These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Hydrogeological Environments  

NSDL National Science Digital Library

This assignment is designed to expose students in my undergraduate 3 credit non lab elective geohydrology course to a variety of hydrogeological environments and groundwater issues/problems that exist in the United States. Much of the course (field trip and local groundwater contamination case study) highlights and emphasizes understanding of the shallow unconsolidated aquifers in Michigan. Students use as their main source of information the data and illustration rich professional USGS Groundwater Atlases. Using this resource, in this activity students learn about the structure of aquifers in volcanic rock, karst and permafrost regions. They teach their fellow students about groundwater problems that result due due to overpumping, subsidence, sinkholes, saltwater intrusion and coal mining. Key words: hydrogeologic environments, water supply and water quality problems, aquifers

Peter Riemersma

2

HYDROGEOLOGIC CASE STUDIES  

EPA Science Inventory

Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

3

Hydrogeology Field Course  

NSDL National Science Digital Library

This applied hydrogeology field course taught at Western Michigan University is designed to educate and train students in environmental surface geophysics, well drilling and installation, aquifer testing, groundwater sampling and testing, and remediation. The course also offers OSHA 40 hour hazardous waste operations training. This website provides a course outline, photo galleries, a list of skills that will be acquired by students, and logistical information.

Geosciences, Department O.; University, Western M.

4

Hydrogeology Research Project  

NSDL National Science Digital Library

This activity is for students to work in teams (2012) or individually (2013) to develop a project (such as a physical or numerical model), survey based research, case study, technical briefs on a remediation technology, etc. of the students' choice, based on their understanding of and interest in the subjects covered in the class. This is used in the GL 199 Hydrogeology course, which is offered through the Department of Geology and Environmental Sciences at Norwich University. This is an experimental course that has not made it to the course catalogue as yet. It is currently offered to students majoring in Geology, with an acknowledgement that a course in hydrogeology is a desirable component of a Geology curriculum. Environmental Science students are encouraged to take it to deepen their understanding of subsurface processes. This course is considered a science elective for Civil and Environmental Engineering majors, and greatly complements the Hydrology, and Soils and Materials classes that are a part of the regular CE&E curriculum. Students from freshmen through seniors across these three majors are accepted into the course. With a cross section of majors and academic years in the class, it was determined that a project that has students thinking about a topic of their choice and developing fundamental research and collaboration skills is critical to meeting common workplace demands.

Kulkarni, Tara

5

HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)  

EPA Science Inventory

Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

6

HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)  

EPA Science Inventory

Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

7

Hydrogeologic Case Studies (Seattle, WA)  

EPA Science Inventory

Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

8

Coral reef hydrogeology  

SciTech Connect

Knowledge of internal flow velocities and pore water residence time is important in understanding pore water geochemistry, nutrient fluxes at the benthic boundary, reef diagenesis, and fresh water resources in reef islands. Hydrogeologic studies of Pacific and Indian Ocean reef and atoll islands indicate a dual aquifer systems; the major Pleistocene aquifer has hydraulic conductivities on the order of 1000 m/d, while the overlying Holocene aquifer of unconsolidated sediments is at least an order of magnitude less permeable. The high permeability in the Pleistocene formation is the result of large voids, both constructional and from subaerial solution during low stands of the sea. Wind, wave and tide induced head differences ranging from a few centimeters to several tens of centimeters provide the driving force for internal flow. Pore water residence times and geochemistry will vary greatly, depending on whether the water is in a major flow channel or in more restricted pores. Studies of both submerged reefs and atoll islands give bulk pore water residence times on the order of months to a few years. Chemical analyses of pore water indicate that both carbonate solution and precipitation are taking place, which will alter porosity and permeability with time. The dual aquifer model also suggests that the Ghyben-Herzberg lens approach to reef island fresh water resources is inaccurate and can lead to a gross overestimation of the potable resource. 18 refs., 5 figs.

Buddemeier, R.W.; Oberdorfer, J.A.

1985-05-21

9

Hydrogeological research: just getting started.  

PubMed

This paper comments on the current state of knowledge in the field of hydrogeology and claims that fundamental understandings must be developed if creative research is to have maximum impact. Problems of great importance to society include water development and quality, waste disposal, and global cycling of resources. These problems cannot be addressed effectively unless significant advances are made in understanding of a range of challenging scientific issues including fundamental physics, the importance of scale, modeling, and chemical and biological processes. Meaningful advances in hydrogeologic research will require an increased emphasis on fundamental understanding, interdisciplinary approaches, educational reforms, and the attraction of excellent researchers to the field. PMID:12019637

Miller, Cass T; Gray, William G

2002-01-01

10

Contaminant Hydrogeology, 2nd Edition  

NASA Astrophysics Data System (ADS)

Groundwater is a valuable resource that has received much attention over the last couple of decades. Extremely large sums of money have been and will be spent on groundwater contamination problems and the public has become increasingly sensitive to groundwater issues. Groundwater contamination has even become the subject of a major Hollywood movie with the recent release of A Civil Action starring John Travolta. The high profile of groundwater contaminant problems, the associated relatively strong job market over the last 20 years, and the general shift toward an environmental emphasis in science and engineering have resulted in a sustained high demand for senior undergraduate courses and graduate programs in hydrogeology Many voice the opinion that we have seen the peak demand for hydrogeologists pass, but the placement of graduates from hydrogeology programs into career-oriented positions has remained very high.

Smith, James E.

11

SRP Baseline Hydrogeologic Investigation, Phase 3  

Microsoft Academic Search

The SRP Baseline Hydrogeologic Investigation was implemented for the purpose of updating and improving the knowledge and understanding of the hydrogeologic systems underlying the SRP site. Phase III, which is discussed in this report, includes the drilling of 7 deep coreholes (sites P-24 through P-30) and the installation of 53 observation wells ranging in depth from approximately 50 ft to

1988-01-01

12

Hydrogeology of Webb County, Texas  

USGS Publications Warehouse

Introduction: Webb County, in semiarid South Texas on the U.S.-Mexico border, is a region confronted by increasing stresses on natural resources. Laredo (fig. 1), the largest city in Webb County (population 193,000 in 2000), was one of the 10 fastest-growing metropolitan areas in the country during 1990-2000 (Perry and Mackun, 2001). Commercial and industrial activities have expanded throughout the region to support the maquiladora industry (manufacturing plants in Mexico) along the border and other growth as a result of the passage of the North American Free Trade Agreement. The Rio Grande currently (2002) is the primary source of public water supply for Laredo and other cities along the border in Webb County (fig. 1). Other cities, such as Bruni and Mirando City in the southeastern part of the county, rely on ground-water supplies to meet municipal demands. Increased water demand associated with development and population growth in the region has increased the need for the City of Laredo and Webb County to evaluate alternative water sources to meet future demand. Possible options include (1) supplementing the surface-water supply with ground water, and (2) applying artificial storage and recovery (ASR) technology to recharge local aquifers. These options raise issues regarding the hydraulic capability of the aquifers to store economically substantial quantities of water, current or potential uses of the resource, and possible effects on the quality of water resulting from mixing ground water with alternative source waters. To address some of these issues, the U.S. Geological Survey (USGS), in cooperation with the City of Laredo, began a study in 1996 to assess the ground-water resources of Webb County. A hydrogeologic study was conducted to review and analyze available information on the hydrogeologic units (aquifers and confining units) in Webb County, to locate available wells in the region with water-level and water-quality information from the aquifers, and to analyze the hydraulic properties of the aquifers. The purpose of this report is to document the findings of the study. The information is organized by hydrogeologic unit and presented on this and six other sheets.

Lambert, Rebecca B.

2004-01-01

13

Classification of hydrogeologic areas and hydrogeologic flow systems in the basin and range physiographic province, southwestern United States  

USGS Publications Warehouse

The hydrogeology of the Basin and Range Physiographic Province in parts of Arizona, California, New Mexico, Utah, and most of Nevada was classified at basin and larger scales to facilitate information transfer and to provide a synthesis of results from many previous hydrologic investigations. A conceptual model for the spatial hierarchy of the hydrogeology was developed for the Basin and Range Physiographic Province and consists, in order of increasing spatial scale, of hydrogeologic components, hydrogeologic areas, hydrogeologic flow systems, and hydrogeologic regions. This hierarchy formed a framework for hydrogeologic classification. Hydrogeologic areas consist of coincident ground-water and surface-water basins and were delineated on the basis of existing sets of basin boundaries that were used in past investigations by State and Federal government agencies. Within the study area, 344 hydrogeologic areas were identified and delineated. This set of basins not only provides a framework for the classification developed in this report, but also has value for regional and subregional purposes of inventory, study, analysis, and planning throughout the Basin and Range Physiographic Province. The fact that nearly all of the province is delineated by the hydrogeologic areas makes this set well suited to support regional-scale investigations. Hydrogeologic areas are conceptualized as a control volume consisting of three hydrogeologic components: the soils and streams, basin fill, and consolidated rocks. The soils and streams hydrogeologic component consists of all surface-water bodies and soils extending to the bottom of the plant root zone. The basin-fill hydrogeologic component consists of unconsolidated and semiconsolidated sediment deposited in the structural basin. The consolidated-rocks hydrogeologic component consists of the crystalline and sedimentary rocks that form the mountain blocks and basement rock of the structural basin. Hydrogeologic areas were classified into 19 groups through a cluster analysis of 8 characteristics of each area's hydrologic system. Six characteristics represented the inflows and outflows of water through the soils and streams, basin fill, and consolidated rocks, and can be used to determine the hydrogeologic area's position in a hydrogeologic flow system. Source-, link-, and sink-type hydrogeologic areas have outflow but not inflow, inflow and outflow, and inflow but not outflow, respectively, through one or more of the three hydrogeologic components. Isolated hydrogeologic areas have no inflow or outflow through any of the three hydrogeologic components. The remaining two characteristics are indexes that represent natural recharge and discharge processes and anthropogenic recharge and discharge processes occurring in the hydrogeologic area. Of the 19 groups of hydrogeologic areas, 1 consisted of predominantly isolated-type hydrogeologic areas, 7 consisted of source-type hydrogeologic areas, 9 consisted of link-type hydrogeologic areas, and 2 consisted of sink-type hydrogeologic areas. Groups comprising the source-, link-, and sink-type hydrogeologic areas can be distinguished between each other on the basis of the hydrogeologic component(s) through which interbasin flow occurs, as well as typical values for the two indexes. Conceptual models of the hydrologic systems of a representative hydrogeologic area for each group were developed to help distinguish groups and to synthesize the variation in hydrogeologic systems in the Basin and Range Physiographic Province. Hydrogeologic flow systems consist of either a single isolated hydrogeologic area or a series of multiple hydrogeologic areas that are hydraulically connected through interbasin flows. A total of 54 hydrogeologic flow systems were identified and classified into 9 groups. One group consisted of single isolated hydrogeologic areas. The remaining eight groups consisted of multiple hydrogeologic areas and were distinguished o

Anning, David W.; Konieczki, Alice D.

2005-01-01

14

Teaching hydrogeology: a review of current practice  

NASA Astrophysics Data System (ADS)

Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey among 68 hydrogeology instructors. The literature and survey results suggest there are only ~ 15 topics that are considered crucial by most hydrogeologists and > 100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated, iterative and balanced approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

Gleeson, T.; Allen, D. M.; Ferguson, G.

2012-07-01

15

SRP baseline hydrogeologic investigation, Phase 2  

SciTech Connect

As discussed in the program plan for the Savannah River Plant (SRP) Baseline Hydrogeologic Investigation, this program has been implemented for the purpose of updating and improving the current state of knowledge and understanding of the hydrogeologic systems underlying the Savannah River Plant (SRP). The objective of the program is to install a series of observation well clusters (wells installed in each major water bearing formation at the same site) at key locations across the plant site in order to: (1) provide detailed information on the lithology, stratigraphy, and groundwater hydrology, (2) provide observation wells to monitor the groundwater quality, head relationships, gradients, and flow paths.

Bledsoe, H.W.

1987-11-01

16

SRP Baseline Hydrogeologic Investigation, Phase 3  

SciTech Connect

The SRP Baseline Hydrogeologic Investigation was implemented for the purpose of updating and improving the knowledge and understanding of the hydrogeologic systems underlying the SRP site. Phase III, which is discussed in this report, includes the drilling of 7 deep coreholes (sites P-24 through P-30) and the installation of 53 observation wells ranging in depth from approximately 50 ft to more than 970 ft below the ground surface. In addition to the collection of geologic cores for lithologic and stratigraphic study, samples were also collected for the determination of physical characteristics of the sediments and for the identification of microorganisms.

Bledsoe, H.W.

1988-08-01

17

Hydrogeology and Flooding on the Web  

NSDL National Science Digital Library

Hydrogeology and Flooding on the Web reviews internet sites which contain information on water resources and flood events. Resource categories are flooding, weather-related sites, and hydrology. Some site addresses and image galleries are hyper-linked, while others must be manually cut and pasted into the resource user's browser location.

Pamela Gore

1997-02-19

18

Home page for Applied Hydrogeology textbook  

NSDL National Science Digital Library

This is a supplement to the Fourth Edition of Applied Hydrogeology, by C.W. Fetter. The site contains corrections to the text, a review of basic math useful for hydrogeologists, a brief history of the science of groundwater, and the text of the California water rights ruling for Mono Lake. Answers to the text's odd-numbered questions are also provided.

C.W. Fetter

19

The ancient Chinese notes on hydrogeology  

NASA Astrophysics Data System (ADS)

The ancient Chinese notes on hydrogeology are summarized and interpreted, along with records of some related matters, like groundwater exploration and utilization, karst springs, water circulation, water conservation and saline-land transformation, mine drainage, and environmental hydrogeology. The report focuses only on the earliest recorded notes, mostly up until the Han Dynasty (206 BC - AD 25). Besides the references cited, the discussion in this report is based mainly on archaeological material, the preserved written classic literature, and some assumptions and/or conclusions that have been handed down in legends to later ages. Although most material relates to ancient China, the lessons learned may have practical significance worldwide. Compared to other contemporary parts of the world, ancient China, without doubt, took the lead in the field of groundwater hydrology. The great achievements and experience of the Chinese ancestors should provide motivation and inspiration for hydrogeologists to carry out their scientific research and exploration passionately and actively.

Zhou, Yu; Zwahlen, François; Wang, Yanxin

2011-08-01

20

GEO-SCI 587: Introduction to Hydrogeology  

NSDL National Science Digital Library

This is the home page of a hydrogeology course taught by Dr. David Boutt at the University of Massachusetts. The website includes the course syllabus, lecture notes, homework assignments and lab activities (including three field labs). The course addresses the hydrologic cycle, Darcy's Law, aquifer parameters, steady and transient flow equations, well hydraulics, elementary multi-phase flow, groundwater recharge, watershed hydrology, geological controls on groundwater flow, well construction, and groundwater chemistry and pollution.

David Boutt

21

Hydrogeology at the University of Calgary  

NSDL National Science Digital Library

This University of Calgary website provides summaries of the educational opportunities and of the diverse research interests of the hydrogeology group. Individuals can find synopses of the group's applied isotope geochemistry, electrical resistivity imaging, groundwater modeling, surface-ground water interaction, and hydrology research. The website offers information on the research interests, educational background, and publications of the many faculty, post doctorate, and graduate students. Geologists can find out about graduate assistantships and other research opportunities.

22

Marine hydrogeology: recent accomplishments and future opportunities  

NASA Astrophysics Data System (ADS)

Marine hydrogeology is a broad-ranging scientific discipline involving the exploration of fluid-rock interactions below the seafloor. Studies have been conducted at seafloor spreading centers, mid-plate locations, and in plate- and continental-margin environments. Although many seafloor locations are remote, there are aspects of marine systems that make them uniquely suited for hydrologic analysis. Newly developed tools and techniques, and the establishment of several multidisciplinary programs for oceanographic exploration, have helped to push marine hydrogeology forward over the last several decades. Most marine hydrogeologic work has focused on measurement or estimation of hydrogeologic properties within the shallow subsurface, but additional work has emphasized measurements of local and global fluxes, fluid source and sink terms, and quantitative links between hydrogeologic, chemical, tectonic, biological, and geophysical processes. In addition to summarizing selected results from a small number of case studies, this paper includes a description of several new experiments and programs that will provide outstanding opportunities to address fundamental hydrogeologic questions within the seafloor during the next 20-30 years. L'hydrogéologie marine est une large discipline scientifique impliquant l' exploration des interactions entre les fluides et les roches sous les fonds marins. Des études ont été menées dans les différents environnements sous-marins (zone abyssale, plaque océanique, marges continentales). Bien que de nombreux fonds marins soient connus, il existe des aspects des systèmes marins qui les rendent inadaptés à l'analyse hydrologique. De nouveaux outils et techniques, et la mise en oeuvre de nombreux programmes multidisciplinaires d'exploration océanographique, ont aidé à pousser en avant l'hydrogéologie marine ces dix dernières années. La plus part des études hydrogéologiques se sont concentrées jusqu'à présent sur la mesure ou l'estimation des propriétés à la sub-surface des fonds marins, et des travaux complémentaires ont mis en valeur les mesures de flux, local ou global, de termes « sources » et « pertes », et des liens quantitatifs entre l'hydrogéologie, la chimie, la tectonique, la biologie, et les processus géophysiques. Cet article vise à résumer des résultats sélectionnés parmi un petit nombre d'études, et à décrire plusieurs nouvelles expériences et programmes, qui sont autant d'opportunités pour répondre aux questions fondamentales relatives aux fonds marins, posées ces dernières 20-30 années. La hidrogeología marina es una disciplina científica de amplios alcances que involucra la exploración de interacciones fluido-roca por debajo del fondo del mar. Se han llevado a cabo estudios en centros de expansión del fondo del mar, lugares en medio de una placa, y en ambientes de placa y margen continental. Aunque muchos sitios en el fondo del mar son remotos, existen aspectos de estos sistemas marinos que los hacen particularmente adaptables para análisis hidrológico. Nuevas técnicas y herramientas desarrolladas, y el establecimiento de varios programas multidisciplinarios para exploración oceanográfica, han ayudado a impulsar la hidrogeología marina hacia delante durante las ultimas décadas. La mayor parte del trabajo hidrogeológico marino se ha enfocado en la medición o estimación de propiedades hidrogeológicas dentro del subsuelo superficial, pero trabajo adicionalha enfatizado mediciones de flujos globales y locales, términos de fuente y sumidero de fluidos, y vínculos cuantitativos entre procesos hidrogeológicos, químicos, tectónicos, biológicos y geofísicos. Además de resumir resultados seleccionados de un número pequeño de estudios de caso, este artículo incluye una descripción de varios programas y experimentos nuevos que aportarán oportunidades excepcionales para dirigir preguntas hidrogeológicas fundamentales dentro del fondo oceánico durante los siguientes 20-30 años.

Fisher, A. T.

2005-03-01

23

Hydrogeology of the Islamic Republic of Mauritania  

USGS Publications Warehouse

Hydrogeologic maps were constructed for the Islamic Republic of Mauritania. The ground-water flow system in the country can best be described as two interconnected regional systems: the porous Continental Terminal coastal system and the interior, fractured sedimentary Taoudeni Basin system. In these systems, ground-water flow occurs in fill deposits and carbonate, clastic, metasedimentary, and metavolcanic rocks. Based on an evaluation of the potentiometric surface, there are three areas of ground-water recharge in the Taoudeni Basin system. One region occurs in the northwest at the edge of the Shield, one occurs to the south overlying the Tillites, and one is centered at the city of Tidjikdja. In contrast to the flow system in the Taoudeni Basin, the potentiometric surfaces reveal two areas of discharge in the Continental Terminal system but no localized recharge areas; the recharge is more likely to be areal. In addition to these recharge and discharge areas, ground water flows across the country's borders. Specifically, ground water from the Atlantic Ocean flows into Mauritania, transporting dissolved sodium from the west as a salt water intrusion, whereas fresh ground water discharges from the east into Mali. To the north, there is a relatively low gradient with inflow of fresh water to Mauritania, whereas ground-water flow discharges to the Senegal River to the south. A geographical information system (GIS) was used to digitize, manage, store, and analyze geologic data used to develop the hydrogeologic map. The data acquired for map development included existing digital GIS files, published maps, tabulated data in reports and public-access files, and the SIPPE2 Access database. Once in digital formats, regional geologic and hydrologic features were converted to a common coordinate system and combined into one map. The 42 regional geologic map units were then reclassified into 13 hydrogeologic units, each having considerable lateral extent and distinct hydrologic properties. Because the hydrologic properties of these units are also influenced by depth and degree of fracturing, the hydraulic conductivity values of these hydrogeologic units can range over many orders of magnitude.

Friedel, Michael J.; Finn, Carol

2008-01-01

24

University of Tennessee: Hydrogeology Research Program  

NSDL National Science Digital Library

The hydrogeology research program at the University of Tennessee developed this website to promote its investigation related primarily to groundwater flow and contaminant transport. After reading an overview of the program and its facilities, visitors can discover the endeavors and successes of the numerous researchers. Users can find information and publications discussing the three featured research projects: Chattanooga Creek, Pathogen Transport, and Saprolite Pore Structure; as well as materials on other recent projects. Students can discover the program's three excellent field teaching sites and research opportunities.

25

Surface and subsurface mapping in hydrogeology  

SciTech Connect

This book concentrates on the often neglected but useful aspects of hydrogeological mapping. It covers geophysical survey methods and the importance of water chemistry as a tool in tracing the route of subsurface water, and goes on to lay a basic foundation in subjects needed for practice in field: stratigraphy, structural geology, mineralogy, petrography, and geochemistry. Also covers basic disciplines and techniques indispensable for geological mapping, e.g., cartography and surveying, geophysics, drilling, soil science, hydrology, and botanics. Written from a uniquely practical standpoint.

Erdelyi, M.; Galfi, J.

1987-01-01

26

Hydrogeology in North America: past and future  

NASA Astrophysics Data System (ADS)

This paper is a retrospective on the evolution of hydrogeology in North America over the past two centuries, and a brief speculation of its future. The history of hydrogeology is marked by developments in many different fields such as groundwater hydrology, soil mechanics, soil science, economic geology, petroleum engineering, structural geology, geochemistry, geophysics, marine geology, and more recently, ecology. The field has been enriched by the contributions of distinguished researchers from all these fields. At present, hydrogeology is in transition from a state of discovering new resources and exploiting them efficiently for maximum benefit, to one of judicious management of finite, interconnected resources that are vital for the sustenance of humans and other living things. The future of hydrogeology is likely to be dictated by the subtle balance with which the hydrological, erosional, and nutritional cycles function, and the decision of a technological society to either adapt to the constraints imposed by the balance, or to continue to exploit hydrogeological systems for maximum benefit. Although there is now a trend towards ecological and environmental awareness, human attitudes could change should large parts of the populated world be subjected to the stresses of droughts that last for many decades. Cet article est une rétrospective de l'évolution de l'hydrogéologie en Amérique du Nord sur les deux derniers siècles, et une brève évaluation de son futur. L'histoire de l'hydrogéologie est marquée par le développement de plusieurs techniques de terrain telles, l'hydrologie des eaux souterraines, la mécanique des sols, les sciences du sol, la géologie économique, l' ingénierie pétrolière, la géologie structurale, la géochimie, la géophysique, la géologie marine et plus récemment l'écologie. La science a été enrichie par la contribution de plusieurs chercheurs distingués, provenant de toutes ces branches. A présent, l'hydrogéologie est à la transition entre la volonté de découvrir de nouvelles ressources et l' exploitation la plus bénéfique au possible, et un management judicieux des ressources finies, interconnectées, qui sont vitales pour l' approvisionnement des hommes et autres formes de vie. Le futur de l' hydrogéologie sera dicté par la balance subtile dans laquelle intervient les cycles de l'hydrologie, de l'érosion, de la nutrition, et la décision d'une société technologique qui s'adapterait aux contraintes de la balance, ou qui continuerait d'exploiter les systèmes hydrologiques pour un bénéfice maximum. Par ailleurs il y a une nette tendance à inclure les aspects écologiques, les aspects environnementaux, et les changements humains qui pourraient être influencés par les modifications hydrogéologiques observées depuis une dizaine d'années. Este articulo es una retrospectiva sobre la evolución de la hidrogeología en Norte América en los pasados dos siglos, y una breve especulación de su futuro. La historia de la hidrogeología está marcada por desarrollos en muchos campos diferentes tal como hidrología de aguas subterráneas, mecánica de suelos, ciencia del suelo, geología económica, ingeniería del petróleo, geología estructural, geoquímica, geofísica, geología marina, y más recientemente, ecología. El campo se ha enriquecido por las contribuciones de investigadores distinguidos en todos esos campos. Actualmente, la hidrogeología se encuentra en transición de un estado de descubrir nuevos recursos y explotarlos eficientemente para un beneficio máximo, a un estado de gestión juiciosa de recursos finitos, interconectados, que son vitales para el sustento de humanos y otras cosas vivientes. El futuro de la hidrogeología posiblemente esté determinado por el balance sutil con el cual funcionan los ciclos nutricionales, erosionales e hidrológicos, y la decisión de una sociedad tecnológica para ya sea adaptarse a las restricciones impuestas por el balance o para continuar con la explotación de los sistemas hidrogeológicos para un benefici

Narasimhan, T. N.

2005-03-01

27

Hydrogeology Laboratory Semester Project: Hydrogeologic Assessment for CenTex Water Supply, Inc.  

NSDL National Science Digital Library

This activity is a single, semester-long project that involves a hydrogeologic assessment of a property in Central Texas. The project is presented in the lab portion of a hydrogeology class, and it is broken into several separate steps. Each step is treated as a separate assignment, however, the data and results associated with each assignment are applied towards the overall goal of the project. Students are required to maintain a file and a master Excel workbook containing all information, data, and results from each of the steps. All this information is then used to develop an analytical model that simulated drawdowns in the aquifer. This model is used to answer the primary question associated with the project. The results are then documented in a technical report.

Uliana, Matthew

28

Hydrogeological Characterization in the Mizunami Underground Research Laboratory Project  

NASA Astrophysics Data System (ADS)

The Mizunami Underground Research Laboratory (MIU) is now under construction by Japan Atomic Energy Agency in the Cretaceous Toki granite in the Tono area of central Japan. One of the main goals of the MIU project, which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes, is to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The conceptual design of the MIU consists of two 1,000 m shafts and horizontal research galleries. The project is implemented in three overlapping phases: Surface-based Investigation (Phase I), Construction (Phase II) and Operation (Phase III), with a total duration of 20 years. In Phase I, hydrogeological investigations have been carried out in a stepwise manner in order to obtain information on important parameters such as, water balance at the surface, location of water conducting features, hydraulic parameters, hydraulic connectivity and groundwater pressure distribution. Hydrogeological modeling and groundwater flow simulations, which are: 1) for evaluation of undisturbed hydrogeological and groundwater flow conditions before excavation of the URL and 2) for estimations of volume of inflow into the shafts and galleries and changes of water table and hydraulic pressure, have been carried out in order to synthesize these investigation results, to evaluate the uncertainty of the hydrogeological model and to identify the main issues for further investigations. In Phase II, long-term hydraulic monitoring which is for mainly determination and assessment of hydraulic responses during excavation of the shafts and galleries, geological mapping and hydraulic testing using boreholes drilled from underground galleries have been also carried out. Based on the results of these investigations, hydrogeological model constructed in Phase I has been tested and revised. Lessons learned through the hydrogeological characterization are as follows; - Hydrogeological characterization combining field investigations and hydrogeological modeling iteratively is quite efficient. - Data of hydraulic transient change is useful to calibrate the hydrogeological model and to constrain the uncertainties of characteristics of groundwater flow. - It has possibility that the existence of unknown hydrogeological structures can be predicted by combining the hydraulic monitoring with calibration of hydrogeological models. The study to establish comprehensive techniques for investigation, analysis and assessment of hydrogeological environments will be continued in Phase II and Phase III of the MIU project.

Saegusa, H.; Takeuchi, R.; Ohyama, T.; Takeuchi, S.

2008-12-01

29

Hydrogeologic modeling for permeable reactive barriers.  

PubMed

The permeable reactive barrier technology for in situ treatment of chlorinated solvents and other groundwater contaminants is becoming increasingly popular. Field scale implementation of this and other in situ technologies requires careful design based on the site-specific hydrogeology and contaminant plume characteristics. Groundwater flow modeling is an important tool in understanding the hydraulic behavior of the site and optimizing the reactive barrier design. A combination of groundwater flow modeling and particle tracking techniques was used to illustrate the effect of hydraulic conductivity of the aquifer and reactive media on key permeable barrier design parameters, such as the capture zone width, residence time, flow velocity, and discharge. Similar techniques were used to illustrate the modeling approach for design of different configurations of reactive barriers in homogeneous and heterogeneous settings. PMID:10518663

Gupta, N; Fox, T C

1999-08-12

30

Insights into Mejerda basin hydrogeology, Tunisia  

NASA Astrophysics Data System (ADS)

The present study concentrates on the interpretation of Vertical Electrical Soundings (VES) and well logs to understand the geometry and the functioning of the Ghardimaou multilayered aquifer, a potential target for water supply in the Mejerda basin (Tunisia). The analysis of isobath and isopach maps established in this study, shows a tectonic influence on the reservoirs structure; the Villafranchian folding and the NE-SW, and E-W normal faulting in the recent Quaternary created an aquifer system compartmentalized by raised and tilted blocks. Geoelectrical cross sections reveal that this structure influences the thickness of permeable formations and the groundwater circulation. These results will be useful for rationalizing the future hydrogeological research that will be undertaken in the Mejerda basin.

Guellala, Rihab; Tagorti, Mohamed Ali; Inoubli, Mohamed Hédi; Amri, Faouzi

2012-09-01

31

Stochastic hydrogeologic units and hydrogeologic properties development for total-system performance assessments. Yucca Mountain Site Characterization Project  

SciTech Connect

A stochastic representation of the lithologic units and associated hydrogeologic parameters of the potential high-level nuclear waste repository are developed for use in performance-assessment calculations, including the Total-System Performance Assessment for Yucca Mountain-SNL Second Iteration (TSPA-1993). A simplified lithologic model has been developed based on the physical characteristics of the welded and nonwelded units at Yucca Mountain. Ten hydrogeologic units are developed from site-specific data (lithologic and geophysical logs and core photographs) obtained from the unsaturated and saturated zones. The three-dimensional geostatistical model of the ten hydrogeologic units is based on indicator-coding techniques and improves on the two-dimensional model developed for TSPA91. The hydrogeologic properties (statistics and probability distribution functions) are developed from the results of laboratory tests and in-situ aquifer tests or are derived through fundamental relationships. Hydrogeologic properties for matrix properties, bulk conductivities, and fractures are developed from existing site specific data. Extensive data are available for matrix porosity, bulk density, and matrix saturated conductivity. For other hydrogeologic properties, the data are minimal or nonexistent. Parameters for the properties are developed as beta probability distribution functions. For the model units without enough data for analysis, parameters are developed as analogs to existing units. A relational, analytic approach coupled with bulk conductivity parameters is used to develop fracture parameters based on the smooth-wall-parallel-plate theory. An analytic method is introduced for scaling small-core matrix properties to the hydrogeologic unit scales.

Schenker, A.R.; Guerin, D.C. [Los Alamos Technical Associates, Albuquerque, NM (United States); Robey, T.H. [Spectra Research Institute, Albuquerque, NM (United States); Rautman, C.A.; Barnard, R.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-09-01

32

HYDROGEOLOGIC CASE STUDIE(PRESENTATION FOR MNA WORKSHOP)  

EPA Science Inventory

Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

33

UNCORRECTEDPROOF Hydrogeology and geochemistry of near-shore submarine  

E-print Network

UNCORRECTEDPROOF Hydrogeology and geochemistry of near-shore submarine groundwater discharge rates based on tidal signal and hydraulic gradient analysis indicate a fresh submarine groundwater discharge in this high rainfall region. Ã? 2007 Published by Elsevier Ltd. Keywords: submarine groundwater

34

Peatland hydrogeological function at the regional scale  

NASA Astrophysics Data System (ADS)

Peatlands are important components of northern landscapes. In the Canadian province of Quebec, peatlands of the St. Lawrence Valley are rapidly disappearing, threatened by rapidly growing pressures from development. Peatlands are to varying extents groundwater dependent and as such are likely to respond drastically to changes in groundwater flow conditions and to contribute to the maintenance of groundwater levels within a superficial aquifer. Yet, there is very little understanding of the hydrogeological function of peatlands at the regional scale. For this reason, they are often simply discarded in complex groundwater management decisions. The implications are not clearly understood but could lead to the disruption of ecologically important fluxes and to significant impacts for the maintenance of long term water reservoirs across the land. This study was initiated in the Centre-du-Quebec region of southern Quebec to quantify how the peatland landscape has evolved in the last decades and to understand the hydrogeological function of peatlands at the regional scale. The study area (2856 km2) is located in the St. Lawrence Lowlands. The last deglaciation has contributed to a complex stratigraphy of unconsolidated sediments and peatlands have developed at the foot of the Appalachians. A recent regional study of Quaternary deposits has shown that a majority of these peatlands are found on aeolian deposits or reworked till, while only a few are set on marine clay, littoral deposits or directly on the bedrock. The area occupied by peatlands was measured with aerial photographs dating from 1966 and 2010. In 2010, peatlands were found on 6.1 % of the territory. Of these peatlands, 10 485 ha were intact and 7 015 underwent limited perturbations (e.g. drainage ditch, forest roads). Between 1966 and 2010, nearly a quarter of the peatlands observed in 1966 underwent irreversible perturbations (e.g. agriculture, paved roads). The main cause of peatland disappearance was from cranberry crops which have been developing extremely rapidly in the study area. Nine peatlands from different parts of the study area were sampled to determine the nature of the underlying sediments. Results show that eight out of the nine studied peatlands are located on relatively permeable sand deposits and can therefore sustain hydrogeological exchanges with the surrounding aquifer. Darcy fluxes calculated from piezometric data for the nine peatlands show that five of them receive water from the superficial aquifer while four contribute water to it. Using Quaternary deposits data and a 3D hydrostratigraphic model, the proportion of peatlands receiving groundwater or contributing water to the aquifer was found to be similar at the regional scale. For the nine studied peatlands, aquifer-peatland fluxes represent between 6 and 11% of the total water input to the organic deposits. Results also show that exchanged aquifer-peatland fluxes increase with the size of the peatland, either towards the peatland or from the organic deposits to the aquifer. This study suggests that peatlands have a buffer function to keep relatively stable levels in a superficial unconsolidated aquifer. Maintaining a peatland coverage on the landscape could contribute to sustain groundwater resources.

Larocque, M.; Avard, K.; Pellerin, S.

2012-12-01

35

2101-M Pond hydrogeologic characterization report  

SciTech Connect

This report documents information collected by the Pacific Northwest Laboratory {sup (a)} at the request of Westinghouse Hanford Company. Presented in this report is the interpretation of the hydrogeologic environment at the 2101-M Pond, located in the 200-East Area of the Hanford Site. This information and its accompanying interpretation were derived from sampling and testing activities associated with the installation of four ground-water monitoring wells, in addition to data gathered from several previously existing wells. The new monitoring wells were installed as part of a groundwater monitoring program initiated in 1988. The four new monitoring wells were installed around the 2101-M Pond between May 23 and August 27, 1988. Geologic sampling, aquifer testing, and initial ground-water sampling were performed during the installation of these wells. Laboratory analyses of the sediment samples for particle size, calcium carbonate content, and selected natural and contaminant constituents were performed. A full year of quarterly ground-water sampling and the first statistical analysis of background and downgradient data have also been performed. 112 refs., 49 figs., 18 tabs.

Chamness, M.A.; Luttrell, S.P.; Bates, D.J.; Martin, W.J.

1990-09-01

36

Airborne EM for geothermal and hydrogeological mapping  

NASA Astrophysics Data System (ADS)

Within the "VIGOR" project, aimed at assessing the geothermal potential of four regions in southern Italy, Airborne EM data have been acquired, modeled and interpreted. The system deployed was SkyTEM, a time-domain helicopter electromagnetic system designed for hydrogeophysical, environmental and mineral investigations. The AEM data provide, after data acquisition, analysis, processing, and modeling, a distribution volume of electrical resistivity, spanning an investigation depth from ground surface of few hundred meters, depending on resistivity condition. Resistivity is an important physical parameter for geothermal investigation, since it proved to be very effective in mapping anomalies due to hydrothermal fluid circulation, which usually has high salt content and produces clayey alteration minerals. Since the project required, among other issues, to define geothermal resources at shallow level, it was decided to perform a test with an airborne electromagnetic geophysical survey, to verify the advantages offered by the system in covering large areas in a short time. The geophysical survey was carried out in Sicily, Italy, in late 2011, over two test sites named "Termini" and "Western Sicily". The two areas were chosen on different basis. "Termini" area is covered by extensive geological surveys, and was going to be investigated also by means of electrical tomography in its northern part. Since geological condition of Sicily, even at shallow depth, is very complex, this area provided a good place for defining the resistivity values of the main geological units outcropping in the region. "Termini" survey has been also an occasion to define relations between resistivity distribution, lithological units and thermal conductivity. The "Western Sicily" area cover the main thermal manifestations of western Sicily, and the research target was to establish whether they are characterized by common hydrogeological or tectonic features that could be mapped by resistivity. SkyTEM data have been acquired in a series of flight lines and were then processed and inverted. In the "Termini" area the flight line spacing had 150 m separation. In the "Western Sicily" area two different line spacing were used: the 1 km spacing was used for the regional mapping, whereas for infill areas, around the main hydrothermal springs, the flight lines had 100 m spacing. The total number of flight line was 4580 km, and the explored surface was in excess of 2000 km2. After acquisition, data were processed to eliminate coupling with infrastructures, and noise. Inversions was then carried out using the quasi 3-D Spatially Constrained Inversion. The obtained resistivity volume has then been the base for a detailed lithological and geothermal interpretation. Lithological and geological maps were used to constrain surface condition and to understand the resistivity ranges of the different lithological units. On the base of resistivity values, lithological units were combined to establish the main litho-resistive units, then modeled at depth, down to achievable investigation depth. This detailed interpretative modeling was also the occasion of recognizing resistivity anomalies within carbonate units, which may possibly represent hydrogeological or hydrothermal bodies. The litho-resitive 3D model is now under investigation to verify how it can represent a viable way to image thermal conductivity variations at depth.

Menghini, A.; Manzella, A.; Viezzoli, A.; Montanari, D.; Maggi, S.

2012-12-01

37

DRASTIC: A STANDARDIZED SYSTEM FOR EVALUATING GROUND WATER POLLUTION USING HYDROGEOLOGIC SETTINGS  

EPA Science Inventory

A methodology is described that will allow the pollution potential of any hydrogeologic setting to be systematically evaluated anywhere in the United States. The system has two major portions: the designation of mappable units, termed hydrogeologic settings, and the superposit...

38

DRASTIC: A STANDARDIZED SYSTEM FOR EVALUATING GROUND WATER POLLUTION POTENTIAL USING HYDROGEOLOGIC SETTINGS  

EPA Science Inventory

A methodology is described that will allow the pollution potential of any hydrogeologic setting to be systematically evaluated anywhere in the United States. The system has two major portions: the designation of mappable units, termed hydrogeologic settings, and the superposition...

39

Groundwater availability as constrained by hydrogeology and environmental flows.  

PubMed

Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources?Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications. PMID:23582026

Watson, Katelyn A; Mayer, Alex S; Reeves, Howard W

2014-01-01

40

Development of China Hydrogeology Exploring Techniques in 30 Years --Comparison of Handbook of Hydrogeology of 1st and 2nd Edition  

NASA Astrophysics Data System (ADS)

Handbook of Hydrogeology (2nd edition) is supported by one program from China Geological Survey (CGS): Research of Technical Methods of Hydrogeological Survey and Revision of Handbook of Hydrogeology. It is a reference book for those who are engaged in hydrogeological survey and research in China and covers fundamental principles, theories, survey and exploring techniques, and traditional experiences and achievements in hydrogeology. By comparing the 1st (1978) and 2nd (2012) edition of Handbook of Hydrogeology (in Chinese), this paper analyses the development of China hydrogeological survey and exploring techniques in last 30 years, especially the great change and progress in survey techniques of hydro-remote sensing and hydro-geophysical prospecting. In the first edition of Handbook of Hydrogeology, hydro-remote sensing was only mentioned as an interpretation of aerial pictures in a hydrogeological way, but had not yet formed an independent system and discipline. In the second edition, hydro-remote sensing is an important and independent chapter as one of the hydrogeological techniques. In it, various survey techniques of hydro-remote sensing and types and features of remote sensing data are classified. General systems of interpretation marks of remote sensing images are established, including marks of landform and Quaternary sediment, bedrock, structure types, water yield property, environmental elements of hydrogeology, aquifer group and so on. Systematic workflow is constructed, esp. in remote sensing images mapping and interpreting techniques. GPS and GIS are integrated into remote sensing. Remote sensing exploring instruments and interpreting softwares are also introduced and classified. Although hydro-geophysical prospecting, in the first edition of Handbook of Hydrogeology, was one independent chapter, there were only 10 exploring techniques. Equipments and instruments were simple and lagged in comparison to those in the second edition. The precision and depth were limited. In the last 30 years, geophysical exploring techniques have been widely used in oil and mineral exploration, and have laid a solid foundation for hydro-geophysics. In the second edition, systems of hydro-geophysical techniques are more complete and there are 26 techniques of 2 types. Combination of various geophysical techniques plays a much more effective role in solving hydrogeological problems and makes groundwater exploration more extensively utilized in range, depth and types. After the publication of Handbook of Hydrogeology, it is popular in the field of hydrogeology in China. It is a necessary reference book for hydrogeologists and those in related fields.

Tong, Y.

2013-12-01

41

HYDROGEOLOGIC CHARACTERIZATION OF THE U-3bl COLLAPSE ZONE  

SciTech Connect

The U-3bl collapse crater was formed by an underground nuclear test in August 1962. This crater and the adjoining U-3ax crater were subsequently developed and used as a bulk low-level radioactive waste disposal cell (U-3ax/bl), which is part of the Area 3 Radioactive Waste Management Site at the Nevada Test Site (NTS). Various investigations have been conducted to assess the hydrogeologic characteristics and properties in the vicinity of the U-3ax/bl waste disposal cell. This report presents data from one of these investigations, conducted in 1996. Also included in this report is a review of pertinent nuclear testing records, which shows that the testing operations and hydrogeologic setting of the U-3ax/bl site were typical for the period and location of testing.

Bechtel Nevada and National Security Technologies, LLC

2006-09-01

42

The hydrogeologic-geochemical model of Cerro Prieto revisited  

SciTech Connect

As the exploitation of the Cerro Prieto, Mexico, geothermal field continues, there is increasing evidence that the hydrogeologic model developed by Halfman et al. (1984, 1986) presents the basic features controlling the movement of geothermal fluids in the system. At the present time the total installed capacity at Cerro Prieto is 620 MWe requiring the production of more than 10,500 tonnes/hr of a brine-steam mixture. This significant rate of fluid production has resulted in changes in reservoir thermodynamic conditions and in the chemistry of the produced fluids. After reviewing the hydrogeologic-geochemical model of Cerro Prieto, some of the changes observed in the field due to its exploitation are discussed and interpreted on the basis of the model. 21 refs., 11 figs., 1 tab.

Lippmann, M.J.; Halfman, S.E.; Truesdell, A.H.; Manon M., A.

1989-01-01

43

Hydrogeologic data from parts of the Denver Basin, Colorado  

USGS Publications Warehouse

This report presents hydrogeologic data collected and compiled during 1956-81 as part of a comprehensive hydrogeologic data collected and compiled during 1956-81 as part of a comprehensive hdryogeologic investigation of the Denver basin, Colorado, by the U.S. Geological Survey in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, Office of the State Engineer. The data, in tabular and graphic form, consist of records for 870 wells which include water-level data for 158 wells and water-quality analyses for 561 wells; geophysical logs from three wells which include resistivity, self potential, and natural gamma logs; and gain-and-loss data of streamflow measured at 54 sites. (USGS)

Major, T.J.; Robson, S.G.; Romero, J.C.; Zawistowski, Stanley

1983-01-01

44

Goal-oriented Site Characterization in Hydrogeological Applications: An Overview  

NASA Astrophysics Data System (ADS)

In this study, we address the importance of goal-oriented site characterization. Given the multiple sources of uncertainty in hydrogeological applications, information needs of modeling, prediction and decision support should be satisfied with efficient and rational field campaigns. In this work, we provide an overview of an optimal sampling design framework based on Bayesian decision theory, statistical parameter inference and Bayesian model averaging. It optimizes the field sampling campaign around decisions on environmental performance metrics (e.g., risk, arrival times, etc.) while accounting for parametric and model uncertainty in the geostatistical characterization, in forcing terms, and measurement error. The appealing aspects of the framework lie on its goal-oriented character and that it is directly linked to the confidence in a specified decision. We illustrate how these concepts could be applied in a human health risk problem where uncertainty from both hydrogeological and health parameters are accounted.

Nowak, W.; de Barros, F.; Rubin, Y.

2011-12-01

45

Developing Hydrogeological Site Characterization Strategies based on Human Health Risk  

NASA Astrophysics Data System (ADS)

In order to provide better sustainable groundwater quality management and minimize the impact of contamination in humans, improved understanding and quantification of the interaction between hydrogeological models, geological site information and human health are needed. Considering the joint influence of these components in the overall human health risk assessment and the corresponding sources of uncertainty aid decision makers to better allocate resources in data acquisition campaigns. This is important to (1) achieve remediation goals in a cost-effective manner, (2) protect human health and (3) keep water supplies clean in order to keep with quality standards. Such task is challenging since a full characterization of the subsurface is unfeasible due to financial and technological constraints. In addition, human exposure and physiological response to contamination are subject to uncertainty and variability. Normally, sampling strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on the overall system uncertainty. Therefore, quantifying the impact from each of these components (hydrogeological, behavioral and physiological) in final human health risk prediction can provide guidance for decision makers to best allocate resources towards minimal prediction uncertainty. In this presentation, a multi-component human health risk-based framework is presented which allows decision makers to set priorities through an information entropy-based visualization tool. Results highlight the role of characteristic length-scales characterizing flow and transport in determining data needs within an integrated hydrogeological-health framework. Conditions where uncertainty reduction in human health risk predictions may benefit from better understanding of the health component, as opposed to a more detailed hydrogeological characterization, are also discussed. Finally, results illustrate how different dose-response models can impact the probability of human health risk exceeding a regulatory threshold.

de Barros, F.; Rubin, Y.; Maxwell, R. M.

2013-12-01

46

Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada  

USGS Publications Warehouse

Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the relation of flow properties to porosity that are described can be used to produce detailed and accurate representations of the core-scale hydrologic processes ongoing at Yucca Mountain.

Flint, L.E.

1998-01-01

47

Hydrogeologic model of the Ahuachapan geothermal field, El Salvador  

SciTech Connect

A hydrogeological model of the Ahuachapan geothermal field has been developed. It considers the lithology and structural features of the area and discerns their impact on the movement of cold and hot fluids in the system. Three aquifers were identified, their zones of mixing and flow patterns were obtained on the basis of temperature and geochemical data from wells and surface manifestations. 12 refs., 9 figs.

Laky, C.; Lippmann, M.J.; Bodvarsson, G.S. (Lawrence Berkeley Lab., CA (USA)); Retana, M.; Cuellar, G. (Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) (El Salvador))

1989-01-01

48

Hydrogeological monitoring in the newly restored Cheonggyecheon stream, Seoul, Korea.  

NASA Astrophysics Data System (ADS)

The understanding of hydrogeological characteristics related to the Cheonggyecheon (Cheonggye-stream) restoration is important from the viewpoint of water cycle in the city and stream flow after restoration. The hydrogeological characteristics in the Cheonggyecheon is very complicated by the pumping, underground structure, pumping associated with subway tunnel and road pavement. A impervious layer beneath the stream and barrier walls along the stream was installed for the leakage prevention of the stream water. We monitored the hydraulic head, hydrogeochemical properties and changes of hydrogeological properties for the sustainability in the restored Cheonggyecheon. The range of hydraulic head fluctuation was about 2 m ~ 3 m due to a rainfall event before the restoration. But the fluctuation range of hydraulic head was not so high after the restoration to be about 0.5 m to 1 m. The hydrogeochemical properties indicated that the groundwater quality is likely to be recovered gradually because the incoming of contaminants from the surface water to groundwater have been decreased. For example, the concentration of nitrate contaminant inside the barrier wall in groundwater was 0.28 ppm after the barrier wall installation but the nitrate concentration outside the barrier wall was 46.11 ppm.

Jae-Ha, Y.; Yoon-Young, K.; Doo-Hyung, C.; Kang-Kun, L.

2006-12-01

49

Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada  

SciTech Connect

Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relationships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally.

Flint, L.E.

1998-09-01

50

Hydrogeology and groundwater modeling of a Calvert Bluff aquifer  

E-print Network

of a 8, 000 foot by 2, 500 foot crevasse splay-related sand deposit occurring within a lignite surface mine has documented the hydrogeology and ground- water behavior in a partially confined, partially uncon- fined aquifer of the Calvert Bluff... with a high moisture and volatile-matter content. It has a heating value of less than 8, 300 BTU/pound, and it is intermediate in coalification between peat and subbitu- minous coal. Most lignite contains clearly separable pieces of plant material...

Lawrence, James

1989-01-01

51

Hydrogeological and hydrogeochemical characterization of a karstic mountain region  

NASA Astrophysics Data System (ADS)

Karstic limestone formations in the Mediterranean basin are potential water resources that can meet a significant portion of groundwater demand. Therefore, it is necessary to thoroughly study the hydrogeology and hydrogeochemistry of karstic mountain regions. This paper presents a detailed hydrogeological and hydrogeochemical characterization of the Nif Mountain karstic aquifer system in western Turkey, an important recharge source for the densely populated surrounding area. Based on the geological and hydrogeological studies, four major aquifers were identified in the study area including the allochthonous limestone in Bornova flysch, conglomerate-sandstone and clayey-limestone in Neogene series, and the Quaternary alluvium. Physicochemical characteristics of groundwater were measured in situ, and samples were collected at 59 locations comprised of springs and wells. Samples were analyzed for major ions, isotopic composition, arsenic, boron and heavy metals among other trace elements. It was found that the hydrogeological structure is complex with many springs having a wide range of discharge rates. High-discharge springs originate from allochthonous limestone units, whereas low-discharge springs are formed at the contacts with claystone and limestone units. Using stable isotope analysis data, a ?18O-deuterium relationship was obtained that lies between the Mediterranean meteoric and mean global lines. Tritium analyses showed that low-discharge springs originating from contact zones had longer circulation times compared to the high-discharge karstic springs. Furthermore, hydrogeochemical data revealed that groundwater quality significantly deteriorated as water moved from the mountain to the plains. Heavy metal, arsenic and boron concentrations were generally within drinking-water quality standards with a few exceptions occurring in residential and industrial areas located at the foothills of the mountain. Elevated arsenic concentrations were related to local geologic formations, which are likely to contain oxidized sulfite minerals in claystones. It is concluded that Nif Mountain overall has a significant potential to provide high-quality water with a safe yield of at least 50 million m3/year, which corresponds to about 28% of the mean annual inflow to the Tahtali reservoir, a major water resource for the city of Izmir.

Simsek, Celalettin; Elci, Alper; Gunduz, Orhan; Erdogan, Burhan

2008-03-01

52

Forensic analysis of MTBE contamination using basic hydrogeologic concepts.  

PubMed

Contamination of groundwater with petroleum hydrocarbons and additives, such as methyl tert-butyl ether (MTBE), is often linked to the leaking product distribution system of gas stations. In very few cases is it know if and when a leak occurred and how much product was released to the environment. In the absence of direct evidence, a careful analysis of the available data, such as contaminant breakthrough at receptor wells or discrepancies in the product inventory data, may provide evidence about the nature of the release, its timing and magnitude. Using a MTBE contamination site in the formerly glaciated New England region as an example, two possible release scenarios (slow, long-term release vs. spill) were examined. Of the two scenarios, the slow release could be ruled out as the sole source even though there was no direct evidence for a spill. The analysis of hydraulic test results together with chemical data further permitted to estimate when such an undocumented spill might have occurred. Analyses of the data also allowed these results to be compared to that of a prior transport and fate modeling study. Good agreement and consistency for contaminant travel times was confirmed. This forensic analysis demonstrates that applying basic hydrogeologic principles can aide in the reconstruction of contamination events while providing more readily understandable and defendable evidence relative to complex models. Conceptually, the approach described herein is transferable to other sites with similar hydrogeologies. PMID:24840309

Boving, Thomas

2014-07-01

53

The application of seismic techniques to hydrogeological investigations  

NASA Astrophysics Data System (ADS)

The objective of this thesis is to demonstrate some new applications of seismic techniques for hydrogeological applications. A compressional-wave, surface-based, reflection seismic technique is used to map aquifer boundaries within a series of Pleistocene near-surface sediments. The interpretation uses both water wells and sequence stratigraphic concepts to identify the boundaries of new and existing aquifers. The use of the cone penetrometer is an integral part of this thesis. The seismic cone is demonstrated to be both cost-effective and reliable for the acquisition of high-quality vertical seismic profile (VSP) data. Other data from the cone, in particular the tip resistance data, are shown to be an integral link for the conversion of shear-wave velocities to values of hydraulic conductivity. Surface-based, shear-wave reflection seismic data are used to image an aquifer contained within Holocene deltaic sediments. A Bayesian inversion of the shear-wave seismic amplitudes (using cone-derived velocities) results in the generation of a two-dimensional profile of shear-wave velocity that is a direct indication of aquifer heterogeneity. Conversion of the velocity to hydraulic conductivity (using a cone-derived relationship) results in the distribution of a key hydrogeologic property within the aquifer. The results from the thesis show significant promise for improving groundwater flow models and providing new techniques for the management and protection of our groundwater resources.

Jarvis, Kevin Donald Gibson

54

Proceedings of the joint Russian-American hydrogeology seminar  

SciTech Connect

Hydrogeology research has been very active in both Russia and the US because of the concerns for migration of radioactive and chemical contaminants in soils and geologic formations, as well as for water problems related to mining and other industrial operations. Russian hydrogeologists have developed various analysis and field testing techniques, sometimes in parallel with US counterparts. These Proceedings come out of a Seminar held to bring together a small group (about 15) of active Russian researchers in geologic flow and transport associated with the disposal of radioactive and chemical wastes either on the soils or through deep injection wells, with a corresponding group (about 25) of American hydrogeologists. The meeting was intentionally kept small to enable informal, detailed and in-depth discussions on hydrogeological issues of common interest. Out of this interaction, the authors hope that, firstly, they will have learned from each other and secondly, that research collaborations will be established where there is the opportunity. This proceedings presents the summaries and viewgraphs from the presentations. What cannot be conveyed here is the warm and cooperative atmosphere of these interactions, both inside and outside the formal sessions, which may well lead to future collaborations.

Tsang, C.F. [ed.] [Lawrence Berkeley National Lab., CA (United States); Mironenko, V. [ed.] [Russian Academy of Sciences, St. Petersburg (Russian Federation). Inst. of Environmental Geology; Pozdniakov, S. [ed.] [Moscow State Univ. (Russian Federation)

1997-12-31

55

Hydrogeology and groundwater ecology: Does each inform the other?  

NASA Astrophysics Data System (ADS)

The known, perceived and potential relationships between hydrogeology and groundwater ecology are explored, along with the spatial and temporal scale of these relations, the limit of knowledge and areas in need of research. Issues concerned with the subterranean part of the water cycle are considered from the perspective of the biology of those invertebrate animals that live, of necessity, in groundwater and the microbiological milieu essential for their survival. Groundwater ecosystems are placed in a hydrogeological context including the groundwater evolution along a flowpath, the significance of the biodiversity and of the ecosystem services potentially provided. This is considered against a background of three major components essential to the functioning of groundwater ecosystems, each of which can be affected by activities over which hydrogeologists often have control, and each, in turn, may have implications for groundwater management; these are, a place to live, oxygen and food (energy). New techniques and increasing awareness amongst hydrogeologists of the diversity and broad distribution of groundwater ecosystems offer new opportunities to develop cross disciplinary work between hydrogeologists and groundwater ecologists, already demonstrated to be a field for collaboration with broad benefits.

Humphreys, W. F.

2009-02-01

56

Hydrogeologic framework of the middle San Pedro watershed, southeastern Arizona  

USGS Publications Warehouse

Water managers in rural Arizona are under increasing pressure to provide sustainable supplies of water despite rapid population growth and demands for environmental protection. This report describes the results of a study of the hydrogeologic framework of the middle San Pedro watershed. The components of this report include: (1) a description of the geologic setting and depositional history of basin fill sediments that form the primary aquifer system, (2) updated bedrock altitudes underlying basin fill sediments calculated using a subsurface density model of gravity data, (3) delineation of hydrogeologic units in the basin fill using lithologic descriptions in driller's logs and models of airborne electrical resistivity data, (4) a digital three-dimensional (3D) hydrogeologic framework model (HFM) that represents spatial extents and thicknesses of the hydrogeologic units (HGUs), and (5) description of the hydrologic properties of the HGUs. The lithologic interpretations based on geophysical data and unit thickness and extent of the HGUs included in the HFM define potential configurations of hydraulic zones and parameters that can be incorporated in groundwater-flow models. The hydrogeologic framework comprises permeable and impermeable stratigraphic units: (1) bedrock, (2) sedimentary rocks predating basin-and-range deformation, (3) lower basin fill, (4) upper basin fill, and (5) stream alluvium. The bedrock unit includes Proterozoic to Cretaceous crystalline rocks, sedimentary rocks, and limestone that are relatively impermeable and poor aquifers, except for saturated portions of limestone. The pre-basin-and-range sediments underlie the lower basin fill but are relatively impermeable owing to cementation. However, they may be an important water-bearing unit where fractured. Alluvium of the lower basin fill, the main water-bearing unit, was deposited in the structural trough between the uplifted ridges of bedrock and (or) pre-basin-and-range sediments. Alluvium of the upper basin fill may be more permeable than the lower basin fill, but it is generally unsaturated in the study area. The lower basin fill stratigraphic unit was delineated into three HGUs on the basis of lithologic descriptions in driller?s logs and one-dimensional (1D) electrical models of airborne transient electromagnetic (TEM) surveys. The interbedded lower basin fill (ILBF) HGU represents an upper sequence having resistivity values between 5 and 40 ohm-m identified as interbedded sand, gravel, and clay in driller?s logs. Below this upper sequence, fine-grained lower basin fill (FLBF) HGU represents a thick silt and clay sequence having resistivity values between 5 and 20 ohm-m. Within the coarse-grained lower basin fill (CLBF) HGU, which underlies the silt and clay of the FLBF, the resistivity values on logs and 1D models increase to several hundred ohm-m and are highly variable within sand and gravel layers. These sequences match distinct resistivity and lithologic layers identified by geophysical logs in the adjacent Sierra Vista subwatershed, suggesting that these sequences are laterally continuous within both the Benson and Sierra Vista subwatersheds in the Upper San Pedro Basin. A subsurface density model based on gravity data was constructed to identify the top of bedrock and structures that may affect regional groundwater flow. The subsurface density model contains six layers having uniform density values, which are assigned on the basis of geophysical logs. The density values for the layers range between 1.65 g/cm3 for unsaturated sediments near the land surface and 2.67 g/cm3 for bedrock. Major features include three subbasins within the study area, the Huachuca City subbasin, the Tombstone subbasin, and the Benson subbasin, which have no expression in surface topography or lithology. Bedrock altitudes from the subsurface density model defined top altitudes of the bedrock HGU. The HFM includes the following HGUs in ascending stratigr

Dickinson, Jesse E.; Kennedy, Jeffrey R.; Pool, D.R.; Cordova, Jeffrey T.; Parker, John T.; Macy, J.P.; Thomas, Blakemore

2010-01-01

57

Importance of Hydrogeological Conditions on Open-loop Geothermal System  

NASA Astrophysics Data System (ADS)

The open-loop geothermal system has been known as an eco-friendly, energy-saving, and cost-efficient alternative for the cooling and heating of buildings with directly using the relatively stable temperature of groundwater. Thus, hydrogeological properties of aquifer, such as hydraulic conductivity and storage, must be important in the system application. The study site is located near Han-river, Korea, and because of the well-developed alluvium it might be a typical site appropriate to this system requiring an amount of groundwater. In this study, the first objective of numerical experiments was to find the best distributions of pumping and injection wells suitable to the hydrogeological conditions of the site for the efficient and sustainable system operation. The aquifer has a gravel layer at 15m depth below the ground surface and the river and the agricultural field, which may be a potential contaminant source, are located at the west and east sides, respectively. Under the general conditions that the regional groundwater flows from the east to the river, the locally reversed well distribution, locating the pumping well at upgradient and the injection well at downgradient of the regional flow, was most sustainable. The gravel layer with high hydraulic conductivity caused a little drawdown despite of an amount of pumping and allowed to stably reinject the used groundwater in all the cases, but it provided a passage transferring the injected heat to the pumping well quickly, particularly in the cases locating the injection well at the upgradient. This thermal interference was more severe in the cases of the short distance between the wells. The high conductive layer is also a reason that the seasonal role conversion of wells for the aquifer thermal energy storage was ineffective in this site. Furthermore, the well distribution vertical to the regional groundwater flow was stable, but not best, and, thus, it may be a good choice in the conditions that the regional groundwater flow direction has often been changed. Any effects of the seasonal river temperature variation and contaminant sources were not found on the wells because of the well screen installed at only the relatively deep gravel layer. Finally, it was evaluated whether if these results are valid in a homogeneous aquifer with the full screen of wells and the aquifer having a sediment layer with high hydraulic conductivity at a shallow depth, which are also typical aquifers near river. All the results concluded that it is essential to investigate and understand the site-specific hydrogeological conditions for the successful application of open-loop geothermal system.

Park, D.; Bae, G.; Kim, S.; Lee, K.

2013-12-01

58

Viability of using seismic data to predict hydrogeological parameters  

SciTech Connect

Design of modem contaminant mitigation and fluid extraction projects make use of solutions from stochastic hydrogeologic models. These models rely heavily on the hydraulic parameters of hydraulic conductivity and the correlation length of hydraulic conductivity. Reliable values of these parameters must be acquired to successfully predict flow of fluids through the aquifer of interest. An inexpensive method of acquiring these parameters by use of seismic reflection surveying would be beneficial. Relationships between seismic velocity and porosity together with empirical observations relating porosity to permeability may lead to a method of extracting the correlation length of hydraulic conductivity from shallow high resolution seismic data making the use of inexpensive high density data sets commonplace for these studies.

Mela, K. [Truckee Meadows Community College, Reno, NV (United States)

1997-10-01

59

Hydrogeology and water quality of the Leetown area, West Virginia  

USGS Publications Warehouse

The U.S. Geological Survey’s Leetown Science Center and the co-located U.S. Department of Agriculture’s National Center for Cool and Cold Water Aquaculture both depend on large volumes of cold clean ground water to support research operations at their facilities. Currently, ground-water demands are provided by three springs and two standby production wells used to augment supplies during periods of low spring flow. Future expansion of research operations at the Leetown Science Center is dependent on assessing the availability and quality of water to the facilities and in locating prospective sites for additional wells to augment existing water supplies. The hydrogeology of the Leetown area, West Virginia, is a structurally complex karst aquifer. Although the aquifer is a karst system, it is not typical of most highly cavernous karst systems, but is dominated by broad areas of fractured rock drained by a relatively small number of solution conduits. Characterization of the aquifer by use of fluorometric tracer tests, a common approach in most karst terranes, therefore only partly defines the hydrogeologic setting of the area. In order to fully assess the hydrogeology and water quality in the vicinity of Leetown, a multi-disciplinary approach that included both fractured rock and karst research components was needed. The U.S. Geological Survey developed this multi-disciplinary research effort to include geologic, hydrologic, geophysical, geographic, water-quality, and microbiological investigations in order to fully characterize the hydrogeology and water quality of the Leetown area, West Virginia. Detailed geologic and karst mapping provided the framework on which hydrologic investigations were based. Fracture trace and lineament analysis helped locate potential water-bearing fractures and guided installation of monitoring wells. Monitoring wells were drilled for borehole geophysical surveys, water-quality sampling, water-level measurements, and aquifer tests to characterize the quality of water and the hydraulic properties of the aquifer. Surface geophysical surveys provided a 3-dimensional view of bedrock resistivity in order to assess geologic and lithologic controls on ground-water flow. Borehole geophysical surveys were conducted in monitoring wells to assess the storage and movement of water in subsurface fractures. Numerous single-well, multi-well, and straddle packer aquifer tests and step-drawdown tests were conducted to define the hydraulic properties of the aquifer and to assess the role of bedrock fractures and solution conduits in the flow of ground water. Water samples collected from wells and springs were analyzed to assess the current quality of ground water and provide a baseline for future assessment. Microbiological sampling of wells for indicator bacteria and human and animal DNA provided an analysis of agricultural and suburban development impacts on ground-water quality. Light detection and ranging (LiDAR) data were analyzed to develop digital elevation models (DEMs) for assessing sinkhole distribution, to provide elevation data for development of a ground-water flow model, and to assess the distribution of major fractures and faults in the Leetown area. The flow of ground water in the study area is controlled by lithology and geologic structure. Bedrock, especially low permeability units such as the shale Martinsburg Formation and the Conococheague Limestone, act as barriers to water flowing down gradient and across bedding. This retardation of cross-strike flow is especially pronounced in the Leetown area, where bedding typically dips at steep angles. Highly permeable fault and fracture zones that disrupt the rocks in cross-strike directions provide avenues through which ground water can flow laterally across or through strata of low primary permeability. Significant strike parallel thrust faults and cross-strike faults typically coincide with larger solution conduits and act as drains for the more pervasive network of interconnected diffuse fractures. Results of borehole geophysical surveys in

Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

2008-01-01

60

Water and Mud: Linking hydrogeology and landscape change  

NSDL National Science Digital Library

This exercise demonstrates the role of groundwater in Earth's surface processes and natural hazards through a simple sensitivity analysis using Excel and a case study of a landslide in glacial sediments. In the first part of the exercise, students use a spreadsheet to model the infinite slope equation to determine which variables are sensitive to change. In this part of the exercise students discover the relationship and importance between hydrogeology and Earth's surface processes. In the second part of the exercise students use a case study, of a landslide that occurred in glacial sediments, to calculate the lag time between precipitation events and slope failure. This exercise highlights the relationship between groundwater and natural hazards. Finally, students combine their knowledge of both exercises and use the infinite slope equation to predict the percent of ground saturation for the landslide case study.

Nichols, Kyle

61

Hydrogeology and quality of ground water in Orange County, Florida  

USGS Publications Warehouse

Ground water is the main source of water supply in central Florida and is critical for aquatic habitats and human consumption. To provide a better understanding for the conservation, development, and management of the water resources of Orange County, Florida, a study of the hydrogeologic framework, water budget, and ground-water quality characteristics was conducted from 1998 through 2002. The study also included extensive analyses of the surface-water resources, published as a separate report. An increase in population from about 264,000 in 1960 to 896,000 in 2000 and subsequent urban growth throughout this region has been accompanied by a substantial increase in water use. Total ground-water use in Orange County increased from about 82 million gallons per day in 1965 to about 287 million gallons per day in 2000. The hydrogeology of Orange County consists of three major hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. Data were compiled from 634 sites to construct hydrogeologic maps and sections of Orange County. Water-level elevations measured in 23 wells tapping the surficial aquifer system ranged from about 10.6 feet in eastern Orange County to 123.8 feet above NGVD 29 in northwestern Orange County from March 2000 through September 2001. Water levels also were measured in 14 wells tapping the Upper Floridan aquifer. Water levels fluctuate over time from seasonal and annual variations in rainfall; however, water levels in a number of wells tapping the Upper Floridan aquifer have declined over time. Withdrawal of ground water from the aquifers by pumping probably is causing the declines because the average annual precipitation rate has not changed substantially in central Florida since the 1930s, although yearly rates can vary. A generalized water budget was computed for Orange County from 1991 to 2000. Average rates for the 10-year period for the following budget components were computed based on reported measurements or estimates: precipitation was 53 inches per year (in/yr), runoff was 11 in/yr, spring discharge was 2 in/yr, and net lateral subsurface outflow and exported water was 1 in/yr. Evapotranspiration was 39 in/yr, which was calculated as the residual of the water-budget analysis, assuming changes in storage were negligible. Water-quality samples were collected from April 1999 through May 2001 from a total of 26 wells tapping the surficial aquifer system, 1 well tapping the intermediate confining unit, 24 wells tapping the Upper Floridan aquifer, 2 springs issuing from the Upper Floridan aquifer, and 8 wells tapping the Lower Floridan aquifer. These data were supplemented with existing water-quality data collected by the U.S. Geological Survey and St. Johns River Water Management District. Concentrations of total dissolved solids, sulfate, and chloride in samples from the surficial aquifer system generally were low. Concentrations of nitrate were higher in samples from the surficial aquifer system than in samples from the Upper Floridan or Lower Floridan aquifers, probably as a result of agricultural and residential land use. Water type throughout most of the Upper Floridan and Lower Floridan aquifers was calcium or calcium-magnesium bicarbonate, probably as a result of dissolution of the carbonate rocks. Water type in both the surficial and Floridan aquifer systems in eastern Orange County is sodium chloride. Concentrations of total dissolved solids, sulfate, and chloride in the aquifers increase toward eastern Orange County. Data from 16 of 24 wells in eastern Orange County with long-term water-quality records indicated distinct increases in concentrations of chloride over time. The increases probably are related to withdrawal of ground water at the Cocoa well field, causing an upwelling of deeper, more saline water. The most commonly detected trace elements were aluminum, barium, boron, iron, manganese, and strontium. In addition, arse

Adamski, James C.; German, Edward R.

2004-01-01

62

Geographic information system data sets of hydrogeologic conditions in Pequea and Mill Creek watersheds, Pennsylvania; Part II, Hydrogeologic interpretations  

USGS Publications Warehouse

This report describes Geographic Information System data sets of ground-water levels, unsaturated-zone thickness, and regolith thickness in the Pequea and Mill Creek watersheds, a 210-square-mile area in Lancaster and Chester Counties, Pa. The data sets, which represent hydrogeologic interpretations, were developed by the use of ARC/INFO software during 1990-93 by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Resources. The U.S. Environmental Protection Agency proposes to use these interpretive data sets, and those from other sources, to aid in the assessment of ground-water vulnerability to pesticides in the Pequea and Mill Creek watersheds.

Low, Dennis J.; Chichester, Douglas C.; Char, Stephen J.

1995-01-01

63

Sandia National Laboratories site-wide hydrogeologic characterization project calendar year 1992 annual report  

Microsoft Academic Search

The Sandia National Laboratories, New Mexico (SNL\\/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL\\/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL\\/NM has performed research and development activities. Additionally, the SWHC

D. Crowson; J. D. Gibson; C. S. Haase; R. Holt; D. Hyndman; J. Krumhansl; F. Lauffer; J. P. McCord; J. T. McCord; D. Neel

1993-01-01

64

Geology and hydrogeology of the Edwards Aquifer Transition Zone, Bexar County, Texas  

E-print Network

GEOLOGY AND HYDROGEOLOGY OF THE EDWARDS AQUIFER TRANSITION ZONE, BEXAR COUNTY, TEXAS A Thesis by JEFFREY STEPHEN HEATHERY Submitted to the Office of Graduate Studies of Texas AQh University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1989 Major Subject: Geology GEOLOGY AND HYDROGEOLOGY OF THE EDWARDS AQUIFER TRANSITION ZONE, BEXAR COUNTY, TEXAS A Thesis by JEFFREY STEPHEN HEATHERY Approved as to style and content by: Chris pher C. Mathewson...

Neathery, Jeffrey Stephen

1989-01-01

65

A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques  

SciTech Connect

In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km{sup 2} along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing.

Faunt, C.C.; D`Agnese, F.A.; Turner, A.K.

1997-12-31

66

West Siberian basin hydrogeology - regional framework for contaminant migration from injected wastes  

SciTech Connect

Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in massive contamination of the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. Our long-term goal at Pacific Northwest Laboratory is to help determine future environmental and human impacts given the releases that have occurred to date and the current waste management practices. In FY 1993, our objectives were to (1) refine and implement the hydrogeologic conceptual models of the regional hydrogeology of western Siberia developed in FY 1992 and develop the detailed, spatially registered digital geologic and hydrologic databases to test them, (2) calibrate the computer implementation of the conceptual models developed in FY 1992, and (3) develop general geologic and hydrologic information and preliminary hydrogeologic conceptual models relevant to the more detailed models of contaminated site hydrogeology. Calibration studies of the regional hydrogeologic computer model suggest that most precipitation entering the ground-water system moves in the near-surface part of the system and discharges to surface waters relatively near its point of infiltration. This means that wastes discharged to the surface and near-surface may not be isolated as well as previously thought, since the wastes may be carried to the surface by gradually rising ground waters.

Foley, M.G.

1994-05-01

67

A Hydrogeologic Map of the Death Valley Region, Nevada and California, Developed Using GIS Techniques  

USGS Publications Warehouse

In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing.

Faunt, Claudia C.; D'Agnese, Frank A.; Turner, A. Keith

1997-01-01

68

Hydrogeologic Modeling at the Sylvania Corning FUSRAP Site - 13419  

SciTech Connect

A comparative groundwater hydrogeologic modeling analysis is presented herein to simulate potential contaminant migration pathways in a sole source aquifer in Nassau County, Long Island, New York. The source of contamination is related to historical operations at the Sylvania Corning Plant ('Site'), a 9.49- acre facility located at 70, 100 and 140 Cantiague Rock Road, Town of Oyster Bay in the westernmost portion of Hicksville, Long Island. The Site had historically been utilized as a nuclear materials manufacturing facility (e.g., cores, slug, and fuel elements) for reactors used in both research and electric power generation in early 1950's until late 1960's. The Site is contaminated with various volatile organic and inorganic compounds, as well as radionuclides. The major contaminants of concern at the Site are tetrachloroethene (PCE), trichloroethene (TCE), nickel, uranium, and thorium. These compounds are present in soil and groundwater underlying the Site and have migrated off-site. The Site is currently being investigated as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The main objective of the current study is to simulate the complex hydrogeologic features in the region, such as numerous current and historic production well fields; large, localized recharge basins; and, multiple aquifers, and to assess potential contaminant migration pathways originating from the Site. For this purpose, the focus of attention was given to the underlying Magothy formation, which has been impacted by the contaminants of concern. This aquifer provides more than 90% of potable water supply in the region. Nassau and Suffolk Counties jointly developed a three-dimensional regional groundwater flow model to help understand the factors affecting groundwater flow regime in the region, to determine adequate water supply for public consumption, to investigate salt water intrusion in localized areas, to evaluate the impacts of regional pumping activity, and to better understand the contaminant transport and fate mechanisms through the underlying aquifers. This regional model, developed for the N.Y. State Department of Environmental Conservation (NYSDEC) by Camp Dresser and McKee (CDM), uses the finite element model DYNFLOW developed by CDM, Cambridge, Massachusetts. The coarseness of the regional model, however, could not adequately capture the hydrogeologic heterogeneity of the aquifer. Specifically, the regional model did not adequately capture the interbedded nature of the Magothy aquifer and, as such, simulated particles tended to track down-gradient from the Site in relatively straight lines while the movement of groundwater in such a heterogeneous aquifer is expected to proceed along a more tortuous path. This paper presents a qualitative comparison of site-specific groundwater flow modeling results with results obtained from the regional model. In order to assess the potential contaminant migration pathways, a particle tracking method was employed. Available site-specific and regional hydraulic conductivity data measured in-situ with respect to depth and location were incorporated into the T-PROG module in GMS model to define statistical variation to better represent the actual stratigraphy and layer heterogeneity. The groundwater flow characteristics in the Magothy aquifer were simulated with the stochastic hydraulic conductivity variation as opposed to constant values as employed in the regional model. Contaminant sources and their exact locations have been fully delineated at the Site during the Remedial Investigation (RI) phase of the project. Contaminant migration pathways originating from these source locations at the Site are qualitatively traced within the sole source aquifer utilizing particles introduced at source locations. Contaminant transport mechanism modeled in the current study is based on pure advection (i.e., plug flow) and mechanical dispersion while molecular diffusion effects are neglected due to relatively high groundwater velocities encountered in the aquifer. In addition, fate of contam

Ewy, Ann [U.S. Army Corps of Engineers, Kansas City District (United States)] [U.S. Army Corps of Engineers, Kansas City District (United States); Heim, Kenneth J. [U.S. Army Corps of Engineers, New England District (United States)] [U.S. Army Corps of Engineers, New England District (United States); McGonigal, Sean T.; Talimcioglu, Nazmi M. [The Louis Berger Group, Inc. (United States)] [The Louis Berger Group, Inc. (United States)

2013-07-01

69

Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey  

USGS Publications Warehouse

The hydrogeologic framework of fractured sedimentary bedrock at the former Naval Air Warfare Center (NAWC), Trenton, New Jersey, a trichloroethylene (TCE)-contaminated site in the Newark Basin, is developed using an understanding of the geologic history of the strata, gamma-ray logs, and rock cores. NAWC is the newest field research site established as part of the U.S. Geological Survey Toxic Substances Hydrology Program, Department of Defense (DoD) Strategic Environmental Research and Development Program, and DoD Environmental Security Technology Certification Program to investigate contaminant remediation in fractured rock. Sedimentary bedrock at the NAWC research site comprises the Skunk Hollow, Byram, and Ewing Creek Members of the Lockatong Formation and Raven Rock Member of the Stockton Formation. Muds of the Lockatong Formation that were deposited in Van Houten cycles during the Triassic have lithified to form the bedrock that is typical of much of the Newark Basin. Four lithotypes formed from the sediments include black, carbon-rich laminated mudstone, dark-gray laminated mudstone, light-gray massive mudstone, and red massive mudstone. Diagenesis, tectonic compression, off-loading, and weathering have altered the rocks to give some strata greater hydraulic conductivity than other strata. Each stratum in the Lockatong Formation is 0.3 to 8 m thick, strikes N65 degrees E, and dips 25 degrees to 70 degrees NW. The black, carbon-rich laminated mudstone tends to fracture easily, has a relatively high hydraulic conductivity and is associated with high natural gamma-ray count rates. The dark-gray laminated mudstone is less fractured and has a lower hydraulic conductivity than the black carbon-rich laminated mudstone. The light-gray and the red massive mudstones are highly indurated and tend to have the least fractures and a low hydraulic conductivity. The differences in gamma-ray count rates for different mudstones allow gamma-ray logs to be used to correlate and delineate the lithostratigraphy from multiple wells. Gamma-ray logs and rock cores were correlated to develop a 13-layer gamma-ray stratigraphy and 41-layer lithostratigraphy throughout the fractured sedimentary rock research site. Detailed hydrogeologic framework shows that black carbon-rich laminated mudstones are the most hydraulically conductive. Water-quality and aquifer-test data indicate that groundwater flow is greatest and TCE contamination is highest in the black, carbon- and clay-rich laminated mudstones. Large-scale groundwater flow at the NAWC research site can be modeled as highly anisotropic with the highest component of permeability occurring along bedding planes.

Lacombe, Pierre J.; Burton, William C.

2010-01-01

70

Interpretation, modeling and forecasting runoff of regional hydrogeologic systems  

NASA Astrophysics Data System (ADS)

Long-range modeling of a precipitation-runoff process has become indispensable to predict/forecast runoff and study the impact of modern anthropogenic factors and land change use on watersheds. The purpose of this thesis research is to interpret, model and forecast complex drainage basins using advanced signal processing technique and a physically-based low-dimensional dynamic model. The first emphasis is placed on a hydrogeologic interpretation of a complex drainage basin. The space- time patterns of annual, interannual, and decadal components of precipitation, temperature, and runoff (P- T-R) using long-record time series across the steep topographic gradient of the Wasatch Front in northern Utah, are examined. The singular spectrum analysis is used to detect dominant oscillations and spatial patterns in the data and to discuss the relation to the unique mountain and basin hydrologic setting. For precipitation and temperature, only the annual/seasonal spectral peaks were found to be significantly different from the underlying noise floor. Spectral peaks in runoff show increasing low-frequency components at intermediate and low elevation. A conceptual hydrogeologic model for the mountain and basin system proposes how losing streams and deep upwelling groundwater in the alluvial aquifer could explain the strong low-frequency component in streams. The research shows that weak interannual and decadal oscillations in the climate signal are strengthened where groundwater discharge dominates streamflow. The second emphasis is focused on developing a long-range physically-based precipitation-runoff model. A low- dimensional integral-balance model is developed for a hydrologic system where multiple time scales of basin storage play the dominant role on a precipitation-runoff process. The genetic algorithm (GA) technique is implemented for parameter identification with the observed data. The model is developed for the Upper West Branch of the Susquehanna River in Pennsylvania, within the Appalachian Plateaus. Model performance was assessed for runoff over calibration and verification. The ``optimal'' conceptual model has two nonlinear modes: fast and slow responses. The accuracy of the model suggests the utility of low-dimensional models for probabilistic flood and drought forecasting, as well as quantifying the impacts of changing land use and climate.

Shun, Tongying

1999-10-01

71

Hydrogeology of the Potsdam Sandstone in northern New York  

USGS Publications Warehouse

The Potsdam Sandstone of Cambrian age forms a transboundary aquifer that extends across northern New York and into southern Quebec. The Potsdam Sandstone is a gently dipping sequence of arkose, subarkose, and orthoquartzite that unconformably overlies Precambrian metamorphic bedrock. The Potsdam irregularly grades upward over a thickness of 450 m from a heterogeneous feldspathic and argillaceous rock to a homogeneous, quartz-rich and matrix-poor rock. The hydrogeological framework of the Potsdam Sandstone was investigated through an analysis of records from 1,500 wells and geophysical logs from 40 wells, and through compilation of GIS coverages of bedrock and surficial geology, examination of bedrock cores, and construction of hydrogeological sections. The upper several metres of the sandstone typically is weathered and fractured and, where saturated, readily transmits groundwater. Bedding-related fractures in the sandstone commonly form sub-horizontal flow zones of relatively high transmissivity. The vertical distribution of sub-horizontal flow zones is variable; spacings of less than 10 m are common. Transmissivity of individual flow zones may be more than 100 m2/d but typically is less than 10 m2/d. High angle fractures, including joints and faults, locally provide vertical hydraulic connection between flow zones. Hydraulic head gradients in the aquifer commonly are downward; a laterally extensive series of sub-horizontal flow zones serve as drains for the groundwater flow system. Vertical hydraulic head differences between shallow and deep flow zones range from 1 m to more than 20 m. The maximum head differences are in recharge areas upgradient from the area where the Chateauguay and Chazy Rivers, and their tributaries, have cut into till and bedrock. Till overlies the sandstone in much of the study area; its thickness is generally greatest in the western part, where it may exceed 50 m. A discontinuous belt of bedrock pavements stripped of glacial drift extends across the eastern part of the study area; the largest of these is Altona Flat Rock. Most recharge to the sandstone aquifer occurs in areas of thin, discontinuous till and exposed bedrock; little recharge occurs in areas where this unit is overlain by thick till and clay. Discharge from the sandstone aquifer provides stream and river baseflow and is the source of many springs. A series of springs that are used for municipal bottled water and fish-hatchery supply discharge from 1,000 to 5,000 L/min adjacent to several tributaries east of the Chateauguay River. The major recharge areas for the Chateauguay springs are probably upgradient to the southeast, where the till cover is thin or absent.

Williams, John H.; Reynolds, Richard J.; Franzi, David A.; Romanowicz, Edwin A.; Paillet, Frederick L.

2010-01-01

72

Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers  

NASA Astrophysics Data System (ADS)

Comprehensive hydrogeological investigations have been carried out in the Ethiopian volcanic terrain and associated quaternary sediments. The occurrence and distribution of groundwater are systematically analysed in relation to the geomorphological and geological setting within one of the world's thickest volcanic provinces. The study starts from regional conceptualization to a more focussed analysis of four selected areas with distinct hydrogeological features. The chosen areas represent highland trap volcanic sequence characterized by multi-layer aquifers, intermountain sedimentary graben, fractured rift floor volcanics boarded by steep high-altitude plateau, and vast rift floor flood plain covered with alluvial sediment with adjoining gently-sloping pediments. The result revealed extreme variations in aquifer hydraulic characteristics and recharge rates. The flow and occurrence of groundwater is strongly controlled by the structure and geomorphological setup of the volcanic rocks and associated sediments. Groundwater flow in the rift and escarpment areas is largely controlled by faults. The recharge varies in a wide range between a few mm to 400 mm/yr. Despite the occurrence of permeable rocks and high recharge rates in some highlands adjacent to steep escarpments, the groundwater reserve is low due to the fast release of the recharged water to the rift plains through large open faults. Wide basic and acidic volcanics, alluvio-colluvial and lacustrine deposits form shallow unconfined aquifers, with transmissivity varying between 27 and 135 m 2/d. The thick trap series volcanics interbedded with river gravels and sands form deep confined and semi-confined aquifers locally with artesian conditions. Intermountain grabens and rift floor sediments associated with fractured volcanics form the largest aquifers under water table and semi-confined conditions. High well yields in deeper volcanic aquifers are often associated with regional fault lines and permeable sediments interbedded with the volcanics. Limited water quality analysis indicates that the groundwaters are Ca-MgHCO 3 type in the highlands, Na-HCO 3 type in the rift with local SO 4 and Cl enrichment. Hard waters are dominant in the basic volcanics. The highland waters have relatively lower ionic concentration (TDS ranging from 50 to 1200 mg/l). The rift waters have high salinity and fluoride, which is the major national water quality problem.

Ayenew, Tenalem; Demlie, Molla; Wohnlich, Stefan

2008-10-01

73

Feedbacks Between Numerical and Analytical Models in Hydrogeology  

NASA Astrophysics Data System (ADS)

Hydrogeology is a relatively young discipline which combines elements of Earth science and engineering. Mature fundamental disciplines (e.g., physics, chemistry, fluid mechanics) have centuries-long history of mathematical modeling even prior to discovery of Darcy's law. Thus, in hydrogeology, relatively few classic analytical models (such those by Theis, Polubarinova-Kochina, Philip, Toth, Henry, Dagan, Neuman) were developed by the early 1970's. The advent of computers and practical demands refocused mathematical models towards numerical techniques. With more diverse but less mathematically-oriented training, most hydrogeologists shifted from analytical methods to use of standardized computational software. Spatial variability in internal properties and external boundary conditions and geometry, and the added complexity of chemical and biological processes will remain major challenges for analytical modeling. Possibly, analytical techniques will play a subordinate role to numerical approaches in many applications. On the other hand, the rise of analytical element modeling of groundwater flow is a strong alternative to numerical models when data demand and computational efficiency is considered. The hallmark of analytical models - transparency and accuracy - will remain indispensable for scientific exploration of complex phenomena and for benchmarking numerical models. Therefore, there will always be feedbacks and complementarities between numerical and analytical techniques, as well as a certain ideological schism among various views to modeling. We illustrate the idea of feedbacks by reviewing evolution of Joszef Toth's analytical model of gravity driven flow systems. Toth's (1963) approach was to reduce the flow domain to a rectangle which allowed for closed-form solution of the governing equations. Succeeding numerical finite-element models by Freeze and Witherspoon (1966-1968) explored the effects of geometry and heterogeneity on regional groundwater flow, but others (e.g., Ophori and Toth, 1990) still maintained the "rectangular" simplification. The interest in this conceptual model was rekindled by Worman et al. (2006, 2007) that used Fourier analyses of analytical solutions for effects of topography in regional flow systems or irregular head distributions in streambeds on hyporheic flow systems. The caveat of analytical techniques for such applications is a problem of "missing domain" resulting from truncation of the flow domain to a rectangle. This issue becomes important in systems where major processes are focused in or near the truncated domain compared to deeper regions. Using perturbation techniques we illustrate a technique for extending analysis of Tothian flow to non-rectangular and non-rectilinear domains; we developed analytical solutions for flow with top boundaries of arbitrary shape. Discussed are possible ramifications for transient models, including well hydraulics.

Zlotnik, V. A.; Cardenas, M. B.; Toundykov, D.; Cohn, S.

2012-12-01

74

Hydrogeologic effects of natural disruptive events on nuclear waste repositories  

SciTech Connect

Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear wastte are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing.

Davis, S.N.

1980-06-01

75

Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California  

SciTech Connect

The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

Cohen, A.J.B.

1993-10-01

76

Hydrogeology of the Canal Creek area, Aberdeen Proving Ground, Maryland  

USGS Publications Warehouse

Geologic and borehole geophysical logs made at 77 sites show that the hydrogeologic framework of the study area consists of a sequence of unconsolidated sediments typical of the Coastal Plain of Maryland. Three aquifers and two confining units were delineated within the study area. From the surface down, they are: (1) the surficial aquifer; (2) the upper confining unit; (3) the Canal Creek aquifer; (4) the lower confining unit; and (5) the lower confined aquifer. The aquifer materials range from fine sand to coarse sand and gravel. Clay lenses were commonly found interfingered with the sand, isolating parts of the aquifers. All the units are continuous throughout the study area except for the upper confining unit, which crops out within the study area but is absent in updip outcrops. The unit also is absent within a Pleistocene paleochannel, where it has been eroded. The surficial and Canal Creek aquifers are hydraulically connected where the upper confining unit is absent, and a substantial amount of groundwater may flow between the two aquifers. Currently, no pumping stresses are known to affect the aquifers within the study area. Under current conditions, downward vertical hydraulic gradients prevail at topographic highs, and upward gradients typically prevail near surface-water bodies. Regionally, the direction of groundwater flow in the confined aquifers is to the east and southeast. Significant water level fluctuations correspond with seasonal variations in rainfall, and minor daily fluctuations reflect tidal cycles. (USGS)

Oliveros, J.P.; Vroblesky, D.A.

1989-01-01

77

Hydrogeological-Geophysical Methods for Subsurface Site Characterization - Final Report  

SciTech Connect

The goal of this research project is to increase water savings and show better ecological control of natural vegetation by developing hydrogeological-geophysical methods for characterizing the permeability and content of water in soil. The ground penetrating radar (GPR) tool was developed and used as the surface geophysical method for monitoring water content. Initial results using the tool suggest that surface GPR is a viable technique for obtaining precision volumetric water content profile estimates, and that laboratory-derived petrophysical relationships could be applied to field-scale GPR data. A field-scale bacterial transport study was conducted within an uncontaminated sandy Pleistocene aquifer to evaluate the importance of heterogeneity in controlling the transport of bacteria. Geochemical, hydrological, geological, and geophysical data were collected to characterize the site prior to and after chemical and bacterial injection experiments. Study results shows that, even within the fairly uniform shallow marine deposits of the narrow channel focus area, heterogeneity existed that influenced the chemical tracer transport over lateral distances of a few meters and vertical distances of less than a half meter. The interpretation of data suggest that the incorporation of geophysical data with limited hydrological data may provide valuable information about the stratigraphy, log conductivity values, and the spatial correlation structure of log conductivity, which have traditionally been obtainable only by performing extensive and intrusive hydrological sampling.

Rubin, Yoram

2001-01-01

78

Hydrogeologic insights for a Devil's Slide-like system  

NASA Astrophysics Data System (ADS)

active coastal margins commonly host landslides that are influenced by hydrologic, geologic, and/or anthropogenic perturbations. The work reported here is motivated by the hydrologically driven, deep-seated bedrock slides that intersect the (former) Pacific Coast Highway in the active landslide zone at Devil's Slide near Pacifica, California. Numerical simulation of subsurface flow is employed to investigate saturated zone fluid pressure scenarios for 3-D Devil's Slide-like systems. The four-phase concept-development effort is comprised of 134 hydrogeologic simulation scenarios which investigate fluid pressure response for complex subsurface conditions and historically based climate forcings. Recharge, heterogeneity, and anisotropy are shown to increase fluid pressures in targeted failure-prone locations by up to 73.8, 10.3, and 1.8 %, respectively. The interaction between fault zone characteristics and topographically driven flow are shown to influence fluid pressures for up to 85% of the approximately 7.0 × 105 m2 study area. Simulated fluid pressures support the known slope instability for the Devil's Slide site. A quantitative hypothesis-testing discussion explores the likelihood of perched water above the regional water table at the site. Further understanding of hydrologically driven slope movement in the active landslide zone will require additional data focused on rigorous characterization of the unsaturated zone.

Thomas, Matthew A.; Loague, Keith

2014-08-01

79

The deep hydrogeologic flow system underlying the Oak Ridge Reservation  

SciTech Connect

The deep hydrogeologic system underlying the Oak Ridge Reservation contains some areas contaminated with radionuclides, heavy metals, nitrates, and organic compounds. The groundwater at that depth is saline and has previously been considered stagnant. On the basis of existing and newly collected data, the nature of flow of the saline groundwater and its potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial temperature variations, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. In addition, chemical analyses of brine in adjacent areas in Tennessee, Kentucky, Ohio, Pennsylvania, and West Virginia were compared with the deep water underlying the reservation to help assess the origin of the brine. Preliminary conclusions suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active and freshwater-bearing units. The confined water (along with dissolved solutes) moves along open fractures (or man-made shortcuts) at relatively high velocity into adjacent, more permeable units. Groundwater volumes involved in this flow probably are small.

Nativ, R. [Hebrew Univ., Jerusalem (IL); Hunley, A.E. [Oak Ridge National Lab., TN (United States)

1993-07-01

80

Structural Control of Hydrology, Hydrogeology and Hydrochemistry along the Eastern Escarpment of the Jordan Rift Valley, JORDAN.  

E-print Network

??The relationship of structural geology and hydrogeological characteristics NW Jordan. Superior 3 phase tectonic model was derived from re-evaluation of structural elements which are strongly… (more)

Sahawneh, Julia

2011-01-01

81

Hydrogeologic Characterization of the U-3bl Collapse Zone  

SciTech Connect

The U-3bl collapse crater was formed by an underground nuclear test in August 1962. This crater and the adjoining U-3ax crater were subsequently developed and used as a bulk low-level radioactive waste disposal cell (U-3ax/bl), which is part of the Area 3 Radioactive Waste Management Site at the Nevada Test Site (NTS). Various investigations have been conducted to assess the hydrogeologic characteristics and properties in the vicinity of the U-3ax/bl waste disposal cell. This report presents data from one of these investigations, conducted in 1996. Also included in this report is a review of pertinent nuclear testing records, which shows that the testing operations and hydrogeologic setting of the U-3ax/bl site were typical for the period and location of testing. Borehole U-3bl-D2 is a 45-degree-angle hole drilled from the edge of the crater under the waste cell to intercept the U-3bl collapse zone, the disturbed alluvium between the crater (surface collapse sink) and the nuclear test cavity. A casing-advance system with an air percussion hammer was used to drill the borehole, and air was used as the drilling fluid. Properties of the U-3bl crater collapse zone were determined from cores collected within the interval, 42.1 to 96.6 meters (138 to 317 feet) below the ground surface. Selected core samples were analyzed for particle density, particle size, bulk density, water retention, hydraulic conductivity, water content, water potential, chloride, carbonate, stable isotopes, and tritium. Physical and hydraulic properties were typical of alluvial valley sediments at the NTS. No visual evidence of preferential pathways for water transport was observed in the core samples. Soil parameters showed no trends with depth. Volumetric water content values ranged from 0.08 to 0.20 cubic meters per cubic meter, and tended to increase with depth. Water-retention relations were typical for soils of similar texture. Water potentials ranged from -1.9 MegaPascals at a depth of 42.10 meters (138 feet) to -0.4 MegaPascals at 94.58 meters (310 feet), generally increasing with depth. Relationships between hydraulic conductivity and water content were typical of sandy soil, with hydraulic conductivity decreasing rapidly as the soil dried. Variability of hydraulic conductivity reflected layering and showed no trend with depth. Stable isotope compositions were typical of water that had infiltrated during cooler past climate conditions. Uniformity of concentrations versus depth indicated that evaporation was not occurring at the sampled interval. Tritium concentrations in pore water ranged from 2.68 x10{sup 3} to 1.22 x 10{sup 4} picoCuries per liter, which are greater than expected from atmospheric deposition of tritium, but not at a level to raise environmental concerns. The tritium is most likely a product of nuclear testing.

NSTec Geotechnical Services

2006-09-01

82

Hydrogeologic controls on water quality at a university dairy farm  

NASA Astrophysics Data System (ADS)

Dairy farms typically produce large quantities of manure and other waste products which are often stored or treated in lagoons and then applied to local fields as fertilizer. Contamination of nearby streams by dairy farm wastes through surface runnoff, drainage tile discharge, direct release of wastes or inundation of waste storage facilities during seasonal flooding have long been recognized as major environmental concerns. However, much less attention has been paid to fate and transport of dairy wastes in the subsurface and their potential impact on water quality in aquifers or in groundwater discharge to streams. One of the challenges in evaluating the environmental impact of dairy operations is that there are relatively few field research sites where all of the potential pathways for waterborne transport of dairy wastes are monitored and quantititatively evaluated. There are even fewer sites where extensive baseline water quality monitoring programs were established prior to operation of the dairy. This is essential to distinguish between environmental impacts from dairy operations and other nearby sources, such as beef production and human sewage from septic fields. This talk describes the development of a an integrated hydrogeologic/hydrologic site assessment and groundwater/surface water quality monitoring program at the University of Tennessee - Little River Dairy Farm, located near Townsend, TN. The dairy is currently under construction and the first cows are expected to arrive in late 2010. Hydrologic/hydrogeologic investigations of streams and groundwater at the site have been underway for more than 3 years, and these are expected to provide background data for assessing impacts of dairy wastes and for testing the effectiveness of different management practises. The lower half of the ~180 ha site consists of low-relief fields used for row crops, which are underlain by 4 - 8 m of alluvial deposits (mainly interbedded silt and fine-grained sands) on top of by black shale or limestone. Several active sinkholes are present in the portion of the fields underlain by limestone. The fields are bounded on two sides by the Little River, a popular recreational river, and on the third side by Ellejoy Creek, which is on the state’s 303(d) list for impairment by nutrients, sediment and fecal microorganisms, which are derived from upstream agricultural and rural residential development. These fields will be fertilized with treated dairy wastes and are the main area of concern for offsite migration of contaminants through groundwater, drainage ditches and (eventually) a tile drain system. A secondary area of concern is the dairy waste treatment pond which is located, along with the dairy barns, on the upland portion of the site, which is underlain by 1-2 m of clay-rich residual soils developed on fractured shale bedrock. Long term water quality monitoring of runnoff, streams, drainage ditches and groundwater is planned, with the intent of measuring environmental impact of dairy operations and testing the effectiveness of different management practises.

McKay, L. D.; Hunter, R. W.; Lee, J.

2010-12-01

83

A methodological integrated approach to optimize a hydrogeological engineering work  

NASA Astrophysics Data System (ADS)

The geoelectrical survey applied to hydraulic engineering is a well known in literature. However, despite of its large number of successful cases of application, the use of geophysics is still often not considered; this due to different reasons as: the poor knowledge of the potential performances; the difficulties in the practical implementation; the cost limitations. In this work, an integrated study of non-invasive (geoelectrical) and direct surveys is described, aimed at identifying a subsoil foundation where it possible to set up a watertight concrete structure able to protect the purifier of Senise, a little town in Basilicata Region (Southern Italy). The purifier, used by several villages, is located in a particularly dangerous hydrogeological position, as it is very close to the Sinni river, which has been obstructed from many years by the Monte Cotugno dam. During the rainiest periods, the river could flood the purifier, causing the drainage of waste waters in the Monte Cotugno artificial lake. The purifier is located in Pliocene- Calabrian clay and clay - marly formations covered by about 10m layer of alluvional gravelly-sandy materials carried by the Sinni river. The electrical resistivity tomography acquired with the Wenner Schlumberger array was revealed meaningful for the purpose to identify the potential depth of impermeable clays with high accuracy. In particular, the geoelectrical acquisition, orientated along the long side of purifier, was carried out using a multielectrodes system with 48 electrodes 2 m spaced leading to an achievable investigation depth of about 15 m The subsequent direct surveys have confirmed this depth so that it was possible to set up the foundation concrete structure with precision to protect the purifier. It is worth noting that the use of this methodological approach has allowed a remarkable economic saving as it has made it possible to correct the wrong information, regarding the depth of impermeably clays, previously inferred by the engineers.

Loperte, A.; Satriani, A.; Bavusi, M.; Cerverizzo, G.

2012-04-01

84

Hydrogeology of Regional Valley Fill Aquifers with Mountain System Recharge  

NASA Astrophysics Data System (ADS)

Groundwater in the North Okanagan was investigated using an integrated physical, geochemical and numerical approach. The North Okanagan Groundwater Characterization and Assessment (NOGWCA) project began with an investigation of the geology and hydrostratigraphy of the North Okanagan region. The Deep Creek and Fortune Creek watersheds were found to contain multiple valley-fill aquifers which are recharged via mountain system recharge (MSR) and direct recharge to unconfined aquifers in the valley bottom. Detailed hydrometric data indicates groundwater recharge within the alluvial fan of Fortune Creek, and discharge to surface water in the lower reaches of Deep Creek. Valley side recharge from the adjacent mountains generates artesian conditions in the valley center. Physical hydrogeological measurements and groundwater and surface water geochemistry were used to determine the overall groundwater flow regime, inter-aquifer exchange and surface-water groundwater interactions. Conservative elements and deuterium/oxygen isotopes were used in a mixing cell model (MCM) approach to assess groundwater flow between aquifers. Efforts to accurately quantify and understand MSR are hampered by sparse data on the geochemical character of bedrock aquifers. Watershed scale recharge estimates and water balances were derived from a regional integrated climate dataset coupled to FEFLOW simulations. The first stage modeled steady state conditions within the main valley center aquifer. Integrated surface water and groundwater modeling is to be carried out in the future. The groundwater flow modeling will contribute to subsequent water management decisions at the watershed scale. Climate change and economic change scenarios will be considered in the integrated surface water and groundwater modeling.

Ping, J.; Nichol, C.; Wei, A.

2009-05-01

85

Hydrogeology and potential water-resource targets in Mauritania, Africa  

NASA Astrophysics Data System (ADS)

A hydrogeologic study is conducted in support of mineral-resource assessment activities in Mauritania, Africa. Airborne magnetic depth estimates reveal two primary ground-water basins: the porous Continental Terminal coastal system (fill deposits); and the interior, fractured interior Taoudeni Basin system (carbonate, clastic, metasedimentary, and metavolcanic rocks). In the Continental Terminal basin, there is uniform vertical recharge and localized discharge that is coincident with ground-water pumping at Nouakchott. This pumping center induces eastward flow of ground water from the Atlantic Ocean resulting in a salinity gradient that diminishes quality over 100 km. Ground water also flows southward into the basin from Western Sahara. By contrast, an interbasin exchange occurs as fresh ground-water flows westward from the Taoudeni basin. In the Taoudeni basin, zones of local recharge occur in three areas: northwest at the edge of the Réguibat Shield, at the city of Tidjikdja, and to the south overlying Tillites. Ground water also flows across country boundaries: northward into Western Sahara and westward into Mali. At the southern country boundary, the Sengal River serves as both a source and sink of fresh ground water to these two basins. Using a geographical information system, 13 hydrostratigraphic units are identified based on lateral extent and distinct hydrologic properties for future groundwater model development. Combining this information with drilling productivity, water quality, and geophysical interpretations (fracturing and absence of subsurface dikes) identified 3 potential water-resource development targets: sedimentary rocks of Cambrian-Ordovician age, sedimentary rocks of Neoproterozoic age, and carbonate rocks of middle Mesoproterozoic age.

Horton, J. D.; Friedel, M. J.; Finn, C.

2012-12-01

86

Hydrogeology of Palm Valley, central Australia; a Pleistocene flora refuge?  

NASA Astrophysics Data System (ADS)

The Palm Valley Oasis (Finke Gorge National Park) in arid central Australia is characterised by large stands of red cabbage palm trees ( Livistona mariae). How these unique plants, over 1000 km away from nearest relatives in the tropical parts of northern Australia persist, has long fascinated visitors. The hydrogeology of this area helps explain this phenomenon. Stable isotope (? 2H, ? 8O) analyses shows groundwater to have a uniform composition that plots on or near a local meteoric water line. Carbon-14 results are observed to vary throughout this aquifer from effectively dead (<4%) to 87% modern carbon. Ratios of chlorine-36 to chloride range from 130 to 290×10 -1536Cl/Cl. In this region atmospheric 36Cl/Cl ratio is around 300×10 -15. Thus an age range of around 300 ka is indicated if, as is apparent radioactive decay is the only significant cause of 36Cl/Cl variation within the aquifer. The classic homogenous aquifer with varying surface topography flow model is the simplest conceptual model that need be invoked to explain these data. Complexities, associated with local topography flow cells superimposed on the regional gradient, may mean groundwater with markedly different flow path lengths has been sampled. This potential flow path complexity, which is also evidenced by slight variation in groundwater cation ratios, can account for the distribution of isotope age data throughout the aquifer. Given the likely very slow travel times indicated by this aquifer's hydraulic properties, age differences of the magnitude indicated from chlorine-36 data are feasible. The likely slow travel times (>100 ka) along some flow paths indicate groundwater discharge would endure through arid phases associated with Quaternary climate oscillations. Such a flow system can explain the persistence of this population of Palms and also highlight the possibility that Palm Valley has acted as a flora refuge since at least the mid Pleistocene.

Wischusen, John D. H.; Fifield, L. Keith; Cresswell, Richard G.

2004-06-01

87

A new hydrogeologic model to predict anthropogenic uplift of Venice  

NASA Astrophysics Data System (ADS)

Recent numerical studies based on a simplified lithostratigraphy of the Venice subsurface suggest that the city may be raised by pumping seawater into deep aquifers through 12 wells located on a 10 km diameter circle. Using an updated 3-D reconstruction of the Quaternary deposits, developed very recently from about 1050 km of multichannel seismic profiles and eight exploration wells, along with a more accurate representation of the injection boreholes, novel finite-element predictions are performed. The new model simulates the lithostratigraphy of the lagoon subsurface and allows for a reliable assessment of the water volumes injected into the geologic formations based on the actual bottom hole overpressure that can vary both in space and time. Pumping occurs into two Pleistocene sequences that are originated from the Alps and Apennine sedimentation and terminate just south and north of Venice, respectively, and the shelf portion of a Pliocene sequence that is rather continuous below the central lagoon with arenite layers to depths as much as 1000 m below mean sea level. With a proper tuning of the injection pressure the new hydrogeologic model allows for a prediction of a quite uniform 25-30 cm uplift over 10 years after the inception of injection. The gradient of the vertical displacement ?z does not exceed 5 × 10-5 and 1 × 10-5 in the whole lagoon and Venice, respectively, i.e., well below the most conservative bound recommended for the safety of the structures. If ad hoc calibrated injection overpressures are implemented in each single well, ?z may be reduced to as much as 0.1 × 10-5 throughout the city.

Teatini, P.; Castelletto, N.; Ferronato, M.; Gambolati, G.; Tosi, L.

2011-12-01

88

Confining units as barriers to regional ground-water contamination: Hydrogeologic maps as planning tools  

SciTech Connect

Hydrogeologic maps are typical products of ground-water investigations. The features on these maps can be used by planning commissions to optimize land use. Planners could use confining-unit outcrop maps for siting landfills and hazardous material handling facilities. This paper examines ground-water chemistry from 53 wells, field measurements, hydrogeologic conditions from a quasi-3-D flow model for predevelopment (before 1900), and 1984 flow conditions, and evaluates relationships between them. Several recent reports have examined water quality in the area. The wells for this paper were screened in the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey in a 184 square mile area which is undergoing rapid growth. Hydrogeologic conditions considered include aquifer sampled, well location relative to flow-path distance from the outcrop, confining-unit thickness, and confining-unit vertical hydraulic conductivity (Kv). Visual, graphical and principal component analyses were used to evaluate the relationships.

Pucci, A.A. Jr. [Lafayette College, Easton, PA (United States). Dept. of Civil and Environmental Engineering

1995-12-31

89

Nomenclature of regional hydrogeologic units of the Southeastern Coastal Plain aquifer system  

USGS Publications Warehouse

Clastic sediments of the Southeastern Coastal Plain aquifer system can be divided into four regional aquifers separated by three regional confining units. The four regional aquifers have been named for major rivers that cut across their outcrop areas and expose the aquifer materials. From youngest to oldest, the aquifers are called the Chickasawhay River, Pearl River, Chattahoochee River, and Black Warrior River aquifers, and the regional confining units separating them are given the same name as the aquifer they overlie. Most of the regional hydrogeologic units are subdivided within each of the four States that comprise the study area. Correlation of regional units is good with hydrogeologic units delineated by a similar regional study to the west and southwest. Because of complexity created by a major geologic structure to the northeast of the study area and dramatic facies change from clastic to carbonate strata to the southeast, correlation of regional hydrogeologic units is poor in these directions. (Author 's abstract)

Miller, J.A.; Renken, R.A.

1988-01-01

90

Predictability of the Evolution of Hydrogeological and Hydrogeochemical Systems: Geologic Disposal of Nuclear Waste in Crystalline Rocks  

Microsoft Academic Search

Confidence in long-term geologic isolation of high-level nuclear waste and spent nuclear fuel requires confidence in predictions of the evolution of hydrogeological and hydrogeochemical systems. Prediction of the evolution of hydrogeological and hydrogeochemical systems is based on scientific understanding of those systems in the present— an understanding that can be tested with data from the past. Crystalline rock settings that

William M. Murphy

91

AGU Chapman Conference Hydrogeologic Processes: Building and Testing Atomistic- to Basin-Scale Models  

SciTech Connect

This report presents details of the Chapman Conference given on June 6--9, 1994 in Lincoln, New Hampshire. This conference covered the scale of processes involved in coupled hydrogeologic mass transport and a concept of modeling and testing from the atomistic- to the basin- scale. Other topics include; the testing of fundamental atomic level parameterizations in the laboratory and field studies of fluid flow and mass transport and the next generation of hydrogeologic models. Individual papers from this conference are processed separately for the database.

Weaver, B. [American Geophysical Union, Washington, DC (United States)

1994-12-31

92

Integrated Research Methods for Applied Urban Hydrogeology of Karst Sites  

NASA Astrophysics Data System (ADS)

Integrated and adaptive surface- and groundwater monitoring and management in urban areas require innovative process-oriented approaches. To accomplish this, it is necessary to develop and combine interdisciplinary instruments that facilitate adequately quantifying cumulative effects on groundwater flow regimes. While the characterization and modeling of flow in heterogeneous and fractured media has been investigated intensively, there are no well-developed long-term hydrogeological research sites for gypsum karst. Considering that infrastructures in karst regions, particularly in gypsum, are prone to subsidence, severe problems can arise in urban areas. In the 1880's, a river dam was constructed on gypsum-containing rock, Southeast of Basel, Switzerland. Over the last 30 years, subsidence of the dam and an adjacent highway has been observed. Surface water infiltrates upstream of the dam, circulates in the gravel deposits and in the weathered bedrock around and beneath the dam and exfiltrates downstream into the river. These processes enhance karstification processes in the soluble units of the gypsum. As a result an extended weathering zone within the bedrock and the development of preferential flow paths within voids and conduits can be observed. To prevent further subsidence, construction measures were conducted in two major project phases in 2006 and 2007. The highway was supported by a large number of pillars embedded in the non- weathered rock and by a sealing pile wall, to prevent infiltrating river water circulating around the dam and beneath the foundation of the highway. To safeguard surface and subsurface water resources during the construction measures, an extensive observation network was set up. Protection schemes and geotechnical investigations that are necessary for engineering projects often provide "windows of opportunity", bearing the possibility to change perceptions concerning the sustainable development of water resources and coordinate future measures. Theories describing the evolution of karst systems are mainly based on conceptual models. Although these models are based on fundamental and well established physical and chemical principles that allow studying important processes from initial small scale fracture networks to the mature karst, systems for monitoring the evolution of karst phenomena are rare. Integrated process-oriented investigation methods are presented, comprising the combination of multiple data sources (lithostratigraphic information of boreholes, extensive groundwater monitoring, dye tracer tests, geophysics) with high-resolution numerical groundwater modeling and model simulations of karstification below the dam. Subsequently, different scenarios evaluated the future development of the groundwater flow regime, the karstification processes as well as possible remediation measures. The approach presented assists in optimizing investigation methods, including measurement and monitoring technologies with predictive character for similar subsidence problems within karst environments in urban areas.

Epting, J.; Romanov, D. K.; Kaufmann, G.; Huggenberger, P.

2008-12-01

93

Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty  

SciTech Connect

The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four projections, and associated kriging variances, were averaged using the posterior model probabilities as weights. Finally, cross-validation was conducted by eliminating from consideration all data from one borehole at a time, repeating the above process, and comparing the predictive capability of the model-averaged result with that of each individual model. Using two quantitative measures of comparison, the model-averaged result was superior to any individual geostatistical model of log permeability considered.

Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.

2004-03-01

94

Groundwater geochemistry of the Yucatan Peninsula, Mexico: Constraints on stratigraphy and hydrogeology  

Microsoft Academic Search

summary We report 87 Sr\\/ 86 Sr and ion concentrations of sulfate, chloride, and strontium in the groundwater of the northern and central Yucatan Peninsula, Mexico. Correlation between these data indicates that ejecta from the 65.95 m.y. old Chicxulub impact crater have an important effect on hydrogeology, geomorphol- ogy, and soil development of the region. Ejecta are present at relatively

Eugene Perry; Adina Paytan; Bianca Pedersen; Guadalupe Velazquez-Oliman

2009-01-01

95

HYDROGEOLOGIC SETTINGS OF EARTHEN WASTE STORAGE STRUCTURES ASSOCIATED WITH CONFINED ANIMAL FEEDING OPERATIONS IN IOWA  

Technology Transfer Automated Retrieval System (TEKTRAN)

Thirty-four permitted earthen waste storage structures (EWSS) were investigated to characterize their hydrogeologic setting using digital soils data, digital elevation data, and oblique aerial photographs. Nearly 18% of the sites were constructed over alluvial aquifers and flood plains. More than h...

96

Linking Physical and Numerical Modelling in Hydrogeology Using Sand Tank Experiments and Comsol Multiphysics  

ERIC Educational Resources Information Center

Visualising subsurface processes in hydrogeology and building intuition for how these processes are controlled by changes in forcing is hard for many undergraduate students. While numerical modelling is one way to help undergraduate students explore outcomes of multiple scenarios, many codes are not user-friendly with respect to defining domains,…

Singha, Kamini; Loheide, Steven P., II

2011-01-01

97

Hydrogeological and numerical analysis of CO 2 disposal in deep aquifers in the Alberta sedimentary basin  

Microsoft Academic Search

For landlocked large sources of CO2, the best approaches for reducing CO2 emissions into the atmosphere are its utilization and deep disposal into deep sedimentary aquifers or depleted oil and gas reservoirs. A number of coal-based power plants (total capacity of more than 4000 MW) are located near Lake Wabamun in central Alberta, Canada. A hydrogeological study of the sedimentary

David H.-S. Law; Stefan Bachu

1996-01-01

98

Landfill siting in New York: Case studies confirming the importance of site-specific hydrogeologic investigations  

Microsoft Academic Search

Landfill siting is one of the most problematic environmental issues facing society today for a variety of both technical and political reasons. New York State has approached many of these issues by requiring both generalized siting studies and detailed hydrogeologic evaluation of any proposed landfill site. Geographic Information Systems (GIS) have emerged as an appropriate tool for accumulating information for

K. C. Cloyd; P. W. Concannon

1993-01-01

99

Hydrogeological model of a high energy geothermal field (Bouillante area, Guadeloupe, French West Indies)  

E-print Network

1 Hydrogeological model of a high energy geothermal field (Bouillante area, Guadeloupe, French West, France 3. BRGM, Department of Geothermal Energy 3, Av. Claude Guillemin - 45060 Orléans Cedex 2, France Abstract The Bouillante geothermal field presently provides about 8% of the annual electricity needs

Paris-Sud XI, Université de

100

INVESTIGATION OF HYDROGEOLOGIC MAPPING TO DELINEATE PROTECTION ZONES AROUND SPRINGS: REPORT OF TWO CASE STUDIES  

EPA Science Inventory

Methods commonly used to delineate protection zones for water-supply wells are often not directly applicable for springs. This investigation focuses on the use of hydrogeologic mapping methods to identify physical and hydrologic features that control ground-water flow to springs...

101

HYDROGEOLOGIC CONTROLS ON NITRATE TRANSPORT IN A SMALL AGRICULTURAL CATCHMENT, IOWA  

Technology Transfer Automated Retrieval System (TEKTRAN)

Effects of subsurface lithology on nitrate loss in stream riparian zones are recognized but little attention has been focused on similar processes occurring in upland agricultural settings. In this paper, we evaluated hydrogeologic controls on nitrate transport processes occurring in a small 7.6 ha ...

102

American hydrogeology at the millennium: An annotated chronology of 100 most influential papers  

USGS Publications Warehouse

Hydrogeology developed as scientists undertook activities to describe how a groundwater system functions to explain why it is that way, in order to solve practical problems of water supply. This paper demonstrates the evolutionary nature and growth of hydrogeology in the United States on the basis of a selection of one hundred papers that had a significant impact on subsequent activities. We have identified three revolutionary concepts that resulted directly from this evolutionary understanding and have selected papers that demonstrate important consequences. These three concepts are 1) that the mathematical expression for heat flow can be paraphrased for groundwater and used in transient flow conditions to determine aquifer characteristics; 2) that the distribution of fluid potential can be formulated in mathematical equations suitable for solution by various analytical techniques; and 3) that chemical thermodynamics can be applied to hydrogeologic systems in order to understand the processes controlling the chemical character of groundwater. One purpose of this paper is to encourage scientists to gain an additional dimension of satisfaction from their work by being aware of the contributions of those who went before them and to see how their own work fits into the current understanding of hydrogeology.

Back, W.; Herman, J.S.

1997-01-01

103

ASSESSING THE HYDROGEOLOGIC CLASSIFICATION SYSTEM IN MID-ATLANTIC COASTAL PLAIN STREAMS USING BENTHIC MACROINVERTEBRATES  

EPA Science Inventory

Assessing classification systems that describe natural variation across regions is an important first step for developing indicators. We evaluated a hydrogeologic framework for first order streams in the mid-Atlantic Coastal Plain as part of the LIPS-MACS (Landscape Indicators f...

104

Inventory and Review of Existing PRISM Hydrogeologic Data for the Islamic Republic of Mauritania, Africa  

USGS Publications Warehouse

The USGS entered into an agreement with the Mauritania Ministry of Mines and Industry to inventory and review the quality of information collected as part of the Project for Strengthening of the Institutions in the Mining Sector (PRISM). Whereas the PRISM program collected geophysical, geochemical, geological, satellite, and hydrogeologic information, this report focuses on an inventory and review of available hydrogeologic data provided to the USGS in multiple folders, files, and formats. Most of the information pertained to the hydrogeologic setting and the water budget of evaporation, evapotranspiration, and precipitation in the Choum-Zouerate area in northwestern Mauritania, and the country of Mauritania itself. Other information about the quantity and quality of groundwater was found in the relational Access database. In its present form, the limited hydrogeologic information was not amenable to conducting water balance, geostatistical, and localized numerical modeling studies in support of mineral exploration and development. Suggestions are provided to remedy many of the data's shortcomings, such as performing quality assurance on all SIPPE2 data tables and sending questionnaires to appropriate agencies, mining and other companies to populate the database with additional meteorology, hydrology, and groundwater data.

Friedel, Michael J.

2008-01-01

105

Coupling between hydrogeology and deformation of mountainous rock slopes: Insights from La Clapire area (southern Alps,  

E-print Network

-reversible deformations [11]. First, the hydrogeology of the uncompressed zone that can extend deep in the slopes is not well known, except the fact that such a structural zone can allow high-yield groundwater flows parallel]. It is obvious that such a detailed investigation is hard to conduct in large-scale dangerously moving media. We

106

Hydrogeologic Effects on Design and Results for Multiple Midwest Regional Carbon Sequestration Partnership Test Sites  

Microsoft Academic Search

In planning and monitoring CO2 injection experiments at Midwest Regional Carbon Sequestration Partnership sites, it was found that the hydrogeologic framework had a significant influence on the test design and results. The test sites are located along major regional geologic structures in the Midwestern United States: the Appalachian Basin, the Cincinnati Arch, and the Michigan Basin. Factors such as injection

J. Sminchak; M. Kelley; J. Gerst; D. Meggyesy

2008-01-01

107

Prime candidate sites for astrobiological exploration through the hydrogeological history of Mars  

Microsoft Academic Search

The hydrogeological evolution of Mars has been proposed to be dominated by the development of the Tharsis Magmatic Complex through superplume activity, with related magmatic-pulse-driven flood inundations that directly influence the shaping of the northern plains, the evolution of the atmosphere and climate, and subsurface and surface water processes. On the other hand, several possible biological models and terrestrial analogues

Alberto G. Fairén; James M. Dohm; Esther R. Uceda; Alexis P. Rodríguez; Victor R. Baker; David Fernández-Remolar; Dirk Schulze-Makuch; Ricardo Amils

2005-01-01

108

Development of a Hydrogeological Site Description Based on a Discrete Fracture Network Concept and the Integration of Geological, Hydrogeological and Hydrochemical Data  

NASA Astrophysics Data System (ADS)

The Swedish Nuclear Fuel and Waste Management Company (SKB) is carrying out site investigations in two different areas in Sweden with the objective of describing the in-situ conditions for a deep rock repository for spent nuclear fuel. The two candidate areas are Forsmark and Laxemar, both located on the east coast of Sweden. An important aspect of site investigations is to develop and demonstrate an understanding of groundwater flow and solute transport. Since the geology in both candidate areas is comprised of hard crystalline rocks, the groundwater flow is predominantly contained within fractures, and therefore a discrete fracture network (DFN) concept has been applied to describe and model the hydrogeological situation at the sites. Much observed field data from several different disciplines (geology, rock mechanics, geophysics, hydrogeology and hydrochemistry) has been acquired from the sites, including from several deep cored boreholes, to inform an overall description. Many aspects of the site description are brought together in constructing a regional scale hydrogeological model to integrate the concepts and data interpretations, which are then tested against a range of field observations to build confidence that the models are representative. A methodology has been developed based on assembling a regional hydrogeological model from three main components: hydraulic conductor domains (HCD) that represent deterministic large scale deformation zones; hydraulic rock domains (HRD) that use a stochastic DFN model to represent the background rock between the deformation zones; and hydraulic soil domains (HSD) that represent near-surface Quaternary deposits. The HCD are interpreted from geophysical methods, drilling and single-hole hydraulic tests. For the HRD, borehole image- and core-logs, outcrop maps, and short-interval flow-logging are integrated to parameterise a DFN model for specific hydrogeological rock domains. Geological information, statistical analysis and expert judgement are used to extrapolate the DFN model over the regional domain. For regional-scale flow simulations, 3D stochastic realisations of the DFN model are converted, using flux-based upscaling techniques, to an equivalent continuum porous medium (ECPM) model that includes density driven flow and rock matrix diffusion. Testing of the model parameterisation is achieved by simulating hydraulic interference tests and transport of natural chemical tracers. The tracers include major elemental ions, stable isotopes and tritium measured in groundwater samples from boreholes. The hydrochemistry of these coastal sites has been strongly affected by palaeo-hydrogeolgical processes resulting from glacial melting, land-rise and marine transgressions following the last ice age. Therefore, 3D transient coupled groundwater flow and solute transport simulations are used to model these processes with the purpose of calibrating and testing the hydrogeological models against the present-day hydrochemistry data. The site-descriptive model is subsequently used for engineering design, safety assessment and environmental impact assessment studies. In the safety assessment application, an explicit repository scale DFN model is nested within the regional scale ECPM model and used to assess flow rates in deposition holes and flow paths, including flow-related transport properties along the groundwater paths, from the deposition holes to the biosphere Keywords: Discrete fracture networks, Hydrogeology, Hydrochemistry, 3D Groundwater flow, modelling

Jackson, C.; Hartley, L. J.; Hoch, A.; Holton, D.; Hunter, F. M.; McCarthy, R.; Marsic, N.; Gylling, B.

2006-12-01

109

Hydrogeological characterization of a coastal aquifer in southern Turkey  

NASA Astrophysics Data System (ADS)

A sustainable use of groundwater resources in the world is of rising importance, especially in areas where groundwater quality and quantity are threatened. Areas in which groundwater has to be treated carefully are for example coastal plains. They are preferential places for settlements and infrastructure routes. Therefore the water may be for example contaminated by seepage of pollutants through soil. Furthermore high amounts of water are withdrawn, often without sustainable water management systems. This can cause saltwater intrusion from the sea. In this study the investigation area covers 45 km2 of a coastal plain near Dörtyol in southern Turkey. Bounded by the Amanos Mountains to the East and the Mediterranean Sea to the west human activities are concentrated in this area. Agriculture as main land use, as well as the development of industry and the increasing importance of the geographical position as transition point between Europe and Middle East characterize this setting. It is threatened by saltwater intrusion due to high amounts of withdrawn water, as well as by anthropogenic compounds entering the aquifer. A detailed knowledge and understanding are essential to avoid destabilisation of such systems. During a fieldwork in 2008 34 groundwater and 7 surface water samples were taken from wells and rivers. Physicochemical parameters, groundwater level measurements, and discharge loggings were done at various places in the study area. The water was analysed for major ions by inductively coupled plasma optical emission spectrometry and atomic absorption spectrometry. Studies in the field also included geological mapping of shallow geological layers and geometrical structures. The impermeable basement of the coastal plain is composed of serpentinites and limestones from Mesozoic. Heterogenic tertiary and quaternary sediments composed of rocks from the Amanos Mountain formation cover the basement. This classification including observations of shallow permeable and impermeable layers as well as wetlands in the field allow the localisation of recharge and discharge zones. All sampled wells show similar water chemistry. However, areas of higher concentrations of nitrate (up to 45 mg/L) and sulphate (42 mg/L) can be distinguished, which is a hint of intensive agricultural influence including the use of fertiliser. Generally, the hydrochemistry of the groundwater is characterized by anthropogenic but also geological influence. Remarkable high magnesium concentrations (up to 81 mg/L) at several locations in the area show the influence of water-rock interaction. Ferromagnesian ions are dissolved from serpentinites while increased calcium concentrations result from limestone-dissolution. Relatively low electrical conductivity values and chloride concentrations even in wells near the coast indicate that saltwater intrusion has not yet taken place. Anyway groundwater level measurements compared to former measurements suggest a future intrusion in case the water use remains constant at a high level. This investigation enhances the understanding of the hydrogeological characteristics in this special area and of forthcoming problems in coastal areas in general. However, more emphasis and research is needed including long-term observation of ground- and surface water quality as well as a detailed investigation of hydraulic characteristics of the local aquifer to guarantee a sustainable groundwater use.

Brehme, M.; Dokuz, U. E.; Scheytt, T.; Çelik, M.

2012-04-01

110

Digital Surfaces and Thicknesses of Selected Hydrogeologic Units within the Mississippi Embayment Regional Aquifer Study (MERAS)  

USGS Publications Warehouse

Digital surfaces of selected Tertiary and younger age hydrogeologic units within the Mississippi embayment aquifer system were created using more than 2,600 geophysical logs for an area that covers approximately 70,000 square miles and encompasses parts of eight states. The digital surfaces were developed to define and display the hydrogeologic framework for the Mississippi Embayment Regional Aquifer Study (MERAS). The digital surfaces also provide a foundation of the selected hydrogeologic units for development of a steady-state and transient regional ground-water flow model of the Mississippi embayment aquifer system from the top of the Midway confining unit upwards to land surface. The ground-water flow model is under development as part of the U.S. Geological Survey Ground-Water Resources Program. Using a Geographic Information System, nine digital surfaces of the tops of selected hydrogeologic units were created using the Australian National University Digital Elevation Model method as an interpolation scheme. Thickness maps also were constructed using the Geographic Information System by calculating the difference between the altitude of the interpreted base of an overlying unit and the altitude of the interpreted top of an underlying unit. In general, the highest hydrogeologic unit altitudes are located along the eastern edge of the study area in the outcrop, and the lowest altitudes, in general, are located along the southern edge of the study area along the axis of the embayment. The Mississippi River Valley alluvial aquifer and the lower Claiborne aquifer are the thinnest aquifers of importance in the study area; the thickest aquifer of importance is the middle Claiborne aquifer.

Hart, Rheannon M.; Clark, Brian R.; Bolyard, Susan E.

2008-01-01

111

Using Electrical Resistivity Tomography for Constraining a Hydrogeological Model in a Data Sparse Region  

NASA Astrophysics Data System (ADS)

Geological and hydrogeological data are often spatially limited in mountainous regions. In these settings, geophysical techniques can be used to constrain hydrogeological models by providing insight into the hydrostratigraphy and the continuity of units in the subsurface. This study we used electrical resistivity tomography coupled with a priori geological data from residential water wells to improve the accuracy and confidence of a hydrogeological model. The study area is situated within the mountainous Cowichan watershed in British Columbia, Canada. Throughout the watershed, unconsolidated deposits of variable thickness overlie bedrock. Based on available water well information, at high elevation, sediment thickness is on the order of a few metres, but within the valley bottom, sediment thickness can be up to 300 m. The unconsolidated deposits are heterogeneous due to a complex depositional environment that was controlled by glacial advances and recessions, most notably during the Fraser Glaciation. Six electrical resistivity transects of various lengths spanning 135 to 830 metres were conducted in an area of the watershed that is particularly data poor. The electrical resistivity transects were strategically placed, first, to make use of available lithology information from existing water wells in order to constrain the geophysical interpretation, and second, to contribute data to areas that lack subsurface lithological records. Electrical resistivity was measured using a AGI SuperSting R1 system, and data were processed using robust inversion software to identify stark geophysical contacts. The technique successfully delineated zones of conductive and resistive units that have been interpreted as aquitards (clay and till formations), aquifers (water bearing sand and gravel lenses), and bedrock based on dielectric contrast. Available surficial geology and bedrock geology maps, coupled with residential well drilling records, further assisted in mapping the continuity of the hydrogeological units at a larger scale, and the results were digitized and integrated to construct a three dimensional hydrogeological model of the watershed.

Foster, S.; Allen, D. M.

2013-12-01

112

Hydrogeology of the gray limestone aquifer in southern Florida  

USGS Publications Warehouse

Results from 35 new test coreholes and aquifer-test, water-level, and water-quality data were combined with existing hydrogeologic data to define the extent, thickness, hydraulic properties, and degree of confinement of the gray limestone aquifer in southern Florida. This aquifer, previously known to be present only in southeastern Florida (Miami-Dade, Broward, and Palm Beach Counties) below, and to the west of, the Biscayne aquifer, extends over most of central-south Florida, including eastern and central Collier County and southern Hendry County; it is the same as the lower Tamiami aquifer to the north, and it becomes the water-table aquifer and the upper limestone part of the lower Tamiami aquifer to the west. The aquifer generally is composed of gray, shelly, lightly to moderately cemented limestone with abundant shell fragments or carbonate sand, abundant skeletal moldic porosity, and minor quartz sand. The gray limestone aquifer comprises the Ochopee Limestone of the Tamiami Formation, and, in some areas, the uppermost permeable part of an unnamed formation principally composed of quartz sand. Underlying the unnamed formation is the Peace River Formation of the upper Hawthorn Group, the top of which is the base of the surficial aquifer system. Overlying the aquifer and providing confinement in much of the area is the Pinecrest Sand Member of the Tamiami Formation. The thickness of the aquifer is comparatively uniform, generally ranging from 30 to 100 feet. The unnamed formation part of the aquifer is up to 20 feet thick. The Ochopee Limestone accumulated in a carbonate ramp depositional system and contains a heterozoan carbonate-particle association. The principal rock types of the aquifer are pelecypod lime rudstones and floatstones and permeable quartz sands and sandstones. The pore types are mainly intergrain and separate vug (skeletal-moldic) pore spaces. The rock fabric and associated primary and secondary pore spaces combine to form a dual diffuse-carbonate and conduit flow system capable of producing high values of hydraulic conductivity. Transmissivity values of the aquifer are commonly greater than 50,000 feet squared per day to the west of Miami-Dade and Broward Counties. Hydraulic conductivity ranges from about 200 to 12,000 feet per day and generally increases from east to west; an east-to-west shallowing of the depositional profile of the Ochopee Limestone carbonate ramp contributes to this spatial trend. The aquifer contains two areas of high transmissivity, both of which trend northwest-southeast. One area extends through southern Hendry County. The other area extends through eastern Collier County, with a transmissivity as high as 300,000 feet squared per day; in this area, the aquifer is structurally high, the top of the aquifer is close to land surface, and it is unconfined to semiconfined. The confinement of the aquifer is good to the north and east in parts of southern Hendry, Palm Beach, Collier, Broward, and Miami-Dade Counties. In these areas, the upper confining unit approaches or is greater than 50 feet thick, and vertical leakance is less than 1.0 x 10-3 l/day. In most of the study area, the specific conductance in water from the gray limestone aquifer is 1,500 microsiemens per centimeter or less (chloride concentration of about 250 milligrams per liter or less). Areas where specific conductance is greater than 3,000 microsiemens per centimeter are found where there is a low horizontal-head gradient and the upper confining unit is greater than 50 feet thick. An area with specific conductance less than 1,500 microsiemens per centimeter extends from southern Hendry County to the southeast into western Broward County and coincides with an area of high transmissivity. However, much of this area has good confinement. The potentiometric gradient also is to the southeast in much of the area, and this area of low specific conductance is probably caused by a relatively rapid downgradient movement of fres

Reese, Ronald S.; Cunningham, Kevin J.

2000-01-01

113

Hydrogeologic investigation of the Middle San Pedro watershed, southeastern Arizona: a project of the Rural Watershed Initiative  

USGS Publications Warehouse

In 2005, the U.S. Geological Survey (USGS) began an investigation of the hydrogeology of the middle San Pedro watershed in cooperation with the Arizona Department of Water Resources (ADWR). This project is part of the Rural Watershed Initiative (RWI), which is a program established by the State of Arizona and managed by the ADWR. The primary objective of this project is to improve the understanding of the hydrogeology of the middle San Pedro watershed.

Thomas, Blakemore E.

2006-01-01

114

Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin  

USGS Publications Warehouse

The U.S. Geological Survey is assessing groundwater availability in the Lake Michigan Basin. As part of the assessment, a variable-density groundwater-flow model is being developed to simulate the effects of groundwater use on water availability throughout the basin. The hydrogeologic framework for the Lake Michigan Basin model was developed by grouping the bedrock geology of the study area into hydrogeologic units on the basis of the functioning of each unit as an aquifer or confining layer within the basin. Available data were evaluated based on the areal extent of coverage within the study area, and procedures were established to characterize areas with sparse data coverage. Top and bottom altitudes for each hydrogeologic unit were interpolated in a geographic information system for input to the model and compared with existing maps of subsurface formations. Fourteen bedrock hydrogeologic units, making up 17 bedrock model layers, were defined, and they range in age from the Jurassic Period red beds of central Michigan to the Cambrian Period Mount Simon Sandstone. Information on groundwater salinity in the Lake Michigan Basin was compiled to create an input dataset for the variable-density groundwater-flow simulation. Data presented in this report are referred to as 'salinity data' and are reported in terms of total dissolved solids. Salinity data were not available for each hydrogeologic unit. Available datasets were assigned to a hydrogeologic unit, entered into a spatial database, and data quality was visually evaluated. A geographic information system was used to interpolate salinity distributions for each hydrogeologic unit with available data. Hydrogeologic units with no available data either were set equal to neighboring units or were vertically interpolated by use of values from units above and below.

Lampe, David C.

2009-01-01

115

Hydrogeologic characterization of the Hickory Sandstone Aquifer near Camp Air in northern Mason and southern McCulloch counties, Texas  

E-print Network

HYDROGEOLOGIC CHARACTERIZATION OF THE HICKORY SANDSTONE AQUIFER NEAR CAMP AIR IN NORTHERN MASON AND SOUTHERN MCCULLOCH COUNTIES, TEXAS A Thesis by CYNTHIA DAPHINE DELANEY Submitted to the Office of Graduate Studies of Texas A&M University... Thesis by CYNTHIA DAPHINE DELANEY Approved as to style and content by: Brann Johnson (Chair of C(mmittee) Christo her C. Mathewson (Member) Kenneth L White (Member) John H. Spang (Head of Department) December 1990 ABSTRACT Hydrogeologic...

Delaney, Cynthia Daphine

1990-01-01

116

Digital surfaces and thicknesses of selected hydrogeologic units within the Ozark Plateaus aquifer system, northwestern Arkansas  

USGS Publications Warehouse

Digital surfaces and thicknesses of nine hydrogeologic units of the Ozark Plateaus aquifer system from land surface to the top of the Gunter Sandstone in northwestern Arkansas were created using geophysical logs, drillers’ logs, geologist-interpreted formation tops, and previously published maps. The 6,040 square mile study area in the Ozark Plateaus Province includes Benton, Washington, Carroll, Madison, Boone, Newton, Marion, and Searcy Counties. The top of each hydrogeologic unit delineated on geophysical logs was based partly on previously published reports and maps and also from drillers’ logs. These logs were then used as a basis to contour digital surfaces showing the top and thickness of the Fayetteville Shale, the Boone Formation, the Chattanooga Shale, the Everton Formation, the Powell Dolomite, the Cotter Dolomite, the Roubidoux Formation, the Gasconade Dolomite, and the Gunter Sandstone.

Czarnecki, John B.; Bolyard, Susan E.; Hart, Rheannon M.; Clark, Jimmy M.

2014-01-01

117

Characterizing the hydrogeologic framework of the Death Valley region, Southern Nevada and California  

USGS Publications Warehouse

Three-dimensional (3-D) hydrogeologic modeling of the complex geology of the Death Valley region requires the application of a number of Geoscientific Information System (GSIS) techniques. This study, funded by United States Department of Energy as a part of the Yucca Mountain Project, focuses on an area of approximately 100,000 square kilometers (three degrees of latitude by three degrees of longitude) and extends up to ten kilometers in depth. The geologic conditions are typical of the Basin and Range province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. GSIS techniques allow the synthesis of geologic, hydrologic and climatic information gathered from many sources, including satellite imagery and published maps and cross-sections. Construction of a 3-D hydrogeological model is possible with the combined use of software products available from several vendors, including traditional GIS products and sophisticated contouring, interpolation, visualization, and numerical modeling packages.

Faunt, Claudia; D'Agnese, Frank; Downey, Joe S.; Turner, A. Keith

1993-01-01

118

Allocating risk capital for a brownfields redevelopment project under hydrogeological and financial uncertainty.  

PubMed

In this study, we defined risk capital as the contingency fee or insurance premium that a brownfields redeveloper needs to set aside from the sale of each house in case they need to repurchase it at a later date because the indoor air has been detrimentally affected by subsurface contamination. The likelihood that indoor air concentrations will exceed a regulatory level subject to subsurface heterogeneity and source zone location uncertainty is simulated by a physics-based hydrogeological model using Monte Carlo realizations, yielding the probability of failure. The cost of failure is the future value of the house indexed to the stochastic US National Housing index. The risk capital is essentially the probability of failure times the cost of failure with a surcharge to compensate the developer against hydrogeological and financial uncertainty, with the surcharge acting as safety loading reflecting the developers' level of risk aversion. We review five methodologies taken from the actuarial and financial literature to price the risk capital for a highly stylized brownfield redevelopment project, with each method specifically adapted to accommodate our notion of the probability of failure. The objective of this paper is to develop an actuarially consistent approach for combining the hydrogeological and financial uncertainty into a contingency fee that the brownfields developer should reserve (i.e. the risk capital) in order to hedge their risk exposure during the project. Results indicate that the price of the risk capital is much more sensitive to hydrogeological rather than financial uncertainty. We use the Capital Asset Pricing Model to estimate the risk-adjusted discount rate to depreciate all costs to present value for the brownfield redevelopment project. A key outcome of this work is that the presentation of our risk capital valuation methodology is sufficiently generalized for application to a wide variety of engineering projects. PMID:22366499

Yu, Soonyoung; Unger, Andre J A; Parker, Beth; Kim, Taehee

2012-06-15

119

Borehole Completion and Conceptual Hydrogeologic Model for the IFRC Well Field, 300 Area, Hanford Site  

SciTech Connect

A tight cluster of 35 new wells was installed over a former waste site, the South Process Pond (316-1 waste site), in the Hanford Site 300 Area in summer 2008. This report documents the details of the drilling, sampling, and well construction for the new array and presents a summary of the site hydrogeology based on the results of drilling and preliminary geophysical logging.

Bjornstad, Bruce N.; Horner, Jacob A.; Vermeul, Vincent R.; Lanigan, David C.; Thorne, Paul D.

2009-04-20

120

Selected hydrogeologic data from southern Sweet Grass County, south-central Montana  

USGS Publications Warehouse

Selected hydrogeologic data from Sweet Grass County south of the Yellowstone River have been compiled to show baseline ground-water conditions. Included are records from a 1981 onsite inventory of 94 water wells and 30 springs. Chemical analyses of water show the major cation and anion concentrations for 40 wells and 14 springs. Concentrations of 17 trace elements in water from 12 of the wells and 9 of the springs were determined by an argon coupled emission spectrometer. (USGS)

Feltis, R.D.; Wood, W.A.

1982-01-01

121

Aquifer sensitivity to pesticide leaching: Testing a soils and hydrogeologic index method  

USGS Publications Warehouse

For years, researchers have sought index and other methods to predict aquifer sensitivity and vulnerability to nonpoint pesticide contamination. In 1995, an index method and map were developed to define aquifer sensitivity to pesticide leaching based on a combination of soil and hydrogeologic factors. The soil factor incorporated three soil properties: hydraulic conductivity, amount of organic matter within individual soil layers, and drainage class. These properties were obtained from a digital soil association map. The hydrogeologic factor was depth to uppermost aquifer material. To test this index method, a shallow ground water monitoring well network was designed, installed, and sampled in Illinois. The monitoring wells had a median depth of 7.6 m and were located adjacent to corn and soybean fields where the only known sources of pesticides were those used in normal agricultural production. From September 1998 through February 2001, 159 monitoring wells were sampled for 14 pesticides but no pesticide metabolites. Samples were collected and analyzed to assess the distribution of pesticide occurrence across three units of aquifer sensitivity. Pesticides were detected in 18% of all samples and nearly uniformly from samples from the three units of aquifer sensitivity. The new index method did not predict pesticide occurrence because occurrence was not dependent on the combined soil and hydrogeologic factors. However, pesticide occurrence was dependent on the tested hydrogeologic factor and was three times higher in areas where the depth to the uppermost aquifer was <6 m than in areas where the depth to the uppermost aquifer was 6 to <15 m. Copyright ?? 2005 National Ground Water Association.

Mehnert, E.; Keefer, D.A.; Dey, W.S.; Wehrmann, H.A.; Wilson, S.D.; Ray, C.

2005-01-01

122

Ground-water hydrogeology and geochemistry of a reclaimed lignite surface mine  

E-print Network

in the field work; Rodney Stockton, who did the trace element and cation water quality analyses; Kimberly Hinkle, Char- lotte Kehoe and Sadhana Satyanarayana, for typing the thesis; and Lili Lyddon and Brice Moczygemba, for drafting the figures. V1...GROUND-WATER HYDROGEOLOGY AND GEOCHEMISTRY OF A RECLAIMED LIGNITE SURFACE MINE A Thesis by CLIFFORD RALPH POLLOCK Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER...

Pollock, Clifford Ralph

1982-01-01

123

Hydrogeology of the Piedmont Springs National Historic Site Grimes County, Texas  

E-print Network

Site relative to the economic lignite deposits Surface mining operation using a walking dragline and truck/shovel operation. . . . . . . . . Geologic Map of the Anderson- Millican area, (Star represents the location of Piedmont Springs National...) . . . . . . . . . . . 17 Major structural features of the northwest Gulf Coast Basin, (Ayers and Kaiser, 1986). . . . . . . 19 Hydrogeologic type in reclaimed surface lignite mines in Texas, (Mathewson et al. , 1982) . . . . . . . . 24 Recharge mechanisms of spoil...

Waclawczyk, Randy R.

1989-01-01

124

Hydrogeological characterisation of a glacially affected barrier island - the North Frisian Island of Föhr  

NASA Astrophysics Data System (ADS)

We present the application of geophysical investigations to characterise and improve the geological/hydrogeological model through the estimation of petrophysical parameters for groundwater modelling. Seismic reflection and airborne electromagnetic surveys in combination with borehole information enhance the 3-D geological model and allow a petrophysical interpretation of the subsurface. The North Sea Island of Föhr has a very complex underground structure what was already known from boreholes. The local waterworks use a freshwater body embedded in saline groundwater. Several glaciations disordered the Youngest Tertiary and Quaternary sediments by glaciotectonic thrust-faulting as well as incision and refill of glacial valleys. Both underground structures have a strong impact on the distribution of freshwater bearing aquifers. An initial hydrogeological model of Föhr was built from borehole data alone and was restricted to the southern part of the island where in the sandy areas of the Geest a large freshwater body was formed. We improved the geological/hydrogeological model by adding data from different geophysical methods, e.g. airborne electromagnetics (EM) for mapping the resistivity of the entire island, seismic reflections for detailed cross sections in the groundwater catchment area, and geophysical borehole logging for calibration of these measurements. An integrated evaluation of the results from the different geophysical methods yields reliable data. To determinate petrophysical parameter about 18 borehole logs, more than 75 m deep, and nearby airborne EM inversion models were analyzed concerning resistivity. We establish an empirical relation between measured resistivity and hydraulic conductivity for the specific area - the North Sea island of Föhr. Five boreholes concerning seismic interval velocities discriminate sand and till. The interpretation of these data was the basis for building the geological/hydrogeological 3-D model. We fitted the relevant model layers to all geophysical and geological data and created a consistent 3-D model. This model is the fundament for groundwater simulations considering forecasted changes in precipitation and sea level rise due to climate change.

Burschil, T.; Scheer, W.; Kirsch, R.; Wiederhold, H.

2012-04-01

125

Evaluation of hydrogeologic aspects of proposed salinity control in Paradox Valley, Colorado  

USGS Publications Warehouse

The salt load in the Dolores River increases by about 200,000 tons per year where it crosses Paradox Valley, Colorado, because of the discharge of a sodium chloride brine from an underlying aquifer. A ground-water management program to nearly eliminate this major source of salt, which eventually enters the Colorado River, can be designed on the basis of an accurate description of the hydrogeologic framework of Paradox Valley.

Konikow, Leonard F.; Bedinger, M.S.

1978-01-01

126

Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and Vicinity, Savannah River Plant, South Carolina  

SciTech Connect

The purposes of this report are two-fold: (1) to define the hydrogeologic conditions in the vicinity of the defense waste processing facility (DWPF) and, (2) to evaluate the potential for movement of a concentrated salt-solution waste if released at or near the DWPF. These purposes were accomplished by assembling and evaluating existing hydrogeologic data; collecting additional geologic, hydrologic, and water-quality data; developing a local geologic framework; developing a conceptual model of the local ground-water flow system; and by performing laboratory experiments to determine the mobility of salt-solution waste in surface and near-surface sediments. Although the unconsolidated sediments are about 1000 ft thick in the study area, only the Tertiary age sediments, or upper 300 ft are discussed in this report. The top of the Ellenton Formation acts as the major confining unit between the overlying aquifers in Tertiary sediments and the underlying aquifers in Cretaceous sediments; therefore, the Ellenton Formation is the vertical limit of our hydrogeologic investigation. The majority of the hydrologic data for this study come from monitoring wells at the saltstone disposal site (SDS) in Z Area (fig. 3). No recent water-level data were collected in S Area owing to the removal of S Area monitoring wells prior to construction at the DWPF. 46 refs., 26 figs., 7 tabs.

Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

1989-01-01

127

Hydrogeologic investigation of the Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama  

SciTech Connect

This document describes the geology and hydrogeology at the former Advanced Coal Liquefaction Research and Development (ACLR&D) facility in Wilsonville, Alabama. The work was conducted by personnel from the Oak Ridge National Laboratory Grand Junction office (ORNL/GJ) for the U.S. Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). Characterization information was requested by PETC to provide baseline environmental information for use in evaluating needs and in subsequent decision-making for further actions associated with the closeout of facility operations. The hydrogeologic conceptual model presented in this report provides significant insight regarding the potential for contaminant migration from the ACLR&D facility and may be useful during other characterization work in the region. The ACLR&D facility is no longer operational and has been dismantled. The site was characterized in three phases: the first two phases were an environmental assessment study and a sod sampling study (APCO 1991) and the third phase the hydraulic assessment. Currently, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation (RI) to address the presence of contaminants on the site is underway and will be documented in an RI report. This technical memorandum addresses the hydrogeologic model only.

Gardner, F.G.; Kearl, P.M.; Mumby, M.E.; Rogers, S.

1996-09-01

128

Applying Time-Frequency Analysis to Assist Identification of Hydrogeological Structure of Groundwater Aquifers  

NASA Astrophysics Data System (ADS)

Due to global warming, climate change, and economic development, the stability of water supply is challenged using only surface water resources. Hence, groundwater becomes an important water resource for increasing water supply reliability. However, groundwater extraction many introduce damages such as land subsidence and seawater intrusion. To accurately evaluate the response of groundwater aquifers, correct hydrogeological structure is a key factor. In the past, the evaluation of the hydrogeological structure relies on subjective judgment which is arbitrarily made based on available information of core sampling record, fossils, geological dating, etc. This study develops a quantitative method to provide objective information for improving the judgment. This method uses observed groundwater water level and time-frequency analysis. Precisely, the signal strength of the groundwater level is evaluated using Fast Fourier Transform (FFT) which is done by a commercially available software named Visual Signal. Two signal frequencies, daily and annual frequency, are studied. This method is applied to Lanyang Plain in Taiwan. The groundwater level record of shallow wells is selected for the signal processing. Therefore, higher signal strength of an annual signal indicates higher recharge which is an indicator of unconfined aquifer. In the case of Lanyang Plain, the low signal strength area includes fan top area and scatter areas at fan central and fantail areas. This signal information along with core sampling information can provide a complete picture of the hydrogeological structure and characteristics for the studied area Ilan shallow water wells in different frequencies

shiuan, C. W.; Chang, L.

2013-12-01

129

Hydrogeology along the southern boundary of the Hanford Site between the Yakima and Columbia Rivers, Washington  

SciTech Connect

US Department of Energy (DOE) operations at the Hanford Site, located in southeastern Washington, have generated large volumes of hazardous and radioactive wastes since 1944. Some of the hazardous wastes were discharged to the ground in the 1100 and 3000 Areas, near the city of Richland. The specific waste types and quantities are unknown; however, they probably include battery acid, antifreeze, hydraulic fluids, waste oils, solvents, degreasers, paints, and paint thinners. Between the Yakima and Columbia rivers in support of future hazardous waste site investigations and ground-water and land-use management. The specific objectives were to collect and review existing hydrogeologic data for the study area and establish a water-level monitoring network; describe the regional and study area hydrogeology; develop a hydrogeologic conceptual model of the unconfined ground-water flow system beneath the study area, based on available data; describe the flow characteristics of the unconfined aquifer based on the spatial and temporal distribution of hydraulic head within the aquifer; use the results of this study to delineate additional data needs in support of future Remedial Investigation/Feasibility Studies (RI/FS), Fate and Transport modeling, Baseline Risk Assessments (BRA), and ground-water and land-use management.

Liikala, T.L.

1994-09-01

130

Structure and genesis of the Cubango Megafan in northern Namibia: implications for its hydrogeology  

NASA Astrophysics Data System (ADS)

An exploration strategy for groundwater was established and followed in the northern Namibian Cuvelai-Etosha Basin (CEB). The data derived from transient electromagnetics, rotary-drilling, coring and sample investigation were used to refine stratigraphy and hydrostratigraphy, and to develop a 3D map of aquifers within the Cubango Megafan. The results have delineated three major aquifers. The newly found, deep-seated Ohangwena II Aquifer (KOH-2) has the potential of providing significant additional water to the water supply of northern Namibia and Angola. While near-surface aquifers carry predominantly brackish water, freshwater in the deep-seated aquifer is further extended and features good hydraulic properties. To date, only a small part of the hydrogeological potential of arid CEB has been explored and an extension of exploration is needed, including southern Angola. The combination of structural, sedimentological and hydrogeological approaches greatly advanced both the geological and hydrogeological understanding. With regard to the deep-seated aquifer, strict measures need to be applied to ensure that the water in the KOH-2 reservoir is exploited sustainably. Water control areas need to be established to ensure long-term preservation of this newly explored aquifer.

Lindenmaier, F.; Miller, R.; Fenner, J.; Christelis, G.; Dill, H. G.; Himmelsbach, T.; Kaufhold, S.; Lohe, C.; Quinger, M.; Schildknecht, F.; Symons, G.; Walzer, A.; van Wyk, B.

2014-09-01

131

Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model  

SciTech Connect

The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site-scale SZ flow model, the HFM-19 is clipped, reducing the vertical extent to the interpreted top of the water table. The HFM-19 grid consists of a rectangular array of nodes with a spacing of 125 meters discussed in Sections 4.1, 5, and 6.3, and this selection simplifies the available data near the repository and extrapolates from very widely spaced data in other areas of the model domain. The HFM-19 is assembled by using geometric gridding techniques and software (described in Sections 3 and 6.3) to fill the domain area with 3-D elements corresponding to the 19 hydrogeologic units of interest. The HFM-19 is limited by simplifications that accommodate computer mapping, framework modeling, and modeling limitations and contains an inherent level of uncertainty that is a function of data distribution and geologic complexity. Uncertainty and limitations are discussed in Section 6.4 and model validation is discussed in Section 7. The HFM-19 provides the hydrogeologically defined internal geometry for SZ flow and transport process models, which was used to assign unit numbers to nodes in a mesh for use in site-scale SZ flow and transport models. The ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) directly uses the output of this report to provide the spatial boundaries for each of the hydrogeologic units.

T. Miller

2004-11-15

132

Hydrogeophysical approach for the study of groundwater resources and hydrogeological features of an carbonate aquifer (Muro Lucano Mounts, Basilicata, Italy).  

NASA Astrophysics Data System (ADS)

The proposed work is about the geophysical survey applied on a carbonate aquifer to improve the hydrogeological knowledge. The optimal characterization of a groundwater resource is the conditions necessary to achieve the best location of a exploitable pumping hole. In order to characterize an exploitable aquifer, it is necessary to define the best hydrogeological model which necessarily must be supported by a lot of geological and hydrogeological data. Therefore, the integration between detailed geological data and indirect information is one of the best way to improve the groundwater model of an aquifer. This work summarizes the hydrogeological knowledge of the area of Muro Lucano village (Basilicata region). This area is characterized by the presence of an interesting karst aquifer which is made up by a carbonate ridge (Castelgrande - Muro Lucano) that tectonically dips southward and is widely covered by Pliocene deposits (sands and conglomerates), by the Argille Varicolori formation and by debris slope and landslide deposits. Besides the assessment of the complex hydrogeological framework of the area, also a balance of the groundwater resources has been carried out and, by the use of an innovative geophysical technique, a zone which is potentially suitable for the exploitation of the groundwater has been localized.

Grimaldi, Salvatore; Summa, Gianpietro; Leone, Domenico; Rizzo, Enzo

2010-05-01

133

Hydrogeological characterization on surface-based investigation phase in the Mizunami underground research laboratory project, in Japan  

SciTech Connect

The Mizunami Underground Research Laboratory (MIU) project is being carried out by Japan Atomic Energy Agency in the Cretaceous Toki granite in the Tono area, central Japan. The MIU project is a purpose-built generic underground research laboratory project that is planned for a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. One of the main goals of the MIU project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. The MIU project has three overlapping phases: Surface-based Investigation (Phase I), Construction (Phase II) and Operation (Phase III). Hydrogeological investigations using a stepwise process in Phase I have been carried out in order to obtain information on important properties such as, location of water conducting features, hydraulic conductivity and so on. Hydrogeological modeling and groundwater flow simulations in Phase I have been carried out in order to synthesize these investigation results, to evaluate the uncertainty of the hydrogeological model and to identify the main issues for further investigations. Using the stepwise hydrogeological characterization approach and combining the investigation with modeling and simulation, understanding of the hydrogeological environment has been progressively improved. (authors)

Saegusa, Hiromitsu; Onoe, Hironori; Takeuchi, Shinji; Takeuchi, Ryuji; Ohyama, Takuya [Japan Atomic Energy Agency (Japan)

2007-07-01

134

Hydrogeologic and water-quality data for the explosive experimental area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia  

USGS Publications Warehouse

Hydrogeologic and water-quality data were collected at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site at Dahlgren, Virginia, as part of a hydrogeologic assessment of the shallow aquifer system begun in 1993. The U.S. Geological Survey conducted this study to provide the U.S. Navy with hydrogeologic data to aid in the evaluation of the effects from remediation of contaminated sites and to protect against additional contamination. This report describes the ground-water observation- well network, hydrogeologic, and water-quality data collected between October 1993 and April 1995. The report includes a description of the locations and construction of 28 observation wells on the Explosive Experimental Area. Hydrogeologic data include lithologic logs, geophysical logs, and vertical hydraulic conductivity measurements of selected core intervals. Hydrologic data include synoptic and hourly measurements of ground-water levels, and observation-well slug tests to determine horizontal hydraulic conductivity. Water-quality data include analyses of major dissolved constituents in ground water and surface water.

Hammond, E.C.; Bell, C.F.

1995-01-01

135

A conceptual hydrogeologic model for the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas  

USGS Publications Warehouse

The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and municipal uses in the Trans-Pecos region of west Texas. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system in the 4,700 square-mile study area was developed by the U.S. Geological Survey (USGS) in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1. The model was developed to gain a better understanding of the groundwater system and to establish a scientific foundation for resource-management decisions. Data and information were collected or obtained from various sources to develop the model. Lithologic information obtained from well reports and geophysical data were used to describe the hydrostratigraphy and structural features of the groundwater system, and aquifer-test data were used to estimate aquifer hydraulic properties. Groundwater-quality data were used to evaluate groundwater-flow paths, water and rock interaction, aquifer interaction, and the mixing of water from different sources. Groundwater-level data also were used to evaluate aquifer interaction as well as to develop a potentiometric-surface map, delineate regional groundwater divides, and describe regional groundwater-flow paths. Several previous studies have been done to compile or collect physical and chemical data, describe the hydrogeologic processes, and develop conceptual and numerical groundwater-flow models of the Edwards-Trinity aquifer in the Trans-Pecos region. Documented methods were used to compile and collect groundwater, surface-water, geochemical, geophysical, and geologic information that subsequently were used to develop this conceptual model.

Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew P.; Houston, Natalie A.; Payne, Jason D.; Musgrove, MaryLynn

2013-01-01

136

The worth of data in predicting aquitard continuity in hydrogeological design  

NASA Astrophysics Data System (ADS)

A Bayesian decision framework is developed for addressing questions of hydrogeological data worth associated with engineering design at sites in heterogeneous geological environments. The specific case investigated is one of remedial contaminant containment in an aquifer underlain by an aquitard of uncertain continuity. The framework is used to evaluate the worth of hard and soft data in investigating the aquitard's continuity. The analysis consists of four modules: (1) an aquitard realization generator based on indicator kriging, (2) a procedure for the Bayesian updating of the uncertainty with respect to aquitard windows, (3) a Monte Carlo simulation model for advective contaminant transport, and (4) an economic decision model. A sensitivity analysis for a generic design example involving a design decision between a no-action alternative and a containment alternative indicates that the data worth of a single borehole providing a hard point datum was more sensitive to economic parameters than to hydrogeological or geostatistical parameters. For this case, data worth is very sensitive to the projected cost of containment, the discount rate, and the estimated cost of failure. When it comes to hydrogeological parameters, such as the representative hydraulic conductivity of the aquitard or underlying aquifer, the sensitivity analysis indicates that it is more important to know whether the field value is above or below some threshold value than it is to know its actual numerical value. A good conceptual understanding of the site geology is important in estimating prior uncertainties. The framework was applied in a retrospective fashion to the design of a remediation program for soil contaminated by radioactive waste disposal at the Savannah River site in South Carolina. The cost-effectiveness of different patterns of boreholes was studied. A contour map is presented for the net expected value of sample information (EVSI) for a single borehole. The net EVSI of patterns of precise point measurements is also compared to that of an imprecise seismic survey.

James, Bruce R.; Freeze, R. Allan

1993-07-01

137

Hydrogeology and aquifer simulation of the basement rocks of the Kaduna-Zaria area, northern Nigeria  

NASA Astrophysics Data System (ADS)

The study area is situated in the central northern part of Nigeria, which experiences a typical semiarid climate. The aquifer consists of weathered and fractured basement rocks, mainly covered by lateritic soil. For rural water supply purposes, more than 40 wells were drilled in an area of about 2500 km 2. Field checked interpretation of pumping tests, geophysical data and soil investigations lead to a fairly precise description of the hydrogeologic situation in the study area. By application of a simplified steady-state groundwater flow model conducted on microcomputer-based systems, recharge conditions were simulated.

Adanu, E. A.; Schneider, M.

138

Hydrogeology of closed basins and deserts of South America, ERTS-1 interpretations  

NASA Technical Reports Server (NTRS)

Images from the Earth Resources Technology Satellite (ERTS-1) contain data useful in studies of hydrogeology, geomorphology, and paleoclimatology. Sixteen Return Beam Vidicon (RBV) images and 15 Multi-Spectral Scanner (MSS) images were studied. These covered deserts and semidesert areas in southwestern Bolivia, northwestern Argentina, northern Chile, and southeastern Peru from July 30 to November 17, 1972. During the first 3 months after launching, high-quality cloud-free imagery was obtained over approximately 90 percent of the region of interior drainage, or an area of 170,000 square miles.

Stoertz, G. E.; Carter, W. D.

1973-01-01

139

The devil's in the details: Hydrogeology of Middle Valley Active Venting Areas  

NASA Astrophysics Data System (ADS)

A scientific team aboard the R/V Maurice Ewing conducted a fine-scale examination of the hydrogeology of two areas of active venting in Middle Valley, northern Juan de Fuca Ridge. Earlier expeditions had identified moderate-to-high temperature vent activity at the two sites, as well as by-products of hydrothermal processes: sediment alteration; massive, disseminated sulfide deposits; and extensive vent faunal communities. Preliminary analyses of new data reflecting fluid, heat, and chemical fluxes suggest that the flows are complex in their distributions, have a significant hydrothermal recharge within the vent areas, and may be more vigorous than previously thought.

Fisher, A.; Langseth, M.; Baker, P.; Ryan, W.; Stein, J.; Glenn, S.; Schultheiss, P.; Zierenberg, R.; Iturrino, G.; Jin, W.; Darlington, E.; Goodfellow, W.; Daniel, D. N.; Conly, A.; Cross, S.; Grove, M.; Cramer, B.

140

Hydrogeology of an ancient arid closed basin: Implications for tabular sandstone-hosted uranium deposits  

SciTech Connect

Hydrogeologic modeling shows that tabular-type uranium deposits in the grants uranium region of the San Juan basin, New Mexico, formed in zones of ascending and discharging regional ground-water flow. The association of either lacustrine mudstone or actively subsiding structures and uranium deposits can best be explained by the occurrence of lakes at topographic depressions where ground water having different sources and compositions is likely to converge, mix, and discharge. Ascending and discharging flow also explains the association of uranium deposits with underlying evaporites and suggests a brine interface. The simulations contradict previous suggestions that ground water moved downward in the mudflat.

Sanford, R.F. (U.S. Geological Survey, Denver, CO (USA))

1990-11-01

141

The cenozoic aquifer system of the Lower Tagus Basin: a description of the hydrogeological situation in the Almada region (Portugal)  

NASA Astrophysics Data System (ADS)

A conceptual hydrogeological model of the Mio-Pleistocene deposits in the Almada region, located in the Cenozoic aquifer system of the Lower Tagus Basin (Portugal), has been developed. Though numerous studies have been conducted on its geological features, there have not been enough hydrogeological investigations to define the origin, flow path and the groundwater quality and to understand the coexistence of overlapped interacting aquifers. Therefore, a study is presented here on the occurrences and features of groundwater resources in the Almada region based on an inventory in the field (wells, springs and boreholes), physical and chemical analyses, geologic setting, and tectonic and geomorphologic observations. This aquifer system has long been a source of concern because of the high level of extraction over the last few decades, as well as the progressive degradation of the water quality. Available groundwater resources have been affected by intensive agricultural and industrial activity, as a consequence of incorrect or non-existent hydrogeological knowledge.

Malhado Simões Ribeiro, Maria Manuela

2009-06-01

142

Hydrogeologic and water-quality data for the main site, Naval Surface Warfare Center, Dahlgren Laboratory, Dahlgren, Virginia  

USGS Publications Warehouse

Hydrogeologic and water-quality data were collected at the Naval Surface Warfare Center, Dahlgren Laboratory at Dahlgren, Virginia, as part of a hydrogeologic assessment of the shallow aquifer system begun in 1992. The U.S. Geological Survey conducted this study to provide the Navy with hydrogeologic data to meet the requirements of a Spill Contingency Plan. This report describes the ground-water observation-well network, hydro- geologic, and water-quality data collected between August 1992 and September 1993. The report includes a description of the locations and con- struction of 35 observation wells on the Main Site. Hydrologic data include lithologic core samples, geophysical logs, and vertical hydraulic conductivity measurements of selected core intervals. Hydrologic data include synoptic and hourly measurements of ground-water levels, observation-well slug tests to determine horizontal hydraulic conductivity, and tide data. Water-quality data include analyses of major dissolved constituents in ground water and surface water.

Bell, Clifton F.; Bolles, Thomas P.; Harlow, George E.

1994-01-01

143

Geologic framework and hydrogeologic characteristics of the outcrops of the Edwards and Trinity aquifers, Medina Lake area, Texas  

USGS Publications Warehouse

The hydrogeologic subdivisions of the Edwards aquifer outcrop in the Medina Lake area in Medina and Bandera Counties generally are porous and permeable. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; and hydrogeologic subdivision III, the leached and collapsed members, undivided, of the Person Formation. The porosity of the rocks in the Edwards aquifer outcrop is related to depositional or diagenetic elements along specific stratigraphic horizons (fabric selective) and to dissolution and structural elements that can occur in any lithostratigraphic horizon (not fabric selective). Permeability depends on the physical properties of the rock such as size, shape, and distribution of pores. The Edwards aquifer has relatively large porosity and permeability resulting, in part, from the development or redistribution of secondary porosity. Lithology, stratigraphy, diagenesis, and karstification account for the effective porosity and permeability in the Edwards aquifer outcrop. Karst features that can greatly enhance effective porosity and permeability in the Edwards aquifer outcrop include sinkholes, dolines, and caves. Field observations in the Medina Lake area confirm the findings of previous investigators that Medina Lake mostly overlies rocks of the upper member of the Glen Rose Limestone. The channel downstream of Medina Dam to the upper end of Diversion Lake also overlies the upper member of the Glen Rose Limestone. Most of Diversion Lake overlies a thin section of the Edwards aquifer?hydrogeologic subdivision VIII (basal nodular member) and the basal part of hydrogeologic subdivision VII (dolomitic member). Hydrogeologic subdivisions VIII and VII might be hydraulically connected to Medina Lake at high lake stages. The Trinity aquifer, which crops out in the northern part of the Medina Lake area and underlies the Edwards aquifer in the southern part, is much less permeable and productive than the Edwards aquifer. Where the Trinity aquifer underlies the Edwards, the Trinity acts as a lower confining unit on the Edwards.

Small, Ted A.; Lambert, Rebecca B.

1998-01-01

144

MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- Three additions to the Hydrogeologic-Unit Flow (HUF) Package: Alternative storage for the uppermost active cells, Flows in hydrogeologic units, and the Hydraulic-coductivity depth-dependence (KDEP) capability  

USGS Publications Warehouse

The Hydrogeologic-Unit Flow (HUF) Package is an internal flow package for MODFLOW-2000 that allows the vertical geometry of the system hydrogeology to be defined differently than the definition of model layers. Effective hydraulic properties for the model layers are calculated using the hydraulic properties of the hydrogeologic units. The HUF Package can be used instead of the Block-Centered Flow (BCF) or the Layer Property Flow (LPF) Packages. This report documents three additions to the HUF Package.

Anderman, Evan R.; Hill, Mary C.

2003-01-01

145

Groundwater availability under hydrogeologic and ecological constraints: A regional assessment for the Great Lakes Basin  

NASA Astrophysics Data System (ADS)

The linkage between groundwater and surface water resources is recognized to have important implications for ecosystem concerns. In particular, capture of streamflows related to groundwater abstractions in water resources management has been emphasized. The recent passage of the Great Lakes--St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. Although the Great Lakes Basin is a relatively water rich region, the large contribution of groundwater to streamflows and widespread use of surficial aquifers make the region sensitive to environmental impacts from groundwater abstractions. An equation that relates groundwater extractions to transient streamflow depletion is coupled with an inverse distance weighting technique to distribute the capture between stream segments. Maximum allowable pumping rates that do not result in the exceedance of streamflow depletion criteria are determined at randomly generated locations across the Great Lakes Basin. The local allowable pumping rates depend on aquifer hydrogeology and stream network geometry and flows. Analysis is conducted to elucidate which hydrologic characteristics play the most important roles in determining allowable pumping rates. Sensitivity to factors such as pumping time and environmental flow standards is explored. An understanding of how both environmental flow constraints and hydrogeologic characteristics define groundwater availability and which characteristics and spatial variables have the greatest influence on potential streamflow depletions can aid in water resources management and policy decisions.

Watson, K. A.; Mayer, A. S.; Reeves, H. W.

2011-12-01

146

Satellite earth observation as a tool to conceptualize hydrogeological fluxes in the Sandveld, South Africa  

NASA Astrophysics Data System (ADS)

In semi-arid, groundwater-dependent regions of South Africa, allocation of additional water resources can become problematic in the absence of quantified regional groundwater recharge values. In this study in the northern Sandveld, remote-sensing-data products for precipitation ( P) and evapotranspiration (ET) are used to quantify groundwater recharge and guide the conceptualization of the hydrogeology of the study area. Data from three ET models (ETMODIS, MOD16, Pitman rainfall-runoff) are compared; these models concur best in years of average rainfall, with model results deviating up to 30 % in wet years. The MODIS data product (MOD16) is used in conjunction with gridded precipitation data to calculate spatial regional recharge. The long-term precipitation minus evapotranspiration ( P-ET) budget closes on a positive 13 ± 25 %; however, when correcting ET (20 % underestimation determined using the chloride mass balance method), the catchment average potential recharge is reduced to -4 ± 30 %. The use of P-ET clearly identifies potential recharge zones at higher elevation and discharge zones, highlighting irrigated agriculture. The usefulness of identifying recharge zones is demonstrated in the value added to conceptualizing the hydrogeology. Since some uncertainty around the accuracy of ET data still remains, it is recommended that the MODIS data product be validated more comprehensively in semi-arid environments.

M?nch, Zahn; Conrad, Julian E.; Gibson, Lesley A.; Palmer, Anthony R.; Hughes, Denis

2013-08-01

147

The geology and hydrogeology of Bear Creek Valley Waste Disposal Areas A and B  

SciTech Connect

A study was undertaken of the Oil Landfarm and Burial Grounds A and B, which are three disposal sites within the Bear Creek Waste Disposal Area. The area is located west of the Y-12 plant, about 3 miles southwest of Oak Ridge, Tennessee. The purpose of this interim report is to present data collected at the Burial Grounds A and B, and to provide the results of hydrogeologic analyses. The Oil Landfarm geologic and hydrogeologic data and analyses have been submitted in a January 1984 interim report. The overall objectives of the study were to characterize the types and extent of wastes present and to define the occurrence and movement of ground water beneath the sites. The intention of this work is to provide criteria on which a design for containing the waste can be developed. Specific activities performed by Bechtel included: drilling for subsurface geologic data; installing monitoring wells; measuring permeability and ground-water flow directions; and collecting soil, sediment, surface- and ground-water, and liquid-waste samples for chemical analysis. Results are presented on the geology and ground waters.

NONE

1984-05-01

148

Storage of low-level radioactive wastes in the ground; hydrogeologic and hydrochemical factors  

USGS Publications Warehouse

The status of mathematical simulation techniques, as they apply to radioactive waste burial sites, is briefly reviewed, and hydrogeologic and hydrochemical data needs are listed in order of increasing difficulty and cost of acquisition. Predictive modeling, monitoring, and management of radionuclides dissolved and transported by ground water can best be done for sites in relatively simple hydrogeologic settings; namely, in unfaulted relatively flat-lying strata of intermediate permeability such as silt, siltstone and silty sandstone. In contrast, dense fractured or soluble media, and poorly permeable porous media (aquitards) are not suitable for use as burial sites, first because of media heterogeneity and difficulties of sampling, and consequently of predictive modeling, and second, because in humid zones burial trenches in aquitards may overflow. A buffer zone several thousands of feet to perhaps several miles around existing or proposed sites is a mandatory consequence of the site selection criteria. As a specific example, the Maxey Flats, Kentucky low-level waste disposal site is examined. (Woodard-USGS)

Papadopulos, Stavros Stefanu; Winograd, Isaac Judah

1974-01-01

149

Hydrogeological characterization and first CO2 injection experiment in the Heletz sands Reservoir, Heletz (Israel)  

NASA Astrophysics Data System (ADS)

One the major components of the EU-FP7 funded MUSTANG project is to conduct a highly controlled series of CO2 injection experiments, aimed at determining field values of key CO2 trapping mechanisms such as dissolution and residual trapping and to establish a comprehensive and consistent dataset for model validation. Progress achieved in Heletz includes the completion of the instrumentation of the injection well and the installation of the CO2 injection kit and the accompanying facilities on site, the conduction of hydraulic and tracer tests for the characterization of the hydro-geological properties of the reservoir and the starting of the first single well CO2 injection experiment. This paper presents the results of the hydraulic tests and water sampling, which have allowed refining our understanding of the reservoir hydrogeological behavior. This includes: 1) information on the chemical composition of the formation water; 2) a more representative estimation of the hydraulic conductivity and of the anisotropy; and 3) a relatively high content of suspended solids, which require and adequate abstraction policy. Additionally, it provides preliminary information on the monitoring of the single CO2 injection experiment.

Bensabat, Jacob; Niemi, Auli; Tsang, Chin-Fu; Sharma, Prabhakar; Carrera, Jesus; Sauter, Martin; Tatomir, Alexandru; Ghergut, Iulia; Pezard, Philippe; Edlman, Katriona

2014-05-01

150

Development of a Hydrogeological Model of the Borrowdale Volcanics at Sellafield  

NASA Astrophysics Data System (ADS)

This work has arisen out of recent developments within the radioactive waste research programme managed by Her Majesty's Inspectorate of Pollution, UK (HMIP)*, to develop an integrated flow and transport model for the potential deep radioactive waste repository at Sellafield. One of the largest sources of uncertainty in model predictions, is the characterisation of the hydrogeological properties of the underlying strata, in particular, of the Borrowdale Volcanic Group (BVG) within which the repository is to be located. Analysis of the available borehole data (that released by the proponent company, Nirex, by December 1995) for the BVG formation has indicated a dual regime consisting of flow within faults and flow within the matrix (or an equivalent porous medium containing micro-fractures). Significant relationships between permeability, depth and the presence and orientation of faults have been identified; they account for a variation of up to 6 orders of magnitude in mean permeability measurements. This can be explained in part by the effect of the orientation of the current maximum principal stress directions within the BVG: however, it is likely that permeability is also dependent on the existence of fracture families, which cannot be effectively identified from the data currently available. These analyses have enabled considerable insight to be gained into the dominant features of flow within the BVG. The conceptual hydrogeological model derived here will have a significant effect on the outcome and reliability of future radionuclide transport predictions in the Sellafield area.

Lunn, R. J.; Lunn, A. D.; Mackay, R.

151

Defining Hydrogeological Boundaries for Mountain Front Recharge (MFR) Predictions in Multi-Catchment Mountainous Systems  

NASA Astrophysics Data System (ADS)

Cross-catchment groundwater flow in mountainous watersheds results from the development of local, intermediate, and regional groundwater flow pathways in multi-catchment systems. As such, hydrogeological analysis (e.g. water balance calculations and numerical modelling) to assess contributions of groundwater to mountain front recharge (MFR) must consider the choice of boundaries based on hydrological divides. Numerical 3-dimensional hydrogeological modelling was completed using FeFlow (DHI-WASY), for conceptual regional-scale multi-catchment systems; extending from a watershed boundary to a mountain front. The modelled systems were designed to represent major ridge and valley configurations observed in mountainous watersheds including: nested, adjacent, disconnected, non-parallel, and parallel catchments. Both homogeneous and heterogeneous hydraulic conductivity scenarios were simulated; with the heterogeneous scenario including a shallow zone of higher hydraulic conductivity bedrock overlying less permeable bedrock. The influence of cross-catchment flow in the development of groundwater flow pathways contributing to MFR was examined. The results provide a basis for identifying topographic scenarios where contributions to MFR may originate outside hydrological divides. This understanding will contribute to improving MFR predictions using both the numerical modelling approach and the water balance approach.

Neilson-Welch, L. A.; Allen, D. M.

2010-12-01

152

Constraining fault-zone hydrogeology through integrated hydrological and geoelectrical analysis  

NASA Astrophysics Data System (ADS)

The hydrogeologic influence of the Elkhorn fault in South Park, Colorado, USA, is examined through hydrologic data supplemented by electrical resistivity tomography and self-potential measurements. Water-level data indicate that groundwater flow is impeded by the fault on the spatial scale of tens of meters, but the lack of outcrop prevents interpretation of why the fault creates this hydrologic heterogeneity. By supplementing hydrologic and geologic data with geoelectrical measurements, further hydrogeologic interpretation is possible. Resistivity profiles and self-potential data are consistent with the interpretation of increased fracturing within 70 m of the fault. Further interpretation of the fault zone includes the possibility of a vertical groundwater flow component in a fractured and relatively high permeability damage zone and one or more relatively low permeability fault cores resulting in a conduit-barrier behavior of the fault zone at the meter to tens-of-meters scale. Calculated hydraulic heads from the self-potential data reveal additional complexity in permeability structure, including a steeper hydraulic gradient immediately west of the interpreted fault trace than suggested by the well data alone.

Ball, Lyndsay B.; Ge, Shemin; Caine, Jonathan Saul; Revil, André; Jardani, Abderrahim

2010-08-01

153

Hydrogeologic framework of Antelope Valley and Bedell Flat, Washoe County, west-central Nevada  

USGS Publications Warehouse

Description of the hydrogeologic framework of Antelope Valley and Bedell Flat in west-central Nevada adds to the general knowledge of regional ground-water flow north of the Reno-Sparks metropolitan area. The hydrogeologic framework is defined by the rocks and deposits that transmit ground water or impede its movement and by the combined thickness of Cenozoic deposits. When data are lacking about the subsurface geology of an area, geophysical methods can be used to provide additional information. In this study, gravimetric and seismic-refraction methods were used to infer the form of structural features and to estimate the thickness of Cenozoic deposits in each of the two valleys. In Antelope Valley, the thickness of these deposits probably does not exceed about 300 feet, suggesting that ground-water storage in the basin-fill aquifer is limited. Beneath Bedell Flat is an elongated, northeast-trending structural depression in the pre-Cenozoic basement; the maximum thickness of Cenozoic deposits is about 2,500 feet beneath the south-central part of the valley. Shallow ground water in the northwest corner of Bedell Flat may be a result of decreasing depth to the pre-Cenozoic basement.

Berger, D.L.; Ponce, D.A.; Ross, W.C.

2001-01-01

154

Tritium/3He measurements in young groundwater: Progress in applications to complex hydrogeological systems  

USGS Publications Warehouse

Tritium/3He dating has been applied to many problems in groundwater hydrology including, for example, determination of circulation patterns, mean residence times, recharge rates, or bank infiltration. Here, we discuss recent progress in the application of the tritium/3He dating method to sites with complex hydrogeological settings. Specifically, we report on tritium/3He dating at sites with (a) river infiltration into the basaltic fractured rock aquifer of the Eastern Snake River Plain, and (b) river infiltration through sinkholes into the karstic limestone Upper Floridian aquifer near Valdosta, Georgia.Tritium/3He dating has been applied to many problems in groundwater hydrology including, for example, determination of circulation patterns, mean residence times, recharge rates, or bank infiltration. Here, we discuss recent progress in the application of the tritium/3He dating method to sites with complex hydrogeological settings. Specifically, we report on tritium/3He dating at sites with (a) river infiltration into the basaltic fractured rock aquifer of the Eastern Snake River Plain, and (b) river infiltration through sinkholes into the karstic limestone Upper Floridian aquifer near Valdosta, Georgia.

Schlosser, P.; Shapiro, S.D.; Stute, M.; Plummer, N.

2000-01-01

155

Hydrogeology of a low-level radioactive-waste disposal site near Sheffield, Illinois  

USGS Publications Warehouse

The Sheffield low-level radioactive-waste facility is located on 20 acres of rolling terrain 3 miles southwest of Sheffield, Illinois. The shallow hydrogeologic system is composed of glacial sediments. Pennsylvania shale and mudstone bedrock isolate the regional aquifers below from the hydrogeologic system in the overlying glacial deposits. Pebbly sand underlies 67 percent of the site. Two ground-water flow paths were identified. The primary path conveys ground water from the site to the east through the pebbly-sand unit; a secondary path conveys ground water to the south and east through less permeable material. The pebbly-sand unit provides an underdrain that eliminates the risk of water rising into the trenches. Digital computer model results indicate that the pebbly-sand unit controls ground-water movement. Tritium found migrating in ground water in the southeast corner of the site travels approximately 25 feet per year. A group of water samples from wells which contained the highest tritium concentrations had specific conductivities, alkalinities, hardness, and chloride, sulfate, calcium, and magnesium contents higher than normal for local shallow ground water. (USGS)

Foster, J.B.; Erickson, J.R.; Healy, R.W.

1984-01-01

156

Hydrogeology of a hazardous-waste disposal site near Brentwood, Williamson County, Tennessee  

USGS Publications Warehouse

Approximately 44,000 gal of industrial solvent wastes were disposed in pits on a farm near Brentwood, Tennessee, in 1978, and contaminants were reported in the soil and shallow groundwater on the site in 1985. In order for the State to evaluate possible remedial-action alternatives, an 18-month study was conducted to define the hydrogeologic setting of the site and surrounding area. The area is underlain by four hydrogeologic units: (1) an upper aquifer consisting of saturated regolith, Bigby-Cannon Limestone, and weathered Hermitage Formation; (2) the Hermitage confining unit; (3) a lower aquifer consisting of the Carters Limestone; and (4) the Lebanon confining unit. Wells generally are low yielding less than 1 gal/min ), although locally the aquifers may yield as much as 80 gal/minute. This lower aquifer is anisotropic, and transmissivity of this aquifer is greatest in a northwest-southeast direction. Recharge to the groundwater system is primarily from precipitation, and estimates of average annual recharge rates range from 6 to 15 inches/year. Discharge from the groundwater system is primarily to the Little Harpeth River and its tributaries. Groundwater flow at the disposal site is mainly to a small topographic depression that drains the site. Geochemical data indicate four distinct water types. These types represent (1) shallow, rapidly circulating groundwater; (2) deeper (> than 100 ft), rapidly circulating groundwater; (3) shallow, slow moving groundwater; and (4) deeper, slow moving groundwater. Results of the numerical model indicate that most flow is in the upper aquifer. (USGS)

Tucci, Patrick; Hanchar, D.W.; Lee, R.W.

1990-01-01

157

The hydrogeology of the Lake Waco Formation: Eagle Ford Group, central Texas  

SciTech Connect

The Lake Waco Formation in central Texas crops out west of a major urban growth corridor along Interstate Highway 35. The development associated with this corridor increases the need for landfills and the possibility of leaks and spills. The Lake Waco Formation is predominantly shale and presently used for a regional landfill in the study area. It is not considered an aquifer and subsequently limited hydrogeological information exists. However, a numerous shallow wells occur in the weathered bedrock veneer and the shallow groundwater is directly connected to surface streams. Investigations revealed flow along bedding plane separations and fractures. The effective porosity is estimated to be less than .5 percent. Lab permeameter tests, slug tests, and constant-rate pumping tests were used to evaluate hydrogeologic parameters. Storage coefficient values range from .0017 to .0063 with a mean value of .0032. Hydraulic conductivity values decreased with depth and averaged 1.7 [times] 10 [sup [minus]4] cm/s for weathered shale and 1.4 [times] 10[sup [minus]7] cm/s for unweathered shale. Groundwater flow studies using piezometers exhibit topographic control of flow with horizontal to vertical anisotropy due to increased fracturing near the surface, but no noticeable horizontal anisotropic influence from fractures. Multiple-well pumping tests reveal horizontal anisotropic flow under pumping stress that is not present under static conditions and is complicated by heterogeneity.

Bradley, R.G.; Yelderman, J.C. Jr. (Baylor Univ., Waco, TX (United States). Geology Dept.)

1993-02-01

158

Hydrogeological Conditions of a Crystalline Aquifer: Simulation of Optimal Abstraction Rates under Scenarios of Reduced Recharge  

PubMed Central

A steady state numerical groundwater flow model has been calibrated to characterize the spatial distribution of a key hydraulic parameter in a crystalline aquifer in southwestern Ghana. This was to provide an initial basis for characterizing the hydrogeology of the terrain with a view to assisting in the large scale development of groundwater resources for various uses. The results suggest that the structural entities that control groundwater occurrence in the area are quite heterogeneous in their nature and orientation, ascribing hydraulic conductivity values in the range of 4.5?m/d to over 70?m/d to the simulated aquifer. Aquifer heterogeneities, coupled possibly with topographical trends, have led to the development of five prominent groundwater flowpaths in the area. Estimated groundwater recharge at calibration ranges between 0.25% and 9.13% of the total annual rainfall and appears to hold significant promise for large-scale groundwater development to support irrigation schemes. However, the model suggests that with reduced recharge by up to 30% of the current rates, the system can only sustain increased groundwater abstraction by up to 150% of the current abstraction rates. Prudent management of the resource will require a much more detailed hydrogeological study that identifies all the aquifers in the basin for the assessment of sustainable basin yield. PMID:24453882

Fynn, Obed Fiifi; Chegbeleh, Larry Pax; Nude, Prosper M.; Asiedu, Daniel K.

2013-01-01

159

Time-resolved fluorescence spectroscopy for application to PAH contaminated areas and hydrogeological research  

SciTech Connect

A mobile fiber-optical sensor system for the on-line and in situ detection of aquatic fluorophores has been developed. By the use of time-resolved laser-induced fluorescence spectroscopy the determination of contaminants i.e. polycyclic aromatic hydrocarbons (PAH) or fluorescence tracers in various environments is possible. In both cases attempts to detect these substances in water by means of fluorescence spectroscopy are complicated by the low concentrations and the overlapping and featureless fluorescence spectroscopy are complicated by the low concentrations and the overlapping and featureless fluorescence spectra in combination with background fluorescence caused by further compounds e.g. humic material. By collecting the fluorescence decay time as an additional independent dimension, the analytical information is significantly increased, and to certain extent the determination of the desired analyte in complex natural matrices is possible. At a first application, the detection of pyrene (PYR) in real samples from a contaminated former coking plant site has been realized. The system is also best suitable for hydrogeological research. Here applications spread from the investigation of the fluorescence tracer migration in an artificial aquifer system to the determination of hydrogeological parameters at a domestic waste disposal.

Kotzick, R.; Haaszio, S.; Niessner, R. [Technical Univ. of Munich (Germany). Institute for Hydrochemistry

1995-12-31

160

Hydrogeologic framework, groundwater movement, and water budget of the Kitsap Peninsula, west-central Washington  

USGS Publications Warehouse

This report presents information used to characterize the groundwater-flow system on the Kitsap Peninsula, and includes descriptions of the geology and hydrogeologic framework, groundwater recharge and discharge, groundwater levels and flow directions, seasonal groundwater-level fluctuations, interactions between aquifers and the surface?water system, and a water budget. The Kitsap Peninsula is in the Puget Sound lowland of west-central Washington, is bounded by Puget Sound on the east and by Hood Canal on the west, and covers an area of about 575 square miles. The peninsula encompasses all of Kitsap County, the part of Mason County north of Hood Canal, and part of Pierce County west of Puget Sound. The peninsula is surrounded by saltwater and the hydrologic setting is similar to that of an island. The study area is underlain by a thick sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and volcanic bedrock units that crop out in the central part of the study area. Geologic units were grouped into 12 hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit. A surficial hydrogeologic unit map was developed and used with well information from 2,116 drillers’ logs to construct 6 hydrogeologic sections and unit extent and thickness maps. Unconsolidated aquifers typically consist of moderately to well-sorted alluvial and glacial outwash deposits of sand, gravel, and cobbles, with minor lenses of silt and clay. These units often are discontinuous or isolated bodies and are of highly variable thickness. Unconfined conditions occur in areas where aquifer units are at land surface; however, much of the study area is mantled by glacial till, and confined aquifer conditions are common. Groundwater in the unconsolidated aquifers generally flows radially off the peninsula in the direction of Puget Sound and Hood Canal. These generalized flow patterns likely are complicated by the presence of low-permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers. Groundwater-level fluctuations observed during the monitoring period (2011–12) in wells completed in unconsolidated hydrogeologic units indicated seasonal variations ranging from 1 to about 20 feet. The largest fluctuation of 33 feet occurred in a well that was completed in the bedrock unit. Streamgage discharge measurements made during 2012 indicate that groundwater discharge to creeks in the area ranged from about 0.41 to 33.3 cubic feet per second. During 2012, which was an above-average year of precipitation, the groundwater system received an average of about 664,610 acre-feet of recharge from precipitation and 22,122 acre-feet of recharge from return flows. Most of this annual recharge (66 percent) discharged to streams, and only about 4 percent was withdrawn from wells. The remaining groundwater recharge (30 percent) left the groundwater system as discharge to Hood Canal and Puget Sound.

Welch, Wendy B.; Frans, Lonna M.; Olsen, Theresa D.

2014-01-01

161

Characterisation of the hydrogeology of the Augustus River catchment, Western Australia  

NASA Astrophysics Data System (ADS)

Understanding the hydrogeology of weathered rock catchments is integral for the management of various problems related to increased salinity within the many towns of Western Australia. This paper presents the results of site characterisation investigations aimed at improving the overall understanding of the hydrogeology of the southern portion of the Augustus River catchment, an example of a weathered rock catchment. Site data have highlighted the presence of both porous media aquifers within the weathered profile and fractured rock aquifers within the basement rocks. Geophysical airborne surveys and other drilling data have identified a large number of dolerite dykes which crosscut the site. Fractured quartz veins have been found along the margins of these dolerite dykes. Detailed groundwater-level measurements and barometric efficiency estimates indicate that these dolerite dykes and fractured quartz veins are affecting groundwater flow directions, promoting a strong hydraulic connection between all aquifers, and also influencing recharge mechanisms. The hydrogeological significance of the dolerite dykes and fractured quartz veins has been assessed using a combination of high-frequency groundwater-level measurements (30-min sampling interval), rainfall measurements (5-min sampling interval) and barometric pressure fluctuations (30-min sampling interval). A conceptual model was developed for describing various hydrogeological features of the study area. The model indicates that fractured quartz veins along the margins of dolerite dykes are an important component of the hydrogeology of the weathered rock catchments. Comprendre l'hydrogéologie des bassins en roches altérées est essentiel pour la gestion de différents problèmes liés à l'augmentation de la salinité dans de nombreuses villes d'Australie occidentale. Cet article présente les résultats d'études de caractérisation de sites conduites pour améliorer la compréhension de l'hydrogéologie de la partie sud du bassin de la rivière Augustus, exemple de bassin en roches altérées. Les données concernant le site ont mis en évidence la présence simultanée d'aquifères poreux dans le profil d'altération et d'aquifères de roches fracturées dans le socle. Des campagnes de géophysique aéroportée et d'autres données de forages ont identifié de très nombreux dykes de dolérite traversant le site. Des veines de quartz fracturées ont été trouvées aux marges de ces dykes de dolérite. Des mesures détaillées de niveau des nappes et des estimations des effets barométriques indiquent que ces dykes de dolérite et les veines de quartz fracturées affectent les directions d'écoulement souterrain, favorisant une forte connexion hydraulique entre tous ces aquifères, et influençant également les mécanismes de recharge. La signification hydrogéologique des dykes de dolérite et des veines de quartz fracturées a été analysée en combinant des mesures à haute fréquence du niveau des nappes (toutes les 30 min), de la pluie (toutes les 5 min) et des variations de la pression barométrique (toutes les 30 min). Un modèle conceptuel a été établi pour décrire les différents phénomènes hydrogéologiques de la région étudiée. Ce modèle indique que les veines de quartz aux marges des dykes de dolérite sont une importante composante de l'hydrogéologie des bassins en roches altérées. Entender la hidrogeología de cuencas con rocas meteorizadas es esencial para gestionar diversos problemas relacionados con el incremento de salinidad en muchas ciudades de Australia Occidental. Este artículo presenta los resultados obtenidos en la caracterización de varios emplazamientos con el fin de mejorar el conocimiento general de la hidrogeología en la zona sur de la cuenca del Río Augustus, que sirve como ejemplo de cuenca en rocas meteorizadas. Los datos de campo resaltan la presencia tanto de medios acuíferos porosos dentro del perfil meteorizado como de acuíferos en rocas fracturadas dentro de la roca fresca. Los registros geofísicos aéreos y

Wilkes, Shane M.; Clement, T. Prabhakar; Otto, Claus J.

162

Extraterrestrial hydrogeology  

NASA Astrophysics Data System (ADS)

Subsurface water processes are common for planetary bodies in the solar system and are highly probable for exoplanets (planets outside the solar system). For many solar system objects, the subsurface water exists as ice. For Earth and Mars, subsurface saturated zones have occurred throughout their planetary histories. Earth is mostly clement with the recharge of most groundwater reservoirs from ample precipitation during transient ice- and hot-house conditions, as recorded through the geologic and fossilized records. On the other hand, Mars is mostly in an ice-house stage, which is interrupted by endogenic-driven activity. This activity catastrophically drives short-lived hydrological cycling and associated climatic perturbations. Regional aquifers in the Martian highlands that developed during past, more Earth-like conditions delivered water to the northern plains. Water was also cycled to the South Polar Region during changes in climate induced by endogenic activity and/or by changes in Mars' orbital parameters. Venus very likely had a warm hydrosphere for hundreds of millions of years, before the development of its current extremely hot atmosphere and surface. Subsequently, Venus lost its hydrosphere as solar luminosity increased and a run-away moist greenhouse took effect. Subsurface oceans of water or ammonia-water composition, induced by tidal forces and radiogenic heating, probably occur on the larger satellites Europa, Ganymede, Callisto, Titan, and Triton. Tidal forces operating between some of the small bodies of the outer solar system could also promote the fusion of ice and the stability of inner liquid-water oceans. Les processus de subsurface impliquant l'eau sont communs pour les corps planétaires du système solaire et sont très probables sur les exoplanètes (planètes en dehors du système solaire). Pour plusieurs objets du systèmes solaire, l'eau de subsurface est présente sous forme de glace. Pour la Terre et Mars, les zones saturées de subsurface apparaissent à travers toute leur histoire planétaire. La Terre est particulièrement clémente avec la recharge des réservoirs, avec de amples précipitations, des conditions glaciaires et de fortes chaleurs, comme l'atteste les enregistrements géologiques et paléontologiques. D'un autre côté, Mars se trouve dans une phase essentiellement glaciaire, qui est interrompue par des activités contraintes par les phénomènes endogéniques. Cette activité conduit de manière catastrophique à des cycles hydrologiques et à des perturbations climatiques brutaux. Les aquifères régionaux dans les haute terres martiennes qui se sont formés dans des conditions similaires aux conditions terrestres, alimentent les plaines du Nord. L'eau a également été déplacée vers le Pôle Sud martien durant des changements marqués par une forte activité endogénique et une modification des paramètres de l'orbite de Mars. Venus possèdait vrais emblablement une hydrosphère chaude durant des millions d'année, avant le développement de son atmosphère et sa surface particulièrement chaude. Par après Venus a perdit son hydrosphère alors que la luminosité solaire augmentait et qu'une humidité liée à un effet de serre s'installait. Les océans de subsurface d'eau ou d'eau ammoniacale, induits par les forces de marée et le chauffage radiogénique, apparaissent probablement sur les satellites les plus importants (Europa, Ganymede, Callisto, Titan, Triton). Les forces de marée entre les petits corps externes du système solaire peuvent également occasionner la fusion de glace et la stabilité des océans internes d'eau liquide. Los procesos hídricos subsuperficiales son comunes en cuerpos planetarios del sistema solar y son altamente probables para exoplanetas (planetas fuera del sistema solar). Para muchos cuerpos del sistema solar, el agua subsuperficial existe como hielo. Para la Tierra y Marte han ocurrido zonas saturadas subsuperficiales a través de sus historias planetarias. La Tierra es principalmente generosa con la recarga de la mayoría de rese

Baker, Victor R.; Dohm, James M.; Fairén, Alberto G.; Ferré, Ty P. A.; Ferris, Justin C.; Miyamoto, Hideaki; Schulze-Makuch, Dirk

2005-03-01

163

User Guide for HUFPrint, A Tabulation and Visualization Utility for the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW  

USGS Publications Warehouse

This report documents HUFPrint, a computer program that extracts and displays information about model structure and hydraulic properties from the input data for a model built using the Hydrogeologic-Unit Flow (HUF) Package of the U.S. Geological Survey's MODFLOW program for modeling ground-water flow. HUFPrint reads the HUF Package and other MODFLOW input files, processes the data by hydrogeologic unit and by model layer, and generates text and graphics files useful for visualizing the data or for further processing. For hydrogeologic units, HUFPrint outputs such hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, vertical hydraulic conductivity or anisotropy, specific storage, specific yield, and hydraulic-conductivity depth-dependence coefficient. For model layers, HUFPrint outputs such effective hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, specific storage, primary direction of anisotropy, and vertical conductance. Text files tabulating hydraulic properties by hydrogeologic unit, by model layer, or in a specified vertical section may be generated. Graphics showing two-dimensional cross sections and one-dimensional vertical sections at specified locations also may be generated. HUFPrint reads input files designed for MODFLOW-2000 or MODFLOW-2005.

Banta, Edward R.; Provost, Alden M.

2008-01-01

164

Sediment deformation and hydrogeology of the Nankai Trough accretionary prism: Synthesis of shipboard results of ODP Leg 131  

Microsoft Academic Search

The main objective of Leg 131 was to provide data on the deformational processes and associated hydrogeology of the Nankai prism toe. Drilling succeeded, for the first time in the history of ocean drilling, in penetrating the complete sedimentary sequence to basaltic basement, reaching 1327 mbsf (metres below seafloor) with good core recovery (55%). Excellent correlation of the lithology and

A. Taira; I. Hill; J. Firth; U. Berner; W. Brückmann; T. Byrne; T. Chabernaud; A. Fisher; J.-P. Foucher; T. Gamo; J. Gieskes; R. Hyndman; D. Karig; M. Kastner; Y. Kato; S. Lallemant; R. Lu; A. Maltman; G. Moore; K. Moran; G. Olaffson; W. Owens; K. Pickering; F. Siena; E. Taylor; M. Underwood; C. Wilkinson; M. Yamano; J. Zhang

1992-01-01

165

Assistant Professor Hydrogeology The Department of Geology in the School of Earth, Society, and Environment at the University  

E-print Network

of environmental groundwater issues, climate-related changes, groundwater-surface water interactions, and resource-track assistant professor in the broadly defined area of Hydrogeology. Relevant research areas include sustainability. 3. Experimental or field analysis of groundwater transport, chemical reactions, biogeochemical

Frank, Thomas D.

166

Estimating Hydrogeological Zonation Using High-resolution Geophysical Data and Markov Chain Monte Carlo Methods  

NASA Astrophysics Data System (ADS)

Although the importance of hydrogeological heterogeneity on contaminant transport is well recognized, the influence of the heterogeneity on remediation efficacy is not yet well established. In this study, we investigated the utility of high-resolution tomographic seismic data for estimating hydrogeological zonation using Markov chain Monte Carlo (MCMC) methods. The method was tested on data collected at the DOE NABIR Field Research Center (FRC) at Oak Ridge National Laboratory in Tennessee, where the subsurface consists of steeply dipping and fractured saprolite, and where ongoing studies are investigating the potential of biostimulation for uranium remediation. Our previously developed hydrogeophysical estimation approaches have been applied to several datasets collected within saturated porous environments. Those studies focused on estimating hydraulic conductivity using geophysical tomographic data, by first deriving relationships between co-located geophysical attributes and hydraulic conductivity measurements, and then using them in Bayesian models to estimate hydraulic conductivity. However, we found that developing relationships between seismic velocity and hydraulic conductivity with confidence at this fractured site proved difficult, possibly due to the difference in sampling volumes of the borehole flowmeter data and the geophysical data, which is exacerbated by the presence of fractures. For example, the wellbore flowmeter data collected at the site may sense the local fractures intersecting the wellbores, whereas the seismic data may sense fracture zones in a directionally dependent and effective manner over the distance between the two boreholes. Instead of estimating the absolute values of hydraulic conductivity as we did in other projects, we chose to estimate the hydrogeological zonation, defined as the probability of observing high permeability fracture zones, by integrating crosswell seismic and borehole flowmeter data using a Bayesian model. Within the Bayesian framework, both seismic velocity and zonation indicator at each pixel were considered as random variables, and crosswell seismic travel time and borehole flowmeter measurements were considered as data with measurement errors. Our goal was to estimate all the unknown quantities simultaneously by conditioning to the available data. We used MCMC methods to solve the Bayesian model by drawing many samples from the posterior distribution functions. Using those samples, we obtained the probability of observing high permeability fracture zones at each pixel along the tomographic cross sections. Our estimation results suggest that, over the study area, a localized high permeability fracture zone has laterally varying thickness and geological dip.

Chen, J.; Hubbard, S.; Fienen, M.; Mehlhorn, T.; Watson, D.

2003-12-01

167

An Attempt of Hydrogeological Classification of Fault Zones in Karst Areas  

NASA Astrophysics Data System (ADS)

Around 60% of Vienna`s drinking water originates in the Hochschwab plateau (Eastern Alps, Austria). The hydrogeology (groundwater storage and flow) of the Hochschwab is essentially governed by karstified, large-scale faults. Previous work has shown that faults that formed during the Oligocene/L. Miocene lateral extrusion of the Eastern Alps act as groundwater pathways draining the karst massif preferably in E-W-direction. However, further analysis of flow processes in karstified aquifers requires hydrogeological relevant data from natural fault zones. We investigated E- to ENE- striking strike-slip faults in limestones and dolomites of the Wetterstein Fm. in terms of potential permeability properties that result from structural composition and fault rock content. Using the standard fault core-damage zone model, we analyzed fault rock characteristics and volumes at the fault cores and connective fracture networks surrounding faults in the damage zones. Special attention has been drawn to fracture densities and the spatial extent of fracture networks. Small-scale fractures are generally assumed to carry most of the effective porosity and have a great influence on the permeability of a fault zone. Therefore, we established a classification scheme and measuring method that provides semi-quantitative estimates of the density and abundance of small-scale fractures by using scanning line techniques to quantify the total joint surface in a volume of rock (m² joint surfaces per m³ rock). This easily applicable method allows to generate fracture density data for the entire damage zones (over tens of meters) and thus to enhance the understanding of permeability properties of damage zones. The field based data is supported by effective porosity and permeability measurements of fractured wall rock and fault rock samples. Different fault rock categories turned out to have complex poro/perm properties due to differences in grain sizes, matrix content, cementation and fracturing. In summary, the volume of fault rocks seems to be a function of size and displacement of the faults. Fracture densities in damage zones shows gradual increase from fault zone margins towards fault cores and significant asymmetries. Highest fracture densities with nearly isotropic fracture networks are often located adjacent to the fault core boundary and seem to be depending again on fault size/displacement. More research has to be done, but the presented results provide a useful base for further applications in hydrogeological modelling.

Bauer, Helene; Decker, Kurt

2014-05-01

168

Natural and Artificial (fluorescent) Tracers to Characterise Hydrogeological Functioning and to Protect Karst Aquifers  

NASA Astrophysics Data System (ADS)

Bartolomé Andreo; andreo@uma.es Co-workers: Matías Mudarra, Ana Isabel Marín and Juan Antonio Barberá Centre of Hydrogeology and Department of Geology. University of Malaga. http://cehiuma.uma.es/ The hydrogeological functioning and response of karst aquifers can be determined by the combined use of natural hydrogeochemical tracers, especially Total Organic Carbon (TOC) and intrinsic fluorescence of water, together with artificial (fluorescent) tracers; all them under the same hydrodynamic conditions. Sharp and rapid variations in discharge, temperature, electrical conductivity and water chemistry, particularly of natural tracers of infiltration (TOC, intrinsic fluorescence and NO3-) recorded in karst spring waters suggest the existence of a conduit flow system, with rapid flows and very short transit times from the surface to the springs. This is in agreement with the evidences obtained from breakthrough curves of fluorescent dye tracers. However, each type of tracer provides information about different aspects of the system in response to rainfall: natural tracers show the global response of the entire recharge area, while dye tracers reflect the response to concentrated recharge from specific points on the surface (karst swallow holes). Recent experiences on time lags between maximum concentrations of natural (especially TOC and intrinsic fluorescence) and artificial tracers has demonstrated that the global system response is faster and more sensitive than that produced from infiltration concentrated at a single point on the surface, even in karst sinkholes. Both natural and dye tracers permit to estimate response and transit times of water through the karst, but flow velocities can only be quantified using artificial tracers. These findings are crucial for water resources management and protection, with particular emphasis in the functioning of the aquifer and the different rates of response to input signals. Analysis of the responses obtained by natural tracers of infiltration (global system response) and artificial tracers (single response) in karst waters has revealed the usefulness and complementarily of both techniques for characterising the hydrogeological functioning of karst aquifers and, even more important, for validating contamination vulnerability mapping in these medium. In recent decades, several methods have been developed for such vulnerability mapping, but little progress has been made in validating their results. This validation is essential for the adequate protection of water resources in karst media, as has been shown in recent research.

Andreo, B.

2013-12-01

169

Geophysical modeling and geochemical analysis for hydrogeologic assessment of the Steamboat Hills area, Nevada  

NASA Astrophysics Data System (ADS)

Three studies constitute the hydrogeologic assessment of the Steamboat Hills area, Washoe County, Nevada. Geophysical modeling and geochemical analysis are used to assess the hydrogeologic connection between a fractured bedrock geothermal system used to produce electrical power and surrounding alluvial aquifer basins used for municipal drinking water supply. Understanding the hydrogeologic connection between these two water resources is important for long-term management of these resources. Coupled 2.75-D forward modeling of multiple gravity and aeromagnetic profiles constrained by geological and physical properties (density, magnetic susceptibility, remanent magnetic) data yields a detailed 3-D geologic model of the geothermal system and the alluvial basins. A new method is presented for modeling the geothermal reservoir based on altered physical properties of host rock that yields a reservoir volume estimate that is double the previously assumed volume. The configuration of the modeled geothermal reservoir suggests that a previously unrecognized thermal water up-flow zone may exist along the west flank of the Steamboat Hills. Model results delineate the elevation and thickness of geologic units that can be used in numerical modeling of groundwater flow, planning exploration drilling, and evaluating fully 3-D forward modeling software. The Steamboat Hills geothermal resource area offers an excellent opportunity to test an exploration strategy using magnetics. A zone of demagnetized rock within the geothermal resource area resulting from thermochemical alteration due to thermal water flow along faults and fractures is apparent as an aeromagnetic low anomaly. Anomalously low ground magnetic data delineate a fault that conducts thermal water from the geothermal system to an alluvial aquifer. Vertical magnetic susceptibility from core measurements yields an average value for altered granodiorite used in forward modeling. Permeable fractures and a major fault zone noted in the core hole log correspond to low magnetic susceptibility values suggesting thermal alteration or mineral replacement along fractures. Temporal variations in B and Cl concentrations, water levels, and temperature are used to assess the mixing of thermal and non-thermal waters in alluvial aquifers north of the Steamboat Hills. Previously undocumented temporal variations indicate that the degree of mixing is dependent on proximity to north-trending faults connecting the geothermal reservoir and the alluvial aquifer. Mixing trends at selected wells suggest temperature dependent boron adsorption.

Skalbeck, John David

2001-07-01

170

Overview of the Hydrogeologic Systems of the Former Homestake Mine, Lead, SD (Invited)  

NASA Astrophysics Data System (ADS)

The hydrogeology of the former Homestake Gold Mine is an important consideration, both from a scientific as well as an operational standpoint, because the facility is being converted into an operating underground research laboratory. The long history of mining provided much information about the sources and amounts of the water, as did studies performed during mine closure and subsequent evaluations for the construction of the laboratory. Over 600 km of drifts and shafts were excavated during the 135 year life of the facility, but the water inflow averages only ~44 l/s. All of this water must be either captured at high levels in the facility or pumped from the deeper sumps. Hydrogeologic systems operate on several scales in the Homestake underground. The Precambrian phyllites, schists, quartzites, and amphibolites of the subsurface have nearly no matrix permeability. Water flow is confined to fractures, most of which are quite small, but larger fractures and shear zones have been encountered at depth that produced significant amounts of water. In general, fractures tend to be vertical with few horizontal connections in the areas studied during more recent times. Much of the water inflow in the upper part of the facility originates from surface waters that are introduced into the underground through runoff into an adjacent and overlying open pit. At the 4850 Level, which is the location of the current laboratory (depth of 1.5 km), water chemistry suggests that most of the water is part of a ground water system and impact from surface waters is less. Although deeper portions of the facility are not currently accessible, previous reports indicated that water chemistry in these areas was substantially different from that found at the 4850 Level or from the surface waters. Within the flooded portion of the underground it appears that a circulation system was established involving the mine waters themselves and resulted from geothermal heating in the deeper parts of the workings (up to 2.4 km depth). During the time when the underground workings were filled with water prior to the development of the current laboratory, a logging and sampling program was conducted via the #6 Winze that allowed access to the deeper, flooded areas. This study suggested that the water in the #6 Winze was downcast (moving downward) implying that the water in the underground was being heated and moving upwards by convection through other winzes and passages. Therefore, the water in the underground at Homestake has multiple sources, movement directions, and geochemical/hydrogeologic systems.

Roggenthen, B.

2013-12-01

171

The hydrological and the hydrogeological framework of the Lottenbachtal, Bochum, Germany  

NASA Astrophysics Data System (ADS)

This study was performed to investigate the hydrological and the hydrogeological framework of the Lottenbachtal, Germany. Long-term climatic data were statistically analyzed, water and soil samples were collected and analyzed, stream flow discharge was measured and separated, the hydrological balance of this catchment was calculated and a hydrological and hydrogeological conceptual model was constructed. The study area is characterized mainly by the precipitation value ranged between 0.1 and 5 mm/day. The actual evapotranspiration constitutes 31.90 % of the total precipitation, the direct surface runoff constitutes 61.04 %, the soil storage constitutes 3 % and the groundwater recharge of the Lottenbachtal constitutes only 4 % of the total precipitation. The Lottenbachtal has largely affected the diversity of the land use, which includes forests, arable areas, abandoned coal mines and settlement areas. The soil of the forested area is represented by relatively high acidic conditions and relatively high sulfate concentrations, while the soil of the arable areas is represented by near-neutral conditions associated with relatively high concentrations of nutrients and other chemical elements (calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate). The settlement areas are characterized by huge blocks of concrete and backfills, which are rich in calcium and magnesium carbonates. The effects of this diversity in the land use on groundwater and surface water quality resulting by leaching the chemical elements from the soil covers and the other materials. These effects are represented by the following complex water types of Ca-Na-Mg-Cl-SO4-HCO3, Ca-Mg-HCO3-SO4, Ca-Na-Mg-Cl-SO4, Ca-Na-Mg-Cl-SO4 and Ca-HCO3, which represent the diversity of the flow paths of the water as well as to mixing processes. The diversity of the land use also affected the physical hydrological-hydrogeological characteristics of the study area by increasing the direct surface runoff and decreasing the groundwater recharge. The impervious surfaces of the settlement areas and the low hydraulic conductivities of the soil covers are responsible for these conditions.

Alhamed, Mohammad

2014-11-01

172

Estimation of regional hydrogeological properties for use in a hydrologic model of the Chesapeake Bay watershed  

NASA Astrophysics Data System (ADS)

Characterization of subsurface hydrogeologic properties in three dimensions and at large scales for use in groundwater flow models can remain a challenge owing to the lack of regional data sets and scatter in coverage, type, and format of existing small-scale data sets. This is the case for the Chesapeake Bay watershed, where numerous studies have been carried out to quantify groundwater processes at small scales but limited information is available on subsurface characteristics and groundwater fluxes at regional scales. One goal of this work is to synthesize disparate information on subsurface properties for the Chesapeake Bay watershed for use in a 3D integrated ParFlow model over an area of 400,000 km2 with a horizontal resolution of 1 km and a vertical resolution of 5 m. We combined different types of data at various scales to characterize hydrostratigraphy and hydrogeological properties. The conceptual hydrogeologic model of the study area is composed of two major regions. One region extends from the Valley and Ridge physiographic province south of New York to the Piedmont physiographic province in Maryland and Virginia. This region is generally characterized by fractured rock overlain by a mantle of regolith. Soil thickness and hydraulic conductivity values were obtained from the U.S. General Soil Map (STATSGO2). Saprolite thickness was evaluated using casing depth information from well completion reports from four state agencies. Geostatistical methods were used to generalize point data to the model extent and resolution. A three-dimensional hydraulic conductivity field for fractured bedrock was estimated using a published national map of permeability and depth- varying functions from literature. The Coastal Plain of Maryland, Virginia, Delaware and New Jersey constitutes the second region and is characterized by layered sediments. In this region, the geometry of 20 aquifers and confining units was constructed using interpolation of published contour maps of aquifer altitudes and confining unit thicknesses. Areas of outcrop of the aquifers and confining units were corrected using the USGS HydroSHEDS land surface topography dataset. Ongoing work includes the use of this constructed dataset in the hydrologic model to determine regional groundwater flow paths and travel times.

Seck, A.; Welty, C.

2012-12-01

173

Integrating advanced 3D Mapping into Improved Hydrogeologic Frameworks, a Future path for Groundwater Modeling? Results from Western Nebraska  

NASA Astrophysics Data System (ADS)

The U.S. Geological Survey and its partners have collaborated to provide an innovative, advanced 3 dimensional hydrogeologic framework which was used in a groundwater model designed to test water management scenarios. Principal aquifers for the area mostly consist of Quaternary alluvium and Tertiary-age fluvial sediments which are heavily used for irrigation, municipal and environmental uses. This strategy used airborne electromagnetic (AEM) surveys, validated through sensitivity analysis of geophysical and geological ground truth to provide new geologic interpretation to characterize the hydrogeologic framework in the area. The base of aquifer created through this work leads to new interpretations of saturated thickness and groundwater connectivity to the surface water system. The current version of the groundwater model which uses the advanced hydrogeologic framework shows a distinct change in flow path orientation, timing and amount of base flow to the streams of the area. Ongoing efforts for development of the hydrogeologic framework development include subdivision of the aquifers into new hydrostratigraphic units based on analysis of geophysical and lithologic characteristics which will be incorporated into future groundwater models. The hydrostratigraphic units are further enhanced by Nuclear Magnetic Resonance (NMR) measurements to characterize aquifers. NMR measures the free water in the aquifer in situ allowing for a determination of hydraulic conductivity. NMR hydraulic conductivity values will be mapped to the hydrostratigraphic units, which in turn are incorporated into the latest versions of the groundwater model. The addition of innovative, advanced 3 dimensional hydrogeologic frameworks, which incorporates AEM and NMR, for groundwater modeling, has a definite advantage over traditional frameworks. These groundwater models represent the natural system at a level of reality not achievable by other methods, which lead to greater confidence in the management decisions for the resource.

Cannia, J. C.; Abraham, J. D.; Peterson, S. M.; Sibray, S. S.

2012-12-01

174

Hydrogeology of Puerto Rico and the outlying islands of Vieques, Culebra, and Mona  

USGS Publications Warehouse

The availability of hydrogeologic maps for Puerto Rico and the outlying islands of Vieques, Culebra, and Mona are important to hydrogeologists, groundwater specialists, and water resource managers and planners. These maps, in combination with the report, serve as a source of information to all users by providing basic hydrogeologic and hydrologic knowledge in a concise illustrated format. Puerto Rico and the outlying islands cover a total area of 8,927 square kilometers (km2). Of this total area, about 3,500 km2 are underlain by hydrogeologic units that are classified as intergranular or fissured. These hydrogeologic units form the principal aquifer systems throughout Puerto Rico and the outlying islands. In Puerto Rico, the most extensive and intensely developed aquifers are the North Coast Limestone aquifer system and the South Coastal Alluvial Plain aquifer system. Withdrawals from these two aquifer systems constitute nearly 70 percent of the total groundwater withdrawn in Puerto Rico. The spatial extent of the North Coast Limestone aquifer system is about 2,000 km2. Within this aquifer system, groundwater development is greatest in the 800-km2 area between the Río Grande de Arecibo and the Río de la Plata. This also is the area for which concern is the highest regarding the future use of groundwater as a primary source of water for domestic and industrial use. With an estimated withdrawal of 280,000 cubic meters per day (m3/d), groundwater constituted the principal source of water within this area providing 100 percent of the water for self-supplied industries and about 85 percent for public water supplies in 1985. By 2005, groundwater withdrawals decreased to 150,000 m3/d. The spatial extent of the South Coastal Alluvial Plain aquifer system is about 470 km2. The estimated consumptive groundwater withdrawal from the aquifer system was 190,000 m3/d in 1980 and 170,000 m3/d in 2005. About 60 percent and 40 percent of the groundwater withdrawal from the South Coastal Alluvial Plain aquifer system was used for public water supply and irrigation, respectively. In the outlying islands of Vieques, Culebra, and Mona, only Vieques is underlain by aquifers of any local importance. The Resolución and Esperanza aquifers underlie an area covering 16 km2 on the island of Vieques. Prior to 1978 when an underwater public water-supply pipeline connecting Vieques to the main island of Puerto Rico was completed, groundwater withdrawal from the two aquifers was as much as 2,500 m3/d. Groundwater withdrawals in Vieques island in 2005 were estimated at less than 100 m3/d. The potential development of relatively untapped groundwater resources in Puerto Rico is limited to the Río Grande de Añasco valley and the Río Culebrinas valley in the western part of the island and to the Río Grande de Arecibo part of the North Coast Limestone aquifer system. In general, the North Coast Limestone and the South Coastal Alluvial Plain aquifer systems, which are the two principal groundwater-flow systems in Puerto Rico, show evidence of aquifer overdraft as indicated by regional increases in concentrations of dissolved solids. Optimization of withdrawals through conjunctive use of both surface-water and groundwater sources and by instituting water conservation measures has the greatest potential to ensure the continued use of groundwater resources. In support of these efforts, programs also could be implemented to improve database information regarding groundwater withdrawals and the contribution of surface-water diversions to surface-water flow, especially within the southern coastal plain of Puerto Rico.

Gómez-Gómez, Fernando; Rodríguez-Martínez, Jesús; Santiago, Marilyn

2014-01-01

175

Cape Cod Aquifer Management Project (CCAMP): hydrogeologic papers. Report for August 1985-December 1987  

SciTech Connect

The project was initiated in 1985 with the goal of studying existing federal, state, and local programs for protecting and preserving Cape Cod's sole-source aquifer. To meet this need, the Massachusetts Department of Environmental Quality Engineering and the U.S. Environmental Protection Agency's Region 1 in cooperation with the Cape Cod Planning and Economic and Development Commission and the U.S. Geological Survey initiated a two-year study to determine the adequacy of current ground-water protection programs and to recommend improvements. In the process of gathering and evaluating hydrogeological data from the Towns of Barnstable and Eastham, the CCAMP Aquifer Assessment Committee developed the papers which are the subject of this publication. These studies formed the technical basis for groundwater resource management decision making.

Not Available

1988-09-01

176

Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications  

USGS Publications Warehouse

Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The region has been loosely divided into six domains based on structural style and overall geophysical character. For each domain, the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work has been reviewed. Where possible, abrupt changes in geophysical fields as evidence for potential structural lithologic control on ground-water flow has been noted. Inferred lithology is used to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses from regional ground-water pathways where no drill-hole information exists.

Grauch, V.J.; Sawyer, David A.; Fridrich, Chris J.; Hudson, Mark R.

1999-01-01

177

Hydrogeologic data from a shallow flooding demonstration project, Twitchell Island, California, 1997-2001  

USGS Publications Warehouse

Data were collected during a study to determine the effects of continuous shallow flooding on ground-water discharge to an agricultural drainage ditch on Twitchell Island, California. The conceptual model of the hydrogeologic setting was detailed with soil coring and borehole-geophysical logs. Twenty-two monitoring wells were installed to observe hydraulic head. Ten aquifer slug tests were done in peat and mineral sediments. Ground-water and surface-water temperature was monitored at 14 locations. Flow to and from the pond was monitored through direct measurement of flows and through the calculation of a water budget. These data were gathered to support the development of a two-dimensional ground-water flow model. The model will be used to estimate subsurface discharge to the drainage ditch as a result of the pond. The estimated discharge will be used to estimate the concentrations of DOC that can be expected in the ditch.

Gamble, James M.; Burow, Karen R.; Wheeler, Gail A.; Hilditch, Robert; Drexler, Judy Z.

2003-01-01

178

Hydrogeology of thrust faults and crystalline thrust sheets: Results of combined field and modeling studies  

NASA Astrophysics Data System (ADS)

Field, laboratory, and modeling studies of faulted rock yield insight into the hydraulic character of thrust faults. Late-stage faults comprise foliated and subparallel faults, with clay-rich gouge and fracture zones, that yield interpenetrating layers of low-permeability gouge and higher-permeability damage zones. Laboratory testing suggests a permeability contrast of two orders of magnitude between gouge and damage zones. Layers of differing permeability lead to overall permeability anisotropy with maximum permeability within the plane of the fault and minimum permeability perpendicular to the fault plane. Numerical modeling of regional-scale fluid flow and heat transport illustrates the impact of fault zone hydrogeology on fluid flux, fluid pore pressure, and temperature in the vicinity of a crystalline thrust sheet.

Forster, Craig B.; Evans, James P.

179

Geophysical Interpretations of the Southern Espanola Basin, New Mexico, That Contribute to Understanding Its Hydrogeologic Framework  

USGS Publications Warehouse

The southern Espanola basin consists of a westward- and northward-thickening wedge of rift fill, composed primarily of Santa Fe Group sediments, that serves as an important aquifer for the city of Santa Fe and surrounding areas. Detailed aeromagnetic surveys were flown to better understand ground-water resources in this aquifer. This report presents a synthesis of these data with gravity data and other constraints. The interpretations were accomplished using qualitative interpretation, state-of-art data analysis techniques, and two- and three-dimensional modeling. The results depict the presence of and depth to many geologic features that have hydrogeologic significance, including shallow faults, different types of igneous units, and basement rocks. The results are presented as map interpretations, geophysical profile models, and a digital surface that represents the base and thickness of Santa Fe Group sediments, as well as vector files of some volcanic features and faults.

Grauch, V.J.S.; Phillips, Jeffrey D.; Koning, Daniel J.; Johnson, Peggy S.; Bankey, Viki

2009-01-01

180

In situ production of 36Cl in uranium ore: A hydrogeological assessment tool  

NASA Astrophysics Data System (ADS)

In situ neutron activation of 35Cl within the rock and groundwater of geologic deposits that have elevated concentrations of uranium provides a hydrogeological tracer. We determine the production rate and mobility of 36Cl in the 1.3-billion-year-old Cigar Lake uranium ore deposit. Accelerator mass spectrometry was used to map the concentrations of 36Cl in the ore and in the groundwater that were up to 100 times greater than those encountered in unmineralized portions of the host sandstone aquifer. The residence time of this mobile anion in groundwater within the mineralized zone ranged from 14 to 280 kyr. These residence times are consistent with the hydraulic and geochemical data, suggesting significant control of Cl- and groundwater movement by the clay-rich matrix of the mineralized zone.

Cornett, R. J.; Cramer, J.; Andrews, H. R.; Chant, L. A.; Davies, W.; Greiner, B. F.; Imahori, Y.; Koslowsky, V.; McKay, J.; Milton, G. M.; Milton, J. C. D.

181

Hydrogeologic data from a test well at Kathryn Abbey Hanna Park, City of Jacksonville, Florida  

USGS Publications Warehouse

A 2,026-foot test well was drilled at Hanna Park, City of Jacksonville, Florida, to obtain hydrogeologic data. Drill cuttings and water samples were collected, and water-level measurements and lithologic and geophysical logs were made. The well is constructed with 6-inch diameter casing from land surface to a depth of 1,892 feet and cement grouted in place. The remainder is open hole. The uppermost 411 feet of material penetrated by the well consists of sand, clayey sand, phosphatic sandy clay, coquina, sandy limestone, and dolostone. In the remainder of the hole, the material consists of limestone and dolostone, which comprise the Floridan aquifer in the area. (USGS)

Brown, D.P.; Johnson, R.A.; Baker, J.S.

1984-01-01

182

Identification of rainfall triggering damaging hydrogeological events: a methodological approach applied to Calabria (Italy)  

NASA Astrophysics Data System (ADS)

The paper deals with Damaging Hydrogeological Events (DHEs), defined as periods of severe weather affecting wide regions for several days, and during which landslides and floods cause economic damage and there are victims. The great variability of DHEs in both space and time is the cause of one of the main problems to solve in performing analyses of these events. Dealing with events affecting wide areas for several days, it is problematic to isolate the rainy days that can be considered as factors triggering the observed damaging phenomena. We develop a methodological approach aiming to select and analyse rainfall events that triggered damage. The analysis allows the highlighting of some seasonal characteristics of Calabrian DHEs. The approach can be used for an in-depth analysis leading to the identification of both rainfall thresholds for DHE triggering and rain/damage relationships.

Aceto, L.; Petrucci, O.

2014-09-01

183

An innovative hydrogeologic setting for disposal of low-level radioactive wastes  

NASA Astrophysics Data System (ADS)

A natural unique hydrogeological setting favorable for safe and economical disposal of low-level radioactive wastes occurs in the flat hinterland of southeastern North Carolina. The uniqueness results partly from the absence of vertical and horizontal groundwater gradients, representing a nonflow, or null, zone. The null setting is localized to key horizons 30 to 75 feet below land surface and to areas where glauconitic sandy clays of the Peedee Formation lie under less than 25 feet of surficial sandy clays; the Peedee contains nearly stagnant brackish groundwater slightly below the proposed disposal zone. Issues to overcome include: (1) demonstrating better combined safety and economical features over conventional and prescribed settings, (2) dewatering the low-permeability disposal zone for the 20-year operational period, and (3) changing rules to allow disposal slightly below the zone in which the normal water table occurs. Favorable site characteristics of the key setting are: (1) no major aquifer to contaminate, (2) no surface streams or lakes to contaminate, (3) optimal ion exchange and sorptive capacity (clay and glauconite pellets), (4) no appreciable or distinctive vertical and horizontal gradients, (5) no elongated contaminated plume to develop, (6) no surface erosion, (7) a capable setting for injection of potential contaminated water into deep brackish water wells, if needed and allowed, (8) minimum problems of the “overfilled bathtub effect,” (9) no apparent long-term harmful environmental impact (normal water table would be restored after the 20-year period), (10) relatively inexpensive disposal (engineered barriers not needed and desired), (11) simple and relatively inexpensive monitoring, (12) large tracts of land likely available, and (13) sparse population. In spite of legal and political obstacles to shallow land burial, the null setting described is a capable hydrogeological host to contain low-level radioactive wastes. The setting may have safety and economic advantages over selected sites in eastern North America and over innovative technological experiences in Europe.

Legrand, Harry E.

1989-05-01

184

An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods  

SciTech Connect

One of the most significant challenges facing hydrogeologic modelers is the disparity between those spatial and temporal scales at which fundamental flow, transport and reaction processes can best be understood and quantified (e.g., microscopic to pore scales, seconds to days) and those at which practical model predictions are needed (e.g., plume to aquifer scales, years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computational and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that model parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this paper, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flow chart (Multiscale Analysis Platform or MAP), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and may become a viable alternative to conventional single-scale models in the near future.

Scheibe, Timothy D.; Murphy, Ellyn M.; Chen, Xingyuan; Rice, Amy K.; Carroll, Kenneth C.; Palmer, Bruce J.; Tartakovsky, Alexandre M.; Battiato, Ilenia; Wood, Brian D.

2015-01-01

185

Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs.  

PubMed

A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10?km) from the injection wells and head increases at the hypocenters were likely relatively small (?70-150?m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2?×?10(-17) ?m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455?m(3) /d into the basal aquifer with no underlying basal seal over 10?years resulted in probable brittle failure to depths of about 0.6?km below the injection reservoir. Including a permeable (kz ?=?10(-13) ?m(2) ) Precambrian normal fault, located 20?m from the injection well, increased the depth of the failure region below the reservoir to 3?km. For a large permeability contrast between a Precambrian thrust fault (10(-12) ?m(2) ) and the surrounding crystalline basement (10(-18) ?m(2) ), the failure region can extend laterally 10?km away from the injection well. PMID:23745958

Zhang, Yipeng; Person, Mark; Rupp, John; Ellett, Kevin; Celia, Michael A; Gable, Carl W; Bowen, Brenda; Evans, James; Bandilla, Karl; Mozley, Peter; Dewers, Thomas; Elliot, Thomas

2013-01-01

186

An analysis platform for multiscale hydrogeologic modeling with emphasis on hybrid multiscale methods.  

PubMed

One of the most significant challenges faced by hydrogeologic modelers is the disparity between the spatial and temporal scales at which fundamental flow, transport, and reaction processes can best be understood and quantified (e.g., microscopic to pore scales and seconds to days) and at which practical model predictions are needed (e.g., plume to aquifer scales and years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computation and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that model parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this article, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flowchart (Multiscale Analysis Platform), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and also a viable alternative to conventional single-scale models in the near future. PMID:24628122

Scheibe, Timothy D; Murphy, Ellyn M; Chen, Xingyuan; Rice, Amy K; Carroll, Kenneth C; Palmer, Bruce J; Tartakovsky, Alexandre M; Battiato, Ilenia; Wood, Brian D

2015-01-01

187

Hydrogeologic unit map of the Piedmont and Blue Ridge provinces of North Carolina  

USGS Publications Warehouse

The numerous geologic formations and rock types in the Piedmont and Blue Ridge provinces of North Carolina have been grouped into 21 hydrogeologic units on the basis of their water-bearing potential as determined from rock origin, composition, and texture. All major classes of rocks--metamorphic, igneous, and sedimentary--are present, although metamorphic rocks are the most abundant. The origin of the hydrogeologic units is indicated by the rock class or subclass (metaigneous, metavolanic, or metasedimentary). The composition of the igneous, metaigneous, and metavolcanic rocks is designated as felsic, intermediate, or mafic except for the addition in the metavolcanic group of epiclastic rocks and compositionally undifferentiated rocks. Composition is the controlling attribute in the classification of the metasedimentary units of gneiss (mafic or felsic), marble, quartzite. The other metasediments are designated primarily on the basis of texture (grain size, degree of metamorphism, and development of foliation). Sedimentary rocks occur in the Piedmont in several downfaulted basins. A computerized data file containing records from more than 6,200 wells was analyzed to determine average well yields in each of the 21 units. The well yields were adjusted to an average well depth of 154 feet and an average diameter of 6 inches, the average of all wells in the data set, to remove the variation in well yield attributed to differences in depth and diameter. Average yields range from a high of 23.6 gallons per minute for schist to a low 11.6 gallons per minute for sedimentary rocks of Triassic age.

Daniel, Charles C., III; Payne, R.A.

1990-01-01

188

Modelling hyporheic processes for regulated rivers under transient hydrological and hydrogeological conditions  

NASA Astrophysics Data System (ADS)

Understanding the effects of major hydrogeological controls on hyporheic exchange and bank storage is essential for river water management, groundwater abstraction, restoration and ecosystem sustainability. Analytical models cannot adequately represent complex settings with, for example, transient boundary conditions, varying geometry of surface water-groundwater interface, unsaturated and overland flow, etc. To understand the influence of parameters such as (1) sloping river banks, (2) varying hydraulic conductivity of the riverbed and (3) different river discharge wave scenarios on hyporheic exchange characteristics such as (a) bank storage, (b) return flows and (c) residence time, a 2-D hydrogeological conceptual model and, subsequently, an adequate numerical model were developed. The numerical model was calibrated against observations in the aquifer adjacent to the hydropower-regulated Lule River, northern Sweden, which has predominantly diurnal discharge fluctuations during summer and long-lasting discharge peaks during autumn and winter. Modelling results revealed that bank storage increased with river wave amplitude, wave duration and smaller slope of the river bank, while maximum exchange flux decreased with wave duration. When a homogeneous clogging layer covered the entire river-aquifer interface, hydraulic conductivity positively affected bank storage. The presence of a clogging layer with hydraulic conductivity < 0.001 m d-1 significantly reduced the exchange flows and virtually eliminated bank storage. The bank storage return/fill time ratio was positively related to wave amplitude and the hydraulic conductivity of the interface and negatively to wave duration and bank slope. Discharge oscillations with short duration and small amplitude decreased bank storage and, therefore, the hyporheic exchange, which has implications for solute fluxes, redox conditions and the potential of riverbeds as fish-spawning locations. Based on these results, river regulation strategies can be improved by considering the effect of certain wave event configurations on hyporheic exchange to ensure harmonious hydrogeochemical functioning of the river-aquifer interfaces and related ecosystems.

Siergieiev, D.; Ehlert, L.; Reimann, T.; Lundberg, A.; Liedl, R.

2015-01-01

189

UNDERSTANDING HARD ROCK HYDROGEOLOGY THROUGH AN EXPERIMENTAL HYDROGEOLOGICAL PARK IN SOUTH INDIA: Site development and investigations on the major role of the fractured zone in crystalline aquifers  

NASA Astrophysics Data System (ADS)

In water stressed south India most of the groundwater used for irrigation is pumped from crystalline rocks aquifers. In those structures groundwater flow dominantly occur in a shallow higher-permeability zone that overlies a deeper lower-permeability zone hosting little flow. The fractured zone of the weathering profile plays an important role for groundwater. In order to understand clearly this impact on water availability and quality changes the Experimental Hydrogeological Park at Choutuppal, Andhra Pradesh, India is developed in the framework of the SORE H+ network. Several hydraulic tests (injection, flowmeter profiles, single-packer tests…) and geophysical measurements (ERT, Borehole logging…) are carried out on the site in order to characterize the depth-dependence of hydrodynamic parameters in the Indian Archean granite. Specific investigation on a borewell through packer tests demonstrate that the most conductive part of the aquifer corresponds to the upper part of the fractured layer, located just below the saprolite bottom, between 15 meters and 20 meters depth. There is no highly conductive fracture beyond 20 meters depth and no indication for any conductive fracture beyond 25 meters depth. Packer tests show that the upper part of the fractured layer (15-20 m depth) is characterized by a good vertical connectivity. On the contrary, the tests carried out below 20 m depth show no vertical connectivity at all. The geometry of the fracture network and associated hydrodynamic parameters are in agreement with the conceptual model of hard-rock aquifers that derive its properties from weathering processes. The general existence of such a highly conductive structure at the top of the fractured zone has a great impact on water prospection and exploitation in such crystalline aquifers.

Ahmed, S.; Guiheneuf, N.; Boisson, A.; Marechal, J.; Chandra, S.; Dewandel, B.; Perrin, J.

2012-12-01

190

Hydrogeologic data related to the potential for stock-water development on federally owned rangeland near Dillon, Montana  

USGS Publications Warehouse

Existing hydrogeologic data and information were synthesized for 20 sites on federally owned rangeland near Dillon, Montana. The purpose was to assist the U.S. Bureau of Land Management in evaluating the potential for developing additional stock-water supplies. Hydrologic and geologic conditions at most of the sites were verified by onsite inspection during the summer of 1984. Each site is described in terms of location, altitude of land surface, inferred aquifer(s), estimated depth to water, estimated drilling depth, estimated yield, estimated dissolved-solids concentration, hydrogeologic setting, and development. A plate shows the location of wells and springs, dissolved-solids concentrations and chemical-constituent diagrams for water samples, ownership status for selected rangeland areas near Dillon. (USGS)

Levings, J.F.

1985-01-01

191

The hydrogeological and geotechnical parameters as agents for gully-type erosion in the Rain-Forest Belt of Nigeria  

NASA Astrophysics Data System (ADS)

The Agulu-Nanka gully complex is located in Anambra State, Nigeria. The gullies formed by erosion have damaged the environment extensively and driven people from homes and farm lands. The rate of growth of the gully system is estimated to be about 30 m per year. Earlier studies attributed the genesis and growth of the gullies to human activities and geomorphological processes. This study shows that the root causes of the gully genesis and growth strongly lie in the hydrogeological and geotechnical properties of a complex aquifer system. These properties are related to the high hydrostatic pressures in aquifers that reduce the effective stress of unconsolidated coarse sands, thereby leading to erosion. On the basis of the hydrogeological and geotechnical data available, it is suggested that a major dewatering scheme would check the growth of the gullies and also better supply water to the rural communities.

Egboka, B. C. E.; Nwankwor, G. I.

192

Hydrogeology and water quality of the upper Floridan aquifer, western Albany area, Georgia  

USGS Publications Warehouse

Geologic, hydrologic, and water-quality data were collected to refine the hydrogeologic framework conceptual model of the Upper Floridan aquifer, and to qualitatively evaluate the potential of human activities to impact water quality in the Upper Floridan aquifer in the western Albany area, Georgia. Ground-water age dating was conducted by using chlorofluorocarbons (CFC) and tritium concentrations in water from the Upper Floridan aquifer to determine if recharge and possible contaminant migration to the aquifer is recent or occurred prior to the introduction of CFCs and tritium in the early 1950's into the global natural water system. Data were collected from core holes and wells installed during this study and previously existing wells in the Albany area. Hydrogeologic data collected during this study compare well to the regional hydrogeologic conceptual model developed during previous studies. However, the greater data density available from this study shows the dynamic and local variability in the hydrologic character of the Upper Floridan aquifer in more detail. The occurrence of sediment sizes from clay to gravel in the overburden, the absence of overburden because of erosion or sinkhole collapse, and large areas lacking surface drainage west of the Flint River provide potential areas for recharge and contaminant migration from the surface to the Upper Floridan aquifer throughout the study area. Ground-water ages generally range from 9 to 34 years, indicating that recharge consisting of 'modern' water (post early-1950's) is present in the aquifer. Ground-water ages and hydraulic heads in the Upper Floridan aquifer have an irregular distribution, indicating that localized areas of recharge to the aquifer are present in the study area. Generally, water in the Upper Floridan aquifer is calcium-bicarbonate rich, having low concentrations of magnesium, potassium, sodium, chloride, and sulfate. Water in the Upper Floridan aquifer is oxygenated, having dissolved-oxygen concentrations greater than 2 milligrams per liter. Nitrite-plus-nitrate as nitrogen, is present in the aquifer at concentrations ranging from less than 0.02 to 5.5 milligrams per liter. Areas of higher nitrate concentrations in the aquifer, coupled with widely distributed localized recharge to the aquifer indicates that suburban residential and agricultural land use in the western Albany area may affect water quality in the Upper Floridan aquifer. However, concentrations exceeding drinking water criteria were not detected in the study area. Generally, water in the Upper Floridan aquifer is calcium-bicarbonate rich, having low concentrations of magnesium, potassium, sodium, chloride, and sulfate. Water in the Upper Floridan aquifer is oxygenated, having dissolved-oxygen concentrations greater than 2 milligrams per liter. Nitrite-plus-nitrate as nitrogen, is present in the aquifer at concentrations ranging from less than 0.02 to 5.5 milligrams per liter. Areas of higher nitrate concentrations in the aquifer, coupled with widely distributed localized recharge to the aquifer indicates that suburban residential and agricultural land use in the western Albany area may affect water quality in the Upper Floridan aquifer. However, concentrations exceeding drinking water criteria were not detected in the study area.

Stewart, Lisa M.; Warner, Debbie; Dawson, Barbara J.

1999-01-01

193

Hydrogeology characterization of roto-translational slides in flysch rock masses  

NASA Astrophysics Data System (ADS)

The hydrogeological characteristics of roto-traslational slides in flysch are complex, due to the inherent anisotropy and heterogeneity of such rock masses. The paper deals with the hydrogeological characterization of a reactivated roto-translational slide affecting Cretaceous flysch, located in the Northern Apennines of Italy. In situ permeability and pumping test, continuous monitoring of groundwater levels, hydrochemical and isotope analyses, and finally uranine tracers were the adopted prospecting methods. The landslide sector classified as rock slide extends for about 0.5 km2 and is characterized by a marked active sliding surface at 40 m depth. Borehole cores showed an upper 10-20 m landslide layer made of clayey debris, and a lower 20 m landslide layer made of highly fractured sandstone-rich flysch. Below sliding surface the flysch is much less fractured and it is overlying a clayey mélange. The hydraulic conductivity of both layers of the rock slide body was estimated with more than ten borehole permeability tests and by 5 slug-tests in open-pipe piezometers. Results highlighted a variability of permeability at different depths and locations, between 10-6 to 10-8 m/s, linked to fracturing of rock masses and to clay fraction. Groundwater levels were monitored for more than 3 years by means of transducers in 5 standpipe piezometers, fissured above or below the sliding surface. Results showed that two overlaying aquifers exist at the slope scale: an unconfined one, in the fractured flysch of the rock slide; a confined one, in the undisturbed flysch below sliding surface. Pore pressure in the unconfined aquifer is controlled by rainfall, with fluctuation of several meters occurring hours or days from onset of precipitation. On the contrary, pore pressure in the confined aquifer shows little response to precipitation events, has fluctuations of few meters related to seasonal trends, and maintains pressure head higher than that in the unconfined one. This makes it a relevant factor for the stability of the slide. Storage coefficient of 10-3 and Trasmissivity of 1E-5 m2/s were estimated for the unconfined aquifer with a pumping test carried out with several control piezometers. The geochemical characterization obtained by sampling and lab analysis highlighted two groundwater types in the landslide area. One shallow, directly connected with rainfall, that can be classified as cold (13° C) and Ca-carbonate, rich with low electric conductivity (800 ?S/cm). The second consists of deep-fluids, rich in Na-sulfate, characterized by the mixing between the two extreme hydrotypes Na-bicarbonate waters and Ca-sulfate waters. This deep-fluids are characterized by cold temperature (13° C) and high salinity, over 4000 ?S/cm. The tracer test between the undisturbed rock mass in the crown zone and the 12 control points in the landslide body (at different depths) indicates that there is no connection between the two parts. Even assuming the failing of the test for high dilution/dispersion, considering the high quantity of uranine injected and its conservative behavior in such flysch rocks, it can be reasonably argued that there's no significant groundwater exchange between the two domains. The results obtained in Ca' Lita show a high complexity of the groundwater flow due to high heterogeneity and anisotropy of the hydraulic characteristics inside the deposits of the rock slide and in the underlying fractured bedrock. Moreover, the hydrogeological study has individuated a rising of deep fluids in the landslide area, which can have a negative effect on the stability of the whole slope. The research results will be the basis of numerical groundwater flow models of the slope and will be also used to design and implement deep drainage systems for risk mitigation purposes.

Ronchetti, F.; Borgatti, L.; Cervi, F.; Corsini, A.; Piccinini, L.; Vincenzi, V.; Truffelli, G.

2009-04-01

194

Geologic and hydrogeologic frameworks of the Biscayne aquifer in central Miami-Dade County, Florida  

USGS Publications Warehouse

Evaluations of the lithostratigraphy, lithofacies, paleontology, ichnology, depositional environments, and cyclostratigraphy from 11 test coreholes were linked to geophysical interpretations, and to results of hydraulic slug tests of six test coreholes at the Snapper Creek Well Field (SCWF), to construct geologic and hydrogeologic frameworks for the study area in central Miami-Dade County, Florida. The resulting geologic and hydrogeologic frameworks are consistent with those recently described for the Biscayne aquifer in the nearby Lake Belt area in Miami-Dade County and link the Lake Belt area frameworks with those developed for the SCWF study area. The hydrogeologic framework is characterized by a triple-porosity pore system of (1) matrix porosity (mainly mesoporous interparticle porosity, moldic porosity, and mesoporous to megaporous separate vugs), which under dynamic conditions, produces limited flow; (2) megaporous, touching-vug porosity that commonly forms stratiform groundwater passageways; and (3) conduit porosity, including bedding-plane vugs, decimeter-scale diameter vertical solution pipes, and meter-scale cavernous vugs. The various pore types and associated permeabilities generally have a predictable vertical spatial distribution related to the cyclostratigraphy. The Biscayne aquifer within the study area can be described as two major flow units separated by a single middle semiconfining unit. The upper Biscayne aquifer flow unit is present mainly within the Miami Limestone at the top of the aquifer and has the greatest hydraulic conductivity values, with a mean of 8,200 feet per day. The middle semiconfining unit, mainly within the upper Fort Thompson Formation, comprises continuous to discontinuous zones with (1) matrix porosity; (2) leaky, low permeability layers that may have up to centimeter-scale vuggy porosity with higher vertical permeability than horizontal permeability; and (3) stratiform flow zones composed of fossil moldic porosity, burrow related vugs, or irregular vugs. Flow zones with a mean hydraulic conductivity of 2,600 feet per day are present within the middle semiconfining unit, but none of the flow zones are continuous across the study area. The lower Biscayne aquifer flow unit comprises a group of flow zones in the lower part of the aquifer. These flow zones are present in the lower part of the Fort Thompson Formation and in some cases within the limestone or sandstone or both in the uppermost part of the Pinecrest Sand Member of the Tamiami Formation. The mean hydraulic conductivity of major flow zones within the lower Biscayne aquifer flow unit is 5,900 feet per day, and the mean value for minor flow zones is 2,900 feet per day. A semiconfining unit is present beneath the Biscayne aquifer. The boundary between the two hydrologic units is at the top or near the top of the Pinecrest Sand Member of the Tamiami Formation. The lower semiconfining unit has a hydraulic conductivity of less than 350 feet per day. The most productive zones of groundwater flow within the two Biscayne aquifer flow units have a characteristic pore system dominated by stratiform megaporosity related to selective dissolution of an Ophiomorpha-dominated ichnofabric. In the upper flow unit, decimeter-scale vertical solution pipes that are common in some areas of the SCWF study area contribute to high vertical permeability compared to that in areas without the pipes. Cross-hole flowmeter data collected from the SCWF test coreholes show that the distribution of vuggy porosity, matrix porosity, and permeability within the Biscayne aquifer of the SCWF is highly heterogeneous and anisotropic. Groundwater withdrawals from production well fields in southeastern Florida may be inducing recharge of the Biscayne aquifer from canals near the well fields that are used for water-management functions, such as flood control and well-field pumping. The SCWF was chosen as a location within Miami-Dade County to study the potential for such recharge to the Biscayne aquifer from the C–2 (Snapper Creek) canal that roughly divides the

Wacker, Michael A.; Cunningham, Kevin J.; Williams, John H.

2014-01-01

195

Calendar Year 1994 Groundwater Quality Report for the Bear Creek Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex (directions in this report are in reference to the Y-12 administrative grid system) within the Bear Creek Hydrogeologic Regime (Bear Creek Regime), one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in the Bear Creek Regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Martin Marietta Energy Systems, Inc. (Energy Systems) corporate policy. The annual GWQR for the Bear Creek Regime is completed in two parts. Part 1 (this report) consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 of the report, to be issued mid-year, will contain an evaluation of the data with respect to regime-wide groundwater quality, present the findings and status of ongoing hydrogeologic studies, describe changes in monitoring priorities, and present planned modifications to the groundwater sampling and analysis program for the following CY.

NONE

1995-02-01

196

Hydrogeologic characteristics of the valley-fill aquifer in the Arkansas River valley, Crowley and Otero Counties, Colorado  

USGS Publications Warehouse

The hydrogeology of the valley-fill aquifer of the Arkansas River valley in Crowley and Otero Counties, Colorado is presented in a series of three maps. The map shows: (1) the altitude and configuration of the bedrock surface beneath the valley-fill material; (2) the altitude and configuration of the water table in the spring of 1966; and (3) the saturation thickness of the valley-fill aquifer in the spring of 1966. (USGS)

Nelson, Gregory A.; Hurr, R.T.; Moore, John E.

1989-01-01

197

Hydrogeological settings of a volcanic island (San Cristóbal, Galapagos) from joint interpretation of airborne electromagnetics and geomorphological observations  

NASA Astrophysics Data System (ADS)

Many volcanic islands face freshwater stress and the situation may worsen with climate change and sea level rise. In this context, an optimum management of freshwater resources becomes crucial, but is often impeded by the lack of data. With the aim of investigating the hydrogeological settings of Southern San Cristóbal Island (Galapagos), we conducted an helicopter-borne, transient electromagnetic survey with the SkyTEM system. It provided unprecedented insights in the 3-D resistivity structure of this extinct basaltic shield. Combined with remote sensing and fieldwork, it allowed the definition of the first hydrogeological conceptual model of the island. Springs are fed by a series of perched aquifers overlying a regional basal aquifer subject to seawater intrusion. Dykes, evidenced by alignments of eruptive cones at the surface, correspond to sharp sub-vertical contrasts in resistivity in the subsurface, and impound groundwater in a summit channel. Combined with geomorphological observations, airborne electromagnetics is shown to be a useful tool for hydrogeological exploratory studies in complex, poorly known environments. It allows optimal development of land-based geophysical surveys and drilling campaigns.

Pryet, A.; d'Ozouville, N.; Violette, S.; Deffontaines, B.; Auken, E.

2012-08-01

198

Hydrogeological settings of a volcanic island (San Cristóbal, Galapagos) from joint interpretation of airborne electromagnetics and geomorphological observations  

NASA Astrophysics Data System (ADS)

Many volcanic islands face freshwater stress and the situation may worsen with climate change and sea level rise. In this context, an optimum management of freshwater resources becomes crucial, but is often impeded by the lack of data. With the aim of investigating the hydrogeological settings of southern San Cristóbal Island (Galapagos), we conducted a helicopter-borne, transient electromagnetic survey with the SkyTEM system. It provided unprecedented insights into the 3-D resistivity structure of this extinct basaltic shield. Combined with remote sensing and fieldwork, it allowed the definition of the first hydrogeological conceptual model of the island. Springs are fed by a series of perched aquifers overlying a regional basal aquifer subject to seawater intrusion. Dykes, evidenced by alignments of eruptive cones at the surface, correspond to sharp sub-vertical contrasts in resistivity in the subsurface, and impound groundwater in a summit channel. Combined with geomorphological observations, airborne electromagnetics are shown to be a useful for hydrogeological exploratory studies in complex, poorly known environments. They allow optimal development of land-based geophysical surveys and drilling campaigns.

Pryet, A.; d'Ozouville, N.; Violette, S.; Deffontaines, B.; Auken, E.

2012-12-01

199

Hydrogeologic subdivision of the Wolfcamp series and Pennsylvanian system of the Swisher Study Area, Texas: Revision 1: Topical report  

SciTech Connect

The Pennsylvanian-Wolfcamp section in the Palo Duro Basin includes brine aquifers that are considered to be the most important ground- water flow paths in the deep-basin system. This report provides summary documentation of studies that subdivide the section into hydrogeologic units based on their judged relative capacities for transmitting water. This particular study area comprises eight counties in Texas, including Swisher County. Underground patterns of rock distribution are delineated from a hydrologic perspective and at a level of detail appropriate for numerical modeling of regional ground-water flow. Hydrogeologic units are defined and characterized so that appropriate porosity and permeability values can be assigned to each during construction of the numerical models and so that modelers can combine units where necessary. Hydrogeologic units have been defined as mappable, physically continuous rock bodies that function in bulk as water-transmitting or water-retarding units relative to adjacent rocks. Interpretations are made primarily from geophysical logs. Hydrologic characteristics are assessed on the basis of properties typically associated with certain lithologies (e.g., sandstones are more pervious than shales) and on the basis of gross variations in effective porosity (particularly in carbonate sequences). 15 refs., 52 figs., 1 tab.

Siminitz, P.C.; Warman, E.A.

1987-08-01

200

Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California  

SciTech Connect

Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

1997-12-31

201

Application of ground-penetrating radar methods in determining hydrogeologic conditions in a karst area, west-central Florida  

USGS Publications Warehouse

Ground-penetrating radar (GPR) is useful as a surface geophysical method for exploring geology and subsurface features in karst settings. Interpretation of GPR data was used to infer lithology and hydrogeologic conditions in west-central Florida. This study demonstrates how GPR methods can be used to investigate the hydrogeology of an area. GPR transmits radio- frequency electromagnetic waves into the ground and receives reflected energy waves from subsurface interfaces. Subsurface profiles showing sediment thickness, depth to water table and clay beds, karst development, buried objects, and lake-bottom structure were produced from GPR traverses obtained during December 1987 and March 1990 in Pinellas, Hillsborough, and Hardee Counties in west-central Florida. Performance of the GPR method is site specific, and data collected are principally affected by the sediment and pore fluids, conductances and dielectric constants. Effective exploration depths of the GPR surveys through predominately unsaturated and saturated sand and clay sediments at five study sites ranged from a few feet to greater than 50 feet below land surface. Exploration depths were limited when high conductivity clay was encountered, whereas greater exploration depths were possible in material composed of sand. Application of GPR is useful in profiling subsurface conditions, but proper interpretation depends upon the user's knowledge of the equipment and the local hydrogeological setting, as well as the ability to interpret the graphic profile.

Barr, G.L.

1993-01-01

202

Hydrogeological characterization of the Heletz Sands Reservoir, Heletz (Israel) as a preliminary step towards CO2 injection experiments  

NASA Astrophysics Data System (ADS)

Hydrogeological characterization of the Heletz Sands Reservoir, Heletz (Israel) as a preliminary step towards CO2 injection experiments One the major components of the EU-FP7 funded MUSTANG project is to conduct a highly controlled series of CO2 injection experiments, aimed at determining field values of key CO2 trapping mechanisms such as dissolution and residual trapping and to establish a comprehensive and consistent dataset for model validation. Prior to injecting CO2 there is a need to achieve a sufficient degree of hydrogeological characterization of the reservoir. In what follows we present a sequence of hydrologic tests to be conducted at Heletz and their expected contribution to the understanding relevant hydrogeology. These include: 1) Chemical characterization of the formation fluid; 2) Flowing Fluid Electrical Conductivity log, aimed at determining the vertical variability of the reservoir permeability in the near well vicinity; 3) Water pulse and pumping tests, aimed at determining the reservoir scale hydraulic properties; 4) Thermal test, aimed at determining the value of the heat transfer coefficient from the reservoir to the borehole fluid, which is responsible for the heating of injected fluid in the borehole; 5) two-well injection and pumping of water and tracers test, in order to determine the impact of heterogeneity on the hydraulic parameters and to identify preferential flow paths in the reservoir. This paper presents the design and planning of the experiments, the results obtained in field and a preliminary interpretation.

Bensabat, Jacob; Niemi, Auli; Tsang, Chin-Fu; Sharma, Prabhakar; Carrera, Jesus; Sauter, Martin; Tatomir, Alexandru; Ghergut, Julia; Pezard, Philippe; Edlman, Katriona; Brauchler, Ralf

2013-04-01

203

Karst connections between unconfined aquifers and the Upper Floridan aquifer in south Georgia: geophysical evidence and hydrogeological models  

NASA Astrophysics Data System (ADS)

Buried karst features in sedimentary rocks of the south Georgia Coastal Plain present a challenge for hydrogeological models of recharge and confined flow within the underlying Upper Floridan aquifer. The Withlacoochee River, the trunk stream for the area, frequently disappears into subsurface caverns as it makes its way south to join the Suwannee River in northern Florida. The Withlacoochee also receives inputs from small ponds and bays which in turn receive spring and seep groundwater inputs. We have mapped karst topography at the "top of rock" using ground-penetrating radar (GPR). Up to seven meters of relief is indicated for the paleotopography on Miocene to Pliocene rocks, contrasting with the more subdued relief of the modern landscape. Current stratigraphic and hydrogeological reconstructions do not incorporate this amount of relief or lateral variation in the confining beds. One "pipe" which is approximately four meters in diameter is being mapped in detail. We have field evidence at this location for rapid movement of surficial pond and river water with a meteoric signature through several separate strata of sedimentary rock into an aquifer in the Hawthorn formation. We use our geophysical and hydrological field evidence to constrain quantitative hydrogeological models for the flow rates into and out of both this upper aquifer and the underlying Upper Floridan aquifer, which is generally considered to be confined by the clays of the Hawthorn.

Thieme, D. M.; Denizman, C.

2011-12-01

204

Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste  

USGS Publications Warehouse

In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

Fischer, John N.

1986-01-01

205

Geophysical borehole logging for control of driller's records: hydrogeological case study from Voltaian sedimentary rocks in northern Ghana  

NASA Astrophysics Data System (ADS)

The low borehole yielding potential and the high drilling failure rate of the Voltaian sedimentary rocks of Northern Ghana have been of concern to many local hydrogeologists and international donors. Consequently, several donor-supported projects have been instituted within the last few years with the view to study the hydrogeological characteristics of this `difficult' rock system. One such project is the geophysical borehole logging of 13 boreholes drilled into the Voltaian sedimentary rocks of Northern Ghana to enhance detailed hydrogeological assessment. Natural gamma detectors embedded in the five exploratory logging tools employed for the study ensured depth control by comparing their individual gamma log signatures. The combined gamma and formation resistivity/conductivity response logs provided more detailed lithological information than were shown in the driller's/geologist's logs. Significant discrepancies between the logging results and the reported drilled depths, construction depths, and screen settings were observed in seven of the thirteen investigated boreholes. Thus, the reliability of driller's borehole records seems questionable, which will hamper hydrogeological studies and the mapping of groundwater resources. Further, it may be supposed that the productivity of most wells in Ghana is compromised by poor depth control of screen placement.

Agyekum, William; Klitten, Kurt; Armah, Thomas; Banoeng-Yakubo, Bruce; Amartey, Edmund Okoe

2013-06-01

206

Geophysical and hydrogeological investigations of an area of Pesquería, Nuevo León, México  

NASA Astrophysics Data System (ADS)

Hydrogeological and geophysical investigations were carried out with the aim to obtain a model that can us explain the depth groundwater and the direction of groundwater flow. The area is located in the northeastern of México, in a region where the pluvial precipitation is erratic and concentrated. On the basis of the superficial geology we decide to carry out the six vertical electrical soundings with Schlumberger array with a maximum AB/2 = 500 meters, and three geoelectrical profiles with dipole-dipole array where a=30 meters and "n=5". Each of the geoelectrical profiles has a length of 510 meters. Measurements of the phreatic level of existing wells were also carried out. This helps us also to decide the location of the six vertical soundings and the three geoelectrical profiles. The area of investigation corresponds to the valley El Carmen - Salinas Victoria conformed by alluvial sediments of the Quaternary (in some cases by clays), by conglomerates of the Pliocene, and by sedimentary rocks of end of the Cretaceous (shales calcareous). The sediments of the Quaternary have an aquitard, conformed by sandy clays, and in some locations by fragments of limestones and shales. The thickness of these materials varies from 3 m in the center of the valley up to 30 m in the foothills of the existing mountains, and they are distribuited widely in the valley, principally in the northeastern part of the area. These materials allow the vertical recharge of the flow of water into the confined aquifer, located under these materials. The confined aquifer is conformed by shales and shales with sand and calcareous materials. The groundwater in this aquifer flows through fractures. The results, of the distribution of the measurements of the electrical resistivity, show locations suitables for future work to explore for groundwater. The resistivity data were acquired with the instrument SuperSting R1/IP. The inversion of the data was carried out using the software EarthImager 1D and 2D. The interpretation of the obtained resistivity models was made with the aid of information of the geology of the area, and lithology of the materials of some existing wells. The information about the depth and direction of the flow of groundwater was also obtained from the hydrogeological and geophysical measurements.

Garza-Rocha, D.; Marín-Solís, J. D.

2009-04-01

207

Hydrogeologic inferences from geophysical and geologic investigation of the Standard Mine site, Elk Basin, Colorado  

NASA Astrophysics Data System (ADS)

Geophysical and geologic data were collected at the Standard Mine in Elk Basin near Crested Butte, CO, to improve our understanding of the hydrogeologic controls in the basin and how they influence surface and groundwater interactions with nearby mine workings. The Tertiary Ohio Creek and Wasatch formations are the bedrock geologic units; both are primarily sandstones, but with differences in weathering and fracturing. Dikes, near-vertical normal faults, and polymetallic quartz veins with varying degrees of lateral continuity cut the sedimentary units. The net impact of these features, along with basin topography, makes it difficult to predict the behavior of the surface and groundwater systems. This integrated study utilizes geologic observations to help constrain subsurface information obtained from the analysis of surface geophysical measurements. This is a critical step toward using the geophysical data in a meaningful hydrogeologic framework. The approach combines the benefit of direct, but sparse, field observations with spatially continuous, but indirect, measurements of physical properties through the use of geophysics. Surface geophysical data includes electrical resistivity profiles aimed at imaging variability in subsurface structural properties and fluid content; self-potentials, which are sensitive to mineralized zones at this site and, to a lesser extent, shallow flow patterns; and magnetic measurements, which provide information on lateral variability in near-surface geologic features, although the minerals at this site are not strongly magnetized. Downhole caliper and optical televiewer logs were acquired in one well and provide valuable information on fracture properties. Field geologic observations include hand sample mineralogy and detailed mapping and characterization of faults, joints, and veins. Analyses of representative rock samples include magnetic susceptibility, mercury injection capillary pressure, semi-quantitative x-ray diffraction, mass spectroscopy elemental chemistry, and petrography. Preliminary results from all analyses are remarkably consistent with one another and suggest a heterogeneously distributed, fracture-dominated groundwater flow system. Resistivity models show a well-defined, highly resistive near-surface layer, likely representing the unsaturated zone. Selective leaching of pyrite combined with fracturing in the Ohio Creek formation may be responsible for localized areas of lower resistivity where surface waters intersect these features and result in increased saturation. Steeply dipping resistive features are spatially coincident with the observed major faults and veins, and are also evident in the self-potential data. Resistivity data, outcrop observations, petrography, and mercury injection permeability and porosity data are consistent with the Wasatch formation having significantly lower porosity and permeability than the Ohio Creek formation and associated fault rocks. This suggests that the physical juxtaposition of the two contrasting units may be a critical factor in controlling the distribution of surface water infiltration and groundwater-related acid rock drainage.

Minsley, B. J.; Caine, J. S.; Ball, L. B.; Burton, B.; Curry-Elrod, E.; Manning, A. H.; Verplanck, P. L.

2009-12-01

208

The flood event of November 2013 in Calabria (southern Italy): damage and hydrogeological characteristics  

NASA Astrophysics Data System (ADS)

On November 19th, 2013, Calabria region (southern Italy) has been affected by a flood event which caused numerous damages in particular in the Ionian side of the region. In this work, the event is analyzed in terms of damage and hydrologic features. Beside rainfall, the event has been characterized by intense sea storms which, increased by Sirocco gusts, obstructed the outlet of the floods toward the sea. As a result, river overflowing was amplified and caused the breaking of either natural or artificial embankments. Damage affected 49 municipalities located in the mid-east sector, on a surface of 1898 km2 (12.6% of the Calabrian area). Roads (damaged in 86% of the affected municipalities) and private buildings (39%) were the most heavily damaged elements: in many cases the water level reached 1m. People were directly involved in risky situations but they managed to save their lives: only two people were injured. Return periods of daily rain can be classified as ordinary (between 2 and 13 years) with the only exception of a gauge located in the northern east sector, which showed a return period of more than 100 years. On the contrary, 3-hour rain shows peak values of 160 mm and return period higher than 200 years. As a result, the event can be considered an "impulsive" one, powered by intense hourly rain, and its dangerousness was mainly related to the "flash" character of the triggered floods. The analysis of circumstances in which people were directly threatened confirms floods as the main source of risk, both indoors (65% of cases) and outdoors (35%); in the latter case, the majority of people involved were on board of vehicles (26%). Differently from the past Calabrian damaging hydrogeological events, people did not adopt unnecessary risky behaviors, and in 26% of cases they managed to save their life without any help. Probably this is the factor that lead to low damage to people, since only two people were slightly injured. These results could be proficiently used in information and awareness campaigns for people on self-protective behavior to be used during damaging hydrogeological events.

Petrucci, Olga; Caloiero, Tommaso; Aurora Pasqua, Angela

2014-05-01

209

Canadian groundwater inventory: Regional hydrogeological characterization of the south-central part of the maritimes basin  

USGS Publications Warehouse

The Maritimes Groundwater Initiative (MGWI) is a large, integrated, regional hydrogeological study focusing on a representative area of the Maritimes Basin in eastern Canada. The study area covers a land surface of 10 500 km2, of which 9 400 km2 are underlain by sedimentary rocks. This sedimentary bedrock is composed of a sequence of discontinuous strata of highly variable hydraulic properties, and is generally overlain by a thin layer of glacial till(mostly 4-8 m thick, but can reach 20 m). Depending on the area, 46 to 100% of the population relieson groundwater for water supply, either from municipal wells or from private residential wells. The main objectives of this project were to improve the general understanding of groundwater-flow dynamics and to provide baseline information and tools for a regional groundwater-resource assessment. This bulletin presents the current state of understanding of this hydrogeological system, along with the methodology used to characterize and analyze its distinct behaviour at three different scales. This regional bedrock aquifer system contains confined and unconfined zones, and each of its lenticular permeable strata extends only a few kilometres. Preferential groundwater recharge occurs where sandy till is present. The mean annual recharge rate to the bedrock is estimated to range between 130 and 165 mm/a. Several geological formations of this basin provide good aquifers, with hydraulic conductivity in the range 5x10-6 to 10-4m/s. Based on results of numerical flow modelling, faults were interpreted to have a key role in the regional flow. Pumping-test results revealed that the fractured aquifers can locally be very heterogeneous and anisotropic, but behave similarly to porous media. Work performed at the local scale indicated that most water-producing fractures seem to be subhorizontal and generally oriented in a northeasterly direction, in agreement with regional structures and pumping-test results. Almost all residential wells are shallow (about 20 m) open holes that are cased only through the surficial sediments.

Rivard, C.; Michaud, Y.; Deblonde, C.; Boisvert, V.; Carrier, C.; Morin, R.H.; Calvert, T.; Vigneault, H.; Conohan, D.; Castonguay, S.; Lefebvre, R.; Rivera, A.; Parent, M.

2008-01-01

210

Efficiency Evaluation of Open-Loop GHPS Operation Under Various Hydrogeological Conditions  

NASA Astrophysics Data System (ADS)

Geothermal heat pump system (GHPS) can be cost-effective renewable energy sources. In order to develop the GHPS which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for effective usage of open-loop GHPS. Experimental and numerical tests are performed for two concepts of open-loop GHPS: simple open-loop and energy storage concept. In simple open-loop sets, tests were performed fixing the locations of pumping and injection wells. In contrast, tests in energy storage sets were conducted by changing the locations of wells in a seasonal cycle. Experimental test using sand tank was performed only for the simple open-loop concept, while numerical tests were performed for the both concepts. Numerical modeling results using FEFLOW were compatible with the experimental results. In the simple open-loop sets, the temporal temperature change in a pumping well was measured. Effective operation conditions are obtained with high hydraulic conductivity (3X10-3 m/s) and long distance (60 cm) between wells on hydraulic gradient 0.025 because the effect of injected water temperature must be minimized. In the energy storage sets, thermal recovery factors (R) under various conditions were calculated to evaluate the efficiency. Low hydraulic conductivity (3X10-5 m/s), hydraulic gradient 0.0 and long well distance (more than 20 m) are the best conditions for operation efficiency (R=37.92) because faster groundwater flow lead to advection or down-gradient `drift' of stored energy beyond potential recovery regions. In the case of two-layered aquifer, the porosity and groundwater flow characteristics of each layer sensitively affected the migration of thermal plume. Two-layered aquifer with the top-layer of low hydraulic conductivity (3X10-5 m/s) and porosity (0.2) is profitable for the effective open-loop GHPS operation under hydraulic gradient 0.0 and well distance (20 m). The results from experimental and numerical tests can provide a helpful guideline for effective usage and design of open-loop GHPS under various hydrogeological conditions.

Lee, S.; Kim, S.; Bae, G.; Lee, K.

2008-12-01

211

Hydrogeologic Controls on the Deep Terrestrial Biosphere - Chemolithotrophic Energy for Subsurface Life on Earth and Mars  

NASA Astrophysics Data System (ADS)

As exploration for gold, diamonds and base metals expand mine workings to depths of almost 3 km below the Earth's surface, the mines of the Canadian Shield provide a window into the deep biosphere as diverse, but to date less well-explored than the South African Gold Mines. To date investigations of the deep biosphere have, in most cases, focused on the marine subsurface, including deep sea sediments, hydrothermal vents, off-axis spreading centers and cold seeps. Yet the deep terrestrial subsurface hosted in the fracture waters of Archean Shield rocks provides an important analog and counterpoint to studies of the deep marine biosphere. Depending on the particular geologic and hydrogeologic setting, sites vary from those dominated by paleometeoric waters and microbial hydrocarbon production, to those in which H2 and hydrocarbon gases have been suggested to be a function of long-term accumulation of the products of water-rock interaction in the deepest, most saline fracture waters with residence times on the order of tens of millions of years. The hydrogeologically isolated fracture-controlled ground water system periodically generates steep redox gradients and chemical disequilibrium due to fracture opening, and episodic release of mM levels of H2 that support a redox driven microbial community of H2-utilizing sulfate reducers and methanogens. Exploration of these systems may provide information about the limits of the deep terrestrial biosphere, controls on the distribution of deep subsurface life, and the diversity of geochemical reactions that produce substrates on which microbiological communities at great depths survive. The geologically stable Precambrian cratons of Earth are arguably the closest analogs available to single-plate planets such as Mars. Studies of these Earth analogs imply that the habitability of the Martian crust might similarly not be restricted to sites of localized hydrothermal activity. While the presence of the Martian cryosphere and potential clathrates will affect the porosity and permeability, and net flux of gases from the Martian crust, the underlying principles of fracture-controlled energy sequestration and episodic release remain. Furthermore understanding the origin and distribution of biogenic and geologic sources of CH4 at these analog Earth sites will inform models and strategies for deciphering the origin of CH4 recently reported in the Martian atmosphere.

Sherwood Lollar, B.; Moran, J.; Tille, S.; Voglesonger, K.; Lacrampe-Couloume, G.; Onstott, T.; Pratt, L.; Slater, G.

2009-05-01

212

Seismicity Induced by Groundwater Recharge at Mt. Hood, Oregon, and its Implications for Hydrogeologic Properties.  

NASA Astrophysics Data System (ADS)

Earthquakes induced by human-caused changes in fluid pressure have been documented for many years. Examples include seismicity induced by filling reservoirs and by fluid injection or extraction. Less well-documented are seismic events that potentially are triggered by natural variations in groundwater recharge rates (e.g., Wolf et al., BSSA, 1997; Jimenez and Garcia-Fernandez, JVGR, 2000; Audin et al., GRL, 2002). Large groundwater recharge rates can occur in Volcanic Arcs such as the Oregon Cascades where annual precipitation is > 2 m of which > 50 % infiltrates the ground mostly during snowmelt in spring. As a result, infiltration rates of > 1 m per year concentrated during a few months can occur. Near-surface porosities are about 5-10 %. Thus, groundwater levels may fluctuate annually by about 10-20 m resulting in seasonal pore fluid pressure variations of about 1-2 x 105 Pa. Such large-amplitude, narrow-duration fluid pressure signals may allow investigation of seismicity induced by pore fluid pressure diffusion without the influence of engineered systems such as reservoirs. This kind of in-situ study of natural systems over large representative elementary volumes may allow determination of hydrologic parameters at spatial and temporal scales that are relevant for regional hydrogeology. Furthermore, natural hydrologic triggering of earthquakes that persist for decades provides insight into the state of stress in the crust and suggest long-term near-critical failure conditions. Here, we approximate the temporal variations in groundwater recharge with discharge in runoff-dominated streams at high elevations that show a peak in discharge during snow melt. Seismicity is evaluated as time series of daily number of earthquakes and seismic moments. Both stream discharge and seismicity are compared at equivalent frequency bands by applying segmented least-squares polynomial fits to the data. We find statistically significant correlation between groundwater recharge and seismicity at Mt. Hood, Oregon. We can use the time lag of about 120 days between the two records to estimate the regional hydraulic diffusivity (1 m2/s) and other hydrogeologic parameters (permeability ? 10-13 m2, vertical matrix compressibility ? 10-10 m2/N). These values are comparable with our results from coupled heat and groundwater flow studies that are based on bore hole temperature data at Mt. Hood.

Saar, M. O.; Manga, M.

2002-12-01

213

Hydrogeologic framework and salinity distribution of the Floridan aquifer system of Broward County, Florida  

USGS Publications Warehouse

Concerns about water-level decline and seawater intrusion in the surficial Biscayne aquifer, currently the principal source of water supply to Broward County, prompted a study to refine the hydrogeologic framework of the underlying Floridan aquifer system to evaluate its potential as an alternative source of supply. This report presents cross sections that illustrate the stratigraphy and hydrogeology in eastern Broward County; maps of the upper surfaces and thicknesses of several geologic formations or units within the Floridan aquifer system; and maps of two of the potentially productive water-bearing zones within the system, the Upper Floridan aquifer and the Avon Park permeable zone. An analysis of data on rock depositional textures, associated pore networks, and flow zones in the Floridan aquifer system shows that groundwater moves through the system in two ways. These data support a conceptual, dual-porosity model of the system wherein groundwater moves either as concentrated flow in discrete, thin bedding-plane vugs or zones of vuggy megaporosity, or as diffuse flow through rocks with primarily interparticle and moldic-particle porosity. Because considerable exchange of groundwater may occur between the zones of vuggy and matrix-dominated porosity, understanding the distribution of that porosity and flow zone types is important to evaluating the suitability of the several units within the Floridan aquifer system for managing the water through practices such as aquifer storage and recovery (ASR). The salinity of the water in the Floridan aquifer system is highest in the central part of the study area, and lower toward the north and south. Although salinity generally increases with depth, in the western part of the study area a zone of relatively high saline water is perched above water of lower salinity in the underlying Avon Park permeable zone. Overall, the areas of highest salinity in the aquifer system coincide with those with the lowest estimated transmissivity, so that the occurrence of perched saline water in the system may be the consequence of incompletely flushed connate water or intruded seawater. A seismic reflection profile along the Hillsboro Canal, at the northern edge of the study area, shows seven seismic-sag structures that are interpreted as downward deformation of overlying strata into collapsed deep cave systems. These structures may compromise the integrity of the confinement created by the underlying strata by allowing upconing of saline water from depth, which has implications for successful application of ASR and use of the Floridan aquifer system as an alternative water supply.

Reese, Ronald S.; Cunningham, Kevin J.

2014-01-01

214

Detailed hydrogeological investigation and conceptual modelling of an Alpine Main Valley crossed by the Brenner Bases tunnel  

NASA Astrophysics Data System (ADS)

The Brenner Base Tunnel (BBT) will cross the Isarco Valley near the village of Fortezza (BZ) at a depth of approximately 20 m below the riverbed of the Isarco river. The design of this roughly 1 km long stretch through alluvial sediments and below groundwater level required detailed knowledge of the prevailing hydrogeological conditions. In particular, it was necessary to determine if dewatering procedures were feasible and what the impacts on natural water flows in the aquifer after completion of the infrastructure will be. The study area is a typical Alpine valley, filled with alluvial sediments to a maximum depth of approximately 120m. The valley is bounded by granitic rocks with regional, water saturated main fault zones. In addition to the Isarco River, the area is shaped by two lateral rivers. The deposits of these lateral rivers form main alluvial fans. The aim of the study was to study the geological structure and the hydrogeological behaviour of this alpine valley. Therefor a detailed geological and hydrogeological investigation program was carried out, including a geological detailed mapping, construction of 40 boreholes (max. depth 120m; 35 are equipped to groundwater monitoring wells) and 5 large wells (55m - 87m). In order to determine the hydrodynamic characteristics of the aquifer in the valley, several pumping tests were carried out in different study stages: Stage 1: preliminary hydrogeological characterization of the area based on a pumping test carried out in the first well (100l/s pumping for 14 days). Stage 2: individual step tests and constant rate tests in additional four wells Stage 3: main pumping test including all the five wells with a maximum pumping rate of 450l/s for 14 days. The main topics oh the presentation are: - Overview of the BBT-project, the investigation area and investigation program - Description of the validated geological model of the main alpine valley - Results of the various hydraulic tests performed in the individual wells (step test and constant rate test) - Results of the long-term pumping test. Based on the results of these tests a Conceptual hydrogeological model of the area and the dewatering concept will be presented. The conceptual model is the basis for the numerical model of groundwater flow developed and calibrated in two successive phases (see abstract: L. San Nicolò, U. Burger, R. Zurlo).

Burger, Ulrich; San Nicolo, Lorenz; Zurlo, Raffaele

2014-05-01

215

Hydrogeology of the upper and middle Verde River watersheds, central Arizona  

USGS Publications Warehouse

The upper and middle Verde River watersheds in central Arizona are primarily in Yavapai County, which in 1999 was determined to be the fastest growing rural county in the United States; by 2050 the population is projected to more than double its current size (132,000 in 2000). This study combines climatic, surface-water, ground-water, water-chemistry, and geologic data to describe the hydrogeologic systems within the upper and middle Verde River watersheds and to provide a conceptual understanding of the ground-water flow system. The study area includes the Big Chino and Little Chino subbasins in the upper Verde River watershed and the Verde Valley subbasin in the middle Verde Rive watershed...more...A geochemical mixing model was used to quantify fractions of ground-water sources to the Verde River from various parts of the study area. Most of the water in the uppermost 0.2 mile of the Verde River is from the Little Chino subbasin, and the remainder is from the Big Chino subbasin. Discharge from a system of springs increases base flow to about 17 cubic feet per second within the next 2 miles of the river. Ground water that discharges at these springs is derived from the western part of the Coconino Plateau, from the Big Chino subbasin, and from the Little Chino subbasin. More...

Blasch, Kyle W.; Hoffmann, John P.; Graser, Leslie F.; Bryson, Jeannie R.; Flint, Alan L.

2006-01-01

216

Reconnaissance hydrogeologic investigation of the defense waste processing facility and vicinity, Savannah River Plant, South Carolina  

SciTech Connect

The hydrogeologic framework of the area around the Savannah River Plant, South Carolina consists of 2 to 3 separate water bearing units. In the northern half of the study area, the Barnwell and underlying McBean aquifers are considered one aquifer owing to the absence of the tan clay-confining unit between them. In the southern half of the study area they are separated by the tan clay into two aquifers. Underlying these aquifers, and separated from them by the green clay-confining unit, is the Congaree aquifer. Hydraulic conductivities of the aquifers range from 0.00000001 to 0.0001 ft/sec. Directions of groundwater flow in the Barnwell and McBean aquifers are to the north, with a component of flow directed downward across the green clay and into the Congaree aquifer. The direction of flow in the Congaree aquifer is to the northwest. Water in these aquifers evolves from an acidic (pH < 6.5) mixed-cation type in the Barnwell aquifer to an alkaline (pH > 8) calcium bicarbonate water in the Congaree aquifer. Laboratory experiments indicate that reactions between sediments of the Barnwell aquifer and a salt-solution waste to be stored at the study area would significantly reduce the permeability of the sediment, thereby limiting the movement of the waste in groundwater at the site.

Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

1989-01-01

217

Review: Some Low-Frequency Electrical Methods for Subsurface Characterization and Monitoring in Hydrogeology  

SciTech Connect

Low-frequency geoelectrical methods include mainly self-potential, resistivity, and induced polarization. These methods are commonly used to solve hydrogeological problems in the shallow subsurface and provide complementary information to each other and to in-situ measurements. The self-potential method is a passive measurement of the electrical response associated with the in-situ generation of current mainly due to the flow of pore water in porous media, a salinity gradient, and/or the concentration of redox-active species. It can be used to visualize groundwater flow patterns, to determine permeability, and to detect preferential flow paths. Electrical resistivity is dependent on the water content, the temperature, the salinity of the pore water, and the clay content and mineralogy. Induced polarization characterizes the ability of rocks to store electrical energy in terms of ion accumulations in the pore water. Electrical resistivity, time-domain and frequency-domain induced polarization methods can be used to image the permeability and the distribution of contaminants in the ground.

Revil, Andre; Karaoulis, M.; Johnson, Timothy C.; Kemna, Andreas

2011-01-01

218

Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology  

SciTech Connect

Low-frequency geoelectrical methods include mainly self-potential, resistivity, and induced polarization techniques, which have potential inmany environmental and hydrogeological applications. They provide complementary information to each other and to in-situ measurements. The self-potential method is a passive measurement of the electrical response associated with the in-situ generation of electrical current due to the flow of pore water in porous media, a salinity gradient, and/or the concentration of redoxactive species. Under some conditions, this method can be used to visualize groundwater flow, to determine permeability, and to detect preferential flow paths. Electrical resistivity is dependent on the water content, the temperature, the salinity of the pore water, and the clay content and mineralogy. Time-lapse resistivity can be used to assess the permeability and dispersivity distributions and to monitor contaminant plumes. Induced polarization characterizes the ability of rocks to reversibly store electrical energy. It can be used to image permeability and to monitor chemistry of the pore water-minerals interface. These geophysical methods, reviewed in this paper, should always be used in concert with additional in-situ measurements (e.g. in-situ pumping tests, chemical measurements of the pore water), for instance through joint inversion schemes, which is an area of fertile on-going research.

Revil, Andre; Karaoulis, M.; Johnson, Timothy C.; Kemna, Andreas

2012-02-10

219

Hydrogeologic issues at Yucca Mountain: Findings of a DOE peer review team  

SciTech Connect

The peer review team (PRT) evaluated work done within the Yucca Mountain Project to develop an understanding of unsaturated zone hydrology at the Yucca Mountain sites, and to provide recommendations to DOE regarding unsaturated zone hydrological investigations at Yucca Mountain. The PRT was specifically asked to consider: matrix flow; fracture flow; gaseous flow; the presence and effectiveness of capillary barriers; the presence and effectiveness of fracture barriers; and saturated-unsaturated ground water travel times. The PRT deliberations emphasize the natural hydrogeological system rather than the response of this system to the emplacement of the repository. Twenty-four conclusions and recommendations were reached. Among the programmatic issues were: need for improved program integration and interagency communication; need for project prioritization procedures within the project; negative impacts of the current quality assurance environment; need for closer coordination of construction activities and research activities so as to prevent undue site disturbance. This paper discusses the additional technical issues raised in the report, including both the unsaturated zone and the saturated zone, with a primary emphasis on the unsaturated zone. 8 refs.

Freeze, R.A. [Univ. of British Columbia (Canada)

1993-06-01

220

Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring  

NASA Astrophysics Data System (ADS)

SummaryMain objective of this work was the study of the infiltration and recharge mechanisms in the Guarani Aquifer System (GAS) outcrop zone. The study was based on hydrogeologic monitoring, evapotranspiration and water balance in a pilot watershed. The pilot watershed (Ribeirão da Onça) is situated in the outcrop zone of the Guarani Aquifer between parallels 22°10' and 22°15' (south latitude) and meridians 47°55' and 48°00' (west longitude). For the execution of the research project, a monitoring network (wells, rain gauge and linigraph) was installed in the watershed. Data have been systematically collected during the period of a hydrological year. Water level fluctuation has been used to estimate deep recharge and subsurface storage variation. The method used to estimate the direct recharge adopted the hypothesis that the recession of the groundwater level obeys a function of power law type. Direct recharge is obtained through the difference between the actual level of an unconfined aquifer and the level indicated by extrapolation of the recession curve, in a given period. Base outflow is estimated through a mixed function (linear and exponential). Outflow in the creek has been measured with current meter and monitored continuously with a linigraph. The annual infiltration in 2005 was estimated to be 350 mm, while the deep recharge, based on water balance, appears to be 3.5% of the precipitation (1410 mm). These results indicate that the estimated long term water availability of the Guarani Aquifer System should be studied more carefully.

Wendland, E.; Barreto, C.; Gomes, L. H.

2007-09-01

221

Reliability, sensitivity, and uncertainty of reservoir performance under climate variability in basins with different hydrogeologic settings  

NASA Astrophysics Data System (ADS)

This study investigated how reservoir performance varied across different hydrogeologic settings and under plausible future climate scenarios. The study was conducted in the Santiam River basin, OR, USA, comparing the North Santiam basin (NSB), with high permeability and extensive groundwater storage, and the South Santiam basin (SSB), with low permeability, little groundwater storage, and rapid runoff response. We applied projections of future temperature and precipitation from global climate models to a rainfall-runoff model, coupled with a formal Bayesian uncertainty analysis, to project future inflow hydrographs as inputs to a reservoir operations model. The performance of reservoir operations was evaluated as the reliability in meeting flood management, spring and summer environmental flows, and hydropower generation objectives. Despite projected increases in winter flows and decreases in summer flows, results suggested little evidence of a response in reservoir operation performance to a warming climate, with the exception of summer flow targets in the SSB. Independent of climate impacts, historical prioritization of reservoir operations appeared to impact reliability, suggesting areas where operation performance may be improved. Results also highlighted how hydrologic uncertainty is likely to complicate planning for climate change in basins with substantial groundwater interactions.

Mateus, C.; Tullos, D.

2014-12-01

222

The Geologic and Hydrogeologic Setting of the Waste Isolation Pilot Plant  

SciTech Connect

The Waste Isolation Pilot Plant (WIPP) is a mined repository constructed by the US Department of Energy for the permanent disposal of transuranic wastes generated since 1970 by activities related to national defense. The WIPP is located 42 km east of Carlsbad, New Mexico, in bedded salt (primarily halite) of the Late Permian (approximately 255 million years old) Salado Formation 655 m below the land surface. Characterization of the site began in the mid-1970s. Construction of the underground disposal facilities began in the early 1980s, and the facility received final certification from the US Environmental Protection Agency in May 1998. Disposal operations are planned to begin following receipt of a final permit from the State of New Mexico and resolution of legal issues. Like other proposed geologic repositories for radioactive waste, the WIPP relies on a combination of engineered and natural barriers to isolate the waste from the biosphere. Engineered barriers at the WIPP, including the seals that will be emplaced in the access shafts when the facility is decommissioned, are discussed in the context of facility design elsewhere in this volume. Physical properties of the natural barriers that contribute to the isolation of radionuclides are discussed here in the context of the physiographic, geologic, and hydrogeologic setting of the site.

Swift, P.N.; Corbet, T.F.

1999-03-04

223

Structural and hydrogeological features of a Lias carbonate aquifer in the Triffa Plain, NE Morocco  

NASA Astrophysics Data System (ADS)

The rising demand for water and the contamination of shallow water table aquifers has led authorities in NE Morocco to look for deeper groundwater resources in the Triffa Plain, namely in Lower Jurassic (Lias) dolomitic limestones. The liassic aquifer is of strategic importance for the development of the region, however, its hydrodynamic behaviour is poorly understood due to lack of hydrogeological data and block structure. This article presents a first effort towards understanding the structure and hydraulic behaviour of the aquifer. Exploration borehole data and results from geophysical campaigns were integrated into a GIS environment to build a preliminary model of the aquifer structure. The aquifer behaves as an unconfined aquifer in the northern part of the Béni Snassen Mountains (the recharge area), but as it dips to the north, it becomes confined by marls and shales of the Middle/Upper Jurassic. Even though piezometric level data are scarce, a tentative piezometric map was produced. Three blocks separated by NW-SE trending faults in a horst and graben structure, with distinct flow behaviours were identified: Berkane, Fezouane and Sidi Rahmoun blocks. Those blocks also show differences in hydraulic conductivity distribution. As a result of the reaction with the dolomitic limestones, the groundwater is of calcium-magnesium bicarbonate type. Groundwater temperature as measured in springs ranges from 29 °C to 37 °C in springs and constitutes a potential low enthalpy geothermal resource.

Sardinha, J.; Carneiro, J. F.; Zarhloule, Y.; Barkaoui, A.; Correia, A.; Boughriba, M.; Rimi, A.; El Houadi, B.

2012-09-01

224

Description and hydrogeologic evaluation of nine hazardous-waste sites in Kansas, 1984-86  

USGS Publications Warehouse

Wastes generated at nine hazardous-waste sites in Kansas were disposed in open pits, 55-gal drums, or large storage tanks. These disposal methods have the potential to contaminate groundwater beneath the sites, the soil on the sites, and nearby surface water bodies. Various activities on the nine sites included production of diborane, transformer oil waste, production of soda ash, use of solvents for the manufacture of farm implements, reclamation of solvents and paints, oil-refinery wastes, meat packaging, and the manufacture and cleaning of tanker-truck tanks. Monitoring wells were installed upgradient and downgradient from the potential contamination source on each site. Strict decontamination procedures were followed to prevent cross contamination between well installations. Air-quality surveys were made on each site before other investigative procedures started. Hydrogeologic investigative techniques, such as terrain geophysical surveys, gamma-ray logs, and laboratory permeameter tests, were used. Groundwater level measurements provide data to determine the direction of flow. Groundwater contamination detected under the sites posed the greatest threat to the environment because of possible migration of contaminants by groundwater flow. Concentrations of volatile organic compounds, polynuclear aromatic hydrocarbons, and trace metals were detected in the groundwater at several of the sites. Many of the same compounds detected in the groundwater also were detected in soil and bed-material samples collected onsite or adjacent to the sites. Several contaminants were detected in background samples of groundwater and soil. (USGS)

Hart, R.J.; Spruill, T.B.

1988-01-01

225

Hydrogeological relationships of sandy deposits: modeling of two-dimensional unsaturated water and pesticide transport.  

PubMed

Prediction of the movement of water and solutes in the vadose zone requires information on the distribution of spatial trends and heterogeneities in porous media. The present study describes different lithofacies origination mainly from glaciofluvial deposits. Among different lithofacies, hydrological relationships were investigated. By means of a two-dimensional hydrological model it was evaluated how the flow of water and leaching of metribuzin (4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-1,2,4-triazin-5-one) was affected. Two selected large outcrop sections consisting of glacial outwash deposits were used in the modeling study. Eleven different lithofacies were distinguished and described in terms of texture distribution, sorting, bedding style, and external boundaries based on excavated soil profiles from 27 locations representing seven predominantly sandy landforms in Denmark. Undisturbed soil columns were sampled from each of the lithofacies and brought to the laboratory to be analyzed. With respect to their soil hydraulic properties, the different lithofacies formed four different hydrofacies having relatively homogeneous, hydrogeological properties. Two large outcrop sections from one of the locations (a gravel pit) located near the terminal moraine of the former Weichsel glacier were used for the HYDRUS-2D modeling. Modeling results revealed that the spatial distribution of sedimentary bodies affected water flow and the leaching of metribuzin. PMID:18689752

Iversen, Bo V; van der Keur, Peter; Vosgerau, Henrik

2008-01-01

226

Hydrogeology and Physical Characteristics of Water Samples at the Red River Aluminum Site, Stamps, Arkansas  

NASA Astrophysics Data System (ADS)

The Red River Aluminum site near Stamps, Arkansas, contains waste piles of salt cake and metal byproducts from the smelting of aluminum. The waste piles are subjected to about 50 inches of rainfall a year, resulting in the dissolution of the salts and metal. To assess the potential threat to underlying ground-water resources at the site, its hydrogeology was characterized by measuring water levels and field parameters of water quality in 23 wells and at 2 surface-water sites. Seventeen of these monitor wells were constructed at various depths for this study to allow for the separate characterization of the shallow and deep ground-water systems, the calculation of vertical gradients, and the collection of water samples at different depths within the flow system. Lithologic descriptions from drill-hole cuttings and geophysical logs indicate the presence of interbedded sands, gravels, silts, and clays to depths of 65 feet. The regionally important Sparta aquifer underlies the site. Water levels in shallow wells indicate radial flow away from the salt-cake pile located near the center of the site. Flow in the deep system is to the west and southwest toward Bodcau Creek. Water-level data from eight piezometer nests indicate a downward hydraulic gradient from the shallow to deep systems across the site. Values of specific conductance (an indicator of dissolved salts) ranged from 215 to 196,200 microsiemens per centimeter and indicate that saline waters are being transported horizontally and vertically downward away from the site.

Czarnecki, J. B.; Stanton, G. P.; Freiwald, D. A.

2001-12-01

227

Hydrogeological definition and applicability of abandoned coal mines as water reservoirs.  

PubMed

Hydrogeologically, the Central Coal Basin (Asturias, Spain) is characterized by predominantly low-permeability materials that make up a multilayer aquifer with very low porosity and permeability values, where the sandstones act as limited aquifers, and wackes, mudstones, shales and coal seams act as confining levels. Preferential groundwater flow paths are open fractures and zones of decompression associated with them, so the hydraulic behaviour of the system is more associated with fracturing than lithology. Thus, abandoned and flooded mines in the area acquire an important role in the management of water resources, setting up an artificial "pseudo-karst" aquifer. This paper evaluates the potential application of the abandoned mines as underground reservoirs, both for water supply and energetic use, mainly through heat pumps and small hydropower plants. In particular, the groundwater reservoir shaped by the connected shafts Barredo and Figaredo has been chosen, and a detailed and multifaceted study has been undertaken in the area. The exposed applications fit with an integrated management of water resources and contribute to improve economic and social conditions of a traditional mining area in gradual decline due to the cessation of such activity. PMID:22833009

Ordóñez, A; Jardón, S; Álvarez, R; Andrés, C; Pendás, F

2012-08-01

228

Preliminary Test Results of Heshe Hydrogeological Experimental Well Station in Taiwan  

NASA Astrophysics Data System (ADS)

Safe disposal of radioactive waste is a critical issue for the development of nuclear energy. The design of final disposal system is based on the concept of multiple barriers which integrate the natural barriers and engineering barriers for long-term isolation of radioactive wastes. As groundwater is the major medium that can transport radionuclides to our living environment, it is essential to characterize groundwater flow at the disposal site. Taiwan is located at the boundary between the Eurasian plate and the Philippine Sea plate. Geologic formations are often fractured due to tectonic compression and extension. In this study, a well station for the research and development of hydrogeological techniques was established at the Experimental Forest of the National Taiwan University in central Taiwan. There are 10 testing wells, ranging in depth from 25 m to 100 m, at the station. The bedrock beneath the regolith is highly fractured mudstone. As fracture is the preferential pathway of the groundwater flow, the focus of in-situ tests is to investigate the location of permeable fractures and the connection of permeable fractures. Several field tests have been conducted, including geophysical logging, heat-pulse flowmeter, hydraulic test, tracer test and double packer test, for the development of advanced technologies to detect the preferential groundwater flow in fractured rocks.

Chuang, P.; Liu, C.; Lin, M.; Chan, W.; Lee, T.; Chia, Y.; Teng, M.; Liu, C.

2013-12-01

229

The hydrogeology of the Condamine River Alluvial Aquifer, Australia: a critical assessment  

NASA Astrophysics Data System (ADS)

The Condamine plain is an important agricultural zone in Australia with prominent irrigated cotton and grain crops. About one third of the irrigation water is pumped from the shallow alluvial aquifer, causing gross aquifer depletion over time. Over the last few decades, various hydrological, hydrochemical, and geological aspects of this aquifer and the overlying floodplain (including soil properties) have been investigated and used to construct the conceptual understanding and numerical models for management of this resource. Yet, the water balance of the aquifer is still far from resolved, and the geological contact between the alluvial sediments and underlying bedrock is yet to be categorically defined, to mention two major uncertainties. This report collates up-to-date knowledge of different disciplines, critically evaluates the accepted hydrogeological conventions, highlights key knowledge gaps, and suggests strategies for future research. Among recommendations are (1) development of numerical flow and solute transport models for the natural (i.e. pre-developed) period, (2) analysis of groundwater for isotopic composition and presence of pesticides, CFCs and PPCPs, and (3) use of stochastic approaches to characterize the hydraulic properties of the alluvial sediments. These and other proposed measures are relevant also to other alluvial aquifers which suffer from similar fundamental uncertainties.

Dafny, Elad; Silburn, D. Mark

2014-05-01

230

Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text  

SciTech Connect

This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

1989-01-01

231

Hydrogeologic and hydrogeochemical assessment of geothermal fluids in the Pyramid Lake area, Washoe country, Nevada  

SciTech Connect

This paper evaluates the hydrogeological and hydrogeochemical characteristics of the geothermal fluids in the Pyramid Lake area using data from existing published and unpublished reports on springs, challow and deep wells in the area. Four geochemical provinces, namely, chloride, bicarbonate, suphate and nixed chloride-bicarbonate have been identified. Chloride waters are found in known geothermal areas. Two subsurface water recharge zones which reed the shallow and deep geothermal systems are proposed. These are the Virginia Mountains and their Northern extension and the Fox and Lake Ranges. Tertiary and Quaternary faulting systems in these mountains and Ranges act as heat conduits for geothermal fluids. The Needle Rocks geothermal system is postulated to be deeper than the San Emidio system. A connection between the Needle Rocks system and the Pyramid and Anaho islands warm springs is not clear from this study because of lack of chemical data from these islands. More systematic measurements of static water levels, temperatures, well lithology, water chemistry and isotopes data are recommended to enable better understanding of the geothermal systems in the area.

Ojiambo, S. Bwire

1992-01-01

232

Hydrogeology of an alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow  

NASA Astrophysics Data System (ADS)

The frequency and intensity of extreme hydrological events in alpine regions is projected to increase with climate change. The goal of this study was to better understand the functioning of aquifers composed of complex alluvial and rockfall deposits in alpine valleys and to quantify the role of these natural storage spaces in flood attenuation and baseflow maintenance. Geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements were conducted in the Reintal valley (German Alps), where runoff from a karst spring infiltrates into a series of postglacial alluvial/rockfall aquifers. During high-flow conditions, groundwater velocities of 30 m h-1 were determined along 500 m; hydrograph analyses revealed short lag times (5 h) between discharge peaks upstream and downstream from the aquifer series; the maximum discharge ratio downstream (22) and the peak recession coefficient (0.196 d-1) are low compared with other alpine catchments. During low-flow conditions, the underground flow path length increased to 2 km and groundwater velocities decreased to 13 m h-1. Downstream hydrographs revealed a delayed discharge response after 101 h and peaks dampened by a factor of 1.5. These results indicate that alluvial/rockfall aquifers might play an important role in the flow regime and attenuation of floods in alpine regions.

Lauber, U.; Kotyla, P.; Morche, D.; Goldscheider, N.

2014-06-01

233

Towards identifying data needs for a regional hydrogeologic contamination study using multiple realization simulations  

SciTech Connect

This paper describes a stochastic, distributed parameter simulation approach which is being used to identify/prioritize data collection activities for a 250 km{sup 2} region containing numerous potential contamination sites. The region is located in the southeast part of the Albuquerque Basin in central New Mexico, USA. The Basin is part of the Rio Grande Trough, a large graben with large vertical displacements between the central basin and the adjacent highlands. Numerous potential human receptors are located around the periphery of the region, and it is the desired to have a groundwater monitoring well network.which can help provide early detection of contamination plumes as well as provide relevant data on the regional hydrogeologic framework. A 2D numerical model of the regional basin-fill aquifer is developed with explicit recognition of uncertainties in flow parameter spatial distributions. We account for uncertainty in the parameter field through Monte Carlo simulation. To reduce the computational burden of multiple realization simulation, we employ a linearized stochastic model which permits cosimulation of transmissivity and head fields, conditioning on both transmissivity and head. The locations of selected contamination sites within the region then are overlaid on the simulation results, and flow paths and groundwater travel times from the contamination sites are assessed using sensitivity analysis to identify preferred locations for collection of additional data and the types of data which should be collected (e.g., head, transmissivity, or geologic cores).

McCord, J.; Treadway, A.

1993-11-01

234

Developing conceptual hydrogeological model for Potsdam sandstones in southwestern Quebec, Canada  

USGS Publications Warehouse

A hydrogeological study was conducted in Potsdam sandstones on the international border between Canada (Quebec) and the USA (New York). Two sandstone formations, arkose and conglomerate (base) and well-cemented quartz arenite (upper), underlie the study area and form the major regional aquifer unit. Glacial till, littoral sand and gravel, and marine silt and clay discontinuously overlie the aquifer. In both sandstone formations, sub-horizontal bedding planes are ubiquitous and display significant hydraulic conductivities that are orders of magnitude more permeable than the intact rock matrix. Aquifer tests demonstrate that the two formations have similar bulk hydrologic properties, with average hydraulic conductivities ranging from 2 ?? 10-5 to 4 ?? 10-5 m/s. However, due to their different lithologic and structural characteristics, these two sandstones impose rather different controls on groundwater flow patterns in the study area. Flow is sustained through two types of fracture networks: sub-horizontal, laterally extensive fractures in the basal sandstone, where hydraulic connectivity is very good horizontally but very poor vertically and each of the water-bearing bedding planes can be considered as a separate planar two-dimensional aquifer unit; and the more fractured and vertically jointed system found in the upper sandstone that promotes a more dispersed, three-dimensional movement of groundwater. ?? Springer-Verlag 2007.

Nastev, M.; Morin, R.; Godin, R.; Rouleau, A.

2008-01-01

235

Hydrogeologic factors that influence ground water movement in the desert southwest United States  

USGS Publications Warehouse

A project to study ground-water and surface-water interactions in the desert southwestern United States was initiated in 2001 by the Tucson, Arizona office of the Water Resources Division, U.S. Geological Survey (USGS). One of the goals of the Southwest Ground-water Resources Project was to develop a regional synthesis that includes the use of available digital geologic data, which is growing rapidly due to the increasing use of Geographic Information Systems (GIS). Included in this report are the digital maps and databases of geologic information that should have a direct impact on the studies of ground-water flow and surface-water interaction. Ground-water flow is governed by many geologic factors or elements including rock and soil permeability, stratigraphy and structural features. These elements directly influence ground-water flow, which is key to understanding the possible inter-connectivity of aquifer systems in desert basins of the southwestern United States. We derive these elements from the evaluation of regional geology and localized studies of hydrogeologic basins. These elements can then be applied to other unstudied areas throughout the desert southwest. This report presents a regional perspective of the geologic elements controlling ground-water systems in the desert southwest that may eventually lead to greater focus on smaller sub-regions and ultimately, to individual ground-water basins.

Chuang, Frank C.; McKee, Edwin H.; Howard, Keith A.

2003-01-01

236

Geophysical Evidence for Lithologic and Hydrogeological Controls on Vegetation Communities in a Large Northern Peatland  

NASA Astrophysics Data System (ADS)

Recent conceptual models invoke hydrogeologic processes as a controlling factor in the development of the striking vegetation patterns observed in northern peatlands. These processes regulate the supply of solutes to the peat surface, controlling the surface-water chemistry and the supply of nutrients to plants. Geophysical studies in Caribou Bog, a 2200-hectare peatland in central Maine, indicate a close correlation between lithology of the underlying mineral soil and dominant vegetation. Electrical resistivity imaging along a 1 km transect across the central unit of Caribou Bog resolves underlying glaciomarine clay thickness. Ground penetrating radar precisely defines the glaciomarine interface where peat thickness is less than 10 m. Direct verification of peatland thickness and sampling at the mineral soil contact constrains the geophysical interpretation. Wooded heath interspersed with sphagnum/leatherleaf lawn occurs where glaciomarine clay accumulation is thickest (estimated to exceed 10 m in parts). Abrupt thinning of the glaciomarine clay, such that peat rests directly on bedrock in parts, correlates with a sharp transition to shrub heath dominated vegetation. The location of open pools within the wooded heath of Caribou Bog coincides with localized thinning of the glaciomarine clay and exposure of bedrock at the base of the bog. Groundwater flow cells recorded over two years suggest that the glaciomarine clay acts as a confining layer and impacts nutrient supply from the mineral soil, and hence vegetation patterns, at the bog surface.

Slater, L. D.; Reeve, A.; Utne, I. J.; Comas, X.; Ulrich, C. A.

2002-12-01

237

Influence of ancient thrust faults on the hydrogeology of the Blue Ridge Province.  

PubMed

The Blue Ridge Province contains ubiquitous northeast-southwest-trending thrust faults or smaller thrust "slivers" that greatly impact the nature and character of ground water flow in this region. Detailed investigations at a field site in Floyd County, Virginia, indicate that high-permeability zones occur in the brittle crystalline rocks above these thrust faults. Surface and borehole geophysics, aquifer tests, and chlorofluorocarbon and geochemical data reveal that the shallow saprolite aquifer is separated from the deeper fault-zone aquifer by a low-fracture permeability bedrock confining unit, the hydraulic conductivity of which has been estimated to be six orders of magnitude less than the conductivity of the fault zones at the test site. Within the Blue Ridge Province, these fault zones can occur at depths of 300 m or more, can contain a significant amount of storage, and yield significant quantities of water to wells. Furthermore, it is expected that these faults may compartmentalize the deep aquifer system. Recharge to and discharge from the deep aquifer occurs by slow leakage through the confining unit or through localized breach zones that occur where quartz accumulated in high concentrations during metamorphism and later became extensively fractured during episodes of deformation. The results of this investigation stress the importance of thrust faults in this region and suggest that hydrogeologic models for the Blue Ridge Province include these ancient structural features. Faults in crystalline-rock environments may not only influence the hydrology, they may dominate the flow characteristics of a region. PMID:15882322

Seaton, William J; Burbey, Thomas J

2005-01-01

238

Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and vicinity, Savannah River Plant, South Carolina  

USGS Publications Warehouse

The hydrogeologic framework of the area around the Savannah River Plant, South Carolina consists of 2 to 3 separate water bearing units. In the northern half of the study area, the Barnwell and underlying McBean aquifers are considered one aquifer owing to the absence of the tan clay-confining unit between them. In the southern half of the study area they are separated by the tan clay into two aquifers. Underlying these aquifers, and separated from them by the green clay-confining unit, is the Congaree aquifer. Hydraulic conductivities of the aquifers range from 0.00000001 to 0.0001 ft/sec. Directions of groundwater flow in the Barnwell and McBean aquifers are to the north, with a component of flow directed downward across the green clay and into the Congaree aquifer. The direction of flow in the Congaree aquifer is to the northwest. Water in these aquifers evolves from an acidic (pH < 6.5) mixed-cation type in the Barnwell aquifer to an alkaline (pH > 8) calcium bicarbonate water in the Congaree aquifer. Laboratory experiments indicate that reactions between sediments of the Barnwell aquifer and a salt-solution waste to be stored at the study area would significantly reduce the permeability of the sediment, thereby limiting the movement of the waste in groundwater at the site. (USGS)

Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

1989-01-01

239

The typology of Irish hard-rock aquifers based on an integrated hydrogeological and geophysical approach  

NASA Astrophysics Data System (ADS)

Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.

Comte, Jean-Christophe; Cassidy, Rachel; Nitsche, Janka; Ofterdinger, Ulrich; Pilatova, Katarina; Flynn, Raymond

2012-12-01

240

Hydrogeologic Effects on Design and Results for Multiple Midwest Regional Carbon Sequestration Partnership Test Sites  

NASA Astrophysics Data System (ADS)

In planning and monitoring CO2 injection experiments at Midwest Regional Carbon Sequestration Partnership sites, it was found that the hydrogeologic framework had a significant influence on the test design and results. The test sites are located along major regional geologic structures in the Midwestern United States: the Appalachian Basin, the Cincinnati Arch, and the Michigan Basin. Factors such as injection target thickness, permeability, formation pressures, and injection depths had a significant impact on the tests. In the Appalachian Basin, the nature of the injection targets resulted in a flexible injection plan capable of testing the injectivity of multiple targets. At the Cincinnati Arch site, approximately 90 m section of Mt. Simon Sandstone is present with promising hydraulic properties. As such, this test was focused on examining the mobility of the CO2 within the storage formation, since a supply of CO2 may not be available to test maximum injection rates. At the Michigan Basin site, a large supply of CO2 was available. This test involved a longer injection period and more detailed examination of the CO2 distribution in the deep rock formations. In addition, it allowed more analysis of the hydraulic pressure response in the reservoir. This work was done as part of the Midwest Regional Carbon Sequestration Partnership (MRCSP); DOE/NETL Cooperative Agreement No. DE-FC26-05NT42589.

Sminchak, J.; Kelley, M.; Gerst, J.; Meggyesy, D.

2008-12-01

241

Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada  

SciTech Connect

Yucca Mountain, in southern Nevada, is being investigated by the US Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the US Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Shallow infiltration is not discussed in detail in this report because the focus in on three major aspects of the deep unsaturated-zone system: geologic framework, the gaseous-phase system, and the aqueous-phase system. However, because the relation between shallow infiltration and deep percolation is important to an overall understanding of the unsaturated-zone flow system, a summary of infiltration studies conducted to date at Yucca Mountain is provided in the section titled Shallow Infiltration. This report describes results of several Site Characterization Plan studies that were ongoing at the time excavation of the ESF North Ramp began and that continued as excavation proceeded.

Rousseau, J.P.; Kwicklis, E.M.; Gillies, D.C. [eds.

1999-03-01

242

Hydrogeologic data for the Blaine aquifer and associated units in southwestern Oklahoma and northwestern Texas  

USGS Publications Warehouse

This report is a compilation of hydrogeologic data collected for an areal ground-water investigation of the Blaine aquifer and associated units in southwestern Oklahoma and northwestern Texas. The study area includes parts of Greer, Harmon, and Jackson counties in Oklahoma and parts of Childress, Collingsworth, Hall, Hardeman, and Wilbarger counties in Texas. The Blaine aquifer consists of cavernous gypsum and dolomite beds. Water from the Blaine aquifer supports a local agriculture based mainly on irrigated cotton and wheat. The purpose of the study was to determine the availability, quantity, and quality of ground water from the Blaine aquifer and associated units. This report provides a reference for some of the data that was used as input into a computer ground-water flow model that simulates ground-water flow in the Blaine aquifer. The data in this report consists of: (1) Monthly or periodic water-level measurements in 134 wells; (2) daily mean water-level measurements for 11 wells equipped with water-level recorders; (3) daily total precipitation measurements from five precipitation gages; (4) low-flow stream-discharge measurements for 89 stream sites; (5) miscellaneous stream-discharge measurements at seven stream sites; (6) chemical analyses of surface water from 78 stream sites during low-flow periods; (7) chemical analyses of ground water from 41 wells; and (8) chemical analyses of runoff water collected at five sites.

Runkle, D.L.; Bergman, D.L.; Fabian, R.S.

1997-01-01

243

Transport properties of iodide in a sandy aquifer: Hydrogeological modelling and field tracer tests  

NASA Astrophysics Data System (ADS)

The release of radioactive iodine into geological media from nuclear waste disposal is an issue that has to be considered since iodine is a biophilic element. 129I is, with 99Tc, one of the two long-lived radionuclides that have the highest mobility in radioactive waste disposal. Within this context, iodide retardation is still a matter of debate. A low value of the retardation factor is generally accepted in soils without organic matter, but the possibility for sorption cannot be completely ruled out. Since isotopic exchange with naturally occurring iodine is one of the main potential sorption mechanisms, site-specific retention parameters are needed. In the present paper, we study iodide transport in a sandy aquifer. A hydrogeological model was built to fit deuterium, bromide and iodide breakthrough data from in situ tracer test experiments. Within the precision range of the fitting, iodide is excluded from 2.5% of the effective porosity by anionic exclusion and presents a field retention factor (Kd) lower than 0.025 L/kg.

Razafindratsima, Stephen; Péron, Olivier; Piscitelli, Anne; Gégout, Claire; Schneider, Vincent; Barbecot, Florent; Giffaut, Eric; Robinet, Jean-Charles; Le Cointe, Pierre; Montavon, Gilles

2015-01-01

244

Hydrogeology of the northern segment of the Edwards aquifer, Austin region, Texas  

SciTech Connect

This book reports on geologic mapping and fracture analysis of Lower Cretaceous Edwards aquifer strata conducted to provide a better understanding of the geology of the Balcones Fault Zone as it relates to the hydrogeology of the aquifer's northern segment. Hydrochemical, water-level, and precipitation data were studied to evaluate ground-water flow characteristics, recharge and discharge mechanisms, and the hydrochemical evolution of ground water in the Edwards aquifer. The authors found that ground water generally flows eastward, and main discharge of the unconfined, fast-flowing system occurs along fractures through springs and seeps at the major creeks and rivers in the Georgetown area. Some recharge water moves downdip past these springs into a confined section farther east, along a much reduced hydraulic gradient, and discharges by leaking through the confining units. Hydrochemistry of Edwards ground water indicates an evolution from a Ca-HCO{sub 3} and Ca-Mg-HCO{sub 3} to a mixed-cation-HCO{sub 3} farther downdip to a Na-HCO{sub 3}, and finally to a Na-mixed-anion-type water.

Senger, R.K.; Collins, E.W.; Kreitler, C.W.

1990-01-01

245

Hydrogeology of the Cambrian-Ordovician aquifer system at a test well in northeastern Illinois  

USGS Publications Warehouse

A 3,475-ft-deep test well was drilled in northeastern Illinois near Lake Michigan and the Illinois-Wisconsin State line as part of a regional hydrologic study of the Cambrian-Ordovician aquifer. The well penetrates the Cambrian-Ordovician aquifer system and 40 ft of Precambrian granite. From oldest to youngest the aquifer system consists of the lower Mount Simon aquifer, Mount Simon confining unit, Elmhurst-Mount Simon aquifer, Eau Claire confining unit, Ironton-Galesville aquifer, Franconia confining unit, St. Peter aquifer, and an upper confining unit composed of the Glenwood Formation, Galena Dolomite and Platteville Limestone, and Maquoketa Shale. Aquifer tests were performed on hydrogeologic units that were isolated with inflatable packers. Results indicate that the Ironton-Galesville aquifer has the highest hydraulic conductivity - 10 ft/day. The St. Peter and Elmhurst-Mount Simon aquifers have hydraulic conductivities of 1.8 and 1.5 ft/day, respectively. The Mount Simon confining bed has a hydraulic conductivity of 1.3 ft/day. The Mount Simon confining unit confines saline water present in the lower Mount Simon aquifer. The dissolved solids concentration in water from this aquifer is > than 55,000 mg/L, and the head is at least 50 ft higher than heads in any of the overlying Cambrian and Ordovician aquifers. (USGS)

Nicholas, J.R.; Sherrill, M.G.; Young, H.L.

1987-01-01

246

Evaluation of intrinsic groundwater vulnerability to pollution: COP method for pilot area of Carrara hydrogeological system (Northern Tuscany, Italy)  

NASA Astrophysics Data System (ADS)

During the characterization of the Apuan Alps groundwater body ( "Corpo Idrico Sotterraneo Significativo", briefly CISS) (Regione Toscana, 2007) the intrinsic vulnerability has been evaluated for Carrara hydrogeological system (Northern Tuscany, Italy) by means of COP method, developed within COST 620 European Action (Zwalhlen, 2003). This system is both characterized by large data availability and it is considered an highly risky zone since groundwater protection problems (turbidity of the tapped spring waters and hydrocarbons contamination) and anthropic activity (marble quarries). The study area, 20 Km2large, has high relief energy, with elevations ranging from 5 to 1700 m amsl in almost 5 km. Runoff is scarce except during heavy rainfall; due to the presence of carbonate rocks infiltration is high: groundwater discharge at 155-255 m amsl. The area is located in the north-western part of Apuan Alps Metamorphic Complex, characterized by carbonate and non-carbonate rocks belonging to the non-metamorphic Tuscan Units (Carnic-Oligocene), Mesozoic Succession, Middle-Triassic Succession, and metamorphic Paleozoic rocks. The main geological structure of the area is the Carrara Syncline, constituted prevalently by dolostones, marbles and cherty limestones. These carbonate formations define several moderately to highly productive hydrogeological units, characterized by fissured and karst flow. Hydrogeological system may be subdivided in two different subsets, because of both geo-structural set up and area conformation. However, these are hydrogeologically connected since anisotropy and fractures of karst groundwater. The southern boundary of Carrara hydrogeological system shows important dammed springs, defined by low productive units of Massa Unit (Cambriano?-Carnic). COP methodology for evaluating intrinsic vulnerability of karst groundwater is based on three main factors for the definition of vulnerability itself: COPIndex = C (flow Concentration) *O (Overlying layers) *P (Precipitation). In this way it is possible to estimate the natural grade of groundwater protection (O factor), determined by both soils properties and vadose zone lithology, and then evaluate how this protection could be modified by infiltration processes (diffused or concentrated, C factor) and climatic conditions (P factor). Factor elaborations have been calculated by study area discretization by means of raster grid with square cells, 100 m large, yielding the values distribution of sub-factor for each factor, and then the spatial distribution of intrinsic vulnerability, as result of geoprocessing and map analysis raster techniques in software ESRI ArcInfo® 9.1. Results shows in the study area: 1) Medium and high values of vulnerability classes; 2) Areas with high vulnerability located in zones with low O protection index and moderate protection reduction; 3) C factor contributes to the high vulnerability where superficial cover supports more the infiltration than the run-off (slope between 8 and 31%); 4) Low vulnerability grade areas are either inside unproductive hydrogeological units, or with thick superficial covers. Comparing these results with previous study, the distribution obtained by COP methodology shows larger variations between very high and high vulnerability area distribution. Most of the first areas are located in the central part of hydrogeological system, near to the main spring, and also in northern areas, where there is a swallow hole. This result yields a more precautionary scenario for particularly sensitive are characterized by high anthropogenic activity (marble quarry). Moreover, the vulnerability of such area is confirmed by both natural tracers (Lycopodium clavatum; Baldi, 2004) and environmental isotopes (2H, 3H, 18O; Doveri, 2005). This methodology allowed adding further information about intrinsic vulnerability of a hydrological contest very sensitive to anthropogenic pressures, and it is important for water resource as well. Such vulnerability map highlights higher vulnerability areas than those showed in previ

Baldi, B.; Guastaldi, E.; Rossetto, R.

2009-04-01

247

Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California  

SciTech Connect

The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologicaly complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

Belcher, W.R.; Sweetkind, D.S.; Elliott, P.E.

2002-11-19

248

Identification and Characterization of Hydrogeologic Units at the Nevada Test Site Using Geophysical Logs: Examples from the Underground Test Area Project  

SciTech Connect

The diverse and complex geology of the Nevada Test Site region makes for a challenging environment for identifying and characterizing hydrogeologic units penetrated by wells drilled for the U.S. Department of Energy, National Nuclear Security Administration, Underground Test Area (UGTA) Environmental Restoration Sub-Project. Fortunately, UGTA geoscientists have access to large and robust sets of subsurface geologic data, as well as a large historical knowledge base of subsurface geological analyses acquired mainly during the underground nuclear weapons testing program. Of particular importance to the accurate identification and characterization of hydrogeologic units in UGTA boreholes are the data and interpretation principles associated with geophysical well logs. Although most UGTA participants and stakeholders are probably familiar with drill hole data such as drill core and cuttings, they may be less familiar with the use of geophysical logs; this document is meant to serve as a primer on the use of geophysical logs in the UGTA project. Standard geophysical logging tools used in the UGTA project to identify and characterize hydrogeologic units are described, and basic interpretation principles and techniques are explained. Numerous examples of geophysical log data from a variety of hydrogeologic units encountered in UGTA wells are presented to highlight the use and value of geophysical logs in the accurate hydrogeologic characterization of UGTA wells.

Lance Prothro, Sigmund Drellack, Margaret Townsend

2009-03-25

249

MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model -Documentation of the Hydrogeologic-Unit Flow (HUF) Package  

USGS Publications Warehouse

This report documents the Hydrogeologic-Unit Flow (HUF) Package for the groundwater modeling computer program MODFLOW-2000. The HUF Package is an alternative internal flow package that allows the vertical geometry of the system hydrogeology to be defined explicitly within the model using hydrogeologic units that can be different than the definition of the model layers. The HUF Package works with all the processes of MODFLOW-2000. For the Ground-Water Flow Process, the HUF Package calculates effective hydraulic properties for the model layers based on the hydraulic properties of the hydrogeologic units, which are defined by the user using parameters. The hydraulic properties are used to calculate the conductance coefficients and other terms needed to solve the ground-water flow equation. The sensitivity of the model to the parameters defined within the HUF Package input file can be calculated using the Sensitivity Process, using observations defined with the Observation Process. Optimal values of the parameters can be estimated by using the Parameter-Estimation Process. The HUF Package is nearly identical to the Layer-Property Flow (LPF) Package, the major difference being the definition of the vertical geometry of the system hydrogeology. Use of the HUF Package is illustrated in two test cases, which also serve to verify the performance of the package by showing that the Parameter-Estimation Process produces the true parameter values when exact observations are used.

Anderman, E.R.; Hill, M.C.

2000-01-01

250

Conceptual hydrogeologic framework of the shallow aquifer system at Virginia Beach, Virginia  

USGS Publications Warehouse

The hydrogeologic framework of the shallow aquifer system at Virginia Beach was revised to provide a better understanding of the distribution of fresh ground water, its potential use, and its susceptibility to contamination. The revised conceptual framework is based primarily on analyses of continuous cores and downhole geophysical logs collected at 7 sites to depths of approximately 200 ft.The shallow aquifer system at Virginia Beach is composed of the Columbia aquifer, the Yorktown confining unit, and the Yorktown-East-over aquifer. The shallow aquifer system is separated from deeper units by the continuous St. Marys confining unit.The Columbia aquifer is defined as the predominantly sandy surficial deposits above the Yorktown confining unit. The Yorktown confining unit is composed of a series of very fine sandy to silty clay units of various colors at or near the top of the Yorktown Formation. The Yorktown confining unit varies in thickness and in composition, but on a regional scale is a leaky confining unit. The Yorktown-Eastover aquifer is defined as the predominantly sandy deposits of the Yorktown Formation and the upper part of the Eastover Formation above the confining clays of the St. Marys Formation. The limited areal extent of highly permeable deposits containing freshwater in the Yorktown-Eastover aquifer precludes the installation of highly productive freshwater wells over most of the city. Some deposits of biofragmental sand or shell hashes in the Yorktown-Eastover aquifer can support high-capacity wells.A water sample was collected from each of 10 wells installed at 5 of the 7 core sites to determine the basic chemistry of the aquifer system. One shallow well and one deep well was installed at each site. Concentrations of chloride were higher in the water from the deeper well at each site. Concentrations of dissolved iron in all of the water samples were higher than the U.S. Environmental Protection Agency Secondary Drinking Water Regulations. Concentrations of manganese and chloride were higher than the Secondary Drinking Water Regulations in samples from some wells.In the humid climate of Virginia Beach, the periodic recharge of freshwater through the sand units of the shallow aquifer system occurs often enough to create a dynamic equilibrium whereby freshwater flows continually down and away from the center of the ridges to mix with and sweep brackish water and saltwater back toward the tidal rivers, bays, salt marshes, and the Atlantic Ocean.The aquifers and confining units of the shallow aquifer system at Virginia Beach are heterogeneous, discontinuous, and without exact marker beds, which makes correlations in the study area difficult. Investigations using well cuttings, spot cores, or split-spoon samples with geophysical logs are not as definitive as continuous cores for determining or correlating hydrogeologic units. Future investigations of the shallow aquifer system would benefit by collecting continuous cores.

Smith, Barry S.; Harlow, George E.

2002-01-01

251

The water cycle in a bottle: simulation of a hydrogeological basin  

NASA Astrophysics Data System (ADS)

THE WATER CYCLE IN A BOTTLE: simulation of a hydrogeological basin Author: Mª Roser Nebot (Institut Manuel Blancafort, La Garriga, Barcelona, Spain) Co-author: Sílvia Leiva Hevia (Institut Llicà d'Amunt, Lliça d'Amunt, Barcelona, Spain) The activity can be implemented in a great range of ages, because it has many different levels of depth. It is based on the construction of an analogical model of a hydrogeological basin using a 5L or 8L empty bottle. There are also other hands-on experiences that can be done in relation to the central one, such as creating a fountain, making a cloud, fog, a breeze… The use of a model that the students have to build and interact with enhances the possibility of cooperative and dialogic learning. The set of activities begins with an introduction to see what the students know about the water cycle and to focus on what they are going to work on. It also makes them think about underground water, which is frequently forgotten when drawing and studying the water cycle. Then, the building of the water cycle simulation from an empty bottle is presented, see http://www.xtec.cat/cirel/pla_le/nottingham/roser_nebot/index.htm (Unit 5). You will also find other activities related to the water cycle at the site. The students build the model, water the soil, and observe infiltration and the formation of a lake. Using a syringe they overexploit the well and dry the lake. By making the students label the underground water level and observe how water percolates through the holes in the aquifer we are making them aware that underground water doesn't circulate in rivers inside underground tunnels, but through the interconnected holes and crevices. Inside the bottle there is a little plant to observe evapotranspiration but, because it is very difficult to see the water droplets in the small plant that is inside the set-up, it is advisable to do a parallel experiment using bigger plants in a pot, covering them with a plastic bag tied around the stem, with the soil exposed to air, leaving some of them in the shade and some in the sun. The origin of condensation is thoroughly discussed so that the students understand that evapotranspiration comes from the addition of transpiration (plants) to evaporation. The students also add colouring to simulate contamination and salt to simulate marine intrusion. These activities, together with the overexploitation, help to understand how humans affect nature and how the effects are not the same in different parts of the world. To finish, there are different exercises to review, summarize and complement all that has been learnt through the lesson. To acknowledge the fact that many times underground water is forgotten, as homework they have to surf the net to see the many water cycle drawings and animations that don't show the water in the aquifers, and sometimes when the water is seen, the rocks that contain it are not depicted. They are also encouraged to realize that in water cycle representations, it never rains over the sea and that to adjust to what really happens and that there should also be rain over the oceans and seas. To finish, the idea that within the water cycle model there are many interrelated processes is discussed

Nebot Castelló, M. R.; Leiva Hevia, S.

2012-04-01

252

Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida  

USGS Publications Warehouse

Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement between flow zones is better in southwestern Florida than in southeastern Florida. Vertical hydraulic conductivity in the upper part of the aquifer also may be higher in southeastern Florida because of unconformities present at formation contacts within the aquifer that may be better developed in this area. Recovery efficiencies per cycle varied widely. Eight sites had recovery efficiencies of less than about 10 percent for the first cycle, and three of these sites had not yet achieved recoveries exceeding 10 percent, even after three to five cycles. The highest recovery efficiency achieved per cycle was 94 percent. Three southeastern coastal sites and two southwestern coastal sites have achieved potable water recoveries per cycle exceeding 60 percent. One of the southeastern coastal sites and both of the southwestern coastal sites achieved good recoveries, even with long storage periods (from 174 to 191 days). The high recovery efficiencies for some cycles apparently resulted from water banking?an operational approach whereby an initial cycle with a large recharge volume of water is followed by cycles with much smaller recharge volume. This practice flushes out the aquifer around the well and builds up a buffer zone that can maintain high recovery efficiency in the subsequent cycles. The relative performance of all sites with adequate cycle test data was determined. Performance was arbitrarily grouped into ?high? (greater than 40 percent), ?medium? (between 20 and 40 percent), and ?low? (less than 20 percent) categories based primarily on their cumulative recovery efficiency for the first seven cycles, or projected to seven cycles if fewer cycles were conducted. The ratings of three sites, considered to be borderline, were modified using the overall recharge rate derived from the cumulative recharge volumes. A higher overall recharge rate (greater than 300 million gallons per year) can improve recovery efficiency because of the water-bankin

Reese, Ronald S.; Alvarez-Zarikian, Carlos A.

2007-01-01

253

Hydrogeologic characteristics of four public drinking-water supply springs in northern Arkansas  

USGS Publications Warehouse

In October 2000, a study was undertaken by the U.S. Geological Survey (USGS) in cooperation with the Arkansas Department of Health to determine the hydrogeologic characteristics, including the extent of the recharge areas, for Hughes Spring, Stark Spring, Evening Shade Spring, and Roaring Spring, which are used for public-water supply in northern Arkansas. Information pertaining to each spring can be used to enable development of effective management plans to protect these water resources and public health. An integrated approach to determine the ground-water characteristics and the extent of the local recharge areas of the four springs incorporated tools and methods of hydrology, structural geology, geomorphology, geophysics, and geochemistry. Analyses of discharge, temperature, and water quality were completed to describe ground-water flow characteristics, source-water characteristics, and connectivity of the ground-water system with surface runoff. Water-level contour maps were constructed to determine ground-water flow directions and ground-water tracer tests were conducted to determine the extent of the recharge areas and ground-water flow velocities. Hughes Spring supplies water for the city of Marshall, Arkansas, and the surrounding area. The mean annual discharge for Hughes Spring was 2.9 and 5.2 cubic feet per second for water years 2001 and 2002, respectively. Recharge to the spring occurs mainly from the Boone Formation (Springfield Plateau aquifer). Ground-water tracer tests indicate the recharge area for Hughes Spring generally coincides with the surface drainage area (15.8 square miles) and that Hughes Spring is connected directly to the surface flow in Brush Creek. The geochemistry of Hughes Spring demonstrated variations with flow conditions and the influence of surface-runoff in the recharge area. Calcite saturation indices, total dissolved solids concentrations, and hardness demonstrate noticeable differences with flow conditions reflecting the reduced residence time and interaction of water with the source rock within the ground-water system at higher discharges for Hughes Spring. Concentrations of fecal indicator bacteria also demonstrated a substantial increase during high-flow conditions, suggesting that a non-point source of bacteria possibly from livestock may enter the system. Conversely, nutrient concentrations did not vary with flow and were similar to concentrations reported for undeveloped sites in the Springfield Plateau and Ozark aquifers in northern Arkansas and southern Missouri. Deuterium and oxygen-18 data show that the Hughes Spring discharge is representative of direct precipitation and not influenced by water enriched in oxygen-18 through evaporation. Discharge data show that Hughes Spring is dominated by conduit type ground-water flow, but a considerable component of diffuse flow also exists in the ground-water system. Carbon-13 data indicate a substantial component of the recharge water interacts with the surface material (soil and regolith) in the recharge area before entering the ground-water system for Hughes Spring. Tritium data for Hughes Spring indicate that the discharge water is a mixture of recent recharge and sub-modern water (recharged prior to 1952). Stark Spring supplies water for the city of Cushman, Arkansas, and the surrounding area. 2 Hydrogeologic Characteristics of Four Public Drinking-Water Supply Springs in Northern Arkansas The mean annual discharge for Stark Spring was 0.5 and 1.5 cubic feet per second for water years 2001 and 2002, respectively. The discharge and water-quality data show the ground-water system for Stark Spring is dominated by rapid recharge from surface runoff and mainly consists of a conduit- type flow system with little diffuse-type flow. Analyses of discharge data show that the estimated recharge area (0.79 square mile) is larger than the surface drainage area (0.34 square mile). Ground-water tracer tests and the outcrop of the

Galloway, Joel M.

2004-01-01

254

A near real time scenario at regional scale for the hydrogeological risk  

NASA Astrophysics Data System (ADS)

The early warning systems dedicated to landslides and floods represent the Umbria Region Civil Protection Service new generation tools for hydraulic and hydrogeological risk reduction. Following past analyses performed by the Functional Centre (part of the civil protection service dedicated to the monitoring and the evaluation of natural hazards) on the relationship between saturated soil conditions and rainfall thresholds, we have developed an automated early warning system for the landslide risk, called LANDWARN, which generates daily and 72h forecast risk matrix with a dense mesh of 100 x 100m, throughout the region. The system is based on: (a) the 20 days -observed and 72h -predicted rainfall, provided by the local meteorological network and the Local scale Meteorological Model COSMO ME, (b) the assessment of the saturation of soils by: daily extraction of ASCAT satellite data, data from a network of 16 TDR sensors, and a water balance model (developed by the Research Institute for Geo-Hydrological Protection, CNR, Perugia, Italy) that allows for the prediction of a saturation index for each point of the analysis grid up to a window of 72 h, (c) a Web-GIS platform that combines the data grids of calculated hazard indicators with layers of landslide susceptibility and vulnerability of the territory, in order to produce dynamic risk scenarios. The system is still under development and it's implemented at different scales: the entire region, and a set of known high-risk landslides in Umbria. The system is monitored and regularly reviewed through the back analysis of landslide reports for which the activation date is available. Up to now, the development of the system involves: a) the improvement of the reliability assessment of the condition of soil saturation, a key parameter which is used to dynamically adjust the values of rainfall thresholds used for the declaration of levels of landslide hazard. For this purpose, a procedure was created for the ASCAT satellite data daily download, used for the derivation of a soil water content index (SWI): these data are compared with instrumental ones from the TDR stations and the results of the water balance model that evaluates the contributions of water infiltration, percolation, evapotranspiration, etc. using physically based parameters obtained through a long process of characterization of soil and rock types, for each grid point; b) The assessment of the contribution due to the melting of the snow; c) the physically based - coupling model slope stability analysis, GIS-based, developed by the Department of Civil and Environmental Engineering, University of Perugia, with the aim to introduce also the actual mechanical and physical characteristics of slopes in the analysis. As result of the system, is the daily creation of near real-time and 24, 48, 72h forecast risk scenarios, that, under the intention of the Department of Civil Protection Service, will be used by the Functional Centre for the institutional tasks of hydrogeological risk evaluation and management, but also by local Administrations involved in the monitoring and assessment of landslide risk, in order to receive feedback on the effectiveness of the scenarios produced.

Ponziani, F.; Stelluti, M.; Zauri, R.; Berni, N.; Brocca, L.; Moramarco, T.; Salciarini, D.; Tamagnini, C.

2012-04-01

255

Hydrogeologic controls on nitrate transport in a small agricultural catchment, Iowa  

USGS Publications Warehouse

Effects of subsurface deposits on nitrate loss in stream riparian zones are recognized, but little attention has been focused on similar processes occurring in upland agricultural settings. In this paper, we evaluated hydrogeologic controls on nitrate transport processes occurring in a small 7.6 ha Iowa catchment. Subsurface deposits in the catchment consisted of upland areas of loess overlying weathered pre-Illinoian till, drained by two ephemeral drainageways that consisted of Holocene-age silty and organic rich alluvium. Water tables in upland areas fluctuated more than 4 m per year compared to less than 0.3 m in the drainageway. Water quality patterns showed a distinct spatial pattern, with groundwater in the drainageways having lower nitrate concentrations (10 mg L-1) as wells as lower pH, dissolved oxygen and redox, and higher ammonium and dissolved organic carbon levels. Several lines of evidence suggested that conditions are conducive for denitrification of groundwater flowing from uplands through the drainageways. Field-measured nitrate decay rates in the drainageways (???0.02 day-1) were consistent with other laboratory studies and regional patterns. Results from MODFLOW and MT3DMS simulations indicated that soils in the ephemeral drainageways could process all upland groundwater nitrate flowing through them. However, model-simulated tile drainage increased both water flux and nitrate loss from the upland catchment. Study results suggest that ephemeral drainageways can provide a natural nitrate treatment system in our upland glaciated catchments, offering management opportunities to reduce nitrate delivery to streams. Copyright 2007 by the American Geophysical Union.

Schilling, K.E.; Tomer, M.D.; Zhang, Y.-K.; Weisbrod, T.; Jacobson, P.; Cambardella, C.A.

2007-01-01

256

Correlation of Miocene sequences and hydrogeologic units, New Jersey Coastal Plain  

USGS Publications Warehouse

We have developed a Miocene sequence stratigraphic framework using data from recently drilled boreholes in the New Jersey Coastal Plain. Sequences are shallowing upward, unconformity-bounded units; fine-grained shelf and prodelta sediments grade upward to delta front and shallow-marine sands, corresponding to confining bed-aquifer couplets. By dating Miocene sequences using Sr-isotope stratigraphy, and mapping with borehole data and geophysical logs, we can predict the continuity and effectiveness of the confining beds and aquifers. The following are illustrated on a 90-km basinward dip section: (1) the composite confining bed is comprised of the KwO and lower Kw1a (ca. 23.8-20.5 Ma) sequences downdip at Atlantic City, and the Kw1b, Kw1a and older sequences updip (ca. 69.3-20.6 Ma), and is continuous throughout most of the coastal plain; (2) the major confined aquifer, the Atlantic City 800-foot sand, is comprised of the upper Kw1a and Kw1b sequences (ca. 20.5-20.2 Ma) and is an areally continuous sand that is interconnected with the Kirkwood-Cohansey aquifer system updip of Mays Landing; (3) the confining bed above the Atlantic City 800-foot sand is comprised of the Kw2a, Kw2b, and Kw3 sequences (18.1-13.3 Ma) and is an extensive confining bed that pinches out updip. These sequences and aquifer-confining bed couplets are linked to global sea-level changes evinced by the ??18O record. We conclude that sequence stratigraphy is a powerful tool when applied to regional hydrogeologic problems, although basinal tectonic differences and localized variations in sediment supply can affect aquifer thickness and permeability.

Sugarman, P.J.; Miller, K.G.

1997-01-01

257

Improving hydrogeological models of deltaic sedimentary media using GIS based 3D geological tools  

NASA Astrophysics Data System (ADS)

Due to the natural heterogeneity the hydrological modeling in the deltaic sedimentary media is complex. Reliable 3D hydrogeological models could be created by integrating properly detailed and accurate data. This data has to be properly managed and interpreted. The first task has been the creation of a geospatial database to store and to allow the management of a great amount of different data types coming from different sources (geophysical, geological, hydraulic, and others). The data structure allows storing an accurate and very detailed core geological description that can be straightforwardly generalized and further upscaled. The second step was to create tools within a GIS environment allowing querying and visualizing the data. One consists in illustrating the core with the detailed geological description of each selected borehole. Another creates geologic profiles by using an on screen defined buffer zone selection for the needed boreholes. The lithological columns of the boreholes together with the defined stratigraphic subunits appear on screen as a geological profile. Complementary information like the DTM profile, the distance between the boreholes, the depth of each strata complete the geological picture. In this working environment the user is able to analyze the possible existing stratigraphical units and to define them on screen in a deterministic way or by using geostatistics. Additionally information like the type of the contact surface, the position between the geological units or subunits as well as other parameters could be attached as attributes. The possible faults or fractures can be identified within the same environment. To date, a dictionary of terms describing the possible geological contact surfaces types is on the way to be defined. In parallel, a tool of converting the geological units/subunits analyzed data is developed in order to project the obtained information within a 3D environment. The export procedure provides a spatial located points mass with their attached attributes. The points mass could be used within the same GIS environment or by external software packages to derive a reliable 3D model.

Velasco, V.; Gogu, R.; Vázquez-Suñé, E.; Monfort, D.; Garriga, A.; Carrera, J.

2009-04-01

258

Hydrogeology and water quality of the North Canadian River alluvium, Concho Reserve, Canadian County, Oklahoma  

USGS Publications Warehouse

A growing user population within the Concho Reserve in Canadian County, Oklahoma, has increased the need for drinking water. The North Canadian River alluvium is a reliable source of ground water for agriculture, industry, and cities in Canadian County and is the only ground-water source capable of meeting large demands. This study was undertaken to collect and analyze data to describe the hydrogeology and ground-water quality of the North Canadian River alluvium within the Concho Reserve. The alluvium forms a band about 2 miles long and 0.5 mile wide along the southern edge of the Concho Reserve. Thickness of the alluvium ranges from 19 to 75 feet thick and averages about 45 feet in the study area. Well cuttings and natural gamma-ray logs indicate the alluvium consists of interfingering lenses of clay, silt, and sand. The increase of coarse-grained sand and the decrease of clay and silt with depth suggests that the water-bearing properties of the aquifer within the study area improve with depth. A clay layer in the upper part of the aquifer may be partially responsible for surface water ponding in low areas after above normal precipitation and may delay the infiltration of potentially contaminated water from land surface. Specific conductance measurements indicate the ground-water quality improves in a northern direction towards the terrace. Water-quality properties, bacteria counts, major ion and nutrient concentrations, trace-element and radionuclide concentrations, and organic compound concentrations were measured in one ground-water sample at the southern edge of the Concho Reserve and comply with the primary drinking-water standards. Measured concentrations of iron, manganese, sulfate, and total dissolved solids exceed the secondary maximum contaminant levels set for drinking water. The ground water is a calcium sulfate bicarbonate type and is considered very hard, with a hardness of 570 milligrams per liter as calcium carbonate.

Becker, C.J.

1998-01-01

259

Providing a Connection between a Bayesian Inverse Modeling Tool and a Coupled Hydrogeological Processes Modeling Software  

NASA Astrophysics Data System (ADS)

The Method of Anchored Distributions (MAD) is a Bayesian technique for characterizing the uncertainty in geostatistical model parameters. Open-source software has been developed in a modular framework such that this technique can be applied to any forward model software via a driver. This presentation is about the driver that has been developed for OpenGeoSys (OGS), open-source software that can simulate many hydrogeological processes, including couple processes. MAD allows the use of multiple data types for conditioning the spatially random fields and assessing model parameter likelihood. For example, if simulating flow and mass transport, the inversion target variable could be hydraulic conductivity and the inversion data types could be head, concentration, or both. The driver detects from the OGS files which processes and variables are being used in a given project and allows MAD to prompt the user to choose those that are to be modeled or to be treated deterministically. In this way, any combination of processes allowed by OGS can have MAD applied. As for the software, there are two versions, each with its own OGS driver. A Windows desktop version is available as a graphical user interface and is ideal for the learning and teaching environment. High-throughput computing can even be achieved with this version via HTCondor if large projects want to be pursued in a computer lab. In addition to this desktop application, a Linux version is available equipped with MPI such that it can be run in parallel on a computer cluster. All releases can be downloaded from the MAD Codeplex site given below.

Frystacky, H.; Osorio-Murillo, C. A.; Over, M. W.; Kalbacher, T.; Gunnell, D.; Kolditz, O.; Ames, D.; Rubin, Y.

2013-12-01

260

Faulting and groundwater in a desert environment: constraining hydrogeology using time-domain electromagnetic data  

USGS Publications Warehouse

Within the south-western Mojave Desert, the Joshua Basin Water District is considering applying imported water into infiltration ponds in the Joshua Tree groundwater sub-basin in an attempt to artificially recharge the underlying aquifer. Scarce subsurface hydrogeological data are available near the proposed recharge site; therefore, time-domain electromagnetic (TDEM) data were collected and analysed to characterize the subsurface. TDEM soundings were acquired to estimate the depth to water on either side of the Pinto Mountain Fault, a major east-west trending strike-slip fault that transects the proposed recharge site. While TDEM is a standard technique for groundwater investigations, special care must be taken when acquiring and interpreting TDEM data in a twodimensional (2D) faulted environment. A subset of the TDEM data consistent with a layered-earth interpretation was identified through a combination of three-dimensional (3D) forward modelling and diffusion time-distance estimates. Inverse modelling indicates an offset in water table elevation of nearly 40 m across the fault. These findings imply that the fault acts as a low-permeability barrier to groundwater flow in the vicinity of the proposed recharge site. Existing production wells on the south side of the fault, together with a thick unsaturated zone and permeable near-surface deposits, suggest the southern half of the study area is suitable for artificial recharge. These results illustrate the effectiveness of targeted TDEM in support of hydrological studies in a heavily faulted desert environment where data are scarce and the cost of obtaining these data by conventional drilling techniques is prohibitive.

Bedrosian, Paul A.; Burgess, Matthew K.; Nishikawa, Tracy

2013-01-01

261

Hydrogeological study for improved nature restoration in dune ecosystems--Kleyne Vlakte case study, Belgium.  

PubMed

In dune slacks a close coupling exists between changes in the hydrology and changes in species composition and vegetation structure. Consequently, there is a need to underpin nature restoration projects not only with ecologically relevant knowledge but also with scientifically sound hydrogeological data. In this paper, this necessity is illustrated through a study of the Flemish Nature Reserve 'The Zwindunes and Zwinpolders' (Belgian coastal plain) as an example. The management plan for the nature reserve suggests rewetting part of it to enhance its ecological value. The groundwater aspect was studied by means of field observations and mathematical modelling. First, fresh water head observation showed a mean groundwater flow from the nature reserve to the adjacent polder. Secondly, groundwater quality was studied with borehole measurements and water samples, resulting in a map of the fresh-salt water distribution and of water types. All available information was then put together in a density dependent groundwater flow model. The aim of this model was the description of current flow and fresh-salt water distribution and to simulate the impact of three possible rewetting scenarios. Rewetting will be accomplished by the infiltration of water in a depression, different lay-outs for which are considered. A zoomed in flow model based on a regional model was used to incorporate both local scale, which is of importance to ecology, and the larger scale, which determines general groundwater flow and fresh-salt water distribution. This modelling indicated differences between scenarios and was used to decide on the best rewetting strategy. PMID:20655140

Vandenbohede, A; Lebbe, L; Adams, R; Cosyns, E; Durinck, P; Zwaenepoel, A

2010-11-01

262

Representative hydraulic conductivity of hydrogeologic units: Insights from an experimental stratigraphy  

NASA Astrophysics Data System (ADS)

SummaryA critical issue facing groundwater flow models is the estimation of representative hydraulic conductivity assigned to the model units. In this study, an experiment-based, high-resolution hydraulic conductivity map offers a test case to evaluate this parameter. Various hydrogeological units are distinguished, each is of irregular shape with distinct heterogeneity pattern created by physical sedimentation. Extending a previous study which used numerical upscaling to compute equivalent conductivities for these units (at two upscaling scales) [Zhang, Y., Gable, C.W., Person, M., 2006. Equivalent hydraulic conductivity of an experimental stratigraphy - implications for basin-scale flow simulations. Water Resources Research 42, W05404. doi:10.1029/2005WR004720], this study compares them with local statistics and effective conductivities predicted by a stochastic theory. Results suggest that for a system with moderate ln K variance (4.07) and low topographic slope (˜1°), the arithmetic mean ( KA) provides a good estimate for the maximum principal component ( Kmax) of the equivalent conductivity. The minimum principal component ( Kmin) lies between the harmonic and geometric means: its closeness to the geometric mean is affected by heterogeneity pattern and upscaling scale. Using Kmax (alternatively, the arithmetic mean), geometric mean, and ln( K) variance, the stochastic theory predicts a Kmin that is consistent with the up-scaled value. Similarly, knowing Kmin, Kmax predicted by theory is also consistent with the up-scaled value. For most deposits (some with variance greater than 1), a low-variance version of the theory is more accurate than a high-variance version. However, the increase of topographic slope (to ˜4°) and total ln K variance (to 16) result in increased deviation of Kmax from KA. High variance also results in significantly larger anisotropy ratio, possibly due to the dominance of preferential flow. Finally, for select units, equivalent conductivity exhibits scale effect. Field scale representative elementary volume thus does not exist and upscaling the full unit is necessary to obtain the representative conductivity.

Zhang, Ye; Person, Mark; Gable, Carl W.

2007-06-01

263

Differential Hydrogeological Effects of Draining Tunnels Through the Northern Apennines, Italy  

NASA Astrophysics Data System (ADS)

Water inflows are a major challenge in tunnelling and particularly difficult to predict in geological settings consisting of heterogeneous sedimentary rock formations with complex tectonic structure. For a high-speed railway line between Bologna and Florence (Italy), a series of seven railway tunnels was drilled through turbiditic formations, ranging from pelitic rocks with thin arenitic layers over sequences including thick-bedded sandstone to calcareous rocks showing chemical dissolution phenomena (karstification). The tunnels were built as draining tunnels and caused significant impacts, such as drying of springs and base-flow losses at mountain streams. A comprehensive hydrological monitoring programme and four multi-tracer test were done, focusing on four sections of the tunnel system. The tracer tests delivered unprecedented data on groundwater flow and transport in turbiditic aquifers and made it possible to better characterize the differential impacts of tunnel drainage along a geological gradient. The impact radius is 200 m in the thin-bedded sequences but reaches 2.3-4.0 km in calcareous and thick-bedded arenitic turbidites. Linear flow velocities, as determined from the peaks of the tracer breakthrough curves, range from 3.6 m/day in the thin-bedded turbidites to 39 m/day in the calcareous rocks (average values from the four test sites). At several places, discrete fault zones were identified as main hydraulic pathways between impacted streams and draining tunnels. This case shows that ignoring the hydrogeological conditions in construction projects can cause terrible damage, and the study presents an approach to better predict hydraulic impacts of draining tunnels in complex sedimentary rock settings.

Vincenzi, Valentina; Gargini, Alessandro; Goldscheider, Nico; Piccinini, Leonardo

2014-05-01

264

Hydrogeology and Ground-Water Quality, Chippewa Township, Isabella County, Michigan, 2002-05  

USGS Publications Warehouse

The ground-water resource potential of Chippewa Township, Isabella County, Mich. was characterized on the basis of existing hydrogeologic data, water-level records, analyses of water samples, and interpretation of geophysical survey data. Eight ground-water samples were collected and analyzed for major ions, nutrients, and trace-metal composition. In addition, 10 direct current-resistivity soundings were collected throughout Chippewa and Coe Townships to identify potential freshwater in the aquifer system. The aquifer system includes complexly interbedded glaciofluvial, glaciolacustrine, and basal-lodgment tills, which overlie Jurassic or Pennsylvanian sedimentary rocks. In parts of the township, freshwater is present in all geologic units, but in most areas saline water is encountered near the base of Pleistocene glacial deposits and in the Jurassic or Pennsylvanian bedrock. A near-surface sheet of relatively dense basal-lodgment till likely prevents, or substantially retards, significant direct recharge of ground water to glacial and bedrock aquifers in Chippewa and adjacent townships. Glacial sands and gravels form the principal aquifer for domestic wells (97.5 percent of wells in the township). The single community water supply in the township has wells screened in glacial deposits near the base of the glacial drift. Increased withdrawals of ground water in response to increasing demand has led to a slight decline in water quality from this supply. This water-quality decline is related primarily to an increase of dissolved sulfate, which is probably a function of well depth and dissolution of gypsum, a common mineral constituent in the Jurassic 'red beds,' which form the uppermost bedrock unit throughout most of the township. One explanation for the increase in sulfate is upconing of saline water from bedrock sources, which may contain saline water.

Westjohn, David B.; Hoard, Chris J.

2006-01-01

265

Comprehensive principles of quantitative hydrogeology established by Darcy (1856) and Dupuit (1857)  

NASA Astrophysics Data System (ADS)

Henry Darcy and Jules Dupuit were born 1 year apart, were classmates during their undergraduate and graduate education in civil engineering, and were colleagues in the French corps of civil engineers, with overlapping appointments as inspector general in the early 1850s. At that time Darcy turned over, to Dupuit, his position as Director of Water and Bridges in Paris and the research on pipe flow he had begun there in 1849. In these pipe flow experiments, Darcy discovered what he referred to as a "law" of fluid mechanics, which is that above a certain velocity threshold, the head loss is proportional to velocity squared, and below that threshold, the head loss is linearly proportional to velocity. During the remainder of their careers, Darcy and Dupuit applied this law with their collective, extensive, prior knowledge of fluid mechanics, geology, aquifers, wells, and springs to quantitative studies of fluid flow in the subsurface (and also in pipes, aqueducts, rivers, and sand filters). Two monographs by Darcy (1856) and Dupuit (1857) are mutually cited retrospectives on much of this research, submitted at nearly the same time, to the same Corps des Ponts et Chaussées publisher, near the end of their careers. Between these two monographs, many of the fundamentals of quantitative hydrogeology were established, including the equation for groundwater motion, average linear velocity, average travel time, effective hydraulic conductivity for layered heterogeneity, conservation of mass in confined and unconfined flow, the nature of the regional pieziometric surface, porous flow versus flow through discrete fractures and karst conduits, the equation for a cone of depression around flowing wells, superposition of the effects of multiple wells, and capture zone geometries of wells within a regional flow field.

Ritzi, Robert W.; Bobeck, Patricia

2008-10-01

266

Hydrochemistry and hydrogeologic conditions within the Hanford Site upper basalt confined aquifer system  

SciTech Connect

As part of the Hanford Site Ground-Water Surveillance Project, Flow System Characterization Task. Pacific Northwest Laboratory examines the potential for offsite migration of contamination within the upper basalt confined aquifer system for the US Department of Energy (DOE). As part of this activity, groundwater samples were collected over the past 2 years from selected wells completed in the upper Saddle Mountains Basalt. The hydrochemical and isotopic information obtained from these groundwater samples provides hydrologic information concerning the aquifer-flow system. Ideally, when combined with other hydrologic property information, hydrochemical and isotopic data can be used to evaluate the origin and source of groundwater, areal groundwater-flow patterns, residence and groundwater travel time, rock/groundwater reactions, and aquifer intercommunication for the upper basalt confined aquifer system. This report presents the first comprehensive Hanford Site-wide summary of hydrochemical properties for the upper basalt confined aquifer system. This report provides the hydrogeologic characteristics (Section 2.0) and hydrochemical properties (Section 3.0) for groundwater within this system. A detailed description of the range of the identified hydrochemical parameter subgroups for groundwater in the upper basalt confined aquifer system is also presented in Section 3.0. Evidence that is indicative of aquifer contamination/aquifer intercommunication and an assessment of the potential for offsite migration of contaminants in groundwater within the upper basalt aquifer is provided in Section 4.0. The references cited throughout the report are given in Section 5.0. Tables that summarize groundwater sample analysis results for individual test interval/well sites are included in the Appendix.

Spane, F.A. Jr.; Webber, W.D.

1995-09-01

267

Blocking Moving Window algorithm: Conditioning multiple-point simulations to hydrogeological data  

NASA Astrophysics Data System (ADS)

Connectivity constraints and measurements of state variables contain valuable information on aquifer architecture. Multiple-point (MP) geostatistics allow one to simulate aquifer architectures, presenting a predefined degree of global connectivity. In this context, connectivity data are often disregarded. The conditioning to state variables is usually carried out by minimizing a suitable objective function (i.e., solving an inverse problem). However, the discontinuous nature of lithofacies distributions and of the corresponding objective function discourages the use of traditional sensitivity-based inversion techniques. This work presents the Blocking Moving Window algorithm (BMW), aimed at overcoming these limitations by conditioning MP simulations to hydrogeological data such as connectivity and heads. The BMW evolves iteratively until convergence: (1) MP simulation of lithofacies from geological/geophysical data and connectivity constraints, where only a random portion of the domain is simulated at every iteration (i.e., the blocking moving window, whose size is user-defined); (2) population of hydraulic properties at the intrafacies; (3) simulation of state variables; and (4) acceptance or rejection of the MP simulation depending on the quality of the fit of measured state variables. The outcome is a stack of MP simulations that (1) resemble a prior geological model depicted by a training image, (2) honor lithological data and connectivity constraints, (3) correlate with geophysical data, and (4) fit available measurements of state variables well. We analyze the performance of the algorithm on a 2-D synthetic example. Results show that (1) the size of the blocking moving window controls the behavior of the BMW, (2) conditioning to state variable data enhances dramatically the initial simulation (which accounts for geological/geophysical data only), and (3) connectivity constraints speed up the convergence but do not enhance the stack if the number of iterations is large.

Alcolea, Andres; Renard, Philippe

2010-08-01

268

Summary of available hydrogeologic data for the northeast portion of the alluvial aquifer at Louisville, Kentucky  

USGS Publications Warehouse

The hydrogeologic characteristics of the unconsolidated glacial outwash sand and gravel deposits that compose the northeast portion of the alluvial aquifer at Louisville, Kentucky, indicate a prolific water-bearing formation with approximately 7 billion gallons of ground-water storage and an estimated sustainable yield of over 280 million gallons per day. This abundance of ground water and the need to properly develop and manage this resource has prompted many past investigations (since 1956), which have produced reports, maps, and data files covering a variety of topics relative to the movement, availability, and use of ground water in this area. These data have been compiled into a single report to assist in future development and use of the ground-water resources. Available ground-water data for the alluvial aquifer at Louisville, Kentucky, from Beargrass Creek to Harrods Creek, were compiled from the U.S. Geological Survey National Water Information System and the Kentucky Groundwater Data Repository. Data contained in these databases include ground-water well-construction details and historical ground-water levels, drillers' logs, and water-quality information. Additional data and information were gathered from project files at the U.S. Geological Survey--Kentucky Water Science Center and files at the Louisville Water Company. Information contained in these files included data from area pumping tests describing aquifer characteristics and ground-water flow. Data describing current conditions of the ground-water system in the northeast portion of the alluvial aquifer also are included. Ground-water levels from a network of observation wells show recent trends in the flow system, and information from the Kentucky Division of Water-Groundwater Branch lists current permitted ground-water withdrawals in the area.

Unthank, Michael D.; Nelson, Hugh L.

2006-01-01

269

Transport and fate of nitrate and pesticides: Hydrogeology and riparian zone processes  

USGS Publications Warehouse

There is continuing concern over potential impacts of widespread application of nutrients and pesticides on ground- and surface-water quality. Transport and fate of nitrate and pesticides were investigated in a shallow aquifer and adjacent stream, Cow Castle Creek, in Orangeburg County, South Carolina. Pesticide and pesticide degradate concentrations were detected in ground water with greatest frequency and largest concentrations directly beneath and downgradient from the corn (Zea mays L.) field where they were applied. In almost all samples in which they were detected, concentrations of pesticide degradates greatly exceeded those of parent compounds, and were still present in ground waters that were recharged during the previous 18 yr. The absence of both parent and degradate compounds in samples collected from deeper in the aquifer suggests that this persistence is limited or that the ground water had recharged before use of the pesticide. Concentrations of NO3- in ground water decreased with increasing depth and age, but denitrification was not a dominant controlling factor. Hydrologic and chemical data indicated that ground water discharges to the creek and chemical exchange takes place within the upper 0.7 m of the streambed. Ground water had its greatest influence on surface-water chemistry during low-flow periods, causing a decrease in concentrations of Cl-, NO3-, pesticides, and pesticide degradates. Conversely, shallow subsurface drainage dominates stream chemistry during high-flow periods, increasing stream concentrations of Cl-, NO3-, pesticides, and pesticide degradates. These results point out the importance of understanding the hydrogeologic setting when investigating transport and fate of contaminants in ground water and surface water. ?? ASA, CSSA, SSSA.

Puckett, L.J.; Hughes, W.B.

2005-01-01

270

Calendar year 1994 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). These sites lie within the boundaries of the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to protect local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy. The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with reporting requirements of Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring, the Part 1 GWQR is submitted to the Tennessee Department of Environment and Conservation (TDEC) by the RCRA reporting deadline (March 1 of the following CY); Energy Systems submitted the 1994 Part 1 GWQR for the Chestnut Ridge Regime to the TDEC in February 1995 (HSW Environmental Consultants, Inc. 1995a).

NONE

1995-09-01

271

Plan of study to define hydrogeologic characteristics of the Madera Limestone in the east mountain area of central New Mexico  

USGS Publications Warehouse

The east mountain area of central New Mexico includes the eastern one-third of Bernalillo County and portions of Sandoval, Santa Fe, and Torrance Counties. The area covers about 320 square miles. The Madera Limestone, the principal aquifer in the east mountain area, is the sole source of water for domestic, municipal, industrial, and agricultural uses for many residents. Some water is imported from wells near Edgewood by the Entranosa Water Cooperative, which serves a population of approximately 3,300. The remaining population is served by small water systems that derive supplies locally or by individually owned domestic wells. The population of the east mountain area has increased dramatically over the past 20 years. In 1970, the population of the east mountain area was about 4,000. Demographic projections suggest that approximately 1,000 people per year are moving into the area, and with a growth rate of 3.0 percent the population will be 16,700 in 2000. Consequently, ground-water withdrawals have increased substantially over the past 20 years, and will continue to increase. Little is known about the flow characteristics and hydrogeologic properties of the Madera Limestone. This report describes existing information about the geologic and hydrologic framework and flow characteristics of the Madera Limestone, and presents a plan of study for data-collection activities and interpretive studies that could be conducted to better define the hydrogeologic characteristics of the Madera Limestone. Data-collection activities and interpretive studies related to the hydrogeologic components of the Madera Limestone are prioritized. Activities that are necessary to improve the quantification of a component are prioritized as essential. Activities that could add additional understanding of a component, but would not be necessary to improve the quantification of a component, are prioritized as useful.

Rankin, D.R.

1999-01-01

272

Louisiana Ground-Water Map No.13: Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996  

USGS Publications Warehouse

This report describes the thickness and areal extent of the Sparta aquifer, identifies sands within the fresh-water extent of the aquifer, and presents data and a map that illustrate the generalized potentiometric surface (water levels) during October 1996. The report includes a detailed geophysical log, structure contour maps, hydrogeologic sections, and hydrographs of water levels in selected wells. The potentiometric surface-map can be used for determining direction of ground-water flow, hydraulic gradients, and the effects of withdrawals on the aquifer.

Brantly, Jeffrey A.; Seanor, Ronald C.; McCoy, Kaycee L.

2002-01-01

273

Louisiana Ground-Water Map No. 13: Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996  

USGS Publications Warehouse

This report describes the thickness and areal extent of the Sparta aquifer, identifies sands within the fresh-water extent of the aquifer, and presents data and a map that illustrate the generalized potentiometric surface (water levels) during October 1996. The report includes a detailed geophysical log, structure contour maps, hydrogeologic sections, and hydrographs of water levels in selected wells. The potentiometric surface-map can be used for determining direction of ground-water flow, hydraulic gradients, and the effects of withdrawals on the aquifer.

Brantly, Jeffrey A.; Seanor, Ronald C.; McCoy, Kaycee L.

2002-01-01

274

Hydrogeological conditions of heavy high-viscous oil distribution in northeast Ural-Povolzhye (Udmurtia, Perm, and Kirov Region)  

SciTech Connect

The major question while investigating the origin of subsurface oilfield waters is the development of regional and local hydrogeological oil exploration indices. For determination of the influence of subsurface water on oil pools it is necessary to study paleohydrogeological interrelations and regularities, and the interaction of sub-surface waters and oils. While considering these problems, paleohydrogeological cycles, which include crustal elevation and sea level regression are identified. Nine or ten paleohydrogeological cycles are marked in the Udmurtia, Permian, and Kirov territories, depending on regional paleotectonical history. Mesozoic-Cainozoic tectonic movements are the important cause of generation of heavy high-viscous oil pools.

Kouznetsova, T.A. [All-Russia Petroleum Scientific-Research Geological-Exploration Institute, St. Petersburg (Russian Federation)

1995-12-31

275

Selected hydrogeologic data for the southwest Glendive Preliminary Logical Mining Unit and adjacent areas, Dawson County, Montana  

USGS Publications Warehouse

Hydrogeologic data were collected from a coal area in Dawson County, Montana, to provide a basis for identifying and characterizing the groundwater resources. Inventory records for 72 domestic, stock, irrigation, unused, and observation wells are tabulated in the report; the data were collected principally from 1977 through 1981. The location of each well is shown on a map. Natural-gamma geophysical logs, and water level measurements are also included for selection wells. Twenty-six analyses of groundwater identify the chemical-constituent concentrations and physical properties of water from sampled wells. (USGS)

Roberts, R.S.

1987-01-01

276

Implementation of a Shallow Groundwater Temperature Manipulation: Linking Hydrogeology, Biogeochemistry, and Aquatic Ecology  

NASA Astrophysics Data System (ADS)

Integration of the fields of hydrogeology, biogeochemistry, and meiofaunal and microbial ecology is being used for a shallow groundwater temperature manipulation which simulates global climate change predictions. This study is being conducted on a first order spring-stream, Valley Spring, (southern Ontario, Canada) the headwater of which has been longitudinally divided to a sediment depth of -100 cm. To examine groundwater flow paths and hydraulic conductivity, and to collect physicochemical parameters and nutrient samples, a series of nested piezometers have been installed along three transects across the stream channel. Each nest evaluates water characteristics at depths of -20, -40, -60, -80, and -100 cm. Meiofaunal and microbial samples are collected, using a standpipe corer at the same depths as the piezometer openings. Sampling started in June 2002 and heating of one side of the groundwater began in March 2004. Hydraulic conductivity is heterogeneous with depth ranging from 0.0004 cm/s at -20 cm to 0.00002 cm/s at -100cm, but relatively uniform laterally, ranging from 0.0004 cm/s at 1 m to 0.0003 cm/s at 3 m from the stream channel. Pre-manipulation water temperatures decrease with depth in the summer, ranging from 14.5° C at the surface to 12.5° C at -100 cm. In contrast, temperature increases from 13.1 at the surface to 14.5° C at -100 cm in the fall. Temperature during the winter and spring are within 1.0° C from the surface to -100 cm, but range from 9.0-9.5° C in the winter and 8.0-7.0° C in the spring, respectively. Pre-manipulation nitrate concentrations are higher in winter (0.45 mg/l) then in summer (0.28 mg/l) and decrease with depth. Ammonia shows an inverse relationship, with lower concentrations in winter than summer (0.19 and 0.32 mg/l, respectively) and increase with depth. Dissolved organic carbon (DOC) also shows an increase with depth, ranging from 1.6 mg/l at the surface to 6.23 mg/l at -100 cm. Pre-manipulation meiofaunal abundance shows no difference between seasons but higher densities at -20cm then at all other depths. The most common meiofaunal taxa include Harpacticoida, Nematoda, Ostracoda, Chironomidae, Collembola, and Hydracarina. Plecoptera and Hymenoptera larvae are also found on occasion above -60 cm.

Wilson, K. P.; Williams, D. D.

2004-05-01

277

Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex, Hydrogeologic Systems  

NASA Astrophysics Data System (ADS)

The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result of the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The simulations are challenged by the distributed sources in each of the Corrective Action Units, by complex mass transfer processes, and by the size and complexity of the field- scale flow models. An efficient methodology utilizing particle tracking results and convolution integrals provides insitu concentrations appropriate for Monte Carlo analysis. Uncertainty in source releases and transport parameters including effective porosity, fracture apertures and spacing, matrix diffusion coefficients, sorption coefficients, and colloid load and mobility are considered. With the distributions of input uncertainties and output plume volumes, global analysis methods including stepwise regression, contingency table analysis, and classification tree analysis are used to develop sensitivity rankings of parameter uncertainties for each model considered, thus assisting a variety of decisions. The National Security Technologies, LLC component of this work is DOE/NV/25946--xxx and was done under contract number DE-AC52-O6NA25946 with the U.S. Department of Energy

Wolfsberg, A.; Kang, Q.; Li, C.; Ruskauff, G.; Bhark, E.; Freeman, E.; Prothro, L.; Drellack, S.

2007-12-01

278

Hydrogeology and Water Quality of the Clinton Street-Ballpark Aquifer near Johnson City, New York  

USGS Publications Warehouse

The Clinton Street-Ballpark aquifer, in the Susquehanna River valley in southern Broome County, N.Y., supplies drinking water to the Village of Johnson City near Binghamton. The hydrogeology and water quality of the aquifer were studied in 1994-95 to identify the source area of 1,1,1-trichloroethane, which was detected at the Johnson City Camden Street wellfield in 1991. The aquifer is generally 100 to 150 ft thick and consists primarily of ice-contact deposits of silty sand and gravel that are overlain by outwash deposits of sand and gravel. These two types of deposits are separated by lacustrine silt and clay of variable thickness into an upper and a lower layer of the aquifer. The coarse deposits form a single aquifer in areas where the lacustrine deposits are absent. Synoptic water-level surveys indicated that ground water moves from upgradient areas flanking the aquifer boundaries toward two major pumping centers?the Anitec wellfield in Binghamton and the Camden Street wellfield in Johnson City. Areas contributing recharge to municipal and industrial wells in the aquifer were delineated by a previously developed groundwater- flow model. The residence time of ground water within the area contributing recharge to Johnson City well no. 2 in the Camden Street wellfield was estimated to be less than 6 years. 1,1,1-Trichloroethane, trichloroethene, and their metabolites were detected in ground water at several locations in and near Johnson City. Relatively high concentrations of 1,1,1-trichloroethane were found in ground water about 3,000 ft north of the Camden Street wellfield. The suspected source is an area bordered on the south by Field Street, on the north by Harry L. Drive, on the east by New York State Route 201, and on the west by Marie Street. A trichloroethene metabolite, cis-1,2-dichloroethene, appears to be migrating westward from U.S. Air Force Plant 59 toward the Camden Street well-field, 1,000 ft southwest of the plant, although this compound has not been detected in water pumped by municipal wells, possibly because it has become diluted by ground water from other locations within the contributing area to the wells.

Coon, William F.; Yager, Richard M.; Surface, Jan M.; Randall, Allan D.; Eckhardt, David A.

1998-01-01

279

Arsenic in midwestern glacial deposits? Occurrence and relation to selected hydrogeologic and geochemical factors  

USGS Publications Warehouse

Ground-water-quality data collected as part of 12 U.S. Geological Survey National Water-Quality Assessment studies during 1996-2001 were analyzed to (1) document arsenic occurrence in four types of gla-cial deposits that occur in large areas of the Midwest, (2) identify hydrogeologic or geochemical factors asso-ciated with elevated arsenic concentrations, and (3) search for clues as to arsenic source(s) or mechanism(s) of mobilization that could be useful for designing future studies. Arsenic and other water-quality constituents were sampled in 342 monitor and domestic wells in parts of Illinois Indiana Ohio Michigan and Wisconsin. Arsenic was detected (at a concentration >1 ?g/L) in one-third of the samples. The maximum concentration was 84 ?g/L, and the median was less than 1 ?g/L. Eight percent of samples had arsenic concentrations that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 10?g/L. Samples were from four aquifer types?confined valley fill, unconfined valley fill, outwash plain, and till with sand lenses. Highest arsenic concentrations were found in reducing waters from valley-fill depos-its. In confined valley fill, all waters were reducing and old (recharged before 1953), and almost half of sam-ples had arsenic concentrations greater than the MCL. In unconfined valley fill, redox conditions and ages were varied, and elevated arsenic concentrations were sporadic. In both types of valley fill, elevated arsenic concentrations are linked to the underlying bedrock on the basis of spatial relations and geochemical correla-tions. In shallow (150 ft), all deep wells were from a distinctive aquifer type (confined valley fill). It is not known whether wells at similar depths in other aquifer types would produce waters with simi-larly high arsenic concentrations. Correlations of arsenic with fluoride, strontium, and barium suggest that arsenic might be related to epi-genetic (Mississippi Valley-type) sulfide deposits in Paleozoic bedrock. Arsenic is typically released from sulfides by oxidation, but in the current study, the highest arsenic concentrations in glacial deposits were detected in reducing waters. Therefore, a link between epigenetic sulfides and elevated arsenic concentrations in glacial deposits would probably require a multi-step process.

Thomas, Mary Ann

2003-01-01

280

Geodetic component of the monitoring of tectonic and hydrogeological activities in Kopacki Rit Nature Park  

NASA Astrophysics Data System (ADS)

Based on the European and global experience, the amplitude change in the structural arrangement caused by recent tectonic movements, can be most accurately determined by repeated precise GPS measurements on specially stabilized geodetic and geodynamic points. Because of these reasons, the GPS method to determine the movements on specially stabilized points in the Nature park Kopacki rit is also applied in this project. Kopacki rit Nature Park is the biggest preserved natural flooded area on the Danube. It is spread over 23 000 hectares between the rivers Danube and Drava and is one of the biggest fluvial wetland valleys in Europe. In 1993 it was listed as one of internationally valuable wetlands according to the Ramsar Convention. By now in Kopacki rit there have been sights of about 295 bird species, more than 400 species of invertebrates and 44 types of fish. Many of them are globally endangered species like, white tailed eagle, black stork and prairie hawk. It's not rare to come across some deer herds, wild boars or others. Today's geological and geomorphological relations in the Nature park Kopacki rit are largely the result of climate, sedimentary, tectonic and anthropogenic activity in the last 10,000 years. Unfortunately the phenomenon of the Kopacki rit Nature park is in danger to be over in the near future due to those and of course man made activities on the Danube river. It is trough scientific investigations of tectonic and hydrogeological activities that scientist from University of Zagreb are trying to contribute to wider knowledge and possible solutions to this problem. In the year 2009 the first GPS campaign was conducted, and the first set of coordinates of stabilized points was determined which can be considered zero-series measurements. In 2010 a second GPS campaign was conducted and the first set of movements on the Geodynamic Network of Kopacki Rit Nature Park was determined. Processing GPS measurements from 2009 and 2010 was carried out in a scientific software with multipoint solutions GAMIT / GLOBK, using Kalman filter to determine the velocity from discrete campaigns. This paper presents the performed measurements, processing and analysis of the results, which indicate that there are geodynamicaly significant developments.

Dapo, Almin; Pribicevic, Bosko

2013-04-01

281

Optimization of hydrogeological parameters of riverbank filtrated aquifers of the Szendendre Island using natural tracers  

NASA Astrophysics Data System (ADS)

Hungary's capital, Budapest, and a number of surrounding settlements are supplied with drinking water largely from the bank filtered aquifer at Szentendre Island of the Danube River lying to the north of the city. Precise knowledge of regional hydrogeological processes in riverbank filtrated aquifers are indispensable for aquifer protection and adequate quality water supply. To reach this goal, the origin and velocity/transit time of filtrating water was studied: stable isotopic, e.g. O-18 tracing measurement. Basis of these studies was the fact that d18O of Danube water (-10.9 % as a mean) differs from the locally infiltrated precipitation (shallow groundwater, -9,5 %) as a consequence of the „altitude effect". Szentendre Island itself sits mainly on Tertiary marine clayey sediments. These are topped by gravels and sands of Pleistocene age. Surface formations consist of semi-consolidated shifting sands and a few floodplain horizons. Widespread gravel formations on the island provide the basis for one of the largest volumes of abstraction of riparian-water in Europe. Supplied water comes largely from the river, and is supplemented by locally infiltrated precipitation. While filtrating from the watercourse through porous sediments to the wells, water is cleared from physical as well as biological contaminations. Water samples were taken on a daily basis from the Vác arm of the Danube, as well as from the water producing Kisoroszi-2 horizontal collector well, lying at the bank of Danube on the Szentendre Island. Collectors of this well are aligned to two horizons at the depth of ca. 12 m in the Pleistocene gravels. Electric conductivity, temperature and pH were measured daily, and were supplemented by d18O measurements for characterizing the region between the Danube and the well. To study larger scale systems, at first three, then six monitoring wells were sampled for the parameters stated above. These wells are aligned along a line connecting the two river arms around the island, thus provide information about the inner parts of the island. Highest conductivity and d18O values for monitoring wells were expected in the central part of the island. However, one of the marginal wells proved to show the highest measured values, suggesting extraordinary behavior of the local flow regime. Anomalous behavior of conductivity and oxygen isotopic values (both higher in the Danube than in the collector well) were detected, indicating conditions different from that to be predicted by a simple conceptual model. In accordance with seasonal variations during the test period, river temperature fell almost 8 °C, while well temperature increased linearly about 1.4 °C. These values suggest more complicated flow/storage conditions.

Kármán, K.; Fórizs, I.; Deák, J.; Szabó, Cs.

2009-04-01

282

Hazard connected to railway tunnel construction in karstic area: applied geomorphological and hydrogeological surveys  

NASA Astrophysics Data System (ADS)

In a mature karstic system, the realisation of galleries using the methodology of railway tunnel boring machine (TBM) involves particular problems due to the high risk of interference with groundwater (often subject to remarkable level variations) and with cavities and/or thick fill deposits. In order to define groundwater features it is necessary to investigate both hydrodynamic and karstification. To define and quantify the karst phenomenon in the epikarst of the Trieste Karst (Italy), an applied geomorphological approach has been experimented with surface and cavity surveys. The surface surveys have contributed to determining the potential karst versus the different outcropping lithologies and to define the structural setting of the rocky mass also through the realisation of geostructural stations and the survey of the main lines thanks to photo-interpretation. Moreover, all the dolines and the cavities present in the area interested by the gallery have been studied by analysing the probable extension of caves and/or of the secondary fill deposits and by evaluating the different genetic models. In an area 900m large and 27km long, which has been studied because of the underground karst, there are 41 dolines having diameters superior to 100m and 93 dolines whose diameters range between 100 and 50m; the dolines whose diameters are inferior to 50m are 282. The entrances of known and registered cavities in the cadastre records are 520. The hypogeal surveys have shown 5 typologies in which it has been possible to group all the cavities present in a hypothetical intersection with the excavation. The comparison between surface and hypogeal structural data and the direction of development of cavities has allowed for the definition of highly karstified discontinuity families, thus having a higher risk. The comparison of the collected data has enabled to identify the lithologies and areas having major risk and thus to quantify the probability of intersection with the different cavity typologies for each area. To make an example, out of 27000m of studied gallery 3930 are the metres expected to be at very high "karst risk". Out of these, as a whole 310 are risky because of the probable presence of gallery cavities, 2170 because of the probable presence of pits and sinkholes diffusely present under the dolines, and along 1450m karst is particularly intense. Moreover, 2200 should be the metres in which the rocky mass will be particularly divided because of tectonic causes. From a hydrogeological point of view a monitoring of water level has started to quantify water excursion, due to closeness of the railway tunnel to the mean water level. First results related to galleries intersection are here presented.

Casagrande, G.; Cucchi, F.; Zini, L.

2005-02-01

283

Hydrogeologic reconnaissance of the Mekong Delta in South Vietnam and Cambodia  

USGS Publications Warehouse

The present report describes the results of a hydrogeologic reconnaissance in the Mekong Delta region by the writer, a hydrogeologist of the U.S. Geological Survey, while on assignment as an adviser to the Vietnamese Directorate of Water Supply from October 1968 to April 1970 under the auspices of the U.s. Agency for International Development. The delta of the Mekong River, comprising an area of about 70,000 square kilometres in South Vietnam and Cambodia, is an almost featureless plain rising gradually from sea level to about 5 metres above sea level at its apex 300 kilometres inland. Most of the shallow ground water in the Holocene Alluvium of the delta in Vietnam is brackish or saline down to depths of 50 to 100 metres. Moreover, in the Dong Thap Mu?oi (Plain of Reeds) the shallow ground water is alum-bearing. Locally, however, perched bodies of fresh ground water occur in ancient beach and dune ridges and are tapped by shallow dug wells or pits for village and domestic water supply. The Old Alluvium beneath the lower delta contains freshwater in some areas, notably in the Ca Mau Peninsula and adjacent areas, in the viciniy of Bau Xau near Saigon, and in the Tinh Long An area. Elsewhere in the lower delta both the Holocene and Old Alluvium may contain brackish or saline water from the land surface to depths of as much as 568 metres, as for example in Tinh Vinh Binh. Ground water in the outcrop area of Old Alluvium northwest of Saigon is generally fresh and potable, but high iron and low pH are locally troublesome. Although considerable exploratory drilling for ground water down to depths of as much as 568 metres has already been completed, large areas of the delta remain yet to be explored before full development of the ground-water potential can be realized. With careful development and controlled management to avoid saltwater contamination, however, it is estimated that freshwater aquifers could provide approximately 80 percent of existing needs for village and small municipal supplies in the delta.

Anderson, Henry R.

1978-01-01

284

Hydrogeology, ground-water movement, and subsurface storage in the Floridan aquifer system in southern Florida  

USGS Publications Warehouse

The Floridan aquifer system of southern Florida is composed chiefly of carbonate rocks that range in age from early Miocene to Paleocene. The top of the aquifer system in southern Florida generally is at depths ranging from 500 to 1,000 feet, and the average thickness is about 3,000 feet. It is divided into three general hydrogeologic units: (1) the Upper Floridan aquifer, (2) the middle confining unit, and (3) the Lower Floridan aquifer. The Upper Floridan aquifer contains brackish ground water, and the Lower Floridan aquifer contains salty ground water that compares chemically to modern seawater. Zones of high permeability are present in the Upper and Lower Floridan aquifers. A thick, cavernous dolostone in the Lower Floridan aquifer, called the Boulder Zone, is one of the most permeable carbonate units in the world (transmissivity of about 2.5 x 107 feet squared per day). Ground-water movement in the Upper Floridan aquifer is generally southward from the area of highest head in central Florida, eastward to the Straits of Florida, and westward to the Gulf of Mexico. Distributions of natural isotopes of carbon and uranium generally confirm hydraulic gradients in the Lower Floridan aquifer. Groundwater movement in the Lower Floridan aquifer is inland from the Straits of Florida. The concentration gradients of the carbon and uranium isotopes indicate that the source of cold saltwater in the Lower Floridan aquifer is seawater that has entered through the karat features on the submarine Miami Terrace near Fort Lauderdale. The relative ages of the saltwater suggest that the rate of inland movement is related in part to rising sea level during the Holocene transgression. Isotope, temperature, and salinity anomalies in waters from the Upper Floridan aquifer of southern Florida suggest upwelling of saltwater from the Lower Floridan aquifer. The results of the study support the hypothesis of circulating relatively modern seawater and cast doubt on the theory that the saltwater in the Floridan aquifer system probably is connate or unflushed seawater from high stands of sea level. The principal use of the Floridan aquifer system in southern Florida is for subsurface storage of liquid waste. The Boulder Zone of the Lower Floridan aquifer is extensively used as a receptacle for injected treated municipal wastewater, oil field brine, and, to a lesser extent, industrial wastewater. Pilot studies indicate a potential for cyclic storage of freshwater in the Upper Floridan aquifer in southern Florida.

Meyer, Frederick W.

1989-01-01

285

Application of GPR and seismic methods in landslides investigation and determination of hydrogeological conditions  

NASA Astrophysics Data System (ADS)

Ground Penetrating Radar (GPR) belongs to non-invasive geophysical methods which use an artificially induced electromagnetic field as the way for inspection. GPR is applied not only to recognition of shallow geological structure but also to archeological studies. The basic assumption of the applicability of GPR is the existance of a distinct boundary between two lithological horizons defined by a change in permittivity values, which results in a change in electromagnetic wave velocity. For that reason this method is used to locate empty spaces and saturated zones. The purpose of this measurements was to determine the details of the sliding body, including the thickness and lateral extension of the landslide material, the depth of the sliding surface and water content of the subsurface. What is more correlation between GPR and seismic methods was searched. Studied area was located in the Southern part of Poland. Geological structure is characteristic for Carpathian flysch - overlaying claystones, shales and sandstones. Measurements were carried out using GPR equipment from the Swedish company Mala Geoscience. Due to the required depth range and resolution unshielded antennas with frequencies from 25 MHz to 200 MHz were used. Profiles were traced parallel to the landslide axis. Following forms of GPR survey were applied: CO (common offset), CMP (common mid point), WARR (wide-angle reflection-refraction). Modeling attempt electromagnetic field distribution in the medium was undertaken to select the most appropriate measurement parameters and to improve the interpretation. Programme GPRMax2D v. 2.0 was used to create models. The GPR numerical analysis uses the finite - difference time - domain method (FDTD). The FDTD approach to the numerical solution of Maxwell's equations consist of discretization both the space and the time continua. Due to geological structure (presence of low resistivity clays and shales) attenuation of electromagnetic wave was high. In order to verify GPR interpretation seismic measurements was performed. The basic assumption of the applicability of seismic methods is the existance of a distinct boundary between two lithological horizons defined by a change in material density and elastic modulus, which results in an increase or a decrase in wave velocity. Seismic refraction and MASW (multichannel analysis of surface waves) were the main methods. Geophones with frequencies 4 Hz and 10 Hz were used. Topographical variations were included during interpretation. It is possible to correlate GPR and seismic results especially during localization of water saturation zones. All applied methods gave also satisfactory results in recognition of the hydrogeological conditions.

Czaja, Klaudia; Matu?a, Rafa?

2013-04-01

286

Hydrogeological and geophysical study for deeper groundwater resource in quartzitic hard rock ridge region from 2D resistivity data  

NASA Astrophysics Data System (ADS)

Electrical resistivity method is a versatile and economical technique for groundwater prospecting in different geological settings due to wide spectrum of resistivity compared to other geophysical parameters. Exploration and exploitation of groundwater, a vital and precious resource, is a challenging task in hard rock, which exhibits inherent heterogeneity. In the present study, two-dimensional Electrical Resistivity Tomography (2D-ERT) technique using two different arrays, viz., pole-dipole and pole-pole, were deployed to look into high signal strength data in a tectonically disturbed hard rock ridge region for groundwater. Four selected sites were investigated. 2D subsurface resistivity tomography data were collected using Syscal Pro Switch-10 channel system and covered a 2 km long profile in a tough terrain. The hydrogeological interpretation based on resistivity models reveal the water horizons trap within the clayey sand and weathered/fractured quartzite formations. Aquifer resistivity lies between ˜3-35 and 100-200 ?m. The results of the resistivity models decipher potential aquifer lying between 40 and 88 m depth, nevertheless, it corroborates with the static water level measurements in the area of study. The advantage of using pole-pole in conjunction with the pole-dipole array is well appreciated and proved worth which gives clear insight of the aquifer extent, variability and their dimension from shallow to deeper strata from the hydrogeological perspective in the present geological context.

Kumar, Dewashish; Rao, V. Ananda; Sarma, V. S.

2014-04-01

287

Hydrogeology of the Cross Bar Ranch well-field area and projected impact of pumping, Pasco County, Florida  

USGS Publications Warehouse

The hydrogeology and development of a groundwater flow model are described for a 121-square-mile area in Pasco County, Florida. The hydrogeologic framework consists of the surficial aquifer--a thin blanket of sand--and the underlying carbonates of the upper Floridian aquifer. The aquifers are separated by a leaky sand and clay confining unit. The Cross Bar Ranch well field occupies 13 square miles and contains 17 production wells averaging about 700 feet deep and tapping the upper Florida aquifer. Procedures to calibrate, test sensitivity to input parameters, and validate the model 's accuracy are described. Pumping at 30 million gallons per day should result in 5 feet of decline in the water table of the surficial aquifer over an 8-square-mile area and in the potentiometric surface of the Upper Florida aquifer over a 15-square-mile area. Under the 45-million-per-day maximum permitted rate, drawdown should be 5 feet or more in the water table and potentiometric surface over areas of 16 and 28 square miles, respectively. At the center of pumping, water levels could decline 15 to 25 feet. The surficial aquifer could possibly be completely dewatered in a small area of the well field when pumping is at the maximum rate. (USGS)

Hutchinson, C.B.

1985-01-01

288

Preliminary hydrogeologic evaluation of the Cincinnati Arch region for underground high-level radioactive waste disposal, Indiana, Kentucky , and Ohio  

USGS Publications Warehouse

Preliminary interpretation of available hydrogeologic data suggests that some areas underlying eastern Indiana, north-central Kentucky, and western Ohio might be worthy of further study regarding the disposal of high-level radioactive waste in Precambrian crystalline rocks buried beneath Paleozoic sedimentary rocks in the area. The data indicate that (1) largest areas of deepest potential burial and thickest sedimentary rock cover occur in eastern Indiana; (2) highest concentrations of dissolved solids in the basal sandstone aquifer, suggesting the most restricted circulation, are found in the southern part of the area near the Kentucky-Ohio State line and in southeastern Indiana; (3) largest areas of lowest porosity in the basal sandstone aquifer, low porosity taken as an indicator of the lowest groundwater flow velocity and contaminant migration, are found in northeastern Indiana and northwestern Ohio, central and southeastern Indiana, and central Kentucky; (4) the thickest confining units that directly overlie the basal sandstone aquifer are found in central Kentucky and eastern Indiana where their thickness exceeds 500 ft; (5) steeply dipping faults that form potential hydraulic connections between crystalline rock, the basal sandstone aquifer, and the freshwater circulation system occur on the boundaries of the study area mainly in central Kentucky and central Indiana. Collectively, these data indicate that the hydrogeology of the sedimentary rocks in the western part of the study area is more favorably suited than that in the remainder of the area for the application of the buried crystalline-rock concept. (USGS)

Lloyd, O.B.; Davis, R.W.

1989-01-01

289

Hydrogeologic Framework, Groundwater Movement, and Water Budget in the Chambers-Clover Creek Watershed and Vicinity, Pierce County, Washington  

USGS Publications Warehouse

This report presents information used to characterize the groundwater-flow system in the Chambers-Clover Creek Watershed and vicinity, and includes descriptions of the geology and hydrogeologic framework; groundwater recharge and discharge; groundwater levels and flow directions; seasonal groundwater level fluctuations; interactions between aquifers and the surface-water system; and a water budget. The study area covers about 706 square miles in western Pierce County, Washington, and extends north to the Puyallup River, southwest to the Nisqually River, and is bounded on the south and east by foothills of the Cascade Range and on the west by Puget Sound. The area is underlain by a northwest-thickening sequence of unconsolidated glacial and interglacial deposits which overlie sedimentary and volcanic bedrock units that crop out in the foothills along the southern and southeastern margin of the study area. Geologic units were grouped into 11 hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit. A surficial hydrogeologic unit map was developed and used with well information from 450 drillers' logs to construct 6 hydrogeologic sections, and unit extent and thickness maps. Groundwater in unconsolidated glacial and interglacial aquifers generally flows to the northwest towards Puget Sound, and to the north and northeast towards the Puyallup River. These generalized flow patterns likely are complicated by the presence of low permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers. Water levels in wells completed in the unconsolidated hydrogeologic units show seasonal variations ranging from less than 1 to about 50 feet. The largest groundwater-level fluctuation (78 feet) observed during the monitoring period (March 2007-September 2008) was in a well completed in the bedrock unit. Synoptic streamflow measurements made in September 2007 and July 2008 indicated a total groundwater discharge to streams in the study area of 87,310 and 92,160 acre-feet per year, respectively. The synoptic streamflow measurements show a complex pattern of gains and losses to streamflows that varies throughout the study area, and appears to be influenced in places by local topography. Groundwater discharge occurs at numerous springs in the area and the total previously reported discharge of springs in the area is approximately 80,000 acre-feet per year. There are, in addition, many unmeasured springs and the total spring discharge in the area is unknown. The water-budget area (432 mi2 located within the larger study area) received an annual average (September1, 2006, to August 31, 2008) of about 1,025,000 acre-ft or about 45 inches of precipitation a year. About 44 percent of precipitation enters the groundwater system as recharge. Almost one-half of this recharge (49 percent) discharges to the Puyallup and Nisqually Rivers and leaves the groundwater system as submarine groundwater discharge to Puget Sound. The remaining groundwater recharge discharges to streams (20 percent) and springs (18 percent) or is withdrawn from wells (13 percent)

Savoca, Mark E.; Welch, Wendy B.; Johnson, Kenneth H.; Lane, R.C.; Fasser, Elisabeth T.

2010-01-01

290

Hydrogeology of a fractured shale (Opalinus Clay): Implications for deep geological disposal of radioactive wastes  

NASA Astrophysics Data System (ADS)

As part of the Swiss programme for high-level radioactive-waste disposal, a Jurassic shale (Opalinus Clay) is being investigated as a potential host rock. Observations in clay pits and the results of a German research programme focusing on hazardous waste disposal have demonstrated that, at depths of 10-30 m, the permeability of the Opalinus Clay decreases by several orders of magnitude. Hydraulic tests in deeper boreholes (test intervals below 300 m) yielded hydraulic conductivities <10-12 m/s, even though joints and faults were included in some of the test intervals. These measurements are consistent with hydrogeological data from Opalinus Clay sections in ten tunnels in the Folded Jura of northern Switzerland. Despite extensive faulting, only a few indications of minor water inflow were encountered in more than 6,600 m of tunnel. All inflows were in tunnel sections where the overburden is less than 200 m. The hydraulic data are consistent with clay pore-water hydrochemical and isotopic data. The extensive hydrogeological data base - part of which derives from particularly unfavourable geological environments - provides arguments that advective transport through faults and joints is not a critical issue for the suitability of Opalinus Clay as a host rock for deep geological waste disposal. Résumé. Dans le cadre du programme suisse de stockage de déchets hautement radioactifs, une formation argileuse du Jurassique, l'argile à Opalinus, a été étudiée en tant que roche hôte potentielle. Des observations dans des cavités dans l'argile et les résultats du programme de recherche allemand consacré au stockage de déchets à risques ont démontré que, à des profondeur de 10 à 30 m, la perméabilité des argiles à Opalinus décroît de plusieurs ordres de grandeur. Des essais hydrauliques dans des forages plus profonds (intervalles de test á une profondeur de plus de 300 m) ont donné des conductivités hydrauliques inférieures à 10-12 m/s, même lorsque des fractures et des failles existaient dans certains des intervalles d'essais. Ces mesures sont conformes aux données hydrogéologiques tirées du recoupement des argiles à Opalinus par dix tunnels du Jura plissé du nord de la Suisse. Malgré une tectonique intense, peu de manifestations de faibles venues d'eau ont été rencontrées dans plus de 6600 m de tunnel. Toutes les venues d'eau se sont produites dans des sections de tunnel où le recouvrement est inférieur à 200 m. Les données hydrauliques sont en bon accord avec les données hydrochimiques et isotopiques de l'eau porale des argiles. En se basant sur le grand nombre de données hydrogéologiques, qui portent en partie sur les environnements géologiques particulièrement peu propices, on peut avancer que le transport advectif le long des failles et des fractures n'est pas un facteur susceptible de remettre en question le choix de l'argile à Opalinus comme roche hôte pour le stockage de déchets radioactifs en formation géologique profonde. Resúmen. Dentro del programa suizo de eliminación de residuos radiactivos de alta actividad, se está investigando la posibilidad de utilizar unos esquistos Jurásicos (Arcilla Opalina) como depósito geológico. Las observaciones efectuadas en pozos en arcilla y los resultados de un programa de estudio alemán sobre eliminación de residuos peligrosos han demostrado que, a profundidades de entre 10 y 30 m, la permeabilidad de la Arcilla Opalina decrece en varios órdenes de magnitud. Los ensayos hidráulicos realizados en sondeos más profundos (en intervalos situados a más de 300 m) proporcionaron conductividades hidráulicas inferiores a 10-12 m/s, pese a que algunos de los intervalos interceptaban juntas y fallas. Estas medidas son coherentes con los datos hidrogeológicos de las secciones de Arcilla Opalina existentes en 10 túneles del Jurásico Plegado, al norte de Suiza. A pesar de las fallas extensivas, apenas se hallaron indicios de entrada de agua en los más de 6.600 m de túnel. Todos los flujos tenían lugar en secciones del túnel q

Gautschi, Andreas

2001-01-01

291

Statistical classification of hydrogeologic regions in the fractured rock area of Maryland and parts of the District of Columbia, Virginia, West Virginia, Pennsylvania, and Delaware  

USGS Publications Warehouse

Hydrogeologic regions in the fractured rock area of Maryland were classified using geographic information system tools with principal components and cluster analyses. A study area consisting of the 8-digit Hydrologic Unit Code (HUC) watersheds with rivers that flow through the fractured rock area of Maryland and bounded by the Fall Line was further subdivided into 21,431 catchments from the National Hydrography Dataset Plus. The catchments were then used as a common hydrologic unit to compile relevant climatic, topographic, and geologic variables. A principal components analysis was performed on 10 input variables, and 4 principal components that accounted for 83 percent of the variability in the original data were identified. A subsequent cluster analysis grouped the catchments based on four principal component scores into six hydrogeologic regions. Two crystalline rock hydrogeologic regions, including large parts of the Washington, D.C. and Baltimore metropolitan regions that represent over 50 percent of the fractured rock area of Maryland, are distinguished by differences in recharge, Precipitation minus Potential Evapotranspiration, sand content in soils, and groundwater contributions to streams. This classification system will provide a georeferenced digital hydrogeologic framework for future investigations of groundwater availability in the fractured rock area of Maryland.

Fleming, Brandon J.; LaMotte, Andrew E.; Sekellick, Andrew J.

2013-01-01

292

Hydrogeologic settings of A/M Area: Framework for groundwater transport: Book 6, Appendix B, Time/concentration graphs A/M Area monitoring wells  

SciTech Connect

This document presents the time/concentration graphs for the Savannah River A/M monitoring wells. This Appendix B is part of the determination of the hydrogeologic setting of the A/M Area as a part of ground water transport studies.

Van Pelt, R.; Lewis, S.E.; Aadand, R.K.

1994-03-11

293

Hydrogeological site characterization for the implementation of a pilot test of in-situ groundwater treatment using dual-phase slurry injection in fractured bedrock  

NASA Astrophysics Data System (ADS)

The study area is located in the Durham sub-basin of the Deep River Basin, one of the Triassic Basins that occur along the eastern seaboard of the North American Continent. The site is underlain by interbedded siltstone and sandstone sequences. Groundwater underlying portions of the site has been impacted by chlorinated volatile organic compounds. Golder conducted an initial review of potentially applicable remediation technologies and retained the Bimetallic Nanoscale Particle (BNP) technology (Wei-xian Zhang, 1997, 1999, 2000) for further evaluation at the field pilot test scale. This study presents the results of the detailed hydrogeologic studies conducted for the BNP pilot test design and implementation monitoring, and specifically looks at the changes in hydrogeological properties of the fractured bedrock aquifer as a result of injecting the BNP dual phase slurry (water and BNP solids). This study also presents the interpretation of borehole drilling, downhole televiewer logging, and hydrogeologic testing as the basis for understanding the dual phase slurry migration in the subsurface. Continuous multi-parameter monitoring was conducted during the BNP slurry injection and also was used as the basis for field estimation of fractured bedrock effective porosity. In addition, this study provides the basis for the hydrogeologic design of the full scale BNP treatment system that is expected to be more cost effective than typical pump-and-treat remedies.

Gheorghiu, F.; Venkatakrishnan, R.; Glazier, R.; Walata, L.; Nash, R.; Zhang, W.

2003-04-01

294

Study of radium-226 and radon-222 concentrations in ground water near a phosphate mining and manufacturing facility with emphasis on the hydrogeologic characteristics of the area  

Microsoft Academic Search

Samples of water from wells located near a phosphate mining and manufacturing facility were collected and analyzed for radium-226 and radon-222. Chemical separation and emanation techniques were used in the analyses. Results indicated that mining and manufacturing were not having a detrimental effect on the radionuclide concentrations in the ground water of the area. Natural hydrogeologic factors can account for

B. F. Mitsch; J. E. Jr. Watson; J. A. Hayes

1984-01-01

295

Present-day long-term deformation from GPS survey in an intraplate area (Ploemeur aquifer, French Brittany): influence of hydrological and hydrogeological processes  

Microsoft Academic Search

Four years of continuous GPS measurements were performed in an intraplate area located above the crystalline aquifer of Ploemeur (French Brittany) in order to quantify the three-dimensional surface deformation and to evaluate the relationship between the ground deformation and hydrological surface and hydrogeological processes. Several processes as tide effects, ocean tide loading and tectonics were removed thanks to a differential

G. Biessy; F. Moreau; O. Dauteuil; O. Bour

2009-01-01

296

Calendar year 1994 groundwater quality report for the Bear Creek hydrogeologic regime, Y-12 Plant, Oak Ridge, Tennessee. 1994 Groundwater quality data interpretations and proposed program modifications  

SciTech Connect

This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste management facilities at the US Department of Energy (DOE) Y-12 Plant. These sites lie in Bear Creek Valley (BCV) west of the Y-12 Plant within the boundaries of the Bear Creek Hydrogeologic Regime which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring. The Environmental Management Department manages the groundwater monitoring activities under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to protect local groundwater resources. The annual GWQR for the Bear Creek Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, summarizes the status and findings of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

NONE

1995-10-01

297

The contribution of geographic information systems and remote sensing in determining priority areas for hydrogeological development, Darb el-Arbain area, Western Desert, Egypt  

NASA Astrophysics Data System (ADS)

The Darb el-Arbain study area is in the southern Western Desert of Egypt and has been attracting increasing developmental interest in the last few decades, especially since agricultural development of the southern Baris area, where the groundwater resources of the Nubian Sandstone Aquifer System (NSAS) have been utilized for the cultivation of valuable lands. Due to the proven high potential of both groundwater and land resources, determining the priority areas for sustainable hydrogeological development becomes a necessity. A geographic information system, as a platform for geospatial modeling techniques, has been built, which depends on the recently collected data about the NSAS, in addition to the published databases. Certain criteria of practical value, like depth to groundwater, hydraulic conductivity, groundwater salinity, sodium adsorption ratio, and the safe yield of wells, were selected as decisive parameters for hydrogeological prioritization. The model pinpoints areas characterized by favorable hydrogeological conditions, which could be used for future development and implementation of an artificial storage and recovery (ASR) program. The designated priority areas for hydrogeological development occur at the southern, middle southern and some localized northern parts of the Darb el-Arbain area. The newly formed Tushka Lakes represent a suitable and excellent natural source of freshwater for implementing an ASR program.

Elewa, Hossam H.; Fathy, Rafik G.; Qaddah, Atef A.

2010-08-01

298

Geodatabase compilation of hydrogeologic, remote sensing, and water-budget-component data for the High Plains aquifer, 2011  

USGS Publications Warehouse

The High Plains aquifer underlies almost 112 million acres in the central United States. It is one of the largest aquifers in the Nation in terms of annual groundwater withdrawals and provides drinking water for 2.3 million people. The High Plains aquifer has gained national and international attention as a highly stressed groundwater supply primarily because it has been appreciably depleted in some areas. The U.S. Geological Survey has an active program to monitor the changes in groundwater levels for the High Plains aquifer and has documented substantial water-level changes since predevelopment: the High Plains Groundwater Availability Study is part of a series of regional groundwater availability studies conducted to evaluate the availability and sustainability of major aquifers across the Nation. The goals of the regional groundwater studies are to quantify current groundwater resources in an aquifer system, evaluate how these resources have changed over time, and provide tools to better understand a systems response to future demands and environmental stresses. The purpose of this report is to present selected data developed and synthesized for the High Plains aquifer as part of the High Plains Groundwater Availability Study. The High Plains Groundwater Availability Study includes the development of a water-budget-component analysis for the High Plains completed in 2011 and development of a groundwater-flow model for the northern High Plains aquifer. Both of these tasks require large amounts of data about the High Plains aquifer. Data pertaining to the High Plains aquifer were collected, synthesized, and then organized into digital data containers called geodatabases. There are 8 geodatabases, 1 file geodatabase and 7 personal geodatabases, that have been grouped in three categories: hydrogeologic data, remote sensing data, and water-budget-component data. The hydrogeologic data pertaining to the northern High Plains aquifer is included in three separate geodatabases: (1) base data from a groundwater-flow model; (2) hydrogeology and hydraulic properties data; and (3) groundwater-flow model data to be used as calibration targets. The remote sensing data for this study were developed by the U. S. Geological Survey Earth Resources Observation and Science Center and include historical and predicted land-use/land-cover data and actual evapotranspiration data by using remotely sensed temperature data. The water-budget-component data contains selected raster data from maps in the “Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 Through 1949 and 2000 Through 2009” report completed in 2011 (http://pubs.usgs.gov/sir/2011/5183/). Federal Geographic Data Committee compliant metadata were created for each spatial and tabular data layer in the geodatabase.

Houston, Natalie A.; Gonzales-Bradford, Sophia L.; Flynn, Amanda T.; Qi, Sharon L.; Peterson, Steven M.; Stanton, Jennifer S.; Ryter, Derek W.; Sohl, Terry L.; Senay, Gabriel B.

2013-01-01

299

Development, Calibration and Deployment of an Electromagnetic Flowmeter for Cross-Hole Hydrogeologic Experiments  

NASA Astrophysics Data System (ADS)

We developed an autonomous electromagnetic flowmeter as part of a cross-hole hydrogeologic experiment using subseafloor borehole observatories (CORKs) that penetrate into the volcanic ocean crust. The cylindrical flowmeter is adapted from a conventional industrial tool and hardened for use at water depths up to 6000 m. In addition, the electronics were modified with a new power controller, and a data logger and communication board was added to enable data storage and long-term, autonomous use for up to eight years. The flowmeter generates a magnetic field and measures a voltage gradient that is created across the orifice as water moves through it. This kind of tool is ideally suited for use in the deep sea, particularly for measuring hydrothermal fluids emanating from the ocean crust, because it requires no moving parts, places no obstructions along the flow path, gives total flow volume as well as instantaneous flow rate, and is highly accurate across a large dynamic range, including bi-directional flow. This flowmeter was deployed on a CORK wellhead using an adapter and ring clamp system located above a 4-inch ball valve. The ball valve can be opened to permit flow (from an overpressured formation) out of the CORK and into the overlying ocean. A polyvinyl chloride "chimney" positioned vertically above the flowmeter is instrumented with autonomous temperature loggers to permit an additional estimate of fluid flow rates with time, based on heat loss during fluid ascent, and to facilitate fluid sampling. Calibration of the new flowmeter was completed in two stages: tank testing using a pump at flow rates of 0.5 to 1.2 L/s, and by lowering the flowmeter on a wireline at sea at rates equivalent to 0.5 to 5.2 L/s. A cross plot of apparent and reference flow rates obtained during calibration indicates a highly linear instrument response. Comparison of instantaneous (once per minute) and integrated (total flow) data collected during calibration indicates good agreement, although the instantaneous data tended to be noisy because of irregularity of flow (turbulence). The flowmeter was deployed in Summer 2011 on a CORK installed in IODP Hole 1362B, on the eastern flank of the Juan de Fuca ridge. Once the flowmeter was attached to the wellhead, the underlying ball valve was opened, which allowed overpressured fluids from the permeable ocean crust to flow upward and out of the seafloor at 5 to 10 L/s (estimated rate). Changes in formation fluid pressure resulting from this flow are being monitored in four additional CORKs located 310 to 2320 m away from Hole 1362B, which will allow large-scale, directional assessment of formation properties. The flowmeter is recording data for instantaneous flow rate and total flow once per hour, and will be recovered to permit collection and analysis of experimental data during a servicing visit in Summer 2012.

Slovacek, A. E.; Fisher, A. T.; Kirkwood, W.; Wheat, C. G.; Maughan, T.; Gomes, K.

2011-12-01

300

Hydrogeology and ground-water availability in the carbonate aquifer system of Frederick County, Virginia  

USGS Publications Warehouse

The carbonate aquifer system of the northern Shenandoah Valley provides an important water supply to local communities, including Frederick County, Va., which depends on ground water as a source of water supply. The county and surrounding area are undergoing increased urbanization, and increased demands on the carbonate aquifer system are expected. A study was conducted between October 2000 and March 2004 by the U.S. Geological Survey (USGS), in cooperation with the County of Frederick, Va., to describe the hydrogeology and ground-water availability in the carbonate aquifer system underlying the county. The study area encompasses about 25 percent (105 square miles) of the county that is underlain by carbonate bedrock. The carbonate aquifer system of Frederick County is in the Shenandoah Valley region of the Valley and Ridge Physiographic Province. Approximately 10,000 feet of folded and fractured Middle Cambrian to Upper Ordovician sedimentary rocks are exposed and are overlain by Pleistocene (?) and Holocene surficial deposits. All geologic units in the study area are considered to be aquifers. The geologic units are generally unconfined, fractured-rock aquifers that are recharged by precipitation and discharge locally to streams and springs, and by evapotranspiration. Stream density in the carbonate study area is less than in the remainder of the county, which is underlain by siliciclastic rock units. Most streams flow normal to strike (from the northwest towards the southeast) across the study area. These streams are characterized by shallow incisement and are usually limited to a single stream channel. In the southern third of the study area, streams flow parallel to strike (from the northeast towards the southwest) towards the deeply intrenched Cedar Creek. Springs are commonly located at the start of flows for all streams in the carbonate study area, and spring discharges are often a large portion of the streamflow (especially during drought conditions). The general direction of ground-water flow is from the hills in the west of the study area into and across the carbonate valley. A ground-water divide may occur north of Round Hill in the vicinity of the Apple Pie Ridge fault where the North Mountain fault zone cuts out the resistant Silurian and Devonian sandstone units and results in surface drainage from the carbonate rocks toward the west and out of the carbonate valley. Estimates of effective ground-water recharge for 2001-02 range from 5.8 to 6.2 inches in the Cedar Creek Basin, with base flow accounting for between 60 and 64 percent of streamflow, and from 3.2 to 3.8 inches in the Opequon Creek Basin, with base flow accounting for between 86 and 92 percent of streamflow. Water budgets calculated for 2001, a year of below-normal precipitation (33.1 inches), and 2002, a year of above-normal precipitation (41.2 inches), include a streamflow of 9.0 inches in 2001 and 9.2 inches in 2002 in Cedar Creek. Evapotranspiration ranged from 25.9 to 30.7 inches, and ground-water storage decreased 1.8 inches in 2001 and increased 1.3 inches in 2002. Streamflow was 3.7 inches in 2001 and 2002 in Opequon Creek. Evapotranspiration ranged from 29.8 to 37.5 inches, and ground-water storage decreased 0.4 inch in 2001 and did not change in 2002.

Harlow, George E.; Orndorff, Randall C.; Nelms, David L.; Weary, David J.; Moberg, Roger M.

2005-01-01

301

Prime candidate sites for the astrobiological evolution of Mars according to its hydrogeological evolution  

NASA Astrophysics Data System (ADS)

Different-sized bodies of water have been proposed to have occurred episodically in the lowlands of Mars throughout the planet's history [1], largely related to major stages of development of Tharsis [1], [2]. These water bodies range from large oceans in the Noachian-Early Hesperian, to a minor sea in the Late Hesperian, and reduced lakes during the Amazonian. Assuming that the search for life is directly linked to the search for water, the possible biological history of Mars must have been largely influenced by the endogenetically-driven hydrogeological cycles. In consequence, terrestrial biological and environmental analogues can now be placed in context with the model proposed, so contributing to draw a general approach for the history of life on Mars. If the search for extant/fossil life or biomarkers on Mars is fully successful, our analysis would suggest that records of microbial activity will be reflective of the inundation phases and varying aqueous surface and subterranean environments, similar to what is observed on Earth. This analysis unfolds three prime candidate sites for the astrobiological exploration of Mars, each one corresponding to a major inundation phase of the global hydrological model: 1. Noachian to Early Hesperian: Terra Meridiani, based on (a) the geologic setting of the region [1]; and (b) the comparative analyses of hematite locations on Earth and Mars [3], which suggest an aqueous-hydrothermal origin, well according with the latest results of the MER Opportunity. 2. Late Hesperian to Early Amazonian: Mangala Valles, where diminishing martian episodic hydrologic events over geologic time are clearly recorded [4], particularly representing a later pulse of Tharsis-driven hydrologic activity. 3. Amazonian: Orcus Patera, a volcanic caldera or impact crater where reduced ponded bodies of water [5] [6] may have existed during almost contemporary times. To propose these prime candidate sites, here we perform a comprehensive analysis of the evolution of water on Mars, including: 1. Evolution of the proposed shorelines, taking into account (1) local and/or temporal changes in the effective elastic thickness of the martian lithosphere [7]; (2) possible local variations of the thermal structure of the lithosphere producing differential thermal isostasy [8,9]; (3) the emplacement of lava flows [10] and/or deposition of sediment [11] in the putative northern ocean basin region, such as recorded for the Early and the Late Hesperian, respectively; (4) water transfer between different regions [12]; and (5) degradation of basins boundaries related to endogenic or exogenic activity [13]. 2. A volumetric approximation to the plains-filling proposed oceans, considering the lithosphere rebound due to water unloading associated with the disappearance of an ocean [14]. 3. Geochemistry of the Noachian oceans and derived mineralogies. 4. Ultimate water evolution on Mars and the possible fate of the ancient oceans. References [1] Fairén, A.G., et al. Icarus 165, 53-67 (2002). [2] Dohm, J.M., et al. J. Geophys. Res. 106, 32,943-32,958 (2001). [3] Fernández-Remolar, D., et al. J. Geophys. Res. 108 (2003). [4] Dohm, J.M., et al. Planet. Space Sci., in press. [5] Berman, D.C. & Hartmann, W.K. Icarus 159, 1-17 (2002). [6] Grin, E., & Cabrol, N. Lunar Planet. Sci. Conf., XXIX, #1010 (1998). [7] McGovern, P.J., et al. J. Geophys. Res., 107, 5136 (2002). [8] Ruiz, J. J. Geophys. Res. 108, (2003). [9] Ruiz, J., et al. Planet. Space Sci., submitted. [10] Kreslavsky, M.A. & Head, J.W. J. Geophys. Res. 107 (2002). [11] Tanaka, K.L., et al. Geology 29, 427-430 (2001). [12] Leverington, D.W. & Ghent R.R. J. Geophys. Res., 109 (2004). [13] Clifford, S.M. & Parker, T.J. Icarus 154, 40--79 (2001). [14] Öner, T., et al. Lunar Planet. Sci. Conf., XXXV, #1319 (2004).

Uceda, E.; Fairén, A.; Ruiz, J.; Dohm, J.; Öner, T.; Schulze-Makuch, D.; de Pablo, M.; Örmo, J.; Baker, V.

302

Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA  

NASA Astrophysics Data System (ADS)

The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Groundwater flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units. Résumé Le système aquifère littoral du sud d'Oahu (Hawaii, États-Unis) est constitué par des aquifères de terrains volcaniques très perméables, recouverts par des roches volcaniques altérées, et interstratifiés avec des sédiments marins et continentaux de perméabilité aussi bien forte que faible. Les roches volcaniques altérées et les sédiments sont globalement considérés comme une couverture, parce qu'ils s'opposent à l'écoulement de l'eau souterraine provenant des aquifères volcaniques sous-jacents. Les contrôles hydrogéologiques sur le système aquifère régional du sud-ouest d'Oahu ont étéévaluées au moyen d'un modèle d'écoulement et de transport sur une section transversale. Ces contrôles prennent en compte la conductivité hydraulique de la couverture dans son ensemble et les variations de la conductivité hydraulique liées à la stratigraphie de la couverture. A l'intérieur de la couverture, les variations de la conductivité hydraulique, dues à la stratigraphie ou à des discontinuités entre les unités stratigraphiques, sont le contrôle principal de la direction d'écoulement et de la répartition des niveaux et de la salinité de l'eau. La modélisation sur une section transversale a donné des résultats qui confirment l'organisation générale des directions d'écoulement, telle qu'elle pouvait être envisagée dans un aquifère littoral multicouche. L'écoulement souterrain est essentiellement vertical vers le haut dans les unités sédimentaires à faible perméabilité, et essentiellement horizontal dans les unités sédimentaires à forte perméabilité. Resumen El sistema acuífero costero de la zona sur de Oahu, en Hawaii, está formado por acuíferos volcánicos de alta permeabilidad, subyacentes a rocas volcánicas alteradas, con inclusiones de sedimentos marinos y terrestres, tanto de alta como de baja permeabilidad. Al conjunto de rocas volcánicas alteradas y sedimentos se le conoce por "tapón de roca", ya que impide la descarga libre de las aguas subterráneas del acuífero volcánico subyacente. Se usó un modelo de flujo de agua subterránea y transporte de solutos en sección vertical para evaluar los aspectos hidrogeológicos que controlan el flujo regional en la zona sudoeste de Oahu. Se consideraron: (a) la conductividad hidráulica global del tapón y (b) las variaciones estratigráficas de la conductividad hidráulica. En el tapón de roca, las variaciones de la conductividad hidráulica, causadas por la estratigrafía o por discontinuidades en las unidades estratigráficas, son las que controlan la dirección del flujo subterráneo y la distribución de niveles piezométricos y salinidad. Los resultados del modelo en sección transversal confirman la distribución del flujo subterráneo que cabría esperar en un sistema costero estrat

Oki, Delwyn S.; Souza, William R.; Bolke, Edward L.; Bauer, Glenn R.

303

Development of a summer field-based hydrogeology research experience for undergraduates  

NASA Astrophysics Data System (ADS)

A critical problem in motivating and training the next generation of environmental scientists is providing them with an integrated scientific experience that fosters a depth of understanding and helps them build a network of colleagues for their future. As the education part of an NSF-funded CAREER proposal, I have developed a three-week summer research experience for undergraduate students that links their classroom education with field campaigns aiming to make partial differential equations come "alive" in a practical, applied setting focused on hydrogeologic processes. This course has been offered to freshman- to junior-level undergraduate students from Penn State and also the three co-operating Historically Black Universities (HBUs)--Jackson State University, Fort Valley State University, and Elizabeth City State University-since 2009. Broad learning objectives include applying their knowledge of mathematics, science, and engineering to flow and transport processes in the field and communicating science effectively in poster and oral format. In conjunction with ongoing research about solute transport, students collected field data in the Shale Hills Critical Zone Observatory in Central Pennsylvania, including slug and pumping tests, ground-penetrating radar, electrical resistivity imaging, wireline logging, and optical televiewers, among other instruments. Students conducted tracer tests, where conservative solutes are introduced into a local stream and monitored. Students also constructed numerical models using COMSOL Multiphysics, a research-grade code that can be used to model any physical system; with COMSOL, students create models without needing to be trained in computer coding. With guidance, students built basic models of fluid flow and transport to visualize how heterogeneity of hydraulic and transport properties or variations in forcing functions impact their results. The development of numerical models promoted confidence in predicting flow and transport in the field. For most of the students, this was their first opportunity to work in the field, and also their first time working with numerical models. The capstone of the class is a final poster presentation with a short oral introduction. Most students commented that this session, attended by graduate students and faculty at Penn State, was an inspiring experience. Feedback for the course has been uniformly positive, with one student noting on post-course feedback that "The best way of learning is by doing it". One benefit of CAREER funding is the ability to develop innovative pedagogy and bring it into the classroom with ease, due to financial support. In my case, the diverse backgrounds of the students in the course has required all of the students to work with students from other demographics, and that alone has been a valuable experience. One difficulty will be continuing this field program once the grant has ended; numerous students commented that they felt lucky to be part of the program during its 5-year existence and lamented that other students wouldn't have the same opportunity. The students' data and model runs will be published and used for my long-term research agenda in discriminating transport processes in situ, as well, making a positive feedback loop between research and education.

Singha, K.

2011-12-01

304

The analytical methods used in examining resistance of hydrogeological systems to anthropogenic pollution  

NASA Astrophysics Data System (ADS)

key words: gas chromatography (GC) measurement method, groundwater dating, He, SF6, F-11, F-12, Ar, Ne. In this work the method for evaluating resistance hydrogeological systems to anthropogenic pollution using environmental tracers is described. Resistance groundwater systems to anthropogenic pollution is correlated with the age of water, which can be determined by means of environmental tracers SF6, F-11, F-12 [1] and He. To correct measured values of He and SF6 the temperature of recharge and the excess air is needed and can be determined by measuring Ne and Ar concentrations in groundwater. This paper describes three measurement GC systems to determine the concentrations of greenhouse gases: sulfur hexafluoride (SF6) and chlorofluorocarbons F-11, F-12 [2], the noble gases neon (Ne), argon (Ar) [3] and helium (He) [4] in groundwater. The first system for measurements of the concentration of SF6, F-11 and F-12 consists of a gas chromatograph, type N504 is supplied with nitrogen carrier gas with a purity of 6.0. It is equipped with two packed columns K1 and K2 running at 60°C with the use of the "back-flush" column switching and electron capture detector (ECD) operating at 300°C. Second system for measuring the concentration of the noble gases argon and neon, is composed of a dual Shimadzu gas chromatograph. It is equipped with two columns K4 and K5 operating at 30°C, thermalconductivity detector (TCD) for analysis of argon and helium detector with pulse discharge (PDHID) for analysis of neon. This chromatograph is powered by helium carrier gas 6.0. The third system measures the concentration of helium, consists of a gas chromatograph equipped with a TCD detector and three packed columns filled with molecular sieve type 5A and activated carbon. The carrier gas in this system is argon 6.0. Detection limit, LOD for each measurement systems for the tested compounds are: 0,06 fmol/L for SF6, 15 fmol/L for F-11, 10 fmol/L for F-12, 1,9•10-8 cm3STP/cm3 for Ne, 3,1•10-6 cm3STP/cm3 for Ar and 1,2•10-8cm3STP/gH2O for He. Work performed within the strategic research project "Technologies supporting the development of safe nuclear power" financed by the National Centre for Research and Development (NCBiR). Research Task "Development of methods to assure nuclear safety and radiation protection for current and future needs of nuclear power plants", contract No. SP/J/6/143339/11. This work was also supported by grant No. N N525 3488 38 from the Polish National Science Centre. [1] I. ?liwka, et al., Long-Term Measurements of CFCs and SF6 Concentration in Air, Polish J. of Eviron. Stud. Vol. 19, No. 4, 811-815, 2010. [2] I. ?liwka, et al., Headspace Extraction Method for Simultaneus Determination of SF6, CCl3F2, CCl2F2 and CCl2FCClF2 in Water, Chem. Anal. (Warsaw) 49,535, 2004. [3] P. Mochalski, Chromatographic method for the determination of Ar, Ne and N2 in water, Ph.D. thesis, Institute of Nuclear Physics Polish Academy of Sciences in Krakow, 2003 (in polish). [4] J. Najman, Development of chromatographic measurement method of helium concentration in groundwater for the purpose of dating in the hydrological issues, Ph.D. thesis, Institute of Nuclear Physics Polish Academy of Sciences in Krakow, 2008, http://www.ifj.edu.pl/SD/rozprawy_dr/rozpr_Najman.pdf?lang=pl (in polish).

Najman, Joanna; Bielewski, Jaros?aw; ?liwka, Ireneusz

2013-04-01

305

Hydrogeologic uncertainties and policy implications: The Water Consumer Protection Act of Tucson, Arizona, USA  

NASA Astrophysics Data System (ADS)

The 1995 Water Consumer Protection Act of Tucson, Arizona, USA (hereafter known as the Act) was passed following complaints from Tucson Water customers receiving treated Central Arizona Project (CAP) water. Consequences of the Act demonstrate the uncertainties and difficulties that arise when the public is asked to vote on a highly technical issue. The recharge requirements of the Act neglect hydrogeological uncertainties because of confusion between "infiltration" and "recharge." Thus, the Act implies that infiltration in stream channels along the Central Wellfield will promote recharge in the Central Wellfield. In fact, permeability differences between channel alluvium and underlying basin-fill deposits may lead to subjacent outflow. Additionally, even if recharge of Colorado River water occurs in the Central Wellfield, groundwater will become gradually salinized. The Act's restrictions on the use of CAP water affect the four regulatory mechanisms in Arizona's 1980 Groundwater Code as they relate to the Tucson Active Management Area: (a) supply augmentation; (b) requirements for groundwater withdrawals and permitting; (c) Management Plan requirements, particularly mandatory conservation and water-quality issues; and (d) the requirement that all new subdivisions use renewable water supplies in lieu of groundwater. Political fallout includes disruption of normal governmental activities because of the demands in implementing the Act. Résumé La loi de 1995 sur la protection des consommateurs d'eau de Tucson (Arizona, États-Unis) a été promulguée à la suite des réclamations des consommateurs d'eau de Tucson alimentés en eau traitée à partir à la station centrale d'Arizona (CAP). Les conséquences de cette loi montrent les incertitudes et les difficultés qui apparaissent lorsque le public est appeléà voter sur un problème très technique. Les exigences de la loi en matière de recharge négligent les incertitudes hydrogéologiques du fait de la confusion entre "infiltration" et "recharge". C'est ainsi que la loi laisse entendre que l'infiltration à partir des lits de rivières le long du champ captant central favorise la recharge de cette zone. En réalité, les différences de perméabilité entre les alluvions du lit et les dépôts sous-jacents remplissant le bassin peuvent provoquer un écoulement sous-jacent. En outre, même si une recharge par l'eau de la rivière Colorado se produit dans cette zone, la nappe sera progressivement salifiée. Les restrictions imposées par la loi quant à l'utilisation de l'eau de la station centrale d'Arizona affectent les quatre outils réglementaires du Code des eaux souterraines de l'Arizona de 1980, en ce qu'ils concernent la zone de gestion active de Tucson: (a) l'augmentation de l'approvisionnement (b) les conditions requises pour les prélèvements d'eau souterraine et les autorisations; (c) les conditions requises pour le plan de gestion, en particulier la pérennité du concessionnaire et les résultats en matière de qualité de l'eau et (d) la condition que tous les nouveaux districts aient recours à des ressources en eau renouvelables à la place de l'eau souterraine. Les demandes concernant la mise en oeuvre de la loi ont conduit jusqu'à l'arrêt des activités normales des instances politiques. Resumen El Acta de Protección de los Usuarios de Agua de Tucson, Arizona (EE.UU.) de 1995 (el Acta) se aprobó a raíz de las quejas de los usuarios de agua de Tucson que recibían agua tratada por el Proyecto de Arizona Central (CAP). Las consecuencias del Acta demuestran las incertidumbres y dificultades que se producen cuando se le pide al público que vote sobre temas muy técnicos. Los requerimientos de recarga del Acta desprecian incertidumbres hidrogeológicas al confundir entre "infiltración" y "recarga". Así, el Acta dice que la infiltración en los canales de los arroyos a lo largo del Campo de Producción Central aumentará la recarga a dicho campo. De hecho, la diferencia de permeabilidad e

Wilson, L. G.; Matlock, W. G.; Jacobs, K. L.

306

Hydrogeology and water quality near a solid- and hazardous-waste landfill, Northwood, Ohio  

USGS Publications Warehouse

Hydrogeology and water quality of ground water and selected streams were evaluated near a landfill in northwestern Ohio. The landfill is used for codisposal of solid and hazardous waste. Water-level and geologic data were collected from 36 wells and 3 surface-water sites during the period November 1983 to November 1985. Water-quality samples were collected from 18 wells and 3 surface-water sites this during this same period. The primary aquifers in the area are the Greenfield Dolomite and underlying Lockport Dolomite of Silurian age. These bedrock carbonates are overlain by two clay tills of Wisconsin age. The tills are capped by a glacial lake clay. The tills generally are saturated, but do not yield sufficient water to be considered an aquifer. Two wells in the study area yield water, in part, from discontinuous deposits of outwash sand and gravel at the lower till-bedrock interface. Regional ground-water flow is from southwest to northeast; local flow is influenced by a ground-water mound centered under the northernmost cells of the landfill. Water levels in wells penetrating refuse within the landfill and the presence of leachate seeps indicate that the refuse is saturated. Head relations among the landfill, till, and dolomite aquifer indicate a vertical component of flow downward from the landfill to the dolomite aquifer. Water levels near the landfill fluctuate as much as 14 feet per year, in contrast to fluctuations of less than 3 feet per year in wells upgradient landfill. Ground waters from wells completed in the dolomite aquifer and glacial till were found to have major-iron concentrations controlled, in large part, by reaction with calcite, dolomite, and other minerals in the aquifer. Only minor departures from equilibrium mineral saturation were noted for ground water, except in wells affected by cement/grout contamination. Molal ratios of calcuim:magnesium in ground water suggest a similar chemical evolution of waters throughout the dolomite aquifer in the study area. Stable-isotope ratios of oxygen and hydrogen indicate the source of water in the till unit and dolomite aquifer is atmospheric precipitation. Elevated levels of total dissolved solids, boron, ammonia, and iron in the leachate and in wells downgradient of the landfill may indicate mixing of ground water with leachate. Oxygen and hydrogen stable-isotope ratios were used to differentiate waters from the glacial till and dolomite aquifer. Isotope ratios also show a shift off the local mixing line for leachate and for a well just downgradient from the landfill. The shift to heavier values of o D in the well water may be indicative of leachate mixing with ground water. The effect of this mixing denoted by hydrologic, isotopic, and chemical-quality data is limited mostly to elevated levels of the common ions. Analysis did not indicate significant levels of toxic metals or organic contaminants except phenol, which was present at concentrations of from 1 to 5 micrograms per liter in six wells. Analysis of water-quality data from nearby streams suggest that surface leaching from the landfill does not significantly affect stream-water quality, but may contribute to higher level of trace metals in the streambed sediments.

De Roche, J.T.; Breen, K.J.

1989-01-01

307

Hydrogeology of the upper Floridan Aquifer in the vicinity of the Marine Corps Logistics Base near Albany, Georgia  

USGS Publications Warehouse

In 1995, the U.S. Navy requested that the U.S. Geological Survey conduct an investigation to describe the hydrogeology of the Upper Floridan aquifer in the vicinity of the Marine Corps Logistics Base, southeast and adjacent to Albany, Georgia. The study area encompasses about 90 square miles in the Dougherty Plain District of the Coastal Plain physiographic province, in Dougherty and Worth Counties-the Marine Corps Logistics Base encompasses about 3,600 acres in the central part of the study area. The Upper Floridan aquifer is the shallowest, most widely used source of drinking water for domestic use in the Albany area. The hydrogeologic framework of this aquifer was delineated by description of the geologic and hydrogeologic units that compose the aquifer; evaluation of the lithologic and hydrologic heterogeneity of the aquifer; comparison of the geologic and hydrogeologic setting beneath the base with those of the surrounding area; and determination of ground-water-flow directions, and vertical hydraulic conductivities and gradients in the aquifer. The Upper Floridan aquifer is composed of the Suwannee Limestone and Ocala Limestone and is divided into an upper and lower water-bearing zone. The aquifer is confined below by the Lisbon Formation and is semi-confined above by a low-permeability clay layer in the undifferentiated overburden. The thickness of the aquifer ranges from about 165 feet in the northeastern part of the study area, to about 325 feet in the southeastern part of the study area. Based on slug tests conducted by a U.S. Navy contractor, the upper water-bearing zone has low horizontal hydraulic conductivity (0.0224 to 2.07 feet per day) and a low vertical hydraulic conductivity (0.0000227 to 0.510 feet per day); the lower water-bearing zone has a horizontal hydraulic conductivity that ranges from 0.0134 to 2.95 feet per day. Water-level hydrographs of continuously monitored wells on the Marine Corps Logistics Base show excellent correlation between ground-water level and stage of the Flint River. Ground-water-flow direction in the southwestern part of the base generally is southeast to northwest; whereas, in the northeastern part of the base, flow directions generally are east to west, as well as from west to east, thus creating a ground-water low. Ground-water flow in the larger study area generally is east to west towards the Flint River, with a major ground-water-flow path existing from the Pelham Escarpment to the Flint River and a seasonal cone of depression the size of which is dependent upon the magnitude of irrigation pumping during the summer months. Calculated vertical hydraulic gradients (based upon data from 11 well-cluster sites on the Marine Corps Logistics Base) range from 0.0016 to 0.1770 foot per foot, and generally are highest in the central and eastern parts of the base. The vertical gradient is downward at all well-cluster sites.

McSwain, Kristen B.

1999-01-01

308

Fracture related-fold patterns analysis and hydrogeological implications: Insight from fault-propagation fold in Northwestern of Tunisia  

NASA Astrophysics Data System (ADS)

The spatial distribution of fracturing in hard rocks is extremely related to the structural profile and traduces the kinematic evolution. The quantitative and qualitative analysis of fracturing combined to GIS techniques seem to be primordial and efficient in geometric characterization of lineament's network and to reconstruct the relative timing and interaction of the folding and fracturing histories. Also a detailed study of the area geology, lithology, tectonics, is primordial for any hydrogeological study. For that purpose we used a structural approach that consist in comparison between fracture sets before and after unfolding completed by aerospace data and DEM generated from topographic map. The above methodology applied in this study carried out in J. Rebia located in Northwestern of Tunisia demonstrated the heterogeneity of fracturing network and his relation with the fold growth throught time and his importance on groundwater flow.

Sanai, L.; Chenini, I.; Ben Mammou, A.; Mercier, E.

2015-01-01

309

Description and hydrogeologic implications of cored sedimentary material from the 1975 drilling program at the radioactive waste management complex, Idaho  

USGS Publications Warehouse

Samples of sedimentary material from interbeds between basalt flows and from fractures in the flows, taken from two drill cores at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory were analyzed for (1) particle-size dribution, (2) bulk mineralogy, (3) clay mineralogy, (4) cation-exchange capacity, and (5) carbonate content. Thin sections of selected sediment material were made for petrographic examination. Preliminary interpretations indicate that (1) it may be possible to distinguish the various sediment interbeds on the basis of their mineralogy, (2) the presence of carbonate horizons in sedimentary interbeds may be utilized to approximate the time of exposure and the climate while the surface was exposed (which affected the hydrogeologic character of the sediment), and the type and orientation of fracture-filling material may be utilized to determine the mechanism by which fractures were filled. (USGS)

Rightmire, C.T.

1984-01-01

310

Geographic information system data sets of hydrogeologic conditions in Pequea and Mill Creek watersheds, Pennsylvania; Part I, basic data  

USGS Publications Warehouse

This report describes basic data used to develop Geographic Information System data sets of bedrock geology, sinkholes and closed depressions, and spring and well locations attributed with hydro- geologic and water-quality data in the Pequea and Mill Creek watersheds, a 210-square-mile area in Lancaster and Chester Counties, Pa. The data sets, which do not contain hydrogeologic interpretations, were developed by the use of ARC/INFO software during 1990-93 by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Resources. The U.S. Environmental Protection Agency proposes to use these noninter- pretive and interpretive data sets, and those from other sources, to aid in the assessment of ground- water vulnerability to pesticides in the Pequea and Mill Creek watersheds.

Dugas, Diana L.; Char, Stephen J.; Baumbach, Gary E.

1995-01-01

311

Hydrogeologic framework and occurrence, movement, and chemical characterization of groundwater in Dixie Valley, west-central Nevada  

USGS Publications Warehouse

Dixie Valley, a primarily undeveloped basin in west-central Nevada, is being considered for groundwater exportation. Proposed pumping would occur from the basin-fill aquifer. In response to proposed exportation, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation and Churchill County, conducted a study to improve the understanding of groundwater resources in Dixie Valley. The objective of this report is to characterize the hydrogeologic framework, the occurrence and movement of groundwater, the general water quality of the basin-fill aquifer, and the potential mixing between basin-fill and geothermal aquifers in Dixie Valley. Various types of geologic, hydrologic, and geochemical data were compiled from previous studies and collected in support of this study. Hydrogeologic units in Dixie Valley were defined to characterize rocks and sediments with similar lithologies and hydraulic properties influencing groundwater flow. Hydraulic properties of the basin-fill deposits were characterized by transmissivity estimated from aquifer tests and specific-capacity tests. Groundwater-level measurements and hydrogeologic-unit data were combined to create a potentiometric surface map and to characterize groundwater occurrence and movement. Subsurface inflow from adjacent valleys into Dixie Valley through the basin-fill aquifer was evaluated using hydraulic gradients and Darcy flux computations. The chemical signature and groundwater quality of the Dixie Valley basin-fill aquifer, and potential mixing between basin-fill and geothermal aquifers, were evaluated using chemical data collected from wells and springs during the current study and from previous investigations. Dixie Valley is the terminus of the Dixie Valley flow system, which includes Pleasant, Jersey, Fairview, Stingaree, Cowkick, and Eastgate Valleys. The freshwater aquifer in the study area is composed of unconsolidated basin-fill deposits of Quaternary age. The basin-fill hydrogeologic unit can be several orders of magnitude more transmissive than surrounding and underlying consolidated rocks and Dixie Valley playa deposits. Transmissivity estimates in the basin fill throughout Dixie Valley ranged from 30 to 45,500 feet squared per day; however, a single transmissivity value of 0.1 foot squared per day was estimated for playa deposits. Groundwater generally flows from the mountain range uplands toward the central valley lowlands and eventually discharges near the playa edge. Potentiometric contours east and west of the playa indicate that groundwater is moving eastward from the Stillwater Range and westward from the Clan Alpine Mountains toward the playa. Similarly, groundwater flows from the southern and northern basin boundaries toward the basin center. Subsurface groundwater flow likely enters Dixie Valley from Fairview and Stingaree Valleys in the south and from Jersey and Pleasant Valleys in the north, but groundwater connections through basin-fill deposits were present only across the Fairview and Jersey Valley divides. Annual subsurface inflow from Fairview and Jersey Valleys ranges from 700 to 1,300 acre-feet per year and from 1,800 to 2,300 acre-feet per year, respectively. Groundwater flow between Dixie, Stingaree, and Pleasant Valleys could occur through less transmissive consolidated rocks, but only flow through basin fill was estimated in this study. Groundwater in the playa is distinct from the freshwater, basin-fill aquifer. Groundwater mixing between basin-fill and playa groundwater systems is physically limited by transmissivity contrasts of about four orders of magnitude. Total dissolved solids in playa deposit groundwater are nearly 440 times greater than total dissolved solids in the basin-fill groundwater. These distinctive physical and chemical flow restrictions indicate that groundwater interaction between the basin fill and playa sediments was minimal during this study period (water years 2009–11). Groundwater in Dixie Valley generally can be characterized as a sodium bicarbonate type, with greater proportions of chloride n

Huntington, Jena M.; Garcia, C. Amanda; Rosen, Michael R.

2014-01-01

312

Coupling between hydrogeology and deformation of mountainous rock slopes: Insights from La Clapière area (southern Alps, France)  

NASA Astrophysics Data System (ADS)

Meteoric infiltration influence on large mountainous rock slopes stability is investigated by comparing hydrogeologic and gravitational structures from detailed mapping of the 'La Clapière' slope. The slope infiltrated waters are trapped in a perched aquifer that is contained in deposits inside tensile cracks of the upper part of the slope. Flow rates of 0.4 to 0.8 l s -1 from the perched aquifer to the landslide cause landslide accelerations. Numerical modeling shows that a 0.75 l s -1 infiltration yield increases conditions for toppling with failure through tilting of large rock volumes from the perched aquifer bottom down to the foot of the slope. To cite this article: Y. Guglielmi et al., C. R. Geoscience 337 (2005).

Guglielmi, Yves; Cappa, Frédéric; Binet, Stéphane

2005-09-01

313

Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite  

SciTech Connect

The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

1992-11-01

314

Lacustrine flow (divers, side scan sonar, hydrogeology, water penetrating radar) used to understand the location of a drowned person  

NASA Astrophysics Data System (ADS)

An unusual application of hydrological understanding to a police search is described. The lacustrine search for a missing person provided reports of bottom-water currents in the lake and contradictory indications from cadaver dogs. A hydrological model of the area was developed using pre-existing information from side scan sonar, a desktop hydrogeological study and deployment of water penetrating radar (WPR). These provided a hydrological theory for the initial search involving subaqueous groundwater flow, focused on an area of bedrock surrounded by sediment, on the lake floor. The work shows the value a hydrological explanation has to a police search operation (equally to search and rescue). With hindsight, the desktop study should have preceded the search, allowing better understanding of water conditions. The ultimate reason for lacustrine flow in this location is still not proven, but the hydrological model explained the problems encountered in the initial search.

Ruffell, Alastair

2014-05-01

315

Hydrogeology of the south-eastern Yucatan Peninsula: New insights from water level measurements, geochemistry, geophysics and remote sensing  

NASA Astrophysics Data System (ADS)

SummaryThe Yucatan Peninsula is one of the world's largest karstic aquifer systems. It is the sole freshwater source for human users and ecosystems. The region hosts internationally important groundwater-dependent ecosystems (GDEs) in the 5280 km 2 Sian Ka'an Biosphere Reserve. The GDEs are threatened by increasing groundwater abstractions and risks of pollution. Hydrogeological exploration work is needed as basis for sound groundwater management. A multidisciplinary approach was used to study this data-scarce region. Geochemical data and phreatic surface measurements showed distinct hydrogeological units in the groundwater catchment of Sian Ka'an. The hilly southwestern areas had a low hydraulic permeability, likely caused by a geology containing gypsum, whereas the transition zone and flat areas in the east and north had a high permeability. In the latter areas, the fresh groundwater could be described by a Dupuit-Ghyben-Herzberg lens. Geophysical borehole logging and time-domain electromagnetic soundings identified a shallow, low-resistive and high-gamma-radiation layer present throughout the hilly area and transition zone. Its thickness was 3-8 m, apparent conductivity was 200-800 mS/m and natural gamma-radiation about 80 counts pr. second. The layer is proposed to be ejecta from the Chicxulub impact (Cretaceous/Paleogene boundary). Spatial estimates of recharge were calculated from MODIS imagery using the 'triangle method'. Average recharge constituted 17% of mean annual precipitation in the study area. Recharge was greatest in the hilly area and towards Valladolid. Near the coast, average actual evapotranspiration exceeded annual precipitation. The multidisciplinary approach used in this study is applicable to other catchment-scale studies.

Gondwe, Bibi R. N.; Lerer, Sara; Stisen, Simon; Marín, Luis; Rebolledo-Vieyra, Mario; Merediz-Alonso, Gonzalo; Bauer-Gottwein, Peter

2010-07-01

316

Delineation of subsurface structures using resistivity, VLF and radiometric measurement around a U-tailings pond and its hydrogeological implication  

NASA Astrophysics Data System (ADS)

The hydrogeological characteristics of the uranium mill tailings pond in the vicinity of Jaduguda (Jharkhand, India) were investigated to examine possible contamination and suggest suitable remedial measures, if required. As the hydrogeological characteristics of subsurface geology are closely related to the electrical properties of the subsurface, geophysical measurements using electrical resistivity coupled with Very Low Frequency electromagnetic method and radiation study were used to investigate the geophysical and geological condition of mill tailings in order to characterize the subsurface structures of the tailings pond. The resistivity interpretation depicted the thickness of the soil cover and thickness of tailings in the pond, as well as the depth to the basement. It also suggested the possible flow direction of leachate. It was observed that the resistivity of the top layer decreases in the direction opposite to the dam axis, which in turn, indicated that the groundwater movement occurs in the opposite direction of the dam axis (in the northwest direction). The VLF method depicted the fractures through which groundwater moves, and also showed the current density alignment in the northwest direction at 10 m depth. The radiation measurement showed relatively higher counts in the northwest direction. This correlated well with the resistivity measurement. The current density at a depth of 20 m showed a closed contour suggesting no groundwater movement in the area at this depth, and that high conductivity material was confined to the tailings area only. It was concluded that groundwater moves in opposite direction of the dam axis at shallower depth only. It was found that continuation of fractures do not extend to deeper depths, which suggested that the tailings storage facility at Jaduguda was reasonably safe from any downward contamination.

Banerjee, K. S.; Sharma, S. P.; Sarangi, A. K.; Sengupta, D.

317

Compilation of Water-Resources Data and Hydrogeologic Setting for Brunswick County, North Carolina, 1933-2000  

USGS Publications Warehouse

Water-resources data were compiled for Brunswick County, North Carolina, to describe the hydrologic conditions of the County. Hydrologic data collected by the U.S. Geological Survey as well as data collected by other governmental agencies and reviewed by the U.S. Geological Survey are presented. Data from four weather stations and two surface-water stations are summarized. Data also are presented for land use and land cover, soils, geology, hydrogeology, 12 continuously monitored ground-water wells, 73 periodically measured ground-water wells, and water-quality measurements from 39 ground-water wells. Mean monthly precipitation at the Longwood, Shallotte, Southport, and Wilmington Airport weather stations ranged from 2.19 to 7.94 inches for the periods of record, and mean monthly temperatures at the Longwood, Southport, and Wilmington Airport weather stations ranged from 43.4 to 80.1 degrees Fahrenheit for the periods of record. An evaluation of land-use and land-cover data for Brunswick County indicated that most of the County is either forested land (about 57 percent) or wetlands (about 29 percent). Cross sections are presented to illustrate the general hydrogeology beneath Brunswick County. Water-level data for Brunswick County indicate that water levels ranged from about 110 feet above mean sea level to about 22 feet below mean sea level. Chloride concentrations measured in aquifers in Brunswick County ranged from near 0 to 15,000 milligrams per liter. Chloride levels in the Black Creek and Cape Fear aquifers were measured at well above the potable limit for ground water of 250 milligrams per liter set by the U.S. Environmental Protection Agency for safe drinking water.

Fine, Jason M.; Cunningham, William L.

2001-01-01

318

Geologic framework and hydrogeologic features of the Glen Rose Limestone, Camp Bullis Training Site, Bexar County, Texas  

USGS Publications Warehouse

The Glen Rose Limestone crops out over most of the Camp Bullis Training Site in northern Bexar County, Texas, where it consists of upper and lower members and composes the upper zone and the upper part of the middle zone of the Trinity aquifer. Uncharacteristically permeable in northern Bexar County, the Glen Rose Limestone can provide avenues for recharge to and potential contamination of the downgradient Edwards aquifer, which occupies the southeastern corner of Camp Bullis. The upper member of the Glen Rose Limestone characteristically is thin-bedded and composed mostly of soft limestone and marl, and the lower Glen Rose typically is composed mostly of relatively massive, fossiliferous limestone. The upper member, about 410 to 450 feet thick at Camp Bullis, was divided in this study into five hydrogeologic subdivisions, A through E (youngest to oldest). The approximately 120-foot-thick Interval A has an abundance of caves, which is indicative of its generally well developed fracture, channel, and cavern porosity that in places provides appreciable permeability. The 120- to 150-foot-thick Interval B is similar to Interval A but with less cave development and considerably less permeability. The 10- to 20-foot-thick Interval C, a layer of partly to mostly dissolved soluble carbonate minerals, is characterized by breccia porosity, boxwork permeability, and collapse structures that typically divert ground water laterally to discharge at land surface. The 135- to 180-foot-thick Interval D generally has low porosity and little permeability with some local exceptions, most notably the caprinid biostrome just below the top of the interval, which appears to be permeable by virtue of excellent moldic, vug, fracture, and cavern porosity. The 10- to 20-foot-thick Interval E, a layer of partly to mostly dissolved evaporites similar to Interval C, has similar hydrogeologic properties and a tendency to divert ground water laterally.

Clark, Allan K.

2003-01-01

319

Introduction: Special Issue: Discussions on Metahydrogeology: Research Stocktaking or Identity Crisis? Essays on the Once and Future Merit of Research in Hydrogeology  

SciTech Connect

We believe that the Journal of Hydrologic Engineering should serve as the primary outlet for hydrogeological research on the engineering aspects—including applications and science—of subsurface hydrology. Our journal fills the interval between the more theoretical and the more applied contexts of hydrogeology for which numerous print outlets exist. We begin drawing together our strategy for invigorating this role in the journal’s future by first holding a discourse on the role of research itself in hydrogeology. This discourse continues an already vigorous discussion that has been ongoing in the literature and is characterized by one primary fact: papers in hydrology literature are cited rarely, relative to a variety of expectations. Research progress in many fields of environmental science and engineering has grown more inclusive of lateral, interdisciplinary contributions while exhibiting commonly valued vertical contributions with less frequency. At the same time, the conventional role of research, its intrinsic value—and especially its value to practical applied science and engineering, has come under increasing scrutiny and criticism. Public discussions and debates addressing aspects of this critique in recent years have appeared in the ASCE Journal of Environmental Engineering 127(4, 5, 9); Ground Water 39(4) and 40(3); Stochastic Environmental Research and Risk Assessment 18(4); and the Hydrogeology Journal 13(1). More recently, a quantitative bibliometric analysis of the impact of publishing in hydrology (Koutsoyiannis and Kundzewicz 2007) concludes that the impact of a hydrological technical paper can indeed be satisfactorily (but not ideally) measured by its number of citations. However, these authors also find that “the quantification of the quality and importance of research achievements is very difficult, if not impossible.” In either case, according to a personal communication from V. Klemes, the fact that most papers are rarely cited means that most of the citations that do exist are rarely conveyed. These studies raise a number of questions. Is publishing, for the most part, a waste of time outside of academic merit? Is hydrogeology a “mature science”? Is progress really being made on longstanding hydrogeological problems? This special issue is intended not only to provide a robust platform for continuating the debate surrounding these and related questions but also to reinitialize the role of the Journal of Hydrologic Engineering in disseminating contributions to hydrogeological engineering science and practice. As a continuation of this discussion, the issue editors hosted a session at the fall 2005 meeting of the American Geophysical Union (http://www.agu.org/meetings/fm05/?pageRequest=search&show =detail&sessid=362) encouraging debate about the value of research, academic and otherwise, in hydrogeology. This session involved a small sample of some of the top thinkers on these issues today, representing a wide range of perspectives. Included in this special issue are essays and philosophical commentaries by the participants in that session. These contributions illuminate ways that research, publishing, teaching, practice, and scholarship may evolve to increase the value of research to society, ranging from basic science to engineering hydrogeology, worldwide.

Ginn, Timothy R.; Scheibe, Timothy D.

2008-01-01

320

Hydrogeologic evaluation of the Upper Floridan aquifer in the southwestern Albany area, Georgia  

USGS Publications Warehouse

A cooperative study by the Albany Water, Gas, and Light Commission and the U.S. Geological Survey was conducted to evaluate the hydrogeology of the Upper Floridan aquifer in an area southwest of Albany and west of the Flint River in Dougherty County, Ga. The study area lies in the Dougherty Plain district of the Coastal Plain physiographic province. In this area, the Upper Floridan aquifer is comprised of the upper Eocene Ocala Limestone, confined below by the middle Eocene Lisbon Formation, and semiconfined above by the undifferentiated Quaternary overburden. The overburden ranges in thickness from about 30 to 50 feet and consists of fine to coarse quartz sand, clayey sand, sandy clay, and clay. The Upper Floridan aquifer has been subdivided into an upper water-bearing zone and a lower water-bearing zone based on differences in lithology and yield. In the study area, the upper water-bearing zone generally consists of dense, highly weathered limestone of low permeability and ranges in thickness from 40 to 80 feet. The lower water-bearing zone consists of hard, slightly weathered limestone that exhibits a high degree of secondary permeability that has developed along fractures and joints, and ranges in thickness from about 60 to 80 feet. Borehole geophysical logs and borehole video surveys indicate two areas of high permeability in the lower water-bearing zone-one near the top and one near the base of the zone. A wellfield consisting of one production well and five observation-well clusters (one deep, intermediate, and shallow well in each cluster) was constructed for this study. Spinner flowmeter tests were conducted in the production well between the depths of 110 and 140 feet below land surface to determine the relative percentages of water contributed by selected vertical intervals of the lower water-bearing zone. Pumping rates during these tests were 1,080, 2,200, and 3,400 gallons per minute. The results of these pumping tests show that the interval between 118 and 124 feet below land surface contributes a significant percentage of the total yield to the well. An aquifer test was conducted by pumping the production well at a constant rate of 3,300 gallons per minute for about 49 hours. Time-dependent water-level data were collected throughout the pumping and recovery phases of the test in the pumped well and the observation wells. The maximum measured drawdown in the observation wells was about 2.6 ft. At about 0.5 mile from the pumped well, there was little measurable effect from pumping. Water levels increased during the test in wells located within about 3.75 miles of the Flint River (about 0.5 miles east of the pumping well). This water-level increase correlated with a 3.5-feet increase in the stage of the Flint River. The hydraulic characteristics of the Upper Floridan aquifer were evaluated using the Hantush-Jacob curve-matching and Jacob straight-line methods. Using the Hantush-Jacob method, values for transmissivity ranged from about 120,000 to 506,000 feet squared per day; values for storage coefficient ranged from 1.4 x 10-4 to 6.3 x 10-4; and values for vertical hydraulic conductivity of the overlying sediments ranged from 4.9 to 6.8 feet per day. Geometric averages for these values of transmissivity, storage coefficient, and vertical hydraulic conductivity were calculated to be 248,000 feet squared per day, 2.7 x 10-4, and 5.5 feet per day, respectively. If a dual porosity aquifer model (fracture flow plus matrix flow) is assumed instead of leakage, and the Jacob straight-line method is used with late time-drawdown data, the calculated transmissivity of the fractures ranged from about 233,000 to 466,000 feet squared per day; and storage coefficient of the fractures plus the matrix ranged from 5.1 x 10-4 to 2.9 x 10-2.

Warner, Debbie

1997-01-01

321

Hydrogeology and hydrology of the Punta Cabullones wetland area, Ponce, southern Puerto Rico, 2007-08  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the Municipio Autónomo de Ponce and the Puerto Rico Department of Natural and Environmental Resources, conducted a study of the hydrogeology and hydrology of the Punta Cabullones area in Ponce, southern Puerto Rico. (Punta Cabullones is also referred to as Punta Cabullón.) The Punta Cabullones area is about 9 square miles and is an ecological system made up of a wetland, tidal flats, saltflats, mangrove forests, and a small fringing reef located a short distance offshore. The swales or depressions between successive beach ridges became development avenues for saline to hypersaline wetlands. The Punta Cabullones area was designated by the U.S. Fish and Wildlife Service as a coastal barrier in the 1980s because of its capacity to act as a buffer zone to ameliorate the impacts of natural phenomenon such as storm surges. Since 2003, Punta Cabullones has been set aside for preservation as part of the mitigation effort mandated by Federal and State laws to compensate for the potential environmental effects that might be caused by the construction of the Las Américas Transshipment Port. Total rainfall measured during 2008 within the Punta Cabullones area was 36 inches, which is slightly greater than the long-term annual average of 32 inches for the coastal plain near Ponce. Two evapotranspiration estimates, 29 and 37 inches, were obtained for the subarea of the Punta Cabullones area that is underlain by fan-delta and alluvial deposits by using two variants of the Penman semi-empirical equation. The long-term water stage and chemical character of the wetland in Punta Cabullones are highly dependent on the seasonal and annual variations of both rainfall and sea-wave activity. Also, unseasonal short-term above-normal rainfall and sea-wave events resulting from passing storms may induce substantial changes in the water stage and the chemical character of the wetland. In general, tidal fluctuations exert a minor role in modifying the water quality and stage of the wetland in Punta Cabullones. The role of the tidal fluctuations becomes important during those times when the outlets/inlets to the sea are not blocked by a sand bar and is allowed to freely flow into the wetland interior. The salinity of the wetland varies from brackish to hypersaline. The hypersaline conditions, including the occurrence of saltflats, within the Punta Cabullones wetland area result from a high evapotranspiration rate. The hypersaline conditions are further enhanced by a sand bar that blocks the inlet/outlet of the wetland’s easternmost channel, particularly during the dry season. Groundwater in Punta Cabullones mostly is present within beds of silisiclastic sand and gravel. During the study period, the depth to groundwater did not exceed 4 feet below land surface. The movement and direction of the groundwater flow in Punta Cabullones are driven by density variations that in turn result from the wide range of salinities in the groundwater. The salinity of the groundwater decreases within the first 60 to 100 feet of depth and decreases outward from a mound of hypersaline groundwater centered on piezometer nest PN2. The main groundwater types within the Punta Cabullones area vary from calcium-bicarbonate type in the northernmost part of the study area to a predominantly sodium-potassium-chloride groundwater type southward. According to stable-isotope data, groundwater within the study area is both modern meteoric water and seawater highly affected by evaporation. The chemical and stable-isotopic character of local groundwater is highly influenced by evapotranspiration because of its shallow depth. Equivalent freshwater heads indicate groundwater moves away from a mound centered on piezometer nest PN2, in a pattern similar to the spatial distribution of groundwater salinity. Vertical groundwater flow occurs in Punta Cabullones due to local differences in density. In the wetland subarea of Punta Cabullones, groundwater and surface water are hydraulically coupled. Locally, surface-hypersaline water sinks into

Rodríguez-Martínez, Jesús; Soler-López, Luis R.

2014-01-01

322

Characterization of the hydrogeology and stress state in the vicinity of the homestake mine, Lead, SD  

NASA Astrophysics Data System (ADS)

Underground workings in fractured rock are common worldwide. They have applications in numerous areas and fields of study. These include mining operations, civil engineering projects like tunnels and underground facilities, and research projects that require underground laboratories such as the physics research being conducted by Sanford Laboratory at the former Homestake mine and Fermi Laboratory near Chicago (Bahcall et al. 2001, Elsworth 2009, Sadoulet et al. 2006, bge science DUSEL, fnal.gov). These excavations can reach several kilometers in depth including the 3.9 km deep TauTona mine in South Africa, the 3 km deep LaRonde mine in Quebec and the 2.4 km deep Homestake mine in South Dakota. Large quantities of rock are removed when constructing deep excavations, for example Rahn and Roggenthen (2002) estimated the total volume of rock removed from the Homestake mine to be 2.1x107 m3. Removing large volumes of rock alters the local stress state and ground water flow, potentially increasing risks to workers and the environment (Kaiser et al. 2008, Blodgett et al. 2002, Lucier et al. 2009, Goldbach 2010, Kang et al. 2010). The objective of this research is to develop a better understanding of how deep rock excavations can alter groundwater flow, stress state, and deformation in the rock that envelopes them. The approach is to evaluate how the hydraulic head, flow paths and stress state have been affected by excavation at the Homestake mine in Lead, South Dakota, one of the deepest mines in North America. The Homestake mine was selected as a focus of this research because it has recently been evaluated as the site of a deep underground research laboratory where an understanding of the groundwater flow and stress state was needed to plan underground experiments. The investigation includes poroelastic modeling of the Homestake mine using available geologic and geophysical data and mine records. Results from the analyses indicate that mining and dewatering have changed the hydrology and stress state in the vicinity of the Homestake mine. Dewatering reduces the hydraulic head and changes the flow systems in the vicinity of the mine. Four major hydrogeologic zones are recognized: 1.) a Shallow Flow System in the upper few hundred meters that dominates recharge and discharge to streams, 2.) a Recharge Capture Zone where water that has entered the region as recharge since mining began is captured by the mine, 3.) a Storage Capture Zone where water from storage in the host rock around the mine is captured, and 4.) a Mine Workings Zone where rock has been removed. Water enters the system at the top of the Shallow Flow System and either discharges to the streams or flows downward and becomes recharge to the lower capture zones. The Recharge Capture Zone grows with time as regions of storage are depleted and new recharge enters, and eventually it is assumed that the entire capture zone for the mine will become the Recharge Capture Zone. Fluxes from the Shallow Flow System to the Recharge Capture Zone typically range from 1x10-9 to 4x10-9 m/s. The largest recharge fluxes from the Shallow Flow System to the Recharge Capture Zone occur above the shallowest portions of the mine. Recharge flux also occurs above areas adjacent to the mine, and when projected to the surface the Recharge Capture Zone creates a roughly elliptical shape that is 6 km x 3.6 km. The Storage Capture Zone extends out beyond and below the Recharge Capture Zone and when projected to the surface creates a roughly elliptical region that is approximately 8.3 km x 6.6 km and extends down to depths of almost 5 km. Hydraulic heads and flow paths have been affected beyond the Storage Capture Zone but this water had not reached the mine by 135 years and therefore these regions are not included in the capture zones. The model was calibrated using in-situ stress data at various points in the mine to improve its ability to estimate the stress state and mechanical deformation around the Homestake mine. This was done by varying the rock density, Poisson's ratio, the effective Y

Ebenhack, Johnathan Foss

323

Hydrogeology, hydrologic budget, and water chemistry of the Medina Lake area, Texas  

USGS Publications Warehouse

A three-phase study of the Medina Lake area in Texas was done to assess the hydrogeology and hydrology of Medina and Diversion Lakes combined (the lake system) and to determine what fraction of seepage losses from the lake system might enter the regional ground-water-flow system of the Edwards and (or) Trinity aquifers. Phase 1 consisted of revising the geologic framework for the Medina Lake area. Results of field mapping show that the upper member of the Glen Rose Limestone underlies Medina Lake and the intervening stream channel from the outflow of Medina Lake to the midpoint of Diversion Lake, where the Diversion Lake fault intersects Diversion Lake. A thin sequence of strata consisting primarily of the basal nodular and dolomitic members of the Kainer Formation of the Edwards Group, is present in the southern part of the study area. On the southern side of Medina Lake, the contact between the upper member of the Glen Rose Limestone and the basal nodular member is approximately 1,000 feet above mean sea level, and the contact between the basal nodular member and the dolomitic member is approximately 1,050 feet above mean sea level. The most porous and permeable part of the basal nodular member is about 1,045 feet above mean sea level. At these altitudes, Medina Lake is in hydrologic connection with rocks in the Edwards aquifer recharge zone, and Medina Lake appears to lose more water to the ground-water system along this bedding plane contact. Hydrologic budgets calculated during phase 2 for Medina Lake, Diversion Lake, and Medina/Diversion Lakes combined indicate that: (1) losses from Medina and Diversion Lakes can be quantified; (2) a portion of those losses are entering the Edwards aquifer; and (3) losses to the Trinity aquifer in the Medina Lake area are minimal and within the error of the hydrologic budgets. Hydrologic budgets based on streamflow, precipitation, evaporation, and change in lake storage were used to quantify losses (recharge) to the ground-water system from Medina Lake, Diversion Lake, and Medina/Diversion Lakes combined during October 1995?September 1996. Water losses from Medina Lake to the Edwards/Trinity aquifers ranged from -14.0 to 135 acre-feet per day; Diversion Lake ranged from -1.2 to 93.1 acre-feet per day; and Medina/Diversion Lakes combined ranged from 36.1 to 119 acre-feet per day. Monthly average recharge during December 1995?July 1996 was estimated using an alternative method developed during this study (current study method) and compared to monthly average recharge during December 1995?July 1996 estimated using the existing USGS method and the Trans-Texas method. Recharge to the Edwards aquifer estimated using the current study method was about 69 and 73 percent of the recharge estimated using the USGS and Trans-Texas methods, respectively. The USGS and Trans-Texas methods overestimated recharge from Medina Lake compared to the recharge estimated with the current study method when Medina Lake stage was between about 1,027 and 1,032 feet above mean sea level and underestimated recharge from Medina Lake when lake stage was between about 1,036 and 1,045 feet above mean sea level. The USGS and Trans-Texas methods underestimated recharge from Diversion Lake compared to the recharge estimated with the current study method when Diversion Lake stage was greater than 913 feet above mean sea level and overestimated recharge from Diversion Lake when lake stage was less than 913 feet above mean sea level. The water quality of Medina Lake and Medina River and in selected wells and springs in the Edwards and Trinity aquifers was characterized during phase 3 of the study. Environmental isotope analyses and geochemical modeling also were used to determine where water losses from the lake system might be entering the ground-water-flow system. Isotopic ratios of deuterium, oxygen, and strontium were analyzed in selected surface-water, lake-water, and ground-water samples to trace the isotopi

Lambert, Rebecca B.; Grimm, Kenneth C.; Lee, Roger W.

2000-01-01

324

Hydrogeology and simulation of ground-water flow at the South Well Field, Columbus, Ohio  

USGS Publications Warehouse

The City of Columbus, Ohio, operates four radial collector wells in southern Franklin County. The 'South Well Field' is completed in permeable outwash and ice-contact deposits, upon which flow the Scioto River and Big Walnut Creek. The wells are designed to yield approximately 42 million gallons per day; part of that yield results from induced infiltration of surface water from the Scioto River and Big Walnut Creek. The well field supplied up to 30 percent of the water supply of southern Columbus and its suburbs in 1991. This report describes the hydrogeology of southern Franklin County and a tran sient three-dimensional, numerical ground-water- flow model of the South Well Field. The primary source of ground water in the study area is the glacial drift aquifer. The glacial drift is composed of sand, gravel, and clay depos ited during the Illinoian and Wisconsinan glaciations. In general, thick deposits of till containing lenses of sand and gravel dominate the drift in the area west of the Scioto River. The thickest and most productive parts of the glacial drift aquifer are in the buried valleys in the central and eastern parts of the study area underlying the Scioto River and Big Walnut Creek. Horizontal hydraulic conductivity of the glacial drift aquifer differs spa tially and ranges from 30 to 375 feet per day. The specific yield ranges from 0.12 to 0.30. The secondary source of ground water within the study area is the underlying carbonate bedrock aquifer, which consists of Silurian and Devonian limestones, dolomites, and shales. The horizontal hydraulic conductivity of the carbonate bedrock aquifer ranges from 10 to 15 feet per day. The storage coefficient is about 0.0002. The ground-water-flow system in the South Well Field area is recharged by precipitation, regional ground-water flow, and induced stream infiltration. Yearly recharge rates varied spatially and ranged from 4.0 to 12.0 inches. The three-dimensional, ground-water-flow model was constructed by use of the U.S. Geological Survey three-dimensional finite-difference ground-water-flow code. Recharge, boundary flux, and river leakage are the principal sources of water to the flow system. The study area is bounded on the north and south by streamlines, with flow entering the area from the east and west. Areal recharge is contributed throughout the study area, although a comparatively high percentage of precipitation reaches the water table in the area east of the Scioto River where little surface drain age exists. Ground-water flow is downward in the uplands of the Scioto River, and upward near the river in the glacial drift and carbonate bedrock aquifers. The numerical model contains 53 rows, 45 columns, and 3 layers. The uppermost two layers represent the glacial drift. The bottom layer represents the carbonate bedrock. The horizontal model grid is variably spaced to account for differences in available data and to simulate heads accurately in specific areas of interest. The length and width of grid cells range from 200 to 2,000 feet; the finer spacings are designed to increase detail in the areas near the collector wells. The model uses 7,155 active nodes. Measurements of water levels from October 1979 were used to represent steady-state conditions before municipal pumping at the well field began. Measurements made during March 1986 were used to represent steady-state conditions after commencement of pumping at the well field. Water levels measured during March 1986 - June 1991 were used for calibration targets in the transient simulations. The transient model was discretized into eight stress periods of 93 to 487 days on the basis of recharge, well-field pumpage, and available water-level data. Transient model calibration was based on seven sets of hydraulic-head measure ments made during March 1986 - June 1991. This time period includes large-scale increases in well- field production associated with a drought in the summer of 1988, an

Cunningham, W.L.; Bair, E.S.; Yost, W.P.

1996-01-01

325

A little island with significant groundwater resources: hydrogeological and hydrogeochemical features of the Pianosa aquifer (Tuscan Archipelago, Italy)  

NASA Astrophysics Data System (ADS)

The Pianosa Island is one of the seven islands of the Tuscan Archipelago, particularly known for its typical flat morphological structure. It is formed by Neogenic-Quaternary sedimentary rocks, mainly represented by superficial calcarenite and underlying marl and clayey marl. Despite the small extension of the island (just 10,2 km2 wide, coastal perimeter of approximately 18 km, maximum altitude of 29 m a.s.l.) and poor rainfall amount (the annual average is 480,7 mm in 1951-2002 period), the Pianosa aquifer is characterized by significant groundwater resources, which supported the presence of approximately 2,000 people at the end of Eighties. Nevertheless, the groundwater overexploitation and the land use (agricultural activity and cattle-breeding, associated to the local penal settlement activity) caused important sea-water intrusion and pollution phenomena. An improvement of such situation occurs since 1998, owing to the closing of the penal settlement and its activities. This pilot research intends to describe the hydrogeological and hydrogeochemical features of the Pianosa Island aquifer system and the groundwater quality several years after the penal settlement closing. The results of a multidisciplinary approach (hydrogeological, geochemical, isotopic) show that the groundwater recharge and circulation are substantially controlled by the hydro-structural conditions. The flat and permeable superficial calcarenite allows a high infiltration rate. The water table flow direction is generally W-E, in accordance with the dip direction of the stratigraphic contact between the calcarenite and the underlying impermeable marly-clayey rocks. However, the latter present conglomerate and sandstone intercalations, sometimes in contact (by angular unconformity) with the calcarenite, determining a general continuity in groundwater circulation, which is phreatic in the calcarenite, and confined in the conglomerate and sandstone horizons. A piezometric depression with values below the sea level has been identified in the eastern part of the island. The electric conductivity (EC) map confirms this hydrogeological structure. EC values above 1.000 ?S/cm are common in almost all the groundwater analyzed. An increase in groundwater salinity is observable in the eastern part of Pianosa, where the water table depression has been recognized. In agreement with the hydro-structural and water table conditions, the hydrogeochemical analyses confirm the recharge of the confined horizons (conglomerate and sandstone) by the superficial calcarenite. The isotopic data indicate that the aquifer system is recharged by the rainfall direct infiltration and there are not connections with the close Elba Island. Finally, the chemical analyses of most groundwater samples suggest an intermediate facies Na-Cl/Ca-HCO3, produced by the combination of the sea spray and the circulation in a prevalently carbonate aquifer (calcarenite). Clearly Na-Cl groundwater prevails in the eastern portion of the island, evidencing the seawater intrusion in the calcarenite, also confirmed by water table conditions and isotopic data.

Giannecchini, R.; Doveri, M.; Mussi, M.; Nicotra, I.; Puccinelli, A.

2012-12-01

326

Consequences of marginal drainage from a raised bog and understanding the hydrogeological dynamics as a basis for restoration  

NASA Astrophysics Data System (ADS)

Raised bogs in Ireland have long been exploited for local fuel utilisation. The drainage associated with such activities alters the hydrological regime of the bog as consolidation of the peat substrate results in significant water loss and subsidence of the bog. Undisturbed raised bog environments are typically characterised by distinct ecological systems, or ecotopes, which are controlled by the relationship between surface slopes, flow path lengths and drainage conditions. Shrinkage of the main peat profile, or catotelm, invariably alters these conditions, changes of which significantly damage ecotopes of conservational value. Clara Bog, Ireland, is one of western Europe's largest remaining raised bogs and on which much hydroecological research has been conducted since the early 1990's. Though a relatively intact raised bog, it has been extensively damaged in the past with the construction of a road through the centre of the bog known to have resulted in subsidence of 9-10m. However, the western tract of Clara Bog, Clara Bog West, has also subsided significantly since the early 1990's due to on-going peat cutting activities on the bogs margins. Current research now indicates that the bog is not an isolated hydrological entity, as generally perceived of bogs, but rather that Clara Bog West is intrinsically linked to the regional groundwater table, which appears to provide a significant ‘support' function to the bog. Hydrogeological monitoring and analysis has shown that water losses are not simply a result of lateral seepage of water through the peat profile at the bogs margins. Measurements of flow rates and electrical conductivity in drains bordering the bog indicate that little water is discharging laterally through the peat profile. However, piezometric head levels in mineral subsoil underlying the bog and close to the margins of the bog have decreased by 0.3 to 0.5m and 0.4 to 1.0m respectively since the early 1990s and it is believed that this is a result of vertical water losses in the peat profile not confined to the bog margins. Distinct zones of groundwater seepage in the marginal drains have been mapped based on hydrochemical and stable isotopic composition of the water and occur where drains have cut into permeable subsoil beneath the peat substrate and where the potentiometric surface of the regional groundwater table is below, or coincident with, the elevation at the base of the drain. Groundwater as a ‘supporting' ecological condition is usually confined to the perimeter of a raised bog, where peat and underlying clay thin towards the margin, allowing regional groundwater and peat water to converge and mix, thereby giving rise to characteristic nutrient rich ‘lagg' zone vegetation. However, in Clara Bog West it appears there is also a connection between the regional groundwater table and the high bog. Such a connection appears to be unique to Clara Bog West as a result of the prevailing geological conditions. A succession of Carboniferous Limestone to relatively permeable glacial till deposits to low permeability lacustrine clay sediment is the predominant underlying geology of the bog. However, there are areas where the glacial till protrudes through the lacustrine clay, which ordinarily isolates the high bog from underlying groundwater, thereby engendering a dependency on regional groundwater conditions. The hydrogeological data now suggest that drainage at the bog margin has created a hydraulic connection between these ‘subsoil subcrops' and the marginal drains, developed within the same subsoil, thereby lowering the regional groundwater table, steepening the hydraulic gradient and resulting in significant water loss from the main bog body. As such, understanding this hydrogeological connection is central to restoration activities that will aim to arrest subsidence and restore water levels that are indicative for ecotope development, on the high bog. Acknowledgements Clara Restoration Group: Jan Streekferk (Staatsbosbeheer), Jim Ryan (National Parks and Wildlife Service), Ray Flynn (Queens Univ

Regan, Shane; Johnston, Paul

2010-05-01

327

Remote sensing and hydrogeological methodologies for irrigation canal leakage detection: the Osasco and Fossano test sites (NorthWestern Italy)  

NASA Astrophysics Data System (ADS)

Seventy percent of global fresh water is usually used for irrigation. This rate is three times the amount of water used by industry and ten times the amount used in domestic and urban environment (Hotchkiss et al., 2001). However, the average efficiency of the water transport for agricultural purposes in different contexts (at world scale) is variable between 30% and 80%. Studies conducted in Italy confirms that rates are similar from the case studies abroad. In this research, satellite image analysis and hydrological-hydrogeological methods were used in two pilot sites (Osasco channel and Fossano channel, in the Noth-Western Italy) to identify the areas most prone to this problem and to quantify the losses. The aim of the study is to define a multidisciplinary approach in order to identify the critical situations of irrigation channels for a sustainable water resource use and management. The use of remote sensing techniques can identify, on a regional scale and at relative low cost, the channels section potentially critical upon which focus the attention and perform in-situ investigation. The presence of leakage from the irrigation canals, indeed, tends to induce variations of moisture on the surface ground. These variations affect the vegetation (e.g. vegetation state), and certain physical characteristics of the soil (e.g. the capacity and thermal conductivity). The analysis of these anomalies, conducted with digital image processing techniques (with infrared spectrum bands particularly sensitive to the above indicators) help to identify those areas with anomalies related to increased losses (Huang and Fipps, 2002). The use of satellite imagery in the proposed approach is an innovative application of Earth Observation for land and water monitoring (Huang et al., 2005). After the identification of anomalies, hydrological-hydrogeological methods were applied to evaluate the losses. At fist an hydrogeological characterisation of the study area and the bottom of the irrigation channel were conducted. Then the canals seepage rates were estimated using inflow-outflow tests and tests with double-tracer, an adaptation from QUEST method (Rieckermann and Gujer, 2002). This approach allowed an experimental calibration and validation of the satellite images analysis. The applied multidisciplinary approach seem to be a promising way for a good general screening for a rapid detection of irrigation channels water losses. References Hotchkiss, R.H., Wingert, C.B., Kelly, W.E., 2001. Determining irrigation canal seepage with electrical resistivity. ASCE J. Irrig. Drain 127, 20-26. Huang Y and Fipps G. (2002). Thermal Imaging of Canals for Remote Detection of Leaks: Evaluation in the United Irrigation District. Technical Report. Biological and Agricultural Engineering Department, Texas A&M University. Huang Y, Fipps G, Maas S, Fletcher R. (2005). Airborne multispectral remote sensing imaging for detecting irrigation canal leaks in the lower rio grande valley - 20th Biennial Workshop on Aerial Photography, Videography, and High Resolution Digital Imagery for Resource Assessment October 4-6, Weslaco, Texas. Rieckermann J., Gujer W. (2002) - Quantifying Exfiltration from Leaky Sewers with Artificial Tracers - Proceedings of the International Conference on "Sewer Operation and Maintenance. 2002", Bradford, UK.

Perotti, Luigi; Clemente, Paolo; De Luca, Domenico Antonio; Dino, Giovanna; Lasagna, Manuela

2013-04-01

328

Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model  

USGS Publications Warehouse

A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

: Belcher, Wayne R., (Edited By); Sweetkind, Donald S.

2010-01-01

329

Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model  

USGS Publications Warehouse

A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

: Belcher, Wayne R., (Edited By)

2004-01-01

330

Integrating Hydrogeological, Microbiological, and Geochemical Data Using a MultiComponent Reactive Transport Model: Quantifying the Biogeochemical Evolution of Redox Zones in a Contaminated Aquifer  

Microsoft Academic Search

Hydrogeological, microbiological, and geochemical processes operating in a shallow sandy aquifer contaminated by waste fuels and chlorinated solvents were integrated using high-resolution mechanistic models. A 3-D, transient, reactive transport model was developed to quantitatively describe coupled processes via thermodynamic and kinetic arguments. The model was created by linking the hydrodynamic model MODFLOW (McDonald and Harbaugh, 1988), with advection, dispersion and

J. T. McGuire; M. S. Phanikumar; D. T. Long; D. W. Hyndman

2003-01-01

331

Coseismic and post-seismic hydrogeological response of the Gran Sasso carbonate aquifer to the 2009 L'Aquila earthquake (central Italy)  

Microsoft Academic Search

The Mw=6.3 April 6 2009 L'Aquila earthquake mainshock produced self-evident co-seismic and post-seismic changes in the hydrogeological setting of the Gran Sasso carbonate fractured aquifer (Adinolfi Falcone et alii, 2008; Barbieri et alii, 2005) in which the seismogenic Paganica Fault, which is responsible for the mainshock, is located (Anzidei et alii, 2009; Atzori et alii, 2009; Chiarabba et alii, 2009;

Antonella Amoruso; Luca Crescentini; Marco Petitta; Sergio Rusi; Marco Tallini

2010-01-01

332

A three-dimensional hydrogeological-geophysical model of a multi-layered aquifer in the coastal alluvial plain of Sarno River (southern Italy)  

NASA Astrophysics Data System (ADS)

The coastal alluvial plain of Sarno River (Campania Region, southern Italy) is a very rich environment that has experienced a long history of changes due to both natural phenomena such as eustatic sea-level variations and deposition of volcanoclastic sediments, and human civilizations who populated this area since historical times. As a result, it is characterized by complex stratigraphic sequences and groundwater flow systems. The architecture of the multi-layered aquifer system in a sample area, located in a densely urbanized sector at the mouth of Sarno River, was reconstructed. Starting from the analysis of stratigraphic log data and laboratory geotechnical measurements, the lithostratigraphical-unit sequence was retrieved and a realistic three-dimensional (3D) model of the hydrogeological heterogeneity was obtained. The results of a detailed 2D electrical resistivity tomography survey were used to support the analysis of the spatial heterogeneity of the aquifer system in a sector characterized by lack of log data. The integration of hydrogeological and geophysical data allowed for the reconstruction of a 3D hydrogeophysical model of the multi-layered system, which electrically characterizes and geometrically identifies two aquifers. Finally, piezometric-level measurements validated the hydrogeological-geophysical model and showed the effectiveness of the methodology.

Di Maio, R.; Fabbrocino, S.; Forte, G.; Piegari, E.

2014-05-01

333

Application of statistical approaches to analyze geological, geotechnical and hydrogeological data at a fractured-rock mine site in Northern Canada  

NASA Astrophysics Data System (ADS)

Mine site characterization often results in the acquisition of geological, geotechnical and hydrogeological data sets that are used in the mine design process but are rarely co-evaluated. For a study site in northern Canada, bivariate and multivariate (hierarchical) statistical techniques are used to evaluate empirical hydraulic conductivity estimation methods based on traditional rock mass characterisation schemes, as well as to assess the regional hydrogeological conceptual model. Bivariate techniques demonstrate that standard geotechnical measures of fracturing are poor indicators of the hydraulic potential of a rock mass at the study site. Additionally, rock-mass-permeability schemes which rely on these measures are shown to be poor predictors of hydraulic conductivity in untested areas. Multivariate techniques employing hierarchical cluster analysis of both geotechnical and geological data sets are able to identify general trends in the data. Specifically, the geological cluster analysis demonstrated spatial relationship between intrusive contacts and increased hydraulic conductivity. This suggests promise in the use of clustering methods in identifying new trends during the early stages of hydrogeological characterization.

Mayer, J. M.; Allen, D. M.; Gibson, H. D.; Mackie, D. C.

2014-05-01

334

The alerting system for hydrogeological hazard in Lombardy Region, northern Italy: rainfall thresholds triggering debris-flows and "equivalent rainfall" method  

NASA Astrophysics Data System (ADS)

The Functional Centre (CFMR) of the Civil Protection of the Lombardy Region, North Italy, has the main task of monitoring and alerting, particularly with respect to natural hazards. The procedure of early warning for hydrogeological hazard is based on a comparison of two quantities: thresholds and rainfall, both referred to a defined area and an exact time interval. The CFMR studied 52 landslide events (1987-2003) in Medium-Low Valtellina and derived a model of the critical detachment rainfall, in function of the local slope and the Curve Number CN (an empirical parameter related with the land cover and the hydrological conditions of the soil): it's physically consistent and allows a geographically targeted alerting. Moreover, rainfall thresholds were associated with a typical probability of exceedance. The processing of rainfall data is carried out through the "equivalent rainfall" method, that allows to take into account the antecedent moisture condition of the soil: in fact the hazard is substantially greater when the soil is near to saturation. The method was developed from the CN method and considers the local CN and the observed rainfall of the previous 5 days. The obtained value for the local equivalent rainfall, that combines rainfall (observed and forecasted) and local soil characteristics, is a better parameter for the evaluation of the hydrogeological hazard. The comparison between equivalent rainfall and thresholds allows to estimate the local hydrogeological hazard, displayed through hazard maps, and consequently to provide a reliable alerting activity (even localized to limited portions of the region).

Cucchi, A.; Valsecchi, I. Q.; Alberti, M.; Fassi, P.; Molari, M.; Mannucci, G.

2015-01-01

335

Quantifying the Influence of Scaling Metrics and Hydrogeological Data in the Statistical Characterization of Model Predictions in Well-Catchment Regions  

NASA Astrophysics Data System (ADS)

In this work, we evaluate the value of hydrogeological information on the assessment of the risk of contamination of a pumping well operating in a heterogeneous aquifer. Our aim is to statistically characterize the mass fraction of the contaminant recovered at the well and its corresponding arrival time. We do so by investigating the role of the key length scales that characterize and control the well region of influence and its probabilistic delineation with respect to the contaminant source location. The impact of augmenting hydrogeological data on the reduction of uncertainty associated with the environmental scenario is also analyzed. Results show that the way of obtaining a robust characterization of the target predictions depends on the length scale considered. For the sampling scheme considered in our simulations, the relevance of conditioning on the probability distributions of the solute mass fraction recovered at the well and the associated travel times is affected by the location of the contaminant source zone within the probabilistic well catchment. With respect to the statistical characterization of the travel time associated with the recovery of a given mass fraction, the worth of augmenting the hydrogeological data tends to diminish with decreasing solute residence time within the well catchment.

de Barros, Felipe; Guadagnini, Alberto; Fernàndez-Garcia, Daniel; Riva, Monica; Sanchez-Vila, Xavier

2013-04-01

336

Hydrogeology and simulation of groundwater flow in the Central Oklahoma (Garber-Wellington) Aquifer, Oklahoma, 1987 to 2009, and simulation of available water in storage, 2010-2059  

USGS Publications Warehouse

The Central Oklahoma (Garber-Wellington) aquifer underlies about 3,000 square miles of central Oklahoma. The study area for this investigation was the extent of the Central Oklahoma aquifer. Water from the Central Oklahoma aquifer is used for public, industrial, commercial, agricultural, and domestic supply. With the exception of Oklahoma City, all of the major communities in central Oklahoma rely either solely or partly on groundwater from this aquifer. The Oklahoma City metropolitan area, incorporating parts of Canadian, Cleveland, Grady, Lincoln, Logan, McClain, and Oklahoma Counties, has a population of approximately 1.2 million people. As areas are developed for groundwater supply, increased groundwater withdrawals may result in decreases in long-term aquifer storage. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, investigated the hydrogeology and simulated groundwater flow in the aquifer using a numerical groundwater-flow model. The purpose of this report is to describe an investigation of the Central Oklahoma aquifer that included analyses of the hydrogeology, hydrogeologic framework of the aquifer, and construction of a numerical groundwater-flow model. The groundwater-flow model was used to simulate groundwater levels and for water-budget analysis. A calibrated transient model was used to evaluate changes in groundwater storage associated with increased future water demands.

Mashburn, Shana L.; Ryter, Derek; Neel, Christopher R.; Smith, S. Jerrod; Magers, Jessica S.

2014-01-01

337

Geologic and hydrogeologic framework of the Espanola Basin -- proceedings of the 4th annual Espanola Basin Workshop, Santa Fe, New Mexico, March 1-3, 2005  

USGS Publications Warehouse

This report presents abstracts of technical studies that pertain to the hydrogeologic framework of the Espa?ola basin, a major subbasin of the Cenozoic Rio Grande rift. Sediments and interbedded volcanic rocks that fill the Espa?ola basin comprise an aquifer system that is an important source of water for many residents of the basin, including people in the cities of Santa Fe, Espa?ola, and Los Alamos as well as Native Americans in eleven Pueblos. The abstracts describe results of technical studies that were presented either as poster exhibits or oral presentations at the forth-annual Espa?ola basin workshop, held March 1-2 of 2005 in Santa Fe, New Mexico. The principal goal of this workshop was to share information about ongoing studies. The Espa?ola basin workshop was hosted by the Espa?ola basin technical advisory group (EBTAG) and sponsored by the U.S. Geological Survey, the New Mexico Bureau of Geology and Mineral Resources, and both the Water Research Technical Assistance Office and the Groundwater Protection Program of Los Alamos National Laboratory. Abstracts in this report have been grouped into six information themes: Basic Water Data, Water Quality and Water Chemistry, Water Balance and Stream/Aquifer Interaction, Data Integration and Hydrologic Model Testing, Three-Dimensional Hydrogeological Architecture, and Geologic Framework. Taken together, the abstracts in this report provide a view of the current status of hydrogeologic research within the Espa?ola basin.

McKinney, Kevin C.

2005-01-01

338

A hydrogeologic approach to identify land uses that overlie ground-water flow paths, Broward County, Florida  

USGS Publications Warehouse

A hydrogeologic approach that integrates the use of hydrogeologic and spatial tools aids in the identification of land uses that overlie ground- water flow paths and permits a better understanding of ground-water flow systems. A mathematical model was used to simulate the ground-water flow system in Broward County, particle-tracking software was used to determine flow paths leading to the monitor wells in Broward County, and a Geographic Information System was used to identify which land uses overlie the flow paths. A procedure using a geographic information system to evaluate the output from a ground-water flow model has been documented. The ground-water flow model was used to represent steady-state conditions during selected wet- and dry-season months, and an advective flow particle- tracking program was used to simulate the direction of ground-water flow in the aquifer system. Digital spatial data layers were created from the particle pathlines that lead to the vicinity of the open interval of selected wells in the Broward County ground-water quality monitoring network. Buffer zone data layers were created, surrounding the particle pathlines to represent the area of contribution to the water sampled from the monitor wells. Spatial data layers, combined with a land-use data layer, were used to identify the land uses that overlie the ground-water flow paths leading to the monitor wells. The simulation analysis was performed on five Broward County wells with different hydraulic parameters to determine the source of ground-water stress, determine selected particle pathlines, and identify land use in buffer zones in the vicinity of the wells. The flow paths that lead to the grid cells containing wells G-2355, G-2373, and G-2373A did not vary between the wet- and dry-season conditions. Changes in the area of contribution for wells G-2345X and G-2369 were attributed to variations in rainfall patterns, well-field pumpage, and surface-water management practices. Additionally, using a different open interval at a site, such as for wells G-2373 and G-2373A, can result in a very different area that overlies the flow path leading to the monitor well.

Sonenshein, R.S.

1995-01-01

339

Geologic framework, structure, and hydrogeologic characteristics of the Knippa Gap area in eastern Uvalde and western Medina Counties, Texas  

USGS Publications Warehouse

The Edwards aquifer is the primary source of potable water for the San Antonio area in south-central Texas. The Knippa Gap was postulated to channel or restrict flow in the Edwards aquifer in eastern Uvalde County, and its existence was based on a series of numerical simulations of groundwater flow in the aquifer. To better understand the function of the area known as the Knippa Gap as it pertains to its geology and structure, the geologic framework, structure, and hydrogeologic characteristics of the area were evaluated by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers-Fort Worth District. The principal structural feature in the San Antonio area is the Balcones Fault Zone, which is the result of Miocene age faulting. In Medina County, the faulting of the Balcones Fault Zone has produced a relay-ramp structure that dips to the southwest from the Edwards aquifer recharge zone and extends westward and below land surface from Seco Creek. Groundwater flow paths in the Edwards aquifer are influenced by faulting and geologic structure. Some faults act as barriers to groundwater flow paths where the aquifer is offset by 50 percent or more and result in flow moving parallel to the fault. The effectiveness of a fault as a barrier to flow changes as the amount of fault displacement changes. The structurally complex area of the Balcones Fault Zone contains relay ramps, which form in extensional fault systems to allow for deformation changes along the fault block. In Medina County, the faulting of the Balcones Fault Zone has produced a relay-ramp structure that dips to the southwest from the Edwards aquifer recharge zone. Groundwater moving down the relay ramp in northern Medina County flows downgradient (downdip) to the structural low (trough) from the northeast to the southwest. In Uvalde County, the beds dip from a structural high known as the Uvalde Salient. This results in groundwater moving from the structural high and downgradient (dip) towards a structural low (trough) to the northeast. These two opposing structural dips result in a subsurface structural low (trough) locally referred to as the Knippa Gap. This trough is located in eastern Uvalde County beneath the towns of Knippa and Sabinal. By using data that were compiled and collected for this study and previous studies, a revised map was constructed depicting the geologic framework, structure, and hydrogeologic characteristics of the Knippa Gap area in eastern Uvalde and western Medina Counties, Tex. The map also shows the interpreted structural dip directions and interpreted location of a structural low (trough) in the area known as the Knippa Gap.

Clark, Allan K.; Pedraza, Diana E.; Morris, Robert R.

2013-01-01