of this report provide details regarding the CY 2002 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regimes. Section 2 describes the monitoring programs implemented by the Y-12 GWPP and BJC during CY 2002. Section 3 identifies the sampling locations in each hydrogeologic regime and the corresponding sampling frequency during CY 2002, along with the associated quality assurance/quality control (QA/QC) sampling. Section 4 describes groundwater and surface water sample collection and Section 5 identifies the field measurements and laboratory analytes for each sampling location. Section 6 outlines the data management protocols and data quality objectives (DQOs). Section 7 describes the groundwater elevation monitoring in each regime during CY 2002 and Section 8 lists the documents cited for more detailed operational, regulatory, and technical information.

  2. Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan

    SciTech Connect

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: inspecting the physical condition of monitoring wells at Y-12, determining maintenance needs that extend the life of a well, and identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment. This plan applies to groundwater monitoring wells installed at Y-12 and the related waste management facilities located within the three hydrogeologic regimes.

  3. Hydrogeology

    SciTech Connect

    Back, W.; Rosenshein, J.S.; Seaber, P.R.

    1988-01-01

    This book demonstrates hydrogeologic principles, concepts, and processes that control the occurrence, movement, storage, and chemical character of ground water. It aims to identify, clarify, and describe systematically the basic relation of hydrogeology to other disciplines of geology, such as geomorphology, stratigraphy, structure, and historical geology.

  4. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2005

    SciTech Connect

    2004-09-30

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2005 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2005 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2005 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  5. Calendar Year 2008 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Elvado Environmental LLC

    2009-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2008 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2008 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2008 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  6. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    SciTech Connect

    1999-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan.

  7. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2004

    SciTech Connect

    Elvado Environmental LLC for the Environmental Compliance Department ES&H Division, Y-12 National Security Complex Oak Ridge, Tennessee

    2003-09-30

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2004 will be in accordance with the following requirements of DOE Order 5400.1: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2004 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2004 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  8. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2003

    SciTech Connect

    2002-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2003 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2003 will be in accordance with the following requirements of DOE Order 5400.1: (1) to evaluate and maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2003 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2003 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  9. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2002.

    SciTech Connect

    2001-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2002 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2002 will be in accordance with the following requirements of DOE Order 5400.1: to evaluate and maintain surveillance of existing and potential groundwater contamination sources; to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; to identify and characterize long-term trends in groundwater quality at Y-12; and to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2002 will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2002 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  10. Calendar Year 2007 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Elvado Environmental LLC

    2008-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2007 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2007 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2007 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). In December 2007, the BWXT corporate name was changed to Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12), which is applied to personnel and organizations throughout CY 2007 for this report. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2007 monitoring results fulfill requirements of

  11. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex

    SciTech Connect

    2006-12-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted ''inactive'' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the

  12. Calendar Year 2009 Groundwater Monitoring Report, U.S. Department of Energy, Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Elvado Environmental LLC

    2010-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2009 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2009 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2009 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and

  13. Calendar Year 2006 Groundwater Monitoring Report, U.S Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    N /A

    2007-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2006 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2006 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., preparing SAPs, coordinating sample collection, and sharing data) ensures that the CY 2006 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and

  14. Calendar Year 2005 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2006-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2005 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2005 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2005 monitoring data is deferred to the ''Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium'' (BWXT 2006). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and

  15. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2003-09-30

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure 1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 which provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater sampling (Section 3.0), whereas well granted ''inactive'' status are not used for either purpose. The status designation also determines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 4.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 5.0). This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within three hydrogeologic regimes (Figure 1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime is directly south of Y-12 and encompasses a section of Chestnut Ridge that is bound to the

  16. Calendar Year 2011 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Elvado Environmental LLC,

    2012-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2011 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. This report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and known extent of groundwater contamination. The CY 2011 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by the DOE Environmental Management (EM) contractor responsible for environmental cleanup on the ORR. In August 2011, URS | CH2M Oak Ridge LLC (UCOR) replaced Bechtel Jacobs Company LLC (BJC) as the DOE EM contractor. For this report, BJC/UCOR will be referenced as the managing contractor for CY 2011. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC/UCOR (i.e., coordinating sample collection and sharing data) ensures

  17. Calendar Year 2010 Groundwater Monitoring Report, U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Elvado Environmental LLC

    2011-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2010 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2010 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2010 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  18. Calendar Year 2003 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2004-09-30

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2003 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2003 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2003 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 5400.1 and DOE Order 450.1 (Environmental Protection Program), and address requirements of the Environmental Monitoring Plan for the Oak Ridge Reservation (DOE 2003a) regarding evaluation of groundwater and surface water quality: (1) in areas which are, or could be, affected by operations at Y-12 (DOE Order 5400.1 surveillance monitoring) and (2) in areas where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (DOE Order 5400.1 exit pathway/perimeter monitoring). The following sections of this report provide details regarding the CY 2003 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regime. Section 2 briefly describes the hydrogeologic context and generalized extent of groundwater

  19. Calendar Year 2004 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    N /A

    2005-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2004 monitoring data is deferred to the Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium (BWXT 2005). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and

  20. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2009

    SciTech Connect

    Elvado Environmental LLC

    2008-12-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2009 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2009 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2009 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan

  1. Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    none,

    2013-09-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The plan describes the technical approach that is implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well. Under this approach, wells granted "active" status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling, whereas wells granted "inactive" status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP. Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans. This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes.

  2. Calendar Year 2001 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2002-03-31

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2001 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee. The monitoring data were obtained from groundwater and surface water sampling locations within three hydrogeologic regimes at Y-12. The following sections of this report provide details regarding the CY 2001 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regimes. Section 2 identifies the sampling locations in each hydrogeologic regime and the corresponding sampling frequency during CY 2001, along with the associated quality assurance/quality control (QA/QC) sampling. Section 3 describes groundwater and surface water sample collection and Section 4 identifies the field measurements and laboratory analytes for each sampling location. Section 5 outlines the data management protocols and data quality objectives (DQOs). Section 6 describes the groundwater elevation monitoring in each regime during CY 2001 and Section 7 lists the documents cited for more detailed operational, regulatory, and technical information.

  3. Addendum to the post-closure permit application for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: Walk-in pits. Revision 2

    SciTech Connect

    1995-04-01

    The revised Closure Plan was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits (WIPs) of the Bear Creek Burial Grounds (BCBG). However, a strategy was developed to include the B Area [a solid waste management unit (SWMU)] with the WIPs so that both areas would be closed under one cap. The plan was presented to the State of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. Therefore, in November 1992, the Closure Plan for B Area and the WIPs was prepared separately from that of the other sites associated with the BCBG and was presented in a RCRA Closure Plan. The Closure Plan revision issued April 1993 was intended to reflect the placement of the Kerr Hollow Quarry debris at the WIPs, revise the closure data, and acknowledge that the disposition of a monitoring well within the closure site could not be verified. A Post-Closure Permit Application (PCPA) was to include the WIPs; however, at the time of submittal, closure of the WIPs had not been certified. This addendum contains information on the WIPs to accompany the BCBG PCPA. The purpose of this document is to supplement the information provided in the BCBG PCPA. This document is not intended to be a stand-alone document. Only additional information regarding the WIPs is included in the sections of this document, which correspond to sections of the PCPA submitted in June 1994.

  4. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012

    SciTech Connect

    Elvado Environmental, LLC

    2011-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding

  5. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2008

    SciTech Connect

    Elvado Environmental LLC

    2007-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2008 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2008 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2008 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and

  6. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2007

    SciTech Connect

    2006-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2007 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2007 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2007 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2007 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and

  7. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2010

    SciTech Connect

    Elvado Environmental LLC

    2009-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan

  8. Y-12 Groundwater Protection Program Groundwater and Surface water Sampling and Analysis Plan for Calendar Year 2006

    SciTech Connect

    N /A

    2006-01-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2006 will be in accordance with DOE Order 540.1 requirements and the following goals: {sm_bullet} to maintain surveillance of existing and potential groundwater contamination sources; {sm_bullet} to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; {sm_bullet} to identify and characterize long-term trends in groundwater quality at Y-12; and ! to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2006 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2006 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of

  9. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2011

    SciTech Connect

    Elvado Environmental LLC

    2010-12-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2011 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2011 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2011 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan

  10. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2014

    SciTech Connect

    2013-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2014 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring is performed by the GWPP during CY 2014 to achieve the following goals: 􀁸 to protect the worker, the public, and the environment; 􀁸 to maintain surveillance of existing and potential groundwater contamination sources; 􀁸 to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; 􀁸 to identify and characterize long-term trends in groundwater quality at Y-12; and 􀁸 to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12.

  11. Evaluation of Y-12 landfill

    SciTech Connect

    Crawford, G.A. ); Daugherty, D.L. ); Hutzler, C.W.; Smith, C.M. ); Wylie, A.N. )

    1990-12-12

    The purpose of this project was to provide team members with practical experience in application of Civil Engineering 555, Solid Waste Management principles. Team members chose to evaluate the functional elements of the Oak Ridge Y-12 Plant's (Y-12's) solid waste management system. The following factors contributed to selection of Y-12'system for evaluation: team members' familiarity with the Y-12 system; knowledge that the Y-12 Centralized Sanitary Landfill II was nearing capacity; and presence of the unique issues posed by special national security and potential radioactive contamination considerations. This report was limited to evaluation of the solid waste management system for conventional solid waste; hazardous radioactive, and radioactive mixed waste were not addressed. The report: (1) describes each functional element including waste generation, storage, collection, transport, processing, recovery, and disposal; (2) identifies and evaluates alternatives for each element and (3) identifies system strengths and recommends opportunities for improvement. 34 figs.

  12. Y-12 Site Sustainability Plan

    SciTech Connect

    Spencer, Charles G

    2012-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan, while promoting overall sustainability and reduction of greenhouse gas emissions. The mission of the Y-12 Energy Management program is to incorporate energy-effi cient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. The plan addresses greenhouse gases, buildings, fleet management, water use, pollution prevention, waste reduction, sustainable acquisition, electronic stewardship and data centers, site innovation and government-wide support.

  13. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    SciTech Connect

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  14. Y-12 Site Sustainability Plan

    SciTech Connect

    Sherry, T D; Kohlhorst, D P; Little, S K

    2011-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the DOE and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the Guiding Principles. Specifically, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP) while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. Table ES.2 gives a comprehensive overview of Y-12's performance status and planned actions. B&W Y-12's Energy Management mission is to incorporate renewable energy and energy efficient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. During FY 2011, the site formed a sustainability team (Fig. ES.1). The sustainability team provides a coordinated approach to meeting the various sustainability requirements and serves as a forum for increased communication and consistent implementation of sustainability activities at Y-12. The sustainability team serves as an information exchange mechanism to promote general awareness of sustainability information, while providing a system to document progress and to identify resources. These resources are necessary to implement activities that support the overall goals of sustainability, including reducing the use of resources and conserving energy. Additionally, the team's objectives include: (1) Foster a Y-12-wide philosophy to conserve resources; (2) Reduce the impacts of production operations in a cost-effective manner; (3) Increase materials recycling; (4) Use a minimum amount of energy and fuel; (5) Create a minimum of waste and pollution in achieving Y-12-strategic objectives; (6) Develop and implement techniques, technologies, process modifications, and programs that support sustainable acquisition; (7) Minimize the impacts to

  15. Y-12 Uranium Exposure Study

    SciTech Connect

    Eckerman, K.F.; Kerr, G.D.

    1999-08-05

    Following the recent restart of operations at the Y-12 Plant, the Radiological Control Organization (RCO) observed that the enriched uranium exposures appeared to involve insoluble rather than soluble uranium that presumably characterized most earlier Y-12 operations. These observations necessitated changes in the bioassay program, particularly the need for routine fecal sampling. In addition, it was not reasonable to interpret the bioassay data using metabolic parameter values established during earlier Y-12 operations. Thus, the recent urinary and fecal bioassay data were interpreted using the default guidance in Publication 54 of the International Commission on Radiological Protection (ICRP); that is, inhalation of Class Y uranium with an activity median aerodynamic diameter (AMAD) of 1 {micro}m. Faced with apparently new workplace conditions, these actions were appropriate and ensured a cautionary approach to worker protection. As additional bioassay data were accumulated, it became apparent that the data were not consistent with Publication 54. Therefore, this study was undertaken to examine the situation.

  16. Y-12 Sustainability and Stewardship

    ScienceCinema

    John Krueger

    2010-09-01

    The Y-12 National Security Complex recently won a White House award for its leadership among Government installations for pollution prevention. This video tells the story of the many actions taken by this NNSA National Security Enterprise site towards being a responsible environmental citizen while protecting the national interest.

  17. Y-12 Sustainability and Stewardship

    SciTech Connect

    John Krueger

    2009-10-06

    The Y-12 National Security Complex recently won a White House award for its leadership among Government installations for pollution prevention. This video tells the story of the many actions taken by this NNSA National Security Enterprise site towards being a responsible environmental citizen while protecting the national interest.

  18. Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosı´ basin, Mexico

    NASA Astrophysics Data System (ADS)

    Carrillo-Rivera, J. J.; Cardona, A.; Edmunds, W. M.

    2002-04-01

    Significant amounts of fluoride are found in the abstracted groundwater of San Luis Potosı´. This groundwater withdrawal induces a cold, low-fluoride flow as well as deeper thermal fluoride-rich flow in various proportions. Flow mixing takes place depending on the abstraction regime, local hydrogeology, and borehole construction design and operation. Fluoride concentrations (≈3.7 mg l -1) could become higher still, in time and space, if the input of regional fluoride-rich water to the abstraction boreholes is enhanced. It is suggested that by controlling the abstraction well-head water temperature at 28-30 °C, a pumped water mixture with a fluoride content close to the maximum drinking water standard of 1.5 mg l -1 will be produced. Further, new boreholes and those already operating could take advantage of fluoride solubility controls to reduce the F concentration in the abstracted water by considering lithology and borehole construction design in order to regulate groundwater flow conditions.

  19. Y-12 National Security Complex Water Assessment

    SciTech Connect

    Elam, Shana E.; Bassett, P.; McMordie Stoughton, Kate

    2010-11-01

    The Department of Energy's Federal Energy Management Program (FEMP) sponsored a water assessment at the Y 12 National Security Complex (Y 12) located in Oak Ridge, Tennessee. Driven by mandated water reduction goals of Executive Orders 13423 and 13514, the objective of the water assessment is to develop a comprehensive understanding of the current water-consuming applications and equipment at Y 12 and to identify key areas for water efficiency improvements that could be applied not only at Y-12 but at other Federal facilities as well. FEMP selected Pacific Northwest National Laboratory to coordinate and manage the water assessment. PNNL contracted Water Savers, LLC to lead the technical aspects of the water assessment. Water Savers provided key technical expertise in water auditing, metering, and cooling systems. This is the report of that effort, which concluded that the Y-12 facility could realize considerable water savings by implementing the recommended water efficiency opportunities.

  20. Contaminant hydrogeology

    SciTech Connect

    Fetter, C.W.

    1993-01-01

    Hydrogeology is a rapidly evolving field in which new approaches and tools are being applied to solve problems. This new book fills an important niche. Fetter focuses primarily on chemical processes in the subsurface, avoiding duplication of materials that are covered in other, more classical texts. This book is an excellent follow-up to his earlier text, Applied Hydrogeology, and reviews only briefly the foundational concepts covered in the earlier textbook. Contaminant Hydrogeology is written at the graduate student level and assumes prerequisite courses in physics, chemistry, and hydrogeology. For the most part, each of the nine chapters covers a major area of concern common to applied contaminant studies. A thorough, theoretical treatment of solute transport through the vadose zone is presented, and a sample problem and a case study add unusually high value to this discussion of a topic that generally is not well understood in the practice. Topics covered include the Buckingham Flux Law, the Richards Equation, vapor-phase transport, equilibrium and nonequilibrium models of mass transport, and preferential flow paths. Nonaqueous-phase liquid migrations under both saturated and unsaturated conditions is covered for horizontal as well as vertical migration. Both light and dense nonaqueous phase liquids are presented, and Darcy's Law for two-phase flow is introduced. The strength of Contaminant Hydrogeology lies in the author's ability to translate concepts through practical experience. This book links the theoretical to the practical through example problems and case histories. It should be considered for use in graduate classes and would be a valuable reference in the library of any practicing hydrogeologist.

  1. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    SciTech Connect

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  2. THE HYDROLOGIC SYSTEM: GEOMORPHIC AND HYDROGEOLOGIC CONTROLS ON SURFACE AND SUBSURFACE FLOW REGIMES IN RIPARIAN MEADOW ECOSYSTEMS IN THE CENTRAL GREAT BASIN

    EPA Science Inventory

    Riparian corridors in upland watersheds in the Great Basin of central Nevada contain the majority of the region's biodiversity. Water, in both surface and subsurface flow regimes, is an important resource sustaining these sensitive ecosystems and other similar riparian ecosystem...

  3. Stratigraphic variations and secondary porosity within the Maynardville Limestone in Bear Creek Valley, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Goldstrand, P.M.

    1995-05-01

    To evaluate groundwater and surface water contamination and migration near the Oak Ridge Y-12 plant, a Comprehensive Groundwater Monitoring Plan was developed. As part of the Maynardville exit pathways monitoring program, monitoring well clusters were ii installed perpendicular to the strike of the Maynardville Limestone, that underlies the southern part of the Y-12 Plant and Bear Creek Valley (BCV). The Maynardville Project is designed to locate potential exit pathways of groundwater, study geochemical characteristics and factors affecting the occurrence and distribution of water-bearing intervals, and provide hydrogeologic information to be used to reduce the potential impacts of contaminants entering the Maynardville Limestone.

  4. Y-12 Plant Stratospheric Ozone Protection plan

    SciTech Connect

    1995-09-01

    The Y-12 Plant staff is required by Lockheed Martin Energy Systems (Energy Systems) (formerly Martin Marietta Energy Systems) standard ESS-EP-129 to develop and implement a Stratospheric Ozone Protection Program which will minimize emissions of ozone-depleting substances to the environment and maximize the use of ozone-safe alternatives in order to comply with Title VI of the 1990 Clean Air Act (CAA) Amendments and the implementing regulations promulgated by the Environmental Protection Agency (EPA). This plan describes the requirements, initiatives, and accomplishments of the Y-12 Plant Stratospheric Ozone Protection Program.

  5. Y-12 Site-Sustainability Plan 2010

    SciTech Connect

    Sherry, T. D.; Kohlhorst, D. P.; Little, S. K.

    2010-12-01

    The accomplishments to date and the long-range planning of the Y-12 National Security Complex Energy Management program support the Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the guiding principles. The site is diligently working toward establishing and prioritizing projects to reach the goals that Executive Orders 13514 and 13423 set forth. Y-12 is working to communicate its sustainment vision through procedural, engineering, operational, and management practices. The site will make informed decisions that are based on the application of the fi ve guiding principles for High Performance Sustainable Buildings (HPSBs) to the maximum extent possible. Current limitations in achievement of the goals lie in the existing Future Years National Security Program funding profiles. Y-12 will continue to execute energy projects as funding becomes available or as they can be accomplished incrementally within existing funding profiles. All efforts will be made to integrate energy initiatives with ongoing site mission objectives. Figures ES.1-ES.4 show some examples of sustainability activities at the Y-12 Complex.

  6. Calendar Year 2007 Resource Conservation and Recovery Act Annual Monitoring Report for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee - RCRA Post-Closure Permit Nos. TNHW-113, TNHW-116, and TNHW-128

    SciTech Connect

    Elvado Environmental

    2008-02-01

    This report contains groundwater quality monitoring data obtained during calendar year (CY) 2007 at the following hazardous waste treatment, storage, and disposal (TSD) units located at the US Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee; this S-3 Site, Oil Landfarm, Bear Creek Burial Grounds/Walk-In Pits (BCBG/WIP), Eastern S-3 Site Plume, Chestnut Ridge Security Pits (CRSP), Chestnut Ridge Sediment Disposal Baste (CRSDB), few Hollow Quarry (KHQ), and East Chestnut Ridge Waste Pile (ECRWP). Hit monitoring data were obtained in accordance with the applicable Resource Conservation and Recovery Act of 1976 (RCRA) hazardous waste post-closure permit (PCP). The Tennessee Department of Environment and Conservation (TDEC) - Division of Solid Waste Management issued the PCPs to define the requirements for RCRA post-closure inspection, maintenance, and groundwater monitoring at the specified TSD units located within the Bear Creek Hydrogeologic Regime (PCP no. TNHW-116), Upper East Fork Poplar Creek Hydrogeologic Regime (PCP no. TNHW-113), and Chestnut Ridge Hydrogeologic Regime (PCP no. TNHW-128). Each PCP requires the Submittal of an annual RCRA groundwater monitoring report containing the groundwater sampling information and analytical results obtained at each applicable TSD unit during the preceding CY, along with an evaluation of groundwater low rates and directions and the analytical results for specified RCRA groundwater target compounds; this report is the RCRA annual groundwater monitoring report for CY 2007. The RCRA post-closure groundwater monitoring requirements specified in the above-referenced PCP for the Chestnut Ridge Regime replace those defined in the previous PCP (permit no. TNHW-088), which expired on September 18, 2005, but remained effective until the TDEC issued the new PCP in September 2006. The new PCP defines site-specific groundwater sampling and analysis requirements for the

  7. Undergraduate Education in Hydrogeology.

    ERIC Educational Resources Information Center

    Tinker, John Richard, Jr.

    1989-01-01

    Discusses a course at the University of Wisconsin-Eau Claire which improved instruction in physical hydrogeology, chemical hydrogeology, and water resources. Describes 14 laboratory activities including objectives, methods, and a list of equipment needed. (Author/MVL)

  8. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  9. Y-12 Sustainable Design Principles for Building Design and Construction

    SciTech Connect

    Jackson, J. G.

    2008-11-01

    B&W Y-12 is committed to modernizing the Y-12 complex to meet future needs with a sustainable and responsive infrastructure and to integrating sustainability principles and practices into Y-12 work (Y72-001, B&W Y-12 Environmental, Safety and Health Policy). This commitment to sustainability and specifically sustainable design of buildings is also incorporated into Presidential Executive Orders (EO), DOE Orders (DOE O), and goals. Sustainable building design is an approach to design, construct, and operate facilities in an efficient and environmentally sound manner that will produce a healthful, resource-efficient and productive working environment that is inherently protective of the environment. The DOE has established the following 5 Guiding Principles for High Performance Sustainable Building (HPSB), and has issued directives that require Y-12 to incorporate the principles and a number of supporting specific practices and techniques into building design, construction and renovation projects: (1) Employ Integrated Design Principles; (2) Optimize Energy Performance; (3) Protect and Conserve Water; (4) Enhance Indoor Environmental Quality; and (5) Reduce Environmental Impact of Materials. The purpose of this document is to present the required sustainable building principles, practices and techniques, summarize the key drivers for incorporating them into Y-12 projects, and present additional recommendations and resources that can be used to support sustainable buildings to enhance the environmental and economic performance of the Y-12 Complex.

  10. Y-12 Groundwater Protection Program Extent Of The Primary Groundwater Contaminants At The Y-12 National Security Complex

    SciTech Connect

    2013-12-01

    This report presents data summary tables and maps used to define and illustrate the approximate lateral extent of groundwater contamination at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The data tables and maps address the primary (i.e., most widespread and mobile) organic, inorganic, and radiological contaminants in the groundwater. The sampling locations, calculated contaminant concentrations, plume boundary values, and paired map format used to define, quantify, delineate, and illustrate the approximate extent of the primary organic, inorganic, and radiological contaminants in groundwater at Y-12 are described.

  11. Wastewater control report for the Oak Ridge Y-12 Plant

    SciTech Connect

    1996-06-01

    The 1995 National Pollutant Discharge Elimination System (NPDES) permit for the Y-12 Plant (Part III-F, page 41) requires the preparation of a report to describe procedures and criteria used in operating on-site treatment systems to maintain compliance with the NPDES permit. This report has been prepared to fulfill this requirement. Five wastewater treatment systems are currently in operation at the Y-12 Plant; they are operated by personal in the Waste Management and Facilities Management Organizations.

  12. Oak Ridge Y-12 Plant groundwater protection program management plan

    SciTech Connect

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres.

  13. HYDROGEOLOGIC CASE STUDIES

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  14. Partnering to reduce waste at Y-12 through Y-12's multi-organizational reduce/reuse/recycle team

    SciTech Connect

    Jackson, J.G.; Patterson, A.L.; Wiginton, M.C.; Yeager, A.L.; Donnelly, J.P.; Ostergaard, A.P.; Cornwell, S.E.

    2007-07-01

    BWXT Y-12, L.L.C., the Maintenance and Operations (M and O) contractor at the Y-12 National Security Complex (Y-12), practices pollution prevention in daily operations because it recognizes that the implementation of pollution prevention (P2) projects impacting all waste types, discharges, and emissions at the complex saves resources across the board. Projects that reduce solid industrial waste save numerous resources, including valuable landfill space. At Y- 12, most of the solid industrial waste that is not reduced, reused, or recycled is transported to an industrial waste landfill located on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). While the current landfill still has capacity, in the past the industrial waste generation across the ORR was impacted when the new landfill was not available to receive waste, but the old landfill was reaching capacity. The potential of having waste with absolutely nowhere to go is simply not an option for a facility with ongoing operations. Avoiding this potential scenario in the memorable past has made Y-12 very aware of the importance of reducing all waste types. While Y-12 aggressively pursues pollution prevention implementation on all waste types, this paper will highlight the use of systems, people, and pollution prevention integration in projects used by Y-12 to holistically reduce the amount of industrial waste being sent to the on-site landfill. Specifically, the design and use of Y-12's Environmental Management System (EMS), the creation of a multi-disciplinary team, and the buy-in and creativity of the site project, Infrastructure Reduction (IR), that generates the largest volumes of waste will be discussed. (authors)

  15. The Y-12 Plant - a model for environmental excellence

    SciTech Connect

    Not Available

    1994-11-01

    The Department of Energy`s Y-12 Plant, located in Oak Ridge, Tennessee, occupies more than 800 acres and has a work force of over 4,000 employees. The Y-12 Plant is managed by Martin Marietta Energy Systems, Inc., a subsidiary of Martin Marietta Corporation. Although mission emphases at the Y-12 Plant have evolved and changed with the easing of international tensions, the Plant continues to serve as a key manufacturing unit and technology demonstration center for the Department of Energy and the nation. The Y-12 Plant has undergone many changes in the last 14 years. One of the most dramatic changes has occurred in the environmental programs with measurable improvements in environmental quality, the development of an award-winning pollution prevention program, and the institution of an environmentally-conscious work ethic among the work force. Because the plant is committed to achieving excellence, not just compliance with laws and regulations, a highly structured, multimedia environmental management program is in place. This program, combined with a commitment to protect the environment while striving for continued improvement, has placed Y-12 in the position to reach excellence. As a result of the Y-12 Plant`s changing mission, they are now working closely with American industry through technology transfer to share their experiences and {open_quotes}lessons learned{close_quotes}--including environmental and pollution prevention technology. To facilitate this effort, the Oak Ridge Centers for Manufacturing Technology has been established at the Y-12 Plant. Through the Centers, the Oak Ridge staff applies skills, capabilities, and facilities developed over a 50-year history of the Oak Ridge Complex to a variety of peacetime missions. The services found at the Centers are a key to helping America`s businesses--both small and large--compete in the global marketplace while protecting the nations environment and conserving its resources.

  16. Environmental Survey preliminary report, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1987-11-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE), Y-12 Plant, conducted November 10 through 21 and December 9 through 11, 1986. This Survey is being conducted by a multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Y-12 Plant. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Y-12, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by DOE's Argonne National Laboratory. When completed, the results will be incorporated into the Y-12 Plant Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Y-12 Plant Survey. 80 refs., 76 figs., 61 tabs.

  17. Fabrication of reactor shields at the Y-12 plant

    NASA Astrophysics Data System (ADS)

    Asbury, W. L.; Kosinski, F. E.; Royer, L. T.

    The Oak Ridge Y-12 Plant is the lead DOE facility for the large scale synthesis, manufacture, and fabrication of lithium hydride/deuteride (LiH/D) materials. Fabrication of large crack free LiH/D parts of uniform density and strength is best achieved by isostatic pressing, using powder metallurgy methods. The highly reactive and moisture sensitive nature of LiH/D has required a number of unique facilities and processing methods at Y-12 to process LiH/D in a safe manner and to maintain high quality products. The history of the fabrication of neutron shields for the SNAP 10A reactor is discussed. Powder metallurgical techniques were used to fabricate that shielding system at Y-12, and the units were tested for shielding efficiency at the Tower Shielding Facility at ORNL.

  18. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed. PMID:23356287

  19. Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan

    SciTech Connect

    Koger, J.

    1995-02-10

    The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefit to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.

  20. Effectiveness evaluation of three RCRA caps at the Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Shevenell, L.A.; Goldstrand, P.M.

    1994-01-01

    Because installation of Resource Conservation and Recovery Act (RCRA)- engineered caps is costly, it is prudent to evaluate the effectiveness of this procedure for hydrologically isolating contaminants. The objective for installation of five-part engineered caps at the Y-12 Plant was to (1) satisfy the regulatory compliance issues, (2) minimize the risk of direct contact with the wastes, and (3) reduce rainfall infiltration. Although the original objectives of installing the caps were not to alter groundwater flow, a potential effect of reducing infiltration is to minimize leaching, thus retarding groundwater contaminant migration from the site. Hence, cap effectiveness with respect to reduced groundwater contaminant migration is evaluated using groundwater data in this report. Based on the available data at the Y-12 capped areas, evaluation of cap effectiveness includes studying water level and chemical variability in nearby monitoring wells. Three caps installed during 1989 are selected for evaluation in this report. These caps are located in three significantly different hydrogeologic settings: overlying a karst aquifer (Chestnut Ridge Security Pits [CRSP]), overlying shales located on a hill slope (Oil Landfarm Waste Management Area [OLWMA]), and overlying shales in a valley floor which is a site of convergent groundwater flow (New Hope Pond [NHP]). Presumably, the caps have been effective in minimizing risk of direct contact with the wastes and halting direct rainfall infiltration into the sites over the extent of the capped areas, but no evidence is presented in this report to directly demonstrate this. The caps installed over the three sites appear to have had a minimal effect on groundwater contaminant migration from the respective sites. Following cap construction, no changes in the configuration of the water table were observed. Migration of contaminant plumes occurred at all three sites, apparently without regard to the timing of cap installation.

  1. Y-12 National Security Complex's Sustainable Recovery and Transformation - 12420

    SciTech Connect

    Jackson, Jan; Widman, Jeannette

    2012-07-01

    American Recovery and Reinvestment Act (ARRA) funds were used at the Y-12 National Security Complex (Y-12) to remove legacy materials from large contaminated excess facilities in order to prepare the facilities for demolition, demolish five excess buildings, and clean up sources of environmental contamination. The legacy materials and buildings presented many challenges and the potential hazards included depleted uranium and other radiological contaminants, lead, polychlorinated biphenyls, Freon, mold, mildew, asbestos, beryllium and mercury. Y-12 project teams have integrated sustainable waste management practices into each of the seven ARRA projects. The ARRA clean up efforts have resulted in the reduction of potential environmental, health, and safety risks posed by the excess facilities and sources of environmental contamination. Y-12's ARRA project teams focused on completing the activities in a sustainable, timely and safe manner. The site utilized a systematic material disposition evaluation process to ensure that materials were not automatically dis-positioned as waste. ARRA projects have recycled or reused over 1.3 million pounds of materials while preventing over 3 million vehicle miles traveled for waste disposal. Y-12 ARRA projects have worked over 2 million safe work hours without a lost time injury. The site has already begun to beneficially reuse land cleared by ARRA project activities to support sustainable transformation efforts. The Y-12 ARRA project activities have demonstrated that large complex projects can be completed sustainably and safely while maintaining an aggressive schedule. Through careful planning and execution, ARRA projects at the site have sustainably reduced the potential environmental, health, and safety risks posed to site employees and the community by the excess facilities and sources of environmental contamination. Y-12's systematic material disposition process ensured that materials were not automatically assumed to be

  2. Determination of reference concentrations for inorganic analytes in groundwater at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-03-01

    Background (or reference) concentrations for inorganics in Y-12 Plant groundwater were determined using a combination of statistical cluster analysis and conventional cumulative probability graphing. Objective was to develop a methodology for setting groundwater reference concentrations that uses all site groundwater data instead of only results of sampling upgradient of groundwater contamination. Y-12 was selected as prototype because the groundwater data set is very large and the data have been consistently collected since 1986. A conceptual framework of groundwater quality at Y-12 was formulated; as a quality check, data were statistically modeled or clustered. Ten hydrochemical regimes or clusters were identified. Six well clusters closely corresponded to the water quality framework and to observed water quality regimes in groundwater at Y-12. Four clusters were associated with nitrate, an S-3 Site contaminant, or with nonspecific contaminants commonly encountered at shallow depths at industrial sites (e.g., road salt). These four clusters were eliminated from the reference data set. Cumulative probability graphs were used within a cluster or group of clusters to distinguish contaminated wells from wells with ambient water quality. Only median values of unfiltered samples were plotted. Outlying data points (assumed to be contaminated samples) were identified and eliminated from the data set. When all outliers for a given inorganic had been identified and deleted from the data set, the reference concentration was set at the one-sided upper tolerance limit on the 95th percentile with 95% confidence. The methodology proved useful in integrating a large amount of data into the Y-12 plant groundwater conceptual framework and in identifying those wells or groups of wells that have monitoring or sample and analysis problems or that may be monitoring site-related contamination.

  3. Characteristics of new P2Y12 inhibitors: selection of P2Y12 inhibitors in clinical practice.

    PubMed

    Golino, Paolo

    2013-12-01

    The options for antithrombotic therapy have recently been expanded, facilitating optimal tailored treatment. Dual antiplatelet therapy with aspirin and an approved adenosine diphosphate P2Y12 receptor antagonist is recommended for the management of patients with acute coronary syndromes (ACS). However, there are a number of controversies: which P2Y12 inhibitor to choose; how long should antiplatelet therapy be used so as to prevent thrombotic events and minimize bleeding risks; whether to use drug-eluting (DES) or bare-metal stents (BMS) and how to manage the individual variability in response to clopidogrel. Clopidogrel in combination with aspirin has been the standard dual antiplatelet regimen for ACS. The new, more potent P2Y12 inhibitors, prasugrel and ticagrelor, have shown improved antithrombotic effects compared with clopidogrel in patients with ACS (with or without ST-segment elevation myocardial infarction) in landmark trials, even if they were associated with an increased risk of major bleeding. Different pharmacogenetic and pharmacodynamic characteristics may explain, in part, the different pharmacologic and clinical responses to these antiplatelet agents. Importantly, both clopidogrel and prasugrel are prodrugs, i.e., they need to be converted in vivo into active metabolites that selectively and irreversibly bind the P2Y12 receptor. Unlike clopidogrel, however, common functional cytochrome P450 genetic variants do not affect prasugrel active metabolite levels or inhibition of platelet aggregation. In contrast, ticagrelor is not a prodrug (i.e., does not require hepatic metabolism to exert its antiplatelet effect) and represents the first oral P2Y12 receptor antagonist that is reversibly bound. Similar to prasugrel, ticagrelor achieves greater and more rapid inhibition of platelet function than clopidogrel. Evidence suggests that the new P2Y12 antagonists may offer improved antithrombotic effects compared with clopidogrel in selected patients for the

  4. Fiscal Year 1998 Well Installation, Plugging and Abandonment, and Redevelopment summary report Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1998-12-01

    This report summarizes the well installation, plugging and abandonment, and redevelopment activities conducted during the federal fiscal year (FY) 1998 at the Y-12 Plant, Oak Ridge, Tennessee. Five new groundwater monitoring wells were installed at the Y-12 Plant under the FY 1998 drilling program. Two of the wells are located in west Bear Creek Valley, one is in the eastern Y-12 Plant area near Lake Reality, and two are located near the Oil Landfarm Waste Management Area, which were installed by Bechtel Jacobs Company LLC (Bechtel Jacobs) as part of a site characterization activity for the Oak Ridge Reservation (ORR) Disposal Cell. Also, two existing wells were upgraded and nine temporary piezometers were installed to characterize hydrogeologic conditions at the Disposal Cell site. In addition, 40 temporary piezometers were installed in the Boneyard/Bumyard area of Bear Creek Valley by Bechtel Jacobs as part of the accelerated remedial actions conducted by the Environmental Restoration Program. Ten monitoring wells at the Y-12 Plant were decommissioned in FY 1998. Two existing monitoring wells were redeveloped during FY 1998 (of these, GW-732 was redeveloped tsvice). All well installation and development (including redevelopment) was conducted following industry-standard methods and approved procedures from the Environmental Surveillance Procedures Quality Control Program (Energy Systems 1988); the Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document (EPA 1992); and the Monitoring Well Installation Plan for the Department of Energy Y-12 Plant, Oak Ridge, Tennessee (Energy Systems 1997a). Well installation and development of the non-Y-12 Plant GWPP oversight installation projects were conducted using procedures/guidance defined in the following documents: Work Plan for Support to Upper East Fork Poplar Creek East End Volatile Organic Compound Plumes Well Installation Project, Oak Ridge Y-12 Plant, Oak Ridge

  5. Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility

    SciTech Connect

    Jackson, J. G.

    2010-03-01

    The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

  6. Principles of Hydrogeology, Second Edition

    NASA Astrophysics Data System (ADS)

    Ferø, Paul

    Hydrogeology is a broadbased field of study, bringing together geology, physics, hydraulics, chemistry, geography, biology, and many branches of engineering. As a result, practicing hydrogeologists come from diverse back-grounds and must work closely with professionals with skills and experiences different from their own. Thorough understanding of the underlying physical, geological, and chemical principles of hydrogeology is a requisite basis for technical communication among hydrogeologists. A convenient source of working definitions and commonly used parameters is a useful tool for hydrogeologic practice.Principles of Hydrogeology falls somewhere between a complete introduction to the underlying concepts of hydrogeology and a detailed description of hydrogeologic methods. The simplified, schematic figures used throughout the text are clear and readable, well-suited for use in classroom instruction. Many sample calculations are provided together with tables of useful parameter values. A wide range of topics relevant to the practice of hydrogeology are introduced. Its clarity and brevity will make this book a useful primer for professionals working in fields related to hydrogeology for students at the beginning of their careers, and for hydrogeologic technicians who need an accessible source of definitions of hydrogeologic concepts.

  7. Low-level waste minimization at the Y-12 Plant

    SciTech Connect

    Koger, J.

    1993-03-01

    The Y-12 Development Waste Minimization Program is used as a basis for defining new technologies and processes that produce minimum low-level wastes (hazardous, mixed, radioactive, and industrial) for the Y-12 Plant in the future and for Complex-21 and that aid in decontamination and decommissioning (D and D) efforts throughout the complex. In the past, the strategy at the Y-12 Plant was to treat the residues from the production processes using chemical treatment, incineration, compaction, and other technologies, which often generated copious quantities of additional wastes and, with the exception of highly valuable materials such as enriched uranium, incorporated very little recycle in the process. Recycle, in this context, is defined as material that is put back into the process before it enters a waste stream. Additionally, there are several new technology drivers that have recently emerged with the changing climate in the Nuclear Weapons Complex such as Complex 21 and D and D technologies and an increasing number of disassemblies. The hierarchies of concern in the waste minimization effort are source reduction, recycle capability, treatment simplicity, and final disposal difficulty with regard to Complex 21, disassembly efforts, D and D, and, to a lesser extent, weapons production. Source reduction can be achieved through substitution of hazardous substances for nonhazardous materials, and process changes that result in less generated waste.

  8. Y-12 old salvage yard scrap metal characterization study

    SciTech Connect

    Anderson, L.M.; Melton, S.G.; Shaw, S.S.

    1993-11-01

    The purpose of the Y-12 Old Salvage Yard scrap metal Characterization Study is to make conservative estimates of the quantities of total uranium and the wt % {sup 235}U contained in scrap metal. The original project scope included estimates of thorium, but due to the insignificant quantities found in the yards, thorium was excluded from further analysis. Metal in three of the four Y-12 scrap metal yards were characterized. The scrap metal yard east of the PIDAS fence is managed by the Environmental Restoration Program and therefore was not included in this study. For all Y-12 Plant scrap metal shipments, Waste Transportation, Storage, and Disposal (WTSD) personnel must complete a Request for Authorization to Ship Nuclear Materials, UCN-16409, which requires the grams of total uranium, the wt % {sup 235}U, and the grams of {sup 235}U contained in the shipment. This information is necessary to ensure compliance with Department of Transportation regulations, as well as to ensure that the receiving facility is adhering to its operating license. This characterization study was designed to provide a technical basis for determining these necessary radioactive quantities.

  9. Y-12 Waste Management Division Process Waste Assessment (PWA) report

    SciTech Connect

    Not Available

    1992-01-01

    The Process Waste Assessment (PWA) methodology used by the Martin Marietta Energy Systems, Inc. (Energy Systems) Y-12 Waste Management Division (WMD) was based on the US Department of Energy (DOE) Model Process Waste Assessment Plan, which in turn, was based on the US Environmental Protection Agency, (US EPA) Waste Minimization Opportunity Assessment Manual but incorporated modifications suggested by various DOE production facilities. The DOE PWA plan methodology was slightly modified to meet the differing needs of WMD because the model was directed toward production operations versus waste treatment, storage, and disposal operations. The objective of this PWA was to compile information about the WMD operations and processes that transport, treat, store, and dispose of waste streams generated by other Y-12 organizations and WMD. Data were also collected on WMD operating procedures and WMD waste streams as well as other Y-12 organizations' waste streams managed. The assessment consisted of five primary steps: organization of the WMD PWA Team and subteams, assessment of WMD operations and waste streams, development and evaluation of waste minimization options, compilation, review, and publication of the PWA report and supporting data, and implementation of waste minimization options.

  10. Y-12 Waste Management Division Process Waste Assessment (PWA) report

    SciTech Connect

    Not Available

    1992-01-01

    The Process Waste Assessment (PWA) methodology used by the Martin Marietta Energy Systems, Inc. (Energy Systems) Y-12 Waste Management Division (WMD) was based on the US Department of Energy (DOE) Model Process Waste Assessment Plan, which in turn, was based on the US Environmental Protection Agency, (US EPA) Waste Minimization Opportunity Assessment Manual but incorporated modifications suggested by various DOE production facilities. The DOE PWA plan methodology was slightly modified to meet the differing needs of WMD because the model was directed toward production operations versus waste treatment, storage, and disposal operations. The objective of this PWA was to compile information about the WMD operations and processes that transport, treat, store, and dispose of waste streams generated by other Y-12 organizations and WMD. Data were also collected on WMD operating procedures and WMD waste streams as well as other Y-12 organizations` waste streams managed. The assessment consisted of five primary steps: organization of the WMD PWA Team and subteams, assessment of WMD operations and waste streams, development and evaluation of waste minimization options, compilation, review, and publication of the PWA report and supporting data, and implementation of waste minimization options.

  11. Y-12 Site environmental protection program implementation plan (EPPIP)

    SciTech Connect

    1996-11-01

    The Y-12 Plant Environmental Protection Program is conducted to: (1) protect public health and the environment from chemical and radiological releases occurring from current plant operations and past waste management and operational practices; (2) ensure compliance with federal, state, and local environmental regulations and DOE directives; (3) identify potential environmental problems; (4) evaluate existing environmental contamination and determine the need for remedial actions and mitigative measures; (5) monitor the progress of ongoing remedial actions and cleanup measures; and (6) inform the public of environmental issues relating to DOE operations. DOE Order 5400.1, General Environmental Protection Program, defines the general requirements for environmental protection programs at DOE facilities. This Environmental Protection Program Implementation Plan (EPPIP) defines the methods by which the Y-12 Plant staff will comply with the order by: (1) referencing environmental protection goals and objectives and identifying strategies and timetables for attaining them; (2) providing the overall framework for the design and implementation of the Y-12 Environmental Protection Program; and (3) assigning responsibilities for complying with the requirements of the order. The EPPIP is revised and updated annually.

  12. Y-12 Groundwater Protection Program CY 2009 Triennial Report Of The Monitoring Well Inspection And Maintenance Program, Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2013-06-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspection events conducted on active and inactive wells at Y-12 during calendar years (CY) 2007 through 2009; it documents well maintenance and plugging and abandonment activities completed since the last triennial inspection event (CY 2006); and provides summary tables of well inspection events, well maintenance events, and well plugging and abandonment events during the reference time period.

  13. Education and Employment in Hydrogeology.

    ERIC Educational Resources Information Center

    Pederson, Darryll T.

    1987-01-01

    Reports on a study of position descriptions in the field of hydrogeology appearing in want ads, published studies describing the working professional, and published descriptions of hydrogeology programs. Results indicate an increase in positions of ten times that of five years ago. Suggests basic training requirements for beginning…

  14. Cryogenic Thermal Expansion of Y-12 Graphite Fuel Elements

    SciTech Connect

    Eash, D. T.

    2013-07-08

    Thermal expansion measurements betwccn 20°K and 300°K were made on segments of three uranium-loaded Y-12 uncoated graphite fuel elements. The thermal expansion of these fuel elements over this temperature range is represented by the equation: {Delta}L/L = -39.42 x 10{sup -5} + 1.10 x 10{sup -7} T + 6.47 x 10{sup -9} T{sup 2} - 8.30 x 10{sup -12} T{sup 3}.

  15. Y-12 Respirator Flow Cycle Time Reduction Project

    SciTech Connect

    Hawk, C.T.; Rogers, P.E.

    2000-12-01

    In mid-July 2000, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the flow and overall efficiency of the respirator distribution process at Y-12. A cross-functional team was formed to evaluate the current process and to propose necessary changes for improvement. Specifically, the team was challenged to make improvements that would eliminate production work stoppages due to the unavailability of respirators in Y-12 Stores. Prior to the team initiation, plant back orders for a specific model respirator were averaging above 600 and have been as high as 750+. The Cycle Time Reduction team segmented the respirator flow into detailed steps, with the focus and emphasis primarily being on the movement of dirty respirators out of work areas, transportation to Oak Ridge National Laboratory (ORNL) Laundry, and return back to Y-12 Stores inventory. The team selected a popular model respirator, size large, to track improvements. Despite a 30 percent increase in respirator usage for the same period of time in the previous year, the team has reduced the back orders by 89% with a steady trend downward. Summary of accomplishments: A 47 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse at the Y-12 Complex; A 73 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse specifically for major users: Enriched Uranium Operations (EUO) and Facilities Maintenance Organization (FMO); Development of a performance measure for tracking back orders; An 89 percent reduction in the number of laundered respirators on back order; Implementation of a tracking method to account for respirator loss; Achievement of an annual cost savings/avoidance of $800K with a one-time cost of $20K; Implementation of a routine pick-up schedule for EUO (major user of respirators); Elimination of activities no longer determined to be needed; Elimination of routine complaint calls to

  16. Y-12 Groundwater Protection Program CY2012 Triennial Report Of The Monitoring Well Inspection And Maintenance Program Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2013-09-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspections completed by the GWPP on active and inactive wells at Y-12 during calendar years (CY) 2010 through 2012. In addition, this report also documents well inspections performed under the Y-12 Water Resources Restoration Program, which is administered by URS|CH2M Oak Ridge (UCOR). This report documents well maintenance activities completed since the last triennial inspection event (CY 2009); and provides summary tables of well inspections and well maintenance activities during the reference time period.

  17. Y-12 defense programs: Nuclear Packaging Systems testing capabilities

    SciTech Connect

    1995-06-01

    The Nuclear Packaging Systems (NPS) Department can manage/accomplish any packaging task. The NPS organization is responsible for managing the design, testing, certification, procurement, operation, refurbishment, maintenance, and disposal of packaging used to transport radioactive materials, other hazardous materials, and general cargoes on public roads and within the Oak Ridge Y-12 Plant. Additionally, the NPS Department has developed a Quality Assurance plan for all packaging, design and procurement of nonweapon shipping containers for radioactive materials, and design and procurement of performance-oriented packaging for hazardous materials. Further, the NPS Department is responsible for preparation and submittal of Safety Analysis Reports for Packaging (SARP). The NPS Department coordinates shipping container procurement and safety certification activities that have lead-times of up to two years. A Packaging Testing Capabilities Table at the Oak Ridge complex is included as a table.

  18. Hydrogeologic Case Studies (Seattle, WA)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  19. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  20. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  1. Coral reef hydrogeology

    SciTech Connect

    Buddemeier, R.W.; Oberdorfer, J.A.

    1985-05-21

    Knowledge of internal flow velocities and pore water residence time is important in understanding pore water geochemistry, nutrient fluxes at the benthic boundary, reef diagenesis, and fresh water resources in reef islands. Hydrogeologic studies of Pacific and Indian Ocean reef and atoll islands indicate a dual aquifer systems; the major Pleistocene aquifer has hydraulic conductivities on the order of 1000 m/d, while the overlying Holocene aquifer of unconsolidated sediments is at least an order of magnitude less permeable. The high permeability in the Pleistocene formation is the result of large voids, both constructional and from subaerial solution during low stands of the sea. Wind, wave and tide induced head differences ranging from a few centimeters to several tens of centimeters provide the driving force for internal flow. Pore water residence times and geochemistry will vary greatly, depending on whether the water is in a major flow channel or in more restricted pores. Studies of both submerged reefs and atoll islands give bulk pore water residence times on the order of months to a few years. Chemical analyses of pore water indicate that both carbonate solution and precipitation are taking place, which will alter porosity and permeability with time. The dual aquifer model also suggests that the Ghyben-Herzberg lens approach to reef island fresh water resources is inaccurate and can lead to a gross overestimation of the potable resource. 18 refs., 5 figs.

  2. Oak Ridge Y-12 Plant Emergency Action Level (EAL) Process

    SciTech Connect

    Bailiff, E.G.; Bolling, J.D.

    2000-08-01

    This report establishes requirements and standard methods for the development and maintenance of the Emergency Action Level (EAL) Process used by all lead and event contractors for emergency planning and preparedness. The EAL process ensures a technically defensible approach to emergency categorization/classification in accordance with DOE Order 151.1. The instructions provided in this document include methods and requirements for the development and approval of the EAL process. EALs are developed to cover events inside and outside the Y-12 Plant and to allow the Emergency Response Organization (ERO) to classify or reclassify events promptly based on specific indicators. This report is divided into the following 11 subsections: (1) EAL Process, (2) Categorization/Classification System for Operational Emergencies, (3) Development of EALs, (4) Barrier Analysis for EALs, (5) Symptom-Based and Event-Based EALs, (6) Other Considerations, (7) Integration of EALs with Normal and Off-Normal Operations, (8) EAL Manual, (9) Testing EALs for Completeness, (10) Training and Implementation of EALs, and (11) Configuration Management.

  3. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    SciTech Connect

    2006-12-01

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

  4. Microglial P2Y12 receptors regulate microglial activation and surveillance during neuropathic pain.

    PubMed

    Gu, Nan; Eyo, Ukpong B; Murugan, Madhuvika; Peng, Jiyun; Matta, Sanjana; Dong, Hailong; Wu, Long-Jun

    2016-07-01

    Microglial cells are critical in the pathogenesis of neuropathic pain and several microglial receptors have been proposed to mediate this process. Of these receptors, the P2Y12 receptor is a unique purinergic receptor that is exclusively expressed by microglia in the central nervous system (CNS). In this study, we set forth to investigate the role of P2Y12 receptors in microglial electrophysiological and morphological (static and dynamic) activation during spinal nerve transection (SNT)-induced neuropathic pain in mice. First, we found that a genetic deficiency of the P2Y12 receptor (P2Y12(-/-) mice) ameliorated pain hypersensitivities during the initiation phase of neuropathic pain. Next, we characterised both the electrophysiological and morphological properties of microglia in the superficial spinal cord dorsal horn following SNT injury. We show dramatic alterations including a peak at 3days post injury in microglial electrophysiology while high resolution two-photon imaging revealed significant changes of both static and dynamic microglial morphological properties by 7days post injury. Finally, in P2Y12(-/-) mice, these electrophysiological and morphological changes were ameliorated suggesting roles for P2Y12 receptors in SNT-induced microglial activation. Our results therefore indicate that P2Y12 receptors regulate microglial electrophysiological as well as static and dynamic microglial properties after peripheral nerve injury, suggesting that the microglial P2Y12 receptor could be a potential therapeutic target for the treatment of neuropathic pain. PMID:26576724

  5. Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Cooke, Alexandra E; Emery, Elizabeth D; Mundell, Stuart J

    2013-05-01

    P2Y12 receptor internalization and recycling play an essential role in ADP-induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild-type (WT) P2Y12 recycling and investigated P2Y12 -P341A receptor traffic. Treatment with ADP resulted in delayed Rab5-dependent internalization of P341A when compared with WT P2Y12 . While WT P2Y12 rapidly recycled back to the membrane via Rab4 and Rab11 recycling pathways, limited P341A recycling was observed, which relied upon Rab11 activity. Although minimal receptor degradation was evident, P341A was localized in Rab7-positive endosomes with considerable agonist-dependent accumulation in the trans-Golgi network (TGN). Rab7 activity is known to facilitate recruitment of retromer complex proteins to endosomes to transport cargo to the TGN. Here, we identified that P341A colocalized with Vps26; depletion of which blocked limited recycling and promoted receptor degradation. This study has identified key points of divergence in the endocytic traffic of P341A versus WT-P2Y12 . Given that these pathways are retained in human platelets, this research helps define the molecular mechanisms regulating P2Y12 receptor traffic and explain the compromised receptor function in the platelets of the P2Y12 -P341A-expressing patient. PMID:23387322

  6. P2Y12 expression and function in alternatively activated human microglia

    PubMed Central

    Ase, Ariel R.; Kinsara, Angham; Rao, Vijayaraghava T.S.; Michell-Robinson, Mackenzie; Leong, Soo Yuen; Butovsky, Oleg; Ludwin, Samuel K.; Séguéla, Philippe; Bar-Or, Amit; Antel, Jack P.

    2015-01-01

    Objective: To investigate and measure the functional significance of altered P2Y12 expression in the context of human microglia activation. Methods: We performed in vitro and in situ experiments to measure how P2Y12 expression can influence disease-relevant functional properties of classically activated (M1) and alternatively activated (M2) human microglia in the inflamed brain. Results: We demonstrated that compared to resting and classically activated (M1) human microglia, P2Y12 expression is increased under alternatively activated (M2) conditions. In response to ADP, the endogenous ligand of P2Y12, M2 microglia have increased ligand-mediated calcium responses, which are blocked by selective P2Y12 antagonism. P2Y12 antagonism was also shown to decrease migratory and inflammatory responses in human microglia upon exposure to nucleotides that are released during CNS injury; no effects were observed in human monocytes or macrophages. In situ experiments confirm that P2Y12 is selectively expressed on human microglia and elevated under neuropathologic conditions that promote Th2 responses, such as parasitic CNS infection. Conclusion: These findings provide insight into the roles of M2 microglia in the context of neuroinflammation and suggest a mechanism to selectively target a functionally unique population of myeloid cells in the CNS. PMID:25821842

  7. Identification of a New Morpholine Scaffold as a P2Y12 Receptor Antagonist.

    PubMed

    Ahn, Young Ha; Lee, Joo-Youn; Park, Hee Dong; Kim, Tae Hun; Park, Min Chul; Choi, Gildon; Kim, Sunghoon

    2016-01-01

    The P2Y12 receptor is critical for platelet activation and is an attractive drug target for the prevention of atherothrombotic events. Despite the proven antithrombotic efficacy of P2Y12 inhibitors, these thienopyridine scaffolds are prodrugs that lack important features of the ideal antithrombotic agent. For this reason, ticagrelor-a new chemical class of P2Y12 receptor antagonist-was developed, but it can cause shortness of breath and various types of bleeding. Moreover, ticagrelor is a cytochrome P450 3A4 substrate/inhibitor and, therefore, caution should be exercised when it is used concomitantly with strong CYP3A4 inducers/inhibitors. There is a need for novel P2Y12 receptor antagonist scaffolds that are reversible and have high efficacy without associated side effects. Here, we describe a novel antagonist containing a morpholine moiety that was identified by screening libraries of commercially available compounds. The molecule, Compound E, acted on P2Y12, but not P2Y1 and P2Y13, and exhibited pharmacological characteristics that were distinct from those of ticagrelor, acting instead on P2Y12 via an allosteric mechanism. These results provide a basis for the development/optimization of a new class of P2Y12 antagonists. PMID:27563870

  8. Y-12 Groundwater Protection Program Monitoring Well Inspection And Maintenance Plan

    SciTech Connect

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for:  inspecting the physical condition of monitoring wells at Y-12,  determining maintenance needs that extend the life of a well, and  identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment.

  9. Monitoring well installation plan for the Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The installation and development of groundwater monitoring wells is a primary element of the Y-12 Plant Groundwater Protection Program (GWPP), which monitors groundwater quality and hydrologic conditions at the Oak Ridge Y-12 Plant. This document is a groundwater monitoring well installation and development plan for the US Department of Energy (DOE) Y-12 Plant located in Oak Ridge, Tennessee. This plan formalizes well installation and construction methods, well development methods, and core drilling methods that are currently implemented at the Y-12 Plant under the auspices of the GWPP. Every three years, this plan will undergo a review, during which revisions necessitated by changes in regulatory requirements or GWPP objectives may be made.

  10. History of mercury use and environmental contamination at the Oak Ridge Y-12 Plant.

    PubMed

    Brooks, Scott C; Southworth, George R

    2011-01-01

    Between 1950 and 1963 approximately 11 million kilograms of mercury (Hg) were used at the Oak Ridge Y-12 National Security Complex (Y-12 NSC) for lithium isotope separation processes. About 3% of the Hg was lost to the air, soil and rock under facilities, and East Fork Poplar Creek (EFPC) which originates in the plant site. Smaller amounts of Hg were used at other Oak Ridge facilities with similar results. Although the primary Hg discharges from Y-12 NSC stopped in 1963, small amounts of Hg continue to be released into the creek from point sources and diffuse contaminated soil and groundwater sources within Y-12 NSC. Mercury concentration in EFPC has decreased 85% from ∼2000 ng/L in the 1980s. In general, methylmercury concentrations in water and in fish have not declined in response to improvements in water quality and exhibit trends of increasing concentration in some cases. PMID:20889247

  11. Coworker External Dosimetry Data for the Y-12 National Security Complex

    SciTech Connect

    McCartney KA, Watkins JP, Kerr GD, Tankersley WG

    2009-12-18

    Provides background information on the Y-12 coworker external dosimetry data and includes tables with annual values that may be used in the process of assigning doses for unmonitored years of employment.

  12. Annual Storm Water Report for the Y-12 National Security Complex

    SciTech Connect

    Beck, G.S.

    2007-01-01

    The storm water pollution prevention program at the Y-12 National Security Complex consists of two primary elements: sampling and analysis of storm water run-off and routine inspections. When prescribed, the analytical data is compared to a set of cut-off concentration values to determine how the Y-12 Complex relates to other metal fabrication industries in the State of Tennessee. The latest set of inspection results revealed the Y-12 Complex has decreased the potential for storm water pollution by reducing the amount of raw materials, scrap metal and miscellaneous debris exposed to storm water. Future sampling/analysis and inspections are expected to have a continuing positive impact on storm water at the Y-12 Complex.

  13. History of mercury use and environmental contamination at the Oak Ridge Y-12 Plant

    SciTech Connect

    Brooks, Scott C; Southworth, George R

    2010-01-01

    Between 1950 and 1963 approximately 11 million kilograms of mercury (Hg) were used at the Oak Ridge Y-12 National Security Complex (Y-12 NSC) for lithium isotope separation processes. About 3% of the Hg was lost to the air, soil and rock under facilities, and East Fork Poplar Creek (EFPC) which originates in the plant site. Smaller amounts of Hg were used at other Oak Ridge facilities with similar results. Although the primary Hg discharges from Y-12 NSC stopped in 1963, small amounts of Hg continue to be released into the creek from point sources and diffuse contaminated soil and groundwater sources within Y-12 NSC. Mercury concentration in EFPC has decreased 85% from 2000 ng/L in the 1980s. In general, methylmercury concentrations in water and in fish have not declined in response to improvements in water quality and exhibit trends of increasing concentration in some cases.

  14. Annual Storm Water Report for the Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Clean Water Compliance Section of the Environment Compliance Department

    2012-01-01

    The storm water pollution prevention program at the Y-12 National Security Complex (Y-12 Complex) intends to protect the quality of storm water runoff through: (1) reducing the exposure of metal accumulation areas to precipitation, (2) implementation of Best Management Practices, (3) sampling during rain events and subsequent analysis, and (4) routine surveillances. When prescribed, the analytical data is compared to a set of cut-off concentration values to determine how the Y-12 Complex relates to other metal fabrication industries in the state of Tennessee. The quality of the storm water exiting the Y-12 Complex via East Fork Poplar Creek indicated some improvement in 2011. This improvement is attributable to the completion of several construction, demolition and remediation projects which occurred in 2010 and 2011. Emphasis will continue to be placed on site inspections and the timely implementation of improved storm water control measures as deemed necessary.

  15. Annual Storm Water Report for the Y-12 National Security Complex Oak Ridge, Tennessee

    SciTech Connect

    Environment Compliance Department

    2012-01-01

    The storm water pollution prevention program at the Y-12 National Security Complex (Y-12 Complex) intends to protect the quality of storm water runoff through: (1) reducing the exposure of metal accumulation areas to precipitation, (2) implementation of Best Management Practices, (3) sampling during rain events and subsequent analysis, and (4) routine surveillances. When prescribed, the analytical data is compared to a set of cut-off concentration values to determine how the Y-12 Complex relates to other metal fabrication industries in the state of Tennessee. The quality of the storm water exiting the Y-12 Complex via East Fork Poplar Creek indicated some improvement in 2011. This improvement is attributable to the completion of several construction, demolition and remediation projects which occurred in 2010 and 2011. Emphasis will continue to be placed on site inspections and the timely implementation of improved storm water control measures as deemed necessary.

  16. Fiscal Year 1993 Well Plugging and Abandonment Program Summary Report Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1994-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from October 1993 through August 1994. A total of 57 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee.

  17. Clinical effects and outcomes with new P2Y12 inhibitors in ACS.

    PubMed

    Collet, Jean-Philippe; O'Connor, Stephen

    2012-02-01

    Thienopyridines have become the cornerstone of treatment for percutaneous coronary intervention although no survival benefit has ever been shown with clopidogrel despite increasing loading doses. Newly developed P2Y12 inhibitors are more potent, more predictable, and have a faster onset of action than clopidogrel, characteristics that make them particularly attractive for high-risk percutaneous coronary intervention (PCI). Four new P2Y12 inhibitors have been tested each of them having particular individual properties. Prasugrel is an oral pro-drug leading to irreversible blockade of the P2Y12 receptor and is approved worldwide for ACS PCI. Ticagrelor is a direct-acting and reversible inhibitor of the P2Y12 receptor with potentially more pleiotropic effects. Cangrelor is an intravenous direct and reversible inhibitor of the P2Y12 receptor providing the highest level of inhibition, and elinogrel is an intravenous and oral P2Y12 antagonist with a direct and reversible action. Both prasugrel and ticagrelor, opposed to clopidogrel, have shown that stronger P2Y12 inhibition led respectively to significant 19 and 16% relative risk reduction of a similar primary end point combining cardiovascular death, non-fatal myocardial infarction, or non-fatal stroke. Both drugs showed a significant 0.6% absolute excess of TIMI major bleeding not related to CABG surgery. Because in clinical trials, patients perceived to be at higher risk of bleeding usually are excluded, the risk of major and even fatal bleeding might even be higher in a 'real-world' setting, i.e. in the elderly patient with comorbidities. On the other hand, these newly developed P2Y12 inhibitors decrease mortality after PCI compared with clopidogrel. The risk/benefit ratio is particularly favorable in PCI for patients with STEMI. PMID:21895760

  18. Fiscal year 1993 well plugging and abandonment program, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from December 1992 through August 20, 1993. A total of 70 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the US Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  19. Tiger team assessment of the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    none,

    1990-02-01

    This document contains findings identified during the Tiger Team Compliance Assessment of the Department of Energy's (DOE's) Y-12 Plant in Oak Ridge, Tennessee. The Y-12 Plant Tiger Team Compliance Assessment is comprehensive in scope. It covers the Environmental, Safety, and Health (including Occupational Safety and Health Administration (OSHA) compliance), and Management areas and determines the plant's compliance with applicable federal (including DOE), state, and local regulations and requirements. 4 figs., 12 tabs.

  20. Effects of P2Y12 receptor antagonists beyond platelet inhibition - comparison of ticagrelor with thienopyridines.

    PubMed

    Nylander, Sven; Schulz, Rainer

    2016-04-01

    The effect and clinical benefit of P2Y12 receptor antagonists may not be limited to platelet inhibition and the prevention of arterial thrombus formation. Potential additional effects include reduction of the pro-inflammatory role of activated platelets and effects related to P2Y12 receptor inhibition on other cells apart from platelets. P2Y12 receptor antagonists, thienopyridines and ticagrelor, differ in their mode of action being prodrugs instead of direct acting and irreversibly instead of reversibly binding to P2Y12 . These key differences may provide different potential when it comes to additional effects. In addition to P2Y12 receptor blockade, ticagrelor is unique in having the only well-documented additional target of inhibition, the equilibrative nucleoside transporter 1. The current review will address the effects of P2Y12 receptor antagonists beyond platelets and the protection against arterial thrombosis. The discussion will include the potential for thienopyridines and ticagrelor to mediate anti-inflammatory effects, to conserve vascular function, to affect atherosclerosis, to provide cardioprotection and to induce dyspnea. PMID:26758983

  1. A review of the Y-12 Plant discharge of enriched uranium to the sanitary sewer (DEUSS)

    SciTech Connect

    Not Available

    1991-09-01

    The Oak Ridge Y-12 Plant is situated adjacent to the Oak Ridge city limits and is operated by the United States Department of Energy (DOE). The Y-12 Plant is located on 4,860 acres, which is collectively referred to as the Y-12 Plant site. Among the missions for which the facility is in existence are producing nuclear weapons components, supporting weapon design laboratories, and processing special nuclear materials (SNM). The Y-12 Plant is under the regulatory guidance of DOE Order 5400.5 and has complied with the technical requirements governing SNM since its issue. However, an in-depth review with appropriate documentation had not been performed, prior to the effect presented herein, to substantiate this claim. As a result of the solid waste issue, it was determined that other types of waste should be formally reviewed for content with respect to SNM. Therefore, a project was formed to investigate the conveyance of SNM through the sanitary sewer system. It is emphasized that this project addresses only effluent from the sanitary sewer system and not the storm sewer system. The project reviewed sanitary sewer data both for the Y-12 Plant and the Y-12 Plant site.

  2. Y-12 National Security Complex National Historic Preservation Act Historic Preservation Plan

    SciTech Connect

    2003-09-30

    The Historic Preservation Plan (HPP) recognizes that the Y-12 National Security Complex is a vital and long-term component of DOE and NNSA. In addition to NNSA missions, the Office of Science and Energy, the Office of Nuclear Energy, and the Office of Environmental Management have properties located at Y-12 that must be taken into consideration. The HPP also recognizes that the challenge for cultural resource management is incorporating the requirements of NNSA, SC, NE, and EM missions while preserving and protecting its historic resources. The HPP seeks to find an effective way to meet the obligations at Y-12 for historic and archeological protection while at the same time facilitating effective completion of ongoing site mission activities, including removal of obsolete or contaminated facilities, adaptive reuse of existing facilities whenever feasible, and construction of new facilities in order to meet site mission needs. The Y-12 Historic Preservation Plan (HPP) defines the preservation strategy for the Y-12 National Security Complex and will direct efficient compliance with the NHPA and federal archaeological protection legislation at Y-12 as DOE and NNSA continues mission activities of the site.

  3. Agonist-bound structure of the human P2Y12 receptor

    PubMed Central

    Zhang, Jin; Zhang, Kaihua; Gao, Zhan-Guo; Paoletta, Silvia; Zhang, Dandan; Han, Gye Won; Li, Tingting; Ma, Limin; Zhang, Wenru; Müller, Christa E.; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Katritch, Vsevolod; Jacobson, Kenneth A.; Stevens, Raymond C.; Wu, Beili; Zhao, Qiang

    2014-01-01

    The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, has been identified as one of the most prominent clinical drug targets for inhibition of platelet aggregation. Consequently, extensive mutagenesis and modeling studies of the P2Y12R have revealed many aspects of agonist/antagonist binding1-4. However, the details of agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here, we report the structures of the human P2Y12R in complex with a full agonist 2-methylthio-adenosine-5′-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5 Å resolution, and the corresponding ATP derivative 2-methylthio-adenosine-5′-triphosphate (2MeSATP) at 3.1 Å resolution. Analysis of these structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283)5, reveals dramatic conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions, providing the first insight into a different ligand binding landscape in the δ-group of class A G protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing ambiguities surrounding P2Y12R-agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example of a GPCR where agonist access to the binding pocket requires large scale rearrangements in the highly malleable extracellular region, the structural studies therefore will provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs. PMID:24784220

  4. Effect of P2Y12 inhibitors on inflammation and immunity.

    PubMed

    Thomas, Mark R; Storey, Robert F

    2015-08-31

    Platelet P2Y12 inhibitors form a major part of the treatment strategy for patients with acute coronary syndromes (ACS) due to the importance of the platelet P2Y12 receptor in mediating the pathophysiology of arterial thrombosis. It has been increasingly recognised that platelets also have a critical role in inflammation and immune responses. P2Y12 inhibitors reduce platelet release of pro-inflammatory α-granule contents and the formation of pro-inflammatory platelet-leukocyte aggregates. These are important mediators of inflammation in a variety of different contexts. Clinical evidence shows that P2Y12 inhibition by clopidogrel is associated with a reduction in platelet-related mediators of inflammation, such as soluble P-selectin and CD40L, following atherothrombosis. Clopidogrel in addition to aspirin, compared to aspirin alone, also reduces markers of systemic inflammation such as tumour necrosis factor (TNF) α and C-reactive protein (CRP) following ACS. The more potent thienopyridine P2Y12 inhibitor, prasugrel, has been shown to decrease platelet P-selectin expression and platelet-leukocyte aggregate formation compared to clopidogrel. The PLATO study suggested that the novel P2Y12 inhibitor ticagrelor might improve clinical outcomes from pulmonary infections and sepsis compared to clopidogrel in patients with ACS. Ticagrelor is a more potent P2Y12 inhibitor than clopidogrel and also inhibits cellular adenosine uptake via equilibrative nucleoside transporter (ENT) 1, whereas clopidogrel does not. Further examination of the involvement of these mechanisms in inflammation and immunity is therefore warranted. PMID:26156883

  5. Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water

    SciTech Connect

    1997-10-01

    The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content of RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ``as low as

  6. Hydrogeologic characterization of Illinois wetlands

    SciTech Connect

    Miner, J.J.; Miller, M.V.; Rorick, N.L.; Fucciolo, C.S. )

    1994-04-01

    The Illinois State Geological Survey (ISGS), under contract from the Illinois Department of Transportation (IDOT), is evaluating a series of selected wetlands and sites proposed for wetland construction and/or restoration. The program is associated with wetland mitigation for unavoidable effects of state highway construction. The goal of this ongoing program is: (1) to collect commonly lacking geologic, geomorphic, hydrologic, and geochemical data from various wetland sites; and (2) to create a database of this information for use by government agencies and the private sector. Some of the potential uses of this database include: (1) determination of history, role, and possible life cycle of various wetland types allowing more effective design criteria; (2) functional comparison of constructed or restored wetlands versus natural wetlands; (3) testing of wetland hypotheses and delineation techniques under a variety of known hydrogeologic conditions in Illinois; (4) hydrogeologic assessment of potential mitigation sites against a suite of known sites; and (5) determination of data and collection methods appropriate for hydrogeologic wetland studies. A series of tasks is required to complete each study. Historical information is collected from ISGS records, including data regarding topography, soils, sediments, bedrock, and local well records. A field-testing plan is prepared, which includes goals of the study, methods, research potential, and potential results. An initial report is prepared after geologic and geochemical characterization and the installation of needed ground water monitoring wells and surface water gauges. After one year of water-level monitoring, a final report is prepared regarding the present conditions of a site. Further monitoring may be required to determine the performance at constructed and/or restored sites.

  7. Structural and functional evolution of the P2Y12-like receptor group

    PubMed Central

    Hermsdorf, Thomas; Engemaier, Eva; Engel, Kathrin; Liebscher, Ines; Thor, Doreen; Zierau, Klaas; Römpler, Holger; Schulz, Angela

    2007-01-01

    Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members. PMID:18404440

  8. Certification report for final closure of Y-12 Centralized Sanitary Landfill II, Oak Ridge, Tennessee

    SciTech Connect

    1995-12-31

    This report represents the Geotek Engineering Company, Inc., (Geotek) record of activities to support certification of final closure Of the subject Y-12 Centralized Sanitary Landfill II. Ex as noted herein, final closure of the landfill was completed in accordance with the Y-12 Centralized Sanitary Landfill 11 Closure/Post Closure Plan, Revision 2, submitted by the US Department of Energy (DOE) to the Tennessee Department of Environment and Conservation (TDEC) on April 14, 1992, and approved by TDEC on May 27, 1994 (the ``Closure Plan``). minor modification to the Closure Plan allowing partial closure of the Y-12 Centralized Sanitary Landfill II (Phase 1) was approved by TDEC on August 3, 1994. The Phase I portion of the closure for the subject landfill was completed on March 25, 1995. A closure certification report entitled Certification Report for Partial Closure of Y-12 Centralized Sanitary Landfill II was submitted to Lockheed Martin Energy Systems, Inc., (LMES) on March 28, 1995. The final closure represents the completion of the closure activities for the entire Y-12 Centralized Sanitary Landfill II Site. The contents of this report and accompanying certification are based on observations by Geotek engineers and geologists during closure activities and on review of reports, records, laboratory test results, and other information furnished to Geotek by LMES.

  9. Arrestin Scaffolds NHERF1 to the P2Y12 Receptor to Regulate Receptor Internalization*

    PubMed Central

    Nisar, Shaista P.; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J.; Kelly, Eamonn; Mundell, Stuart J.

    2012-01-01

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y12 receptor (P2Y12R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y12R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y12R internalization. In vitro and prior to agonist stimulation P2Y12R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101

  10. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.

    PubMed

    Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J

    2012-07-13

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101

  11. Annual Storm Water Report for the Y-12 National Security Complex Oak Ridge, Tennessee

    SciTech Connect

    2013-12-01

    This is the second annual storm water report prepared in accordance with the National Pollutant Discharge Elimination System (NPDES) permit issued to the Y-12 National Security Complex (Y-12 Complex) on December 1, 2011, and the corresponding Y-12 Storm Water Pollution Prevention Plan (SWP3) which became effective on September 7, 2012. However, Appendix A does contain some analytical data gathered under the previous NPDES permit and SWP3 for comparison purposes. The quality of storm water exiting the Y-12 Complex via East Fork Poplar Creek remained relatively stable from 2012 to 2013. However, there was one largely unexpected high concentration of mercury noted in an area that is not known to have previously been a mercury use area. This was noted in Sector AA, Outfall 014. This outfall is normally sampled on a rotating basis but, due this elevated concentration, will be sampled again in 2014. The Y-12 Complex will continue to implement appropriate BMPs and reduce outside material storage ares where possible. Emphasis will continue to be placed on site inspections and timely implementation of proper storm water control measures.

  12. SRS Geology/Hydrogeology Environmental Information Document

    SciTech Connect

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  13. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

  14. Aqueous mercury treatment technology review for NPDES Outfall 49 Y-12 Plant

    SciTech Connect

    Lanning, J.M.

    1993-04-01

    During 1950 to 1955, Building 9201-2 at the Oak Ridge Y-12 Plant was used to house development facilities for processes that employed elemental mercury to separate lithium isotopes as part of the thermonuclear weapons production operations. As a result of several spills, this building area and several other areas associated with the separation process were contaminated with mercury and became a source of continuing contamination of the Y-12 Plant discharge water to East Fork Poplar Creek (EFPC). Mercury concentrations in the outfalls south of Building 9201-2 have ranged up to 80 ppb, with the highest concentrations being experienced at Outfall 49. As a result, this outfall was chosen as a test site for future mercury treatment technology evaluation and development at the Oak Ridge Y-12 Plant. A literature review and vendor survey has identified several promising materials and technologies that may be applicable to mercury removal at the Outfall 49 site. This document summarizes those findings.

  15. Y-12 Construction/Demolition Landfill VII: Permit application: Part 1 and 2

    SciTech Connect

    Not Available

    1992-04-01

    The United States Department of Energy (DOE) has three major operating facilities on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee: the Y-12 Plant, the K-25 Site, and the Oak Ridge National Laboratory (ORNL). All facilities are managed by Martin Marietta Energy System, Inc. (Energy Systems) for the DOE. Operations associated with the DOE energy research and production facilities at Oak Ridge result in the production of several types of waste materials. Disposal of solid waste (as defined in the Solid Waste Processing and Disposal Rules for Tennessee) in disposal facilities operated by the Y-12 Plant is the responsibility of Y-12 Waste Management Division (WMD). The WMD is proposing to develop a facility that will include two new disposal units: one for construction/demolition waste and spoil and one for industrial solid waste. This report contains construction drawings for the project.

  16. Update on Y-12 national security complex activities to recover enriched uranium in 2007

    SciTech Connect

    Eddy, Becky; Andes, Trent; Dunavant, Randy

    2008-07-15

    During Calendar Year 2007, the Y-12 National Security Complex (Y-12) has completed recovery missions that resulted in the return of highly enriched uranium from Canada and several locations within the United States. These missions were performed in support of the National Nuclear Security Administration's Global Threat Reduction Initiative (GTRI) and the Department of Energy (DOE) Central Scrap Management Office for Uranium (U-CSMO). Additionally, Y-12 completed safety basis revisions for the ES-3100 shipping package which resulted in the issuance of a Certificate of Compliance (CoC) from the United States Nuclear Regulatory Commission and a Competent Authority Certificate (CAC) from the United States Department of Transportation for air transport of highly enriched uranium in the form of un- irradiated TRIGA pellets. This certification of the ES-3100 will now allow GTRI to perform recoveries of limited quantities of fresh HEU TRIGA that have been identified at several locations. (author)

  17. Glycoprotein IIb/IIIa and P2Y12 Induction by Oligochitosan Accelerates Platelet Aggregation

    PubMed Central

    Halim, Ahmad Sukari; Hussein, Abdul Rahim; Ujang, Zanariah

    2014-01-01

    Platelet membrane receptor glycoprotein IIb/IIIa (gpiibiiia) is a receptor detected on platelets. Adenosine diphosphate (ADP) activates gpiibiiia and P2Y12, causing platelet aggregation and thrombus stabilization during blood loss. Chitosan biomaterials were found to promote surface induced hemostasis and were capable of activating blood coagulation cascades by enhancing platelet aggregation. Our current findings show that the activation of the gpiibiiia complex and the major ADP receptor P2Y12 is required for platelet aggregation to reach hemostasis following the adherence of various concentrations of chitosan biomaterials [7% N,O-carboxymethylchitosan (NO-CMC) with 0.45 mL collagen, 8% NO-CMC, oligochitosan (O-C), and oligochitosan 53 (O-C 53)]. We studied gpiibiiia and P2Y12 through flow cytometric analysis and western blotting techniques. The highest expression of gpiibiiia was observed with Lyostypt (74.3 ± 7.82%), followed by O-C (65.5 ± 7.17%). Lyostypt and O-C resulted in gpiibiiia expression increases of 29.2% and 13.9%, respectively, compared with blood alone. Western blot analysis revealed that only O-C 53 upregulated the expression of P2Y12 (1.12 ± 0.03-fold) compared with blood alone. Our findings suggest that the regulation of gpiibiiia and P2Y12 levels could be clinically useful to activate platelets to reach hemostasis. Further, we show that the novel oligochitosan is able to induce the increased expression of gpiibiiia and P2Y12, thus accelerating platelet aggregation in vitro. PMID:25247182

  18. LPS-induced systemic inflammation is more severe in P2Y12 null mice.

    PubMed

    Liverani, Elisabetta; Rico, Mario C; Yaratha, Laxmikausthubha; Tsygankov, Alexander Y; Kilpatrick, Laurie E; Kunapuli, Satya P

    2014-02-01

    Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade. PMID:24142066

  19. Remedial investigation work plan for the Upper East Fork Poplar Creek characterization area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1995-09-01

    The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions. The need to complete RIs in a timely manner resulted in the establishment of the Upper East Fork Poplar Creek (UEFPC) Characterization Area (CA) and the Bear Creek CA. The CA approach considers the entire watershed and examines all appropriate media within it. The UEFPC CA, which includes the main Y-12 Plant area, is an operationally and hydrogeologically complex area that contains numerous contaminants and containment sources, as well as ongoing industrial and defense-related activities. The UEFPC CA also is the suspected point of origin for off-site groundwater and surface-water contamination. The UEFPC CA RI also will address a carbon-tetrachloride/chloroform-dominated groundwater plume that extends east of the DOE property line into Union Valley, which appears to be connected with springs in the valley. In addition, surface water in UEFPC to the Lower East Fork Poplar Creek CA boundary will be addressed. Through investigation of the entire watershed as one ``site,`` data gaps and contaminated areas will be identified and prioritized more efficiently than through separate investigations of many discrete units.

  20. Evaluation of cavity occurrence in the Maynardville Limestone and the Copper Ridge Dolomite at the Y-12 Plant using logistic and general linear models

    SciTech Connect

    Shevenell, L.A.; Beauchamp, J.J.

    1994-11-01

    Several waste disposal sites are located on or adjacent to the karstic Maynardville Limestone (Cmn) and the Copper Ridge Dolomite (Ccr) at the Oak Ridge Y-12 Plant. These formations receive contaminants in groundwaters from nearby disposal sites, which can be transported quite rapidly due to the karst flow system. In order to evaluate transport processes through the karst aquifer, the solutional aspects of the formations must be characterized. As one component of this characterization effort, statistical analyses were conducted on the data related to cavities in order to determine if a suitable model could be identified that is capable of predicting the probability of cavity size or distribution in locations for which drilling data are not available. Existing data on the locations (East, North coordinates), depths (and elevations), and sizes of known conduits and other water zones were used in the analyses. Two different models were constructed in the attempt to predict the distribution of cavities in the vicinity of the Y-12 Plant: General Linear Models (GLM), and Logistic Regression Models (LOG). Each of the models attempted was very sensitive to the data set used. Models based on subsets of the full data set were found to do an inadequate job of predicting the behavior of the full data set. The fact that the Ccr and Cmn data sets differ significantly is not surprising considering the hydrogeology of the two formations differs. Flow in the Cmn is generally at elevations between 600 and 950 ft and is dominantly strike parallel through submerged, partially mud-filled cavities with sizes up to 40 ft, but more typically less than 5 ft. Recognized flow in the Ccr is generally above 950 ft elevation, with flow both parallel and perpendicular to geologic strike through conduits, which tend to be large than those on the Cnm, and are often not fully saturated at the shallower depths.

  1. Fiscal year 1996 well plugging and abandonment program Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-04-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, from August 1995 through August 1996. A total of 27 wells, piezometers, and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  2. Position paper Oak Ridge Y-12 Plant storage of uranium in plastics

    SciTech Connect

    Duerksen, W.K.

    1995-07-01

    As a result of the end of the Cold War, the United States nuclear weapon stockpile is being reduced from approximately 20,000 warheads to fewer than 10,000 by the end of the century. The Oak Ridge Y-12 Plant is the Department of Energy (DOE) site charged with the responsibility of providing safe, secure storage for the uranium recovered from these weapons. In addition to weapons material, Y-12 has traditionally processed and stored uranium from nonweapon programs and presumably will continue to do so. The purpose of this document is to evaluate the suitability of plastics for use in the containment of uranium.

  3. Dealing with the chlorinated solvent situation at the Oak Ridge Y-12 Plant

    SciTech Connect

    Thompson, L.M.; Simandl, R.F.

    1993-08-02

    Recent events regarding health and environmental problems associated with the use of chlorinated solvents have prompted the Oak Ridge Y-12 Plant to investigate substitutes for these materials. Since 1987, the purchase of chlorinated solvents at the Y-12 Plant has been reduced by 92%. This has been accomplished by substituting chlorinated solvent degreasing with ultrasonic aqueous detergent cleaning and by substituting chlorinated solvents with less toxic, environmentally friendly solvents for hand-wiping applications. Extensive studies of cleaning ability, compabitility, and effects on welding, bonding, and painting have been conducted to gain approval for use of these solvents. Toxicity and waste disposal were also assessed for the solvents.

  4. Regime change?

    SciTech Connect

    Pilat, Joseph F.; Budlong-Sylvester, K. W.

    2004-01-01

    Following the 1998 nuclear tests in South Asia and later reinforced by revelations about North Korean and Iraqi nuclear activities, there has been growing concern about increasing proliferation dangers. At the same time, the prospects of radiological/nuclear terrorism are seen to be rising - since 9/11, concern over a proliferation/terrorism nexus has never been higher. In the face of this growing danger, there are urgent calls for stronger measures to strengthen the current international nuclear nonproliferation regime, including recommendations to place civilian processing of weapon-useable material under multinational control. As well, there are calls for entirely new tools, including military options. As proliferation and terrorism concerns grow, the regime is under pressure and there is a temptation to consider fundamental changes to the regime. In this context, this paper will address the following: Do we need to change the regime centered on the Treaty on the Nonproliferation of Nuclear Weapons (NPT) and the International Atomic Energy Agency (IAEA)? What improvements could ensure it will be the foundation for the proliferation resistance and physical protection needed if nuclear power grows? What will make it a viable centerpiece of future nonproliferation and counterterrorism approaches?

  5. Groundwater Protection Program Management Plan for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2001-06-01

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of BWXT Y-12, L.L.C. (hereafter referenced as BWXT Y-12), the Y-12 management and operations (M and O) subcontractor for DOE.

  6. Development of a building sump database for the Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Sepanski, R.J.; Field, S.M.

    1997-07-01

    Operations at the Oak Ridge Y-12 Plant have resulted in contamination of Upper East Fork Poplar Creek (UEFPC) and shallow groundwater through soil erosion, infiltration, and outfall discharges. The contamination of groundwater has been documented for nearly two decades, largely through well monitoring efforts. This study represents the first effort to formally identify and compile location data on sumps at the Y-12 Plant, several of which are known or are suspected to pump groundwater. Operation of several of these sumps have been documented to affect groundwater hydraulics and contaminant pathways. This report presents preliminary results of an investigation attempting to identify sources of data on building sumps that have not previously been incorporated into existing Y-12 Plant groundwater databases. This investigation involved acquiring information on building sumps, such as location, building number, water source, discharge location, and availability of analytical data. This information was used to construct an ARC/INFO database capable of simultaneously storing spatial data on sump locations and attribute information concerning the operation of individual building sumps. This database will be referred to hereafter as the Y-12 Plant Building Sump Database.

  7. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    SciTech Connect

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S.

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  8. Monitoring well plugging and abandonment plan, Y-12 Plant, Oak Ridge, Tennessee (revised)

    SciTech Connect

    1997-05-01

    Plugging and abandonment (P&A) of defunct groundwater monitoring wells is a primary element of the Oak Ridge Y-12 Plant Groundwater Protection Program (GWPP) (AJA Technical Services, Inc. 1996). This document is the revised groundwater monitoring well P&A plan for the U.S. Department of Energy (DOE) Y-12 Plant located in Oak Ridge, Tennessee. This plan describes the systematic approach employed by Y-12 Plant GWPP to identify wells that require P&A, the technical methods employed to perform P&A activities, and administrative requirements. Original documentation for Y-12 Plant GWPP groundwater monitoring well P&A was provided in HSW, Inc. (1991). The original revision of the plan specified that a comprehensive monitoring well P&A was provided in HSW, Inc. (1991). The original revision of the plan specified that a comprehensive monitoring well P&A schedule be maintained. Wells are added to this list by issuance of both a P&A request and a P&A addendum to the schedule. The current Updated Subsurface Data Base includes a single mechanism to track the status of monitoring wells. In addition, rapid growth of the groundwater monitoring network and new regulatory requirements have resulted in constant changes to the status of wells. As a result, a streamlined mechanism to identify and track monitoring wells scheduled for P&A has been developed and the plan revised to formalize the new business practices.

  9. Personalized antiplatelet therapy with P2Y12 receptor inhibitors: benefits and pitfalls

    PubMed Central

    Winter, Max-Paul; Koziński, Marek; Kubica, Jacek; Aradi, Daniel

    2015-01-01

    Antiplatelet therapy with P2Y12 receptor inhibitors has become the cornerstone of medical treatment in patients with acute coronary syndrome, after percutaneous coronary intervention and in secondary prevention of atherothrombotic events. Clopidogrel used to be the most broadly prescribed P2Y12 receptor inhibitor with undisputable benefits especially in combination with aspirin, but a considerable number of clopidogrel-treated patients experience adverse thrombotic events in whom insufficient P2Y12-inhibition and a consequential high on-treatment platelet reactivity is a common finding. This clinically relevant limitation of clopidogrel has driven the increased use of new antiplatelet agents. Prasugrel (a third generation thienopyridine) and ticagrelor (a cyclopentyl-triazolo-pyrimidine) feature more potent and predictable P2Y12-inhibition compared to clopidogrel, which translates into improved ischemic outcomes. However, excessive platelet inhibition and consequential low on-treatment platelet reactivity comes at the price of increased risk of major bleeding. The majority of randomized clinical trials failed to demonstrate improved clinical outcomes with platelet function testing and tailored antiplatelet therapy, but results of all recent trials of potent antiplatelets and prolonged antiplatelet durations point towards a need for individualized antiplatelet approach in order to decrease thrombotic events without increasing bleeding. This review focuses on potential strategies for personalizing antiplatelet treatment. PMID:26677375

  10. Monitoring well inspection and maintenance plan Y-12 Plant, Oak Ridge, Tennessee (revised)

    SciTech Connect

    1996-09-01

    Inspection and maintenance of groundwater monitoring wells is a primary element of the Oak Ridge Y-12 Plant Groundwater Protection Program (GWPP). This document is the revised groundwater monitoring well inspection and maintenance plan for the U.S. Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. The plan provides a systematic program for: (1) inspecting the physical condition of monitoring wells at the Y-12 Plant and (2) identifying maintenance needs that will extend the life of each well and ensure that representative groundwater quality samples and hydrologic data are collected from the wells. Original documentation for the Y-12 Plant GWPP monitoring well inspection and maintenance program was provided in HSW, Inc. 1991a. The original revision of the plan specified that only a Monitoring Well Inspection/Maintenance Summary need be updated and reissued each year. Rapid growth of the monitoring well network and changing regulatory requirements have resulted in constant changes to the status of wells (active or inactive) listed on the Monitoring Well Inspection/Maintenance Summary. As a result, a new mechanism to track the status of monitoring wells has been developed and the plan revised to formalize the new business practices. These changes are detailed in Sections 2.4 and 2.5.

  11. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    SciTech Connect

    2005-03-02

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for

  12. Sulfur Polymer Stabilization/Solidification Treatability Study of Mercury Contaminated Soil from the Y-12 Site

    SciTech Connect

    Kalb P.; Milian, L.; Yim, S. P.

    2012-11-30

    As a result of past operations, the Department of Energy’s (DOE) Oak Ridge Y-12 National Security Complex (Y-12 Plant) has extensive mercury-contamination in building structures, soils, storm sewer sediments, and stream sediments, which are a source of pollution to the local ecosystem. Because of mercury’s toxicity and potential impacts on human health and the environment, DOE continues to investigate and implement projects to support the remediation of the Y-12 site.URS and #9122;CH2M Oak Ridge LLC (UCOR) under its prime contract with DOE has cleanup responsibilities on the DOE Oak Ridge Reservation and is investigating potential mercury-contaminated soil treatment technologies through an agreement with Babcock and Wilcox (B and W) Y-12, the Y-12 operating contractor to DOE. As part of its investigations, UCOR has subcontracted with Brookhaven National Laboratory (BNL) to conduct laboratory-scale studies evaluating the applicability of the Sulfur Polymer Stabilization/Solidification (SPSS) process using surrogate and actual mixed waste Y-12 soils containing mercury (Hg) at 135, 2,000, and 10,000 ppm.SPSS uses a thermoplastic sulfur binder to convert Hg to stable mercury sulfide (HgS) and solidifies the chemically stable product in a monolithic solid final waste form to reduce dispersion and permeability. Formulations containing 40 – 60 dry wt% Y-12 soil were fabricated and samples were prepared in triplicate for Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP) testing by an independent laboratory. Those containing 50 and 60 wt% soil easily met the study criteria for maximum allowable Hg concentrations (47 and 1 ppb, respectively compared with the TCLP limit of 200 ppb Hg). The lowest waste loading of 40 wt% yielded TCLP Hg concentrations slightly higher (240 ppb) than the allowable limit. Since the Y-12 soil tended to form clumps, the improved leaching at higher waste loadings was probably due to reduction in particle size

  13. Variable Effect of P2Y12 Inhibition on Platelet Thrombus Volume in Flowing Blood

    PubMed Central

    Mendolicchio, G. L.; Zavalloni, D.; Bacci, M.; Corrada, E.; Marconi, M.; Lodigiani, C.; Presbitero, P.; Rota, L.; Ruggeri, Z. M.

    2010-01-01

    Background and objectives Patients treated by percutaneous coronary intervention (PCI) receive aspirin and P2Y12 ADP receptor inhibitors to reduce thrombotic complications. The choice of methodology for monitoring the effects of treatment and assessing its efficacy is still a topic of debate. We evaluated how decreased P2Y12 function influences platelet aggregate (thrombus) size measured ex vivo. Methods and Results We used confocal videomicroscopy to measure in real time the volume of platelet thrombi forming upon blood perfusion over fibrillar collagen type I at the wall shear rate of 1,500 s−1. The average volume was significantly smaller in 31 patients receiving aspirin and clopidogrel (19) or ticlopidine (12) than 21 controls, but individual values were above the lower limit of the normal distribution, albeit mostly within the lower quartile, in 61.3% of cases. Disaggregation of platelet thrombi at later perfusion times occurred frequently in the patients. Vasodilator-stimulated phosphoprotein (VASP) phosphorylation, reflecting P2Y12 inhibition, was also decreased in the patient group and only 22.6% of individual values were above the lower normal limit. We found no correlation between thrombus volume formed onto collagen fibrils and level of P2Y12 inhibition, suggesting that additional and individually variable factors can influence the inhibitory effect of treatment on platelet function. Conclusions Measuring platelet thrombus formation in flowing blood reflects the consequences of anti-platelet therapy in a manner that is not proportional to P2Y12 inhibition. Combining the results of the two assays may improve the assessment of thrombotic risk. PMID:21083646

  14. The influence of P2Y12 receptor deficiency on the platelet inhibitory activities of prasugrel in a mouse model: evidence for specific inhibition of P2Y12 receptors by prasugrel.

    PubMed

    Hashimoto, Masami; Sugidachi, Atsuhiro; Isobe, Takashi; Niitsu, Yoichi; Ogawa, Taketoshi; Jakubowski, Joseph A; Asai, Fumitoshi

    2007-10-01

    Prasugrel is a novel orally active thienopyridine with faster, higher and more reliable inhibition of platelet aggregation than clopidogrel reflecting its metabolism in vivo to an active metabolite with selective P2Y(12) antagonistic activity. Several lines of evidence support the contention that prasugrel provides selective P2Y(12) receptor antagonistic activity. To date, however, direct evidence of P2Y(12) specific action by prasugrel in vivo is limited. In the present study, effects of prasugrel on ex vivo platelet aggregation were examined in wild type (WT) and P2Y(12)(-/-) mice. In WT mice, prasugrel showed platelet inhibition that was 8.2 times more potent than clopidogrel. In P2Y(12)(-/-) mice, ADP induced platelet aggregation was minimal, and its extent was similar to that in prasugrel-treated WT mice. In addition, no further inhibition of platelet aggregation was observed after administration of prasugrel to P2Y(12)(-/-) mice. Furthermore, prasugrel-treated WT mice showed similar aggregation patterns using collagen- and murine PAR-4 agonist peptide to those of P2Y(12)(-/-) mice treated with vehicle or prasugrel. Overall, these results clearly provide additional in vivo evidence that prasugrel has selective P2Y(12) antagonistic activity. PMID:17681285

  15. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.

  16. Y-12 National Security Complex Biological Monitoring And Abatement Program 2008 Calendar Year Report

    SciTech Connect

    Peterson, M. J.; Greeley Jr., M. S.; Mathews, T. J.; Morris, G. W.; Roy, W. K.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.

    2009-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located off

  17. Y-12 National Security Complex Biological Monitoring and Abatement Program 2007 Calendar Yeare Report

    SciTech Connect

    Peterson, M.J.; Greeley, M. S. Jr.; Morris, G. W.; Roy, W. K.; Ryan, M. G.; Smith, J. G.; Southworth, G. R.

    2008-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located off

  18. 76 FR 43319 - Record of Decision for the Continued Operation of the Y-12 National Security Complex

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... for use in naval and research reactors, and dispositions surplus materials. Y-12 nuclear nonproliferation programs play a critical role in securing our nation and the world and combating the spread of... (NOI) in the Federal Register (70 FR 71270), announcing its intent to prepare this Y-12 SWEIS....

  19. A novel series of piperazinyl-pyridine ureas as antagonists of the purinergic P2Y12 receptor.

    PubMed

    Bach, Peter; Boström, Jonas; Brickmann, Kay; van Giezen, J J J; Hovland, Ragnar; Petersson, Annika U; Ray, Asim; Zetterberg, Fredrik

    2011-05-15

    A novel series of P2Y(12) antagonists for development of drugs within the antiplatelet area is presented. The synthesis of the piperazinyl-pyridine urea derivatives and their structure-activity relationships (SAR) are described. Several compounds showed P2Y(12) antagonistic activities in the sub-micromolar range. PMID:21507636

  20. Classification of hydrogeologic areas and hydrogeologic flow systems in the basin and range physiographic province, southwestern United States

    USGS Publications Warehouse

    Anning, David W.; Konieczki, Alice D.

    2005-01-01

    The hydrogeology of the Basin and Range Physiographic Province in parts of Arizona, California, New Mexico, Utah, and most of Nevada was classified at basin and larger scales to facilitate information transfer and to provide a synthesis of results from many previous hydrologic investigations. A conceptual model for the spatial hierarchy of the hydrogeology was developed for the Basin and Range Physiographic Province and consists, in order of increasing spatial scale, of hydrogeologic components, hydrogeologic areas, hydrogeologic flow systems, and hydrogeologic regions. This hierarchy formed a framework for hydrogeologic classification. Hydrogeologic areas consist of coincident ground-water and surface-water basins and were delineated on the basis of existing sets of basin boundaries that were used in past investigations by State and Federal government agencies. Within the study area, 344 hydrogeologic areas were identified and delineated. This set of basins not only provides a framework for the classification developed in this report, but also has value for regional and subregional purposes of inventory, study, analysis, and planning throughout the Basin and Range Physiographic Province. The fact that nearly all of the province is delineated by the hydrogeologic areas makes this set well suited to support regional-scale investigations. Hydrogeologic areas are conceptualized as a control volume consisting of three hydrogeologic components: the soils and streams, basin fill, and consolidated rocks. The soils and streams hydrogeologic component consists of all surface-water bodies and soils extending to the bottom of the plant root zone. The basin-fill hydrogeologic component consists of unconsolidated and semiconsolidated sediment deposited in the structural basin. The consolidated-rocks hydrogeologic component consists of the crystalline and sedimentary rocks that form the mountain blocks and basement rock of the structural basin. Hydrogeologic areas were

  1. Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report

    SciTech Connect

    2000-12-01

    This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demand when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from ORGDP and

  2. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  3. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  4. Prenatal diagnosis of two different unbalanced forms of an inherited (Y;12) translocation.

    PubMed

    Mademont-Soler, Irene; Morales, Carme; Madrigal, Irene; Margarit, Ester; Bruguera, Jordi; Clusellas, Núria; Martínez, José M; Borrell, Antoni; Sánchez, Aurora; Soler, Anna

    2009-12-01

    The identification of an unexpected structural chromosome rearrangement at prenatal diagnosis can be problematic and raises unique genetic counseling issues. We describe two consecutive prenatal cases within a family with an inherited unbalanced (Y;12) translocation and discuss the genotype-phenotype correlation. The first fetus presented with 12qter monosomy and pseudoautosomal region 2 trisomy, while the second fetus had the alternative unbalanced state. Although the first fetus had a structural heart defect, such small imbalances might not give sonographic findings, making their prenatal diagnosis difficult. However, congenital abnormalities are expected in both unbalanced forms of the translocation, including mental retardation, which could be explained by the gene dosage variation of P2RX2. To our knowledge, these are the first published cases reporting this subtype of (Y;12) translocation, in both balanced and unbalanced states. PMID:19921651

  5. Criteria for the safe storage of enriched uranium at the Y-12 Plant

    SciTech Connect

    Cox, S.O.

    1995-07-01

    Uranium storage practices at US Department of Energy (DOE) facilities have evolved over a period spanning five decades of programmatic work in support of the nuclear deterrent mission. During this period, the Y-12 Plant in Oak Ridge, Tennessee has served as the principal enriched uranium facility for fabrication, chemical processing, metallurgical processing and storage. Recent curtailment of new nuclear weapons production and stockpile reduction has created significant amounts of enriched uranium available as a strategic resource which must be properly and safely stored. This standard specifies criteria associated with the safe storage of enriched uranium at the Y-12 Plant. Because programmatic needs, compliance regulations and desirable materials of construction change with time, it is recommended that these standards be reviewed and amended periodically to ensure that they continue to serve their intended purpose.

  6. Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface water

    SciTech Connect

    1995-07-25

    National Pollutant Discharge Elimination System (NPDES) Permit TN0002968, issued April 28, 1995, requires that the Y-12 Plant Radiological Monitoring Plan for surface water be modified (Part 111-H). These modifications shall consist of expanding the plan to include storm water monitoring and an assessment of alpha, beta, and gamma emitters. In addition, a meeting was held with personnel from the Tennessee Department of Environment and Conservation (TDEC) on May 4, 1995. In this meeting, TDEC personnel provided guidance to Y-12 Plant personnel in regard to the contents of the modified plan. This report contains a revised plan incorporating the permit requirements and guidance provided by TDEC personnel. In addition, modifications were made to address future requirements of the new regulation for radiation protection of the public and the environment in regards to surface water monitoring.

  7. Results of calendar year 1995 Well Inspection and Maintenance Program Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    McMaster, B.W.

    1996-07-01

    This document is a compendium of results of the 1995 Monitor Well Inspection and Maintenance Program at the US Department of Energy`s Oak Ridge Y-12 Plant. This report documents the work relating to well inspections and maintenance requests. Inspections are implemented in order to better assess the condition and maintenance needs of wells that are actively being monitored. Currently this approach calls for inspecting all wells on a routine (annual or triennial) basis which are: (1) in an active sampling program; (2) included in a hydrologic study; or (3) not in service, but not scheduled for plugging and abandonment. Routine inspections help to ensure that representative groundwater samples and hydrologic data are being collected, and contribute to the effective longevity of each well. This report formally presents well inspection and maintenance activities that were conducted at the Y-12 Plant from August through December 1995.

  8. The geology and hydrogeology of Bear Creek Valley Waste Disposal Areas A and B

    SciTech Connect

    1984-05-01

    A study was undertaken of the Oil Landfarm and Burial Grounds A and B, which are three disposal sites within the Bear Creek Waste Disposal Area. The area is located west of the Y-12 plant, about 3 miles southwest of Oak Ridge, Tennessee. The purpose of this interim report is to present data collected at the Burial Grounds A and B, and to provide the results of hydrogeologic analyses. The Oil Landfarm geologic and hydrogeologic data and analyses have been submitted in a January 1984 interim report. The overall objectives of the study were to characterize the types and extent of wastes present and to define the occurrence and movement of ground water beneath the sites. The intention of this work is to provide criteria on which a design for containing the waste can be developed. Specific activities performed by Bechtel included: drilling for subsurface geologic data; installing monitoring wells; measuring permeability and ground-water flow directions; and collecting soil, sediment, surface- and ground-water, and liquid-waste samples for chemical analysis. Results are presented on the geology and ground waters.

  9. Storm water runoff for the Y-12 Plant and selected parking lots

    SciTech Connect

    Collins, E.T.

    1996-01-01

    A comparison of storm water runoff from the Y-12 Plant and selected employee vehicle parking lots to various industry data is provided in this document. This work is an outgrowth of and part of the continuing Non-Point Source Pollution Elimination Project that was initiated in the late 1980s. This project seeks to identify area pollution sources and remediate these areas through the Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act (RCRA/CERCLA) process as managed by the Environmental Restoration Organization staff. This work is also driven by the Clean Water Act Section 402(p) which, in part, deals with establishing a National Pollutant Discharge Elimination System (NPDES) permit for storm water discharges. Storm water data from events occurring in 1988 through 1991 were analyzed in two reports: Feasibility Study for the Best Management Practices to Control Area Source Pollution Derived from Parking Lots at the DOE Y-12 Plant, September 1992, and Feasibility Study of Best Management Practices for Non-Point Source Pollution Control at the Oak Ridge Y-12 Plant, February 1993. These data consisted of analysis of outfalls discharging to upper East Fork Poplar Creek (EFPC) within the confines of the Y-12 Plant (see Appendixes D and E). These reports identified the major characteristics of concern as copper, iron, lead, manganese, mercury, nitrate (as nitrogen), zinc, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliform, and aluminum. Specific sources of these contaminants were not identifiable because flows upstream of outfalls were not sampled. In general, many of these contaminants were a concern in many outfalls. Therefore, separate sampling exercises were executed to assist in identifying (or eliminating) specific suspected sources as areas of concern.

  10. An Exploration of Mercury Soils Treatment Technologies for the Y-12 Plant - 13217

    SciTech Connect

    Wrapp, John; Julius, Jonathon; Browning, Debbie; Kane, Michael; Whaley, Katherine; Estes, Chuck; Witzeman, John

    2013-07-01

    There are a number of areas at the Y-12 National Security Complex (Y-12) that have been contaminated with mercury due to historical mercury use and storage. Remediation of these areas is expected to generate large volumes of waste that are Resource Conservation and Recovery Act (RCRA) characteristically hazardous. These soils will require treatment to meet RCRA Land Disposal Restrictions (LDR) prior to disposal. URS - CH2M Oak Ridge LLC (UCOR) performed a feasibility assessment to evaluate on-site and off-site options for the treatment and disposal of mercury-contaminated soil from the Y-12 Site. The focus of the feasibility assessment was on treatment for disposal at the Environmental Management Waste Management Facility (EMWMF) located on the Oak Ridge Reservation. A two-phase approach was used in the evaluation process of treatment technologies. Phase 1 involved the selection of three vendors to perform treatability studies using their stabilization treatment technology on actual Y-12 soil. Phase II involved a team of waste management specialists performing an in-depth literature review of all available treatment technologies for treating mercury contaminated soil using the following evaluation criteria: effectiveness, feasibility of implementation, and cost. The result of the treatability study and the literature review revealed several viable on-site and off-site treatment options. This paper presents the methodology used by the team in the evaluation of technologies especially as related to EMWMF waste acceptance criteria, the results of the physical treatability studies, and a regulatory analysis for obtaining regulator approval for the treatment/disposal at the EMWMF. (authors)

  11. Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program Plan

    SciTech Connect

    Adams, S.M.; Brandt, C.C.; Christensen, S.W.; Greeley, M.S.JR.; Hill, W.R.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-09-01

    The revised Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted as required by the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995 and became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Science Division (ESD) at the Oak Ridge National Laboratory (ORNL) at the request of the Y-12 Plant. The revision to the BMAP plan is based on results of biological monitoring conducted during the period of 1985 to present. Details of the specific procedures used in the current routine monitoring program are provided; experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional bioaccumulation monitoring if results indicate unexpectedly high PCBs or Hg) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is still observed). The program scope will be re-evaluated annually. By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of Y-12 Plant operations (past and present) on the biota of EFPC and to document the ecological effects of remedial actions.

  12. Fiscal year 1994 well installation program summary report, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1994-09-01

    This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1994 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Two monitoring wells were installed and one piezometer installation was attempted, but not completed, during the FY 1994 drilling program. In addition, SAIC provided health and safety and geotechnical oversight for two soil borings in support of the Y-12 Underground Storage Tank (UST) Program. All new monitoring wells were developed by either a 2.0-in. diameter swab rig or by hand bailing until nonspecific indicator parameters (pH and specific conductance) attained steady-state levels. Turbidity levels were lowered, if required, to the extent practicable by continued development beyond a steady-state level of pH and conductance. All well installation was conducted following industry-standard methods and approved procedures in the Environment Surveillance Procedures Quality Control Program (Energy Systems 1988), the Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document (EPA 1986), and Guidelines for Installation of Monitor Wells at the Y-12 Plant (Geraghty and Miller 1985). Health and safety monitoring and field screening of drilling returns and development waters were conducted in accordance with approved Martin Marietta Energy Systems, Inc. (Energy Systems) guidelines. All of the monitoring wells installed during FY 1994 at the Y-12 Plant were of screened construction.

  13. OAK RIDGE Y-12 PLANT BIOLOGICAL MONITORING AND ABATEMENT PROGRAM (BMAP) PLAN

    SciTech Connect

    ADAMS, S.M.; BRANDT, C.C.; CHRISTENSEN, S.W.; CICERONE, D.S.; GREELEY, M.S.JR; HILL, W.R.; HUSTON, M.S.; KSZOS, L.A.; MCCARTHY, J.F.; PETERSON, M.J.; RYON, M.G.; SMITH, J.G.; SOUTHWORTH, G.R.; STEWART, A.J.

    1998-10-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y- 12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional toxicity testing if initial results indicate low survival or reproduction) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is observed). By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  14. Statistical analysis of nuclear material weighing systems at the Oak Ridge - Y-12 plant. [DYMCAS

    SciTech Connect

    Hammer, A. H.

    1980-04-01

    The variation in weight measurements on the electronic scales purchased for the Dynamic Special Nuclear Materials Control and Accountability System (DYMCAS) has been characterized and estimated to be more than is acceptable when using the current weighing methods. New weighing procedures have been developed which substantially reduce this variation and bring the weight errors within the Y-12 Plant Nuclear Materials Control and Accountability Department's desired +- 2-g accuracy.

  15. 2003 Y-12 National Security Complex Annual Illness and Injury Surveillance Report

    SciTech Connect

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23

    Annual Illness and Injury Surveillance Program report for 2003 for Y-12. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  16. RCRA closure of land-based units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Stone, J.E.

    1990-01-01

    Eight land-based hazardous waste management units at the Oak ridge Y-12 Plant are being closed. Closure plans for the units have been submitted and approved by regulatory authorities. Closure methods include liquid removal and treatment, sludge stabilization, contaminated sludge and/or soil removal, and capping. Closure is funded by the US Department of Energy (DOE) Environmental Restoration Budget Category (ERBC). A major project has been identified for ERBC funding to close and remediate the land units in accordance with Resource Conservation and Recovery Act (RCRA) requirements. Hazardous wastes of various types are generated at Y-12 as part of plant production processes. These wastes have been stored, treated, and disposed of on the Y-12 site and include container and tank storage areas, wastewater treatment plants, landfills, land treatment units, and surface impoundments. Of these units, some are to be closed rather than allowed to operate with a permit. This paper focuses on two of the eight land units, the S-3 ponds, the New Hope pond (NHP), which have been closed under RCRA. Initiation of closure of all these units by November 1988 was required by statute.

  17. Fiscal year 1995 well plugging and abandonment program Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1995-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from September 1994 through August 1995. A total of 67 wells, piezometers, and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned if (1) its construction did not meet current standards (substandard construction); (2) it was irreparably damaged or had deteriorated beyond practical repair; (3) its location interfered with or otherwise impeded site operations, construction, or closure activities; or (4) special circumstances existed as defined on a case-by-case basis and approved by the Y-12 Plant Groundwater Protection Program (GWPP) Manager. This summary report contains: general geologic setting of the Y-12 Plant and vicinity; discussion of well plugging and abandonment methods, grouting procedures, and waste management practices (a Waste Management Plan for Drilling Activities is included in Appendix C); summaries of plugging and abandonment activities at each site; and quality assurance/quality control (QA/QC) and health and safety protocols used during the FY 1995 Plugging and Abandonment Program.

  18. Storm water pollution prevention plan for the Oak Ridge Y-12 Plant

    SciTech Connect

    1995-09-01

    The Environmental Protection Agency (EPA) published the final storm water regulation on November 16, 1990. The storm water regulation is included in the National Pollutant Discharge Elimination System (NPDES) regulations. An NPDES permit was issued for the Y-12 Plant on April 28, 1995, and was effective on July 1, 1995. The permit requires that a Storm Water Pollution Prevention Plan (SWP3) be developed by December 28, 1995, and be fully implemented by July 1, 1996; this plan has been developed to fulfill that requirement. The outfalls and monitoring points described in this plan contain storm water discharges associated with industrial activities as defined in the NPDES regulations. For storm water discharges associated with industrial activity, including storm water discharges associated with construction activity, that are not specifically monitored or limited in this permit, Y-12 Plant personnel will meet conditions of the General Storm Water Rule 1200-4-10. This document presents the programs and physical controls that are in place to achieve the following objectives: ensure compliance with Section 1200-4-10-.04(5) of the TDEC Water Quality Control Regulations and Part 4 of the Y-12 Plant NPDES Permit (TN0002968); provide operating personnel with guidance relevant to storm water pollution prevention and control requirements for their facility and/or project; and prevent or reduce pollutant discharge to the environment, in accordance with the Clean Water Act (CWA) and the Tennessee Water Quality Control Act.

  19. The Oak Ridge Y-12 Plant biological monitoring and abatement program for East Fork Poplar Creek

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Giddings, J.M.; McCarthy, J.F.; Southworth, G.R.; Smith, J.G.; Stewart, A.J.; Springborn Bionomics, Inc., Wareham, MA; Oak Ridge National Lab., TN )

    1989-10-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Oak Ridge Y-12 Plant, a nuclear weapons components production facility located in Oak Ridge, Tennessee, and operated by Martin Marietta Energy Systems, Inc., for the US Department of Energy. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Oak Ridge Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek), in particular, the growth and propagation of fish and aquatic life, as designated by the Tennessee Department of Health and Environment. A second purpose for the BMAP is to document the ecological effects resulting from implementation of a water pollution control program that will include construction of nine new wastewater treatment facilities over the next 4 years. Because of the complex nature of the effluent discharged to East Fork Poplar Creek and the temporal and spatial variability in the composition of the effluent (i.e., temporal variability related to various pollution abatement measures that will be implemented over the next several years and spatial variability caused by pollutant inputs downstream of the Oak Ridge Y-12 Plant), a comprehensive, integrated approach to biological monitoring was developed for the BMAP. 39 refs., 5 figs., 8 tabs.

  20. The spill prevention, control, and countermeasures (SPCC) plan for the Y-12 Plant. Volume 1

    SciTech Connect

    Not Available

    1992-08-01

    This spill prevention, control and countermeasures (SPCC) Plan is divided into two volumes. Volume I addresses Y-12`s compliance with regulations pertinent to the content of SPCC Plans. Volume II is the SPCC Hazardous Material Storage Data Base, a detailed tabulation of facility-specific information and data on potential spill sources at the Y-12 Plant. Volume I follows the basic format and subject sequence specified in 40 CFR 112.7. This sequence is prefaced by three additional chapters, including this introduction and brief discussions of the Y-12 Plant`s background/environmental setting and potential spill source categories. Two additional chapters on containers and container storage areas and PCB and PCB storage for disposal facilities are inserted into the required sequence. The following required subjects are covered in this volume: Spill history, site drainage; secondary containment/diversion structures and equipment; contingency plans; notification and spill response procedures; facility drainage; bulk storage tanks; facility transfer operations, pumping, and in-plant processes; transfer stations (facility tank cars/tank tracks); inspections and records; security, and personnel, training, and spill prevention procedures.

  1. Residual platelet ADP reactivity after clopidogrel treatment is dependent on activation of both the unblocked P2Y1 and the P2Y12 receptor and is correlated with protein expression of P2Y12

    PubMed Central

    Braun, Oscar Ö; Amisten, Stefan; Wihlborg, Anna-Karin; Hunting, Karen; Nilsson, David

    2006-01-01

    Two ADP receptors have been identified on human platelets: P2Y1 and P2Y12. The P2Y12 receptor blocker clopidogrel is widely used to reduce the risks in acute coronary syndromes, but, currently, there is no P2Y1 blocker in clinical use. Evidence for variable responses to clopidogrel has been described in several reports. The mechanistic explanation for this phenomenon is not fully understood. The aim of this study was to examine mechanisms responsible for variability of 2MeS-ADP, a stable ADP analogue, induced platelet reactivity in clopidogrel-treated patients. Platelet reactivity was assessed by flow cytometry measurements of P-selectin (CD62P) and activated GpIIb/IIIa complex (PAC-1). Residual 2MeS-ADP activation via the P2Y12 and P2Y1 receptors was determined by co-incubation with the selective antagonists AR-C69931 and MRS2179 in vitro. P2Y1 and P2Y12 receptor expression on both RNA and protein level were determined, as well as the P2Y12 H1 or H2 haplotypes. Our data suggest that the residual platelet activation of 2MeS-ADP after clopidogrel treatment is partly due to an inadequate antagonistic effect of clopidogrel on the P2Y12 receptor and partly due to activation of the P2Y1 receptor, which is unaffected by clopidogrel. Moreover, a correlation between increased P2Y12 protein expression on platelets and decreased response to clopidogrel was noticed, r2=0.43 (P<0.05). No correlation was found between P2Y12 mRNA levels and clopidogrel resistance, indicating post-transcriptional mechanisms. To achieve additional ADP inhibition in platelets, antagonists directed at the P2Y1 receptor could be more promising than the development of more potent P2Y12 receptor antagonists. PMID:18404433

  2. Involvement of Microglial P2Y12 Signaling in Tongue Cancer Pain.

    PubMed

    Tamagawa, T; Shinoda, M; Honda, K; Furukawa, A; Kaji, K; Nagashima, H; Akasaka, R; Chen, J; Sessle, B J; Yonehara, Y; Iwata, K

    2016-09-01

    To elucidate if microglial P2Y12 receptor (P2Y12R) mechanisms are involved in the trigeminal spinal subnucleus caudalis (Vc; also known as the medullary dorsal horn) in intraoral cancer pain, we developed a rat model of tongue cancer pain. Squamous cell carcinoma (SCC) cells were inoculated into the tongue of rats; sham control rats received the vehicle instead. Nociceptive behavior was measured as the head-withdrawal reflex threshold (HWRT) to mechanical or heat stimulation applied to the tongue under light anesthesia. On day 14 after the SCC inoculation, activated microglia and P2Y12R expression were examined immunohistochemically in the Vc. The HWRT was also studied in SCC-inoculated rats with successive intra-cisterna magna (i.c.m.) administration of specific P2Y12R antagonist (MRS2395) or intraperitoneal administration of minocycline, a microglial activation inhibitor. Tongue cancer was histologically verified in SCC-inoculated rats, within which the HWRT to mechanical stimulation of the tongue was significantly decreased, as compared with that of vehicle-inoculated rats, although the HWRT to heat stimulation was not. Microglia was strongly activated on day 14, and the administration of MRS2395 or minocycline reversed associated nocifensive behavior and microglial activation in SCC-inoculated rats for 14 d. The activity of Vc wide dynamic range nociceptive neurons was also recorded electrophysiologically in SCC-inoculated and sham rats. Background activity and noxious mechanically evoked responses of wide dynamic range neurons were significantly increased in SCC-inoculated rats versus sham rats, and background activity and mechanically evoked responses were significantly suppressed following i.c.m. administration of MRS2395 in SCC-inoculated rats as compared with sham. The present findings suggest that SCC inoculation that produces tongue cancer results in strong activation of microglia via P2Y12 signaling in the Vc, in association with increased excitability

  3. Emerging Challenges and "Weird" Models in Hydrogeology

    NASA Astrophysics Data System (ADS)

    Carrera, J.

    2015-12-01

    Hydrogeological research and practice have dealt in recent years with problems related to groundwater quantity and quality. Models have been used for water flow, solute transport and, at most, chemical reactions, which were required to address issues such as water resources assessment, artificial recharge, seawater intrusion, impact of public works, and the like. "Weird" (i.e., outside the mainstream practical hydrogeology, restricted to academy) models were virtually restricted to spatial variability of permeability and the problems it imposed on transport (i.e., scale dependence of dispersivity, mixing, etc.). Yet, a broad gap has grown between academy and practical hydrogeology. Energy demands have created a new suite of problems that need to be solved to address CO2 storage, shale gas impacts or enhanced geothermal systems. These require solving mechanical and thermal equations. We contend, and will use example from our own work for illustration, that (1) these problems are not so new (hydrogeologists started working on them some 40 years ago), (2) hydrogeological tools are as needed to solve energy problems as they were for water problems (permeability remains the key parameter for most of them), (3) collaboration with sister Earth Sciences remains essential (the problems are highly coupled and no one can master all disciplines involved). The real challenge is not so much whether hydrogeology can address these problems, it can, as whether hydrogeologists can reduce the gap between academy and practice, which will be strongly stretched by these emerging problems.

  4. The hydrogeology of Kilauea volcano

    SciTech Connect

    Ingebritsen, S.E.; Scholl, M.A. )

    1993-08-01

    The hydrogeology of Kilauea volcano and adjacent areas has been studied since the turn of this century. However, most studies to date have focused on the relatively shallow, low-salinity parts of the ground-water system, and the deeper hydrothermal system remains poorly understood. The rift zones of adjacent Mauna Loa volcano bound the regional ground-water flow system that includes Kilauea, and the area bounded by the rift zones of Kilauea and the ocean may comprise a partly isolated subsystem. Rates of ground-water recharge vary greatly over the area, and discharge is difficult to measure, because streams are ephemeral and most ground-water discharges diffusely at or below sea level. Hydrothermal systems exist at depth in Kilauea's east and southwest rift zone, as evidenced by thermal springs at the coast and wells in the lower east-rift zone. Available data suggest that dike-impounded, heated ground water occurs at relatively high elevations in the upper east- and southwest-rift zones of Kilauea, and that permeability at depth in the rift zones. Available data suggest that dike-impounded, heated ground water occurs at relatively high elevations in the upper east- and southwest-rift zones of Kilauea, and that permeability at depth in the rift zones (probably [le]10[sup [minus]15] m[sup 2]) is much lower than that of unaltered basalt flows closer to the surface ([ge]10[sup [minus]10] m[sup 2]). Substantial variations in permeability and the presence of magmatic heat sources influence that structure of the fresh water-salt water interface, so the Ghyben-Herzberg model will often fail to predict its position. Numerical modeling studies have considered only subsets of the hydrothermal system, because no existing computer code solves the coupled fluid-flow, heat- and solute-transport problem over the temperature and salinity range encountered at Kilauea. 73 refs., 7 figs., 2 tabs.

  5. Historical Evaluation of Film Badge Dosimetry Y-12 Plant: Part 2–Neutron Radiation ORAUT-OTIB-0045

    SciTech Connect

    Kerr GD, Frome EL, Watkins JP, Tankersley WG

    2009-12-14

    A summary of the major neutron sources involved in radiation exposures to Y-12 workers is presented in this TIB. Graphical methods are used to evaluate available neutron dose data from quarterly exposures to Y-12 workers and to determine how the data could be used to derive neutron-to-gamma dose ratios for dose reconstruction purposes. This TIB provides estimates of neutron-to-gamma dose ratios for specific departments and a default value for the neutron-to-gamma dose ratio based on the pooled neutron dose data for all Y-12 departments.

  6. P2Y12 antagonists in non-ST-segment elevation acute coronary syndromes: latest evidence and optimal use

    PubMed Central

    DiNicolantonio, James J.

    2015-01-01

    Dual antiplatelet therapy (DAPT), which includes the combination of aspirin and a P2Y12 platelet receptor inhibitor, is a well-established antiplatelet regimen in the treatment of patients with non-ST-segment elevation acute coronary syndrome (NSTE-ACS). Three P2Y12 inhibitor options (clopidogrel, prasugrel and ticagrelor) are currently available, all having different efficacy and safety profiles along with contrasting contraindications, special warnings and precautions for use. This review compares and contrasts the unique P2Y12 antagonists in the NSTE-ACS setting, covering the latest evidence and their optimal use. PMID:26137210

  7. SRP baseline hydrogeologic investigation, Phase 2

    SciTech Connect

    Bledsoe, H.W.

    1987-11-01

    As discussed in the program plan for the Savannah River Plant (SRP) Baseline Hydrogeologic Investigation, this program has been implemented for the purpose of updating and improving the current state of knowledge and understanding of the hydrogeologic systems underlying the Savannah River Plant (SRP). The objective of the program is to install a series of observation well clusters (wells installed in each major water bearing formation at the same site) at key locations across the plant site in order to: (1) provide detailed information on the lithology, stratigraphy, and groundwater hydrology, (2) provide observation wells to monitor the groundwater quality, head relationships, gradients, and flow paths.

  8. SRP baseline hydrogeologic investigation: Aquifer characterization

    SciTech Connect

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  9. SRP Baseline Hydrogeologic Investigation, Phase 3

    SciTech Connect

    Bledsoe, H.W.

    1988-08-01

    The SRP Baseline Hydrogeologic Investigation was implemented for the purpose of updating and improving the knowledge and understanding of the hydrogeologic systems underlying the SRP site. Phase III, which is discussed in this report, includes the drilling of 7 deep coreholes (sites P-24 through P-30) and the installation of 53 observation wells ranging in depth from approximately 50 ft to more than 970 ft below the ground surface. In addition to the collection of geologic cores for lithologic and stratigraphic study, samples were also collected for the determination of physical characteristics of the sediments and for the identification of microorganisms.

  10. Resource Conservation and Recovery Act Closure Plan for the Y-12 9409-5 Tank Storage Facility

    SciTech Connect

    1995-02-01

    This document presents information on the closure of the Y-12 9409-5 Tank Storage Facility. Topics discussed include: facility description; closure history; closure performance standard; partial closure; maximum waste inventory; closure activities; schedule; and postclosure care.

  11. Reviewing the controversy surrounding pre-treatment with P2Y12 inhibitors in acute coronary syndrome patients.

    PubMed

    Capodanno, Davide; Angiolillo, Dominick J

    2016-07-01

    Pretreatment with oral P2Y12 inhibitors occurs each time clopidogrel, prasugrel, ticagrelor are given to patients with suspected coronary artery disease before definition of the coronary anatomy. In acute coronary syndromes, the practice of administering oral P2Y12 inhibitors upstream has been the object of significant controversy in recent years, following the publication of two trials of pretreatment in non-ST-segment elevation acute coronary syndromes and ST-segment elevation myocardial infarction, respectively. The introduction in the market of cangrelor - the first intravenous P2Y12 inhibitor - represents a new opportunity but also a new challenge for clinicians. This article reviews current recommendations and supporting evidence surrounding pretreatment with oral and intravenous P2Y12 inhibitors in patients with acute coronary syndromes. PMID:26953527

  12. Central P2Y12 receptor blockade alleviates inflammatory and neuropathic pain and cytokine production in rodents

    PubMed Central

    Horváth, Gergely; Gölöncsér, Flóra; Csölle, Cecilia; Király, Kornél; Andó, Rómeó D.; Baranyi, Mária; Koványi, Bence; Máté, Zoltán; Hoffmann, Kristina; Algaier, Irina; Baqi, Younis; Müller, Christa E.; Von Kügelgen, Ivar; Sperlágh, Beáta

    2014-01-01

    In this study the role of P2Y12 receptors (P2Y12R) was explored in rodent models of inflammatory and neuropathic pain and in acute thermal nociception. In correlation with their activity to block the recombinant human P2Y12R, the majority of P2Y12R antagonists alleviated mechanical hyperalgesia dose-dependently, following intraplantar CFA injection, and after partial ligation of the sciatic nerve in rats. They also caused an increase in thermal nociceptive threshold in the hot plate test. Among the six P2Y12R antagonists evaluated in the pain studies, the selective P2Y12 receptor antagonist PSB-0739 was most potent upon intrathecal application. P2Y12R mRNA and IL-1β protein were time-dependently overexpressed in the rat hind paw and lumbar spinal cord following intraplantar CFA injection. This was accompanied by the upregulation of TNF-α, IL-6 and IL-10 in the hind paw. PSB-0739 (0.3 mg/kg i.t.) attenuated CFA-induced expression of cytokines in the hind paw and of IL-1β in the spinal cord. Subdiaphragmatic vagotomy and the α7 nicotinic acetylcholine receptor antagonist MLA occluded the effect of PSB-0739 (i.t.) on pain behavior and peripheral cytokine induction. Denervation of sympathetic nerves by 6-OHDA pretreatment did not affect the action of PSB-0739. PSB-0739, in an analgesic dose, did not influence motor coordination and platelet aggregation. Genetic deletion of the P2Y12R in mice reproduced the effect of P2Y12R antagonists on mechanical hyperalgesia in inflammatory and neuropathic pain models, on acute thermal nociception and on the induction of spinal IL-1β. Here we report the robust involvement of the P2Y12R in inflammatory pain. The anti-hyperalgesic effect of P2Y12R antagonism could be mediated by the inhibition of both central and peripheral cytokine production and involves α7-receptor mediated efferent pathways. PMID:24971933

  13. Structural walkdown procedure for natural phenomena engineering analyses at the Oak Ridge Y-12 Plant

    SciTech Connect

    1992-06-01

    This walkdown plan outlines the process to be followed and the pertinent structural information to be collected for the assessment of the adequacy of existing or future natural phenomena analyses for the Oak Ridge Y-12 Plant. This approach is being followed in order to develop input to assess that the critical facilities were constructed in accordance with the design drawings, that any major configuration changes to the principle structures are identified and that the location of major equipment loadings are defined. This structural walkdown plan is not intended to collect detailed information for the purpose of developing as-built structural drawings or to evaluate equipment or safety system/component interaction. Implementation of this plan is required for the walkdown phase of the Y-12 Plant natural phenomena analyses. The types of walkdowns to be performed in this procedure include: (1) A walkdown based on a sampling approach to collect detailed structural design information relative to member sizes, orientation, connection, and base details to support the conclusion that the structural configuration is consistent with the design drawings. (2) A walkdown to collect detailed information relative to equipment loadings on top and bottom of floors and roof. (3) A walkthrough inspection of all areas of the building to identify any areas of major configuration change from design drawings. Basic floor loading information such as size, location, and weight is to be obtained. Actual dead loads and live loads are to be determined. Floor load drawings will be developed to show the location, weights, etc., for major dead and live loads. One walkdown package will be generated for each of the following Y-12 Plant structures: Buildings 9212, 9980, 9996, 9723-25, 9828-1, 9828-2, 9828-3, 9767-10, 9812, 9815, 9818, 9999, 9423. The justification for these walkdowns is the potential for release of radioactive and/or other hazardous materials.

  14. Environmental assessment for the Plating Shop Replacement, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1992-03-01

    The existing of Y-12 Plant Plating Shop provides vital support functions for the US Department of Energy (DOE) Defense Programs operations. In addition to weapon component plating, the facility performs other plating services to support existing operations for the Y-12 Plant, other DOE facilities, and other federal agencies. In addition, the facility would also provide essential deplating services for weapons reclamation and teardown. The existing Y-12 Plant Plating Shop is presently located in a structure which is rapidly deteriorating and obsolete. The existing building structure was originally designed to house a steam plant, not chemical plating operations. As such, vapors from plating operations have deteriorated the structure to a point where a new facility is needed for continued safe operations. The potential environmental impacts of the proposed action was anticipated to be minimal and would affect no environmentally sensitive areas. Some short-term construction- and demolition-related effects would occur in an already highly industrialized setting. These include temporarily disturbing 72,000 square feet of land for the new plating shop and related site preparation activities, constructing a permanent building on part of the area, and using 80 construction personnel over a period of 18 months for site preparation and construction. Demolition effects vary depending on the environmentally suitable option selected, but they could involve as much as 262 cubic yards of concrete rubble and approximately 1600 cubic yards of soil disposed as waste. Either 1600 cubic yards of fresh soil or 1850 yards of clay and fresh soil could be required. Soil erosion would be minimal. Approximately 20 construction personnel would be involved for 12 months in demolition activities.

  15. Chemical characteristics of waters in Karst Formations at the Oak Ridge Y-12 Plant

    SciTech Connect

    Shevenell, L.A.

    1994-11-01

    Several waste disposal sites are located adjacent to or on a karst aquifer composed of the Cambrian Maynardville Limestone (Cmn) and the Cambrian Copper Ridge Dolomite (Ccr) at the U.S. Department of Energy Oak Ridge Y-12 Plant in Oak Ridge, TN. Highly variable chemical characteristics (i.e., hardness) can indicate that the portion of the aquifer tapped by a particular well is subject to a significant quick-flow component where recharge to the system is rapid and water levels and water quality change rapidly in response to precipitation events. Water zones in wells at the Y-12 Plant that exhibit quick-flow behavior (i.e., high hydraulic conductivity) are identified based on their geochemical characteristics and variability in geochemical parameters, and observations made during drilling of the wells. The chemical data used in this study consist of between one and 20 chemical analyses for each of 102 wells and multipart monitoring zones. Of these 102 water zones, 10 were consistently undersaturated with respect to calcite suggesting active dissolution. Repeat sampling of water zones shows that both supersaturation and undersaturation with respect to dolomite occurs in 46 water zones. Twelve of the zones had partial pressure of CO{sub 2} near atmospheric values suggesting limited interaction between recharge waters and the gases and solids in the vadose zone and aquifer, and hence, relatively short residence times. The preliminary data suggest that the Cmn is composed of a complicated network of interconnected, perhaps anastomosing, cavities. The degree of interconnection between the identified cavities is yet to be determined, although it is expected that there is a significant vertical and lateral interconnection between the cavities located at shallow depths in the Cnm throughout Bear Creek Valley and the Y-12 Plant area.

  16. Post-closure permit application for the Kerr Hollow Quarry at the Y-12 plant

    SciTech Connect

    1995-06-01

    The Kerr Hollow Quarry (KHQ) is located on U.S. Department of Energy (DOE) property at the Y-12 Plant, Oak Ridge, Tennessee. The Oak Ridge Y-12 Plant was built by the U.S. Army Corps of Engineers in 1943 as part of the Manhattan Project. Until 1992, the primary mission of the Y-12 Plant was the production and fabrication of nuclear weapons components. Activities associated with these functions included production of lithium compounds, recovery of enriched uranium from scrap material, and fabrication of uranium and other materials into finished parts for assemblies. The Kerr Hollow Quarry was used for waste disposal of a variety of materials including water-reactive and shock-sensitive chemicals and compressed gas cylinders. These materials were packaged in various containers and sank under the water in the quarry due to their great weight. Disposal activities were terminated in November, 1988 due to a determination by the Tennessee Department of Environment and Conservation that the quarry was subject to regulations under the Resource Conservation and Recovery Act of 1993. Methods of closure for the quarry were reviewed, and actions were initiated to close the quarry in accordance with closure requirements for interim status surface impoundments specified in Tennessee Rules 1200-1-11-.05(7) and 1200-1-11-.05(11). As part of these actions, efforts were made to characterize the physical and chemical nature of wastes that had been disposed of in the quarry, and to remove any containers or debris that were put into the quarry during waste disposal activities. Closure certification reports (Fraser et al. 1993 and Dames and Moore 1993) document closure activities in detail. This report contains the post-closure permit application for the Kerr Hollow Quarry site.

  17. Comparison of VerifyNow P2Y12 and thrombelastography for assessing clopidogrel response in stroke patients in China.

    PubMed

    Lv, Hui-Hui; Wu, Shuai; Liu, Xu; Yang, Xiao-Li; Xu, Jian-Feng; Guan, Yang-Tai; Dong, Qiang; Zheng, S Lilly; Jiang, Jian-Ming; Li, Shi-Xu; Luo, Zheng; Li, Li; An, Li-Xian; Han, Yan

    2016-02-01

    Poor response to clopidogrel is often associated with recurrent ischemic events, and reliable platelet function tests are needed to identify clopidogrel low response (CLR). The aim of the study was to compare the consistency of VerifyNow P2Y12 and thrombelastography (TEG) in acute ischemic stroke patients treated with clopidogrel. Patients hospitalized in Changhai Hospital from August 2012 to September 2013 and assigned to treatment with a daily 75-mg dose of clopidogrel. The blood samples were taken on the 5-7th day to assess the capability of VerifyNow P2Y12 and TEG for evaluation of clopidogrel response, and all instrument parameters were used to perform correlation analysis. Patients with CLR were detected by using the methods and criteria published earlier (PRU ≥ 230 assayed by VerifyNow P2Y12 or TEG-Inhib% ≤30 % measured by TEG). Totally 58 patients were enrolled for the study and there were wide varieties in parameters of VerifyNow P2Y12 and TEG. Results showed a total of 17 and 9 patients, respectively, identified as CLR assessed by VerifyNow P2Y12 and TEG, but only three patients were detected to be clopidogrel low responders with both tests. The kappa consistency analysis showed poor consistency between VerifyNow P2Y12 and TEG results in terms of CLR (Kappa = -0.0349, p = 0.7730). Linear regression also demonstrated poor correlation between VerifyNow-PRU/VerifyNow-Inhib% and TEG-Inhib% (p = 0.07901 and p = 0.3788, respectively). Our study demonstrated that there was poor correlation between VerifyNow P2Y12 and TEG results, and VerifyNow P2Y12 showed a larger proportion of CLR than TEG. PMID:26520845

  18. Fiscal year 1996 well installation program summary, Y-12 Plant Oak Ridge, Tennessee

    SciTech Connect

    1997-04-01

    This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1996 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge Tennessee. Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Two groundwater monitoring wells were installed during the FY 1996 drilling program. One of the groundwater monitoring wells was installed in the Lake Reality area and was of polyvinyl chloride screened construction. The other well, installed near the Ash Disposal Basin, was of stainless steel construction.

  19. Continuous Emissions Monitoring System Monitoring Plan for the Y-12 Steam Plant

    SciTech Connect

    2003-02-28

    The Oak Ridge Y-12 National Security Complex (Y-12), managed by BWXT, is submitting this Continuous Emissions Monitoring System (CEMS) Monitoring Plan in conformance with the requirements of Title 40 of the U.S. Code of Federal Regulations (CFR) Part 75. The state of Tennessee identified the Y-12 Steam Plant in Oak Ridge, Tennessee, as a non-electrical generation unit (EGU) nitrogen oxides (NO{sub x}) budget source as a result of the NO{sub x} State Implementation Plan (SIP) under the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-3-27. Following this introduction, the monitoring plan contains the following sections: CEMS details, NO{sub x} emissions, and quality assurance (QA)/quality control (QC). The following information is included in the attachments: fuel and flue gas diagram, system layout, data flow diagrams, Electronic Monitoring Plan printouts, vendor information on coal and natural gas feed systems, and the Certification Test Protocol. The Y-12 Steam Plant consists of four Wickes boilers. Each is rated at a maximum heat input capacity of 296.8 MMBtu/hour or 250,000 lb/hour of 250-psig steam. Although pulverized coal is the principal fuel, each of the units can fire natural gas or a combination of coal and gas. Each unit is equipped with a Joy Manufacturing Company reverse air baghouse to control particulate emissions. Flue gases travel out of the baghouse, through an induced draft fan, then to one of two stacks. Boilers 1 and 2 exhaust through Stack 1. Boilers 3 and 4 exhaust through Stack 2. A dedicated CEMS will be installed in the ductwork of each boiler, downstream of the baghouse. The CEMS will be designed, built, installed, and started up by URS Group, Inc. (URS). Data acquisition and handling will be accomplished using a data acquisition and handling system (DAHS) designed, built, and programmed by Environmental Systems Corporation (ESC). The installed CEMS will continuously monitor NO{sub x}, flue gas flowrate, and carbon

  20. Calendar years 1989 and 1990 monitoring well installation program Y-12 plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1991-10-01

    This report documents the well-construction activities at the Y-12 Plant in Oak Ridge, Tennessee during 1989 and 1990. The well- construction program consisted of installing seventy-five monitoring wells. Geologists from ERCE (formally the Engineering, Design and Geosciences Group) and Martin Marietta Energy Systems (Energy Systems), supervised and documented well-construction activities and monitored for health and safety concerns. Sixty-seven monitoring wells were installed under the supervision of an ERCE geologist from March 1989 to September 1990. Beginning in September 1990, Energy Systems supervised drilling activities for eight monitoring wells, the last of which was completed in December 1990. 9 refs., 3 figs., 2 tabs.

  1. PEIS data report: Upgrading the Y-12 Plant for long-term HEU storage

    SciTech Connect

    Everitt, D.A.; Johnson, J.P.; Phillips, J.K.; Snider, J.D.

    1996-02-01

    The Department of Energy (DOE) is planning the future of weapons-capable fissile materials owned by the United States (U.S.). Under its Disposition Program, DOE is evaluating its options for: (a) storage of fissile materials needed for specific national programs, and (b) disposal of surplus fissile materials. In accordance with the National Environmental Policy Act (NEPA), DOE is preparing the {open_quotes}Programmatic Environmental Impact Statement (PEIS) for Long-Term Storage and Disposition of Weapons-Usable Fissile Materials{close_quotes} (Disposition PEIS). This paper discusses storage options for highly enriched uranium at the Y-12 plant.

  2. Fault control on the hydrogeological setting of the Sibillini Mountains aquifers (Central Apennines, Italy): an example of hydrogeological structures in thrust-belt contexts

    NASA Astrophysics Data System (ADS)

    Tarragoni, C.

    2012-04-01

    This work is aimed at highlighting the importance of fault control on the hydrogeological setting in orogenic areas. In Sibillini Montains, Umbrian-Marchean pelagic succession outcrops. This succession, characterized by calcareous, calcareous-marly and silicate could presents condensed succession and is involved in fold and overthrust deformation, followed by a development of normal faults. The lithostratigraphical and structural study allowed defining the aquifer settings. Several cross-sections have been drawn to identify the three-dimensional geological setting and aquifer's boundaries that consist on: lithological limit between permeable and very low permeable complexes and structural features (groundwater divide and faults). The analyses of principals structural features (e.g. overthrust) have allowed to identify the prominent groundwater flow direction: the Sibillini Montains, Monte Val di Fibbia-P.ta Bambucerta and Visso overthrusts represent three important inverse faults oriented NNW-SSE having aquiclude role due to the high displacement. The altitude gradual decrease forward N of aquiclude handing aquifers combined to Apennine orientation of overthrusts induce a SSE-NNW groundwater flow. A detailed analysis of base flow has allowed to: 1) define the river's base flow; 2) recognize the punctual, diffused and linear springs; 3) quantify the water resource on average drained; and 4) determine the discharge regime of springs and rivers. The geologic-structural analyses with the quantitative hydrogeological studies have allowed to prepare the Conceptual Hydrogeological Model (CHM) and to calculate the hydrogeological balance for each aquifer. This double approach let to carry out a detailed study and make out hypotheses about groundwater circulation for each aquifer. These hypotheses represent the bases for the groundwater modelling that could give an important contribute to confirm or not them. The CHM of main aquifer has been adopted to carry out the

  3. An intact PDZ motif is essential for correct P2Y12 purinoceptor traffic in human platelets

    PubMed Central

    Nisar, Shaista; Daly, Martina E.; Federici, Augusto B.; Artoni, Andrea; Mumford, Andrew D.; Watson, Stephen P.

    2011-01-01

    The platelet P2Y12 purinoceptor (P2Y12R), which plays a crucial role in hemostasis, undergoes internalization and subsequent recycling to maintain receptor responsiveness, processes that are essential for normal platelet function. Here, we observe that P2Y12R function is compromised after deletion or mutation of the 4 amino acids at the extreme C-terminus of this receptor (ETPM), a putative postsynaptic density 95/disc large/zonula occludens-1 (PDZ)–binding motif. In cell line models, removal of this sequence or mutation of one of its core residues (P341A), attenuates receptor internalization and receptor recycling back to the membrane, thereby blocking receptor resensitization. The physiologic significance of these findings in the regulation of platelet function is shown by identification of a patient with a heterozygous mutation in the PDZ binding sequence of their P2Y12R (P341A) that is associated with reduced expression of the P2Y12R on the cell surface. Importantly, platelets from this subject showed significantly compromised P2Y12R recycling, emphasizing the importance of the extreme C-terminus of this receptor to ensure correct receptor traffic. PMID:21937696

  4. An intact PDZ motif is essential for correct P2Y12 purinoceptor traffic in human platelets.

    PubMed

    Nisar, Shaista; Daly, Martina E; Federici, Augusto B; Artoni, Andrea; Mumford, Andrew D; Watson, Stephen P; Mundell, Stuart J

    2011-11-17

    The platelet P2Y(12) purinoceptor (P2Y(12)R), which plays a crucial role in hemostasis, undergoes internalization and subsequent recycling to maintain receptor responsiveness, processes that are essential for normal platelet function. Here, we observe that P2Y(12)R function is compromised after deletion or mutation of the 4 amino acids at the extreme C-terminus of this receptor (ETPM), a putative postsynaptic density 95/disc large/zonula occludens-1 (PDZ)-binding motif. In cell line models, removal of this sequence or mutation of one of its core residues (P341A), attenuates receptor internalization and receptor recycling back to the membrane, thereby blocking receptor resensitization. The physiologic significance of these findings in the regulation of platelet function is shown by identification of a patient with a heterozygous mutation in the PDZ binding sequence of their P2Y(12)R (P341A) that is associated with reduced expression of the P2Y(12)R on the cell surface. Importantly, platelets from this subject showed significantly compromised P2Y(12)R recycling, emphasizing the importance of the extreme C-terminus of this receptor to ensure correct receptor traffic. PMID:21937696

  5. Small Scale Multisource Site – Hydrogeology Investigation

    EPA Science Inventory

    A site impacted by brackish water was evaluated using traditional hydrogeologic and geochemical site characterization techniques. No single, specific source of the brine impacted ground water was identified. However, the extent of the brine impacted ground water was found to be...

  6. Routine environmental audit of the Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1994-09-01

    This report documents the results of the routine environmental audit of the Oak Ridge Y-12 Plant (Y-12 Plant), Anderson County, Tennessee. During this audit, the activities conducted by the audit team included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE), State of Tennessee regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted August 22-September 2, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). DOE 5482.1 B, {open_quotes}Environment, Safety, and Health Appraisal Program,{close_quotes} establishes the mission of EH-24 to provide comprehensive, independent oversight of DOE environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of DOE`s environmental programs within line organizations, and by using supplemental activities that strengthen self-assessment and oversight functions within program, field, and contractor organizations. The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements.

  7. P2Y12-ADP receptor antagonists: Days of future and past.

    PubMed

    Laine, Marc; Paganelli, Franck; Bonello, Laurent

    2016-05-26

    Antiplatelet therapy is the cornerstone of the therapeutic arsenal in coronary artery disease. Thanks to a better understanding in physiology, pharmacology and pharmacogenomics huge progress were made in the field of platelet reactivity inhibition thus allowing the expansion of percutaneous coronary intervention. Stent implantation requires the combination of two antiplatelet agents acting in a synergistic way. Asprin inhibit the cyclo-oxygenase pathway of platelet activation while clopidogrel is a P2Y12 adenosine diphosphate (ADP)-receptor antagonist. This dual antiplatelet therapy has dramatically improved the prognosis of stented patients. However, due to pharmacological limitations of clopidogrel (interindividual variability in its biological efficacy, slow onset of action, mild platelet reactivity inhibition) ischemic recurrences remained high following stent implantation especially in acute coronary syndrome patients. Thus, more potent P2Y12-ADP receptor inhibitors were developped including prasugrel, ticagrelor and more recently cangrelor to overcome these pitfalls. These new agents reduced the rate of thrombotic events in acute coronary syndrome patients at the cost of an increased bleeding risk. The abundance in antiplatelet agents allow us to tailor our strategy based on the thrombotic/bleeding profile of each patient. Recently, the ACCOAST trial cast a doubt on the benefit of pre treatment in non-ST segment elevation acute coronary syndrome. The aim of the present review is to summarize the results of the main studies dealing with antiplatelet therapy in stented/acute coronary syndromes patients. PMID:27231519

  8. P2Y12-ADP receptor antagonists: Days of future and past

    PubMed Central

    Laine, Marc; Paganelli, Franck; Bonello, Laurent

    2016-01-01

    Antiplatelet therapy is the cornerstone of the therapeutic arsenal in coronary artery disease. Thanks to a better understanding in physiology, pharmacology and pharmacogenomics huge progress were made in the field of platelet reactivity inhibition thus allowing the expansion of percutaneous coronary intervention. Stent implantation requires the combination of two antiplatelet agents acting in a synergistic way. Asprin inhibit the cyclo-oxygenase pathway of platelet activation while clopidogrel is a P2Y12 adenosine diphosphate (ADP)-receptor antagonist. This dual antiplatelet therapy has dramatically improved the prognosis of stented patients. However, due to pharmacological limitations of clopidogrel (interindividual variability in its biological efficacy, slow onset of action, mild platelet reactivity inhibition) ischemic recurrences remained high following stent implantation especially in acute coronary syndrome patients. Thus, more potent P2Y12-ADP receptor inhibitors were developped including prasugrel, ticagrelor and more recently cangrelor to overcome these pitfalls. These new agents reduced the rate of thrombotic events in acute coronary syndrome patients at the cost of an increased bleeding risk. The abundance in antiplatelet agents allow us to tailor our strategy based on the thrombotic/bleeding profile of each patient. Recently, the ACCOAST trial cast a doubt on the benefit of pre treatment in non-ST segment elevation acute coronary syndrome. The aim of the present review is to summarize the results of the main studies dealing with antiplatelet therapy in stented/acute coronary syndromes patients. PMID:27231519

  9. Fiscal year 1995 well installation program summary Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1995-09-01

    This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1995 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (including activities that were performed in late FY 1994, but not included in the FY 1994 Well Installation Program Summary Report). Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Three groundwater monitoring wells and two gas monitoring probes were installed during the FY 1995 drilling program. One of the groundwater monitoring wells was installed at Landfill VI, the other two in the Boneyard/Burnyard area. All of the groundwater monitoring wells were constructed with stainless steel screens and casings. The two gas monitoring probes were installed at the Centralized Sanitary Landfill II and were of polyvinyl chloride (PVC) screened construction. Eleven well rehabilitation/redevelopment efforts were undertaken during FY 1995 at the Y-12 Plant. All new monitoring wells and wells targeted for redevelopment were developed by either a 2.0-in. diameter swab rig or by hand bailing until nonspecific parameters (pH and specific conductance) attained steady-state levels. Turbidity levels were lowered, if required, to the extent practicable by continued development beyond a steady-state level of pH and conductance.

  10. Removal of criticality accident alarm systems at the Y-12 Plant waste management facilities

    SciTech Connect

    Marble, R.C.; Taylor, R.G.

    1998-09-01

    This paper discusses why criticality accident alarm systems (CAASs) were installed in certain waste management buildings at the Y-12 Plant, why the plant now wants to remove them, and what steps were taken to allow the US Department of Energy (DOE) to authorize the removal of the systems. To begin with, the systems in question were installed in the mid- to late-1980s. Some of the facilities were new, and there was no operating experience with the processes. A CAAS, although expensive, is an absolute necessity where criticality accidents are credible. But, they are a superfluous and unnecessary expense in those facilities where it has been determined that a criticality accident is incredible (defined as having a probability of <1 {times} 10{sup {minus}6}/yr). The PRAs have been performed to evaluate six Y-12 Plant waste management facilities, five storage facilities, and a nondestructive analysis facility, with an additional study now being performed on the West End Treatment Facility. The results to date have shown that the probability of various criticality accident scenarios at these facilities is <1 {times} 10{sup {minus}6}/yr and that the CAASs are not needed in these facilities.

  11. Uranium Enrichment Standards of the Y-12 Nuclear Detection and Sensor Testing Center

    SciTech Connect

    Cantrell, J.

    2012-05-23

    The Y-12 National Security Complex has recently fabricated and characterized a new series of metallic uranium standards for use in the Nuclear Detection and Sensor Testing Center (NDSTC). Ten uranium metal disks with enrichments varying from 0.2 to 93.2% {sup 235}U were designed to provide researchers access to a wide variety of measurement scenarios in a single testing venue. Special care was taken in the selection of the enrichments in order to closely bracket the definitions of reactor fuel at 4% {sup 235}U and that of highly enriched uranium (HEU) at 20% {sup 235}U. Each standard is well characterized using analytical chemistry as well as a series of gamma-ray spectrometry measurements. Gamma-ray spectra of these standards are being archived in a reference library for use by customers of the NDSTC. A software database tool has been created that allows for easier access and comparison of various spectra. Information provided through the database includes: raw count data (including background spectra), regions of interest (ROIs), and full width half maximum calculations. Input is being sought from the user community on future needs including enhancements to the spectral database and additional Uranium standards, shielding configurations and detector types. A related presentation are planned for the INMM 53rd Annual Meeting (Hull, et al.), which describe new uranium chemical compound standards and testing opportunities at Y-12 Nuclear Detection and Sensor Testing Center (NDSTC).

  12. Antipsychotic Drugs Inhibit Platelet Aggregation via P2Y1 and P2Y12 Receptors

    PubMed Central

    Wu, Chang-Chieh; Tsai, Fu-Ming; Chen, Mao-Liang; Wu, Semon; Lee, Ming-Cheng; Tsai, Tzung-Chieh; Wang, Lu-Kai; Wang, Chun-Hua

    2016-01-01

    Antipsychotic drugs (APDs) used to treat clinical psychotic syndromes cause a variety of blood dyscrasias. APDs suppress the aggregation of platelets; however, the underlying mechanism remains unknown. We first analyzed platelet aggregation and clot formation in platelets treated with APDs, risperidone, clozapine, or haloperidol, using an aggregometer and rotational thromboelastometry (ROTEM). Our data indicated that platelet aggregation was inhibited, that clot formation time was increased, and that clot firmness was decreased in platelets pretreated with APDs. We also examined the role two major adenosine diphosphate (ADP) receptors, P2Y1 and P2Y12, play in ADP-mediated platelet activation and APD-mediated suppression of platelet aggregation. Our results show that P2Y1 receptor stimulation with ADP-induced calcium influx was inhibited by APDs in human and rats' platelets, as assessed by in vitro or ex vivo approach, respectively. In contrast, APDs, risperidone and clozapine, alleviated P2Y12-mediated cAMP suppression, and the release of thromboxane A2 and arachidonic acid by activated platelets decreased after APD treatment in human and rats' platelets. Our data demonstrate that each APD tested significantly suppressed platelet aggregation via different mechanisms. PMID:27069920

  13. Interpretation of well hydrographs in the karstic Maynardville Limestone at the Oak Ridge Y-12 Plant

    SciTech Connect

    Shevenell, L.A.; McMaster, B.W.

    1996-06-01

    The Maynardville Limestone in Oak Ridge, Tennessee underlies the southern portion of Bear Creek Valley (BCV), and is considered to be the primary pathway for groundwater leaving the Y-12 Plant boundaries. Sixty-seven percent of all wells drilled into the Maynardville Limestone have intersected at least one cavity, suggesting karst features may be encountered throughout the shallow (< 200 ft) portions of the Limestone. Because waste facilities at the Y-12 Plant are located adjacent to the Maynardville Limestone, contaminants could enter the karst aquifer and be transported in the conduit system. As part of an overall hydrologic characterization effort of this karst aquifer, 41 wells in the Maynardville Limestone were instrumented with pressure transducers to monitor water level changes (hydrographs) associated with rain events. Wells at depths between approximately 20 and 750 ft were monitored over the course of at least two storms in order that variations with depth could be identified. The wells selected were not exclusively completed in cavities but were selected to include the broad range of hydrologic conditions present in the Maynardville Limestone. Cavities, fractures and diffuse flow zones were measured at a variety of depths. The water level data from the storms are used to identify areas of quickflow versus slower flowing water zones. The data are also used to estimate specific yields and continuum transmissitives in different portions of the aquifer.

  14. P2Y12 Receptor Antagonists and Morphine: A Dangerous Liaison?

    PubMed

    Giannopoulos, Georgios; Deftereos, Spyridon; Kolokathis, Fotios; Xanthopoulou, Ioanna; Lekakis, John; Alexopoulos, Dimitrios

    2016-09-01

    P2Y12 receptor antagonists, concurrently administered with aspirin in what has come to be commonly called dual antiplatelet therapy, are a mainstay of treatment for patients with acute coronary syndromes. Morphine, on the contrary, is a commonly used drug in the acute phase of acute coronary syndromes to relieve pain-with the added potential benefit of attenuating acutely raised sympathetic tone. In current guidelines, though, morphine is recommended with decreasing strength of recommendation. One reason is that it raises concern regarding the potentially significant interaction with antiplatelet agents, leading to impaired inhibition of platelet activation. In any case, it is still considered a mandatory part of the inventory of available medications in prehospital acute myocardial infarction management. The goal of the present review is to present published evidence on morphine and its potential interactions with P2Y12 receptor antagonists, as well as on the central issue of whether such interactions may underlie clinically significant effects on patient outcomes. PMID:27586412

  15. Technical basis for the internal dosimetry program at the Y-12 Plant

    SciTech Connect

    Ashley, J.C.; Barber, J.M.; Snapp, L.M.; Turner, J.E.

    1992-03-02

    Since the beginning of plant operations. almost all work with radioactive materials has involved isotopes associated with uranium, enriched or depleted in U[sup 235]. While limited quantities of isotopes of elements other than uranium are present, workplace monitoring and precess knowledge have established that internal exposure from these other isotopes is insignificant in comparison with uranium. While the changing plant mission may necessitate the consideration of internal exposure from other isotopes at some point in time, only enriched and depleted uranium will be considered in this basis document. The portions of the internal dosimetry technical basis which may be unique to the Y-12 Plant is considered in this manual. This manual presents the technical basis of the routine in vivo and in vitro bioassay programs including choice of frequency, participant selection criteria, and action level guidelines. Protocols for special bioassay will be presented in the chapters which described the basis for intake, uptake, and dam assessment. A discussion of the factors which led to the need to develop a special biokinetic model for uranium at the Y-12 Plant, as well as a description of the model's basic parameters, are included in this document.

  16. Experimental bypass of Lake Reality, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-10-01

    Studies conducted by the Y-12 Reduction of Mercury in Plant Effluent (RMPE) Program and Y-12 Biological Monitoring and Abatement Program (BMAP) in 1995 and 1996 (Y/ER-251, Y/ER-277) identified concerns regarding Lake Reality`s effect on the transport and transformation of mercury in East Fork Poplar Creek (EFPC). The pond appeared to have two potentially adverse effects on mercury transport. First, it acted as a biochemical reactor, converting inorganic mercury in inflowing water to methylmercury, a more toxic substance with extremely high bioaccumulation potential in aquatic environments. Second, the pond appeared to trap mercury associated with suspended particulates during periods of stormflow, and slowly released that mercury via the export of resuspended particles during periods of baseflow. The net effect was to raise the day-to-day exposure of aquatic life to mercury in the stream downstream from the pond, and add to the calculated mercury loading of the stream under baseflow conditions. Scientific investigations thus indicated that diversion of the flow of EFPC around Lake Reality had the potential to reduce time-averaged concentrations of methylmercury and total mercury in the creek below its discharge, but that such diversion might also interfere with possible beneficial effects of the retention pond. Therefore, an experimental bypass of the pond was undertaken in late 1996 to evaluate the consequences of such an action before embarking on a more permanent change.

  17. Incidence and Clinical Features of Early Stent Thrombosis in the Era of New P2y12 Inhibitors (PLATIS-2)

    PubMed Central

    Asher, Elad; Abu-Much, Arsalan; Goldenberg, Ilan; Segev, Amit; Sabbag, Avi; Mazin, Israel; Shlezinger, Meital; Atar, Shaul; Zahger, Doron; Polak, Arthur; Beigel, Roy; Matetzky, Shlomi

    2016-01-01

    Early stent thrombosis (EST) (≤ 30 days after stent implantation) is a relatively rare but deleterious complication of percutaneous coronary intervention (PCI). Administration of newer P2Y12 inhibitors (prasugrel and ticagrelor) combined with aspirin has been shown to reduce the incidence of sub-acute and late stent thrombosis, compared with clopidogrel. We investigated the “real life” incidence of EST in patients from a large acute coronary syndrome (ACS) national registry, where newer P2Y12 inhibitors are widely used. Patients were derived from the ACS Israeli Survey (ACSIS), conducted during 2006, 2008, 2010 and 2013. Major adverse cardiac events (MACE) at 30days were defined as all-cause death, recurrent ACS, EST and stroke.Of the 4717 ACS patients who underwent PCI and stenting, 83% received clopidogrel and 17% newer P2Y12 inhibitors. The rate of EST was similar in both groups (1.7% in the newer P2Y12 inhibitor group vs. 1.4% in the clopidogrel-treated patients, p = 0.42). Results were consistent after multivariate analysis (adjusted HR = 1.06 [p = 0.89]). MACE occurred in 6.4% in the newer P2Y12 inhibitor group compared with 9.2% in the clopidogrel group (P<0.01). However, multivariate logistic regression modeling showed that treatment with newer P2Y12 inhibitors was not significantly associated with the secondary endpoint of MACE when compared with clopidogrel therapy [OR = 1.26 95%CI (0.93–1.73), P = 0.136]. The incidence of "real life" EST at 1month is relatively low, and appears to be similar in patients who receive newer P2Y12 inhibitors as well as in those who receive clopidogrel. PMID:27310147

  18. FISCAL YEAR 1997 WELL INSTALLATION, PLUGGING AND ABANDONMENT, AND REDEVELOPMENT SUMMARY REPORT Y-12 PLANT, OAK RIDGE, TENNESSEE

    SciTech Connect

    SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

    1997-09-01

    This report summarizes the well installation, plugging and abandonment and redevelopment activities conducted during the federal fiscal year (FY) 1997 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. No new groundwater monitoring wells were installed during FY 1997. However, 13 temporary piezometers were installed around the Upper East Fork Poplar Creek (UEFPC) in the Y-12 Plant. An additional 36 temporary piezometers, also reported in this document, were installed in FY 1996 and, subsequently, assigned GW-series identification. A total of 21 monitoring wells at the Y-12 Plant were decommissioned in FY 1997. Three existing monitoring wells underwent redevelopment during FY 1997. All well installation and development (including redevelopment) was conducted following industry-standard methods and approved procedures in the Environmental Surveillance Procedures Quality Control Program (Energy Systems 1988), the {ital Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document} (EPA 19?6), and {ital Guidelines for Installation of Monitoring Wells at the Y-12 Plant} (Geraghty & Miller 1985). All wells were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991). Health and safety monitoring and field screening of drilling returns and development waters were conducted in accordance with approved Lockheed Martin Energy Systems, Inc. (Energy Systems) guidelines.

  19. P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms.

    PubMed

    Hardy, Adam R; Conley, Pamela B; Luo, Jiansong; Benovic, Jeffrey L; Poole, Alastair W; Mundell, Stuart J

    2005-05-01

    Adenosine 5'-diphosphate (ADP) plays a central role in regulating platelet function by the activation of the G protein-coupled receptors P2Y(1) and P2Y(12). Although it is well established that aggregation responses of platelets to ADP desensitize, the underlying mechanisms involved remain unclear. In this study we demonstrate that P2Y(1)- and P2Y(12)-mediated platelet responses desensitize rapidly. Furthermore, we have established that these receptors desensitize by different kinase-dependent mechanisms. G protein-coupled receptor kinase (GRK) 2 and GRK6 are both endogenously expressed in platelets. Transient overexpression of dominant-negative mutants of these kinases or reductions in endogenous GRK expression by the use of specific siRNAs in 1321N1 cells showed that P2Y(12), but not P2Y(1), desensitization is mediated by GRKs. In contrast, desensitization of P2Y(1), but not P2Y(12), is largely dependent on protein kinase C activity. This study is the first to show that both P2Y(1) and P2Y(12) desensitize in human platelets, and it reveals ways in which their sensitivity to ADP may be differentially and independently altered. PMID:15665114

  20. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex.

    PubMed

    Sipe, G O; Lowery, R L; Tremblay, M-È; Kelly, E A; Lamantia, C E; Majewska, A K

    2016-01-01

    Microglia are the resident immune cells of the brain. Increasingly, they are recognized as important mediators of normal neurophysiology, particularly during early development. Here we demonstrate that microglia are critical for ocular dominance plasticity. During the visual critical period, closure of one eye elicits changes in the structure and function of connections underlying binocular responses of neurons in the visual cortex. We find that microglia respond to monocular deprivation during the critical period, altering their morphology, motility and phagocytic behaviour as well as interactions with synapses. To explore the underlying mechanism, we focused on the P2Y12 purinergic receptor, which is selectively expressed in non-activated microglia and mediates process motility during early injury responses. We find that disrupting this receptor alters the microglial response to monocular deprivation and abrogates ocular dominance plasticity. These results suggest that microglia actively contribute to experience-dependent plasticity in the adolescent brain. PMID:26948129

  1. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex

    PubMed Central

    Sipe, G. O.; Lowery,, R. L.; Tremblay, M-È; Kelly, E. A.; Lamantia, C. E.; Majewska, A. K.

    2016-01-01

    Microglia are the resident immune cells of the brain. Increasingly, they are recognized as important mediators of normal neurophysiology, particularly during early development. Here we demonstrate that microglia are critical for ocular dominance plasticity. During the visual critical period, closure of one eye elicits changes in the structure and function of connections underlying binocular responses of neurons in the visual cortex. We find that microglia respond to monocular deprivation during the critical period, altering their morphology, motility and phagocytic behaviour as well as interactions with synapses. To explore the underlying mechanism, we focused on the P2Y12 purinergic receptor, which is selectively expressed in non-activated microglia and mediates process motility during early injury responses. We find that disrupting this receptor alters the microglial response to monocular deprivation and abrogates ocular dominance plasticity. These results suggest that microglia actively contribute to experience-dependent plasticity in the adolescent brain. PMID:26948129

  2. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee

    SciTech Connect

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  3. Y-12 site-specific earthquake response analysis and soil liquefaction assessment

    SciTech Connect

    Ahmed, S.B.; Hunt, R.J.; Manrod, W.E. III

    1995-09-29

    A site-specific earthquake response analysis and soil liquefaction assessment were performed for the Oak Ridge Y-12 Plant. The main purpose of these studies was to use the results of the analyses for evaluating the safety of the performance category -1, -2, and -3 facilities against the natural phenomena seismic hazards. Earthquake response was determined for seven (7), one dimensional soil columns (Fig. 12) using two horizontal components of the PC-3 design basis 2000-year seismic event. The computer program SHAKE 91 (Ref. 7) was used to calculate the absolute response accelerations on top of ground (soil/weathered shale) and rock outcrop. The SHAKE program has been validated for horizontal response calculations at periods less than 2.0 second at several sites and consequently is widely accepted in the geotechnical earthquake engineering area for site response analysis.

  4. Disposal of United Nuclear Company materials at the Y-12 Plant

    SciTech Connect

    Butz, T.R.; Stoner, H.H.

    1983-12-19

    The UNC Recovery Systems Company, located at Wood River Junction, Rhode Island, was involved in the recovery of enriched uranium from scrap materials generated primarily in defense program activities of the DOE and its predecessor agencies. Following shutdown of the recovery operations in August 1980, UNC was required to decontaminate facilities and the associated waste lagoon systems and to remove the resultant low-level radioactive waste out of the state of Rhode Island. In view that the waste resulted from the processing of scrap materials generated in DOE Defense Programs activities and due to the lack of adequate capacity at commercial waste disposal facilities, DOE agreed to accept the waste for burial at the Y-12 Plant. Site characterization and well monitoring results are presented of the disposal site.

  5. TECHNOLOGY EVALUATION FOR WATERBORNE MERCURY REMOVAL AT THE Y12 NATIONAL SECURITY COMPLEX

    SciTech Connect

    He, Feng; Liang, Liyuan; Miller, Carrie L

    2011-01-01

    The Hg-contaminated processing water produced at Y-12 facility is discharged through the storm drain system, merged at Outfall 200, and then discharged to EFPC. Most of the baseflow mercury at Outfall 200 arises from a small number of short sections of storm drain. This report discusses the waterborne mercury treatment technologies to decrease mercury loading to the surface water of EFPC at Y-12 NSC. We reviewed current available waterborne Hg treatment technologies based on the specific conditions of Y-12 and identified two possible options: SnCl2 reduction coupled with air stripping (SnCl2/air stripping) and sorption. The ORNL 2008 and 2009 field studies suggested that SnCl2/air stripping has the capability to remove waterborne mercury with efficiency higher than 90% at Outfall 200. To achieve this goal, dechlorination (i.e., removing residual chlorine from water) using dechlorinating agents such as thiosulfate has to be performed before the reduction. It is unclear whether or not SnCl2/air stripping can reduce the mercury concentration from ~1000 ng/L to 51 ng/L at a full-scale operation. Therefore, a pilot test is a logical step before a full-scale design to answer questions such as Hg removal efficiency, selection of dechlorinating agents, and so on. The major advantages of the SnCl2/air stripping system are: (1) expected low cost at high flow (e.g., the flow at Outfall 200); and (2) production of minimum secondary waste. However, there are many environmental uncertainties associated with this technology by introducing tin to EFPC ecosystem, for example tin methylation causing abiotic Hg methylation, which should be addressed before a full-scale implementation. Mercury adsorption by granular activated carbon (GAC) is a proven technology for treating Hg at Y-12. The ONRL 2010 lab sorption studies suggest that thiol-based resins hold the promise to combine with GAC to form a more cost-effective treatment system. To achieve a treatment goal of 51 ng/L at Outfall

  6. Y-12 Development Organization technical progress report: Part 3 -- Metal processing, period ending March 1, 1994

    SciTech Connect

    Northcutt, W.G. Jr.

    1994-05-26

    As part of the effort to downsize its uranium processing facilities, the Y-12 Plant has supported an investigation to identify extraction solvents that would both work efficiently in centrifugal contactors and be disposed of easily. Various organic ethers, hydroxy ethers, ether ketones, acids, amides, and diketones were studied for their ability to extract uranyl nitrate from aqueous solutions. Although many of these solvents were obtained commercially, others had to be synthesized in-house. The authors found a large range of extraction coefficients for these solvents. Because of steric hindrance or some other factor, certain ethers performed poorly. On the other hand, various mono- and diethers of tetrahydrofurfuryl alcohol exhibited excellent extraction and stripping coefficients for uranyl nitrate, justifying purchase of a pilot plant batch of one of this family of solvents. Likewise, the authors determined the extraction coefficient for one of the two amides synthesized in-house to be quite high.

  7. Reduction of chlorinated solvents at the Y-12 Oak Ridge Plant

    SciTech Connect

    Thompson, L.M.; Simandl, R.F.; Richards, H.L.

    1989-11-01

    The Oak Ridge Y-12 Plant has been actively seeking replacements for chlorinated solvents for several years. The first step in the reduction program was the identification of the solvents and their usages. The four main solvents used at the plant include Freon, methyl chloroform, perchloroethylene, and methylene chloride. The main reduction has been in the use of perchloroethylene. Other significant reductions have occurred in the area of changing out vapor degreasers which utilized perchloroethylene or methyl chloroform. These degreasers were replaced with ultrasonic cleaners which utilize aqueous detergent for cleaning. Ultrasonic cleaning has many advantages, but the one disadvantage is that it requires a rinse step. Currently, the work on reduction of chlorinate solvents is focused on finding solvents which can be substituted for squirt bottle type applications. Concerns which were addressed when looking at replacement solvents were disposal, compatibility, and health effects.

  8. Best Management Practices (BMP) plan for potable water discharges Y-12 Plant

    SciTech Connect

    Wiest, M.C. Jr.

    1995-07-01

    This plan provides guidance to minimize the environmental effects from discharges of chlorinated waters, including: Flushing of potable water lines; Releases from fire hydrants during testing and maintenance of fire protection systems; Releases from sprinkler systems for maintenance or testing purposes; and Other significant releases of chlorinated water. This BMP plan is intended to meet the Y-12 Plant National Pollutant Discharge Elimination System (NPDES) permit condition, requiring that BWs be used for flushing potable water lines and similar activities. Close adherence to the steps provided in this plan will help prevent the discharge of chlorinated waters ``in concentrations sufficient to be hazardous or otherwise detrimental to humans, livestock, wildlife, plant life, or fish and aquatic life in the receiving stream``.

  9. Y-12 Development Division technical progress report, period ending October 1, 1989

    SciTech Connect

    Kosinski, F.E.

    1990-08-30

    Shallow land burial in Bear Creek Burial Ground (BCBG) of depleted uranium and uranium alloy chips was discontinued. These materials are now being processed at the Uranium Chip Oxidation Facility (UCOF). Some of the depleted uranium chips, formerly taken to BCBG, were oxidized in 5-, 10-, 15-, and 20-lb batches to determine the optimal processing weight that would reduce the overall flameout frequency to one that complies with UCOF safety documentation. The goal of the Y-12 Plant Development Division was to reduce the flameout frequency to 1%. Batches of uranium-titanium alloy mill, mixed, and suspect chips were also processed at UCOF using modified operating procedures. Most of the depleted uranium and uranium alloy chips, except for the sawfines, were safely oxidized at UCOF with a minimum number of flameouts. 1 fig., 14 tabs.

  10. Manufacturing technology education development project. Project accomplishment summary for 91-Y12P-050-A1

    SciTech Connect

    Douglass, S.; Smith, R.

    1996-09-25

    The purpose of the project was to provide a set of supplemental instructional equipment and materials to Tennessee high school students to raise their level of knowledge about manufacturing technologies with the hope that some of the best and brightest would choose manufacturing as a career path. The role of the Y-12 Plant was primarily technical: renovate the portable classroom; select and purchase appropriate equipment; install and test the equipment; assist in the development of the curriculum; train the initial group of teachers; and provide technical assistance where needed after the laboratory was deployed. The role of the Department of Education was to provide the mobile facility; assist in the design of the laboratory; lead the development of the curriculum; deploy the trailer; and develop the structure for administering the selection of schools, training teachers, and movement of the laboratory. The Department of Education as subcontracted with Middle Tennessee State University to handle the details of laboratory deployment.

  11. P2Y12 receptor inhibition and LPS-induced coagulation.

    PubMed

    Essex, David W; Rao, A Koneti

    2016-03-01

    Platelets play a major role in the complex interactions involved in blood coagulation via multiple mechanisms. As reported in this issue, Schoergenhofer et al. tested the hypothesis that platelet inhibition by prasugrel, a potent platelet P2Y12 ADP receptor antagonist, attenuates the effect of lipopolysaccharide (LPS) on the blood coagulation system in healthy human subjects. LPS, a bacterial product with potent pro-inflammatory and pro-thrombotic effects, plays a central role in sepsis. It activates monocytes and endothelial cells via Toll-like receptor (TLR) 4 and other TLRs to stimulate production of TF and other pro-coagulant molecules, chemokines and cytokines. Treatment with prasugrel did not decrease biomarkers of coagulaion. A better understanding of the relative roles of platelet and coagulation mechanisms in triggering the pro-thrombotic state may lead to more effective antithrombotic strategies. PMID:26846581

  12. The ancient Chinese notes on hydrogeology

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Zwahlen, François; Wang, Yanxin

    2011-08-01

    The ancient Chinese notes on hydrogeology are summarized and interpreted, along with records of some related matters, like groundwater exploration and utilization, karst springs, water circulation, water conservation and saline-land transformation, mine drainage, and environmental hydrogeology. The report focuses only on the earliest recorded notes, mostly up until the Han Dynasty (206 BC - AD 25). Besides the references cited, the discussion in this report is based mainly on archaeological material, the preserved written classic literature, and some assumptions and/or conclusions that have been handed down in legends to later ages. Although most material relates to ancient China, the lessons learned may have practical significance worldwide. Compared to other contemporary parts of the world, ancient China, without doubt, took the lead in the field of groundwater hydrology. The great achievements and experience of the Chinese ancestors should provide motivation and inspiration for hydrogeologists to carry out their scientific research and exploration passionately and actively.

  13. Distribution of anthropogenic fill material within the Y-12 plant area, Oak Ridge, Tennessee

    SciTech Connect

    Sutton, G.E. Jr. |; Field, S.M.

    1995-10-01

    Widespread groundwater contamination in the vicinity of the Oak Ridge Y-12 Plant has been documented through a variety of monitoring efforts since the late 1970s. Various contaminants, most notably volatile organic compounds (VOCs), have migrated through the subsurface and formed extensive contaminant plumes within the Knox Aquifer/Maynardville Limestone, the primary exit pathway for groundwater transport within the Bear Creek Valley. In 1991, an integrated, comprehensive effort (Upper East Fork Poplar Creek [UEFPC] Phase I monitoring network) was initiated in order to (1) identify contaminant source areas within the industrialized portions of the plant and (2) define contamination migration pathways existing between the source areas and the Knox Aquifer/Maynardville Limestone. Data obtained during previous studies have indicated that extensive zones of fill and buried utility trenches may serve as preferred migration pathways. In addition, portions of UEFPC were rerouted, with several of its tributaries being filled during the initial construction of the plant. These filled surface drainage features are also believed to serve as preferred migration pathways. The identification of preferred contaminant migration pathways within the Y-12 Plant area is essential and required to refine the current Bear Creek Valley groundwater conceptual model and to assist in the selection of technically feasible and cost effective remedial strategies. This report presents the results of an initial investigation of the occurrence of manmade (anthropogenic) fill and its effect upon groundwater movement within the plant area. These interpretations are subject to revision and improvement as further investigation of the effects of the fill upon contaminant migration progresses.

  14. Treatment of Y-12 storm sewer sediments and DARA soils by thermal desorption

    SciTech Connect

    Morris, M.I.; Shealy, S.E.

    1995-12-31

    The 1992 Oak Ridge Reservation Federal Facilities Compliance Agreement (FFCA) listed a number of mixed wastes, subject to land disposal restrictions (LDR), for which no treatment method had been identified, and required DOE to develop strategies for treatment and ultimate disposal of those wastes. This paper presents the results of a program to demonstrate that thermal desorption can remove both organics and mercury from two mixed wastes from the DOE Y-12 facility in Oak Ridge, Tennessee. The first waste, the Y-12 Storm Sewer Sediments (SSSs) was a sediment generated from upgrades to the plant storm sewer system. This material contained over 4 percent mercury, 2 percent uranium and 350 mg/kg polychlorinated biphenyls (PCBs). Leachable mercury exceeded toxicity characteristic leaching procedure (TCLP) and LDR criteria. The second waste, the Disposal Area Remedial Action (DARA) Soils, are contaminated with uranium, mercury and PCBs. This treatability study included bench-scale testing of a thermal desorption process. Results of the testing showed that, for the SSSs, total mercury could be reduced to 120 mg/kg by treatment at 600{degrees}C, which is at the high end of the temperature range for typical thermal desorption systems. Leachable TCLP mercury was less than 50 {mu}g/L and PCBs were below 2 mg/kg. Treatment of the DARA Soils at 450{degrees}C for 10 minutes resulted in residual PCBs of 0.6 to 3.0 mg/kg. This is too high (goal < 2mg/kg) and higher treatment temperatures are needed. The testing also provided information on the characteristics and quantities of residuals from the thermal desorption process.

  15. Nitrogen oxide stack sampling at the U.S. DOE Oak Ridge Y-12 Steam Plant

    SciTech Connect

    L.V. Gibson, jr.; M.P. Humphreys; J.M. Skinner

    2000-03-01

    On November 7, 1997, the EPA proposed a Nitrogen Oxides State Implementation Plan Call (NO{sub x} SIP Call) for 22 states in the Eastern US which included the state of Tennessee. This initial proposal was followed by proposed statewide NO{sub x} budgets in the May 11, 1998, Supplemental Notice of Proposed Rulemaking. In the development of the NO{sub x} SIP Call, EPA performed a number of air quality analyses and determined that NO{sub x} emissions from Tennessee should be reduced. Industrial boilers, turbines, stationary internal combustion engines, and cement manufacturing are the only non-electric generating unit sources for which reductions are assumed in the budget calculation. Emission reductions are required if specific source heat input capacity is greater than 250 million Btu per hour. The US Department of Energy (DOE) Oak Ridge Y-12 Steam Plant consists of four Wickes pulverized coal fired boilers each rated at a maximum heat input capacity of 298 million Btu per hour, and will therefore be impacted by these regulatory actions. Each boiler is equipped with two pulverizing mills. Coal or natural gas or a combination of these two fuels may be fired. This paper provides the results of NO{sub x} emission stack testing conducted June 15--21, 1999, on the Y-12 Steam Plant Boilers 1 and 2. Measurements of oxygen (O{sub 2}), carbon monoxide (CO), carbon dioxide (CO{sub 2}), and stack gas flow were also performed. Information gained from these stack tests will be used to determine NO{sub x} emission control strategies for the steam plant for compliance with future emission requirements resulting from the NO{sub x} SIP Call.

  16. Hydrogeology of the West Siberian Basin

    SciTech Connect

    Foley, M.G.; Bradley, D.J.; Cole, C.R.

    1996-08-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in extensive radioactive contaminant releases to the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. We have assumed that ground-water flow in the West Siberian Basin is topographically driven, with recharge to the basin occurring in the highlands on the west, east, and south, and internal discharge localized in numerous river valleys and lakes that ultimately discharge north to the ocean. We are modeling the regional hydrogeology as three-dimensional, steady-state, saturated flow that is recharged from above. We acquired topographic, geologic, hydrostratigraphic, hydrogeologic, and water-balance data for the West Siberian Basin and constructed a regional water table. We correlated and combined 70 different rock types derived from published descriptions of West Siberian Basin rocks into 17 rock types appropriate for assignment of hydrogeologic properties on the basis of spatial heterogeneity and constituent (i.e., sand, silt, and clay) diversity. Examination of resulting three-dimensional assemblages of rock types showed that they were consistent with published and inferred paleogeography and depositional processes. Calibrating the basin`s moisture balance (i.e., recharge and discharge) to the derived water table determined plausible input parameter values for unknowns such as hydraulic conductivities. The general directions of calculated ground-water flow suggest that major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks, and that ground-water divides that penetrate the entire thickness of the model are evident between major rivers.

  17. Hydrogeology, waste disposal, science and politics: Proceedings

    SciTech Connect

    Link, P.K.

    1994-07-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  18. Groundwater Protection Program Management Plan for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Elvado Environmental LLC; Environmental Compliance Department Environment, Safety, and Health Division Y-12 National Security Complex

    2004-03-31

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of BWXT Y-12, L.L.C. (hereafter referenced as BWXT), the Y-12 management and operations (M&O) contractor for DOE. This GWPP management plan addresses the requirements of DOE Order 450.1 (BWXT Y12 S/RID) regarding the implementation of a site-wide approach for groundwater protection at each DOE facility. Additionally, this plan is a ''living'' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP, and an overview of ongoing Y-12 groundwater monitoring activities. Section 3 describes the key elements of the GWPP management strategy. Organizational roles and responsibilities of GWPP personnel are outlined in Section 4. Section 5 presents an overview of the GWPP project plans for applicable programmatic elements. Section 6 lists the reports, plans, and documents that are referenced for technical and administrative details.

  19. Stochastic hydrogeology: what professionals really need?

    PubMed

    Renard, Philippe

    2007-01-01

    Quantitative hydrogeology celebrated its 150th anniversary in 2006. Geostatistics is younger but has had a very large impact in hydrogeology. Today, geostatistics is used routinely to interpolate deterministically most of the parameters that are required to analyze a problem or make a quantitative analysis. In a small number of cases, geostatistics is combined with deterministic approaches to forecast uncertainty. At a more academic level, geostatistics is used extensively to study physical processes in heterogeneous aquifers. Yet, there is an important gap between the academic use and the routine applications of geostatistics. The reasons for this gap are diverse. These include aspects related to the hydrogeology consulting market, technical reasons such as the lack of widely available software, but also a number of misconceptions. A change in this situation requires acting at different levels. First, regulators must be convinced of the benefit of using geostatistics. Second, the economic potential of the approach must be emphasized to customers. Third, the relevance of the theories needs to be increased. Last, but not least, software, data sets, and computing infrastructure such as grid computing need to be widely available. PMID:17760580

  20. Y-12 Construction/Demolition Landfill VII: Permit application: Part 1 and 2. Volume 2 [Engineering Materials

    SciTech Connect

    Not Available

    1992-04-01

    The United States Department of Energy (DOE) has three major operating facilities on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee: the Y-12 Plant, the K-25 Site, and the Oak Ridge National Laboratory (ORNL). All facilities are managed by Martin Marietta Energy System, Inc. (Energy Systems) for the DOE. Operations associated with the DOE energy research and production facilities at Oak Ridge result in the production of several types of waste materials. Disposal of solid waste (as defined in the Solid Waste Processing and Disposal Rules for Tennessee) in disposal facilities operated by the Y-12 Plant is the responsibility of Y-12 Waste Management Division (WMD). The WMD is proposing to develop a facility that will include two new disposal units: one for construction/demolition waste and spoil and one for industrial solid waste. This report contains construction drawings for the project.

  1. Is Current Hydrogeologic Research Addressing Long-TermPredictions?

    SciTech Connect

    Tsang, Chin-Fu

    2004-09-10

    Hydrogeology is a field closely related to the needs of society. Many problems of current national and local interest require predictions of hydrogeological system behavior, and, in a number of important cases, the period of prediction is tens to hundreds of thousands of years. It is argued that the demand for such long-term hydrogeological predictions casts a new light on the future needs of hydrogeological research. Key scientific issues are no longer concerned only with simple processes or narrowly focused modeling or testing methods, but also with assessment of prediction uncertainties and confidence, couplings among multiple physico-chemical processes occurring simultaneously at a site, and the interplay between site characterization and predictive modeling. These considerations also have significant implications for hydrogeological education. With this view, it is asserted that hydrogeological directions and education need to be reexamined and possibly refocused to address specific needs for long-term predictions.

  2. Mobilization plan for the Y-12 9409-5 tank storage facility RCRA closure plan. Final report. Revision 1

    SciTech Connect

    1993-11-01

    This mobilization plan identifies the activities and equipment necessary to begin the field sampling for the Oak Ridge Y-12 9409-5 Diked Tank Storage Facility (DTSF) Resource Conservation and Recovery Act (RCRA) closure. Elements of the plan outline the necessary components of each mobilization task and identify whether SAIC or the Martin Marietta Energy Systems, Inc. Y-12 Environmental Restoration Division will be responsible for task coordination. Field work will be conducted in two phases: mobilization phase and soil sampling phase. Training and medical monitoring, access, permits and passes, decontamination/staging area, equipment, and management are covered in this document.

  3. A New Hydrogeological Research Site in the Willamette River Floodplain

    NASA Astrophysics Data System (ADS)

    Faulkner, B. R.; Cline, S. P.; Landers, D. H.; Forshay, K. J.

    2008-12-01

    The Willamette River is a ninth-order tributary of the Columbia which passes through a productive and populous region in northwest Oregon. Where unconstrained by shoreline revetments, the floodplain of this river is a high-energy, dynamic system which supports a variety of riparian forests and floodplain habitats. On the Green Island Restoration Site, north of the city of Eugene, several geomorphological features common to much of the Willamette floodplain are present. These features, ranging from young bare gravel bars, islands supporting mature forest stands, to agricultural areas bounded by levees. As part of a Memorandum of Understanding with the McKenzie River Trust, USEPA has constructed a network of fifty shallow monitoring wells on the Green Island site. Among the purposes are to characterize the hydrogeology of the multiple- island floodplain, the extent of hyporheic flow, and the temperature regime. The monitoring wells are located in areas ranging from a few meters from the river edge to several hundred meters away, within the agricultural areas. By automatic data-logging, flow nets will be developed using numerical modeling. Water quality data will be collected to measure the degee to which subsurface biogeochemistry is influenced by geomorphologic features that are determined by the processes of river channel migration, island formation, and colonization by riparian forest. The monitoring network will also be used to measure the groundwater quality effects of restoration projects currently underway. These include reforestation of previously agricultural areas, and levee removal.

  4. Hydrogeological study of an anti-tank range.

    PubMed

    Mailloux, Michel; Martel, Richard; Gabriel, Uta; Lefebvre, René; Thiboutot, Sonia; Ampleman, Guy

    2008-01-01

    The Arnhem Anti-Tank Range (Canadian Forces Base [CFB] Valcartier, Canada, in operation since the 1970s) has been characterized, including the drilling, installation, and characterization of 25 wells and a ground-penetrating radar survey. The observed particular features of this site include highly variable flow velocities (from < 3 to 1200 m/yr) and transient flow regime in the regional aquifer below the contaminant source zone of the impact area, sharp flow direction shifts, discontinuous stratigraphy and a local perched aquifer. A transient ground water flow model permitted us to understand how the complex hydrogeological setting shapes contaminant transport in the regional aquifer. The model explains the highly variable energetic material (EM) concentrations measured in the plume with peaks associated to spring and to a lesser extent to fall recharge events. As a conclusion from this work, the authors suggest that the characterization of contaminant sources on slopes should extend over all seasons to be sure to detect potential transient flow conditions and variable contaminant concentrations. PMID:18574178

  5. Improving the performance of the Y-12 fluidized bed contactors: Final report on investigations at the University of Tennessee

    SciTech Connect

    Daw, C.S.; Hawk, J.A.

    1993-08-01

    Recent tests at The University of Tennessee in Knoxville (UT) have demonstrated improved fluidization performance in a mockup of the Oak Ridge Y-12 Plant fluidized bed with a modified gas distributor. Combining the modified distributor with the recently developed fluidization intensity module is expected to result in substantial operational improvements for the fluidized beds in Building 9212 at Y-12. Important additional benefits coming from the improved operation of the Y-12 fluidized beds will be a reduction in the consumption of reactant gases, a reduction in scrubber waste production, and a reduced need for manual cleaning of the particulate removal system. UT tests have also demonstrated that the tapered wall design traditionally used for the Y-12 fluidized beds does not provide a sufficient improvement in fluidization quality to justify the continued use of this design in place of a more conventional straight-wall configuration. The straight-wall design for replacement beds is expected to result in substantial equipment cost savings. Other operating scenarios that could potentially be used to reduce reactant gas consumption and scrubber waste production have also been considered. These scenarios are documented here for future reference.

  6. Adjusting external doses from the ORNL and Y-12 facilities for the Oak Ridge Nuclear Facilities mortality study

    SciTech Connect

    Watkins, J.P.; Cragle, D.L.; West, C.M.; Tankersley, W.G.; Frome, E.L.; Crawford-Brown, D.J.

    1995-07-01

    This report presents specific procedures used for adjusting radiation doses to radiation personnel at the ORNL and Y-12 plants during the early years. Topics discussed include: background information; selection of employment years to be considered; hardcopy monitoring methods and records; pocket meter data; and replacement of 1943 unmonitored employment years. These topics were discussed for both years.

  7. Water-quality data for 35 sites, September 1984, near the Y-12 Plant, the Oak Ridge Reservation, Tennessee

    USGS Publications Warehouse

    Pulliam, Pamela J.

    1985-01-01

    Water quality data were collected at 35 sites in the vicinity of the Y-12 Plant, Oak Ridge, Tennessee, on September 16 and 17, 1984. Concentrations of dissolved major and trace constituents were determined; field determinations of specific conductance, pH, temperature, alkalinity, and dissolved oxygen were made. Gross alpha and beta activity were determined for seven of the sites sampled. 

  8. State of affairs: Design and structure-activity relationships of reversible P2Y12 receptor antagonists.

    PubMed

    Zetterberg, Fredrik; Svensson, Peder

    2016-06-15

    Myocardial infarction and stroke are the most common causes of mortality and morbidity in the developed world. Therefore the search for antiplatelet therapy has been in focus for the last decades, in particular the search for new P2Y12R antagonists. The first P2Y12R drug developed, clopidogrel, is a major success but there is still room for improvement with respect to bleeding profile and non-responders. These liabilities could be due to the fact that clopidogrel is a pro-drug and upon activation binds covalently to the receptor. Therefore a lot of effort has gone into identifying reversible inhibitors. One recent example is ticagrelor, which in clinical studies have been shown to be safer and even reduce rate of death from vascular events as compared head to head with clopidogrel. We here review the medicinal chemistry strategies used in the design of new reversible P2Y12R antagonists. In addition, we also present structure based design studies based on the recently published agonist and antagonist X-ray structures of P2Y12R. PMID:27133596

  9. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

  10. Analysis of active neutron multiplicity data for Y-12 skull oxide samples

    SciTech Connect

    Krick, M.S.; Ensslin, N.; Ceo, R.N.; May, P.K.

    1996-09-01

    Previous work on active neutron multiplicity measurements and analyses is summarized. New active multiplicity measurements are described for samples of Y-12 skull oxide using an Active Well Coincidence Counter and MSR4 multiplicity electronics. Neutron multiplication values for the samples were determined from triples/doubles ratios. Neutron multiplication values were also obtained from Monte Carlo calculations using the MCNP code and the results compared with the experimental values. A calibration curve of AmLi source-sample coupling vs neutron multiplication was determined and used for active multiplicity assay of the skull oxides. The results are compared with those obtained from assay with the conventional calibration-curve technique, where the doubles rate is calibrated vs the {sup 235}U mass. The coupling-multiplication relationship determined for the skull oxides is compared with that determined earlier for pure high-enrichment uranium metal and pure uranium oxide. Conclusions are drawn about the application of active multiplicity techniques to uranium assay. Additional active multiplicity measurements and calculations are recommended.

  11. Technical Basis For Radiological Acceptance Criteria For Uranium At The Y-12 National Security Complex

    SciTech Connect

    Veinot, K. G.

    2009-07-22

    The purpose of this report is to establish radiological acceptance criteria for uranium. Other factors for acceptance not considered include criticality safety concerns, contaminants to the process stream, and impacts to the Safety Basis for the affected facilities. Three types of criteria were developed in this report. They include limits on external penetrating and non-penetrating radiation and on the internal hazard associated with inhalation of the material. These criteria are intended to alleviate the need for any special controls beyond what are normally utilized for worker protection from uranium hazards. Any proposed exceptions would require case-by-case evaluations to determine cost impacts and feasibility. Since Y-12 has set rigorous ALARA goals for worker doses, the external limits are based on assumptions of work time involved in the movement of accepted material plus the desire that external doses normally received are not exceeded, and set so that no special personnel monitoring would be required. Internal hazard controls were established so that dose contributions from non-uranium nuclides would not exceed 10% of that expected from the uranium component. This was performed using a Hazard Index (HI) previously established for work in areas contaminated with non-uranium nuclides. The radiological acceptance criteria for uranium are summarized in Table 1. Note that these limits are based on the assumption that radioactive daughter products have reached equilibrium.

  12. Y-12 Development Division technical progress report, period ending January 1, 1990

    SciTech Connect

    Kosinsik, F.E.

    1990-09-28

    This report contains highlights on activities conducted at Y-12 Development Division for the period ending January 1, 1990. Ozone treatment removes trace amounts of organics and chloride ions from recycled acid. Heating significantly reduces this reaction time for removing these impurities. A new heater design was reinstalled on the recycle system, reducing the ozonation time from 70 to 100 hours to 30 to 40 hours. This reduction in ozonation time resulted in increased acid recovery and reduced acid wastes that had to be discarded. Shallow land burial in Bear Creek Burial Ground (BCBG) of depleted uranium and uranium alloy chips has been discontinued, and these materials will now be processed at the Uranium Chip Oxidation Facility (UCOF). A series of chip burns was made to reduce the overall flameout frequency to 1% to comply with UCOF safety documentation. This testing phase reduced the flameout frequency to 2 per 2,959 burns (<0.1%), which is a 92% decrease of flameouts over last quarter. This work successfully demonstrated that all of the uranium and uranium alloy chips (except sawfines) can be safely oxidized at UCOF with a flameout frequency of 1% or less. 2 refs., 3 figs., 1 tab.

  13. Assessment of flood potential for eight buildings at the Y-12 Plant

    SciTech Connect

    Eiffe, M.A.

    1997-12-12

    In 1995, P-SQUARED Technologies, Inc., (P2T) was tasked with defining the flood potential for seven buildings at the Y-12 Plant (Buildings 9204-2, 9204-2E, 9206, 9212, 9215, 9720-5, and 9995) in the assumed event of a design storm with a recurrence interval of 10,000 years. At the conclusion of the study, P2T prepared and submitted a report summarizing the flood potential for those seven buildings. In November of 1997, P2T was tasked with (1) defining flood potential for the same seven buildings listed above for design storms with recurrence intervals of 500 years and 2000 years, and (2) defining flood potential for Building 9720-38 for design storms with recurrence intervals of 500 years, 2000 years, and 10,000 years. This report presents the results of the analyses conducted to define flood potential at these locations and for these recurrence intervals. None of the buildings investigated are completely safe from flooding during the storms considered. Runoff from rooftops may cause limited flooding in any areas where water is allowed to pond next to doors, vents, windows, or other openings. Flooding depths inside buildings in these areas should be limited to 1 ft or less. Buildings with openings below the grade of adjacent roads are also subject to flooding, with flood levels dependent upon the topography in that location.

  14. Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation

    SciTech Connect

    1994-09-01

    The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs.

  15. Technical results of Y-12/IAEA field trial of remote monitoring system

    SciTech Connect

    Corbell, B.H.; Whitaker, J.M.; Welch, J.

    1997-08-01

    A Remote Monitoring System (RMS) field trial has been conducted with the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. The RMS included a variety of Sandia, Oak Ridge, and Aquila sensor technologies which provide containment seals, video monitoring, radiation asset measurements, and container identification data to the on-site DAS (Data Acquisition System) by way of radio-frequency and Echelon LonWorks networks. The accumulated safeguards information was transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines. The technologies tested in the remote monitoring environment are the RadCouple, RadSiP, and SmartShelf sensors from the ORSENS (Oak Ridge Sensors for Enhancing Nuclear Safeguards) technologies; the AIMS (Authenticated Item Monitoring System) motion sensor (AMS), AIMS fiber-optic seal (AFOS), ICAM (Image Compression and Authentication Module) video surveillance system, DAS (Data Acquisition System), and DIRS (Data and Image Review Station) from Sandia; and the AssetLAN identification tag, VACOSS-S seal, and Gemini digital surveillance system from Aquila. The field trial was conducted from October 1996 through May 1997. Tests were conducted during the monthly IAEA Interim Inventory Verification (IIV) inspections for evaluation of the equipment. Experience gained through the field trials will allow the technologies to be applied to various monitoring scenarios.

  16. Hydrogeology of the Islamic Republic of Mauritania

    USGS Publications Warehouse

    Friedel, Michael J.; Finn, Carol

    2008-01-01

    Hydrogeologic maps were constructed for the Islamic Republic of Mauritania. The ground-water flow system in the country can best be described as two interconnected regional systems: the porous Continental Terminal coastal system and the interior, fractured sedimentary Taoudeni Basin system. In these systems, ground-water flow occurs in fill deposits and carbonate, clastic, metasedimentary, and metavolcanic rocks. Based on an evaluation of the potentiometric surface, there are three areas of ground-water recharge in the Taoudeni Basin system. One region occurs in the northwest at the edge of the Shield, one occurs to the south overlying the Tillites, and one is centered at the city of Tidjikdja. In contrast to the flow system in the Taoudeni Basin, the potentiometric surfaces reveal two areas of discharge in the Continental Terminal system but no localized recharge areas; the recharge is more likely to be areal. In addition to these recharge and discharge areas, ground water flows across the country's borders. Specifically, ground water from the Atlantic Ocean flows into Mauritania, transporting dissolved sodium from the west as a salt water intrusion, whereas fresh ground water discharges from the east into Mali. To the north, there is a relatively low gradient with inflow of fresh water to Mauritania, whereas ground-water flow discharges to the Senegal River to the south. A geographical information system (GIS) was used to digitize, manage, store, and analyze geologic data used to develop the hydrogeologic map. The data acquired for map development included existing digital GIS files, published maps, tabulated data in reports and public-access files, and the SIPPE2 Access database. Once in digital formats, regional geologic and hydrologic features were converted to a common coordinate system and combined into one map. The 42 regional geologic map units were then reclassified into 13 hydrogeologic units, each having considerable lateral extent and distinct

  17. Omega-3 Fatty Acid Ethyl Esters do not Improve Clopidogrel Associated P2Y12 Inhibition in Stroke Patients

    PubMed Central

    Li, Ping; Kamal, Haris; Baxter, Melissa; Mehta, Bijal K.

    2015-01-01

    The specific action of omega-3 fatty acid ethyl esters (OFA) in preventing cerebrovascular disease remains unknown, but research has demonstrated multiple possible mechanisms. In addition to altering lipid profiles, OFA may inhibit platelet aggregation. Clopidogrel inhibits platelets via the P2Y12 receptor. OFA may alter clopidogrel-associated platelet-inhibition via a possible combined effect on P2Y12 inhibition. To determine if OFA affects clopidogrel associated P2Y12 platelet receptor inhibition by comparing the percentage of responders in patients with cerebrovascular disease who were taking clopidogrel with or without OFA. We retrospectively reviewed data from adult patients with cerebrovascular disease or cerebral aneurysms and taking clopidogrel, who were seen at a single hospital between March 2010 to September 2011. We included 438 subjects in the study. For the 67 subjects who received loading doses of both clopidogrel and OFA, 71.6% had a P2Y12 inhibition response more than 20%, which is considered a positive response. For the 55 subjects who received just clopidogrel load, 67.2% of subjects were responders. There were 70.4% responders in the 274 subjects who were taking 75 mg of clopidogrel alone at home, and 73.8% responders in the 42 subjects who were taking both clopidogrel and OFA at home. However, these percentage differences were not statistically significant. This study did not find additional P2Y12 platelet inhibition when patients were given OFA, either given as a loading dose or taking it daily. PMID:26294943

  18. Groundwater Protection Program Management Plan For The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Elvado Environmental, LLC

    2009-09-01

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of Babcock & Wilcox Technical Services Y-12 LLC (hereafter referenced as B&W Y-12), the Y-12 management and operations (M&O) contractor for DOE. B&W Y-12 is a new corporate name, assumed in January 2007, for the company formerly known as BWXT Y-12, L.L.C., hereafter referenced as BWXT. This GWPP management plan addresses the requirements of DOE Order 450.1A Environmental Protection Program (hereafter referenced as DOE O 450.1A), which emphasize a site-wide approach for groundwater protection at each DOE facility through implementation of groundwater surveillance monitoring. Additionally, this plan addresses the relevant and applicable GWPP elements and goals described in the DOE O 450.1A technical guidance documents issued in June 2004 (DOE 2004) and May 2005 (DOE 2005). This GWPP management plan is a 'living' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP

  19. Two-hundred years of hydrogeology in the United States

    USGS Publications Warehouse

    Rosenshein, J. S., (Edited By); Moore, J.E.; Lohman, S.W.; Chase, E.B.

    1986-01-01

    The Hydrogeology Division of the Geological Society of America (GSA) sponsored a symposium entitled ' Hydrogeology in the United States, 1776- 1976 ' at the annual meeting of the GSA on November 9, 1976. The symposium was organized to provide a forum for discussion of major eras in the history of American hydrogeology and to contribute to the bicentennial celebration of the founding of the United States. Presentations were broken down into 3 sections: The Early Era (with a tribute to Oscar E. Meinzer), 1776-1920; Meinzer Era, 1910-1940; and the Modern Era (including scientific advantages; the quantification of hydrogeology; geochemistry; surface and borehole geophysics; and hydrogeology, policy, and politics) 1940-1976. (Lantz-PTT)

  20. Hydrogeologic Modeling at the Sylvania Corning FUSRAP Site - 13419

    SciTech Connect

    Ewy, Ann; Heim, Kenneth J.; McGonigal, Sean T.; Talimcioglu, Nazmi M.

    2013-07-01

    A comparative groundwater hydrogeologic modeling analysis is presented herein to simulate potential contaminant migration pathways in a sole source aquifer in Nassau County, Long Island, New York. The source of contamination is related to historical operations at the Sylvania Corning Plant ('Site'), a 9.49- acre facility located at 70, 100 and 140 Cantiague Rock Road, Town of Oyster Bay in the westernmost portion of Hicksville, Long Island. The Site had historically been utilized as a nuclear materials manufacturing facility (e.g., cores, slug, and fuel elements) for reactors used in both research and electric power generation in early 1950's until late 1960's. The Site is contaminated with various volatile organic and inorganic compounds, as well as radionuclides. The major contaminants of concern at the Site are tetrachloroethene (PCE), trichloroethene (TCE), nickel, uranium, and thorium. These compounds are present in soil and groundwater underlying the Site and have migrated off-site. The Site is currently being investigated as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The main objective of the current study is to simulate the complex hydrogeologic features in the region, such as numerous current and historic production well fields; large, localized recharge basins; and, multiple aquifers, and to assess potential contaminant migration pathways originating from the Site. For this purpose, the focus of attention was given to the underlying Magothy formation, which has been impacted by the contaminants of concern. This aquifer provides more than 90% of potable water supply in the region. Nassau and Suffolk Counties jointly developed a three-dimensional regional groundwater flow model to help understand the factors affecting groundwater flow regime in the region, to determine adequate water supply for public consumption, to investigate salt water intrusion in localized areas, to evaluate the impacts of regional pumping activity, and to

  1. Case studies in organic contaminant hydrogeology

    NASA Astrophysics Data System (ADS)

    Baker, John A.

    1989-07-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences over the world. This series of case studies of organic contaminants from both solid and hazardous waste disposal facilities provides examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The results of these studies and investigations by Waste Management Inc. (WMI) and its consultants have shown certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic charac teristics of each facility. In each of the case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells at the request of regulatory agencies. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of the organic compounds detected and these data are evaluated in each case study. The case studies are on disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. A brief discussion of groundwater quality impacts and remedial measures also is included.

  2. Hydrogeologic framework and borehole yields in Ghana

    NASA Astrophysics Data System (ADS)

    Dapaah-Siakwan, S.; Gyau-Boakye, P.

    2000-08-01

    In Ghana, 68% of the population live in rural communities, which are scattered and remote. Groundwater is the most feasible source of potable water supply for most of these dispersed and remote settlements. To meet the present and future challenges of population expansion vis-à-vis the observed declining rainfall in most parts of Africa including Ghana, it is necessary to assess, efficiently manage, and utilize the groundwater resources. The objective of this paper is therefore to describe the hydrogeologic framework and analyze borehole yields as part of the groundwater-resources assessment of Ghana. The hydrogeologic units are broadly categorized as: (1) the Basement Complex (crystalline rocks), which underlies about 54% of the country; (2) the Voltaian System, which underlies about 45%; and (3) the Cenozoic, Mesozoic, and Paleozoic sedimentary strata (Coastal Provinces), which underlie the remaining 1% of the country. The Basement Complex and the Coastal Provinces have higher groundwater potential than the Voltaian System. This is particularly significant, because the Basement Complex and the Coastal Provinces underlie the most densely populated areas of the country and can hence be tapped for human use. The average borehole yields of the Basement Complex, the Coastal Provinces and the Voltaian System range from 2.7-12.7, 3.9-15.6, and 6.2-8.5 m3/h, respectively.

  3. SRS baseline hydrogeologic investigation: Summary report

    SciTech Connect

    Bledsoe, H.W.; Aadland, R.K. ); Sargent, K.A. . Dept. of Geology)

    1990-11-01

    Work on the Savannah River Site (SRS) Baseline Hydrogeologic Investigation began in 1983 when it was determined that the knowledge of the plant hydrogeologic systems needed to be expanded and improved in response to changing stratigraphic and hydrostratigraphic terminology and increased involvement by regulatory agencies (Bledsoe, 1984). Additionally, site-wide data were needed to determine flow paths, gradients, and velocities associated with the different aquifers underlying the plant site. The program was divided into three phases in order to allow the results of one phase to be evaluated and necessary changes and improvements incorporated into the following phases. This report summarizes the results of all three phases and includes modified graphic logs, lithologic descriptions of the different geologic formations, profiles of each cluster site, hydrostratigraphic cross sections, hydrographs of selected wells within each cluster for the first full year of uninterrupted water level measurements, potentiometric maps developed from data collected from all clusters, completion diagrams for each well, and a summary of laboratory tests. Additionally, the proposed new classification of hydrostratigraphic units at SRS (Aadland and Bledsoe, 1990) has been incorporated.

  4. The Contribution of Hydrogeophysics to Hydrogeological Modeling

    NASA Astrophysics Data System (ADS)

    Christensen, N. B.; Auken, E.; Sorensen, K.

    2005-12-01

    Electrical and electromagnetic (E&EM) methods are some of the most commonly used geophysical techniques for hydrogeophysical investigations. In this presentation, the use of E&EM methods for watershed-scale hydrogeological investigations are reviewed. Over the past two decades a tremendous development has taken place with regard to E&EM instrumentation, field procedures and interpretation algorithms; a process that to a large extent has been focussed on hydrogeological investigations. The primary parameter mapped by E&EM methods is the electrical resistivity (or the inverse: conductivity). High and low values of the resistivity of geological materials enable the discernment between sand and clay, unsaturated and saturated, fresh and salt water, unaffected and polluted, bedrock and sediment, respectively - all fundamental to hydrogeological modeling. Time-consuming, single-site, individual electrical sounding acquisition geometries have now been replaced by multi-electrode, profile oriented measurements that have the capability to image the variation in resistivity with both depth and along profiles to a depth of 70-100m and a productivity of 1-1.5 km/day/field person. Pulled-array methods, which acquire measurements using multiple electrode configurations while moving, can traverse 10-15 km per day with a depth penetration of approximately 20 m. Transient electromagnetic soundings are carried out as both single-site and pulled-array methods, and recently by helicopter. Very cost-efficient transient methods are now commercially available. E&EM data are complicated, nonlinear functions of the resistivity distribution and the full potential of the data can only be realized by inverting the data to obtain a physical model describing the subsurface resistivity distribution. Model calibration and inverse hydraulic modeling is most often carried out based on very sparse data sets and geological information from a few boreholes. Geophysical models covering an extended area

  5. Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Becthel Jacobs Company LLC

    2002-11-01

    The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone & Webster Building 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to

  6. Subsurface-controlled geological maps for the Y-12 plant and adjacent areas of Bear Creek Valley

    SciTech Connect

    King, H.L.; Haase, C.S.

    1987-04-01

    Bear Creek Valley in the vicinity of the US Department of Energy Y-12 Plant is underlain by Middle to Late Cambrian strata of the Conasauga Group. The group consists of interbedded limestones, shales, mudstones, and siltstones, and it can be divided into six discrete formations. Bear Creek Valley is bordered on the north by Pine Ridge, which is underlain by sandstones, siltstones, and shales of the Rome Formation, and on the south by Chestnut Ridge, which is underlain by dolostones of the Knox Group. Subsurface-controlled geological maps illustrating stratigraphic data and formational contacts for the formations within the Conasauga Group have been prepared for the Y-12 Plant vicinity and selected areas in Bear Creek Valley westward from the plant. The maps are consistent with all available surface and subsurface data for areas where sufficient data exist to make map construction feasible. 13 refs.

  7. Mercury abatement report on the US Department of Energy Oak Ridge Y- 12 Plant for fiscal year 1995

    SciTech Connect

    1995-11-01

    This Annual Mercury Abatement Report for fiscal year 1995 summarizes the status of activities and the levels of mercury contamination in East Fork Poplar Creek (EFPC) resulting from activities at the US Department of Energy`s Oak Ridge Y-12 Plant. The report outlines the status of the on-going project activities in support of project compliance, the results of the ongoing sampling and characterization efforts, the biological monitoring activities, and our conclusions relative to the progress in demonstrating compliance with the National Pollutant Discharge Elimination (NPDES) permit. Overall, the pace of mercury activities at the Y-12 Plant is ahead of the compliance schedules in the NPDES permit and new and exciting opportunities are being recognized for achieving additional mercury reductions. These opportunities were not felt to be achievable several years ago.

  8. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation

    SciTech Connect

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections.

  9. Construction quality assurance report for the Y-12 Construction/Demolition Landfill VII (CDL VII), Oak Ridge, Tennessee

    SciTech Connect

    Burton, P.M.

    1994-11-01

    This Construction Quality Assurance (CQA) Report provides documentation that Bid Option 2 of the Y-12 Plant Construction Demolition Landfill 7 (CDL-7) was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. CDL-7 is located in Anderson County on the south side of Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant in Oak Ridge, Tennessee. This report applies specifically to the limits of excavation for Area No. 1 portions of the perimeter maintenance road and drainage channel and Sedimentation Pond No. 3. A partial ``As-Built`` survey was performed and is included.

  10. Results of calendar year 1994 monitor well inspection and maintenance program, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    McMaster, B.W.; Jones, S.B.; Sitzler, J.L.

    1995-06-01

    This document is a compendium of results of the calendar year 1994 Monitor Well Inspection and Maintenance Program at the Department of Energy Y-12 Plant in Oak Ridge, Tennessee. This report documents the work relating to well inspections and maintenance requests. Inspections are implemented in order to better assess the condition and maintenance needs of wells that are actively being monitored. Currently this approach calls for inspecting all wells on a routine (annual or triennial) basis which are: (1) in an active sampling program; (2) included in a hydrologic study; or (3) not in service, but not scheduled for plugging and abandonment. Routine inspections help to ensure that representative groundwater samples and hydrologic data are being collected, and contribute to the life expectancy of each well. This report formally presents well inspection and maintenance activities that were conducted at the Y-12 Plant during 1994. All inspections were conducted between April and December.

  11. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    SciTech Connect

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  12. Characterization and Disposition of Legacy Low-Level Waste at the Y-12 National Security Complex - 12133

    SciTech Connect

    Tharp, Tim; Donnelly, Jim

    2012-07-01

    The Y-12 National Security Complex (Y-12) is concluding a multi-year program to characterize and dispose of all legacy low-level waste (LLW). The inventory of legacy waste at Y-12 has been reduced from over 3500 containers in Fiscal Year (FY) 2000 to 6 containers at the end of FY2011. In addition, the site recently eliminated the inventory of other low-level waste that is greater than 365 days old (i.e., >365-Day LLW), to be in full compliance with DOE Order 435.1. A consistent technical characterization approach emerged for both of these populations of backlogged waste: (1) compile existing historical data and process knowledge and conduct interviews with site personnel; (2) inspect the containers and any tags, labels, or other markings to confirm or glean additional data; (3) with appropriate monitoring, open the container, visually inspect and photograph the contents while obtaining preliminary radiological surveys; (4) obtain gross weight and field non-destructive assay (NDA) data as needed; (5) use the non-public Oak Ridge Reservation Haul Road to ship the container to a local offsite vendor for waste sorting and segregation; (6) sort, drain, sample, and remove prohibited items; and (7) compile final data and prepare for shipment to disposal. After disposing of this backlog, the focus has now turned to avoiding the recurrence of this situation by maintaining low inventories of low-level waste and shortening the duration between waste generation and disposal. An enhanced waste tracking system and monthly metric charts are used to monitor and report progress to contractor and federal site office management. During the past 2 years, the average age of LLW onsite at Y-12 has decreased from more than 180 days to less than 60 days. (authors)

  13. Research of Hydro-Geological Precursors of Earthquakes in Armenia

    NASA Astrophysics Data System (ADS)

    Pashayan, R.

    2007-12-01

    The observations of hydro-geological regime of underground waters in observed boreholes began in Armenia in 1986. Now these work is concentrated in National Seismic Service. For a long time observations are carried out studying several parameters (debit, temperature, chemical and gas composition) in several deposits of carbon mineral waters of Armenia. The interpretation of materials shows that that a number of strong and medium-strength earthquakes are accompanied by anomal changes in the level of underground waters. Regarding mineral waters, in connection with earthquakes some parameters are immediately changed: debit, temperature, chemical and gas composition. The study of hydrogeodynamic characteristics of precursors specify that the quantity of registered hydrogeodynamic precursors decreases with the increase of epicentrical distance. The majority of precursors is registered at the distance of 200 km from epicenter. There is a tendency of gradual increase of time and amplitude of a precursor of an earthquake depending on the rise of magnitude and epicentral distance. The behaviour of hydrogeodynamic precursors depends on the angle between the faults, to which this or that borehole reaches; with increase of this angle the deformation in the zone of the fault during the preparation of earthquakes is stronger, than in terms of small angles. 1. S1 2. Earthquake processes, Precursors and Forecasts 3. Garni Geophysical Observatory of the National Academy of Sciences of Armenia, 375019, Yerevan, Republic of Armenia, email: hakhleon@sci.am 4. O 5. 10808801 6. Artavazd Payment Type: select 'Purchase Order' PO Number: AGU WAIVER Billing Address: Enter Your Institution City: Enter Your City Country Code: Enter Your Country Name: Enter Your Name Phone: Enter Your Telephone Number

  14. Insights into Mejerda basin hydrogeology, Tunisia

    NASA Astrophysics Data System (ADS)

    Guellala, Rihab; Tagorti, Mohamed Ali; Inoubli, Mohamed Hédi; Amri, Faouzi

    2012-09-01

    The present study concentrates on the interpretation of Vertical Electrical Soundings (VES) and well logs to understand the geometry and the functioning of the Ghardimaou multilayered aquifer, a potential target for water supply in the Mejerda basin (Tunisia). The analysis of isobath and isopach maps established in this study, shows a tectonic influence on the reservoirs structure; the Villafranchian folding and the NE-SW, and E-W normal faulting in the recent Quaternary created an aquifer system compartmentalized by raised and tilted blocks. Geoelectrical cross sections reveal that this structure influences the thickness of permeable formations and the groundwater circulation. These results will be useful for rationalizing the future hydrogeological research that will be undertaken in the Mejerda basin.

  15. Chemical hydrogeology in natural and contaminated environments

    USGS Publications Warehouse

    Back, W.; Baedecker, M.J.

    1989-01-01

    Chemical hydrogeology, including organic and inorganic aspects, has contributed to an increased understanding of groundwater flow systems, geologic processes, and stressed environments. Most of the basic principles of inorganic-chemical hydrogeology were first established by investigations of organic-free, regional-scale systems for which simplifying assumptions could be made. The problems of groundwater contamination are causing a shift of emphasis to microscale systems that are dominated by organic-chemical reactions and that are providing an impetus for the study of naturally occurring and manmade organic material. Along with the decrease in scale, physical and chemical heterogeneity become major controls. Current investigations and those selected from the literature demonstrate that heterogeneity increases in importance as the study site decreases from regional-scale to macroscale to microscale. Increased understanding of regional-scale flow systems is demonstrated by selection of investigations of carbonate and volcanic aquifers to show how applications of present-day concepts and techniques can identify controlling chemical reactions and determine their rates; identify groundwater flow paths and determine flow velocity; and determine aquifer characteristics. The role of chemical hydrogeology in understanding geologic processes of macroscale systems is exemplified by selection of investigations in coastal aquifers. Phenomena associated with the mixing zone generated by encroaching sea water include an increase in heterogeneity of permeability, diagenesis of minerals, and formation of geomorphic features, such as caves, lagoons, and bays. Ore deposits of manganese and uranium, along with a simulation model of ore-forming fluids, demonstrate the influence of heterogeneity and of organic compounds on geochemical reactions associated with genesis of mineral deposits. In microscale environments, importance of heterogeneity and consequences of organic reactions in

  16. Hydrogeological Conditions Changes of Tomsk, Russia

    NASA Astrophysics Data System (ADS)

    Pokrovsky, V. D.; Dutova, E. M.; Kuzevanov, K. I.; Pokrovsky, D. S.; Nalivaiko, N. G.

    2015-11-01

    The hydro-geological conditions of Tomsk are determined by both natural factors and the impact of the urban infrastructure. Important impact on subsurface water flows involves the complex hydraulic relationship of several geological layers and the ancient and modern relief. Increasing groundwater abstraction has generally led to lowered piezometric heads in the deeper aquifer horizons, while in the uppermost horizons, rises in the water table and formation of new perched water tables are experienced due to leaking pipes and impedance of groundwater flow by deep foundations. In this paper special attention is paid to the Quaternary aquifer complex. Barrage effects of pile foundations and the intensive development of perched water distributed on flat surfaces of the watersheds and high terraces, complicated conditions for the construction and operation of facilities, leading in some cases to emergency situations.

  17. Progress and Future Plans for Mercury Remediation at the Y-12 National Security Complex, Oak Ridge, Tennessee - 13059

    SciTech Connect

    Wilkerson, Laura O.; DePaoli, Susan M.; Turner, Ralph

    2013-07-01

    The U.S. Department of Energy (DOE), along with the Tennessee Department of Environment and Conservation (TDEC) and the U.S. Environmental Protection Agency (EPA), has identified mercury contamination at the Y-12 National Security Complex (Y-12) as the highest priority cleanup risk on the Oak Ridge Reservation (ORR). The historic loss of mercury to the environment dwarfs any other contaminant release on the ORR. Efforts over the last 20 years to reduce mercury levels leaving the site in the surface waters of Upper East Fork Poplar Creek (UEFPC) have not resulted in a corresponding decrease in mercury concentrations in fish. Further reductions in mercury surface water concentrations are needed. Recent stimulus funding through the American Recovery and Reinvestment Act of 2009 (ARRA) has supported several major efforts involving mercury cleanup at Y-12. Near-term implementation activities are being pursued with remaining funds and include design of a centrally located mercury treatment facility for waterborne mercury, treatability studies on mercury-contaminated soils, and free mercury removal from storm drains. Out-year source removal will entail demolition/disposal of several massive uranium processing facilities along with removal and disposal of underlying contaminated soil. As a National Priorities List (NPL) site, cleanup is implemented under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and directed by the Federal Facility Agreement (FFA) between DOE, EPA, and TDEC. The CERCLA process is followed to plan, reach approval, implement, and monitor the cleanup. (authors)

  18. Long-Term P2Y12-Receptor Antagonists in Post-Myocardial Infarction Patients: Facing a New Trilemma?

    PubMed

    Alexopoulos, Dimitrios; Xanthopoulou, Ioanna; Moulias, Athanasios; Lekakis, John

    2016-09-13

    Physicians considering prescription of P2Y12-receptor antagonist for long-term (>1 year) protection of patients post-myocardial infarction face the trilemma of selecting between clopidogrel, prasugrel, or ticagrelor. Differential ischemic benefits derived from relevant trials may assist in tailoring treatment, although the different bleeding definitions applied make any meaningful comparison of each agent's bleeding potential very difficult. Considering the available data and recognizing the significant limitation of observations obtained thus far from subgroup analyses, prasugrel appears to provide higher anti-ischemic protection than clopidogrel. Ticagrelor seems to be an attractive option for patients with renal dysfunction, peripheral arterial disease, or following a brief P2Y12-receptor antagonist interruption, whereas clopidogrel may be advised in the presence of cost and availability issues. As head-to-head comparative trials between P2Y12-receptor antagonists are lacking, selection of a specific agent by the clinician should be made on the basis of critical appraisal of available large clinical datasets. PMID:27609686

  19. First report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Boston, H.L.; Huston, M.A.; McCarthy, J.F.; Smith, J.G.; Southworth, G.R.; Stewart, A.J. ); Black, M.C. ); Gatz, A.J. Jr. ); Hinzman, R.L. ); Jimenez, B.D. (Puerto Rico Univ.,

    1992-07-01

    As stipulated in the National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of the BMAP are (1) to demonstrate that the current effluent limitations established for the Oak Ridge Y-12 Plant protect the uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) [formerly the Tennessee Department of Health and Environment (TDHE)], and (2) to document the ecological effects resulting from implementation of a water pollution control program that includes construction of several large wastewater treatment facilities. The BMAP consists of four major tasks: (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic macroinvertebrates, and fish. This document, the first in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted from May 1985 through September 1986.

  20. Second report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    SciTech Connect

    Hinzman, R.L.; Adams, S.M.; Black, M.C.

    1993-06-01

    As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Control Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate.

  1. Stochastic hydrogeologic units and hydrogeologic properties development for total-system performance assessments. Yucca Mountain Site Characterization Project

    SciTech Connect

    Schenker, A.R.; Guerin, D.C.; Robey, T.H.; Rautman, C.A.; Barnard, R.W.

    1995-09-01

    A stochastic representation of the lithologic units and associated hydrogeologic parameters of the potential high-level nuclear waste repository are developed for use in performance-assessment calculations, including the Total-System Performance Assessment for Yucca Mountain-SNL Second Iteration (TSPA-1993). A simplified lithologic model has been developed based on the physical characteristics of the welded and nonwelded units at Yucca Mountain. Ten hydrogeologic units are developed from site-specific data (lithologic and geophysical logs and core photographs) obtained from the unsaturated and saturated zones. The three-dimensional geostatistical model of the ten hydrogeologic units is based on indicator-coding techniques and improves on the two-dimensional model developed for TSPA91. The hydrogeologic properties (statistics and probability distribution functions) are developed from the results of laboratory tests and in-situ aquifer tests or are derived through fundamental relationships. Hydrogeologic properties for matrix properties, bulk conductivities, and fractures are developed from existing site specific data. Extensive data are available for matrix porosity, bulk density, and matrix saturated conductivity. For other hydrogeologic properties, the data are minimal or nonexistent. Parameters for the properties are developed as beta probability distribution functions. For the model units without enough data for analysis, parameters are developed as analogs to existing units. A relational, analytic approach coupled with bulk conductivity parameters is used to develop fracture parameters based on the smooth-wall-parallel-plate theory. An analytic method is introduced for scaling small-core matrix properties to the hydrogeologic unit scales.

  2. Wetland and Sensitive Species Survey Report for Y-12: Proposed Uranium Processing Facility (UPF)

    SciTech Connect

    Giffen, N.; Peterson, M.; Reasor, S.; Pounds, L.; Byrd, G.; Wiest, M. C.; Hill, C. C.

    2009-11-01

    This report summarizes the results of an environmental survey conducted at sites associated with the proposed Uranium Processing Facility (UPF) at the Y-12 National Security Complex in September-October 2009. The survey was conducted in order to evaluate potential impacts of the overall project. This project includes the construction of a haul road, concrete batch plant, wet soil storage area and dry soil storage area. The environmental surveys were conducted by natural resource experts at ORNL who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). Natural resource staff assistance on this project included the collection of environmental information that can aid in project location decisions that minimize impacts to sensitive resource such as significant wildlife populations, rare plants and wetlands. Natural resources work was conducted in various habitats, corresponding to the proposed areas of impact. Thc credentials/qualifications of the researchers are contained in Appendix A. The proposed haul road traverses a number of different habitats including a power-line right-of-way. wetlands, streams, forest and mowed areas. It extends from what is known as the New Salvage Yard on the west to the Polaris Parking Lot on the east. This haul road is meant to connect the proposed concrete batch plant to the UPF building site. The proposed site of the concrete batch plant itself is a highly disturbed fenced area. This area of the project is shown in Fig. 1. The proposed Wet Soils Disposal Area is located on the north side of Bear Creek Road at the former Control Burn Study Area. This is a second growth arce containing thick vegetation, and extensive dead and down woody material. This area of the project is shown in Fig. 2. Thc dry soils storage area is proposed for what is currently known as the West Borrow Area. This site is located on the west side of Reeves Road south of Bear Creek Road. The site is an early successional

  3. Marine hydrogeology: recent accomplishments and future opportunities

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.

    2005-03-01

    Marine hydrogeology is a broad-ranging scientific discipline involving the exploration of fluid-rock interactions below the seafloor. Studies have been conducted at seafloor spreading centers, mid-plate locations, and in plate- and continental-margin environments. Although many seafloor locations are remote, there are aspects of marine systems that make them uniquely suited for hydrologic analysis. Newly developed tools and techniques, and the establishment of several multidisciplinary programs for oceanographic exploration, have helped to push marine hydrogeology forward over the last several decades. Most marine hydrogeologic work has focused on measurement or estimation of hydrogeologic properties within the shallow subsurface, but additional work has emphasized measurements of local and global fluxes, fluid source and sink terms, and quantitative links between hydrogeologic, chemical, tectonic, biological, and geophysical processes. In addition to summarizing selected results from a small number of case studies, this paper includes a description of several new experiments and programs that will provide outstanding opportunities to address fundamental hydrogeologic questions within the seafloor during the next 20-30 years. L'hydrogéologie marine est une large discipline scientifique impliquant l' exploration des interactions entre les fluides et les roches sous les fonds marins. Des études ont été menées dans les différents environnements sous-marins (zone abyssale, plaque océanique, marges continentales). Bien que de nombreux fonds marins soient connus, il existe des aspects des systèmes marins qui les rendent inadaptés à l'analyse hydrologique. De nouveaux outils et techniques, et la mise en oeuvre de nombreux programmes multidisciplinaires d'exploration océanographique, ont aidé à pousser en avant l'hydrogéologie marine ces dix dernières années. La plus part des études hydrogéologiques se sont concentrées jusqu'à présent sur la mesure ou

  4. Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets

    NASA Astrophysics Data System (ADS)

    Awange, J. L.; Gebremichael, M.; Forootan, E.; Wakbulcho, G.; Anyah, R.; Ferreira, V. G.; Alemayehu, T.

    2014-12-01

    Understanding the spatio-temporal characteristics of water storage changes is crucial for Ethiopia, a country that is facing a range of challenges in water management caused by anthropogenic impacts as well as climate variability. In addition to this, the scarcity of in situ measurements of soil moisture and groundwater, combined with intrinsic "scale limitations" of traditional methods used in hydrological characterization are further limiting the ability to assess water resource distribution in the region. The primary objective of this study is therefore to apply remotely sensed and model data over Ethiopia in order to (i) test the performance of models and remotely sensed data in modeling water resources distribution in un-gauged arid regions of Ethiopia, (ii) analyze the inter-annual and seasonal variability as well as changes in total water storage (TWS) over Ethiopia, (iii) understand the relationship between TWS changes, rainfall, and soil moisture anomalies over the study region, and (iv) identify the relationship between the characteristics of aquifers and TWS changes. The data used in this study includes; monthly gravity field data from the Gravity Recovery And Climate Experiment (GRACE) mission, rainfall data from the Tropical Rainfall Measuring Mission (TRMM), and soil moisture from the Global Land Data Assimilation System (GLDAS) model. Our investigation covers a period of 8 years from 2003 to 2011. The results of the study show that the western part and the north-eastern lowlands of Ethiopia experienced decrease in TWS water between 2003-2011, whereas all the other regions gained water during the study period. The impact of rainfall seasonality was also seen in the TWS changes. Applying the statistical method of Principal Component Analysis (PCA) to TWS, soil moisture and rainfall variations indentified the dominant annual water variability in the western, north-western, northern, and central regions, and the dominant seasonal variability in the western, north-western, and the eastern regions. A correlation analysis between TWS and rainfall indicated a minimum time lag of zero to a maximum of six months, whereas no lag is noticeable between soil moisture anomalies and TWS changes. The delay response and correlation coefficient between rainfall and TWS appears to be related to recharge mechanisms, revealing that most regions of Ethiopia receive indirect recharge. Our results also show that the magnitude of TWS changes is higher in the western region and lower in the north-eastern region, and that the elevation influences soil moisture as well as TWS.

  5. Integrated Research Methods for Applied Urban Hydrogeology of Karst Sites

    NASA Astrophysics Data System (ADS)

    Epting, J.; Romanov, D. K.; Kaufmann, G.; Huggenberger, P.

    2008-12-01

    Integrated and adaptive surface- and groundwater monitoring and management in urban areas require innovative process-oriented approaches. To accomplish this, it is necessary to develop and combine interdisciplinary instruments that facilitate adequately quantifying cumulative effects on groundwater flow regimes. While the characterization and modeling of flow in heterogeneous and fractured media has been investigated intensively, there are no well-developed long-term hydrogeological research sites for gypsum karst. Considering that infrastructures in karst regions, particularly in gypsum, are prone to subsidence, severe problems can arise in urban areas. In the 1880's, a river dam was constructed on gypsum-containing rock, Southeast of Basel, Switzerland. Over the last 30 years, subsidence of the dam and an adjacent highway has been observed. Surface water infiltrates upstream of the dam, circulates in the gravel deposits and in the weathered bedrock around and beneath the dam and exfiltrates downstream into the river. These processes enhance karstification processes in the soluble units of the gypsum. As a result an extended weathering zone within the bedrock and the development of preferential flow paths within voids and conduits can be observed. To prevent further subsidence, construction measures were conducted in two major project phases in 2006 and 2007. The highway was supported by a large number of pillars embedded in the non- weathered rock and by a sealing pile wall, to prevent infiltrating river water circulating around the dam and beneath the foundation of the highway. To safeguard surface and subsurface water resources during the construction measures, an extensive observation network was set up. Protection schemes and geotechnical investigations that are necessary for engineering projects often provide "windows of opportunity", bearing the possibility to change perceptions concerning the sustainable development of water resources and coordinate future

  6. Corrective action baseline report for underground storage tanks 0439-U, 0440-U, 2073-U, 2074-U, and 2075-U at the East End Fuel Station, Buildings 9754 and 9754-2, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    SciTech Connect

    Not Available

    1994-01-01

    The purpose of this report is to provide baseline geochemical and hydrogeologic data relative to corrective action for underground storage tanks (USTs) 0439-U, 0440-U, 2073-U, 2074-U, and 2075-U at the East End Fuel Station, Buildings 9754 and 9754-2 at the Oak Ridge Y-12 Plant. Progress in support of corrective action at the East End Fuel Station has included monitoring well installation, tank removal, and baseline groundwater sampling and analysis. This document represents the baseline report for corrective action at the East End Fuel Station and is organized into three sections. Section 1 presents introductory information relative to the site, including the regulatory initiative, site description, and progress to date. Section 2 includes a summary of additional monitoring well installation activities, the results of baseline groundwater sampling, a summary of tank removal activities, and the results of confirmatory soil sampling performed during tank removal. Section 3 presents the baseline hydrogeology and planned zone of influence for groundwater remediation.

  7. Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets.

    PubMed

    Hardy, Adam R; Jones, Matthew L; Mundell, Stuart J; Poole, Alastair W

    2004-09-15

    Adenosine diphosphate (ADP), an important platelet agonist, acts through 2 G-protein-coupled receptors (GPCRs), P2Y(1) and P2Y(12), which signal through Gq and Gi, respectively. There is increasing evidence for cross-talk between signaling pathways downstream of GPCRs and here we demonstrate cross-talk between these 2 ADP receptors in human platelets. We show that P2Y(12) contributes to platelet signaling by potentiating the P2Y(1)-induced calcium response. This potentiation is mediated by 2 mechanisms: inhibition of adenylate cyclase and activation of phosphatidylinositol 3 (PI 3)-kinase. Furthermore, the Src family kinase inhibitor PP1 selectively potentiates the contribution to the calcium response by P2Y(12), although inhibition of adenylate cyclase by P2Y(12) is unaffected. Using PP1 in combination with the inhibitor of PI 3-kinase LY294002, we show that Src negatively regulates the PI 3-kinase-mediated component of the P2Y(12) calcium response. Finally, we were able to show that Src kinase is activated through P2Y(1) but not P2Y(12). Taken together, we present evidence for a complex signaling interplay between P2Y(1) and P2Y(12), where P2Y(12) is able to positively regulate P2Y(1) action and P2Y(1) negatively regulates this action of P2Y(12). It is likely that this interplay between receptors plays an important role in maintaining the delicate balance between platelet activation and inhibition during normal hemostasis. PMID:15187029

  8. HYDROGEOLOGIC CASE STUDIE(PRESENTATION FOR MNA WORKSHOP)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  9. Hydrogeology in North America: past and future

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    2005-03-01

    This paper is a retrospective on the evolution of hydrogeology in North America over the past two centuries, and a brief speculation of its future. The history of hydrogeology is marked by developments in many different fields such as groundwater hydrology, soil mechanics, soil science, economic geology, petroleum engineering, structural geology, geochemistry, geophysics, marine geology, and more recently, ecology. The field has been enriched by the contributions of distinguished researchers from all these fields. At present, hydrogeology is in transition from a state of discovering new resources and exploiting them efficiently for maximum benefit, to one of judicious management of finite, interconnected resources that are vital for the sustenance of humans and other living things. The future of hydrogeology is likely to be dictated by the subtle balance with which the hydrological, erosional, and nutritional cycles function, and the decision of a technological society to either adapt to the constraints imposed by the balance, or to continue to exploit hydrogeological systems for maximum benefit. Although there is now a trend towards ecological and environmental awareness, human attitudes could change should large parts of the populated world be subjected to the stresses of droughts that last for many decades. Cet article est une rétrospective de l'évolution de l'hydrogéologie en Amérique du Nord sur les deux derniers siècles, et une brève évaluation de son futur. L'histoire de l'hydrogéologie est marquée par le développement de plusieurs techniques de terrain telles, l'hydrologie des eaux souterraines, la mécanique des sols, les sciences du sol, la géologie économique, l' ingénierie pétrolière, la géologie structurale, la géochimie, la géophysique, la géologie marine et plus récemment l'écologie. La science a été enrichie par la contribution de plusieurs chercheurs distingués, provenant de toutes ces branches. A présent, l

  10. Hydrogeology in North America: past and future

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    2005-03-01

    This paper is a retrospective on the evolution of hydrogeology in North America over the past two centuries, and a brief speculation of its future. The history of hydrogeology is marked by developments in many different fields such as groundwater hydrology, soil mechanics, soil science, economic geology, petroleum engineering, structural geology, geochemistry, geophysics, marine geology, and more recently, ecology. The field has been enriched by the contributions of distinguished researchers from all these fields. At present, hydrogeology is in transition from a state of discovering new resources and exploiting them efficiently for maximum benefit, to one of judicious management of finite, interconnected resources that are vital for the sustenance of humans and other living things. The future of hydrogeology is likely to be dictated by the subtle balance with which the hydrological, erosional, and nutritional cycles function, and the decision of a technological society to either adapt to the constraints imposed by the balance, or to continue to exploit hydrogeological systems for maximum benefit. Although there is now a trend towards ecological and environmental awareness, human attitudes could change should large parts of the populated world be subjected to the stresses of droughts that last for many decades. Cet article est une rétrospective de l'évolution de l'hydrogéologie en Amérique du Nord sur les deux derniers siècles, et une brève évaluation de son futur. L'histoire de l'hydrogéologie est marquée par le développement de plusieurs techniques de terrain telles, l'hydrologie des eaux souterraines, la mécanique des sols, les sciences du sol, la géologie économique, l' ingénierie pétrolière, la géologie structurale, la géochimie, la géophysique, la géologie marine et plus récemment l'écologie. La science a été enrichie par la contribution de plusieurs chercheurs distingués, provenant de toutes ces branches. A présent, l

  11. Chemical Hydrogeology: Fifty Years of Advances, Breakthroughs, and Innovation

    NASA Astrophysics Data System (ADS)

    Brusseau, M. L.

    2015-12-01

    Chemical hydrogeology focuses on the composition, properties, and biogeochemical processes inherent to water in subsurface environments. Multiple avenues of research coalesced in the 1960's to foment the development of chemical hydrogeology as a distinct field. In the intervening 50 years, chemical hydrogeology principles have been applied to innumerable issues and problems, and concomitantly, the field has continually experienced advances, breakthroughs, and innovations in theory, analysis, and application. An overarching theme to chemical hydrogeology in both theory and application is integration--- integration of disciplines (interdisciplinary, multidisciplinary), integration of approaches (theoretical, experimental, analytical), and integration of scales (spatial, temporal). Chemical hydrogeology has never been more relevant and more challenged as today, as we face critical issues related to for example water scarcity and availability of clean water, impacts of energy development, production and storage, and human interactions with ecosystem services. This presentation will illustrate recent advances in chemical hydrogeology, ranging from application of advanced imaging for characterization of pore-scale multiphase systems to integrated physical and biogeochemical assessments of field-scale contaminant transport.

  12. Performance Evaluation of In-Situ Iron Reactive Barriers at the Oak Ridge Y-12 Site

    SciTech Connect

    Watson, D.B.

    2003-12-30

    In November 1997, a permeable iron reactive barrier trench was installed at the S-3 Ponds Pathway 2 Site located at the Y-12 Plant, Oak Ridge, Tennessee. The overall goal of the project is to evaluate the ability of permeable reactive barrier technology to remove uranium, nitrate, and other inorganic contaminants in groundwater and to assess impacts of biogeochemical interactions on long-term performance of the treatment system. Zero-valent iron (Fe0) was used as the reactive medium, which creates a localized zone of reduction or low oxidation reduction potential (ORP), elevated pH, and dissolved H{sub 2} as Fe{sup 0} corrodes in groundwater. These conditions favor the removal of metals and radionuclides (such as uranium and technetium) through redox-driven precipitation and/or sorption to iron corrosion byproducts, such as iron oxyhydroxides. The technology is anticipated to be economical and low in maintenance as compared with conventional pump-and-treat technology. Groundwater monitoring results indicate that the iron barrier is effectively removing uranium and technetium, the primary contaminants of concern, as anticipated from our previous laboratory studies. In addition to uranium and technetium, nitrate, sulfate, bicarbonate, calcium, and magnesium are also found to be removed, either partially or completely by the iron barrier. Elevated concentrations of ferrous ions and sulfide, and pH were observed within the iron barrier. Although ferrous iron concentrations were initially very high after barrier installation, ferrous ion concentrations have decreased to low to non-detectable levels as the pH within the iron has increased over time (as high as 9 or 10). Iron and soil core samples were taken in February 1999 and May 2000 in order to evaluate the iron surface passivation, morphology, mineral precipitation and cementation, and microbial activity within and in the vicinity of the iron barrier. Results indicate that most of the iron filings collected in cores

  13. Peatland hydrogeological function at the regional scale

    NASA Astrophysics Data System (ADS)

    Larocque, M.; Avard, K.; Pellerin, S.

    2012-12-01

    Peatlands are important components of northern landscapes. In the Canadian province of Quebec, peatlands of the St. Lawrence Valley are rapidly disappearing, threatened by rapidly growing pressures from development. Peatlands are to varying extents groundwater dependent and as such are likely to respond drastically to changes in groundwater flow conditions and to contribute to the maintenance of groundwater levels within a superficial aquifer. Yet, there is very little understanding of the hydrogeological function of peatlands at the regional scale. For this reason, they are often simply discarded in complex groundwater management decisions. The implications are not clearly understood but could lead to the disruption of ecologically important fluxes and to significant impacts for the maintenance of long term water reservoirs across the land. This study was initiated in the Centre-du-Quebec region of southern Quebec to quantify how the peatland landscape has evolved in the last decades and to understand the hydrogeological function of peatlands at the regional scale. The study area (2856 km2) is located in the St. Lawrence Lowlands. The last deglaciation has contributed to a complex stratigraphy of unconsolidated sediments and peatlands have developed at the foot of the Appalachians. A recent regional study of Quaternary deposits has shown that a majority of these peatlands are found on aeolian deposits or reworked till, while only a few are set on marine clay, littoral deposits or directly on the bedrock. The area occupied by peatlands was measured with aerial photographs dating from 1966 and 2010. In 2010, peatlands were found on 6.1 % of the territory. Of these peatlands, 10 485 ha were intact and 7 015 underwent limited perturbations (e.g. drainage ditch, forest roads). Between 1966 and 2010, nearly a quarter of the peatlands observed in 1966 underwent irreversible perturbations (e.g. agriculture, paved roads). The main cause of peatland disappearance was from

  14. Resource Conservation and Recovery Act (RCRA) general contingency plan for hazardous waste treatment, storage, and disposal units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Skaggs, B.E.

    1993-11-01

    The Y-12 RCRA Contingency Plan will be continually reviewed and revised if any of the following occur: the facility permit is revised, the plan is inadequate in an emergency, the procedures herein can be improved, the operations of the facility change in a way that alters the plan, the emergency coordinator changes, or the emergency equipment list changes. Copies of the Y-12 Emergency Management Plan are available at the Plant Shift Superintendent`s Office and the Emergency Management Office. This document serves to supplement the Y-12 Emergency Management Plan to be appropriate for all RCRA hazardous waste treatment, storage, or disposal units. The 90-day accumulation areas at the Y-12 Plant have a separate contingency supplement as required by RCRA and are separate from this supplement.

  15. Resource Conservation and Recovery Act (RCRA) contingency plan for hazardous waste treatment, storage, and disposal units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Not Available

    1994-08-01

    The Y-12 RCRA Contingency Plan will be continually reviewed and revised if any of the following occur: the facility permit is revised, the plan is inadequate in an emergency, the procedures can be improved, the operations of the facility change in a way that alters the plan, the emergency coordinator changes, or the emergency equipment list changes. Copies of the Y-12 Emergency Management Plan are available at the Plant Shift Superintendent`s Office and the Emergency Management Office. This document serves to supplement the Y-12 Emergency Management Plan to be appropriate for all RCRA hazardous waste treatment, storage, or disposal units. The 90-day accumulation areas at the Y-12 Plant have a separate contingency supplement as required by RCRA and are separate from this supplement.

  16. Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates

    SciTech Connect

    Southworth, George R; Greeley Jr, Mark Stephen; Peterson, Mark J; Lowe, Kenneth Alan; Ketelle, Richard H; Floyd, Stephanie B

    2010-02-01

    East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in

  17. Productivity Techniques and Quality Aspects in the Criticality Safety Evaluation of Y-12 Type-B Fissile Material Packages

    SciTech Connect

    DeClue, J. F.

    2011-06-28

    The inventory of certified Type-B fissile material packages consists of ten performance-based packages for offsite transportation purposes, serving transportation programs at the Y-12 National Security Complex. The containment vessels range from 5 to 19 in. in diameter and from 17 to 58 in. in height. The drum assembly external to the containment vessel ranges from 18 to 34 in. in diameter and from 26 to 71 in. in height. The weight of the packaging (drum assembly and containment vessel) ranges from 239 to 1550 lb. The older DT-nn series of Cellotex-based packages are being phased-out and replaced by a new generation of Kaolite-based ('Y-12 patented insulation') packages capable of withstanding the dynamic crush test 10 CFR 71.73(c)(2). Three replacement packages are in various stages of development; two are in use. The U.S. Department of Transportation (DOT) 6M specification package, which does not conform to the U.S. Nuclear Regulatory Commission requirements for Type-B packages, is no longer authorized for service on public roads. The ES-3100 shipping package is an example of a Kaolite-based Type-B fissile material package developed as a replacement package for the DOT 6M. With expanded utility, the ES-3100 is designed and licensed for transporting highly enriched uranium and plutonium materials on public roads. The ES-3100 provides added capability for air transport of up to 7-kg quantities of uranium material. This paper presents the productivity techniques and quality aspects in the criticality safety evaluation of Y-12 packages using the ES-3100 as an example.

  18. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    SciTech Connect

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  19. A pharmacodynamic study of the optimal P2Y12 inhibitor regimen for East Asian patients with acute coronary syndrome

    PubMed Central

    Lee, Ji Hyun; Ahn, Sung Gyun; Park, Bonil; Park, Sang Wook; Kang, Yong Seok; Lee, Jun-Won; Youn, Young Jin; Ahn, Min-Soo; Kim, Jang-Young; Yoo, Byung-Su; Lee, Seung-Hwan; Yoon, Junghan

    2015-01-01

    Background/Aims: Newer P2Y12 inhibitors, such as prasugrel and ticagrelor, have greater antiplatelet efficacy but may increase the risk of bleeding. In this study, we compared the pharmacodynamic efficacy of prasugrel and ticagrelor in East Asian patients with acute coronary syndrome (ACS). Methods: We selected 83 ACS patients undergoing percutaneous coronary intervention who were discharged with 90 mg ticagrelor twice daily (n = 24), 10 mg prasugrel daily (n = 39) or 5 mg prasugrel daily (n = 20). After 2 to 4 weeks, on-treatment platelet reactivity (OPR) was assessed in terms of P2Y12 reaction units (PRUs) using the VerifyNow P2Y12 assay (Accumetrics). We compared East Asian (85 < PRU ≤ 275) and Caucasian (85 < PRU ≤ 208) criteria for assessing the therapeutic window of OPR. Results: OPR was lowest in the ticagrelor group, followed by the 10 mg prasugrel and 5 mg prasugrel groups (49.1 ± 29.9 vs. 83.7 ± 57.1 vs. 168.5 ± 60.8, respectively; p < 0.001). The 5 mg prasugrel group had the highest proportion of patients with OPR values within the therapeutic window, followed by the 10 mg prasugrel and ticagrelor groups (90.0% vs. 46.2% vs. 12.5%, respectively; p < 0.001 for East Asian criteria; 60.0% vs. 43.6% vs. 12.5%, respectively; p < 0.001 for Caucasian criteria). Conclusions: Short-term administration of 5 mg prasugrel facilitated maintenance within the therapeutic window of OPR compared with the 10 mg prasugrel and ticagrelor groups. Thus, 5 mg prasugrel daily may be the optimal antiplatelet regimen for stabilized East Asian ACS patients. PMID:26354056

  20. Contaminant hydrogeology — Dollars and sense

    NASA Astrophysics Data System (ADS)

    Schwartz, Franklin W.

    1988-07-01

    The unprecedented growth in contaminant-related aspects of hydrogeology has left an amazing legacy of science and technology. The stimulus for this growth in the United States was a group of regulations designed to clean up existing problems involving hazardous wastes and eliminate future problems. At the same time, there has been a continuing effort in developing subsurface repositories for the disposal of high-level nuclear waste. There have been impressive technological achievements in direct and indirect methods for plume definition, new techniques for site remediation, and measurement of hydraulic parameters for low-permeability rock at great depths. Achievements on the theoretical side of the science are no less impressive. Great strides have been made in understanding some old transport processes (e.g., dispersion) and describing new ones (e.g., diffusion into the matrix), verifying these theoretical ideas in field tests, and dealing with an old nemesis — fractured rocks. Sprinkled in this mix are some disappointments, the great difficulty that seems to exist in translating theory into practice, the apparent difficulty in technology transfer. and the aimlessness of too much of our theoretical work. Trends for the future that seem to be emerging include a return to field and experimental work, a more systematic look at problems, an increased reliance on computer technology, and the demise of "blue-sky research".

  1. Hydrogeology of formation waters, northwestern Alberta basin

    SciTech Connect

    Bachu, S.; Underschultz, J.R. )

    1993-10-01

    Generally, temperature seems to be the main controlling factor on salinity distributions. The salinity of formation waters increases in the vicinity of evaporitic beds, and decreases close to the surface because of mixing with fresh meteoric water introduced through local flow systems. The Lower and Middle Devonian pre-Prairie aquifer systems, beneath the regionally extensive Prairie aquiclude, are characterized by regional topographically-driven flow updip to the northeast. The flow of formation waters in the northeastern Alberta played an important role in the formation of the huge Athabasca oil sands deposits. Hydrocarbons that migrated into the area from the west were trapped into local reservoirs, and biodegraded and washed by fresh meteoric water introduced by local flow systems. Environmentally, the subsurface hydrogeology in the area imposes specific constraints on waste disposal in deep formations mostly because of the absence of a thick, continuous regional aquitard and because most aquifers subcrop at shallow depth or crop out and discharge along the valleys of the Athabasca River system and at the basin edge.

  2. 2101-M Pond hydrogeologic characterization report

    SciTech Connect

    Chamness, M.A.; Luttrell, S.P.; Bates, D.J.; Martin, W.J.

    1990-09-01

    This report documents information collected by the Pacific Northwest Laboratory {sup (a)} at the request of Westinghouse Hanford Company. Presented in this report is the interpretation of the hydrogeologic environment at the 2101-M Pond, located in the 200-East Area of the Hanford Site. This information and its accompanying interpretation were derived from sampling and testing activities associated with the installation of four ground-water monitoring wells, in addition to data gathered from several previously existing wells. The new monitoring wells were installed as part of a groundwater monitoring program initiated in 1988. The four new monitoring wells were installed around the 2101-M Pond between May 23 and August 27, 1988. Geologic sampling, aquifer testing, and initial ground-water sampling were performed during the installation of these wells. Laboratory analyses of the sediment samples for particle size, calcium carbonate content, and selected natural and contaminant constituents were performed. A full year of quarterly ground-water sampling and the first statistical analysis of background and downgradient data have also been performed. 112 refs., 49 figs., 18 tabs.

  3. Geology and hydrogeology of the Florida Keys

    USGS Publications Warehouse

    Halley, Robert B.; Vacher, H. L.; Shinn

    1997-01-01

    This chapter discusses the geology and hydrogeology of the Florida Keys, and focuses on the islands formed of Pleistocene limestone. These islands, which are crossed when driving from Miami to Key West, are typically regarded as "the Florida Keys." The outstanding and fragile character of ecosystems on and around the Florida Keys has prompted State and Federal efforts to protect and preserve the remaining public portions of the region. The Florida Keys were largely ignored during the sixteenth, seventeenth, and eighteenth centuries, although the waters just offshore provided a major shipping thoroughfare to and from the New World. The Florida Keys are now recognized as one of the great recreational and environmental resources of the United States. The islands are outposts of a laid-back, tropical resort culture that has as its foundation warmth and clear water. A significant part of the attraction is fishing, diving, and boating around the area's coral reefs, which the islands protect. But the reefs were not always so highly valued. The Florida Keys that have protected the reefs for millennia, may now be the source of the agents that may accomplish what Agassiz thought was beyond man's power a century ago.

  4. Proposed plan for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1991-03-01

    The US Department of Energy (DOE) in compliance with Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, is releasing the proposed plan for remedial action at the United Nuclear Corporation (UNC) Disposal Site located at the DOE Oak Ridge Operations (ORO) Y-12 Plant, Oak Ridge, Tennessee. The purpose of this document is to present and solicit for comment to the public and all interested parties the preferred plan'' to remediate the UNC Disposal Site. However, comments on all alternatives are invited.

  5. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis.

    PubMed

    Savi, Pierre; Herbert, Jean-Marc

    2005-04-01

    Ticlopidine and clopidogrel belong to the same chemical family of thienopyridine adenosine diphosphate (ADP)-receptor antagonists. They have shown their efficacy as platelet antiaggregant and antithrombotic agents in many animal models, both ex vivo and in vivo. Although ticlopidine was discovered more than 30 years ago, it was only recently that the mechanism of action of ADP-receptor antagonists was characterized in detail. Ticlopidine and clopidogrel both behave in vivo as specific antagonists of P2Y (12), one of the ADP receptors on platelets. Metabolic steps that involve cytochrome P450-dependent pathways are required to generate the active metabolite responsible for this in vivo activity. The active moiety is a reactive thiol derivative that targets P2Y (12) on platelets. The interaction is irreversible, accounting for the observation that platelets are definitely antiaggregated, even if no active metabolite is detectable in plasma. The interaction is specific for P2Y (12); other purinoceptors such as P2Y (1) and P2Y (13) are spared. This results in inhibition of the binding of the P2Y (12) agonist 2-methylthio-ADP and the ADP-induced downregulation of adenylyl cyclase. Platelet aggregation is affected not only when triggered by ADP but also by aggregation inducers when used at concentrations requiring released ADP as an amplifier. The efficacy and safety of clopidogrel has been established in several large, randomized, controlled trials. The clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE) trial demonstrated the superiority of clopidogrel over acetylsalicylic acid (ASA) in patients at risk of ischemic events, including ischemic stroke, myocardial infarction (MI), and peripheral arterial disease. The clopidogrel in unstable angina to prevent recurrent ischemic events (CURE) trial showed a sustained, incremental benefit when clopidogrel was added to standard therapy (including ASA) in patients with unstable angina and non-Q-wave MI

  6. Switching of platelet P2Y12 receptor inhibitors in patients with acute coronary syndromes undergoing percutaneous coronary intervention: Review of the literature and practical considerations.

    PubMed

    De Luca, Leonardo; Capranzano, Piera; Patti, Giuseppe; Parodi, Guido

    2016-06-01

    The combination of aspirin and a P2Y12 receptor inhibitor is the cornerstone of treatment in patients with acute coronary syndromes (ACSs) and in those undergoing percutaneous coronary intervention (PCI). At the present time, 3 different oral P2Y12 receptor inhibitors are available on the market; 2 have obtained the indication for ACS (clopidogrel and ticagrelor) and 1 for ACS with planned PCI (prasugrel). An intravenous direct acting P2Y12 inhibitor, cangrelor, has also been recently approved by US and European regulatory agencies for patients undergoing PCI. Although the correct timing and modality of transition from intravenous cangrelor to oral P2Y12 inhibitors is still controversial and needs further evidence, switching between oral P2Y12 receptor inhibitors frequently occurs in clinical practice for several reasons. This practice raises the question of the relative safety of this strategy and of which switching approaches are preferable. In this article, we review the data on switching antiplatelet treatment strategies with P2Y12 receptor inhibitors and discuss practical considerations for switching therapies in patients with ACS undergoing PCI. PMID:27264219

  7. Wetland Survey of Selected Areas in the Oak Ridge Y-12 Plant Area of Responsibilty, Oak Ridge, Tennessee

    SciTech Connect

    Rosensteel

    1997-01-01

    This document was prepared to summarize wetland surveys performed in the Y- 1 2 Plant area of responsibility in June and July 1994. Wetland surveys were conducted in three areas within the Oak Ridge Y- 12 Plant area of responsibility in June and July 1994: the Upper East Fork Poplar Creek (UEFPC) Operable Unit (OU), part of the Bear Creek Valley OU (the upper watershed of Bear Creek from the culvert under Bear Creek Road upstream through the Y-12 West End Environmental Management Area, and the catchment of Bear Creek North Tributary 1), and part of Chestnut Ridge OU 2 (the McCoy Branch area south of Bethel Valley Road). Using the criteria and methods set forth in the Wetlands Delineation Manual, 18 wetland areas were identified in the 3 areas surveyed; these areas were classified according to the system developed by Cowardin. Fourteen wetlands and one wetland/pond area that are associated with disturbed or remnant stream channels and seeps were identified in the UEFPC OU. Three wetlands were identified in the Bear Creek Valley OU portion of the survey area. One wetland was identified in the riparian zone of McCoy Branch in the southern portion of Chestnut Ridge OU 2.

  8. Salvianolic acid B inhibits platelets as a P2Y12 antagonist and PDE inhibitor: evidence from clinic to laboratory.

    PubMed

    Liu, Lei; Li, Jian; Zhang, Yan; Zhang, Shenghui; Ye, Jianqin; Wen, Zhichao; Ding, Jianping; Kunapuli, Satya P; Luo, Xinping; Ding, Zhongren

    2014-10-01

    Salviae miltiorrhiza (Danshen) has been used for thousands of years in China and some other Asian countries to treat atherothrombotic diseases. Salvianolate which consists of three water-soluble ingredients purified from Salviae miltiorrhiza, has been approved by Chinese SFDA to treat coronary artery disease. So far, there is no evidence clearly showing the clinical efficiency of salvianolate and the underlying mechanism. This study is to evaluate the effects of salvianolate on platelets in patients with acute coronary syndrome and explore the underlying mechanism. We evaluated the effects of salvianolate on platelets in patients with acute coronary syndrome by measuring ADP-induced PAC-1 binding and P-selectin expression on platelets. Salvianolate significantly potentiated the antiplatelet effects of standard dual antiplatelet therapy. We also investigated the antiplatelet effects of salvianolatic acid B (Sal-B), the major component which composes 85% of salvianolate. Sal-B inhibits human platelet activation induced by multiple agonists in vitro by inhibiting phosphodiesterase (PDE) and antagonizing P2Y12 receptor. For the first time, we show the antiplatelet efficiency of salvianolate in ACS patients undergoing treatment with clopidogrel plus aspirin, and demonstrate that Sal-B, the major component of salvianolate inhibits human platelet activation via PDE inhibition and P2Y12 antagonism which may account for the clinical antiplatelet effects of salvianolate. Our results suggest that Sal-B may substitute salvianolate for clinical use. PMID:25077998

  9. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    SciTech Connect

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

  10. Dyspnea related to reversibly-binding P2Y12 inhibitors: A review of the pathophysiology, clinical presentation and diagnostics.

    PubMed

    Unverdorben, Martin; Parodi, Guido; Pistolesi, Massimo; Storey, Robert F

    2016-01-01

    Dyspnea is a common symptom physiologically associated with strenuous exercise and pathologically reflecting well-known diseases and conditions that are predominantly pulmonary, cardiovascular, and weight-related in origin. Dyspnea improves with appropriate measures that enhance physical performance and treatment of the underlying diseases. Dyspnea is less commonly triggered by other causes such as the environment (e.g., ozone), drugs, and others, some of which do not seem to affect bronchopulmonary function as evidenced by normal results of comprehensive pulmonary function testing. In cardiovascular medicine, dyspnea has recently attracted attention because it has been reported that this symptom occurs more frequently with the administration of the new oral reversibly-binding platelet P2Y12 receptor inhibitors ticagrelor [1-6], cangrelor [7-10], and elinogrel [11]. This paper succinctly addresses the current understanding of the pathophysiology, clinical presentation, and diagnostics of dyspnea, associated either with bronchopulmonary function impairment, as triggered mainly by pulmonary and cardiovascular diseases, or without bronchopulmonary function impairment, as induced by endogenous or external compounds such as drugs in order to provide a context for understanding, recognizing and managing P2Y12 inhibitor-induced dyspnea. PMID:26386945

  11. Airborne EM for geothermal and hydrogeological mapping

    NASA Astrophysics Data System (ADS)

    Menghini, A.; Manzella, A.; Viezzoli, A.; Montanari, D.; Maggi, S.

    2012-12-01

    Within the "VIGOR" project, aimed at assessing the geothermal potential of four regions in southern Italy, Airborne EM data have been acquired, modeled and interpreted. The system deployed was SkyTEM, a time-domain helicopter electromagnetic system designed for hydrogeophysical, environmental and mineral investigations. The AEM data provide, after data acquisition, analysis, processing, and modeling, a distribution volume of electrical resistivity, spanning an investigation depth from ground surface of few hundred meters, depending on resistivity condition. Resistivity is an important physical parameter for geothermal investigation, since it proved to be very effective in mapping anomalies due to hydrothermal fluid circulation, which usually has high salt content and produces clayey alteration minerals. Since the project required, among other issues, to define geothermal resources at shallow level, it was decided to perform a test with an airborne electromagnetic geophysical survey, to verify the advantages offered by the system in covering large areas in a short time. The geophysical survey was carried out in Sicily, Italy, in late 2011, over two test sites named "Termini" and "Western Sicily". The two areas were chosen on different basis. "Termini" area is covered by extensive geological surveys, and was going to be investigated also by means of electrical tomography in its northern part. Since geological condition of Sicily, even at shallow depth, is very complex, this area provided a good place for defining the resistivity values of the main geological units outcropping in the region. "Termini" survey has been also an occasion to define relations between resistivity distribution, lithological units and thermal conductivity. The "Western Sicily" area cover the main thermal manifestations of western Sicily, and the research target was to establish whether they are characterized by common hydrogeological or tectonic features that could be mapped by resistivity

  12. Application of the self-potential method in hydrogeology

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey Ralston

    The self-potential (SP) method is a passive electrical tool that measures naturally occurring voltages created by fluid flow in earth materials. SP monitoring has proven to be a fast and inexpensive means for evaluating subsurface hydrology. This dissertation presents the results of three studies, demonstrating innovative use of the SP method for describing both historical and new hydrogeologic scenarios. The cumulative result encourages application of SP monitoring in a variety of situations, and demonstrates the unique ability of the SP method to describe the physical processes controlling subsurface fluid flow. Three topics were investigated by means of SP monitoring: hydraulic fracturing of low-permeability intact rock, liquid CO2 flow through rock in support of carbon sequestration research, and seepage characterization at a remote moraine dam. In the case of hydraulic fracturing, SP observations responded to permeability variations prior to fracturing caused by dilatancy of microcracks at high pore pressure. An asymmetric spatial SP response was observed as injectate moved into aligned dilatant zones during pressurization, which in most cases revealed the impending crack geometry. SP measurements described the direction of crack propagation after initial fracturing due to strong anisotropic flow through the new fracture zone. During liquid CO 2 injection into reservoir rock, differences in the magnitude of the SP coupling coefficient (Cc) were observed for various stages of a CO 2 flood. The Cc was found to decrease by an order of magnitude as CO 2 replaced mobile water in the rock porosity, and the variation of the Cc during CO2 and water mixing was characterized. These results allow mapping of the various phase boundaries present during liquid CO 2 injection, and may contribute to the success of carbon sequestration. Finally, a preliminary description of the hydraulic regime at a remote moraine dam was obtained through analysis of SP and accompanying

  13. Python-Based Applications for Hydrogeological Modeling

    NASA Astrophysics Data System (ADS)

    Khambhammettu, P.

    2013-12-01

    Python is a general-purpose, high-level programming language whose design philosophy emphasizes code readability. Add-on packages supporting fast array computation (numpy), plotting (matplotlib), scientific /mathematical Functions (scipy), have resulted in a powerful ecosystem for scientists interested in exploratory data analysis, high-performance computing and data visualization. Three examples are provided to demonstrate the applicability of the Python environment in hydrogeological applications. Python programs were used to model an aquifer test and estimate aquifer parameters at a Superfund site. The aquifer test conducted at a Groundwater Circulation Well was modeled with the Python/FORTRAN-based TTIM Analytic Element Code. The aquifer parameters were estimated with PEST such that a good match was produced between the simulated and observed drawdowns. Python scripts were written to interface with PEST and visualize the results. A convolution-based approach was used to estimate source concentration histories based on observed concentrations at receptor locations. Unit Response Functions (URFs) that relate the receptor concentrations to a unit release at the source were derived with the ATRANS code. The impact of any releases at the source could then be estimated by convolving the source release history with the URFs. Python scripts were written to compute and visualize receptor concentrations for user-specified source histories. The framework provided a simple and elegant way to test various hypotheses about the site. A Python/FORTRAN-based program TYPECURVEGRID-Py was developed to compute and visualize groundwater elevations and drawdown through time in response to a regional uniform hydraulic gradient and the influence of pumping wells using either the Theis solution for a fully-confined aquifer or the Hantush-Jacob solution for a leaky confined aquifer. The program supports an arbitrary number of wells that can operate according to arbitrary schedules. The

  14. Hydrogeologic atlas of aquifers in Indiana

    USGS Publications Warehouse

    Fenelon, Joseph M.; Bobay, K.E.; Greeman, T.K.; Hoover, M.E.; Cohen, D.A.; Fowler, K.K.; Woodfield, M.C.; and Durbin, J. M.

    1994-01-01

    Aquifers in 12 water-management basins of Indiana are identified in a series of 104 hydrogeologic sections and 12 maps that show the thickness and configuration of aquifers. The vertical distribution of water-bearing units and a generalized potentiometric profile are shown along 3,500 miles of section lines that were constructed from drillers' logs of more than 4,200 wells. The horizontal scale of the sections is 1:125,000. Maps of aquifers showing the areal distribution of each aquifer type were drawn at a scale of 1:500,000. Unconsolidated aquifers are the most widely used aquifers in Indiana and include surficial, buried, and discontinuous layers of sand and gravel. Most of the surficial sand and gravel is in large outwash plains in northern Indiana and along the major rivers. Buried sand and gravel aquifers are interbedded with till deposits in much of the northern two-thirds of Indiana. Discontinuous sand and gravel deposits are present as isolated lenses, primarily in glaciated areas. The bedrock aquifers generally have lower yields than most of the sand and gravel aquifers; however, bedrock aquifers are areally widespread and are an important source of water. Bedrock aquifer types consist of carbonates; sandstones; complexly interbedded sandstones, siltstones, shales, limestones, and coals; and an upper weathered zone in low permeability rock. Carbonate aquifers underlie about one-half of Indiana and are the most productive of the bedrock aquifers. The other principal bedrock aquifer type, sandstone, underlies large areas in the southwestern one-fifth of Indiana. No aquifer is known to be present in the southeastern corner of Indiana.

  15. DRASTIC: A STANDARDIZED SYSTEM FOR EVALUATING GROUND WATER POLLUTION POTENTIAL USING HYDROGEOLOGIC SETTINGS

    EPA Science Inventory

    A methodology is described that will allow the pollution potential of any hydrogeologic setting to be systematically evaluated anywhere in the United States. The system has two major portions: the designation of mappable units, termed hydrogeologic settings, and the superposition...

  16. DRASTIC: A STANDARDIZED SYSTEM FOR EVALUATING GROUND WATER POLLUTION USING HYDROGEOLOGIC SETTINGS

    EPA Science Inventory

    A methodology is described that will allow the pollution potential of any hydrogeologic setting to be systematically evaluated anywhere in the United States. The system has two major portions: the designation of mappable units, termed hydrogeologic settings, and the superposit...

  17. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  18. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  19. Trends in P2Y12 Inhibitor Use in Patients Referred for Invasive Evaluation of Coronary Artery Disease in Contemporary US Practice.

    PubMed

    Fan, Weihong; Plent, Stephanie; Prats, Jayne; Deliargyris, Efthymios N

    2016-05-01

    Practice in patients undergoing invasive evaluation for coronary artery disease is variable regarding choice of P2Y12 inhibitor and timing of treatment initiation and is usually dictated by institutional or even individual operator preference. Limited data are available on the actual patterns of P2Y12 inhibitor use in contemporary practice in the United States. We used electronic medical records from the Cerner "Health Facts" database of adults who underwent coronary angiography with or without percutaneous coronary intervention (PCI) from January 2008 to June 2013 and who received a loading dose of clopidogrel, prasugrel, or ticagrelor at any time from 48 hours before the start of procedure up to 6 hours after. Timing of P2Y12 inhibitor administration was categorized as >2 hours before, 0 to 2 hours before (pretreatment groups), or after the start of procedure. Results were also evaluated according to type of P2Y12 inhibitor and patient clinical presentation. A total of 37,964 patients underwent coronary angiography, and 28,306 proceeded to PCI. Pretreatment with a P2Y12 inhibitor was observed in 28% and 23% in the overall and PCI populations, respectively. Moderate variability of pretreatment rates was noted relative to clinical presentation and P2Y12 inhibitor type. Pretreatment rates remained fairly constant over time with the exception of a decreasing trend with prasugrel. In conclusion, among patients referred for invasive evaluation of coronary artery disease, P2Y12 inhibitor pretreatment was low in contemporary US practice, an observation consistent over time and for all available agents and clinical presentations. PMID:27001447

  20. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus.

    PubMed

    Zhang, Yue; Peti-Peterdi, Janos; Müller, Christa E; Carlson, Noel G; Baqi, Younis; Strasburg, David L; Heiney, Kristina M; Villanueva, Karie; Kohan, Donald E; Kishore, Bellamkonda K

    2015-12-01

    P2Y12 receptor (P2Y12-R) signaling is mediated through Gi, ultimately reducing cellular cAMP levels. Because cAMP is a central modulator of arginine vasopressin (AVP)-induced water transport in the renal collecting duct (CD), we hypothesized that if expressed in the CD, P2Y12-R may play a role in renal handling of water in health and in nephrogenic diabetes insipidus. We found P2Y12-R mRNA expression in rat kidney, and immunolocalized its protein and aquaporin-2 (AQP2) in CD principal cells. Administration of clopidogrel bisulfate, an irreversible inhibitor of P2Y12-R, significantly increased urine concentration and AQP2 protein in the kidneys of Sprague-Dawley rats. Notably, clopidogrel did not alter urine concentration in Brattleboro rats that lack AVP. Clopidogrel administration also significantly ameliorated lithium-induced polyuria, improved urine concentrating ability and AQP2 protein abundance, and reversed the lithium-induced increase in free-water excretion, without decreasing blood or kidney tissue lithium levels. Clopidogrel administration also augmented the lithium-induced increase in urinary AVP excretion and suppressed the lithium-induced increase in urinary nitrates/nitrites (nitric oxide production) and 8-isoprostane (oxidative stress). Furthermore, selective blockade of P2Y12-R by the reversible antagonist PSB-0739 in primary cultures of rat inner medullary CD cells potentiated the expression of AQP2 and AQP3 mRNA, and cAMP production induced by dDAVP (desmopressin). In conclusion, pharmacologic blockade of renal P2Y12-R increases urinary concentrating ability by augmenting the effect of AVP on the kidney and ameliorates lithium-induced NDI by potentiating the action of AVP on the CD. This strategy may offer a novel and effective therapy for lithium-induced NDI. PMID:25855780

  1. Comparison of P2Y12 receptor inhibition by clopidogrel and prasugrel in patients undergoing percutaneous coronary intervention.

    PubMed

    Haq, M M; Ahsan, C H; Amin, M N; Karim, M R; Ali, M L; Khan, S R; Chowdhury, M Z; Mansur, M; Millat, M H; Rashid, M A

    2013-12-01

    Dual antiplatelet treatment (DAPT) with aspirin and clopidogrel is vital after percutaneous coronary intervention (PCI). Clopidogrel and prasugrel act on P2Y12 platelet surface receptors. Both these P2Y12 inhibitors are pro-drugs and depend on cytochrome system of the liver for their conversion to active metabolite. There is growing concern regarding suboptimal response in platelet inhibition by clopidogrel. Verify Now system got approval by Federal Drug Administration, USA, for assessing platelet function as its result is almost comparable to gold standard Light Transmission Aggregometry (LTA). There are no data on the prevalence of clopidogrel resistance in Bangladeshi population. Prasugrel, as an antiplatelet drug, is a newer introduction in this country. This study will show light on the efficacy of these drugs on our population especially in patients who undergo PCI where DAPT is mandatory. A total 120 (60 diabetics) patients with Acute Coronary Syndrome (ACS), were alternatively given 600 mg clopidogrel loading dose (LD) followed by 75 mg maintenance dose (MD) daily or 60 mg LD of prasugrel followed by 10 mg MD daily. Five samples of blood were taken at different time intervals over a period of 2 weeks. Measurement of percent inhibition of P2Y12 was done by VerifyNow. Patients who showed less than 20% inhibition (clopidogrel resistant) at any stage were switched to prasugrel. The outcomes of clopidogrel, prasugrel and clopidogrel switched to prasugrel groups were then compared. Nearly half (46.7%) of the patients in the clopidogrel group was found resistant to the drug as opposed to none in the prasugrel group. No difference was found between diabetic and non-diabetic subjects with respect to drug resistance. Intracoronary blood samples showed high degree of platelet inhibition with prasugrel. There was a gradual decline of platelet inhibition over two weeks with prasugrel. Almost fifty percent of the population is clopidogrel resistant in our study

  2. The French network of hydrogeological sites H+

    NASA Astrophysics Data System (ADS)

    Davy, P.; Le Borgne, T.; Bour, O.; Gautier, S.; Porel, G.; Bodin, J.; de Dreuzy, J.; Pezard, P.

    2008-12-01

    For groundwater issues (potential leakages in waste repository, aquifer management "), the development of modeling techniques is far ahead of the actual knowledge of aquifers. This raises two fundamental issues: 1) which and how much data are necessary to make predictions accurate enough for aquifer management issues; 2) which models remain relevant to describe the heterogeneity and complexity of geological systems. The French observatory H+ was created in 2002 with the twofold motivation of acquiring a large database for validating models of heterogeneous aquifers, and of surveying groundwater quality evolution in the context of environmental changes. H+ is a network of 4 sites (Ploemeur, Brittany, France; HES Poitiers, France; Cadarache, France; Campos, Mallorca, Spain) with different geological, climatic, and economic contexts. All of them are characterized by a highly heterogeneous structure (fractured crystalline basement for Ploemeur, karstified and fractured limestone for Poitiers, Cadarache and Mallorca), which is far to be taken into account by basic models. Ploemeur is exploited as a tap-water plant for a medium-size coastal city (15,000 inhabitants) for 20 years. Each site is developed for long term investigation and monitoring. They involves a dense network of boreholes, detailed geological and geophysical surveys, periodic campaigns and/or permanent measurements of groundwater flow, water chemistry, geophysical signals (including ground motions), climatic parameter, etc. Several large-scale flow experiments are scheduled per year to investigate the aquifer structure with combined geophysical, hydrogeological, and geochemical instruments. All this information is recorded in a database that has been developed to improve the sustainability and quality of data, and to be used as a collaborative tool for both site researchers and modelers. This project lasts now for 5 years. It is a short time to collect the amount of information necessary to apprehend the

  3. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee. Environmental Assessment

    SciTech Connect

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  4. Annual report of 1990 groundwater, monitoring data for treatment, storage, or disposal facilities at the Y-12 plant

    SciTech Connect

    Early, T.O.; Switek, J. )

    1991-02-01

    The purpose of this document is to provide a summary and interpretation of hydrostatic head measurements obtained from wells surrounding the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin sites at the US Department of Energy Y-12 Plant in Oak Ridge, Tennessee. Water level observations are presented using hydrographs and water table elevation maps based on data obtained during calendar year 1990. Generalized, preliminary interpretation of results are presented. The two sites covered by the this report have interim status under the provisions of the Resource Conservation and Recovery Act (RCRA). A subset of the wells at each are used for groundwater monitoring purposes under the requirements of RCRA. A discussion of the upgradient and downgradient directions for each of the sites is included. 18 refs., 14 figs.

  5. Contemporary registries on P2Y12 inhibitors in patients with acute coronary syndromes in Europe: overview and methodological considerations.

    PubMed

    Jukema, J Wouter; Lettino, Maddalena; Widimský, Petr; Danchin, Nicolas; Bardaji, Alfredo; Barrabes, Jose A; Cequier, Angel; Claeys, Marc J; De Luca, Leonardo; Dörler, Jakob; Erlinge, David; Erne, Paul; Goldstein, Patrick; Koul, Sasha M; Lemesle, Gilles; Lüscher, Thomas F; Matter, Christian M; Montalescot, Gilles; Radovanovic, Dragana; Lopez-Sendón, Jose; Tousek, Petr; Weidinger, Franz; Weston, Clive F M; Zaman, Azfar; Zeymer, Uwe

    2015-10-01

    Patient registries that document real-world clinical experience play an important role in cardiology as they complement the data from randomized controlled trials, provide valuable information on drug use and clinical outcomes, and evaluate to what extent guidelines are followed in practice. The Platelet Inhibition Registry in ACS EvalUation Study (PIRAEUS) project is an initiative of registry holders who are managing national or international registries observing patients with acute coronary syndromes (ACS). The aim of PIRAEUS is to systematically compare and combine available information/insights from various European ACS registries with a focus on P2Y12 inhibitors. The present publication introduces the 17 participating registries in a narrative and tabular form, and describes which ACS groups and which dual antiplatelet therapies were investigated. It sets the basis for upcoming publications that will focus on effectiveness and safety of the antiplatelets used. PMID:27532447

  6. Hydrogeology of the Azores volcanic archipelago (Portugal)

    NASA Astrophysics Data System (ADS)

    Cruz, J.; Coutinho, R.; Antunes, P.; Freire, P.

    2009-04-01

    the volcanic edifices slopes. The basal aquifer system is in the coastal area, presenting generally a very low hydraulic gradient. Hydrogeological surveys that have been made in the Azores archipelago points out to more than 1000 springs and wells spread all over the archipelago (950 springs and 83 drilled wells). Spring distribution is heterogeneous, with densities varying between 0.01 springs/km2 at Pico island and 0.72 springs/km2 estimated at Santa Maria. Specific capacity ranges from 1.4x10-2 to 266.7 L/sm, with a median value of 32.3 L/sm. Transmissivity also present a large range, with values ranging between 1.65x10-5 and 4.03x10-1 m2/s, and a median of 3.66x10-2 m2/s. The heterogeneous distribution shown by these values expresses the influence of the hydrogeological characteristics of volcanic terrain, resulting from syngenetic characteristics and secondary processes, like weathering. The highest values are observed in wells drilled in recent basaltic lava flows, which generally are thin and fractured, with frequent clincker levels interbedded, and the lowest data was estimated in the older volcanic formations of Santa Maria island. Groundwater on perched-water bodies, excluding the numerous mineral waters that are spread in several islands of the archipelago, present usually a low mineralization, shown by the electrical conductivity values (36-725 S/cm; median=158.0 S/cm). The average temperature is equal to 15°C. Waters have an average temperature of 15°C and are mainly slightly acid to slightly alkaline, with a pH range from 4.7 to 8.6, but showing a median value of 7.2. The main water types are Na-Cl to Na-HCO3 waters, with numerous samples lying in the intermediate compositional fields that characterize Na-Cl-HCO3 and Na-HCO3-Cl waters. The groundwater composition in the basal aquifer system is usually from the Na-Cl type and presents a higher mineralization, resulting in a median value for electrical conductivity equal to 1044 S/cm, expressing the

  7. Reduction of mercury in plant effluents data management implementation plan, FY 1998, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Fischer, K.N.; Forsberg, V.M.

    1998-03-26

    The purpose of the Data Management Implementation Plan (DMIP) is to document the requirements and responsibilities for managing, using, and archiving data used for the Reduction of Mercury in Plant Effluents (RMPE) project. The DMIP was created for the RMPE project in accordance with the guidance given in Environmental Data Management Implementation Handbook for the Environmental Restoration Program (ES/ER/TM- 88/R 1) and in ``Developing, implementing, and Maintaining Data Management Implementation Plans`` (EMEF/ER-P2216, Rev. 0). This document reflects the state of the RMPE project and the types of environmental monitoring planned as they existed through March 16, 1998. The scope of this document is the management of the RMPE project`s environmental information, which includes electronic or hard copy records describing environmental processes or conditions. The RMPE program was established as a best management practice to address sources in the Y-12 Plant that contribute mercury to plant effluents being discharged to Upper East Fork Poplar Creek. The strategy is multifaceted: reroute clean water through clean conduits; clean, reline, and/or replace mercury-contaminated water conduits; eliminate or reduce accumulations of mercury in tanks and sumps; isolate inaccessible mercury from contact with water; and install treatment capability for streams where the source(s) cannot be eliminated or mitigated to acceptable levels. The RMPE project database consists of data from surface water monitoring and sediment sampling at locations of interest within the Y-12 Plant. This DMIP describes the types and sources of RMPE data, other data systems relevant to the RMPE project, the different data management interactions and flow of information involved in processing RMPE data, and the systems used in data management.

  8. Removal action work plan for the YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1998-03-01

    The US Department of Energy is conducting environmental restoration activities at the Y-12 Plant in Oak Ridge, Tennessee. As part of these efforts, a removal action is planned for the former YS-860 Firing Ranges as described in the Action Memorandum for the project. This removal action work plan (RmAWP) is focused on the former YS-860 Firing Ranges, located outside the primary fenceline at the eastern end of the plant. This RmAWP defines the technical approach, procedures, and requirements for the removal of lead-contaminated soil and site restoration of the former YS-860 Firing Ranges at the Y-12 Plant. This RmAWP describes excavation, verification/confirmatory sampling, and reporting requirements for the project. Lower tier plans associated with the RmAWP, which are submitted as separate stand-alone documents, include a field sampling and analysis plan, a health and safety plan, a quality assurance project plan, a waste management plan, a data management implementation plan, and a best management practices plan. A site evaluation of the YS-86O Firing Ranges conducted in 1996 by Lockheed Martin Energy Systems, Inc., determined that elevated lead levels were present in the Firing Ranges target berm soils. The results of this sampling event form the basis for the removal action recommendation as described in the Action Memorandum for this project. This RmAWP contains a brief history and description of the Former YS-860 Firing Ranges Project, along with the current project schedule and milestones. This RmAWP also provides an overview of the technical requirements of the project, including a summary of the approach for the removal activities. Finally, the RmAWP identifies the regulatory requirements and the appropriate removal action responses to address applicable or relevant and appropriate requirements to achieve the project goals of substantially reducing the risk to human health and the environment.

  9. Effect of Fibrinogen on Platelet Reactivity Measured by the VerifyNow P2Y12 Assay.

    PubMed

    Dobrovolsky, A B; Laguta, P S; Guskova, E V; Yarovaya, E B; Titaeva, E V; Storozhilova, A N; Panchenko, E P

    2016-05-01

    The VerifyNow assay is based upon the ability of activated platelets to cross-link beads coated with fibrinogen. However, fibrinogen is an abundant protein of blood, and therefore it may affect test results by competing with fibrinogen of beads for binding to platelets. To test this assumption, we assessed the influence of artificial alteration of fibrinogen level in blood samples obtained from donors (n = 9) and patients on clopidogrel therapy (n = 8) on the results of the VerifyNow P2Y12 assay. Fibrinogen level was altered by adding to blood samples 1/10 volume of fibrinogen solution (10.56 g/liter) or corresponding buffer. Relative to baseline, addition of buffer significantly increased platelet reactivity, whereas addition of fibrinogen decreased it. Analysis of the relationship between change in platelet reactivity values (dBase and dPRU) and change in fibrinogen concentration (dFg) revealed strong negative correlations: dBase = -63.3 × dFg - 27.1 (r = -0.924, p < 0.0005) and dPRU = -54.4 × dFg - 21.8 (r = -0.764, p < 0.0005). Thus, the results of our experiments suggest that: (i) blood fibrinogen strongly influences results of the VerifyNow P2Y12 assay, and (ii) correcting for fibrinogen effect may be needed to improve the accuracy of the test in the measuring of antiplatelet effect of clopidogrel therapy. PMID:27297894

  10. Regimes of Helium Burning

    SciTech Connect

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-10

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Doering [ZND] detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of {approx}108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at {approx}107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below {approx}107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at {approx}5x10{sup 4} g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. (c) 2000 The American Astronomical Society.

  11. Calendar Year 1999 Groundwater Monitoring Report for the Groundwater Protection Program, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    2000-03-01

    This report contains the calendar year (CY) 1999 groundwater and surface water quality monitoring data that were obtained at the US Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee, in accordance with the applicable requirements of DOE Order 5400.1. Groundwater and surface water quality monitoring for the purposes of DOE Order 5400.1, as defined in the Environmental Monitoring Plan for the Oak Ridge Reservation (DOE 1996), includes site surveillance monitoring and exit pathway/perimeter monitoring. Site surveillance monitoring is intended to provide data regarding groundwater/surface water quality in areas that are, or could be, affected by operations at the Y-12 Plant. Exit pathway/perimeter monitoring is intended to provide data regarding groundwater and surface water quality where contaminants from the Y-12 Plant are most likely to migrate beyond the boundaries of the DOE Oak Ridge Reservation (ORR).

  12. Groundwater availability as constrained by hydrogeology and environmental flows

    USGS Publications Warehouse

    Watson, Katelyn A.; Mayer, Alex S.; Reeves, Howard W.

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.

  13. Mitigation of the surficial hydrogeological impact induced by the construction of the Pajares Tunnels (NW Spain).

    NASA Astrophysics Data System (ADS)

    Valenzuela, Pablo; Sáenz de Santa María, José Antonio; José Domínguez-Cuesta, María; López Fernández, Carlos; Meléndez-Asensio, Mónica; Jiménez-Sánchez, Montserrat

    2016-04-01

    Pajares Tunnels are railway tunnels 24.5 km long and 700 m depth drilled in Paleozoic rocks of the Cantabrian Range (NW Spain). The construction of these tunnels is the cause of a very important surficial hydrogeological impact on the Alcedo Valley consisting on: i) the strong alteration of its natural hydrogeological regime; ii) the development of 25 sinkholes from 2007 to 2014 in calcareous rocks covered by alluvial deposits; iii) the transformation of the Alcedo stream into an influent, losing all the surficial water flow by infiltration trough 7 active ponors developed at the stream bed. The estimated mean water volume infiltration across these sinkholes was around 0.4 Hm3/year (10 ls-1). Previous studies proved the infiltration of this runoff towards the new base level established by the tunnels, which would affect the operation and safety conditions required in a high-speed railway line. In order to minimize this situation, several geotechnical works have been performed from July 2014 to November 2015. These works consist on: (i) geological research, (ii) borehole drilling, (iii) geophysical prospecting, (iv) sealing of sinkholes and ponors, (v) construction of a concrete channel covered with geotextile and completely buried with original removed alluvial materials, and (vi) environmental restoration. After the completion of these actions, the first observations have allowed to note a total elimination of the infiltration from the Alcedo Valley to the tunnels. This involves an 8% reduction of total drainage in Pajares Tunnels (from average 350 l s-1 to 325 l s-1).

  14. An integrated theoretical and practical approach for teaching hydrogeology

    NASA Astrophysics Data System (ADS)

    Bonomi, Tullia; Fumagalli, Letizia; Cavallin, Angelo

    2013-04-01

    Hydrogeology as an earth science intersects the broader disciplines of geology, engineering, and environmental studies but it does not overlap fully with any of them. It is focused on its own range of problems and over time has developed a rich variety of methods and approaches. The resolution of many hydrogeological problems requires knowledge of elements of geology, hydraulics, physics and chemistry; moreover in recent years the knowledge of modelling techniques has become a necessary ability. Successful transfer of all this knowledge to the students depends on the breadth of material taught in courses, the natural skills of the students and any practical experience the students can obtain. In the Department of Earth and Environmental Sciences of the University of Milano-Bicocca, the teaching of hydrogeology is developed in three inter-related courses: 1) general hydrogeology, 2) applied hydrogeology, 3) groundwater pollution and remediation. The sequence focuses on both groundwater flux and contaminant transport, supplemented by workshops involving case studies and computer labs, which provide the students with practical translation of the theoretical aspects of the science into the world of work. A second key aspect of the program utilizes the students' skill at learning through online approaches, and this is done through three approaches: A) by developing the courses on a University e-learning platform that allows the students to download lectures, articles, and teacher comments, and to participate in online forums; B) by carring out exercises through computer labs where the student analyze and process hydrogeological data by means of different numerical codes, that in turn enable them to manage databases and to perform aquifer test analysis, geostatistical analysis, and flux and transport modelling both in the unsaturated and saturated zone. These exercises are of course preceded by theoretical lectures on codes and software, highlighting their features and

  15. Flood analyses for Department of Energy Y-12, ORNL and K-25 Plants. Flood analyses in support of flood emergency planning

    SciTech Connect

    1995-05-01

    The study involved defining the flood potential and local rainfall depth and duration data for the Department of Energy`s (DOE) Y-12, Oak Ridge National Laboratory (ORNL), and K-25 plants. All three plants are subject to flooding from the Clinch River. In addition, the Y-12 plant is subject to flooding from East Fork Poplar and Bear Creeks, the ORNL plant from Whiteoak Creek and Melton Branch, and the K-25 plant from Poplar Creek. Determination of flood levels included consideration of both rainfall events and postulated failures of Norris and Melton Hill Dams in seismic events.

  16. Request for closure, underground storage tank 2130-U: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID {number_sign}0-010117

    SciTech Connect

    Not Available

    1993-12-01

    This document presents a summary of the activities and analytical data related to the removal of underground storage tank (UST) 2130-U, previously located at the Oak Ridge Y-12 Plant. Removal of this tank was conducted in accordance with Tennessee Department of Environment and Conservation (TDEC) regulation 1200-1-15 (1992). A completed copy of the State of Tennessee, Division of Underground Storage Tanks, Permanent Closure Report Form is included as Appendix A of this document Based on the information and data presented herein, the Oak Ridge Y-12 Plant requests permanent closure for the tank 2130-U site.

  17. Geophysical characterization of Hydrogeological processes at the catchment scale

    NASA Astrophysics Data System (ADS)

    Flores Orozco, Adrian; Gallistl, Jakob; Schlögel, Ingrid; Chwatal, Werner; Oismüller, Markus; Blöschl, Günter

    2016-04-01

    The characterization of hydrogeological properties in the subsurface with high resolution across space and time scales is critical to improve our understanding of water flow and transport processes. However, to date, hydrogeological investigations are mainly performed through well-tests or the analysis of samples, thus, limiting the spatial resolution of the investigation. To properly capture heterogeneities in the subsurface controlling surface-groundwater interactions, modern hydrogeological studies require the development of innovative investigation techniques that permit to gain continuous information about subsurface state with high spatial and temporal resolution at different scales: from the pore-space all the way to the catchment. To achieve this, we propose the conduction of geophysical surveys, in particular field-scale Spectral Induced Polarization (SIP) imaging measurements. SIP images provide information about the complex electrical conductivity (CEC), which is controlled by important hydrogeological parameters, such as porosity, water content and the chemical properties of the pore-water. Here, we present imaging results collected at the catchment scale (approximately 66 ha), which permitted to gain detailed information about the spatial variability of hydrogeological parameters at different scales. The heterogeneities observed in the geophysical images revealed consistency with independent information collected at the study area. In addition to this, and taking into account that different geophysical methods yield information about different properties and at diverse scales, interpretation of the SIP images was improved by incorporation of complementary measurements, such as: ElectroMagnetic Induction (EMI), Ground Penetrating Radar (GPR), Multichannel Analysis of Surface-Waves (MASW) and Seismic Refraction-Reflection (SRR).

  18. Dynamic Treatment Regimes

    PubMed Central

    Chakraborty, Bibhas; Murphy, Susan A.

    2014-01-01

    A dynamic treatment regime consists of a sequence of decision rules, one per stage of intervention, that dictate how to individualize treatments to patients based on evolving treatment and covariate history. These regimes are particularly useful for managing chronic disorders, and fit well into the larger paradigm of personalized medicine. They provide one way to operationalize a clinical decision support system. Statistics plays a key role in the construction of evidence-based dynamic treatment regimes – informing best study design as well as efficient estimation and valid inference. Due to the many novel methodological challenges it offers, this area has been growing in popularity among statisticians in recent years. In this article, we review the key developments in this exciting field of research. In particular, we discuss the sequential multiple assignment randomized trial designs, estimation techniques like Q-learning and marginal structural models, and several inference techniques designed to address the associated non-standard asymptotics. We reference software, whenever available. We also outline some important future directions. PMID:25401119

  19. Development of China Hydrogeology Exploring Techniques in 30 Years --Comparison of Handbook of Hydrogeology of 1st and 2nd Edition

    NASA Astrophysics Data System (ADS)

    Tong, Y.

    2013-12-01

    Handbook of Hydrogeology (2nd edition) is supported by one program from China Geological Survey (CGS): Research of Technical Methods of Hydrogeological Survey and Revision of Handbook of Hydrogeology. It is a reference book for those who are engaged in hydrogeological survey and research in China and covers fundamental principles, theories, survey and exploring techniques, and traditional experiences and achievements in hydrogeology. By comparing the 1st (1978) and 2nd (2012) edition of Handbook of Hydrogeology (in Chinese), this paper analyses the development of China hydrogeological survey and exploring techniques in last 30 years, especially the great change and progress in survey techniques of hydro-remote sensing and hydro-geophysical prospecting. In the first edition of Handbook of Hydrogeology, hydro-remote sensing was only mentioned as an interpretation of aerial pictures in a hydrogeological way, but had not yet formed an independent system and discipline. In the second edition, hydro-remote sensing is an important and independent chapter as one of the hydrogeological techniques. In it, various survey techniques of hydro-remote sensing and types and features of remote sensing data are classified. General systems of interpretation marks of remote sensing images are established, including marks of landform and Quaternary sediment, bedrock, structure types, water yield property, environmental elements of hydrogeology, aquifer group and so on. Systematic workflow is constructed, esp. in remote sensing images mapping and interpreting techniques. GPS and GIS are integrated into remote sensing. Remote sensing exploring instruments and interpreting softwares are also introduced and classified. Although hydro-geophysical prospecting, in the first edition of Handbook of Hydrogeology, was one independent chapter, there were only 10 exploring techniques. Equipments and instruments were simple and lagged in comparison to those in the second edition. The precision and

  20. Hydrogeological controls on post-fire moss recovery in peatlands

    NASA Astrophysics Data System (ADS)

    Lukenbach, Max; Devito, Kevin; Kettridge, Nicholas; Petrone, Richard; Waddington, James

    2015-04-01

    Wildfire is the largest disturbance affecting peatlands, however, little is known about the spatiotemporal variability of post-fire recovery in these ecosystems. High water table (WT) positions after wildfire are critical to limit atmospheric carbon losses and enable the re-establishment of keystone peatland mosses (i.e. Sphagnum). While small-scale variation in burn severity can reduce capillary flow from the WT and lead to a dry surface after fire, steep WT declines can also limit post-fire moss water availability. As such, post-fire moss water availability is also a function of large-scale controls on peatland WT dynamics, specifically, connectivity to groundwater flow systems (i.e. hydrogeological setting). For this reason, we assessed the interacting controls of hydrogeological setting and burn severity on post-fire moss water availability by measuring peatland WTs, soil tension (Ψ) and surface volumetric moisture content (θ) in three burned, Sphagnum-dominated peatlands located in different hydrogeological settings for three years following wildfire. The effect of burn severity on post-fire moss water availability did not vary with hydrogeological setting, however, the spatial coverage of high and low burn severity did vary between peatlands located in different hydrogeological settings due to its influence on pre-fire fuel loads and species cover. Locations covered by S. fuscum prior to fire exhibited decreasing post-fire water availability with increasing burn severity. In contrast, the lowest water availability (Ψ > 400 cm, θ < 0.02) was observed in feather mosses that underwent low burn severity (residual branches identifiable). Where depth of burn was > 0.05 m (high burn severity) and pre-fire species were not identifiable, water availability was highest (Ψ < 90 cm). Where burn severity did not limit water availability through a reduction of capillary flow, depth to WT (and therefore hydrogeological setting) played a large role in affecting post

  1. Results of The Analysis of The Blood Beryllium Lymphocyte Proliferation Test Data From The Oak Ridge Y-12 Study

    SciTech Connect

    Frome, EL

    2001-12-18

    The potential hazards from exposure to beryllium or beryllium compounds in the workplace were first reported in the 1930s. The tritiated thymidine beryllium lymphocyte proliferation test (BeLPT) is an in vitro blood test that is widely used to screen beryllium exposed workers in the nuclear industry for sensitivity to beryllium. Newman [18] has discussed the clinical significance of the BeLPT and described a standard protocol that was developed in the late 1980s. Cell proliferation is measured by the incorporation of tritiated thymidine into dividing cells on two culture dates and using three concentrations of beryllium sulfate. Results are expressed as a ''stimulation index'' (SI) which is the ratio of the amount of tritiated thymidine (measured by beta counts) in the stimulated cells divided by the counts for the unstimulated cells on the same culture day. Several statistical methods for use in the routine analysis of the BeLPT were considered in the early 1990's by Frome et al. [7]. The least absolute values (LAV) method was recommended for routine analysis of the BeLPT. The purposes of this report are to further evaluate the LAV method using new data, and to describe a new method for identification of an abnormal or borderline test. This new statistical biological positive (SBP) method reflects the clinical judgment that (1) at least two SIs show a ''positive'' response to beryllium, and (2), that the maximum of the six SIs must exceed a cut point that is determined from a reference data set of normal individuals whose blood has been tested by the same method in the same serum. The new data is from the Y-12 facility in Oak Ridge and consist of 1080 worker and 33 nonexposed control BeLPTs (all tested in the same serum). Graphical results are presented to explain the statistical method, and the new SBP method is applied to the Y-12 group. The true positive rate and specificity of the new method were estimated to be 86 percent and 97 percent, respectively.

  2. Oak Ridge Reservation volume I. Y-12 mercury task force files: A guide to record series of the Department of Energy and its contractors

    SciTech Connect

    1995-02-17

    The purpose of this guide is to describe each of the series of records identified in the documents of the Y-12 Mercury Task Force Files that pertain to the use of mercury in the separation and enrichment of lithium isotopes at the Department of Energy`s (DOE) Y-12 Plant in Oak Ridge, Tennessee. History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project, which seeks to verify and conduct inventories of epidemiologic and health-related records at various DOE and DOE contractor sites. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project. Specific attention will be given to the history of the DOE-Oak Ridge Reservation, the development of the Y-12 Plant, and the use of mercury in the production of nuclear weapons during the 1950s and early 1960s. This introduction provides background information on the Y-12 Mercury Task Force Files, an assembly of documents resulting from the 1983 investigation of the Mercury Task Force into the effects of mercury toxicity upon workplace hygiene and worker health, the unaccountable loss of mercury, and the impact of those losses upon the environment. This introduction also explains the methodology used in the selection and inventory of these record series. Other topics include the methodology used to produce this guide, the arrangement of the detailed record series descriptions, and information concerning access to the collection.

  3. Resource Conservation and Recovery Act (RCRA) General Contingency Plan for Hazardous Waste Treatment, Storage, and Disposal Units at the Oak Ridge Y-12 Plant

    SciTech Connect

    1999-04-01

    This contingency plan provides a description of the Y-12 plant and its waste units and prescribes control procedures and emergency response procedures. It lists emergency and spill response equipment, provides information on coordination agreements with local agencies, and describes the evacuation plan and reporting requirements.

  4. Resource Conservation and Recovery Act (RCRA) Part B permit application for container storage units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Not Available

    1994-08-01

    This document contains Part B of the Permit Application for Container Storage Units at the Oak Ridge Y-12 Plant. Sections cover the following areas: Facility description; Waste characteristics; Process information; Ground water monitoring; Procedures to prevent hazards; Contingency plan; Personnel training; Closure plan, post closure plan, and financial requirements; Recordkeeping; Other federal laws; Organic air emissions; Solid waste management units; and Certification.

  5. Identification and characterization of a novel P2Y 12 variant in a patient diagnosed with type 1 von Willebrand disease in the European MCMDM-1VWD study.

    PubMed

    Daly, Martina E; Dawood, Ban B; Lester, William A; Peake, Ian R; Rodeghiero, Francesco; Goodeve, Anne C; Makris, Michael; Wilde, Jonathan T; Mumford, Andrew D; Watson, Stephen P; Mundell, Stuart J

    2009-04-23

    We investigated whether defects in the P2Y(12) ADP receptor gene (P2RY12) contribute to the bleeding tendency in 92 index cases enrolled in the European MCMDM-1VWD study. A heterozygous mutation, predicting a lysine to glutamate (K174E) substitution in P2Y(12), was identified in one case with mild type 1 von Willebrand disease (VWD) and a VWF defect. Platelets from the index case and relatives carrying the K174E defect changed shape in response to ADP, but showed reduced and reversible aggregation in response to 10 muM ADP, unlike the maximal, sustained aggregation observed in controls. The reduced response was associated with an approximate 50% reduction in binding of [(3)H]2MeS-ADP to P2Y(12), whereas binding to the P2Y(1) receptor was normal. A hemagglutinin-tagged K174E P2Y(12) variant showed surface expression in CHO cells, markedly reduced binding to [(3)H]2MeS-ADP, and minimal ADP-mediated inhibition of forskolin-induced adenylyl cyclase activity. Our results provide further evidence for locus heterogeneity in type 1 VWD. PMID:19237732

  6. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4: Volume 2, Technology Logic Diagram

    SciTech Connect

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D&D) problems at 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak K-25 Site technology Logic Diagram, and Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D&D and waste management activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between the cost and risk. The TLD consists of three volumes. Volume 1 presents an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among the environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets.

  7. Final construction quality assurance report for the Y-12 Industrial Landfill V, Area 2, Oak Ridge, Tennessee

    SciTech Connect

    Bessom, W.H.

    1996-11-01

    Lockheed Martin Energy Systems (LMES) has finished construction of Area 2 of the Y-12 Plant Industrial Landfill (ILF-V), classified as a Class 2 Landfill. This final Construction Quality Assurance (CQA) Report provides documentation that Area 2 was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. This report applies specifically to the Area 2 excavation, compacted clay soil liner, geomembrane liner, granular leachate collection layer, protective soil cover, and the leachate collection system. An ``As-Built`` survey was performed and is included. The drawings provide horizontal and vertical information for Area 2, the anchor trench, the leachate collection pipe, the temporary access road, and cross-sections of Area 2. This report provides documentation of the following items: the excavation activities of Area 2; the maximum recompacted coefficient of hydraulic conductivity or permeability of the soil is less than 1 {times} 10{sup {minus}7} centimeters per second (cm/sec); the total thickness of the compacted clay soil liner equals a minimum of 2 feet; a 40 mil impermeable geomembrane (polypropylene) flexible membrane liner (FML) and 16 oz. geotextile fabric was placed in direct contact with the compacted clay soil liner; a 12 inch granular leachate collection layer was installed and covered with a 8 oz. geotextile separation fabric; the installation of the leachate collection piping; and the two foot protective clay soil cover.

  8. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

  9. Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-12-01

    Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes {approximately} 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios.

  10. Feasibility study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1991-02-01

    In July 1990, the US Environmental Protection Agency (EPA) directed the Department of Energy Oak Ridge Operations to comply with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the remediation of the United Nuclear Corporation (UNC) Disposal Site located at the Y-12 Plant, Oak Ridge, Tennessee. EPA, Waste Management Branch, had approved a closure plan in December 1989 for the UNC Disposal Site. This feasibility study (FS) is a fully satisfy the National Oil and Hazardous Substances Contingency Plan (NCP) requirements for support of the selection of a remedial response for closure of the UNC Disposal Site. For two years the UNC Disposal Site accepted and disposed of waste from the decommissioning of a UNC uranium recovery facility in Wood River Junction, Rhode Island. Between June 1982 and November 1984, the UNC Disposal Site received 11,000 55-gal drums of sludge fixed in cement, 18,000 drums of contaminated soil, and 288 wooden boxes of contaminated building and process demolition materials. The FS assembles a wide range of remedial technologies so the most appropriate actions could be selected to remediate potential contamination to below MCLs and/or to below the maximum level of acceptable risk. Technologies were evaluated based on technical effectiveness, ease of implementation, and costs. Applicable technologies were then selected for alternative development. 33 refs., 9 figs., 27 tabs.

  11. Technical implementation in support of the IAEA`s remote monitoring field trial at the Oak Ridge Y-12 Plant

    SciTech Connect

    Corbell, B.H.; Moran, B.W.; Pickett, C.A.; Whitaker, J.M.; Resnik, W.; Landreth, D.

    1996-08-01

    A remote monitoring system (RMS) field trial will be conducted for the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. Remote monitoring technologies are being evaluated to verify their capability to enhance the effectiveness and timeliness of IAEA safeguards in storage facilities while reducing the costs of inspections and burdens on the operator. Phase one of the field trial, which involved proving the satellite transmission of sensor data and safeguards images from a video camera activated by seals and motion sensors installed in the vault, was completed in September 1995. Phase two involves formal testing of the RMS as a tool for use by the IAEA during their tasks of monitoring the storage of nuclear material. The field trial to be completed during early 1997 includes access and item monitoring of nuclear materials in two storage trays. The RMS includes a variety of Sandia, Oak Ridge, and Aquila sensor technologies that provide video monitoring, radiation attribute measurements, and container identification to the on-site data acquisition system (DAS) by way of radio-frequency and Echelon LONWorks networks. The accumulated safeguards information will be transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines.

  12. Postremediation monitoring program baseline assessment report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Greeley, M.S. Jr.; Ashwood, T.L.; Kszos, L.A.; Peterson, M.J.; Rash, C.D.; Southworth, G.R.; Phipps, T.L.

    1998-04-01

    Lower East Fork Poplar Creek (LEFPC) and its floodplain are contaminated with mercury (Hg) from ongoing and historical releases from the US Department of Energy (DOE) Oak Ridge Y-12 Plant. A remedial investigation and feasibility study of LEFPC resulted in the signing of a Record of Decision (ROD) in August 1995. In response to the ROD, soil contaminated with mercury above 400 mg/kg was removed from two sites in LEFPC and the floodplain during a recently completed remedial action (RA). The Postremediation Monitoring Program (PMP) outlined in the LEFPC Monitoring Plan was envisioned to occur in two phases: (1) a baseline assessment prior to remediation and (2) postremediation monitoring. The current report summarizes the results of the baseline assessment of soil, water, biota, and groundwater usage in LEFPC and its floodplain conducted in 1995 and 1996 by personnel of the Oak Ridge National Laboratory Biological Monitoring and Abatement Program (BMAP). This report also includes some 1997 data from contaminated sites that did not undergo remediation during the RA (i.e., sites where mercury is greater than 200 mg/kg but less than 400 mg/kg). The baseline assessment described in this document is distinct and separate from both the remedial investigation/feasibility study the confirmatory sampling conducted by SAIC during the RA. The purpose of the current assessment was to provide preremediation baseline data for the LEFPC PMP outlined in the LEFPC Monitoring Plan, using common approaches and techniques, as specified in that plan.

  13. Hydrogeologic framework and estimates of ground-water volumes in Tertiary and upper Cretaceous hydrogeologic units in the Powder River basin, Wyoming

    USGS Publications Warehouse

    Hinaman, Kurt

    2005-01-01

    The Powder River Basin in Wyoming and Montana is an important source of energy resources for the United States. Coalbed methane gas is contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. This gas is released when water pressure in coalbeds is lowered, usually by pumping ground water. Issues related to disposal and uses of by-product water from coalbed methane production have developed, in part, due to uncertainties in hydrologic properties. One hydrologic property of primary interest is the amount of water contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, conducted a study to describe the hydrogeologic framework and to estimate ground-water volumes in different facies of Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin in Wyoming. A geographic information system was used to compile and utilize hydrogeologic maps, to describe the hydrogeologic framework, and to estimate the volume of ground water in Tertiary and upper Cretaceous hydrogeologic units in the Powder River structural basin in Wyoming. Maps of the altitudes of potentiometric surfaces, altitudes of the tops and bottoms of hydrogeologic units, thicknesses of hydrogeologic units, percent sand of hydrogeologic units, and outcrop boundaries for the following hydrogeologic units were used: Tongue River-Wasatch aquifer, Lebo confining unit, Tullock aquifer, Upper Hell Creek confining unit, and the Fox Hills-Lower Hell Creek aquifer. Literature porosity values of 30 percent for sand and 35 percent for non-sand facies were used to calculate the volume of total ground water in each hydrogeologic unit. Literature specific yield values of 26 percent for sand and 10 percent for non-sand facies, and literature specific storage values of 0.0001 ft-1 (1/foot) for sand facies and 0.00001 ft-1 for non-sand facies, were used to calculate a

  14. Platelet P2Y12 receptors are involved in the haemostatic effect of notoginsenoside Ft1, a saponin isolated from Panax notoginseng

    PubMed Central

    Gao, B; Huang, L; Liu, H; Wu, H; Zhang, E; Yang, L; Wu, X; Wang, Z

    2014-01-01

    BACKGROUND AND PURPOSE Saponins isolated from Panax notoginseng (Burk.) F.H. Chen have been shown to relieve thrombogenesis and facilitate haemostasis. However, it is not known which saponin accounts for this haemostatic effect. Hence, in the present study we aimed to identify which saponins contribute to its haemostatic activity and to elucidate the possible underlying mechanisms. EXPERIMENTAL APPROACH Platelet aggregation was analysed using a platelet aggregometer. Prothrombin time, activated partial thromboplastin time and thrombin time were measured using a blood coagulation analyser, which was further corroborated with bleeding time and thrombotic assays. The interaction of notoginsenoside Ft1 with the platelet P2Y12 receptor was determined by molecular docking analysis, cytosolic Ca2+ and cAMP measurements, and phosphorylation of PI3K and Akt assays. KEY RESULTS Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca2+ accumulation, effects that were attenuated by clopidogrel. Molecular docking analysis suggested that Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca2+ evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor. Ft1 also affected the production of cAMP and increased phosphorylation of PI3K and Akt downstream of P2Y12 signalling pathways. CONCLUSION AND IMPLICATIONS Ft1 enhanced platelet aggregation by activating a signalling network mediated through P2Y12 receptors. These novel findings may contribute to the effective utilization of this compound in the therapy of haematological disorders. PMID:24117220

  15. Hydrogeologic Framework of Onslow County, North Carolina, 2008

    USGS Publications Warehouse

    Fine, Jason M.

    2008-01-01

    The unconsolidated sediments that underlie the Onslow County area are composed of interlayered permeable and impermeable beds, which overlie the crystalline basement rocks. The aquifers, composed mostly of sand and limestone, are separated by confining units composed mostly of clay and silt. The aquifers from top to bottom are the surficial, Castle Hayne, Beaufort, Peedee, Black Creek, and Upper and Lower Cape Fear aquifers. For this study, the Castle Hayne aquifer is informally divided into the upper and lower Castle Hayne aquifers. The eight aquifers and seven confining units of the Tertiary and Cretaceous strata beneath Onslow County are presented in seven hydrogeologic sections. The hydrogeologic framework was refined from existing interpretations by using geophysical logs, driller's logs, and other available data from 123 wells and boreholes.

  16. HYDROGEOLOGIC CHARACTERIZATION OF THE U-3bl COLLAPSE ZONE

    SciTech Connect

    Bechtel Nevada and National Security Technologies, LLC

    2006-09-01

    The U-3bl collapse crater was formed by an underground nuclear test in August 1962. This crater and the adjoining U-3ax crater were subsequently developed and used as a bulk low-level radioactive waste disposal cell (U-3ax/bl), which is part of the Area 3 Radioactive Waste Management Site at the Nevada Test Site (NTS). Various investigations have been conducted to assess the hydrogeologic characteristics and properties in the vicinity of the U-3ax/bl waste disposal cell. This report presents data from one of these investigations, conducted in 1996. Also included in this report is a review of pertinent nuclear testing records, which shows that the testing operations and hydrogeologic setting of the U-3ax/bl site were typical for the period and location of testing.

  17. The hydrogeologic-geochemical model of Cerro Prieto revisited

    SciTech Connect

    Lippmann, M.J.; Halfman, S.E.; Truesdell, A.H.; Manon M., A.

    1989-01-01

    As the exploitation of the Cerro Prieto, Mexico, geothermal field continues, there is increasing evidence that the hydrogeologic model developed by Halfman et al. (1984, 1986) presents the basic features controlling the movement of geothermal fluids in the system. At the present time the total installed capacity at Cerro Prieto is 620 MWe requiring the production of more than 10,500 tonnes/hr of a brine-steam mixture. This significant rate of fluid production has resulted in changes in reservoir thermodynamic conditions and in the chemistry of the produced fluids. After reviewing the hydrogeologic-geochemical model of Cerro Prieto, some of the changes observed in the field due to its exploitation are discussed and interpreted on the basis of the model. 21 refs., 11 figs., 1 tab.

  18. Land Use and Hydrogeological Characteristics Influence Groundwater Invertebrate Communities.

    PubMed

    Tione, María Laura; Bedano, José Camilo; Blarasin, Mónica

    2016-08-01

    We examine the influence of land use and hydrogeological characteristics on the abundance, composition and structure of groundwater invertebrate communities in a loessic aquifer from Argentina. Seven wells, selected according to surrounding land use and hydrogeological characteristics, were sampled twice. Groundwater was characterized as sodium bicarbonate, bicarbonate sulfate or sulfate type. NO3(-) was detected in all samples. Land use in the area surrounding the well, unsaturated zone thickness and geochemical characteristics of groundwater influenced the abundance, composition and community structure of groundwater invertebrates. Copepoda, Oligochaeta, Cladocera, Ostracoda and Amphipoda were highly influenced by land use, particularly by point pollution sources that produced higher abundance and changes in taxonomic composition. The lowest invertebrate abundance was observed at the wells situated in areas with the thickest unsaturated zone. Groundwater salinity and geochemical type influenced the presence of certain species, particularly Stygonitocrella sp. PMID:27456146

  19. Hydrogeologic data from parts of the Denver Basin, Colorado

    USGS Publications Warehouse

    Major, T.J.; Robson, S.G.; Romero, J.C.; Zawistowski, Stanley

    1983-01-01

    This report presents hydrogeologic data collected and compiled during 1956-81 as part of a comprehensive hydrogeologic data collected and compiled during 1956-81 as part of a comprehensive hdryogeologic investigation of the Denver basin, Colorado, by the U.S. Geological Survey in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, Office of the State Engineer. The data, in tabular and graphic form, consist of records for 870 wells which include water-level data for 158 wells and water-quality analyses for 561 wells; geophysical logs from three wells which include resistivity, self potential, and natural gamma logs; and gain-and-loss data of streamflow measured at 54 sites. (USGS)

  20. Hydrogeologic model of the Ahuachapan geothermal field, El Salvador

    SciTech Connect

    Laky, C.; Lippmann, M.J.; Bodvarsson, G.S. ); Retana, M.; Cuellar, G. )

    1989-01-01

    A hydrogeological model of the Ahuachapan geothermal field has been developed. It considers the lithology and structural features of the area and discerns their impact on the movement of cold and hot fluids in the system. Three aquifers were identified, their zones of mixing and flow patterns were obtained on the basis of temperature and geochemical data from wells and surface manifestations. 12 refs., 9 figs.

  1. Coastal hydrogeological system of Mar Piccolo (Taranto, Italy).

    PubMed

    Zuffianò, L E; Basso, A; Casarano, D; Dragone, V; Limoni, P P; Romanazzi, A; Santaloia, F; Polemio, M

    2016-07-01

    The Mar Piccolo basin is an internal sea basin located along the Ionian coast (Southern Italy), and it is surrounded primarily by fractured carbonate karstic environment. Because of the karstic features, the main continental water inflow is from groundwater discharge. The Mar Piccolo basin represents a peculiar and sensitive environment and a social emergency because of sea water and sediment pollution. This pollution appears to be caused by the overlapping effects of dangerous anthropogenic activities, including heavy industries and commercial and navy dockyards. The paper aims to define the contribution of subaerial and submarine coastal springs to the hydrological dynamic equilibrium of this internal sea basin. A general approach was defined, including a hydrogeological basin border assessment to detect inflowing springs, detailed geological and hydrogeological conceptualisation, in situ submarine and subaerial spring measurements, and flow numerical modelling. Multiple sources of data were obtained to define a relevant geodatabase, and it contained information on approximately 2000 wells, located in the study area (1600 km(2)). The conceptualisation of the hydrogeological basin, which is 978 km(2) wide, was supported by a 3D geological model that interpolated 716 stratigraphic logs. The variability in hydraulic conductivity was determined using hundreds of pumping tests. Five surveys were performed to acquire hydro-geochemical data and spring flow-yield measurements; the isotope groundwater age was assessed and used for model validation. The mean annual volume exchanged by the hydrogeological basin was assessed equal to 106.93 10(6) m(3). The numerical modelling permitted an assessment of the mean monthly yield of each spring outflow (surveyed or not), travel time, and main path flow. PMID:26201653

  2. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the

  3. Developing Hydrogeological Site Characterization Strategies based on Human Health Risk

    NASA Astrophysics Data System (ADS)

    de Barros, F.; Rubin, Y.; Maxwell, R. M.

    2013-12-01

    In order to provide better sustainable groundwater quality management and minimize the impact of contamination in humans, improved understanding and quantification of the interaction between hydrogeological models, geological site information and human health are needed. Considering the joint influence of these components in the overall human health risk assessment and the corresponding sources of uncertainty aid decision makers to better allocate resources in data acquisition campaigns. This is important to (1) achieve remediation goals in a cost-effective manner, (2) protect human health and (3) keep water supplies clean in order to keep with quality standards. Such task is challenging since a full characterization of the subsurface is unfeasible due to financial and technological constraints. In addition, human exposure and physiological response to contamination are subject to uncertainty and variability. Normally, sampling strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on the overall system uncertainty. Therefore, quantifying the impact from each of these components (hydrogeological, behavioral and physiological) in final human health risk prediction can provide guidance for decision makers to best allocate resources towards minimal prediction uncertainty. In this presentation, a multi-component human health risk-based framework is presented which allows decision makers to set priorities through an information entropy-based visualization tool. Results highlight the role of characteristic length-scales characterizing flow and transport in determining data needs within an integrated hydrogeological-health framework. Conditions where uncertainty reduction in human health risk predictions may benefit from better understanding of the health component, as opposed to a more detailed hydrogeological characterization, are also discussed. Finally, results illustrate how different dose

  4. Geological realism in hydrogeological and geophysical inverse modeling: A review

    NASA Astrophysics Data System (ADS)

    Linde, Niklas; Renard, Philippe; Mukerji, Tapan; Caers, Jef

    2015-12-01

    Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios.

  5. Impacts of rainfall spatial variability on hydrogeological response

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Jódar, Jorge; Navarro, Vicente; Slooten, Luit Jan; Carrera, Jesús; Gupta, Hoshin V.

    2015-02-01

    There is currently no general consensus on how the spatial variability of rainfall impacts and propagates through complex hydrogeological systems. Most studies to date have focused on the effects of rainfall spatial variability (RSV) on river discharge, while paying little attention to other important aspects of system response. Here, we study the impacts of RSV on several responses of a hydrological model of an overexploited system. To this end, we drive a spatially distributed hydrogeological model for the semiarid Upper Guadiana basin in central Spain with stochastic daily rainfall fields defined at three different spatial resolutions (fine → 2.5 km × 2.5 km, medium → 50 km × 50 km, large → lumped). This enables us to investigate how (i) RSV at different spatial resolutions, and (ii) rainfall uncertainty, are propagated through the hydrogeological model of the system. Our results demonstrate that RSV has a significant impact on the modeled response of the system, by specifically affecting groundwater recharge and runoff generation, and thereby propagating through to various other related hydrological responses (river discharge, river-aquifer exchange, groundwater levels). These results call into question the validity of management decisions made using hydrological models calibrated or forced with spatially lumped rainfall.

  6. Summary of hydrogeologic conditions by county for the state of Michigan

    USGS Publications Warehouse

    Apple, Beth A.; Reeves, Howard W.

    2007-01-01

    Summaries of the major hydrogeologic features for each county in Michigan are presented. Each summary includes a listing of the major watersheds in the county and a description of the hydrogeology of the major aquifers in the county. Aquifer properties reported in the literature are given if available. Reports describing the hydrogeology of each county are cited. This work was prepared to provide a brief introduction to the ground‑water setting for each county.

  7. Hydrogeological controls on post-fire moss recovery in peatlands

    NASA Astrophysics Data System (ADS)

    Lukenbach, M. C.; Devito, K. J.; Kettridge, N.; Petrone, R. M.; Waddington, J. M.

    2015-11-01

    Wildfire is the largest disturbance affecting boreal peatlands, however, little is known about the controls on post-fire peatland vegetation recovery. While small-scale variation in burn severity can reduce post-fire moss water availability, high water table (WT) positions following wildfire are also critical to enable the re-establishment of keystone peatland mosses (i.e. Sphagnum). Thus, post-fire moss water availability is also likely a function of landscape-scale controls on peatland WT dynamics, specifically, connectivity to groundwater flow systems (i.e. hydrogeological setting). For this reason, we assessed the interacting controls of hydrogeological setting and burn severity on post-fire moss water availability in three burned, Sphagnum-dominated peatlands in Alberta's Boreal Plains. At all sites, variation in burn severity resulted in a dichotomy between post-fire surface covers that: (1) exhibited low water availability, regardless of WT position, and had minimal (<5%) moss re-establishment (i.e. lightly burned feather mosses and severely burned Sphagnum fuscum) or (2) exhibited high water availability, depending on WT position, and had substantial (>50%) moss re-establishment (i.e. lightly burned S. fuscum and where depth of burn was >0.05 m). Notably, hydrogeological setting influenced the spatial coverage of these post-fire surface covers by influencing pre-fire WTs and stand characteristics (e.g., shading). Because feather moss cover is controlled by tree shading, lightly burned feather mosses were ubiquitous (>25%) in drier peatlands (deeper pre-fire WTs) that were densely treed and had little connection to large groundwater flow systems. Moreover, hydrogeological setting also controlled post-fire WT positions, thereby affecting moss re-establishment in post-fire surface covers that were dependent on WT position (e.g., lightly burned S. fuscum). Accordingly, higher recolonization rates were observed in a peatland located in a groundwater flow through

  8. Application of three dimensional geological models to hydrogeology

    NASA Astrophysics Data System (ADS)

    Dong, M.; Neukum, C.; Azzam, R.

    2009-04-01

    Recently, three dimensional (3D) numerical simulation of subsurface structure has become a common engineering geological tool to investigate a variety of geological settings. Besides, hydrogeology always tightly combines with geological structures. For these reasons, coupling 3D geological models with hydrogeology will not only improve understanding of subsurface conditions, but also provide a common stratigraphic framework for hydrogeological applications. The reliability of 3D geological models largely depends on the quality and quantity of data. Normally, before 3D geological models are constructed in the software package, the initial data (borehole descriptions, geological maps, geological cross sections, outcrop data, geo-electrical survey, digital elevation model, etc.) are acquired from archive as much as possible and standardized in a single table. To ensure the precision of models, new drilling data should be gathered from local authorities such as Geological Survey in time. Some experimental data are necessary to be kept at the initial moment to create a subset for verification of the models. In particular, the resulting models will be used for hydrogeological applications. So, more parameters should be collected to construct the 3D property models. Properties contain porosities of soil, bearing capacity, compressibility and particular geological phenomenon such as the regional aquifers, aquitard and faults. During the processing of model construction, the minimum element of the models is grid, which can be converted to some finite elements software. Further studies of these models to hydrogeological application involve: integrating faulted horizons of the 3D geological model into the groundwater modeling software package and simulating the groundwater flow within the main relevant aquifers using a finite elements approach; simulating distribution and calculating volume of groundwater in particular area; providing 3D parameters for vulnerability maps of

  9. Surveillance and maintenance report on the Alpha-4 Building at the Oak Ridge Y-12 Plant for fiscal year 1995

    SciTech Connect

    Sollenberger, M.L.; Sparkman, D.E.; Reynolds, R.M.

    1995-12-01

    Part of the Environmental Restoration Division and funded by the Office of Environmental Management (EM-40) Program, the Oak Ridge Y-l2 Plant Decontamination and Decommissioning Program strives to protect human health and the environment and reduce the number of hazardous-material-contaminated facilities by properly managing and dispositioning facilities when they are no longer required to fulfill a site mission. Building 9201-4, known as Alpha-4, is the only facility at the Y-12 Plant under the D and D Program, and it is the D and D Program that provides surveillance and maintenance (S and M) of the facility. Alpha-4 housed uranium enrichment operations from 1945--47. In 1955 a process known as Colex, for column exchange, that involved electrochemical and solvent extraction processes began. These processes required substantial quantities of mercury as a solvent to separate lithium-6 from lithium-7 (in the form of lithium hydroxide). The Colex process was discontinued in 1962, leaving a legacy of process equipment and lines contaminated with mercury and lithium hydroxide. Now in the inactive-shutdown phase, Alpha-4 requires an S and M program that provides for risk mitigation, hazard abatement, and site preparation for subsequent D and D and/or long-term maintenance of the shutdown status of the building. Daily surveillance activities emphasizes structural integrity, leak detection, safeguards, health of personnel, environmental issues, safety conditions, equipment, hazardous materials, mercury monitoring, and cleanup. This report communicates the status of the program plans and specific surveillance and maintenance requirements for Alpha-4.

  10. Y-12 development organization technical progress report. Part 4, Assembly technology/compatibility and surveillance period ending September 30, 1993

    SciTech Connect

    Northcutt, W.G. Jr.

    1993-12-27

    The Super Collider is a high-energy scientific instrument composed of a 53-mile-long ring of proton accelerators designed to collide protons and evaluate the emanating particles. The Oak Ridge Y-12 Plant is under contract to perform work for the Superconducting Super Collider Laboratory (SSCL) and has been asked to develop manufacturing processes for components of the gammas, electrons, muons (GEM) detector. Three welded subassemblies are involved in the fabrication of these conductors. The superconducting cable is enclosed in a stainless steel conduit, which is then enclosed in an aluminum sheath. The ends of the conductor are terminated with a connector assembly joined to the superconductor, the conduit, and the sheath. Initially, the conduit weld was to be a single-pass, autogenous gas-tungsten arc weld. The authors made a great effort to get full penetration without root reinforcement on the inside of the tube. When the authors were unable to meet all of the weld requirements with an autogenous weld, they shifted development efforts to making the weld using an automatic gas-tungsten arc tube welding head with an integral wire feeder. Because reinforcement at the root continued to be a problem, the authors decided to make the weld in two passes. To achieve the desired weld reinforcement on the outside of the tube, the authors developed a welding procedure in which an autogenous pass is used to join the tube ends with the necessary minimum pushthrough on the inside of the tube and filler metal is supplied during the second pass. This two-pass weld required a weld joint with a flat butt for the root pass and a V-groove for the filler metal pass. A 272-ft conduit was made using this two-pass welding procedure for a test at the University of Wisconsin.

  11. Phase 2 confirmatory sampling data report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1998-01-01

    A Remedial Investigation of East Fork Poplar Creek (EFPC) concluded that mercury is the principal contaminant of concern in the EFPC floodplain. The highest concentrations of mercury were found to be in a visually distinct black layer of soil that typically lies 15 to 30 cm (6 to 12 in.) below the surface. Mercury contamination was found to be situated in distinct areas along the floodplain, and generally at depths > 20 cm (8 in.) below the surface. In accordance with Comprehensive, Environmental Response, Compensation, and Liability Act (CERCLA), a feasibility study was prepared to assess alternatives for remediation, and a proposed plan was issued to the public in which a preferred alternative was identified. In response to public input, the plan was modified and US Department of Energy (DOE) issued a Record of Decision in 1995 committing to excavating all soil in the EFPC floodplain exceeding a concentration of 400 parts per million (ppm) of mercury. The Lower East Fork Poplar Creek (LEFPC) remedial action (RA) focuses on the stretch of EFPC flowing from Lake Reality at the Y-12 Plant, through the city of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation (ORR) and its associated floodplain. Specific areas were identified that required remediation at the National Oceanographic and Atmospheric Administration (NOAA) Site along Illinois Avenue and at the Bruner Site along the Oak Ridge Turnpike. The RA was conducted in two separate phases. Phase 2, conducted from February to October 1997, completed the remediation efforts at the NOAA facility and fully remediated the Bruner Site. During both phases, data were collected to show that the remedial efforts performed at the NOAA and Bruner sites were successful in implementing the Record of Decision and had no adverse impact on the creek water quality or the city of Oak Ridge publicly owned treatment works.

  12. Postconstruction report for the mercury tanks interim action at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Voskuil, T.L.

    1993-09-01

    Three underground concrete settling tanks (tanks 2101-U, 2104-U, and 2100-U) at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee, contained contaminated sludges contributing mercury to the Upper East Fork Poplar Creek (UEFPC). These tanks were cleaned out as an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act as part of the Reduction of Mercury in Plant Effluent subproject. Cleaning out these tanks prevented the sludge that had settled in the bottom from resuspending and carrying mercury into UEFPC. Tanks 2104-U and 2100-U were returned to service and will continue to receive effluent from buildings 9201-4 and 9201-5. Tank 2101-U had been abandoned and its effluent redirected to Tank 2100-U during previous activities. This interim action permanently sealed Tank 2101-U from the storm sewer system. Upon removal of materials and completion of cleanup, inspections determined that the project`s cleanup criteria had been met. The structural integrity of the tanks was also inspected, and minor cracks identified in tanks 2101-U and 2104-U were repaired. This project is considered to have been completed successfully because it met its performance objectives as addressed in the Interim Record of Decision and the work plan: to remove the waste from the three storage tanks; to ensure that the tanks were cleaned to the levels specified; to return tanks 2100-U and 2104-U to service; to isolate Tank 2101-U permanently; and to manage the wastes in an appropriate fashion.

  13. Disposition and metabolism of ticagrelor, a novel P2Y12 receptor antagonist, in mice, rats, and marmosets.

    PubMed

    Li, Yan; Landqvist, Claire; Grimm, Scott W

    2011-09-01

    Ticagrelor is a reversibly binding and selective oral P2Y(12) antagonist, developed for the prevention of atherothrombotic events in patients with acute coronary syndromes. The disposition and metabolism of [(14)C]ticagrelor was investigated in mice, rats, and marmosets to demonstrate that these preclinical toxicity species showed similar metabolic profiles to human. Incubations with hepatocytes or microsomes from multiple species were also studied to compare with in vivo metabolic profiles. The routes of excretion were similar for both oral and intravenous administration in mice, rats, and marmosets with fecal excretion being the major elimination pathway accounting for 59 to 96% of the total radioactivity administered. Urinary excretion of drug-related material accounted for only 1 to 15% of the total radioactivity administered. Milk samples from lactating rats displayed significantly higher levels of total radioactivity than plasma after oral administration of ticagrelor. This demonstrated that ticagrelor and/or its metabolites were readily transferred into rat milk and that neonatal rats could be exposed to ticagrelor-related compounds via maternal milk. Ticagrelor and active metabolite AR-C124910 (loss of hydroxyethyl side chain) were the major components in plasma from all species studied and similar to human plasma profiles. The primary metabolite of ticagrelor excreted in urine across all species was an inactive metabolite, AR-C133913 (loss of difluorophenylcyclopropyl group). Ticagrelor, AR-C124910, and AR-C133913 were the major components found in feces from the three species examined. Overall, in vivo metabolite profiles were qualitatively similar across all species and consistent with in vitro results. PMID:21670219

  14. The Influence of Subsurface Karst Terrain on Hydrology and Hydrogeology in Southwestern Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Perveen, F.; Webb, J.; Dresel, E.; Hekmeijer, P.; Zydor, H.

    2012-12-01

    A detailed study, in collaboration with Department of Primary Industries (DPI), Victoria, has been carried out in three small subcatchments of southwestern Victoria (total area 8.4 km2), which are characterised by varying degrees of influence of a subsurface karst terrain. Lithological logs and downhole geophysics (gamma and bulk conductivity - EM39) on 15 bores within the catchments were supplemented by 2D electrical resistivity vertical profiling, and showed that the middle to late Miocene Port Campbell Limestone is present at shallow depths (~5 m) in two catchments, and somewhat deeper (>70 m) in the third catchment. The limestone is overlain by early Pliocene clay-rich Dorodong Sands. The topography of the third catchment is characterised by shallow closed depressions. Detailed hydrogeological cross-sections using groundwater levels in the bores show closed depressions within the potentiometric surface, that are attributed to the presence of subsurface conduits within the highly permeable limestone, verified by the variable hydraulic conductivity values ( 0.005 - 0.545m/day) obtained from single borehole recovery tests. Stream hydrographs reveal that there is virtually no surface runoff from one subcatchment, due to leakage into a conduit in the underlying limestone. A perched water table is also found in the same area. Thus the study area shows the typical karst features of a highly heterogeneous terrain with massive connectivity between surface water and groundwater regimes, despite the fact that the limestone is overlain by the clay-rich Dorodong Sands.

  15. Hydrogeology of an alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow

    NASA Astrophysics Data System (ADS)

    Lauber, U.; Kotyla, P.; Morche, D.; Goldscheider, N.

    2014-06-01

    The frequency and intensity of extreme hydrological events in alpine regions is projected to increase with climate change. The goal of this study was to better understand the functioning of aquifers composed of complex alluvial and rockfall deposits in alpine valleys and to quantify the role of these natural storage spaces in flood attenuation and baseflow maintenance. Geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements were conducted in the Reintal valley (German Alps), where runoff from a karst spring infiltrates into a series of postglacial alluvial/rockfall aquifers. During high-flow conditions, groundwater velocities of 30 m h-1 were determined along 500 m; hydrograph analyses revealed short lag times (5 h) between discharge peaks upstream and downstream from the aquifer series; the maximum discharge ratio downstream (22) and the peak recession coefficient (0.196 d-1) are low compared with other alpine catchments. During low-flow conditions, the underground flow path length increased to 2 km and groundwater velocities decreased to 13 m h-1. Downstream hydrographs revealed a delayed discharge response after 101 h and peaks dampened by a factor of 1.5. These results indicate that alluvial/rockfall aquifers might play an important role in the flow regime and attenuation of floods in alpine regions.

  16. Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow

    NASA Astrophysics Data System (ADS)

    Lauber, U.; Kotyla, P.; Morche, D.; Goldscheider, N.

    2014-11-01

    The frequency and intensity of extreme hydrological events in Alpine regions is projected to increase with climate change. The goal of this study is to better understand the functioning of aquifers composed of complex alluvial and rockfall deposits in Alpine valleys and to quantify the role of these natural storage spaces in flood attenuation and baseflow maintenance. Geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements were conducted in the Reintal (German Alps), where runoff from a karst spring infiltrates a series of postglacial alluvial/rockfall aquifers. During high-flow conditions, groundwater velocities of 30 m h-1 were determined along 500 m; hydrograph analyses revealed short lag times (5 h) between discharge peaks upstream and downstream from the aquifer series; the maximum discharge ratio downstream (22) and the peak recession coefficient (0.196 d-1) are low compared with other Alpine catchments. During low-flow conditions, the underground flow path length increased to 2 km and groundwater velocities decreased to 13 m h-1. Downstream hydrographs revealed a delayed discharge response after 101 h and peaks damped by a factor of 1.5. These results indicate that alluvial/rockfall aquifers might play an important role in the flow regime and attenuation of floods in Alpine regions.

  17. Remedial Investigation Report on the Abandoned Nitric Acid Pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Energy Systems Environmental Restoration Program; Y-12 Environmental Restoration Program

    SciTech Connect

    Not Available

    1994-02-01

    Upper East Fork Poplar Creek Operable Unit 2 consists of the Abandoned Nitric Acid pipeline (ANAP). This pipeline was installed in 1951 to transport liquid wastes {approximately}4800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. During the mid-1980s, sections of the pipeline were removed during various construction projects. A total of 19 locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The 19 samples collected below the pipeline were analyzed by the Oak Ridge Y-12 Plant`s laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. Uranium activities in the soil samples ranged from 0.53 to 13.0 pCi/g for {sup 238}U, from 0.075 to 0.75 pCi/g for {sup 235}U, and from 0.71 to 5.0 pCi/g for {sup 238}U. Maximum total values for lead, chromium, and nickel were 75.1 mg/kg, 56.3 mg/kg, and 53.0 mg/kg, respectively. The maximum nitrate/nitrite value detected was 32.0 mg-N/kg. One sample obtained adjacent to a sewer line contained various organic compounds, at least some of which were tentatively identified as fragrance chemicals commonly associated with soaps and cleaning solutions. The results of the baseline human health risk assessment for the ANAP contaminants of potential concern show no unacceptable risks to human health.

  18. Work plan for support to Upper East Fork Poplar Creek east end VOC plumes well installation project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1998-03-01

    Under the Resource Conservation and Recovery Act of 1976 guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire Oak Ridge Reservation (ORR) was placed on the National Priorities List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites in November 1989. Following CERCLA guidelines, sites within the ORR require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) or an engineering evaluation/cost analysis (EE/CA) of potential remedial actions. Data from monitoring wells at the east end of the Y-12 Plant have identified an area of groundwater contamination dominated by the volatile organic compound (VOC) carbon tetrachloride; other VOCs include chloroform, tetrachloroethene, and trichloroethene.

  19. Survey Report for the Characterization of the Five Tanks Located Near the Old Salvage Yard at the Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Rollow, Kathy

    2012-08-23

    This summary report presents analytical results, radiological survey data, and other data/information for disposition planning of the five tanks located west of the Old Salvage Yard (OSY) at the Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. Field personnel from Oak Ridge Associated Universities (ORAU) and URS?CH2M Oak Ridge LLC completed data collection in May 2012 per the project-specific plan (PSP) (ORAU 2012). Deviations from the PSP are addressed in the body of this report. Characterization activities included three data collection modes: visual inspection, radiological survey, and volumetric sampling/analysis. This report includes the final validated dataset and updates associated with the Tank 2 residues originally thought to be a biological bloom (e.g., slime mold) but ultimately identified as iron sulfate crystals.

  20. Mercury abatement report on the U.S. Department of Energy`s Oak Ridge Y-12 Plant. Fiscal year 1996

    SciTech Connect

    1996-11-01

    This report summarizes the status of activities and the levels of mercury contamination in Upper East Fork Poplar Creek (UEFPC) resulting from activities at the Department of Energy`s (DOE`s) Y-12 Facility during fiscal year 1996 (FY96). The report outlines the status of ongoing and new project activities in support of project goals, the results of sampling and characterization efforts conducted during FY 1996, biological monitoring activities, and our conclusions relative to the progress in demonstrating compliance with the National Pollutant Discharge Elimination (NPDES) permit. Although the pace of mercury remediation activities at DOE`s Y-12 Plant is ahead of the compliance schedule established in the NPDES permit, the resulting level of mercury in UEFPC is higher than predicted based on the projects completed. Fortunately, recently recognized opportunities are being pursued for implementation in the next two years to assist in meeting permit requirements.

  1. Soil sampling and analysis plan for the Bear Creek Valley Floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1995-03-01

    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. In addition to this SAP, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19&D2) presents background information pertaining to this floodplain investigation.

  2. Antiplatelet efficacy of P2Y12 inhibitors (prasugrel, ticagrelor, clopidogrel) in patients treated with mild therapeutic hypothermia after cardiac arrest due to acute myocardial infarction.

    PubMed

    Bednar, Frantisek; Kroupa, Josef; Ondrakova, Martina; Osmancik, Pavel; Kopa, Milos; Motovska, Zuzana

    2016-05-01

    Survivors after cardiac arrest (CA) due to AMI undergo PCI and then receive dual antiplatelet therapy. Mild therapeutic hypothermia (MTH) is recommended for unconscious patients after CA to improve neurological outcomes. MTH can attenuate the effectiveness of P2Y12 inhibitors by reducing gastrointestinal absorption and metabolic activation. The combined effect of these conditions on the efficacy of P2Y12 inhibitors is unknown. We compared the antiplatelet efficacies of new P2Y12 inhibitors in AMI patients after CA treated with MTH. Forty patients after CA for AMI treated with MTH and received one P2Y12 inhibitor (clopidogrel, prasugrel or ticagrelor) were enrolled in a prospective observational single-center study. Platelet inhibition was measured by VASP (PRI) on days 1, 2, and 3 after drug administration. In-hospital clinical data and 1-year survival data were obtained. The proportion of patients with ineffective platelet inhibition (PRI > 50 %, high on-treatment platelet reactivity) for clopidogrel, prasugrel, and ticagrelor was 77 vs. 19 vs. 1 % on day 1; 77 vs. 17 vs. 0 % on day 2; and 85 vs. 6 vs. 0 % on day 3 (P < 0.001). The platelet inhibition was significantly worse in clopidogrel group than in prasugrel or ticagrelor group. Prasugrel and ticagrelor are very effective for platelet inhibition in patients treated with MTH after CA due to AMI, but clopidogrel is not. Using prasugrel or ticagrelor seems to be a more suitable option in this high-risk group of acute patients. PMID:26340851

  3. Resource Conservation and Recovery Act (RCRA) Part B Permit Application for Production Associated Units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Not Available

    1994-09-01

    This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials.

  4. P2Y12 Inhibitor Pre-Treatment in Non-ST-Elevation Acute Coronary Syndrome: A Decision-Analytic Model

    PubMed Central

    Gunton, James; Hartshorne, Trent; Langrish, Jeremy; Chuang, Anthony; Chew, Derek

    2016-01-01

    Current guidelines recommend initiation of a P2Y12 inhibitor for all patients with non-ST-elevation acute coronary syndrome (NSTE-ACS) at the time of diagnosis (pre-treatment); however, there are no randomized trials directly comparing pre-treatment with initiation at the time of angiography to support this practice. We explore clinical and institutional parameters potentially associated with benefit with this strategy in a decision-analytic model based on available evidence from randomised trials. A decision analysis model was constructed comparing three P2Y12 inhibitors in addition to aspirin in patients with NSTE-ACS. Based on clinical trial data, the cumulative probability of 30 day mortality, myocardial infarction (MI) and major bleeding were determined, and used to calculate the net clinical benefit (NCB) with and without pre-treatment. Sensitivity analysis was performed to assess the relationship between NCB and baseline ischemic risk, bleeding risk, time to angiography and local surgical revascularization rates. Pre-treatment with ticagrelor and clopidogrel was associated with a greater than 50% likelihood of providing a >1% increase in 30 day NCB when baseline estimated ischemic risk exceeds 11% and 14%, respectively. Prasugrel pre-treatment did not achieve a greater than 50% probability of an increase in NCB regardless of baseline ischemic risk. Institutional surgical revascularization rates and time to coronary angiography did not correlate with the likelihood of benefit from P2Y12 pre-treatment. In conclusion, pre-treatment with P2Y12 inhibition is unlikely to be beneficial to the majority of patients presenting with NSTE-ACS. A tailored assessment of each patient’s individual ischemic and bleeding risk may identify those likely to benefit. PMID:27548237

  5. P2Y12 Inhibitor Pre-Treatment in Non-ST-Elevation Acute Coronary Syndrome: A Decision-Analytic Model.

    PubMed

    Gunton, James; Hartshorne, Trent; Langrish, Jeremy; Chuang, Anthony; Chew, Derek

    2016-01-01

    Current guidelines recommend initiation of a P2Y12 inhibitor for all patients with non-ST-elevation acute coronary syndrome (NSTE-ACS) at the time of diagnosis (pre-treatment); however, there are no randomized trials directly comparing pre-treatment with initiation at the time of angiography to support this practice. We explore clinical and institutional parameters potentially associated with benefit with this strategy in a decision-analytic model based on available evidence from randomised trials. A decision analysis model was constructed comparing three P2Y12 inhibitors in addition to aspirin in patients with NSTE-ACS. Based on clinical trial data, the cumulative probability of 30 day mortality, myocardial infarction (MI) and major bleeding were determined, and used to calculate the net clinical benefit (NCB) with and without pre-treatment. Sensitivity analysis was performed to assess the relationship between NCB and baseline ischemic risk, bleeding risk, time to angiography and local surgical revascularization rates. Pre-treatment with ticagrelor and clopidogrel was associated with a greater than 50% likelihood of providing a >1% increase in 30 day NCB when baseline estimated ischemic risk exceeds 11% and 14%, respectively. Prasugrel pre-treatment did not achieve a greater than 50% probability of an increase in NCB regardless of baseline ischemic risk. Institutional surgical revascularization rates and time to coronary angiography did not correlate with the likelihood of benefit from P2Y12 pre-treatment. In conclusion, pre-treatment with P2Y12 inhibition is unlikely to be beneficial to the majority of patients presenting with NSTE-ACS. A tailored assessment of each patient's individual ischemic and bleeding risk may identify those likely to benefit. PMID:27548237

  6. Finding of no significant impact: Interim storage of enriched uranium above the maximum historical level at the Y-12 Plant Oak Ridge, Tennessee

    SciTech Connect

    1995-12-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the Proposed Interim Storage of Enriched Uranium Above the Maximum Historical Storage Level at the Y-12 Plant, Oak Ridge, Tennessee (DOE/EA-0929, September, 1994). The EA evaluates the environmental effects of transportation, prestorage processing, and interim storage of bounding quantities of enriched uranium at the Y-12 Plant over a ten-year period. The State of Tennessee and the public participated in public meetings and workshops which were held after a predecisional draft EA was released in February 1994, and after the revised pre-approval EA was issued in September 1994. Comments provided by the State and public have been carefully considered by the Department. As a result of this public process, the Department has determined that the Y-12 Plant-would store no more than 500 metric tons of highly enriched uranium (HEU) and no more than 6 metric tons of low enriched uranium (LEU). The bounding storage quantities analyzed in the pre-approval EA are 500 metric tons of HEU and 7,105.9 metric tons of LEU. Based on-the analyses in the EA, as revised by the attachment to the Finding of No Significant Impact (FONSI), DOE has determined that interim storage of 500 metric tons of HEU and 6 metric tons of LEU at the Y-12 Plant does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement (EIS) is not required and the Department is issuing this FONSI.

  7. Extra Yq and partial monosomy 12p due to a Y;12 translocation in a boy with features of the 12p deletion syndrome.

    PubMed Central

    Orye, E; Craen, M; Laureys, G; van Coster, R; van Mele, B

    1985-01-01

    A Y;12 translocation, resulting in extra Yq material and partial monosomy 12p, was found in a 7 1/2 year old boy. He showed growth and mental retardation and several of the congenital anomalies seen in the 12p deletion syndrome. LDHB activity, the gene for which is located at 12p12, was normal in serum, in accordance with the suspected 12p13 deletion in the patient. Images PMID:4009644

  8. Safety analysis report for packaging, Oak Ridge Y-12 Plant, model DC-1 package with HEU oxide contents. Change pages for Rev.1

    SciTech Connect

    1995-01-18

    This Safety Analysis Report for Packaging for the Oak Ridge Y-12 Plant for the Model DC-1 package with highly enriched uranium (HEU) oxide contents has been prepared in accordance with governing regulations form the Nuclear Regulatory Commission and the Department of Transportation and orders from the Department of energy. The fundamental safety requirements addressed by these regulations and orders pertain to the containment of radioactive material, radiation shielding, and nuclear subcriticality. This report demonstrates how these requirements are met.

  9. Caged Agonist of P2Y1 and P2Y12 Receptors for Light-Directed Facilitation of Platelet Aggregation

    PubMed Central

    Gao, Zhan-Guo; Hechler, Béatrice; Besada, Pedro; Gachet, Christian; Jacobson, Kenneth A.

    2008-01-01

    We have prepared a caged form (MRS2703) of a potent dual agonist of the P2Y1 and P2Y12 nucleotide receptors, 2-MeSADP, by blocking the β-phosphate group with a 1-(3,4-dimethyloxyphenyl)eth-1-yl phosphoester. Although MRS2703 is itself inactive at human P2Y1 and P2Y12 receptors expressed heterologously in 1321N1 astrocytoma cells or in washed human platelets, this derivative readily regenerates the parent agonist upon mild irradiation with long-wave UV light (360 nm). The functional effect of the regenerated agonist was demonstrated by a rise in intracellular calcium mediated by either P2Y1 or P2Y12 receptors in transfected cells. Washed human platelets exposed to a solution of MRS2703 were induced to aggregate upon UV irradiation. At 1.0 μM MRS2703, full aggregation was achieved within one minute of irradiation. Thus, this caged nucleotide promises to be a useful probe for potent P2Y receptor activation with light-directed spatial and temporal control. PMID:18199424

  10. Caged agonist of P2Y1 and P2Y12 receptors for light-directed facilitation of platelet aggregation.

    PubMed

    Gao, Zhan-Guo; Hechler, Béatrice; Besada, Pedro; Gachet, Christian; Jacobson, Kenneth A

    2008-03-15

    We have prepared a caged form (MRS2703) of a potent dual agonist of the P2Y(1) and P2Y(12) nucleotide receptors, 2-MeSADP, by blocking the beta-phosphate group with a 1-(3,4-dimethyloxyphenyl)eth-1-yl phosphoester. Although MRS2703 is itself inactive at human P2Y(1) and P2Y(12) receptors expressed heterologously in 1321N1 astrocytoma cells or in washed human platelets, this derivative readily regenerates the parent agonist upon mild irradiation with long-wave UV light (360 nm). The functional effect of the regenerated agonist was demonstrated by a rise in intracellular calcium mediated by either P2Y(1) or P2Y(12) receptors in transfected cells. Washed human platelets exposed to a solution of MRS2703 were induced to aggregate upon UV irradiation. At 1.0 microM MRS2703, full aggregation was achieved within 1 min of irradiation. Thus, this caged nucleotide promises to be a useful probe for potent P2Y receptor activation with light-directed spatial and temporal control. PMID:18199424

  11. Remedial investigation work plan for the Upper East Fork Poplar Creek Characterization Area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-03-01

    More than 200 contaminated sites created by past waste management practices have been identified at the Y-12 Plant. Many of the sites have been grouped into operable units based on priority and on investigative and remediation requirements. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions.

  12. Surveillance and maintenance report on decontamination and decommissioning and remedial action activities at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee. Fiscal year 1996

    SciTech Connect

    King, H.L.; Sollenberger, M.L.; Sparkman, D.E.; Reynolds, R.M.; Wayland, G.S.

    1996-12-01

    The Oak Ridge Y-12 Plant Decontamination and Decommissioning (D&D) and Remedial Action (RA) programs are part of the Environmental Restoration (ER) Division and are funded by the Office of Environmental Management (EM-40). Building 9201-4 (known as Alpha-4), three sites located within Building 9201-3 (the Oil Storage Tank, the Molten Salt Reactor Experiment Fuel Handling Facility, and the Coolant Salt Technology Facility), and Building 9419-1 (the Decontamination Facility) are currently the facilities at the Y-12 Plant included in the D&D program. The RA program provides surveillance and maintenance (S&M) and program management of ER sites at the Y-12 Plant, including selected sites listed in Appendix C of the Federal Facilities Agreement (FFA), sites listed in the Hazardous and Solid Waste Amendment (HSWA) permit Solid Waste Management Unit (SWM-U) list, and sites currently closed or undergoing post-closure activities under the Resource Conservation and Recovery Act of 1976 (RCRA) or the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This report communicates the status of the program plans and specific S&M activities for the D&D and RA programs.

  13. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    SciTech Connect

    Flint, L.E.

    1998-09-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relationships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally.

  14. Successful Characterization and Remedial Contour of Highly Contaminated Mercury Soil at the Y-12 National Security Complex - 13593

    SciTech Connect

    White, Aaron; Rigas, Michael; Birchfield, Joseph W. III

    2013-07-01

    An area known as the 81-10 pad within the footprint of the Y-12 National Security Complex, suspected to be heavily contaminated with mercury, was slated for characterization in support of a Federal Facilities Agreement (FFA) milestone to be accomplished by September 30, 2012. A full remedial design report (RDR) required the soil in Exposure Unit -9 (EU-9) to be fully characterized for a number of contaminates of concern including mercury. The goal of this characterization effort was to determine what soil, if any, would need to be removed for the protection of industrial workers and impacts to the surface and ground water. Funding for this project was made available using buy-back scope under the American Recovery and Reinvestment Act (ARRA). The EU-9 soil unit involved 3 different classifications which were determined as follows: Class 1: Known to have been impacted, contamination is likely; Class 2: Suspected to have been impacted, contamination is unknown; Class 3: Area not known to have been impacted, contamination unlikely. Due to various sampling and analysis events since the 1980's, significant mercury contamination was expected under the concrete pad of an area known as 81-10. Mercury contamination outside of the boundary of this pad within the EU-9 footprint was not known and therefore an original planned estimate of 1,461 cubic meters of material were expected to be heavily contaminated with mercury requiring removal, treatment and disposal. Through the use of a highly effective nature and extent sampling and analysis design that involved a hybrid of statistically-based and judgmental sampling, the actual remedial contour requiring removal was approximately 717 cubic meters, roughly 12% of the original estimate. This characterization approach was executed in full compliance with the Record of Decision (ROD) [1] documents that were agreed upon by the U.S. Department of Energy, Environmental Protection Agency and Tennessee Department of Environment and

  15. Biogeochemical Reactions and Mineralogical Characteristics in an Iron Reactive Barrier at the Oak Ridge Y-12 Site

    NASA Astrophysics Data System (ADS)

    Gu, B.; Watson, D.; Phillips, D.

    2001-12-01

    A permeable iron reactive barrier was installed in late November, 1997 at the U.S. Department of Energy's Y-12 National Security Complex in Oak Ridge, Tennessee. The biogeochemical reactions and mineralogical and hydrological characteristics in the barrier were investigated over an extended field operation ( ~3 years). Results indicated that zero-valent iron (Fe0) reacts with a number of groundwater constituents such as bicarbonates, nitrate, and sulfate in addition to its effectiveness in removing contaminant metals or radionuclides such as uranium and technetium. Both nitrate and sulfate were reduced within or in the influence zone of the Fe0 with a low redox potential (i.e., low Eh). An increased anaerobic microbial population was also observed within and in the vicinity of the Fe0 barrier, and these microorganisms were at least partially responsible for the reduction of nitrate and sulfate in groundwater. Decreased concentrations of Ca2+ and bicarbonate in groundwater occurred as a result of the formation of minerals such as aragonite (CaCO3) and siderite (FeCO3), which coincided with the Fe0 corrosion and an increased groundwater pH. A suite of mineral precipitates was identified in the Fe0 barrier system, including amorphous iron oxyhydroxides, goethite, ferrous carbonates and sulfides, aragonite, and green rusts. These minerals were found to be responsible for the cementation and possibly clogging of Fe0 filings observed in a number of core samples from the barrier. Significant increases in cementation of the Fe0 occurred between two coring events conducted at ~1 year apart and appeared to correspond to the changes in an apparent decrease in hydraulic connectivity. The present study concludes that, while Fe0 may be used as an effective reactive medium for the retention or degradation of many redox-sensitive contaminants, its long-term reactivity and performance could be severely hindered by its reactions with other groundwater constituents; and groundwater

  16. Hydrogeology and analysis of ground-water-flow system, Sagamore Marsh area, southeastern Massachusetts

    USGS Publications Warehouse

    Walter, D.A.; Masterson, J.P.; Barlow, P.M.

    1996-01-01

    A study of the hydrogeology and an analysis of the ground-water-flow system near Sagamore Marsh, southeastern Massachusetts, was undertaken with the cooperation of the U.S. Army Corps of Engineers. The purpose of the study was to improve the understanding of the current (1994-95) hydrogeologic conditions near the marsh and how the ground-water system might respond to proposed changes in the tidal-stage regime of streams that flood and drain the marsh. A 5-day aquifer test at a public-supply well adjacent to the marsh gave a transmissivity of the regional aquifer of 9,300 to 10,900 feet squared per day and a hydraulic conductivity of 181 to 213 feet per day, assuming a saturated thickness of the aquifer of 51.3 feet. The regional aquifer became unconfined near the pumped well during the test. The ratio of tidal ranges in the tidal channel to the ranges in the underlying aquifer at two sites (the lower and upper marsh) indicated aquifer diffusivities for the marsh sediments of 380 and 170 feet squared per day; these values correspond to hydraulic conductivities of 2.5 x 10-3 and 1.7 x 10-3 feet per day, respectively. The maximum distances from the tidal channel at the lower and upper marsh sites where tidal ranges would exceed 0.01 foot, as calculated from aquifer diffusivities and current (1995) tidal ranges in the tidal channels, were 24.4 and 26.7 feet, respectively. The maximum distances from the tidal channel where tidal pulses in the ground water would exceed 0.01 foot, using potential increased tidal stages resulting from proposed tidal-stage modifications and predicted by the U.S. Army Corps of Engineers, were 37.1 and 42.0 feet, respectively. A numerical model of the marsh and surrounding aquifer system indicated that the contributing area for the supply well adjacent to the marsh, for current (1994) pumping conditions, extends toward Great Herring Pond, about 2 miles northwest (upgradient) of the well, and does not extend beneath the marsh. The model also

  17. Hydrogeological modeling of prb for remediation of a contaminated site

    NASA Astrophysics Data System (ADS)

    Yang, Y. S.; McGeogh, K. L.; Kalin, R. M.

    2003-04-01

    In recent decades great effort has been spent on restoration of contaminated environment and considerable progress has been made in improving environmental quality. However, challenges still exist in some areas, such as remediation of contaminated land and groundwater. To provide sufficient remediation and protection for land and groundwater underneath, minimize environmental risk in infrastructure maintenance and urban re-development in terms of contamination remediation, it is necessary to incorporate understanding of the sub-surface conditions in the decision-making process. Characterization of regional and site-specific hydrogeological systems plays an important role in remediation of contaminated sites. Advanced modeling techniques can realize and improve characterization of complex hydrogeological systems. Numerical models can provide straightforward approaches for remediation designs. In this paper, a case study on hydrogeologic modeling of Permeable Reactive Barriers (PRB) for remediation of a contaminated site in the dockland area of Dublin, Ireland, is presented. The groundwater modeling maneuvers were carried out in three strands: regional characterization, zoom-in model in a smaller area; and detailed site-specific study. The regional hydrogeology and groundwater systems were characterized to form a regional conceptual model; a more detailed zoom-in 3-D model was further constructed in the quayside area to simulate the impact of adjacent remedial action and diurnally tidal fluctuation; finally, a site-specific model was built to study the detailed flow field and design the best remediation option. This site model was calibrated with field-monitored data under natural condition; hydraulic parameter, time varying river boundary and head-dependant boundary conditions were calibrated to achieve best fits between modeled and observed groundwater heads. The calibrated model then was used to carry out a remediation plan design using Permeable Reactive Barriers

  18. Hydrogeology of the Pine Ridge Indian Reservation, South Dakota

    USGS Publications Warehouse

    Ellis, M.J.; Adolphson, D.G.

    1971-01-01

    Data on which this report is based, including logs of wells and test holes, chemical analyses of water and records of wells and springs, have been summarized by the authors in a basic-data report published jointly by the South Dakota Geological Survey and South Dakota Water Resources Commission (Water Resources Report 4, Basic hydrogeologic data - Pine Ridge Indian Reservation, South Dakota).  A selected bibliography of reports pertaining to the geology of the area has been included in the basic-data report.  This atlas will be more useful if studied in conjunction with a copy of the basic-data report.

  19. Martian hydrogeology sustained by thermally insulating gas and salt hydrates

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey S.; Furfaro, Roberto; Prieto-Ballesteros, Olga; Rodriguez, J. Alexis P.; Montgomery, David R.; Gillespie, Alan R.; Marion, Giles M.; Wood, Stephen E.

    2007-11-01

    Numerical simulations and geologic studies suggest that high thermal anomalies beneath, within, and above thermally insulating layers of buried hydrated salts and gas hydrates could have triggered and sustained hydrologic processes on Mars, producing or modifying chaotic terrains, debris flows, gullies, and ice-creep features. These simulations and geologic examples suggest that thick hydrate deposits may sustain such geothermal anomalies, shallow ground-water tables, and hydrogeologic activity for eons. The proposed mechanism may operate and be self-reinforcing even in today's cold Martian climate without elevated heat flux.

  20. Hydrogeologic Assessment of the Pixley National WildlifeRefuge

    SciTech Connect

    Quinn, Nigel W.T.

    2007-10-01

    A hydrogeological assessment of Pixley National Wildlife Refuge was conducted using published reports from the USGS and private engineering consultants that pertained to land in close proximity to the Refuge and from monitoring conducted by refuge staff in collaboration with Reclamation. The compiled data clearly show that there are a large number of agricultural wells throughout the Basin and that water levels are responsive to rates of pumping - in some cases declining more than 100 ft in a matter of a few years. Aquifer properties support a groundwater conjunctive use solution to the provision of additional water supply to the Refuge. The report provides justification for this approach.

  1. Examination Regimes and Student Achievement

    ERIC Educational Resources Information Center

    Cosentino de Cohen, Clemencia

    2010-01-01

    Examination regimes at the end of secondary school vary greatly intra- and cross-nationally, and in recent years have undergone important reforms often geared towards increasing student achievement. This research presents a comparative analysis of the relationship between examination regimes and student achievement in the OECD. Using a micro…

  2. First USA/USSR joint conference on environmental hydrology and hydrogeology

    SciTech Connect

    Moore, J.E.; Kanivetsky, R.A.; Rosenshein, J.S.; Zenone, C.; Csallany, S.C.

    1991-01-01

    The objectives of this conference were: to present an overview of issues in hydrology and hydrogeology; to review the effects of global changes on the hydrologic environment; to review surface and ground water pollution, including transport modeling; and to discuss research and practical applications in hydrology and hydrogeology.

  3. Platelet reactivity after administration of third generation P2Y12-antagonists does not depend on body weight in contrast to clopidogrel.

    PubMed

    Olivier, Christoph B; Schnabel, Katharina; Weber, Susanne; Zhou, Qian; Bode, Christoph; Moser, Martin; Diehl, Philipp

    2016-07-01

    The current standard of antiplatelet therapy for patients with myocardial infarction (MI) includes the P2Y12-receptor antagonist clopidogrel, prasugrel or ticagrelor. While it has been shown that platelet reactivity after clopidogrel administration depends on factors such as body weight, it is not known if these factors have an effect on the activity of prasugrel or ticagrelor. Thus, this study aimed to analyse factors associated with high residual platelet reactivity after administration of third generation P2Y12-antagonists compared to clopidogrel. In a single centre registry the antiplatelet effect of clopidogrel, prasugrel or ticagrelor was investigated by aggregometry in patients after MI. To assess the overall capacity of platelet aggregation whole blood was induced with thrombin receptor activating peptide (TRAP; 32 µM). To specifically quantify the effect of P2Y12-antagonists, blood was stimulated with 6.4 µM adenosine diphophosphate (ADP). Relative ADP induced aggregation (r-ADP-agg) was defined as the ADP-TRAP-ratio to reflect an individual degree of P2Y12-dependent platelet inhibition. Platelet function of 238 patients was analysed [clopidogrel (n = 58), prasugrel (n = 65), ticagrelor (n = 115)]. It was found that the r-ADP-agg correlated significantly with body weight in patients after clopidogrel administration (r = 0.423; p < 0.001). In contrast, this association was not present in patients after prasugrel (r = -0.117; p = 0.354) or ticagrelor (r = -0.082; p = 0.382) administration. Comparison of the correlation coefficients showed a significant difference (p = 0.003). In contrast to clopidogrel, platelet reactivity after administration of prasugrel or ticagrelor does not depend on body weight in patients after MI. Hence, our mechanistic data support the results of large clinical trials indicating that patients with high body weight do not need to be treated with increased doses of third generation P2Y12-antagonists to achieve

  4. [Genetic variants of platelet ADP receptor P2Y12 associated with changed platelet functional activity and development of cardiovascular diseases].

    PubMed

    Sirotkina, O V; Zabotina, A M; Berkovich, O A; Bazhenova, E A; Vavilova, T V; Shvartsman, A L

    2009-02-01

    The key role in platelet aggregation is played by the platelet ADP receptor P2Y12, which is the target for antiaggregant drugs, clopidogrel and ticlopidine. At present, only sporadic data on genetic variants of platelet ADP receptor P2Y12 are available from literature, and their association with thromboembolic and cardiovascular diseases still remains obscure. Analysis of the group of subjects with high platelet reactivity resulted in identification of two nucleotide substitutions, C18T and G36T, in the coding region of the P2Y12 gene. The frequency of the P2Y12 T1 8 allele was higher in control group than in the group of patients survived from myocardial infarction at the age under 45 years (39% versus 28%, respectively, P = 0.04). Moreover, in the T18 carriers, platelet aggregation activity was lower than in the carriers of the wild-type genotype (0.84 +/- 0.05% versus 1.01 +/- 0.08%, respectively, P = 0.03). In the group of patients with early myocardial infarctions, a tendency towards the increased frequency of 16T allele in comparison with control group (20 and 12%, respectively, P = 0.07) was observed. The rate of ADP-induced platelet aggregation in the carriers of 16T allele from the control group was somewhat higher than in the subjects with the GG36 genotype (1.31 +/- 0.16% versus 1.12 +/- 0.06%, respectively, P = 0.07). The nucleotide substitutions identified were in absolute disequilibrium, i.e., allele T18 conformed to allele G36. On the contrary, allele C18 conformed to allele T36. Haplotype T18G36 was found to be responsible for the decreased risk of myocardial infarction and decreased platelet reactivity. It is suggested that polymorphisms of the P2Y12 gene identified can be used for determination of the risk group for myocardial infarction in the young males. PMID:19334620

  5. Mapping pollution and coastal hydrogeology with helicopterborne transient electromagnetic measurements

    NASA Astrophysics Data System (ADS)

    Christensen, Niels B.; Halkjær, Max

    2014-03-01

    Coastal hydrology is becoming the focus of increasing interest for several reasons. Hydrogeological models need good boundary conditions at the coastline, and with the expected sea level rise due to climate changes, it becomes increasingly important to grasp the dynamics of coastal hydrology in order to predict the consequences of sea level rise for nature and society. We present a helicopterborne transient electromagnetic survey from a region at the North Sea coast in western Jutland, Denmark, carried out at a seriously polluted site with the dual purpose of assessing the extent of the pollution and mapping the coastal hydrogeology to provide data for remediation activities. Data are subjected to constrained inversion with one-dimensional multi-layer (smooth) models. The extent of the pollution plume estimated from a conductive anomaly in the survey results is mainly in accordance with results from other investigations, but also points to hitherto unknown directions of seepage. The interleaving of freshwater extending under the offshore shallow sea and saltwater infiltrating under the onshore freshwater aquifer can be clearly discerned and preferential flow channels are revealed.

  6. The application of seismic techniques to hydrogeological investigations

    NASA Astrophysics Data System (ADS)

    Jarvis, Kevin Donald Gibson

    The objective of this thesis is to demonstrate some new applications of seismic techniques for hydrogeological applications. A compressional-wave, surface-based, reflection seismic technique is used to map aquifer boundaries within a series of Pleistocene near-surface sediments. The interpretation uses both water wells and sequence stratigraphic concepts to identify the boundaries of new and existing aquifers. The use of the cone penetrometer is an integral part of this thesis. The seismic cone is demonstrated to be both cost-effective and reliable for the acquisition of high-quality vertical seismic profile (VSP) data. Other data from the cone, in particular the tip resistance data, are shown to be an integral link for the conversion of shear-wave velocities to values of hydraulic conductivity. Surface-based, shear-wave reflection seismic data are used to image an aquifer contained within Holocene deltaic sediments. A Bayesian inversion of the shear-wave seismic amplitudes (using cone-derived velocities) results in the generation of a two-dimensional profile of shear-wave velocity that is a direct indication of aquifer heterogeneity. Conversion of the velocity to hydraulic conductivity (using a cone-derived relationship) results in the distribution of a key hydrogeologic property within the aquifer. The results from the thesis show significant promise for improving groundwater flow models and providing new techniques for the management and protection of our groundwater resources.

  7. Proceedings of the joint Russian-American hydrogeology seminar

    SciTech Connect

    Tsang, C.F.; Mironenko, V.; Pozdniakov, S.

    1997-12-31

    Hydrogeology research has been very active in both Russia and the US because of the concerns for migration of radioactive and chemical contaminants in soils and geologic formations, as well as for water problems related to mining and other industrial operations. Russian hydrogeologists have developed various analysis and field testing techniques, sometimes in parallel with US counterparts. These Proceedings come out of a Seminar held to bring together a small group (about 15) of active Russian researchers in geologic flow and transport associated with the disposal of radioactive and chemical wastes either on the soils or through deep injection wells, with a corresponding group (about 25) of American hydrogeologists. The meeting was intentionally kept small to enable informal, detailed and in-depth discussions on hydrogeological issues of common interest. Out of this interaction, the authors hope that, firstly, they will have learned from each other and secondly, that research collaborations will be established where there is the opportunity. This proceedings presents the summaries and viewgraphs from the presentations. What cannot be conveyed here is the warm and cooperative atmosphere of these interactions, both inside and outside the formal sessions, which may well lead to future collaborations.

  8. Hydrogeology and groundwater ecology: Does each inform the other?

    NASA Astrophysics Data System (ADS)

    Humphreys, W. F.

    2009-02-01

    The known, perceived and potential relationships between hydrogeology and groundwater ecology are explored, along with the spatial and temporal scale of these relations, the limit of knowledge and areas in need of research. Issues concerned with the subterranean part of the water cycle are considered from the perspective of the biology of those invertebrate animals that live, of necessity, in groundwater and the microbiological milieu essential for their survival. Groundwater ecosystems are placed in a hydrogeological context including the groundwater evolution along a flowpath, the significance of the biodiversity and of the ecosystem services potentially provided. This is considered against a background of three major components essential to the functioning of groundwater ecosystems, each of which can be affected by activities over which hydrogeologists often have control, and each, in turn, may have implications for groundwater management; these are, a place to live, oxygen and food (energy). New techniques and increasing awareness amongst hydrogeologists of the diversity and broad distribution of groundwater ecosystems offer new opportunities to develop cross disciplinary work between hydrogeologists and groundwater ecologists, already demonstrated to be a field for collaboration with broad benefits.

  9. Arsenic in the groundwater of Ouro Preto (Brazil): its temporal behavior as influenced by the hydric regime and hydrogeology

    NASA Astrophysics Data System (ADS)

    Gonçalves, José Augusto Costa; de Lena, Jorge Carvalho; Paiva, José Fernando; Nalini, Hermínio Arias; Pereira, Janice Cardoso

    2007-12-01

    In the city of Ouro Preto (MG), water catchment for public supply originates from superficial drainage, springs, old abandoned mines and some driven wells. In the rocks of the region, As is originally found in gold-enriched sulphide-bearing mineral deposits. The weathering process introduces As into the hydrological system by dissolution of this element into the leachate. Measurement of the As content in the groundwater of some catchments was carried out during 1 year and these measurements demonstrated high As content—up to 224 μg L-1 of As(V)—during the rainy season (the maximum concentration limit according to World Health Organization is 10 μg L-1). Lower values were observed during the dry season and in some sampling stations, As was not even detected. The As concentration variability during 1 year shows a strict and direct relationship to seasonal and hydrological conditions. For city authorities, responsible for public water supply, it is necessary to perform a complete inventory of the water sources used and constantly monitor the As content in the water.

  10. Hydrogeologic framework of the middle San Pedro watershed, southeastern Arizona

    USGS Publications Warehouse

    Dickinson, Jesse E.; Kennedy, Jeffrey R.; Pool, D.R.; Cordova, Jeffrey T.; Parker, John T.; Macy, J.P.; Thomas, Blakemore

    2010-01-01

    Water managers in rural Arizona are under increasing pressure to provide sustainable supplies of water despite rapid population growth and demands for environmental protection. This report describes the results of a study of the hydrogeologic framework of the middle San Pedro watershed. The components of this report include: (1) a description of the geologic setting and depositional history of basin fill sediments that form the primary aquifer system, (2) updated bedrock altitudes underlying basin fill sediments calculated using a subsurface density model of gravity data, (3) delineation of hydrogeologic units in the basin fill using lithologic descriptions in driller's logs and models of airborne electrical resistivity data, (4) a digital three-dimensional (3D) hydrogeologic framework model (HFM) that represents spatial extents and thicknesses of the hydrogeologic units (HGUs), and (5) description of the hydrologic properties of the HGUs. The lithologic interpretations based on geophysical data and unit thickness and extent of the HGUs included in the HFM define potential configurations of hydraulic zones and parameters that can be incorporated in groundwater-flow models. The hydrogeologic framework comprises permeable and impermeable stratigraphic units: (1) bedrock, (2) sedimentary rocks predating basin-and-range deformation, (3) lower basin fill, (4) upper basin fill, and (5) stream alluvium. The bedrock unit includes Proterozoic to Cretaceous crystalline rocks, sedimentary rocks, and limestone that are relatively impermeable and poor aquifers, except for saturated portions of limestone. The pre-basin-and-range sediments underlie the lower basin fill but are relatively impermeable owing to cementation. However, they may be an important water-bearing unit where fractured. Alluvium of the lower basin fill, the main water-bearing unit, was deposited in the structural trough between the uplifted ridges of bedrock and (or) pre-basin-and-range sediments. Alluvium of

  11. Hydrogeologic framework and geochemistry of the intermediate aquifer system in parts of Charlotte, De Soto, and Sarasota counties, Florida

    USGS Publications Warehouse

    Torres, A.E.; Sacks, L.A.; Yobbi, D.K.; Knochenmus, L.A.; Katz, B.G.

    2001-01-01

    The hydrogeologic framework underlying the 600-square-mile study area in Charlotte, De Soto, and Sarasota Counties, Florida, consists of the surficial aquifer system, the intermediate aquifer system, and the Upper Floridan aquifer. The hydrogeologic framework and the geochemical processes controlling ground-water composition were evaluated for the study area. Particular emphasis was given to the analysis of hydrogeologic and geochemical data for the intermediate aquifer system. Flow regimes are not well understood in the intermediate aquifer system; therefore, hydrogeologic and geochemical information were used to evaluate connections between permeable zones within the intermediate aquifer system and between overlying and underlying aquifer systems. Knowledge of these connections will ultimately help to protect ground-water quality in the intermediate aquifer system. The hydrogeology was interpreted from lithologic and geophysical logs, water levels, hydraulic properties, and water quality from six separate well sites. Water-quality samples were collected from wells located along six ground-water flow paths and finished at different depth intervals. The selection of flow paths was based on current potentiometric-surface maps. Ground-water samples were analyzed for major ions; field parameters (temperature, pH, specific conductance, and alkalinity); stable isotopes (deuterium, oxygen-18, and carbon-13); and radioactive isotopes (tritium and carbon-14). The surficial aquifer system is the uppermost aquifer, is unconfined, relatively thin, and consists of unconsolidated sand, shell, and limestone. The intermediate aquifer system underlies the surficial aquifer system and is composed of clastic sediments interbedded with carbonate rocks. The intermediate aquifer system is divided into three permeable zones, the Tamiami/Peace River zone (PZ1), the Upper Arcadia zone (PZ2), and the Lower Arcadia zone (PZ3). The Tamiami/Peace River zone (PZ1) is the uppermost zone and is

  12. Importance of Hydrogeological Conditions on Open-loop Geothermal System

    NASA Astrophysics Data System (ADS)

    Park, D.; Bae, G.; Kim, S.; Lee, K.

    2013-12-01

    The open-loop geothermal system has been known as an eco-friendly, energy-saving, and cost-efficient alternative for the cooling and heating of buildings with directly using the relatively stable temperature of groundwater. Thus, hydrogeological properties of aquifer, such as hydraulic conductivity and storage, must be important in the system application. The study site is located near Han-river, Korea, and because of the well-developed alluvium it might be a typical site appropriate to this system requiring an amount of groundwater. In this study, the first objective of numerical experiments was to find the best distributions of pumping and injection wells suitable to the hydrogeological conditions of the site for the efficient and sustainable system operation. The aquifer has a gravel layer at 15m depth below the ground surface and the river and the agricultural field, which may be a potential contaminant source, are located at the west and east sides, respectively. Under the general conditions that the regional groundwater flows from the east to the river, the locally reversed well distribution, locating the pumping well at upgradient and the injection well at downgradient of the regional flow, was most sustainable. The gravel layer with high hydraulic conductivity caused a little drawdown despite of an amount of pumping and allowed to stably reinject the used groundwater in all the cases, but it provided a passage transferring the injected heat to the pumping well quickly, particularly in the cases locating the injection well at the upgradient. This thermal interference was more severe in the cases of the short distance between the wells. The high conductive layer is also a reason that the seasonal role conversion of wells for the aquifer thermal energy storage was ineffective in this site. Furthermore, the well distribution vertical to the regional groundwater flow was stable, but not best, and, thus, it may be a good choice in the conditions that the regional

  13. Application of End-Member Mixing Analysis to karst hydrogeology

    NASA Astrophysics Data System (ADS)

    Marechal, J.; Ladouche, B.; Batiot-Guilhe, C.; Seidel, J.

    2013-12-01

    The End-Member Mixing Analysis (EMMA) is used in hydrology to determine the origin of water from solute contents measurements. This method assumes that the water collected at a sampling point originates from a mixing between several end-members. Classically, in hydrology, the water sampled at the outlet of a small head watershed may result from a mixing between rainfall, soil water and groundwater. The objective of EMMA is to compute the relative contributions of the end-members and their evolution with time. This provides valuable information on the origin of water and hydrologic characteristics of the water cycle. Similarly, in hydrogeology, the origin of groundwater can vary according to hydrological conditions, during a pumping test for example or during a flood event. In this paper, this approach still poorly used in hydrogeology, is applied to two Mediterranean karst systems with contrasted objectives. The Lez karst system is a major resource for the water supply of Montpellier city in Southern France. During autumn, it is observed that the first rainy events create an increase of water mineralization at the main karstic spring. An EMMA analysis (Figure 1) has been conducted on the spring water during three hydrological cycles. It determines the respective contributions of two carbonate reservoirs to the spring discharge that fluctuate according to hydrologic conditions. In addition, a contribution from a deep aquifer during the first rainy events is also highlighted (Figure 2). The Nîmes city (Southern France) faced many flood events with devastating inundations. The main spring of the Nimes karst system is located in the centre of the city. Hydrochemical and water level data have highlighted the role of the karst groundwater in the flood genesis in surface streams. EMMA has confirmed the role of the epikarst during flood event once the karst system is saturated. The monitoring of water streams during high flow conditions shows the relative contributions of

  14. Incorporating Fuzzy Systems Modeling and Possibility Theory in Hydrogeological Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.

    2008-12-01

    Hydrogeological predictions are subject to numerous uncertainties, including the development of conceptual, mathematical, and numerical models, as well as determination of their parameters. Stochastic simulations of hydrogeological systems and the associated uncertainty analysis are usually based on the assumption that the data characterizing spatial and temporal variations of hydrogeological processes are random, and the output uncertainty is quantified using a probability distribution. However, hydrogeological systems are often characterized by imprecise, vague, inconsistent, incomplete or subjective information. One of the modern approaches to modeling and uncertainty quantification of such systems is based on using a combination of statistical and fuzzy-logic uncertainty analyses. The aims of this presentation are to: (1) present evidence of fuzziness in developing conceptual hydrogeological models, and (2) give examples of the integration of the statistical and fuzzy-logic analyses in modeling and assessing both aleatoric uncertainties (e.g., caused by vagueness in assessing the subsurface system heterogeneities of fractured-porous media) and epistemic uncertainties (e.g., caused by the selection of different simulation models) involved in hydrogeological modeling. The author will discuss several case studies illustrating the application of fuzzy modeling for assessing the water balance and water travel time in unsaturated-saturated media. These examples will include the evaluation of associated uncertainties using the main concepts of possibility theory, a comparison between the uncertainty evaluation using probabilistic and possibility theories, and a transformation of the probabilities into possibilities distributions (and vice versa) for modeling hydrogeological processes.

  15. Bradykinin-induced Ca2+ signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation

    PubMed Central

    2013-01-01

    Background Chronic musculoskeletal pain involves connective tissue remodeling triggered by inflammatory mediators, such as bradykinin. Fibroblast cells signaling involve changes in intracellular Ca2+ ([Ca2+]i). ATP has been related to connective tissue mechanotransduction, remodeling and chronic inflammatory pain, via P2 purinoceptors activation. Here, we investigated the involvement of ATP in bradykinin-induced Ca2+ signals in human subcutaneous fibroblasts. Results Bradykinin, via B2 receptors, caused an abrupt rise in [Ca2+]i to a peak that declined to a plateau, which concentration remained constant until washout. The plateau phase was absent in Ca2+-free medium; [Ca2+]i signal was substantially reduced after depleting intracellular Ca2+ stores with thapsigargin. Extracellular ATP inactivation with apyrase decreased the [Ca2+]i plateau. Human subcutaneous fibroblasts respond to bradykinin by releasing ATP via connexin and pannexin hemichannels, since blockade of connexins, with 2-octanol or carbenoxolone, and pannexin-1, with 10Panx, attenuated bradykinin-induced [Ca2+]i plateau, whereas inhibitors of vesicular exocytosis, such as brefeldin A and bafilomycin A1, were inactive. The kinetics of extracellular ATP catabolism favors ADP accumulation in human fibroblast cultures. Inhibition of ectonucleotidase activity and, thus, ADP formation from released ATP with POM-1 or by Mg2+ removal from media reduced bradykinin-induced [Ca2+]i plateau. Selective blockade of the ADP-sensitive P2Y12 receptor with AR-C66096 attenuated bradykinin [Ca2+]i plateau, whereas the P2Y1 and P2Y13 receptor antagonists, respectively MRS 2179 and MRS 2211, were inactive. Human fibroblasts exhibited immunoreactivity against connexin-43, pannexin-1 and P2Y12 receptor. Conclusions Bradykinin induces ATP release from human subcutaneous fibroblasts via connexin and pannexin-1-containing hemichannels leading to [Ca2+]i mobilization through the cooperation of B2 and P2Y12 receptors. PMID

  16. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-09-01

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  17. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-08-01

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  18. Phase 2 focused feasibility study report for the reduction of mercury in plant effluent project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1994-06-01

    The purpose of this focused feasibility study (FS) is to review the alternatives that have been evaluated under the Reduction of Mercury in Plant Effluent scoping efforts and provide justification for the recommended alternative. The chosen option from this study will be executed to meet the mercury-specific requirements of the recently negotiated National Pollutant Discharge Elimination System (NPDES) Permit for the Oak Ridge Y-12 Plant. Four previous ``mercury use`` buildings at the Y-12 Plant have been identified as primary contributors to these discharges and are scheduled to undergo upgrades to mitigate them as sources. They are 9201-2, 9201-4, 9201-5, and 9204-4. These buildings contain mercury-contaminated pipes and sumps that discharge to EFPC. The current requirements for limiting mercury discharges to EFPC are defined in the draft Y-12 Plant NPDES Permit, which is expected to become effective in July 1994. The main requirement related to mercury in the permit is to reduce the downstream mercury concentration to 5 g/day or less. Three basic options are considered and estimated in this study, including treatment at the building sources with local units ({approximately}$3.8 million); a combination of local treatment and centralized treatment at the Central Pollution Control Facility ({approximately}$6.6--8.9 million); and hydraulic control of the groundwater and/or in situ soil treatment ({approximately}$120 million). As negotiated under the NPDES Permit, an ``interim`` local unit, utilizing carbon adsorption, is being placed in operation in the 9201-2 building by July 1994. Since the major uncertainties associated with meeting the NPDES permit discharge requirements for mercury are flow rates and treatment efficiency, the 9201-2 unit will provide within 6 months the data necessary to optimize a treatment design.

  19. Combined cardioprotectant and antithrombotic actions of platelet P2Y12 receptor antagonists in acute coronary syndrome: just what the doctor ordered.

    PubMed

    Cohen, Michael V; Downey, James M

    2014-03-01

    Since the P2Y12 receptor antagonists were first introduced, they have been extensively tested in patients with acute coronary syndrome and are now standard of care. These antiplatelet drugs are very effective in reducing subsequent cardiovascular events, stent thromboses, and mortality in patients with acute myocardial infarction undergoing reperfusion therapy. Although the prevailing view is that their benefit derives from their antithrombotic properties, other unrelated pleiotropic effects appear to be equally beneficial. Accumulating clinical and animal evidence indicates that, if present at the time of reperfusion, these drugs have a direct anti-infarct effect similar to that of ischemic postconditioning. Four oral antagonists have been developed in rapid succession: ticlopidine, clopidogrel, prasugrel, and ticagrelor. Each agent had a more consistent and rapid onset of action than the previous one, and this has correlated with improved clinical outcomes when given early in treatment. Unfortunately, gut absorption causes an appreciable delay in the onset of effect, especially when morphine is used, and the constant push to minimize the door-to-balloon time has made it difficult to achieve adequate platelet inhibition at the time of percutaneous coronary intervention with an oral agent. An intravenous P2Y12 antagonist such as cangrelor may optimize treatment because it produces nearly maximal inhibition of platelet aggregation within minutes. If antiplatelet agents do protect through postconditioning's mechanism, then they would render any other intervention that protects through that mechanism redundant. Indeed, animals treated with cangrelor cannot be further protected by pre- or postconditioning. However, interventions that use a different mechanism such as mild hypothermia or cariporide, a Na(+)-H(+) exchange blocker, do add to cangrelor's protection. Future research should be directed toward identifying interventions that can augment the protection from

  20. Another “String to the Bow” of PJ34, a Potent Poly(ADP-Ribose)Polymerase Inhibitor: An Antiplatelet Effect through P2Y12 Antagonism?

    PubMed Central

    Lechaftois, Marie; Dreano, Elise; Palmier, Bruno; Margaill, Isabelle; Marchand-Leroux, Catherine; Bachelot-Loza, Christilla; Lerouet, Dominique

    2014-01-01

    Background Neuro- and vasoprotective effects of poly(ADP-ribose)polymerase (PARP) inhibition have been largely documented in models of cerebral ischemia, particularly with the potent PARP inhibitor PJ34. Furthermore, after ischemic stroke, physicians are faced with incomplete tissue reperfusion and reocclusion, in which platelet activation/aggregation plays a key role. Data suggest that certain PARP inhibitors could act as antiplatelet agents. In that context, the present in vitro study investigated on human blood the potential antiplatelet effect of PJ34 and two structurally different PARP inhibitors, DPQ and INO-1001. Methods and results ADP concentrations were chosen to induce a biphasic aggregation curve resulting from the successive activation of both its receptors P2Y1 and P2Y12. In these experimental conditions, PJ34 inhibited the second phase of aggregation; this effect was reduced by incremental ADP concentrations. In addition, in line with a P2Y12 pathway inhibitory effect, PJ34 inhibited the dephosphorylation of the vasodilator stimulated phosphoprotein (VASP) in a concentration-dependent manner. Besides, PJ34 had no effect on platelet aggregation induced by collagen or PAR1 activating peptide, used at concentrations inducing a strong activation independent on secreted ADP. By contrast, DPQ and INO-1001 were devoid of any effect whatever the platelet agonist used. Conclusions We showed that, in addition to its already demonstrated beneficial effects in in vivo models of cerebral ischemia, the potent PARP inhibitor PJ34 exerts in vitro an antiplatelet effect. Moreover, this is the first study to report that PJ34 could act via a competitive P2Y12 antagonism. Thus, this antiplatelet effect could improve post-stroke reperfusion and/or prevent reocclusion, which reinforces the interest of this drug for stroke treatment. PMID:25329809

  1. Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1994-06-01

    On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100&D3 and Y/ER-53&D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs.

  2. Water-quality data for 34 sites, April and June 1984, near the Y-12 Plant, the Oak Ridge Reservation, Tennessee

    USGS Publications Warehouse

    Pulliam, Pamela J.

    1985-01-01

    Water-quality data were collected at 34 sites in the vicinity of the Y-12 Plant, Oak Ridge, Tennessee, on April 12 and 13, 1984. Concentrations of dissolved major and trace constituents were determined; field determinations of specific conductance, pH temperature, alkalinity, and dissolved oxygen were made. Gross alpha and beta activity were determined for 10 of the 34 sites, and dissolved organic carbon and oil and grease concentrations were determined for 11 of the sites sampled on June 3, 1984. 

  3. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    SciTech Connect

    Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J.

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  4. Streamflow and specific-conductance data for selected sites, February 15 through April 9, 1984, near the Y-12 Plant, the Oak Ridge Reservation, Tennessee

    USGS Publications Warehouse

    Evaldi, R.D.

    1984-01-01

    Discharge and specific conductance were measured February 15 through April 9, 1984, during base flow of streams in 18 watersheds in the vicinity of the Y-12 Plant of the Oak Ridge Reservation, Tennessee. Discharge of springs and streams measured at specific sites ranged from 0 to 16 cubic feet per second. Specific conductance ranged from 23 to 6,300 micromhos per centimeter. During the days of instantaneous discharge measurements, flow of Bear Creek at the continuous-record station at Highway 95 near Oak Ridge ranged from 3.6 to 17 cubic feet per second. (USGS)

  5. The Ratio of ADP- to TRAP-Induced Platelet Aggregation Quantifies P2Y12-Dependent Platelet Inhibition Independently of the Platelet Count

    PubMed Central

    Olivier, Christoph B.; Meyer, Melanie; Bauer, Hans; Schnabel, Katharina; Weik, Patrick; Zhou, Qian; Bode, Christoph; Moser, Martin; Diehl, Philipp

    2016-01-01

    Objective This study aimed to assess the association of clinical factors with P2Y12-dependent platelet inhibition as monitored by the ratio of ADP- to TRAP-induced platelet aggregation and conventional ADP-induced aggregation, respectively. Background Controversial findings to identify and overcome high platelet reactivity (HPR) after coronary stent-implantation and to improve clinical outcome by tailored anti-platelet therapy exist. Monitoring anti-platelet therapy ex vivo underlies several confounding parameters causing that ex vivo platelet aggregation might not reflect in vivo platelet inhibition. Methods In a single centre observational study, multiple electrode aggregometry was performed in whole blood of patients after recent coronary stent-implantation. Relative ADP-induced aggregation (r-ADP-agg) was defined as the ratio of ADP- to TRAP- induced aggregation reflecting the individual degree of P2Y12-mediated platelet reactivity. Results Platelet aggregation was assessed in 359 patients. Means (± SD) of TRAP-, ADP-induced aggregation and r-ADP-agg were 794 ± 239 AU*min, 297 ± 153 AU*min and 37 ± 14%, respectively. While ADP- and TRAP-induced platelet aggregation correlated significantly with platelet count (ADP: r = 0.302; p<0.001; TRAP: r = 0.509 p<0.001), r-ADP-agg values did not (r = -0.003; p = 0.960). These findings were unaltered in multivariate analyses adjusting for a range of factors potentially influencing platelet aggregation. The presence of an acute coronary syndrome and body weight were found to correlate with both ADP-induced platelet aggregation and r-ADP-agg. Conclusion The ratio of ADP- to TRAP-induced platelet aggregation quantifies P2Y12-dependent platelet inhibition independently of the platelet count in contrast to conventional ADP-induced aggregation. Furthermore, r-ADP-agg was associated with the presence of an acute coronary syndrome and body weight as well as ADP-induced aggregation. Thus, the r-ADP-agg is a more valid

  6. A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Grant, G. E.; Lewis, S. L.; Kramer, M. G.; Staab, B.

    2014-09-01

    Summer streamflows in the Pacific Northwest are largely derived from melting snow and groundwater discharge. As the climate warms, diminishing snowpack and earlier snowmelt will cause reductions in summer streamflow. Most regional-scale assessments of climate change impacts on streamflow use downscaled temperature and precipitation projections from general circulation models (GCMs) coupled with large-scale hydrologic models. Here we develop and apply an analytical hydrogeologic framework for characterizing summer streamflow sensitivity to a change in the timing and magnitude of recharge in a spatially explicit fashion. In particular, we incorporate the role of deep groundwater, which large-scale hydrologic models generally fail to capture, into streamflow sensitivity assessments. We validate our analytical streamflow sensitivities against two empirical measures of sensitivity derived using historical observations of temperature, precipitation, and streamflow from 217 watersheds. In general, empirically and analytically derived streamflow sensitivity values correspond. Although the selected watersheds cover a range of hydrologic regimes (e.g., rain-dominated, mixture of rain and snow, and snow-dominated), sensitivity validation was primarily driven by the snow-dominated watersheds, which are subjected to a wider range of change in recharge timing and magnitude as a result of increased temperature. Overall, two patterns emerge from this analysis: first, areas with high streamflow sensitivity also have higher summer streamflows as compared to low-sensitivity areas. Second, the level of sensitivity and spatial extent of highly sensitive areas diminishes over time as the summer progresses. Results of this analysis point to a robust, practical, and scalable approach that can help assess risk at the landscape scale, complement the downscaling approach, be applied to any climate scenario of interest, and provide a framework to assist land and water managers in adapting to

  7. Hydrogeologic Unit Flow Characterization Using Transition Probability Geostatistics

    SciTech Connect

    Jones, N L; Walker, J R; Carle, S F

    2003-11-21

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has several advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upwards sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow (HUF) package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids. An application of the technique involving probabilistic capture zone delineation for the Aberjona Aquifer in Woburn, Ma. is included.

  8. Hydrogeology and quality of ground water in Orange County, Florida

    USGS Publications Warehouse

    Adamski, James C.; German, Edward R.

    2004-01-01

    Ground water is the main source of water supply in central Florida and is critical for aquatic habitats and human consumption. To provide a better understanding for the conservation, development, and management of the water resources of Orange County, Florida, a study of the hydrogeologic framework, water budget, and ground-water quality characteristics was conducted from 1998 through 2002. The study also included extensive analyses of the surface-water resources, published as a separate report. An increase in population from about 264,000 in 1960 to 896,000 in 2000 and subsequent urban growth throughout this region has been accompanied by a substantial increase in water use. Total ground-water use in Orange County increased from about 82 million gallons per day in 1965 to about 287 million gallons per day in 2000. The hydrogeology of Orange County consists of three major hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. Data were compiled from 634 sites to construct hydrogeologic maps and sections of Orange County. Water-level elevations measured in 23 wells tapping the surficial aquifer system ranged from about 10.6 feet in eastern Orange County to 123.8 feet above NGVD 29 in northwestern Orange County from March 2000 through September 2001. Water levels also were measured in 14 wells tapping the Upper Floridan aquifer. Water levels fluctuate over time from seasonal and annual variations in rainfall; however, water levels in a number of wells tapping the Upper Floridan aquifer have declined over time. Withdrawal of ground water from the aquifers by pumping probably is causing the declines because the average annual precipitation rate has not changed substantially in central Florida since the 1930s, although yearly rates can vary. A generalized water budget was computed for Orange County from 1991 to 2000. Average rates for the 10-year period for the following budget components were computed based

  9. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    SciTech Connect

    Montazer, P.; Wilson, W.E.

    1985-12-31

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10{sup -6} to 9.8 x 10{sup -6} foot per day (2 x 10{sup -6} to 3 x 10{sup -6} meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10{sup -5} to 2.9 x 10{sup -2} foot per day (8 x 10{sup -6} to 9 x 10{sup -3} meter per day). 15 refs., 4 figs., 1 tab.

  10. Geographic information system data sets of hydrogeologic conditions in Pequea and Mill Creek watersheds, Pennsylvania; Part II, Hydrogeologic interpretations

    USGS Publications Warehouse

    Low, Dennis J.; Chichester, Douglas C.; Char, Stephen J.

    1995-01-01

    This report describes Geographic Information System data sets of ground-water levels, unsaturated-zone thickness, and regolith thickness in the Pequea and Mill Creek watersheds, a 210-square-mile area in Lancaster and Chester Counties, Pa. The data sets, which represent hydrogeologic interpretations, were developed by the use of ARC/INFO software during 1990-93 by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Resources. The U.S. Environmental Protection Agency proposes to use these interpretive data sets, and those from other sources, to aid in the assessment of ground-water vulnerability to pesticides in the Pequea and Mill Creek watersheds.

  11. Evaluation of beryllium exposure assessment and control programs at AWE, Cardiff Facility, Rocky Flats Plant, Oak Ridge Y-12 Plant and Lawrence Livermore National Laboratory. Phase 1

    SciTech Connect

    Johnson, J.S.; Foote, K.L.; Slawski, J.W.; Cogbill, G.

    1995-04-28

    Site visits were made to DOE beryllium handling facilities at the Rocky Flats Plant; Oak Ridge Y-12 Plant, LLNL; as well as to the AWE Cardiff Facility. Available historical data from each facility describing its beryllium control program were obtained and summarized in this report. The AWE Cardiff Facility computerized Be personal and area air-sampling database was obtained and a preliminary evaluation was conducted. Further validation and documentation of this database will be very useful in estimating worker Be. exposure as well as in identifying the source potential for a variety of Be fabrication activities. Although all of the Be control programs recognized the toxicity of Be and its compounds, their established control procedures differed significantly. The Cardiff Facility, which was designed for only Be work, implemented a very strict Be control program that has essentially remained unchanged, even to today. LLNL and the Oak Ridge Y-12 Plant also implemented a strict Be control program, but personal sampling was not used until the mid 1980s to evaluate worker exposure. The Rocky Flats plant implemented significantly less controls on beryllium processing than the three previous facilities. In addition, records were less available, management and industrial hygiene staff turned over regularly, and less control was evident from a management perspective.

  12. Evaluation of fish kills during November 1986 and July 1987 in upper East Fork Poplar Creek near the Y-12 Plant

    SciTech Connect

    Ryon, M.G.; Loar, J.M.; Southworth, G.R.; Stewart, A.J.; Adams, S.M.; Kszos, L.A.

    1990-09-01

    The Environmental Sciences Division (ESD) investigated two fish kills that occurred on November 21, 1986, and July 9, 1987, in upper East Fork Poplar Creek at the outfall of New Hope Pond (NHP) below the Oak Ridge Y-12 Plant. Investigative procedures included sampling of water at the inlet and outfall of NHP for water quality, examination of operating procedures at the Y-12 Plant and in the biomonitoring program that may have adversely affected the fish populations, review of results of concurrent ambient toxicity tests of the inlet and outfall water of NHP, autopsy investigations of the cause of death of the stonerollers, and laboratory experimentation to evaluate potential causes. The investigations revealed that the cause of death was bacterial hemorrhagic septicemia caused by Aeromonas hydrophila, which is a stress-mediated disease. The specific stressor responsible for the outbreak of the disease was not identified. Several possible stresses were indicated, including elevated concentrations of mercury and chlorine, excessive electroshocking activity, and elevated levels of the pathogen. Cumulative stress due to the combination of several factors was also suggested. Elevated temperatures and overcrowding may have enhanced the spread of the epizootic but were not the primary causes. The impact on the stoneroller population below NHP was not ecologically significant. 23 refs., 3 figs., 12 tabs.

  13. Best management practices plan for the Chestnut Ridge-Filled Coal Ash Pond at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-05-01

    The Chestnut Ridge Filled Coal Ash Pond (FCAP) Project has been established to satisfy Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the Chestnut Ridge Operable Unit 2. FCAP is on Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant. A 62-foot high earthen dam across Upper McCoy Branch was constructed in 1955 to create a pond to serve as a settling basin for fly and bottom ashes generated by burning coal at the Y-12 Steam Plant. Ash from the steam was mixed with water to form a slurry and then pumped to the crest of Chestnut Ridge and released through a large pipe to flow across the Sluice Channel area and into the pond. The ash slurry eventually overtopped the dam and flowed along Upper McCoy Branch to Rogers Quarry. The purpose of this document is to provide a site-specific Best Management Practices (BMP) Plan for construction associated with environmental restoration activities at the FCAP Site.

  14. Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Not Available

    1993-08-01

    Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

  15. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  16. Hydrogeologic framework of the Johns Creek subbasin and vicinity, Mason County, Washington

    USGS Publications Warehouse

    Welch, Wendy B.; Savoca, Mark E.

    2011-01-01

    This report describes the hydrogeologic framework of the groundwater-flow system in the Johns Creek subbasin and vicinity. The study area covers 97 square miles in southeastern Mason County, Washington, and includes the Johns Creek subbasin, which drains an area of about 11 square miles. The study area extends beyond the Johns Creek subbasin to include major hydrologic features that could be used as regional groundwater-flow model boundaries. The subbasin is underlain by a thick sequence of unconsolidated Quaternary glacial and interglacial deposits, which overlie Tertiary igneous and sedimentary bedrock units. Geologic units were grouped into eight hydrogeologic units consisting of aquifers, confining units, undifferentiated deposits, and an underlying bedrock unit. A surficial hydrogeologic map was developed and used with lithologic information from 200 drillers' logs to construct 4 hydrogeologic sections, and unit extent and thickness maps.

  17. Hydrogeologic correlations for selected wells on Long Island, New York; a data base with retrieval program

    USGS Publications Warehouse

    Buxton, H.T.; Shernoff, P.K.; Smolensky, D.A.

    1989-01-01

    Accurate delineation of the internal hydrogeologic structure of Long Island, NY is integral to the understanding and management of the groundwater system. This report presents a computerized data base of hydrogeologic correlations for 3,146 wells on Long Island and adjacent parts of New York City. The data base includes the well identification number, the latitude-longitude of the well location, the altitude of land surface at the well and of the bottom of the drilled hole, and the altitude of the top of the major hydrogeologic units penetrated by the well. A computer program is included that allows retrieval of selected types of data for all of, or any local area of, Long Island. These data retrievals are a valuable aid to the construction of hydrogeologic surface maps. (USGS)

  18. Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability.

    PubMed

    Ahn, Jae Joon; Kim, Young Min; Yoo, Keunje; Park, Joonhong; Oh, Kyong Joo

    2012-11-01

    For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability. PMID:22124584

  19. Hydrogeologic Data Fusion. Industry Programs/Characterization, Monitoring, and Sensor Technology Crosscut Program. OST Reference #2944

    SciTech Connect

    None, None

    1999-09-01

    Problem: The fate and transport of contaminants in the subsurface requires knowledge of the hydrogeologic system. Site characterization typically involves the collection of various data sets needed to create a conceptual model that represents what’s known about contaminant migration in the subsurface at a particular site. How Hydrogeologic Data Fusion Works Hydrogeologic Data Fusion is a mathematical tool that can be used to combine various types of geophysical, geologic, and hydrologic data from different types of sensors to estimate geologic and hydrogeologic properties. It can be especially useful at hazardous waste sites where the hydrology, geology, or contaminant distribution is significantly complex such that groundwater modeling is required to enable a reasonable and accurate prediction of subsurface conditions.

  20. GIS-based hydrogeological databases and groundwater modelling

    NASA Astrophysics Data System (ADS)

    Gogu, Radu Constantin; Carabin, Guy; Hallet, Vincent; Peters, Valerie; Dassargues, Alain

    2001-12-01

    Reliability and validity of groundwater analysis strongly depend on the availability of large volumes of high-quality data. Putting all data into a coherent and logical structure supported by a computing environment helps ensure validity and availability and provides a powerful tool for hydrogeological studies. A hydrogeological geographic information system (GIS) database that offers facilities for groundwater-vulnerability analysis and hydrogeological modelling has been designed in Belgium for the Walloon region. Data from five river basins, chosen for their contrasting hydrogeological characteristics, have been included in the database, and a set of applications that have been developed now allow further advances. Interest is growing in the potential for integrating GIS technology and groundwater simulation models. A "loose-coupling" tool was created between the spatial-database scheme and the groundwater numerical model interface GMS (Groundwater Modelling System). Following time and spatial queries, the hydrogeological data stored in the database can be easily used within different groundwater numerical models. Résumé. La validité et la reproductibilité de l'analyse d'un aquifère dépend étroitement de la disponibilité de grandes quantités de données de très bonne qualité. Le fait de mettre toutes les données dans une structure cohérente et logique soutenue par les logiciels nécessaires aide à assurer la validité et la disponibilité et fournit un outil puissant pour les études hydrogéologiques. Une base de données pour un système d'information géographique (SIG) hydrogéologique qui offre toutes les facilités pour l'analyse de la vulnérabilité des eaux souterraines et la modélisation hydrogéologique a été établi en Belgique pour la région Wallonne. Les données de cinq bassins de rivières, choisis pour leurs caractéristiques hydrogéologiques différentes, ont été introduites dans la base de données, et un ensemble d

  1. A Hydrogeologic Map of the Death Valley Region, Nevada and California, Developed Using GIS Techniques

    USGS Publications Warehouse

    Faunt, Claudia C.; D'Agnese, Frank A.; Turner, A. Keith

    1997-01-01

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing.

  2. Sandia National Laboratories site-wide hydrogeologic characterization project calendar year 1992 annual report

    SciTech Connect

    Crowson, D.; Gibson, J.D.; Haase, C.S.; Holt, R.; Hyndman, D.; Krumhansl, J.; Lauffer, F.; McCord, J.P.; McCord, J.T.; Neel, D.

    1993-10-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL/NM has performed research and development activities. Additionally, the SWHC project will investigate and characterize generic hydrogeologic issues associated with the 172 ER sites owned by SNL/NM across its facilities on KAFB. As called for in the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) Part B permit agreement between the U.S. Environmental Protection Agency (EPA) as the permitter and the U.S. Department of Energy (DOE) and SNL/NM as the permittees, an annual report is to be prepared by the SWHC project team. This document serves two primary purposes: (1) to identify and describe the conceptual framework for the hydrogeologic system underlying SNL/NM and (2) to describe characterization activities undertaken in the preceding year that add to our understanding (reduce our uncertainties) regarding the conceptual and quantitative hydrogeologic framework. This SWHC project annual report focuses primarily on purpose 1, providing a summary description of the current {open_quotes}state of knowledge{close_quotes} of the Sandia National Laboratories/Kirtland Air Force Base (SNL/KAFB) hydrogeologic setting.

  3. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    SciTech Connect

    Faunt, C.C.; D`Agnese, F.A.; Turner, A.K.

    1997-12-31

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km{sup 2} along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing.

  4. West Siberian basin hydrogeology - regional framework for contaminant migration from injected wastes

    SciTech Connect

    Foley, M.G.

    1994-05-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in massive contamination of the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. Our long-term goal at Pacific Northwest Laboratory is to help determine future environmental and human impacts given the releases that have occurred to date and the current waste management practices. In FY 1993, our objectives were to (1) refine and implement the hydrogeologic conceptual models of the regional hydrogeology of western Siberia developed in FY 1992 and develop the detailed, spatially registered digital geologic and hydrologic databases to test them, (2) calibrate the computer implementation of the conceptual models developed in FY 1992, and (3) develop general geologic and hydrologic information and preliminary hydrogeologic conceptual models relevant to the more detailed models of contaminated site hydrogeology. Calibration studies of the regional hydrogeologic computer model suggest that most precipitation entering the ground-water system moves in the near-surface part of the system and discharges to surface waters relatively near its point of infiltration. This means that wastes discharged to the surface and near-surface may not be isolated as well as previously thought, since the wastes may be carried to the surface by gradually rising ground waters.

  5. Interpretation, modeling and forecasting runoff of regional hydrogeologic systems

    NASA Astrophysics Data System (ADS)

    Shun, Tongying

    1999-10-01

    Long-range modeling of a precipitation-runoff process has become indispensable to predict/forecast runoff and study the impact of modern anthropogenic factors and land change use on watersheds. The purpose of this thesis research is to interpret, model and forecast complex drainage basins using advanced signal processing technique and a physically-based low-dimensional dynamic model. The first emphasis is placed on a hydrogeologic interpretation of a complex drainage basin. The space- time patterns of annual, interannual, and decadal components of precipitation, temperature, and runoff (P- T-R) using long-record time series across the steep topographic gradient of the Wasatch Front in northern Utah, are examined. The singular spectrum analysis is used to detect dominant oscillations and spatial patterns in the data and to discuss the relation to the unique mountain and basin hydrologic setting. For precipitation and temperature, only the annual/seasonal spectral peaks were found to be significantly different from the underlying noise floor. Spectral peaks in runoff show increasing low-frequency components at intermediate and low elevation. A conceptual hydrogeologic model for the mountain and basin system proposes how losing streams and deep upwelling groundwater in the alluvial aquifer could explain the strong low-frequency component in streams. The research shows that weak interannual and decadal oscillations in the climate signal are strengthened where groundwater discharge dominates streamflow. The second emphasis is focused on developing a long-range physically-based precipitation-runoff model. A low- dimensional integral-balance model is developed for a hydrologic system where multiple time scales of basin storage pla