Science.gov

Sample records for hydrological model hbv

  1. Runoff simulation in the Ferghana Valley (Central Asia) using conceptual hydrological HBV-light model

    NASA Astrophysics Data System (ADS)

    Radchenko, Iuliia; Breuer, Lutz; Forkutsa, Irina; Frede, Hans-Georg

    2013-04-01

    Glaciers and permafrost on the ranges of the Tien Shan mountain system are primary sources of water in the Ferghana Valley. The water artery of the valley is the Syr Darya River that is formed by confluence of the Naryn and Kara Darya rivers, which originate from the mountain glaciers of the Ak-Shyrak and the Ferghana ranges accordingly. The Ferghana Valley is densely populated and main activity of population is agriculture that heavily depends on irrigation especially in such arid region. The runoff reduction is projected in future due to global temperature rise and glacier shrinkage as a consequence. Therefore, it is essential to study climate change impact on water resources in the area both for ecological and economic aspects. The evaluation of comparative contribution of small upper catchments (n=24) with precipitation predominance in discharge and the large Naryn and Karadarya River basins, which are fed by glacial melt water, to the Fergana Valley water balance under current and future climatic conditions is general aim of the study. Appropriate understanding of the hydrological cycle under current climatic conditions is significant for prognosis of water resource availability in the future. Thus, conceptual hydrological HBV-light model was used for analysing of the water balance of the small upper catchments that surround the Ferghana Valley. Three trial catchments (the Kugart River basin, 1010 km²; the Kurshab River basin, 2010 km2; the Akbura River basin, 2260 km²) with relatively good temporal quality data were chosen to setup the model. Due to limitation of daily temperature data the MODAWEC weather generator, which converts monthly temperature data into daily based on correlation with rainfall, was tested and applied for the HBV-light model.

  2. Simulation of the water balance in the Elbe River basin using weather forecast data - A comparison of the hydrological models SWIM and HBV

    NASA Astrophysics Data System (ADS)

    Roers, Michael; Vetter, Tobias; Hoffmann, Peter; Wechsung, Frank

    2014-05-01

    The ecohydrological model SWIM (Soil and Water Integrated Model) is applied to the German part of the Elbe River basin since 2012 on a semi-operational basis. In this context, semi-operational means that soil water balance, plant growth and runoff is simulated continuously on different spatial scales, using measured meteorological data of the previous day. In order to extend the prediction range and to include the Czech part of the river basin, we implement weather forecast data from the Global Forecast System (GFS), which is available for the years 2012-2014. At the same time we conduct simulations with the hydrological model HBV using the same input data. The consistency of the data allows a comparison of the results, which fosters the evaluation of the models and helps to improve their deficits. Initially, the calibration of both models is carried out with weather data of the last decade from the German weather service (DWD). Different parameter sets are tested and compared; uncertainties of the simulations can be shown. The validity of the results indicates the strength and weaknesses of each model and therefore determines its predictive capacity. A successful calibration and validation of the models is the basis for simulations with GFS-data of the previous two years and the prospective use of the model system for short (day)- to medium-term (week) predictions of high- and low water, of the soil water balance and of the agricultural plant growth in the Elbe river basin.

  3. Watershed Modeling of Nutrient Transport Covering the Country of Sweden - Scale Transfer in HBV-NP

    NASA Astrophysics Data System (ADS)

    Arheimer, B.; Andersson, L.

    2002-12-01

    Eutrophication of the Baltic Sea and its coastal zone is considered a serious environmental problem. The problems are mainly caused by excessive load of nitrogen (N) and phosphorus (P). To improve the situation new policies including watershed-based water management are implemented. However, this also demands watershed-based knowledge of nutrient transport proc-esses and appropriate tools for landscape planning. A watershed model (HBV-NP) that can be applied both on the local and the national scale has thus been developed to be used both for international reporting and scenario estimates for more efficient nutrient control strategies. The P part is presently developed within the Swedish Water Management Research Program (VASTRA), in which HBV-NP will be used for evaluation of best management practices, and for communication with local stake-holders. The model has recently been applied at the national scale for calculations of flow-normalized annual average of gross load, N retention and net transport, and source apportionment of the N load reaching the sea. In this application (called TRK) several submodels with different levels of process descriptions were linked together. Dynamic and detailed models were included for arable leaching (SOIL-N model), rainfall interpolation, atmospheric deposition (MATCH model), water balance (HBV), and nutrient transformation in groundwater, rivers and lakes (HBV-N). Based on landscape information in GIS, different leaching rates and emissions were assigned to the water discharge from similar landscape elements in 1000 subbasins covering Sweden. Scale transfer was mainly achieved through up-scaling procedures and by using the conceptual model approach for watershed hydrology, including variability parameters that are calibrated for regions. The modeled river flow and N concentrations were validated against time-series from several independent-monitoring stations. A similar national system is now under development for P, including the ICECREAM model for arable leaching, routines for erosion and algae growth. Several applications with scenario evaluation for N have shown that the HBV-NP model is a very useful tool that facilitates discussions among local actors, acceptance of management plans and implementation of measures for nutrient reduction in watersheds.

  4. Assimilating H-SAF and MODIS Snow Cover Data into the Conceptual Models HBV and SRM

    NASA Astrophysics Data System (ADS)

    Sensoy, Aynur; Schwanenberg, Dirk; Sorman, Arda; Akkol, Bulut; Alvarado Montero, Rodolfo; Uysal, Gokcen

    2014-05-01

    Conceptual hydrological models are widely used for operational and scientific water resources management applications in mountain catchments. However, current model-based forecasting approaches are jeopardized by input data and model uncertainties. Data assimilation provides a suitable tool to merge information from remotely sensed observations and hydrological model predictions for improving the lead time performance of streamflow forecasts in the context of operational hydrological forecasting systems. In this study, we present a novel variational approach based on Moving Horizon Estimation (MHE). It includes a highly flexible formulation of distance metrics for penalizing the introduction of noise into the model and enforcing the agreement between simulated and observed variables. Furthermore, the MHE setup shows a high robustness regarding non-equidistant, noisy and sometimes missing data and enables the modification of model input as well as state variables. In situ snowpack measurements are sparsely distributed in mountainous regions. Therefore the data limitations in combination with snowpack heterogeneity prevent a detailed understanding of the variability of snow cover and melt. Remotely sensed images offer an opportunity to supplement ground measurements for performing runoff predictions during the snowmelt season. In this context, EUMETSAT initiated the H-SAF (Satellite Application Facility on Support to Operational Hydrology and Water Management) project for deriving novel products from satellite data and applying it to operational hydrology. This research contributes to the H-SAF product validation by applying a generic data assimilation test bed for H-SAF snow products in comparison to snow cover data of MODIS. A preliminary performance assessment of the data assimilation framework using the conceptual models HBV and SRM with satellite derived snow data is evaluated for a snow dominated test site of 10250 km2 at the headwaters of Euphrates River in Turkey.

  5. Dynamics of an HBV Model with Drug Resistance Under Intermittent Antiviral Therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Ben-Gong; Tanaka, Gouhei; Aihara, Kazuyuki; Honda, Masao; Kaneko, Shuichi; Chen, Luonan

    2015-06-01

    This paper studies the dynamics of the hepatitis B virus (HBV) model and the therapy regimens of HBV disease. First, we propose a new mathematical model of HBV with drug resistance, and then analyze its qualitative and dynamical properties. Combining the clinical data and theoretical analysis, we demonstrate that our model is biologically plausible and also computationally viable. Second, we demonstrate that the intermittent antiviral therapy regimen is one of the possible strategies to treat this kind of complex disease. There are two main advantages of this regimen, i.e. it not only may delay the development of drug resistance, but also may reduce the duration of on-treatment time compared with the long-term continuous medication. Moreover, such an intermittent antiviral therapy can reduce the adverse side effects. Our theoretical model and computational results provide qualitative insight into the progression of HBV, and also a possible new therapy for HBV disease.

  6. Chronic hepatitis B infection and HBV DNA-containing capsids: Modeling and analysis

    NASA Astrophysics Data System (ADS)

    Manna, Kalyan; Chakrabarty, Siddhartha P.

    2015-05-01

    We analyze the dynamics of chronic HBV infection taking into account both uninfected and infected hepatocytes along with the intracellular HBV DNA-containing capsids and the virions. While previous HBV models have included either the uninfected hepatocytes or the intracellular HBV DNA-containing capsids, our model accounts for both these two populations. We prove the conditions for local and global stability of both the uninfected and infected steady states in terms of the basic reproduction number. Further, we incorporate a time lag in the model to encompass the intracellular delay in the production of the infected hepatocytes and find that this delay does not affect the overall dynamics of the system. The results for the model and the delay model are finally numerically illustrated.

  7. Establishment of drug-resistant HBV small-animal models by hydrodynamic injection

    PubMed Central

    Cheng, Junjun; Han, Yanxing; Jiang, Jian-Dong

    2014-01-01

    In antiviral therapy of hepatitis B virus (HBV) infection, drug resistance remains a huge obstacle to the long-term effectiveness of nucleoside/tide analogs (NAs). Primary resistance mutation (rtM204V) contributes to lamivudine (LAM)-resistance, and compensatory mutations (rtL180M and rtV173L) restore viral fitness and increase replication efficiency. The evaluation of new anti-viral agents against drug-resistant HBV is limited by the lack of available small-animal models. We established LAM-resistance HBV replication mice models based on clinical LAM-resistant HBV mutants. Double (rtM204V+rtL180M) or triple (rtM204V+rtL180M+rtV173L) lamivudine-resistant mutations were introduced into HBV expression vector, followed by hydrodynamic injection into tail vein of NOD/SCID mice. Viremia was detected on days 5, 9, 13 and 17 and liver HBV DNA was detected on day 17 after injection. The serum and liver HBV DNA levels in LAM-resistant model carrying triple mutations are the highest among the models. Two NAs, LAM and entecavir (ETV), were used to test the availability of the models. LAM and ETV inhibited viral replication on wild-type model. LAM was no longer effective on LAM-resistant models, but ETV retains a strong activity. Therefore, these models can be used to evaluate anti-viral agents against lamivudine-resistance, affording new opportunities to establish other drug-resistant HBV small-animal models.

  8. RPB5-Mediating Protein Suppresses Hepatitis B Virus (HBV) Transcription and Replication by Counteracting the Transcriptional Activation of Hepatitis B virus X Protein in HBV Replication Mouse Model

    PubMed Central

    Zhou, Qiaoling; Huang, Feijun; Chen, Lanlan; Chen, Enqiang; Bai, Lang; Cheng, Xing; He, Min; Tang, Hong

    2015-01-01

    Background: RPB5-Mediating protein (RMP) is associated with the RNA polymerase II subunit RPB5. This protein functionally counteracts the transcriptional activation of Hepatitis B Virus X protein (HBx) by competitively binding to the RPB5; however, the effects of RMP on Hepatitis B virus (HBV) transcription and replication remain unknown. Objectives: The purpose of this study was to investigate the effect of RMP on viral transcription and replication in vivo by using the hydrodynamic-based HBV replication mouse model. Materials and Methods: Male balb/c mice were transfected with wild type (1.2 wt) or the HBx minus HBV plasmids (1.2x (-)) with or without HBx and RMP, to establish an HBV replication mouse model by hydrodynamic injection through the tail vein. The HBV RNA and HBV DNA replication intermediates (RI) were analyzed in the liver. Results: RPB5-Mediating protein could inhibit HBV transcription and replication in groups transfected with the 1.2 wt and HBx. The inhibitory effect disappeared in the 1.2x (-) groups, yet it reappeared in the groups co-transfected with 1.2x (-) and HBx. An inhibitory effect was indicated at a low dose of RMP (0.3 ug, 0.5 ug and 0.7 ug) compared to the control group and groups that had received high doses of RMP. Conclusions: Our study demonstrated that a low dose of RMP could inhibit HBV transcription and replication, which is dependent on the appearance of HBx in vivo. PMID:26495109

  9. An Educational Model for Hands-On Hydrology Education

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  10. RHydro - Hydrological models and tools to represent and analyze hydrological data in R

    NASA Astrophysics Data System (ADS)

    Reusser, D. E.; Buytaert, W.; Vitolo, C.

    2012-04-01

    In hydrology, basic equations and procedures keep being implemented from scratch by scientist, with the potential for errors and inefficiency. The use of libraries can overcome these problems. As an example, hydrological libraries could contain: 1. Major representations of hydrological processes such as infiltration, sub-surface runoff and routing algorithms. 2. Scaling functions, for instance to combine remote sensing precipitation fields with rain gauge data 3. Data consistency checks 4. Performance measures. Here we present a beginning for such a library implemented in the high level data programming language R. Currently, Top-model, the abc-Model, HBV, a multi-model ensamble called FUSE, data import routines for WaSiM-ETH as well basic visualization and evaluation tools are implemented. Care is taken to make functions and models compatible with other existing frameworks in hydrology, such as for example Hydromad.

  11. Sensitivity Analysis of a Conceptual HBV Ra?nfall-Runoff MODEL Using Eumetsat Snow Covered Area Product

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Surer, S.; Parajka, J.

    2014-12-01

    HBV is a conceptual hydrological model extensively used in operational hydrological forecasting and water balance studies. In this study, we apply the HBV model on the upper Euphrates basin in Turkey, which has 10 624 km2 area. The Euphrates basin is largely fed from snow precipitation whereby nearly two-thirds occur in winter and may remain in the form of snow for half of the year. We analyze individual sensitivity of the parameters by calibrating the model using the Multi-Objective Shuffled Complex Evolution (MOSCEM) algorithm. The calibration is performed against snow cover area (SCA) in addition to runoff data for the water years 2009, 2010, 2011, 2012 and 2013. The SCA product has been developed in the framework of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) Project. The product is generated by using data from Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument making observations from a geostationary satellite Meteosat Second Generation (MSG). In the previous study evaluation of the model was done with commonly used statistical performance metrics (Nash-Sutcliffe) for high and low flows, volume error and root mean square error (RMSE). In this study signature metrics, which are based on the flow duration curve (FDC) are used to see the performance of the model for low flows. In order to consider a fairly balanced evaluation between high and low flow phases we divided the flow duration curve into segments of high, medium and low flow phases, and additionally into very high and very low phases. Root mean square error (RMSE) is used to evaluate the performance in these segments. The sensitivity analysis of the parameters around the calibrated optimum points showed that parameters of the soil moisture and evapotranspiration (FC, beta and LPrat) have a strong effect in the total volume error of the model. The parameters from the response and transformation routines (LSUZ, K1, K0 and bmax) have a significant influence on the peak flows. It is observed that the parameters of snow routine (Tmelt, CSF and DDF) have strong effect in high flows and total volume. The parameters FC, K0, K1 And K2 are found to have effect on low flows from the signature metrics.

  12. Hydrological models are mediating models

    NASA Astrophysics Data System (ADS)

    Babel, L. V.; Karssenberg, D.

    2013-08-01

    Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting more importance to identifying and communicating on the many factors involved in model development might increase transparency of model building.

  13. Thermal-hydrological models

    SciTech Connect

    Buscheck, T., LLNL

    1998-04-29

    This chapter describes the physical processes and natural and engineered system conditions that affect thermal-hydrological (T-H) behavior in the unsaturated zone (UZ) at Yucca Mountain and how these effects are represented in mathematical and numerical models that are used to predict T-H conditions in the near field, altered zone, and engineered barrier system (EBS), and on waste package (WP) surfaces.

  14. PATHS groundwater hydrologic model

    SciTech Connect

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  15. Modeling of HBV and HCV hepatitis with Hepatocyte-like cells.

    PubMed

    Bengrine, Abderrahmane; Brochot, Etienne; Louchet, Marie; Herpe, Yves Edouard; Duverlie, Gilles

    2016-01-01

    Chronic liver diseases caused by either hepatitis B or C viruses are a major health problem around the world. Despite major advances accomplished in recent years in understanding the physiology of both viruses using in vitro and/or in vivomodels, there is no vaccine for HCV available. Moreover, susceptibility to acute and chronic infection and the response to treatments are different between HBV or HCV infected patients. Crucial information can be collected using a robust cell model that permits the culture of clinical isolates along with the investigation of the virus-host interaction. The recent progress in the field of cell reprogramming and differentiation has opened new opportunities in viral hepatitis research raising the hopes of developing new improved therapeutics. In this review, we discuss current models for hepatitis B and C studies and their limitations, and also the iPSC model, and its relevance to the viral host cell interactions. PMID:26709899

  16. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    NASA Astrophysics Data System (ADS)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  17. Model Calibration in Watershed Hydrology

    NASA Technical Reports Server (NTRS)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  18. Hydrological model parameter uncertainty in investigations of climate change impacts on peak flow across Europe

    NASA Astrophysics Data System (ADS)

    Vormoor, Klaus; Lawrence, Deborah; Engin, Batuhan; Martinkova, Marta; Osuch, Marzena; Willems, Patrick; Yücel, Ismail

    2014-05-01

    Mulit-model ensemble approaches are usually used to investigate the hydrological impacts of climate change and their associated uncertainties. Uncertainties introduced by differing GCM/RCM combinations are assumed to have the largest influence on the overall uncertainty whereas the uncertainty derived from the hydrological model parameterisation is often assumed to have only a minor influence within the entire model chain. However, this does not always need to be the case, especially when changes in flood seasonality are likely. Since hydrological model calibration is a well-established tool for hydrologists, this comprises a possible field for improvements within climate impact studies. In this study we investigate the effect of using four different objective functions for the calibration of the HBV hydrological model in seven catchments across Europe, which represent differing geographical and climatological conditions. The objective functions used here are either modifications or extensions of the Nash-Sutcliffe criterion (NSE). Two of the objective functions are especially tailored to fit the model with respect to peak flows, while the other two are designed to estimate an optimal NSE whilst also minimising the volumetric bias. The global Dynamically Dimensioned Search (DDS) algorithm and a subsequent Monte-Carlo simulation was used to calibrate the HBV models for all seven catchments and to detect 4x25 best-fit parameter sets. These parameter sets are then applied to model the observed and future climate with respect to peak flows in all seven catchments. The aims of this study are (1) to address the parameter uncertainties associated by the 4x25 best-fit parameter sets and (2) to identify the objective functions that are best suited for calibrating the HBV model with respect to investigating changes in the frequency and intensity of flooding.

  19. Committee of machine learning predictors of hydrological models uncertainty

    NASA Astrophysics Data System (ADS)

    Kayastha, Nagendra; Solomatine, Dimitri

    2014-05-01

    In prediction of uncertainty based on machine learning methods, the results of various sampling schemes namely, Monte Carlo sampling (MCS), generalized likelihood uncertainty estimation (GLUE), Markov chain Monte Carlo (MCMC), shuffled complex evolution metropolis algorithm (SCEMUA), differential evolution adaptive metropolis (DREAM), particle swarm optimization (PSO) and adaptive cluster covering (ACCO)[1] used to build a predictive models. These models predict the uncertainty (quantiles of pdf) of a deterministic output from hydrological model [2]. Inputs to these models are the specially identified representative variables (past events precipitation and flows). The trained machine learning models are then employed to predict the model output uncertainty which is specific for the new input data. For each sampling scheme three machine learning methods namely, artificial neural networks, model tree, locally weighted regression are applied to predict output uncertainties. The problem here is that different sampling algorithms result in different data sets used to train different machine learning models which leads to several models (21 predictive uncertainty models). There is no clear evidence which model is the best since there is no basis for comparison. A solution could be to form a committee of all models and to sue a dynamic averaging scheme to generate the final output [3]. This approach is applied to estimate uncertainty of streamflows simulation from a conceptual hydrological model HBV in the Nzoia catchment in Kenya. [1] N. Kayastha, D. L. Shrestha and D. P. Solomatine. Experiments with several methods of parameter uncertainty estimation in hydrological modeling. Proc. 9th Intern. Conf. on Hydroinformatics, Tianjin, China, September 2010. [2] D. L. Shrestha, N. Kayastha, and D. P. Solomatine, and R. Price. Encapsulation of parameteric uncertainty statistics by various predictive machine learning models: MLUE method, Journal of Hydroinformatic, in press, 2013. [3] N., Kayastha, J. Ye, F. Fenicia, V. Kuzmin, and D. P. Solomatine. Fuzzy committees of specialized rainfall-runoff models: further enhancements and tests. Hydrol. Earth Syst. Sci., 17, 4441-4451, 2013

  20. Attribution of hydrologic trends using integrated hydrologic and economic models

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Brugger, D. R.; Silverman, N. L.

    2014-12-01

    Hydrologic change has been detected in many regions of the world in the form of trends in annual streamflows, varying depths to the regional water table, or other alterations of the hydrologic balance. Most models used to investigate these changes implement sophisticated descriptions of the physical system but use simplified descriptions of the socioeconomic system. These simplifications come in the form of prescribed water diversions and land use change scenarios, which provide little insight into coupled natural-human systems and have limited predictive capabilities. We present an integrated model that adds realism to the description of the hydrologic system in agricultural regions by incorporating a component that updates the allocation of land and water to crops in response to hydroclimatic (water available) and economic conditions (prices of commodities and agricultural inputs). This component assumes that farmers allocate resources to maximize their net revenues, thus justifying the use of optimality conditions to constrain the parameters of an empirical production function that captures the economic behavior of farmers. Because the model internalizes the feedback between climate, agricultural markets, and farming activity into the hydrologic system, it can be used to understand to what extent human economic activity can exacerbate or buffer the regional hydrologic impacts of climate change in agricultural regions. It can also help in the attribution of causes of hydrologic change. These are important issues because local policy and management cannot solve climate change, but they can address land use and agricultural water use. We demonstrate the model in a case study.

  1. Assessment of The Uncertainties of a Conceptual Hydrologic Model By Using Artificially Generated Flows

    NASA Astrophysics Data System (ADS)

    Valent, Peter; Szolgay, Ján; Riverso, Carlo

    2012-12-01

    Most of the studies that assess the performance of various calibration techniques have to deal with a certain amount of uncertainty in the calibration data. In this study we tested HBV model calibration procedures in hypothetically ideal conditions under the assumption of no errors in the measured data. This was achieved by creating an artificial time series of the flows created by the HBV model using the parameters obtained from calibrating the measured flows. The artificial flows were then used to replace the original flows in the calibration data, which was then used for testing how calibration procedures can reproduce known model parameters. The results showed that in performing one hundred independent calibration runs of the HBV model, we did not manage to obtain parameters that were almost identical to those used to create the artificial flow data without a certain degree of uncertainty. Although the calibration procedure of the model works properly from a practical point of view, it can be regarded as a demonstration of the equifinality principle, since several parameter sets were obtained which led to equally acceptable or behavioural representations of the observed flows. The study demonstrated that this concept for assessing how uncertain hydrological predictions can be applied in the further development of a model or the choice of calibration method using artificially generated data.

  2. Rethinking the pathogenesis of hepatitis B virus (HBV) infection.

    PubMed

    Zhang, Yong-Yuan; Hu, Ke-Qin

    2015-12-01

    Chronic hepatitis B virus (HBV) infection affects approximately 375 million people worldwide. Current antiviral treatment effectively controls, but rarely clears chronic HBV infection. In addition, a significant portion of chronic HBV infected patients are not suitable for currently available antiviral therapy, and still face higher risk for cirrhosis and hepatocellular carcinoma. The poorly understood pathogenesis of HBV infection is the main barrier for developing more effective treatment strategies. HBV has long been viewed as non-cytopathic and the central hypothesis for HBV pathogenesis lies in the belief that hepatitis B is a host specific immunity-mediated liver disease. However, this view has been challenged by the accumulating experimental and clinical data that support a model of cytopathic HBV replication. In this article we systematically review the pathogenic role of HBV replication in hepatitis B and suggest possible HBV replication related mechanisms for HBV-mediated liver injury. We propose that a full understanding of HBV pathogenesis should consider the following elements. I. Liver injury can be caused by high levels of HBV replication and accumulation of viral products in the infected hepatocytes. II. HBV infection can be either directly cytopathic, non-cytopathic, or a mix of both in an individual patient depending upon accumulation levels of viral products that are usually associated with HBV replication activity in individual infected hepatocytes. J. Med. Virol. 87:1989-1999, 2015. © 2015 Wiley Periodicals, Inc. PMID:25989114

  3. The Central Valley Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Faunt, C.; Belitz, K.; Hanson, R. T.

    2009-12-01

    Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial and temporal variability in climate, land-use changes, and available surface-water deliveries. For example, the droughts of 1976-77 and 1987-92 led to reduced streamflow and surface-water deliveries and increased evapotranspiration and groundwater pumpage throughout most of the valley, resulting in a decrease in groundwater storage. Since the mid-1990s, annual surface-water deliveries generally have exceeded groundwater pumpage, resulting in an increase or no change in groundwater storage throughout most of the valley. However, groundwater is still being removed from storage during most years in the southern part of the Central Valley. The CVHM is designed to be coupled with Global Climate Models to forecast the potential supply of surface-water deliveries, demand for groundwater pumpage, potential subsidence, and changes in groundwater storage in response to different climate-change scenarios. The detailed database on texture properties coupled with CVHM's ability to simulate the combined effects of recharge and discharge make CVHM particularly useful for assessing water-management plans, such as conjunctive water use, conservation of agriculture land, and land-use change. In the future, the CVHM could be used in conjunction with optimization models to help evaluate water-management alternatives to effectively utilize the available water resources.

  4. Hydrological Distributed Model for Flash Flood

    E-print Network

    Julien, Pierre Y.

    Hydrological Distributed Model for Flash Flood Prepared by: Rosalía Rojas For the : CSU-KOREA RADAR with spatially distributed structure and parameters #12;CASC2D-SED Physically-based, distributed-Korea Radar Team Seminar and Meeting 08/27/01 Hydrological Distributed Model (CASC2D-SED) for Flash Flood

  5. Remote sensing applications to hydrologic modeling

    NASA Technical Reports Server (NTRS)

    Dozier, J.; Estes, J. E.; Simonett, D. S.; Davis, R.; Frew, J.; Marks, D.; Schiffman, K.; Souza, M.; Witebsky, E.

    1977-01-01

    An energy balance snowmelt model for rugged terrain was devised and coupled to a flow model. A literature review of remote sensing applications to hydrologic modeling was included along with a software development outline.

  6. Use of KNN technique to improve the efficiency of SCE-UA optimisation method applied to the calibration of HBV Rainfall-Runoff model

    NASA Astrophysics Data System (ADS)

    Dakhlaoui, H.; Bargaoui, Z.

    2007-12-01

    The Calibration of Rainfall-Runoff models can be viewed as an optimisation problem involving an objective function that measures the model performance expressed as a distance between observed and calculated discharges. Effectiveness (ability to find the optimum) and efficiency (cost expressed in number of objective function evaluations to reach the optimum) are the main criteria of choose of the optimisation method. SCE-UA is known as one of the most effective and efficient optimisation method. In this work we tried to improve the SCE-UA efficiency, in the case of the calibration of HBV model by using KNN technique to estimate the objective function. In fact after a number of iterations by SCE-UA, when objective function is evaluated by model simulation, a data base of parameter explored and respective objective function values is constituted. Within this data base it is proposed to estimate the objective function in further iterations, by an interpolation using nearest neighbours in a normalised parameter space with weighted Euclidean distance. Weights are chosen proportional to the sensitivity of parameter to objective function that gives more importance to sensitive parameter. Evaluation of model output is done through the objective function RV=R2- w |RD| where R2 is Nash Sutcliffe coefficient related to discharges, w : a weight and RD the relative bias. Applied to theoretical and practical cases in several catchments under different climatic conditions : Rottweil (Germany) and Tessa, Barbra, and Sejnane (Tunisia), the hybrid SCE-UA presents efficiency better then that of initial SCE-UA by about 20 to 30 %. By using other techniques as parameter space transformation and SCE-UA modification (2), we may obtain an algorithm two to three times faster. (1) Avi Ostfeld, Shani Salomons, "A hybrid genetic-instance learning algorithm for CE*QAL-W2 calibration", Journal of Hydrology 310 (2005) 122-125 (2) Nitin Mutil and Shie-Yui Liong, "Improved robustness and Efficiency of the SCE-UA model calibrating algorithm"

  7. Hydrological modeling based on remote sensing information

    NASA Astrophysics Data System (ADS)

    Schultz, G. A.

    1993-05-01

    Starting with the water balance equation the various terms of the equation are briefly discussed and the question, how far these parameters can be estimated with the aid of remote sensing data. The difference in use of RS data for the estimation of parameters of hydrological models and the use of such data as model input is discussed. For the modeling of hydrological processes single processes are discussed, i.e. the values of a hydrological variable are determined from RS data of one source only, while in combined processes the values of a desired hydrological variable are determined indirectly with the aid of some other information. Examples for both conditions are given. A major part of the paper is devoted to the question of modeling at different scales. Problems in hydrological modeling at micro-scale, meso-scale and macro-scale are discussed. A model for the micro-scale is presented which uses remote sensing data as well as digital elevation model data for the estimation of model parameters. The structure of the model is such that the hydrologic computations are done for all the Landsat pixels within a catchment area and the flow is routed downhill and eventually down the river by mathematical procedures. The technique is presented for rainfall runoff modeling in the Volme river in Germany. Also for the meso-scale hydrological modeling an approach is presented which uses the principle of overlays and generates aggregated Hydrologically Similar Units, for which the relevant flow computations are carried out. The chapter closes with a few remarks on hydrological macro-scale modeling within the context of coupled Atmospheric General Circulation models with ocean and hydrological models. A more detailed presentation follows dealing with the question of mathematical structures of hydrological models using remote sensing data either as input or for model parameter estimation. Conventional concepts like lumped vs. distributed models, linear vs. nonlinear models and deterministic vs. stochastic models are discussed with the focus on their suitability for use of RS data. The paper concludes with a discussion of expected future developments, both in the field of hydrological modeling as well as in the field of new remote sensing platforms and sensors.

  8. Hydrologic Modeling of Boreal Forest Ecosystems

    NASA Technical Reports Server (NTRS)

    Haddeland, I.; Lettenmaier, D. P.

    1995-01-01

    This study focused on the hydrologic response, including vegetation water use, of two test regions within the Boreal-Ecosystem-Atmosphere Study (BOREAS) region in the Canadian boreal forest, one north of Prince Albert, Saskatchewan, and the other near Thompson, Manitoba. Fluxes of moisture and heat were studied using a spatially distributed hydrology soil-vegetation-model (DHSVM).

  9. Do we need a Community Hydrological Model?

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Beven, Keith

    2015-09-01

    We believe that there are too many models in hydrology and we should ask ourselves the question, if we are currently wasting time and effort in developing another model again instead of focusing on the development of a Community Hydrological Model. In other fields, this kind of models has been quite successful, but due to several reasons, no single community model has been developed in the field of hydrology yet. The concept, strength, and weakness of a community model were discussed at the Chapman Conference on Catchment Spatial Behaviour and Complex Organisation held in Luxembourg in September 2014. This discussion as well as our own opinions about the potential of a community models or at least the necessary discussion to establish one are debated in this commentary.

  10. Comparison of complex and parsimonious model structures by means of a modular hydrological model concept

    NASA Astrophysics Data System (ADS)

    Holzmann, Hubert; Massmann, Carolina

    2015-04-01

    A plenty of hydrological model types have been developed during the past decades. Most of them used a fixed design to describe the variable hydrological processes assuming to be representative for the whole range of spatial and temporal scales. This assumption is questionable as it is evident, that the runoff formation process is driven by dominant processes which can vary among different basins. Furthermore the model application and the interpretation of results is limited by data availability to identify the particular sub-processes, since most models were calibrated and validated only with discharge data. Therefore it can be hypothesized, that simpler model designs, focusing only on the dominant processes, can achieve comparable results with the benefit of less parameters. In the current contribution a modular model concept will be introduced, which allows the integration and neglection of hydrological sub-processes depending on the catchment characteristics and data availability. Key elements of the process modules refer to (1) storage effects (interception, soil), (2) transfer processes (routing), (3) threshold processes (percolation, saturation overland flow) and (4) split processes (rainfall excess). Based on hydro-meteorological observations in an experimental catchment in the Slovak region of the Carpathian mountains a comparison of several model realizations with different degrees of complexity will be discussed. A special focus is given on model parameter sensitivity estimated by Markov Chain Monte Carlo approach. Furthermore the identification of dominant processes by means of Sobol's method is introduced. It could be shown that a flexible model design - and even the simple concept - can reach comparable and equivalent performance than the standard model type (HBV-type). The main benefit of the modular concept is the individual adaptation of the model structure with respect to data and process availability and the option for parsimonious model design.

  11. Global-scale regionalization of hydrological model parameters using streamflow data from many small catchments

    NASA Astrophysics Data System (ADS)

    Beck, Hylke; de Roo, Ad; van Dijk, Albert; McVicar, Tim; Miralles, Diego; Schellekens, Jaap; Bruijnzeel, Sampurno; de Jeu, Richard

    2015-04-01

    Motivated by the lack of large-scale model parameter regionalization studies, a large set of 3328 small catchments (< 10000 km2) around the globe was used to set up and evaluate five model parameterization schemes at global scale. The HBV-light model was chosen because of its parsimony and flexibility to test the schemes. The catchments were calibrated against observed streamflow (Q) using an objective function incorporating both behavioral and goodness-of-fit measures, after which the catchment set was split into subsets of 1215 donor and 2113 evaluation catchments based on the calibration performance. The donor catchments were subsequently used to derive parameter sets that were transferred to similar grid cells based on a similarity measure incorporating climatic and physiographic characteristics, thereby producing parameter maps with global coverage. Overall, there was a lack of suitable donor catchments for mountainous and tropical environments. The schemes with spatially-uniform parameter sets (EXP2 and EXP3) achieved the worst Q estimation performance in the evaluation catchments, emphasizing the importance of parameter regionalization. The direct transfer of calibrated parameter sets from donor catchments to similar grid cells (scheme EXP1) performed best, although there was still a large performance gap between EXP1 and HBV-light calibrated against observed Q. The schemes with parameter sets obtained by simultaneously calibrating clusters of similar donor catchments (NC10 and NC58) performed worse than EXP1. The relatively poor Q estimation performance achieved by two (uncalibrated) macro-scale hydrological models suggests there is considerable merit in regionalizing the parameters of such models. The global HBV-light parameter maps and ancillary data are freely available via http://water.jrc.ec.europa.eu.

  12. Parameterization guidelines and considerations for hydrologic models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imparting knowledge of the physical processes of a system to a model and determining a set of parameter values for a hydrologic or water quality model application (i.e., parameterization) is an important and difficult task. An exponential increase in literature has been devoted to the use and develo...

  13. Treatments of Precipitation Inputs to Hydrologic Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrological models are used to assess many water resources problems from agricultural use and water quality to engineering issues. The success of these models are dependent on correct parameterization; the most sensitive being the rainfall input time series. These records can come from land-based ...

  14. Hydrological Modeling and Repeatability with Brokering

    NASA Astrophysics Data System (ADS)

    Easton, Z. M.; Collick, A.; Srinivasan, R.; Braeckel, A.; Nativi, S.; McAlister, C.; Wright, D. J.; Khalsa, S. J. S.; Fuka, D.

    2014-12-01

    Data brokering aims to provide those in the hydrological sciences with access to relevant data to represent physical, biological, and chemical characteristics researchers need to accelerate discovery in their domain. Environmental models are useful tools to understand the behavior of hydrological systems. Unfortunately, parameterization of these models requires many different data sources from different disciplines (e.g., atmospheric, geoscience, ecology). In hydrological modeling, the traditional procedure for model initialization starts with obtaining elevation models, land-use characterizations, soils maps, and weather data. It is often the researcher's past experience with these datasets that determines which datasets will be used in a study, and often newer, more suitable data products exist. An added complexity is that various science communities have differing data formats, storage protocols and manipulation methods, which makes use by a non domain scientist difficult and time consuming. We propose data brokering as a means to address several of these challenges. We present two test case scenarios in which researchers attempt to reproduce hydrological model results using 1) general internet based data gathering techniques, and 2) a scientific data brokering interface. We show that data brokering increases the efficiency with which data are collected, models are initialized, and results are analyzed. As an added benefit, it appears brokering significantly increases the repeatability of a study.

  15. Detecting hydrological changes through conceptual model

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Caracciolo, Domenico; Pumo, Dario; Francipane, Antonio; Valerio Noto, Leonardo

    2015-04-01

    Natural changes and human modifications in hydrological systems coevolve and interact in a coupled and interlinked way. If, on one hand, climatic changes are stochastic, non-steady, and affect the hydrological systems, on the other hand, human-induced changes due to over-exploitation of soils and water resources modifies the natural landscape, water fluxes and its partitioning. Indeed, the traditional assumption of static systems in hydrological analysis, which has been adopted for long time, fails whenever transient climatic conditions and/or land use changes occur. Time series analysis is a way to explore environmental changes together with societal changes; unfortunately, the not distinguishability between causes restrict the scope of this method. In order to overcome this limitation, it is possible to couple time series analysis with an opportune hydrological model, such as a conceptual hydrological model, which offers a schematization of complex dynamics acting within a basin. Assuming that model parameters represent morphological basin characteristics and that calibration is a way to detect hydrological signature at a specific moment, it is possible to argue that calibrating the model over different time windows could be a method for detecting potential hydrological changes. In order to test the capabilities of a conceptual model in detecting hydrological changes, this work presents different "in silico" experiments. A synthetic-basin is forced with an ensemble of possible future scenarios generated with a stochastic weather generator able to simulate steady and non-steady climatic conditions. The experiments refer to Mediterranean climate, which is characterized by marked seasonality, and consider the outcomes of the IPCC 5th report for describing climate evolution in the next century. In particular, in order to generate future climate change scenarios, a stochastic downscaling in space and time is carried out using realizations of an ensemble of General Circulation Models (GCMs) for the future scenarios 2046-2065 and 2081-2100. Land use changes (i.e., changes in the fraction of impervious area due to increasing urbanization) are explicitly simulated, while the reference hydrological responses are assessed by the spatially distributed, process-based hydrological model tRIBS, the TIN-based Real-time Integrated Basin Simulator. Several scenarios have been created, describing hypothetical centuries with steady conditions, climate change conditions, land use change conditions and finally complex conditions involving both transient climatic modifications and gradual land use changes. A conceptual lumped model, the EHSM (EcoHydrological Streamflow Model) is calibrated for the above mentioned scenarios with regard to different time-windows. The calibrated parameters show high sensitivity to anthropic variations in land use and/or climatic variability. Land use changes are clearly visible from parameters evolution especially when steady climatic conditions are considered. When the increase in urbanization is coupled with rainfall reduction the ability to detect human interventions through the analysis of conceptual model parameters is weakened.

  16. Revising Hydrology of a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya; Butler, Adrian; McIntyre, Neil; Jackson, Christopher

    2015-04-01

    Land Surface Models (LSMs) are key elements in guiding adaptation to the changing water cycle and the starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, before this potential is realised, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. An important limitation is the simplistic or non-existent representation of the deep subsurface in LSMs; and another is the lack of connection of LSM parameterisations to relevant hydrological information. In this context, the paper uses a case study of the JULES (Joint UK Land Environmental Simulator) LSM applied to the Kennet region in Southern England. The paper explores the assumptions behind JULES hydrology, adapts the model structure and optimises the coupling with the ZOOMQ3D regional groundwater model. The analysis illustrates how three types of information can be used to improve the model's hydrology: a) observations, b) regionalized information, and c) information from an independent physics-based model. It is found that: 1) coupling to the groundwater model allows realistic simulation of streamflows; 2) a simple dynamic lower boundary improves upon JULES' stationary unit gradient condition; 3) a 1D vertical flow in the unsaturated zone is sufficient; however there is benefit in introducing a simple dual soil moisture retention curve; 4) regionalized information can be used to describe soil spatial heterogeneity. It is concluded that relatively simple refinements to the hydrology of JULES and its parameterisation method can provide a substantial step forward in realising its potential as a high-resolution multi-purpose model.

  17. Towards Better Coupling of Hydrological Simulation Models

    NASA Astrophysics Data System (ADS)

    Penton, D.; Stenson, M.; Leighton, B.; Bridgart, R.

    2012-12-01

    Standards for model interoperability and scientific workflow software provide techniques and tools for coupling hydrological simulation models. However, model builders are yet to realize the benefits of these and continue to write ad hoc implementations and scripts. Three case studies demonstrate different approaches to coupling models, the first using tight interfaces (OpenMI), the second using a scientific workflow system (Trident) and the third using a tailored execution engine (Delft Flood Early Warning System - Delft-FEWS). No approach was objectively better than any other approach. The foremost standard for coupling hydrological models is the Open Modeling Interface (OpenMI), which defines interfaces for models to interact. An implementation of the OpenMI standard involves defining interchange terms and writing a .NET/Java wrapper around the model. An execution wrapper such as OatC.GUI or Pipistrelle executes the models. The team built two OpenMI implementations for eWater Source river system models. Once built, it was easy to swap river system models. The team encountered technical challenges with versions of the .Net framework (3.5 calling 4.0) and with the performance of the execution wrappers when running daily simulations. By design, the OpenMI interfaces are general, leaving significant decisions around the semantics of the interfaces to the implementer. Increasingly, scientific workflow tools such as Kepler, Taverna and Trident are able to replace custom scripts. These tools aim to improve the provenance and reproducibility of processing tasks. In particular, Taverna and the myExperiment website have had success making many bioinformatics workflows reusable and sharable. The team constructed Trident activities for hydrological software including IQQM, REALM and eWater Source. They built an activity generator for model builders to build activities for particular river systems. The models were linked at a simulation level, without any daily time-step feedbacks. There was no obvious way to add daily time-step feedbacks without incurring a considerable performance penalty. The Delft-FEWS system connects hydrological models for flood warnings and forecasts in a workflow system. It provides a range of custom facilities for connecting real-time data services. A Delft-FEWS system was constructed to connect a series of eWater Source hydrological models using the batch forecast mode to orchestrate a time-stepping system. The system coupled a series of river models running daily through a service interface. The implementation did not easily support interoperability with other models; however, using command line calls and the file-system did allow a level of language independence. The case-studies covered the coupling of hydrological models through tight interfaces (OpenMI), broad scientific workflow software (Trident) and a tailored execution engine (Delft-FEWS). We found that no approach was objectively better than any other approach. OpenMI had the most flexible interfaces, Trident the best handling of provenance and Delft-FEWS provided a significant set of tools for ingesting and transforming data. The case studies revealed a need for stable execution wrappers, patterns for efficient cross-language interoperability, targeted semantics for hydrological simulation and better handling of daily simulation.

  18. Hydrology

    ERIC Educational Resources Information Center

    Sharp, John M., Jr.

    1978-01-01

    The past year saw a re-emphasis on the practical aspects of hydrology due to regional drought patterns, urban flooding, and agricultural and energy demands on water resources. Highlights of hydrologic symposia, publications, and events are included. (MA)

  19. Progress and Prospects of Anti-HBV Gene Therapy Development

    PubMed Central

    Maepa, Mohube B.; Roelofse, Ilke; Ely, Abdullah; Arbuthnot, Patrick

    2015-01-01

    Despite the availability of an effective vaccine against hepatitis B virus (HBV), chronic infection with the virus remains a major global health concern. Current drugs against HBV infection are limited by emergence of resistance and rarely achieve complete viral clearance. This has prompted vigorous research on developing better drugs against chronic HBV infection. Advances in understanding the life cycle of HBV and improvements in gene-disabling technologies have been impressive. This has led to development of better HBV infection models and discovery of new drug candidates. Ideally, a regimen against chronic HBV infection should completely eliminate all viral replicative intermediates, especially covalently closed circular DNA (cccDNA). For the past few decades, nucleic acid-based therapy has emerged as an attractive alternative that may result in complete clearance of HBV in infected patients. Several genetic anti-HBV strategies have been developed. The most studied approaches include the use of antisense oligonucleotides, ribozymes, RNA interference effectors and gene editing tools. This review will summarize recent developments and progress made in the use of gene therapy against HBV. PMID:26263978

  20. Debates—Perspectives on socio-hydrology: Socio-hydrologic modeling: Tradeoffs, hypothesis testing, and validation

    NASA Astrophysics Data System (ADS)

    Troy, Tara J.; Pavao-Zuckerman, Mitchell; Evans, Tom P.

    2015-06-01

    Socio-hydrology focuses on studying the dynamics and co-evolution of coupled human and water systems. Recently, several new socio-hydrologic models have been published that explore these dynamics, and these models offer unique opportunities to better understand these coupled systems and to understand how water problems evolve similarly in different regions. These models also offer challenges, as decisions need to be made by the modeler on trade-offs between generality, precision, and realism. In addition, traditional hydrologic model validation techniques, such as evaluating simulated streamflow, are insufficient, and new techniques must be developed. As socio-hydrology progresses, these models offer a robust, invaluable tool to test hypotheses about the relationships between aspects of coupled human-water systems. They will allow us to explore multiple working hypotheses to greatly expand insights and understanding of coupled socio-hydrologic systems.

  1. Stochastic Modelling of Hydrologic Systems

    E-print Network

    -150 #12;Technical University of Denmark Informatics and Mathematical Modelling Building 321, DK-2800 study is from a 1132 km2 mountainous area in northern Iceland with altitude range of about 1000 m a stable estimate for risk assessment of water shortage. Since the available data are used to design

  2. Multivariate Probabilistic Analysis of an Hydrological Model

    NASA Astrophysics Data System (ADS)

    Franceschini, Samuela; Marani, Marco

    2010-05-01

    Model predictions derived based on rainfall measurements and hydrological model results are often limited by the systematic error of measuring instruments, by the intrinsic variability of the natural processes and by the uncertainty of the mathematical representation. We propose a means to identify such sources of uncertainty and to quantify their effects based on point-estimate approaches, as a valid alternative to cumbersome Montecarlo methods. We present uncertainty analyses on the hydrologic response to selected meteorological events, in the mountain streamflow-generating portion of the Brenta basin at Bassano del Grappa, Italy. The Brenta river catchment has a relatively uniform morphology and quite a heterogeneous rainfall-pattern. In the present work, we evaluate two sources of uncertainty: data uncertainty (the uncertainty due to data handling and analysis) and model uncertainty (the uncertainty related to the formulation of the model). We thus evaluate the effects of the measurement error of tipping-bucket rain gauges, the uncertainty in estimating spatially-distributed rainfall through block kriging, and the uncertainty associated with estimated model parameters. To this end, we coupled a deterministic model based on the geomorphological theory of the hydrologic response to probabilistic methods. In particular we compare the results of Monte Carlo Simulations (MCS) to the results obtained, in the same conditions, using Li's Point Estimate Method (LiM). The LiM is a probabilistic technique that approximates the continuous probability distribution function of the considered stochastic variables by means of discrete points and associated weights. This allows to satisfactorily reproduce results with only few evaluations of the model function. The comparison between the LiM and MCS results highlights the pros and cons of using an approximating method. LiM is less computationally demanding than MCS, but has limited applicability especially when the model response is highly nonlinear. Higher-order approximations can provide more accurate estimations, but reduce the numerical advantage of the LiM. The results of the uncertainty analysis identify the main sources of uncertainty in the computation of river discharge. In this particular case the spatial variability of rainfall and the model parameters uncertainty are shown to have the greatest impact on discharge evaluation. This, in turn, highlights the need to support any estimated hydrological response with probability information and risk analysis results in order to provide a robust, systematic framework for decision making.

  3. A novel approach to parameter uncertainty analysis of hydrological models: Application of machine learning techniques

    NASA Astrophysics Data System (ADS)

    Shrestha, D. L.; Kayastha, N.; Solomatine, D. P.

    2009-04-01

    Monte Carlo (MC) simulation-based techniques are widely used for analyzing parameter uncertainty in hydrological models. Although MC simulations are flexible and robust, and capable of solving a great variety of problems, they are not always practicable for computationally intensive models. This study presents a novel approach for assessment of parameter uncertainty in hydrological models using machine learning techniques. The presented approach replicates MC simulation by using various machine learning techniques, which is subsequently used for assessment of model parametric uncertainty. It is assumed a hydrological model M(p) is given and the propagation of the uncertainty in parameters p to the output is to be investigated. MC simulation of model M(p) is run and the stored realizations are used to form the dataset for training machine learning models. One of the issues was selection of the input variables for the machine learning models; it was done by searching for the variables (or their transformed variants) with the highest relatedness (average mutual information) to the sought distribution of the model M output. Machine learning models are trained to approximate the functional relationships between the variables characterizing the process modelled by M(p) and the uncertainty descriptors of its output. The trained machine learning models encapsulate the underlying characteristics of the parameter uncertainty and can be used to predict uncertainty descriptors for the new data. In this study three machine learning models - artificial neural networks, model trees and locally weighted regressions are used. The approach was demonstrated by estimating parameter uncertainty of a lumped conceptual hydrological model, HBV with application to a case study of meso scale mountainous catchment of Nepal. Uncertainty measures such as prediction intervals estimated by three machine learning methods are compared to those obtained by MC simulation in verification period. The results are promising as the uncertainty measures estimated by machine learning models are reasonably accurate. The proposed technique could be useful in real time applications for computationally intensive models (e.g. physically based hydrological models) which require run times that make traditional MC analysis impractical and when the forecast lead time is very short.

  4. Improving the representation of hydrologic processes in Earth System Models

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Fan, Ying; Lawrence, David M.; Adam, Jennifer C.; Bolster, Diogo; Gochis, David J.; Hooper, Richard P.; Kumar, Mukesh; Leung, L. Ruby; Mackay, D. Scott; Maxwell, Reed M.; Shen, Chaopeng; Swenson, Sean C.; Zeng, Xubin

    2015-08-01

    Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale land models (as a component of Earth System Models, or ESMs) do not yet reflect the best hydrologic process understanding or utilize the large amount of hydrologic observations for model testing. This paper discusses the opportunities and key challenges to improve hydrologic process representations and benchmarking in ESM land models, suggesting that (1) land model development can benefit from recent advances in hydrology, both through incorporating key processes (e.g., groundwater-surface water interactions) and new approaches to describe multiscale spatial variability and hydrologic connectivity; (2) accelerating model advances requires comprehensive hydrologic benchmarking in order to systematically evaluate competing alternatives, understand model weaknesses, and prioritize model development needs, and (3) stronger collaboration is needed between the hydrology and ESM modeling communities, both through greater engagement of hydrologists in ESM land model development, and through rigorous evaluation of ESM hydrology performance in research watersheds or Critical Zone Observatories. Such coordinated efforts in advancing hydrology in ESMs have the potential to substantially impact energy, carbon, and nutrient cycle prediction capabilities through the fundamental role hydrologic processes play in regulating these cycles.

  5. Hybrid Modelling Approach to Prairie hydrology: Fusing Data-driven and Process-based Hydrological Models

    NASA Astrophysics Data System (ADS)

    Mekonnen, B.; Nazemi, A.; Elshorbagy, A.; Mazurek, K.; Putz, G.

    2012-04-01

    Modeling the hydrological response in prairie regions, characterized by flat and undulating terrain, and thus, large non-contributing areas, is a known challenge. The hydrological response (runoff) is the combination of the traditional runoff from the hydrologically contributing area and the occasional overflow from the non-contributing area. This study provides a unique opportunity to analyze the issue of fusing the Soil and Water Assessment Tool (SWAT) and Artificial Neural Networks (ANNs) in a hybrid structure to model the hydrological response in prairie regions. A hybrid SWAT-ANN model is proposed, where the SWAT component and the ANN module deal with the effective (contributing) area and the non-contributing area, respectively. The hybrid model is applied to the case study of Moose Jaw watershed, located in southern Saskatchewan, Canada. As an initial exploration, a comparison between ANN and SWAT models is established based on addressing the daily runoff (streamflow) prediction accuracy using multiple error measures. This is done to identify the merits and drawbacks of each modeling approach. It has been found out that the SWAT model has better performance during the low flow periods but with degraded efficiency during periods of high flows. The case is different for the ANN model as ANNs exhibit improved simulation during high flow periods but with biased estimates during low flow periods. The modelling results show that the new hybrid SWAT-ANN model is capable of exploiting the strengths of both SWAT and ANN models in an integrated framrwork. The new hybrid SWAT-ANN model simulates daily runoff quite satisfactorily with NSE measures of 0.80 and 0.83 during calibration and validation periods, respectively. Furthermore, an experimental assessment was performed to identify the effects of the ANN training method on the performance of the hybrid model as well as the parametric identifiability. Overall, the results obtained in this study suggest that the fusion of process-based and data driven models can provide an alternative modelling approach to prairie hydrology. The approach is capable of representing the highly non-linear nature of the hydrological processes and in particular, the challenging response originating from the hydrologically non-contributing areas.

  6. A Smallholder Socio-hydrological Modelling Framework

    NASA Astrophysics Data System (ADS)

    Pande, S.; Savenije, H.; Rathore, P.

    2014-12-01

    Small holders are farmers who own less than 2 ha of farmland. They often have low productivity and thus remain at subsistence level. A fact that nearly 80% of Indian farmers are smallholders, who merely own a third of total farmlands and belong to the poorest quartile, but produce nearly 40% of countries foodgrains underlines the importance of understanding the socio-hydrology of a small holder. We present a framework to understand the socio-hydrological system dynamics of a small holder. It couples the dynamics of 6 main variables that are most relevant at the scale of a small holder: local storage (soil moisture and other water storage), capital, knowledge, livestock production, soil fertility and grass biomass production. The model incorporates rule-based adaptation mechanisms (for example: adjusting expenditures on food and fertilizers, selling livestocks etc.) of small holders when they face adverse socio-hydrological conditions, such as low annual rainfall, higher intra-annual variability in rainfall or variability in agricultural prices. It allows us to study sustainability of small holder farming systems under various settings. We apply the framework to understand the socio-hydrology of small holders in Aurangabad, Maharashtra, India. This district has witnessed suicides of many sugarcane farmers who could not extricate themselves out of the debt trap. These farmers lack irrigation and are susceptible to fluctuating sugar prices and intra-annual hydroclimatic variability. This presentation discusses two aspects in particular: whether government interventions to absolve the debt of farmers is enough and what is the value of investing in local storages that can buffer intra-annual variability in rainfall and strengthening the safety-nets either by creating opportunities for alternative sources of income or by crop diversification.

  7. Inhibitory effect of oxymatrine on serum hepatitis B virus DNA in HBV transgenic mice

    PubMed Central

    Lu, Lun-Gen; Zeng, Min-De; Mao, Yi-Min; Fang, Jing-Yuan; Song, Yu-Lin; Shen, Zhao-Hui; Cao, Ai-Ping

    2004-01-01

    AIM: To study the inhibitory effect of oxymatrine on serum hepatitis B virus (HBV) DNA in HBV transgenic mice. METHODS: HBV transgenic mice model was established by microinjection, and identified by HBV DNA integration and replication. Transgenic mice with replicating HBV were divided into 3 groups, and injected with normal saline (group A, n = 9), 50 mg/kg (group B, n = 8) and 100 mg/kg (group C, n = 9) oxymatrine intraperitoneally once a day for 30 d, respectively. Quantitation of serum HBV DNA in HBV transgenic mice was performed by competitive polymerase chain reaction (PCR) in combination with DNA hybridization quantitative detection technique before and after treatment. RESULTS: Compared with pre-treatment, the serum HBV DNA in group A (F = 1.04, P = 0.9612) and group B (F = 1.13, P = 0.8739) had no changes after treatment. However, in group C serum HBV DNA was significantly decreased (F = 13.97, P = 0.0012). The serum HBV DNA after treatment was lower in group C than in groups B and A (F = 8.65, P = 0.0068; F = 12.35, P = 0.0018; respectively). The serum HBV DNA after treatment was lower in group B than in group A, but there was no statistical significance (F = 1.43, P = 0.652). CONCLUSION: Oxymatrine has inhibitory effects on serum HBV DNA in HBV transgenic mice. PMID:15069721

  8. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  9. Comparing TRMM 3B42, CFSR and ground-based rainfall estimates as input for hydrological models, in data scarce regions: the Upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Worqlul, A. W.; Collick, A. S.; Tilahun, S. A.; Langan, S.; Rientjes, T. H. M.; Steenhuis, T. S.

    2015-02-01

    Accurate prediction of hydrological models requires accurate spatial and temporal distribution of rainfall observation network. In developing countries rainfall observation station network are sparse and unevenly distributed. Satellite-based products have the potential to overcome these shortcomings. The objective of this study is to compare the advantages and the limitation of commonly used high-resolution satellite rainfall products as input to hydrological models as compared to sparsely populated network of rain gauges. For this comparison we use two semi-distributed hydrological models Hydrologiska Byråns Vattenbalansavdelning (HBV) and Parameter Efficient Distributed (PED) that performed well in Ethiopian highlands in two watersheds: the Gilgel Abay with relatively dense network and Main Beles with relatively scarce rain gauge stations. Both are located in the Upper Blue Nile Basin. The two models are calibrated with the observed discharge from 1994 to 2003 and validated from 2004 to 2006. Satellite rainfall estimates used includes Climate Forecast System Reanalysis (CFSR), Tropical Rainfall Measuring Mission (TRMM) 3B42 version 7 and ground rainfall measurements. The results indicated that both the gauged and the CFSR precipitation estimates were able to reproduce the stream flow well for both models and both watershed. TRMM 3B42 performed poorly with Nash Sutcliffe values less than 0.1. As expected the HBV model performed slightly better than the PED model, because HBV divides the watershed into sub-basins resulting in a greater number of calibration parameters. The simulated discharge for the Gilgel Abay was better than for the less well endowed (rain gauge wise) Main Beles. Finally surprisingly, the ground based gauge performed better for both watersheds (with the exception of extreme events) than TRMM and CFSR satellite rainfall estimates. Undoubtedly in the future, when improved satellite products will become available, this will change.

  10. Plant growth simulation for landscape scale hydrologic modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landscape scale hydrologic models can be improved by incorporating realistic, process-oriented plant models for simulating crops, grasses, and woody species. The objective of this project was to present some approaches for plant modeling applicable to hydrologic models like SWAT that can affect the...

  11. Operational use of distributed hydrological models. Experiences and challenges at a Norwegian hydropower company (Agder Energi).

    NASA Astrophysics Data System (ADS)

    Viggo Matheussen, Bernt; Andresen, Arne; Weisser, Claudia

    2014-05-01

    The Scandinavian hydropower industry has traditionally adopted the lumped conceptual hydrological model - HBV, as the tool for producing forecasts of inflows and mountain snow packs. Such forecasting systems - based on lumped conceptual models - have several drawbacks. Firstly, a lumped model does not produce spatial data, and comparisons with remote sensed snow cover data (which are now available) are complicated. Secondly, several climate parameters such as wind speed are now becoming more available and can potentially improve forecasts due to improved estimates of precipitation gauge efficiency, and more physically correct calculation of turbulent heat fluxes. At last, when the number of catchments increases, it is cumbersome and slow to run multiple hydrology models compared to running one model for all catchments. With the drawbacks of the lumped hydrology models in mind, and with inspiration from other forecasting systems using distributed models, Agder Energy decided to develop a forecasting system applying a physically based distributed model. In this paper we describe an operational inflow and snowpack forecast system developed for the Scandinavian mountain range. The system applies a modern macroscale land surface hydrology model (VIC) which in combination with historical climate data and weather predictions can be used to produce both short-term, and seasonal forecasts of inflow and mountain snowpack. Experiences with the forecast system are illustrated using results from individual subcatchments as well as aggregated regional forecasts of inflow and snowpack. Conversion of water volumes into effective energy inflow are also presented and compared to data from the Nordic hydropower system. Further on, we document several important "lessons-learned" that may be of interest to the hydrological research community. Specifically a semi-automatic data cleansing system combining spatial and temporal visualization techniques with statistical procedures are combined into a robust and fast data cleansing and interpolation system. One experience from this work is that advanced interpolation techniques (kriging), do not outperform calibrated inverse distance methods when also computational speed is used as a criteria for model selection. The paper also discusses several challenges related to uncertainty in simulated snow reservoir, regionalization of parameters, choice of spatial resolution, techniques for reducing computational needs without compromising information needs, amongst others.

  12. Strategies to eliminate HBV infection

    PubMed Central

    Kapoor, Rama; Kottilil, Shyam

    2014-01-01

    Chronic HBV infection is a major public health concern affecting over 240 million people worldwide. Although suppression of HBV replication is achieved in the majority of patients with currently available newer antivirals, discontinuation of therapy prior to hepatitis B surface antigen loss or seroconversion is associated with relapse of HBV in the majority of cases. Thus, new therapeutic modalities are needed to achieve eradication of the virus from chronically infected patients in the absence of therapy. The basis of HBV persistence includes viral and host factors. Here, we review novel strategies to achieve sustained cure or elimination of HBV. The novel approaches include targeting the viral and or host factors required for viral persistence, and novel immune-based therapies, including therapeutic vaccines. PMID:25309617

  13. Hydrological monitoring and modeling of an alpine catchment

    E-print Network

    Lenstra, Arjen K.

    ENAC/ Hydrological monitoring and modeling of an alpine catchment Auteur Raphael Mutzner 1 , S. · Improve basin-scale hydrological modeling using a distributed model that will be validated with the data November to May · Presence of deep gullies · Presence of a small glacier · Sandy silt loam soil

  14. Monthly Hydrological Model Evaluation through Mapping the Hydrological Pattern to Information Space

    NASA Astrophysics Data System (ADS)

    Pan, B.; Cong, Z.

    2014-12-01

    Conceptual and stochastic monthly hydrological models have been widely used for climatic change impact exploration and long-range stream flow forecast. With disparate philosophies and different but insufficient inputs, most of the existing models are capable of generating satisfying outputs, which reveals a relatively robust idiosyncrasy of hydrological pattern over monthly time scale. This research uses the epistemic-aleatory uncertainties evaluation framework to examine the information source sink terms and flows of 6 conceptual monthly water balance models and a seasonal autoregressive stochastic hydrologic model over 19 basins in Jiangxi Province, China and the experiment basins of MOPEX project. By using the stream technique of Lisp, we constructed two programming paradigms into which the hydrological models mentioned above could be fitted. We focus on detecting and explaining the best achievable predictive performances and data-revealed insufficient of the models in each paradigm, especially the hydrological meaning of the iteration variables in these models. Finally, we make an attempt to compare and connect these two paradigms against the backdrop of algorithmic information theory to help us form a better understanding of monthly hydrological pattern.

  15. Plant adaptive behaviour in hydrological models (Invited)

    NASA Astrophysics Data System (ADS)

    van der Ploeg, M. J.; Teuling, R.

    2013-12-01

    Models that will be able to cope with future precipitation and evaporation regimes need a solid base that describes the essence of the processes involved [1]. Micro-behaviour in the soil-vegetation-atmosphere system may have a large impact on patterns emerging at larger scales. A complicating factor in the micro-behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. As a result of environmental changes vegetation may wither and die, but such environmental changes may also trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [2-6]. Gene expression as a result of different environmental conditions may profoundly impact drought responses across the same plant species. Differences in response to an environmental stress, has consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant functional type. Assigning plant functional types does not allow for local plant adaptation to be reflected in the model parameters, nor does it allow for correlations that might exist between root parameters and soil type. Models potentially provide a means to link root water uptake and transport to large scale processes (e.g. Rosnay and Polcher 1998, Feddes et al. 2001, Jung 2010), especially when powered with an integrated hydrological, ecological and physiological base. We explore the experimental evidence from natural vegetation to formulate possible alternative modeling concepts. [1] Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215-224. [2] McClintock B. The significance of responses of the genome to challenge. Science 1984; 226: 792-801 [3] Ries G, Heller W, Puchta H, Sandermann H, Seldlitz HK, Hohn B. Elevated UV-B radiation reduces genome stability in plants. Nature 2000; 406: 98-101 [4] Lucht JM, Mauch-Mani B, Steiner H-Y, Metraux J-P, Ryals, J, Hohn B. Pathogen stress increases somatic recombination frequency in Arabidopsis. Nature Genet. 2002; 30: 311-314 [5] Kovalchuk I, Kovalchuk O, Kalck V., Boyko V, Filkowski J, Heinlein M, Hohn B. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 2003; 423: 760-762 [6] Cullis C A. Mechanisms and control of rapid genomic changes in flax. Ann. Bot. (Lond.) 2005; 95: 201-206 [7] de Rosnay, P. and J. Polcher. 1998. Modelling root water uptake in a complex land surface scheme coupled to a GCM. Hydrology and Earth System Sciences 2: 239-255. [8] Feddes, R.A., H. Hoff, M. Bruen, T. Dawson, P. de Rosnay, P. Dirmeyer, R.B. Jackson, P. Kabat, A. Kleidon, A. Lilly, and A.J. Pitman. 2001. Modeling root water uptake in hydrological and climate models. Bulletin of the American Meteorological Society 82: 2797-2809. [9] Jung, M., M. Reichstein, P. Ciais, S.I. Seneviratne, J. Sheffield et al. 2010. Recent decline in the global land evaporation trend due to limited moisture supply. Nature 476: 951-954, doi:10.1038/nature09396.

  16. Hydrologic modeling with uncertain input parameters

    NASA Astrophysics Data System (ADS)

    Rousseau, M.; Cerdan, O.; Ern, A.; Le Maître, O.; Sochala, P.

    2012-04-01

    Erosion risk is recognized as a major threat whose consequences affect urbanized and agricultural areas. Recent assessments of the predictive abilities of erosion models show the difficulty to correctly predict the spatial patterns of erosion and deposition. This is due to the high sensibility of the model to input parameters that contain large spatial and temporal variability. Many studies concluded that model outputs are very sensitive to input hydrological parameters, especially to the saturated hydraulic conductivity. Here, we use an erosion model coupling the Shallow Water equations with the Hairsine-Rose soil erosion which can integrate different sediment size classes. As the scale of modeling is different from the scale of observed or measured data, we use a stochastic distribution of relevant input parameters to represent the micro-scale. A first part of the study concerns the rainfall/runoff model in which the saturated hydraulic conductivity is considered as an uncertain input parameter. A second part is dedicated to the influence of soil parameters in the erosion model. For each part, we evaluate how uncertainties on the inputs impact the surface runoff or the erosion model outputs during various types of rainfall events. We test different stochastic tools to quantify the propagation of uncertainties (Monte Carlo method, Karhunen-Loève expansion…) and we use numerical test cases representing fields or hillslope to assess the methodology in the context of runoff and soil erosion modeling. Simulation results allow us to know where effort should be concentrated when collecting input parameters and limit output error.

  17. Evaluating the performance in the Swedish operational hydrological forecasting systems

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; Bosshard, Thomas; Spångmyr, Henrik; Lindström, Göran; Olsson, Jonas; Arheimer, Berit

    2014-05-01

    The production of hydrological forecasts generally involves the selection of model(s) and setup, calibration and initialization, verification and updating, generation and evaluation of forecasts. Although, field data are commonly used to calibrate and initiate hydrological models, technological advancements have allowed the use of additional information, i.e. remote sensing data and meteorological ensemble forecasts, to improve hydrological forecasts. However, the precision of hydrological forecasts is often subject to uncertainty related to various components of the production chain and data used. The Swedish Meteorological and Hydrological Institute (SMHI) operationally produces hydrological medium-range forecasts in Sweden using two modeling systems based on the HBV and S-HYPE hydrological models. The hydrological forecasts use both deterministic and ensemble (in total 51 ensemble members which are further reduced to 5 statistical members; 2, 25, 50, 75, 98% percentiles) meteorological forecasts from ECMWF to add information on the uncertainty of the predicted values. In this study, we evaluate the performance of the two operational hydrological forecasting systems and identify typical uncertainties in the forecasting production chain and ways to reduce them. In particular, we investigate the effect of autoregressive updating of the forecasted discharge, and of using the median of the ensemble instead of deterministic forecasts. Medium-range (10 days) hydrological forecasts across 71 selected indicator stations are used. The Kling-Gupta Efficiency and its decomposed terms are used to analyse the performance in different characteristics of the flow signal. Results show that the HBV and S-HYPE models with AR updating are both capable of producing adequate forecasts for a short lead time (1 to 2 days), and the performance steadily decreases in lead time. The autoregressive updating method can improve the performance of the two systems by 30 to 40% in terms of the KGE. This is mainly because the method has a significant impact on the improvement of discharge volume. S-HYPE seems to perform slightly better than HBV in the longer lead time, probably because the S-HYPE system is capable of updating the lake water level, which has an impact on the longer lead times. Moreover, the deterministic and ensemble HBV systems with AR updating perform fairly similar for all lead times. Keywords: Hydrological forecasting, S-HYPE, HBV, Operational production, Kling-Gupta Efficiency, Uncertainty.

  18. Hydrology

    ERIC Educational Resources Information Center

    Sharp, John M.

    1977-01-01

    Lists many recent research projects in hydrology, including flow in fractured media, improvements in remote-sensing techniques, effects of urbanization on water resources, and developments in drainage basins. (MLH)

  19. Improvements of Physically-Based Hydrological Modelling using the ACRU Agro-Hydrological Modelling System

    NASA Astrophysics Data System (ADS)

    Bonifacio, C. M. T.; Kienzle, S. W.; Xu, W.; Zhang, J.

    2014-12-01

    The uncertainty of future water availability due to climate change in the Upper Oldman River Basin in Alberta, Canada, and downstream users is considered in this study. A changing climate can significantly perturb hydrological response within a region, thereby affecting the available water resources within southern Alberta. The ACRU agro-hydrological modelling system is applied to simulate historical (1950-2010) and future (2041-2070) streamflows and volumes of a major irrigation reservoir. Like many highly complex, process-based distributed models, major limitations include the data availability and data quality at finer spatial resolutions. With the use of a scripting language, certain limitations can be greatly reduced. Three phases of the project will be emphasized. First, the assimilation of solar radiation, relative humidity, sunshine hours and wind speed daily data into the Canadian 10KM daily climate data that contains daily precipitation, maximum and minimum temperature data for the period 1950-2010, so as to enable potential evapotranspiration calculations using the Penman-Monteith equation. Second, the downscaling of five regional climate model (RCM) data to match the 10KM spatial resolution was undertaken. Third, a total of 1722 hydrological response units (HRUs) were delineated within the 4403 km2 large upper Oldman River Basin. In all phases of model input data parameterization and calibration, the automation of known external procedures greatly decreased erroneous model inputs and increased the efficiency of validating the quality of input data to be used within the ACRU model.

  20. A question driven socio-hydrological modeling process

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Portney, K.; Islam, S.

    2015-08-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human induced changes may propagate through this coupled system. Modeling of coupled human and hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding the choice of modeling structure, scope, and detail. A shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope, and detail to remain contingent and adaptive to the question context. We demonstrate its utility by exploring a question: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result per capita demand decreases during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies. This distinction between the two policies was not apparent using a traditional non-coupled model.

  1. An integrated hydrologic modeling framework for coupling SWAT with MODFLOW

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT), MODFLOW, and Energy Balance based Evapotranspiration (EB_ET) models are extensively used to estimate different components of the hydrological cycle. Surface and subsurface hydrological processes are modeled in SWAT but limited to the extent of shallow aquif...

  2. A RETROSPECTIVE ANALYSIS OF MODEL UNCERTAINTY FOR FORECASTING HYDROLOGIC CHANGE

    EPA Science Inventory

    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...

  3. Global scale hydrology - Advances in land surface modeling

    SciTech Connect

    Wood, E.F. )

    1991-01-01

    Research into global scale hydrology is an expanding area that includes researchers from the meteorology, climatology, ecology and hydrology communities. This paper reviews research in this area carried out in the United States during the last IUGG quadrennial period of 1987-1990. The review covers the representation of land-surface hydrologic processes for general circulation models (GCMs), sensitivity analysis of these representations on global hydrologic fields like precipitation, regional studies of climate that have global hydrologic implications, recent field studies and experiments whose aims are the improved understanding of land surface-atmospheric interactions, and the use of remotely sensed data for the further understanding of the spatial variability of surface hydrologic processes that are important at regional and global climate scales. 76 refs.

  4. An open-source distributed mesoscale hydrologic model (mHM)

    NASA Astrophysics Data System (ADS)

    Samaniego, Luis; Kumar, Rohini; Zink, Matthias; Thober, Stephan; Mai, Juliane; Cuntz, Matthias; Schäfer, David; Schrön, Martin; Musuuza, Jude; Prykhodko, Vladyslav; Dalmasso, Giovanni; Attinger, Sabine; Spieler, Diana; Rakovec, Oldrich; Craven, John; Langenberg, Ben

    2014-05-01

    The mesoscale hydrological model (mHM) is based on numerical approximations of dominant hydrological processes that have been tested in various hydrological models such as: HBV and VIC. In general, mHM simulates the following processes: canopy interception, snow accumulation and melting, soil moisture dynamics (n-horizons), infiltration and surface runoff, evapotranspiration, subsurface storage and discharge generation, deep percolation and baseflow, and discharge attenuation and flood routing. The main characteristic of mHM is the treatment of the sub-grid variability of input variables and model parameters which clearly distinguishes this model from existing precipitation-runoff models or land surface models. It uses a Multiscale Parameter Regionalization (MPR) to account for the sub-grid variability and to avoid continuous re-calibration. Effective model parameters are location and time dependent (e.g., soil porosity). They are estimated through upscaling operators that link sub-grid morphologic information (e.g., soil texture) with global transfer-function parameters, which, in turn, are found through multi-basin optimization. Global parameters estimated with the MPR technique are quasi-scale invariant and guarantee flux-matching across scales. mHM is an open source code, written in Fortran 2003 (standard), fully modular, with high computational efficiency, and parallelized. It is portable to multiple platforms (Linux, OS X, Windows) and includes a number of algorithms for sensitivity analysis, analysis of parameter uncertainty (MCMC), and optimization (DDS, SA, SCE). All simulated state variables and outputs can be stored as netCDF files for further analysis and visualization. mHM has been evaluated in all major river basins in Germany and over 80 US and 250 European river basins. The model efficiency (NSE) during validation at proxy locations is on average greater than 0.6. During last years, mHM had been used for number of hydrologic applications such as, for example, a) to investigate the influence of the antecedent soil moisture on extreme floods in Germany (2002 and 2013), b) for establishing benchmark agricultural drought events for Germany since 1950. A 60-year reconstruction of the daily mHM soil moisture fields over Germany at high resolution 4 × 4 km2 was used for this purpose, and c) to investigate the potential benefits of a high resolution modeling approach for the drought monitoring and forecasting system over Pan-EU. We invite the community to take advantage of this open-source code which is freely available (after nominal registration) at: http://www.ufz.de/index.php?en=31389.

  5. Mathematical models of hydrological systems with Preisach hysteresis

    E-print Network

    Schellekens, Michel P.

    Mathematical models of hydrological systems with Preisach hysteresis P. Krejci, P. O'Kane, A. Pokrovskii, D. Rachinskii 1 Introduction The important role of hysteresis in hydrology and soil physics is known for a long time. Hysteresis manifests itself through the fact that it is easier (i.e., less thermo

  6. Feedback regulation of IFN-?/? signaling by Axl receptor tyrosine kinase modulates HBV immunity.

    PubMed

    Huang, Miao-Tzu; Liu, Wei-Liang; Lu, Chun-Wei; Huang, Jian-Jhih; Chuang, Hsiao-Li; Huang, Yen-Te; Horng, Jau-Haw; Liu, Peng; Han, Dai-Shu; Chiang, Bor-Luen; Shih, Chiaho; Chen, Pei-Jer; Chen, Ding-Shinn

    2015-06-01

    Hepatitis B virus (HBV) is known to cause age-dependent infection outcomes wherein most infections during young age result in chronicity. The mechanism underlying the differential outcome remains elusive. By using hydrodynamic injection of the replication-competent pAAV-HBV, we established a mouse model in which HBV persistence was generated in 4-5 w/o C57BL/6 young mice, but not in adult mice over 10 w/o. HBV-tolerant young mice expressed higher interferon (IFN)-?/? levels in hepatocytes and intrahepatic plasmacytoid DCs (pDCs) than adult mice after pAAV-HBV injection. Excessive IFN-?/? expression in young mice was associated with induction of the Axl regulatory pathway and expansion of intrahepatic Treg cells. In line with these findings, augmented IFN-? expression increased Axl expression in the liver and HBV persistence in adult mice, whereas IFN-?/? signaling blockage decreased Axl expression and HBV persistence in young mice. Accordingly, Axl overexpression decreased HBV clearance of adult mice whereas Axl silencing enhanced HBV clearance of young mice. In vitro, IFN-? priming of pDCs and Axl-overexpressing macrophages enhanced Treg-cell differentiation. These findings suggest that age-dependent HBV chronicity is attributed to IFN-?-Axl immune regulation, which is selectively induced in young mice by excessive IFN-?/? production at early stage of HBV infection. PMID:25820812

  7. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Vrugt, Jasper A.; Ter Braak, Cajo J. F.; Clark, Martyn P.; Hyman, James M.; Robinson, Bruce A.

    2008-12-01

    There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled differential evolution adaptive Metropolis (DREAM), that is especially designed to efficiently estimate the posterior probability density function of hydrologic model parameters in complex, high-dimensional sampling problems. This MCMC scheme adaptively updates the scale and orientation of the proposal distribution during sampling and maintains detailed balance and ergodicity. It is then demonstrated how DREAM can be used to analyze forcing data error during watershed model calibration using a five-parameter rainfall-runoff model with streamflow data from two different catchments. Explicit treatment of precipitation error during hydrologic model calibration not only results in prediction uncertainty bounds that are more appropriate but also significantly alters the posterior distribution of the watershed model parameters. This has significant implications for regionalization studies. The approach also provides important new ways to estimate areal average watershed precipitation, information that is of utmost importance for testing hydrologic theory, diagnosing structural errors in models, and appropriately benchmarking rainfall measurement devices.

  8. RHydro - Hydrological models and tools to represent and analyze hydrological data in R

    NASA Astrophysics Data System (ADS)

    Reusser, Dominik; Buytaert, Wouter

    2010-05-01

    In hydrology, basic equations and procedures keep being implemented from scratch by scientist, with the potential for errors and inefficiency. The use of libraries can overcome these problems. Other scientific disciplines such as mathematics and physics have benefited significantly from such an approach with freely available implementations for many routines. As an example, hydrological libraries could contain: Major representations of hydrological processes such as infiltration, sub-surface runoff and routing algorithms. Scaling functions, for instance to combine remote sensing precipitation fields with rain gauge data Data consistency checks Performance measures. Here we present a beginning for such a library implemented in the high level data programming language R. Currently, Top-model, data import routines for WaSiM-ETH as well basic visualization and evaluation tools are implemented. The design is such, that a definition of import scripts for additional models is sufficient to have access to the full set of evaluation and visualization tools.

  9. Improving the representation of hydrologic processes in Earth System Models

    SciTech Connect

    Clark, Martyn P.; Fan, Ying; Lawrence, David M.; Adam, J. C.; Bolster, Diogo; Gochis, David; Hooper, Richard P.; Kumar, Mukesh; Leung, Lai-Yung R.; Mackay, D. Scott; Maxwell, Reed M.; Shen, Chaopeng; Swenson, Sean C.; Zeng, Xubin

    2015-08-21

    Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale models, such as the land components of Earth System Models (ESMs), do not yet represent the terrestrial water cycle in a fully integrated manner or resolve the finer-scale processes that can dominate large-scale water budgets. This paper reviews the current representation of hydrologic processes in ESMs and identifies the key opportunities for improvement. This review suggests that (1) the development of ESMs has not kept pace with modeling advances in hydrology, both through neglecting key processes (e.g., groundwater) and neglecting key aspects of spatial variability and hydrologic connectivity; and (2) many modeling advances in hydrology can readily be incorporated into ESMs and substantially improve predictions of the water cycle. Accelerating modeling advances in ESMs requires comprehensive hydrologic benchmarking activities, in order to systematically evaluate competing modeling alternatives, understand model weaknesses, and prioritize model development needs. This demands stronger collaboration, both through greater engagement of hydrologists in ESM development and through more detailed evaluation of ESM processes in research watersheds. Advances in the representation of hydrologic process in ESMs can substantially improve energy, carbon and nutrient cycle prediction capabilities through the fundamental role the water cycle plays in regulating these cycles.

  10. Modeling the hydrological patterns on Pantanal wetlands, Brazil

    NASA Astrophysics Data System (ADS)

    Castro, A. A.; Cuartas, A.; Coe, M. T.; Koumrouyan, A.; Panday, P. K.; Lefebvre, P.; Padovani, C.; Costa, M. H.; de Oliveira, G. S.

    2014-12-01

    The Pantanal of Brazil is one of the world's largest wetland regions. It is located within the 370,000 km2 Alto Paraguai Basin (BAP). In wet years almost 15% of the total area of the basin can be flooded (approximately 53,000 km2). The hydrological cycle is particularly important in the Pantanal in the transport of materials, and the transfer of energy between atmospheric, aquatic, and terrestrial systems. The INLAND (Integrated Land Surface Model) terrestrial ecosystem model is coupled with the THMB hydrological model to examine the hydrological balance and water dynamics for this region. The INLAND model is based on the IBIS dynamic vegetation model, while THMB represents the river, wetland and lake dynamics of the land surface. The modeled hydrological components are validated with surface and satellite-based estimates of precipitation (gridded observations from CRU v. 3.21, reanalysis data from ERA-interim, and TRMM estimates), evapotranspiration (MODIS and Land Flux-Eval dataset), total runoff (discharge data from ANA-Agência Nacional das Águas - Brazil), and terrestrial water storage (GRACE). Results show that the coupled hydrological model adequately represents the water cycle components, the river discharge and flooded areas. Model simulations are further used to study the influences of climatic variations on the hydrological components, river network, and the inundated areas in the Pantanal.

  11. Future hydrological extremes: the uncertainty from multiple global climate and global hydrological models

    NASA Astrophysics Data System (ADS)

    Giuntoli, I.; Vidal, J.-P.; Prudhomme, C.; Hannah, D. M.

    2015-01-01

    Projections of changes in the hydrological cycle from Global Hydrological Models (GHMs) driven by Global Climate Models (GCMs) are critical for understanding future occurrence of hydrological extremes. However, uncertainties remain large and need to be better assessed. In particular, recent studies have pointed to a considerable contribution of GHMs that can equal or outweigh the contribution of GCMs to uncertainty in hydrological projections. Using 6 GHMs and 5 GCMs from the ISI-MIP multi-model ensemble, this study aims: (i) to assess future changes in the frequency of both high and low flows at the global scale using control and future (RCP8.5) simulations by the 2080s, and (ii) to quantify, for both ends of the runoff spectrum, GCMs and GHMs contributions to uncertainty using a 2-way ANOVA. Increases are found in high flows for northern latitudes and in low flows for several hotspots. Globally, the largest source of uncertainty is associated with GCMs, but GHMs are the greatest source in snow dominated regions. More specifically, results vary depending on the runoff metric, the temporal (annual and seasonal) and regional scale of analysis. For instance, uncertainty contribution from GHMs is higher for low flows than it is for high flows, partly owing to the different processes driving the onset of the two phenomena (e.g. the more direct effect of the GCMs precipitation variability on high flows). This study provides a comprehensive synthesis of where future hydrological extremes are projected to increase and where the ensemble spread is owed to either GCMs or GHMs. Finally, our results underline the importance of using multiple GCMs and GHMs to envelope the overall uncertainty range and the need for improvements in modeling snowmelt and runoff processes to project future hydrological extremes.

  12. HBV Genotypic Variability in Cuba

    PubMed Central

    Loureiro, Carmen L.; Aguilar, Julio C.; Aguiar, Jorge; Muzio, Verena; Pentón, Eduardo; Garcia, Daymir; Guillen, Gerardo; Pujol, Flor H.

    2015-01-01

    The genetic diversity of HBV in human population is often a reflection of its genetic admixture. The aim of this study was to explore the genotypic diversity of HBV in Cuba. The S genomic region of Cuban HBV isolates was sequenced and for selected isolates the complete genome or precore-core sequence was analyzed. The most frequent genotype was A (167/250, 67%), mainly A2 (149, 60%) but also A1 and one A4. A total of 77 isolates were classified as genotype D (31%), with co-circulation of several subgenotypes (56 D4, 2 D1, 5 D2, 7 D3/6 and 7 D7). Three isolates belonged to genotype E, two to H and one to B3. Complete genome sequence analysis of selected isolates confirmed the phylogenetic analysis performed with the S region. Mutations or polymorphisms in precore region were more common among genotype D compared to genotype A isolates. The HBV genotypic distribution in this Caribbean island correlates with the Y lineage genetic background of the population, where a European and African origin prevails. HBV genotypes E, B3 and H isolates might represent more recent introductions. PMID:25742179

  13. Hydrological Modeling of the Jiaoyi Watershed (China) Using HSPF Model

    PubMed Central

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R2), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin. PMID:25013863

  14. Hydrological modeling of the Jiaoyi watershed (China) using HSPF model.

    PubMed

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001-2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R (2)), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin. PMID:25013863

  15. ENHANCING HYDROLOGICAL SIMULATION PROGRAM - FORTRAN MODEL CHANNEL HYDRAULIC REPRESENTATION

    EPA Science Inventory

    The Hydrological Simulation Program– FORTRAN (HSPF) is a comprehensive watershed model that employs depth-area - volume - flow relationships known as the hydraulic function table (FTABLE) to represent the hydraulic characteristics of stream channel cross-sections and reservoirs. ...

  16. Modelling the hydrology of the Greenland ice sheet 

    E-print Network

    Karatay, Mehmet Rahmi

    2011-06-28

    This thesis aims to better understand the relationships between basal water pressure, friction, and sliding mechanisms at ice sheet scales. In particular, it develops a new subglacial hydrology model (Hydro) to explicitly ...

  17. Doing hydrology forwards: Using field experimental data to inform a conceptual model of landscape driven hydrologic connectivity

    NASA Astrophysics Data System (ADS)

    Marshall, L. A.; Smith, T. J.; McGlynn, B. L.; Jencso, K. G.

    2011-12-01

    Given the known tradeoffs between hydrologic model complexity, efficiency, and predictive uncertainty there is an increasing desire to identify conceptual catchment models that accurately reflect catchment processes whilst preserving model identifiability. These models should specify the relationship between catchment form (including landscape topography, vegetation patterns, and stream networks) and hydrologic functioning (including streamflow patterns). We present a new hydrologic modeling approach that uses the distribution of landscape elements along the stream network as a template by which landscape-scale hydrologic connectivity and catchment runoff can be simulated. Here, we define hydrologic connectivity as the transient hydrological linkages between landscape elements and the stream. Our conceptualization emphasizes the importance of hydrologic connections between hillslope-riparian-stream (HRS) zones. Observations indicate that it is the frequency of these HRS hydrologic connections that drive aggregate catchment runoff response, rather than the magnitude of flux at any one connection. We applied the model to the Stringer Creek watershed of the Tenderfoot Creek Experimental Forest (TCEF), located in central Montana, USA. Detailed field observations were used to inform the underpinnings of the model and to corroborate internal consistency of the model's simulations. The ability of the model to simulate internal dynamics without conditioning the parameters on these data indicate the potential of this model to be more convincingly extrapolated to other hydrologic conditions and tested at catchments of varying topographic structure. Current and future work is aimed at further developing the modeling approach and testing the limits of its applicability across space and time.

  18. Climate model uncertainty versus conceptual geological uncertainty in hydrological modeling

    NASA Astrophysics Data System (ADS)

    Sonnenborg, T. O.; Seifert, D.; Refsgaard, J. C.

    2015-09-01

    Projections of climate change impact are associated with a cascade of uncertainties including in CO2 emission scenarios, climate models, downscaling and impact models. The relative importance of the individual uncertainty sources is expected to depend on several factors including the quantity that is projected. In the present study the impacts of climate model uncertainty and geological model uncertainty on hydraulic head, stream flow, travel time and capture zones are evaluated. Six versions of a physically based and distributed hydrological model, each containing a unique interpretation of the geological structure of the model area, are forced by 11 climate model projections. Each projection of future climate is a result of a GCM-RCM model combination (from the ENSEMBLES project) forced by the same CO2 scenario (A1B). The changes from the reference period (1991-2010) to the future period (2081-2100) in projected hydrological variables are evaluated and the effects of geological model and climate model uncertainties are quantified. The results show that uncertainty propagation is context-dependent. While the geological conceptualization is the dominating uncertainty source for projection of travel time and capture zones, the uncertainty due to the climate models is more important for groundwater hydraulic heads and stream flow.

  19. Using climate model ensemble forecasts for seasonal hydrologic prediction

    NASA Astrophysics Data System (ADS)

    Wood, Andrew Whitaker

    Seasonal hydrologic forecasting has long played an invaluable role in the development and use of water resources. Despite notable advances in the science and practice of climate prediction, current approaches of hydrologists and water managers largely fail to incorporate seasonal climate forecast information that has become operationally available during the last decade. This study is motivated by the view that a combination of hydrologic and climate prediction methods affords a new opportunity to improve hydrologic forecast skill. A relatively direct statistical approach for achieving this combination (i.e., downscaling) was formulated that used ensemble climate model forecasts with a six month lead time produced by the NCEP/CPC Global Spectral Model (GSM) as input to the macroscale Variable Infiltration Capacity hydrologic model to produce ensemble runoff and streamflow forecasts. The approach involved the bias correction of climate model precipitation and temperature fields, and spatial and temporal disaggregation from monthly climate model scale (about 2 degrees latitude by longitude) fields to daily hydrology model scale (1/8 degrees) inputs. A qualitative evaluation of the approach in the eastern U.S. suggested that it was successful in translating climate forecast signals to local hydrologic variables and streamflow, but that the dominant influence on forecast results tended to be persistence in initial hydrologic conditions. The suitability of the statistical downscaling approach for supporting hydrologic simulation was then assessed (using a continuous retrospective 20-year climate simulation from the DOE Parallel Climate Model) relative to dynamical downscaling via a regional, meso-scale climate model. The statistical approach generally outperformed the dynamical approach, in that the dynamical approach alone required additional bias-correction to reproduce the retrospective hydrology as well as the statistical approach. Finally, using 21 years of retrospective forecasts for the western U.S., the skill of the GSM-based hydrologic forecasts was assessed relative to NWS Extended Streamflow Prediction (ESP) method forecasts. Because of unexceptional GSM climate forecasts, the GSM-based and ESP hydrologic forecasts generally showed similar skill. During strong ENSO anomalies, however, GSM-based forecasts yielded higher forecast skill in the Sacramento-San Joachin and Columbia River basins, but lower skill in the Colorado and upper Rio Grande River basins.

  20. Variational data assimilation with the YAO platform for hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Abbaris, A.; Dakhlaoui, H.; Thiria, S.; Bargaoui, Z.

    2014-09-01

    In this study data assimilation based on variational assimilation was implemented with the HBV hydrological model using the YAO platform of University Pierre and Marie Curie (France). The principle of the variational assimilation is to consider the model state variables as control variables and optimise them by minimizing a cost function measuring the disagreement between observations and model simulations. The variational assimilation is used for the hydrological forecasting. In this case four state variables of the rainfall-runoff model HBV (those related to soil water content in the water balance tank and to water contents in rooting tanks) are considered as control variables. They were updated through the 4D-VAR procedure using daily discharge incoming information. The Serein basin in France was studied and a high level of forecasting accuracy was obtained with variational assimilation allowing flood anticipation.

  1. Coupled Atmosphere-Biophysics-Hydrology Models for Environmental Modeling.

    NASA Astrophysics Data System (ADS)

    Walko, Robert L.; Band, Larry E.; Baron, Jill; Kittel, Timothy G. F.; Lammers, Richard; Lee, Tsengdar J.; Ojima, Dennis; Pielke, Roger A., Sr.; Taylor, Chris; Tague, Christina; Tremback, Craig J.; Vidale, Pier Luigi

    2000-06-01

    The formulation and implementation of LEAF-2, the Land Ecosystem-Atmosphere Feedback model, which comprises the representation of land-surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere-biophysical-hydrologic response to altered climate forcing at local watershed and regional basin scales.

  2. Modeling conditional covariance between meteorological and hydrological drought

    NASA Astrophysics Data System (ADS)

    Modarres, R.

    2012-12-01

    This study introduces a bivariate Generalized Autoregressive Conditional Heteroscedasticity (GARCH) approach to model the time varying second order moment or conditional variance-covariance link of hydrologic and meteorological drought. The standardized streamflow and rainfall time series are selected as drought indices and the bivariate diagonal BEKK model is applied to estimate the conditional variance-covariance structure between hydrologic and meteorological drought. Results of diagonal BEKK(1,1) model indicated that the conditional variance of meteorological drought is weak and much smaller than that for hydrological drought which shows a strong volatility effect. However both drought indices show a weak memory in the conditional variance. It is also observed that the conditional covariance between two drought indices is also weak and only shows a slight short run volatility effect. This may suggest the effect of basin features such as groundwater storage and physical characteristics which attenuate and modify the effect of meteorological drought on hydrologic drought in the basin scale. conditional correlation time series between meteorological and hydrologic drought at two selected stations monthly variation of conditional correlation between meteorological and hydrologic drought at two selected stations

  3. Strategies for using remotely sensed data in hydrologic models

    NASA Technical Reports Server (NTRS)

    Peck, E. L.; Keefer, T. N.; Johnson, E. R. (principal investigators)

    1981-01-01

    Present and planned remote sensing capabilities were evaluated. The usefulness of six remote sensing capabilities (soil moisture, land cover, impervious area, areal extent of snow cover, areal extent of frozen ground, and water equivalent of the snow cover) with seven hydrologic models (API, CREAMS, NWSRFS, STORM, STANFORD, SSARR, and NWSRFS Snowmelt) were reviewed. The results indicate remote sensing information has only limited value for use with the hydrologic models in their present form. With minor modifications to the models the usefulness would be enhanced. Specific recommendations are made for incorporating snow covered area measurements in the NWSRFS Snowmelt model. Recommendations are also made for incorporating soil moisture measurements in NWSRFS. Suggestions are made for incorporating snow covered area, soil moisture, and others in STORM and SSARR. General characteristics of a hydrologic model needed to make maximum use of remotely sensed data are discussed. Suggested goals for improvements in remote sensing for use in models are also established.

  4. Postexposure Prophylactic Effect of Hepatitis B Virus (HBV)-Active Antiretroviral Therapy against HBV Infection

    PubMed Central

    Watanabe, Tsunamasa; Hamada-Tsutsumi, Susumu; Yokomaku, Yoshiyuki; Imamura, Junji; Sugiura, Wataru

    2014-01-01

    Retrospective study indicates that hepatitis B virus (HBV)-active nucleoside (nucleotide) analogues (NAs) used for antiretroviral therapy reduce the incidence of acute HBV infections in human immunodeficiency virus (HIV)-infected patients. Learning from HIV postexposure prophylaxis (PEP), we explored the possibility of using NAs in PEP following HBV exposure, if preexposure prophylaxis is feasible clinically. Using freshly isolated primary human hepatocytes cultured in vitro, we analyzed the effect of HBV-active tenofovir and lamivudine in primary HBV infection and also the effect of treatment with these NAs after HBV infection. HBV-active NAs applied from 24 h before inoculation could not prevent the secretion of hepatitis B surface antigen into the culture medium, and cessation of the NAs after inoculation allowed the cells to establish an apparent HBV infection. In contrast, hepatitis B immune globulin was able to prevent HBV infection completely. NA treatment before infection, however, can control the spread of HBV infection, as detected by immunohistochemistry. Practically, starting NA treatment within 2 days of primary HBV infection inhibited viral spread effectively, as well as preexposure treatment. We demonstrated that preexposure NA treatment was not able to prevent the acquisition of HBV infection but prevented viral spread by suppressing the production of mature progeny HBV virions. The effect of postexposure treatment within 2 days was similar to the effect of preexposure treatment, suggesting the possibility of HBV PEP using HBV-active NAs in HIV- and HBV-susceptible high-risk groups. PMID:25512419

  5. Distribution of HBV genotypes among HBV carriers in Benin:phylogenetic analysis and virological characteristics of HBV genotype E

    PubMed Central

    Fujiwara, Kei; Tanaka, Yasuhito; Orito, Etsuro; Ohno, Tomoyoshi; Kato, Takanobu; Sugihara, Kanji; Hasegawa, Izumi; Sakurai, Mayumi; Ito, Kiyoaki; Ozasa, Atsushi; Sakamoto, Yuko; Arita, Isao; El-Gohary, Ahmed; Benoit, Agossou; Ogoundele-Akplogan, Sophie I; Yoshihara, Namiko; Ueda, Ryuzo; Mizokami, Masashi

    2005-01-01

    AIM: To determine the distribution of Hepatitis B virus (HBV) genotypes in Benin, and to clarify the virological characteristics of the dominant genotype. METHODS: Among 500 blood donors in Benin, 21 HBsAg-positive donors were enrolled in the study. HBV genotypes were determined by enzyme immunoassay and restriction fragment length polymorphism. Complete genome sequences were determined by PCR and direct sequencing. RESULTS: HBV genotype E (HBV/E) was detected in 20/21 (95.2%), and HBV/A in 1/21 (4.8%). From the age-specific prevalence of HBeAg to anti-HBe seroconversion (SC) in 19 HBV/E subjects, SC was estimated to occur frequently in late teens in HBV/E. The comparison of four complete HBV/E genomes from HBeAg-positive subjects in this study and five HBV/E sequences recruited from the database revealed that HBV/E was distributed throughout West Africa with very low genetic diversity (nucleotide homology 96.7-99.2%). Based on the sequences in the basic core promoter (BCP) to precore region of the nine HBV/E isolates compared to those of the other genotypes, a nucleotide substitution in the BCP, G1757A, was observed in HBV/E. CONCLUSION: HBV/E is predominant in the Republic of Benin, and SC is estimated to occur in late teens in HBV/E. The specific nucleotide substitution G1757A in BCP, which might influence the virological characteristics, is observed in HBV/E. PMID:16425408

  6. Models of atmosphere-ecosystem-hydrology interactions: Approaches and testing

    NASA Technical Reports Server (NTRS)

    Schimel, David S.

    1992-01-01

    Interactions among the atmosphere, terrestrial ecosystems, and the hydrological cycle have been the subject of investigation for many years, although most of the research has had a regional focus. The topic is broad, including the effects of climate and hydrology on vegetation, the effects of vegetation on hydrology, the effects of the hydrological cycle on the atmosphere, and interactions of the cycles via material flux such as solutes and trace gases. The intent of this paper is to identify areas of critical uncertainty, discuss modeling approaches to resolving those problems, and then propose techniques for testing. I consider several interactions specifically to illustrate the range of problems. These areas are as follows: (1) cloud parameterizations and the land surface, (2) soil moisture, and (3) the terrestrial carbon cycle.

  7. Groundwater level simulations using a mesoscale hydrological model SWIM

    NASA Astrophysics Data System (ADS)

    Sipek, Vaclav

    2013-04-01

    Integrated water resources management based on the profound understanding of the hydrological cycle may be a suitable tool for alleviating the upcoming water resource crisis. The application of the physically based distributed hydrological models is a significant tool for studies of hydrological behavior of river basins under the change of natural condition and. The SWIM (Soil and Water Integrated Model) is physically based hydrological models that could be used for impact studies. It is a continuous-time model which works on a daily step and integrates hydrology, vegetation, erosion and nutrients (N-nitrogen and P-phosphorus) at the river basin scale. Its hydrological module is based on the water balance equation, taking into account precipitation, evapotranspiration, percolation, surface runoff and subsurface runoff for the soil column subdivided into several layers. The catchment is spatially subdivided into hydrotops (or hydrologically similar response units) by GIS. The aim of this study was to examine the ability of this type of the model to simulate the course of the groundwater level in the mesoscale catchment in the Czech Republic. The weekly values of the groundwater table height were compared to the simulated ones at several uniformly distributed locations. In one particular site, the results were also discussed in the context of the soil moisture content. It was found that in the warm period of the year the model is able to simulate satisfactorily both the course of groundwater and soil moisture. Nevertheless, in the winter season the rate of percolation is probably underestimated as the simulated groundwater height is lower than observed and at the same time the soil moisture content is overestimated. Acknowledgement: The study was supported by the research grant GA AS CR IAA 300600901

  8. A strategy for diagnosing and interpreting hydrological model nonstationarity

    NASA Astrophysics Data System (ADS)

    Westra, Seth; Thyer, Mark; Leonard, Michael; Kavetski, Dmitri; Lambert, Martin

    2014-06-01

    This paper presents a strategy for diagnosing and interpreting hydrological nonstationarity, aiming to improve hydrological models and their predictive ability under changing hydroclimatic conditions. The strategy consists of four elements: (i) detecting potential systematic errors in the calibration data; (ii) hypothesizing a set of "nonstationary" parameterizations of existing hydrological model structures, where one or more parameters vary in time as functions of selected covariates; (iii) trialing alternative stationary model structures to assess whether parameter nonstationarity can be reduced by modifying the model structure; and (iv) selecting one or more models for prediction. The Scott Creek catchment in South Australia and the lumped hydrological model GR4J are used to illustrate the strategy. Streamflow predictions improve significantly when the GR4J parameter describing the maximum capacity of the production store is allowed to vary in time as a combined function of: (i) an annual sinusoid; (ii) the previous 365 day rainfall and potential evapotranspiration; and (iii) a linear trend. This improvement provides strong evidence of model nonstationarity. Based on a range of hydrologically oriented diagnostics such as flow-duration curves, the GR4J model structure was modified by introducing an additional calibration parameter that controls recession behavior and by making actual evapotranspiration dependent only on catchment storage. Model comparison using an information-theoretic measure (the Akaike Information Criterion) and several hydrologically oriented diagnostics shows that the GR4J modifications clearly improve predictive performance in Scott Creek catchment. Based on a comparison of 22 versions of GR4J with different representations of nonstationarity and other modifications, the model selection approach applied in the exploratory period (used for parameter estimation) correctly identifies models that perform well in a much drier independent confirmatory period.

  9. Flood and inundation evaluation using a GIS based hydrological model

    NASA Astrophysics Data System (ADS)

    Chang, J.; Gong, C.; Wen, J.

    2008-12-01

    In this paper, the SOBEK model was used which combines the function of a one-dimensional channel flow and a two-dimensional overland flow to analyze and present the flood potential of the Hsin-Huwei Creek basin in Taiwan. In the article, the methodology illustrated involved integrating the DTM data and hydrologic data, calibrating both hydrologic and hydraulic models, and producing inundation maps directly usable for planning of flood-prone areas. The GIS was used to perform the tedious and time-consuming tasks of spatial analysis for the 5 m × 5 m resolution DTM data. Using real rainfall data with observed channel stages, the parameters of the model were calibrated. The model was finally used for inundation simulation, and the results were used for inspecting the flood control facilities and drainage systems to reduce flood threats. Keywords Inundation evaluation, GIS, Hydrological model

  10. Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin

    NASA Astrophysics Data System (ADS)

    Tangdamrongsub, Natthachet; Steele-Dunne, Susan; Gunter, Brian C.; Widiastuti, Endang; Weerts, Albrecht; Ditmar, Pavel; Tsompanopoulos, Efstratios

    2014-05-01

    Terrestrial water storage (TWS) can be defined as an integrated measure of surface water, soil moisture, snow water, and groundwater. TWS data is valuable for water resources management and hydrology. The ability to simulate realistic TWS is essential for understanding past hydrological events and predicting future changes of the hydrological cycle. Inadequacies in physics, deficiencies in land characteristics and uncertainties in meteorological data commonly limit the performance of hydrological models in estimating TWS. In this study, we investigated the benefits of assimilating TWS derived from the Gravity Recovery And Climate Experiment (GRACE) into the Wflow HBV-96 model using the Ensemble Kalman Filter (EnKF). Since hydrological model parameters are often uncertain over a large part of the Earth, we investigated the impact of GRACE assimilation in different model scenarios representing different degrees of data availability. Four case studies were considered comparing calibrated and non-calibrated model parameters and local and global forcing data. The chosen study area is the Rhine River basin. Our results were validated using in-situ stream gauge data. In all scenarios, the temporal signatures of the averaged TWS are similar after assimilating GRACE while the spatial distribution is heavily influenced by the model parameters and input data as well as their uncertainties. Assimilation using the EnKF reduced the standard deviation at every updating stage, resulting in lower standard deviations than the model or the observations alone. Discrepancies between the local and global precipitation products had a significant impact on discharge estimates. For instance, when the global forcing data were used, discharge was drastically overestimated when spurious heavy rainfall occurred during the winter. Based on the correlation coefficient, Nash-Sutcliffe coefficient (NS), and root-mean-square error (RMSE) computed between the estimated and measured discharges at 13 gauge stations, we concluded that GRACE assimilation slightly improves the model performance when the model is well calibrated (calibrated parameters with local forcing data). More importantly, the improvement observed for the non-calibrated model (non-calibrated parameters with global forcing data), suggests that the impact of GRACE assimilation may be more significant in data-sparse regions.

  11. Calibration of a Hydrological Model using Ensemble Satellite Rainfall Inputs

    NASA Astrophysics Data System (ADS)

    Skinner, Christopher; Bellerby, Timothy

    2014-05-01

    A combination of satellite rainfall estimates (SRFE) and hydrological models can provide useful information for many remote areas of the planet. However, each component contains its own uncertainties and these uncertainties will interact when SRFE are used as inputs for hydrological models. For any assessment of a coupled system such as this there is a requirement for a comprehensive analysis of all sources of uncertainty, with full consideration of both facets. SRFE have been shown to be useful in many areas that lack the infrastructure to make timely and accurate estimations of rainfall from the ground. Sub-Saharan Africa is typical of this, where a paucity of rain recording radar and sparse gauging networks combine with a highly variable climate and a reliance on rain-fed agriculture. When operating at higher spatial and temporal resolutions, SRFE contain large uncertainties which will propagate through a hydrological model if used as a driving input. This study used a sequential method to produce ensemble SRFE based around the full conditional distribution of recorded rainfall from a sparse, historic raingauge network. The TAMSIM method (introduced by Teo, 2006) was used to produce 200 unique yet equiprobable SRFE, each used as a driver to a downstream hydrological model. Traditional hydrological modelling uses the adjustment of variable parameters within the model to reduce the error between a recorded record of discharge and the modelled one, and many automatic procedures have been produced to refine this calibration process. When SRFE have been used as a driver, little consideration has been paid to this process and often a calibration using the raingauge data has been used, without any consideration to the resulting uncertainty within the hydrological model and its calibration. A similar issue arises when ensemble inputs are used to a hydrological model that has been calibrated using a deterministic estimate of rainfall. This study has shown that such approaches are not suitable for use with ensemble SRFE inputs, and that a calibration approach that incorporates each ensemble input individually and as a whole is required. Finally, the study showed that temporal biases within the SRFE, due to interannual variations of the seasonal rainfall, were directly transferred to the biases in the modelled discharges, yet spatial biases, due to climatic variations across the catchment, where compensated for by the automatic calibration of the hydrological model.

  12. Understanding uncertainty in process-based hydrological models

    NASA Astrophysics Data System (ADS)

    Clark, M. P.; Kavetski, D.; Slater, A. G.; Newman, A. J.; Marks, D. G.; Landry, C.; Lundquist, J. D.; Rupp, D. E.; Nijssen, B.

    2013-12-01

    Building an environmental model requires making a series of decisions regarding the appropriate representation of natural processes. While some of these decisions can already be based on well-established physical understanding, gaps in our current understanding of environmental dynamics, combined with incomplete knowledge of properties and boundary conditions of most environmental systems, make many important modeling decisions far more ambiguous. There is consequently little agreement regarding what a 'correct' model structure is, especially at relatively larger spatial scales such as catchments and beyond. In current practice, faced with such a range of decisions, different modelers will generally make different modeling decisions, often on an ad hoc basis, based on their balancing of process understanding, the data available to evaluate the model, the purpose of the modeling exercise, and their familiarity with or investment in an existing model infrastructure. This presentation describes development and application of multiple-hypothesis models to evaluate process-based hydrologic models. Our numerical model uses robust solutions of the hydrology and thermodynamic governing equations as the structural core, and incorporates multiple options to represent the impact of different modeling decisions, including multiple options for model parameterizations (e.g., below-canopy wind speed, thermal conductivity, storage and transmission of liquid water through soil, etc.), as well as multiple options for model architecture, that is, the coupling and organization of different model components (e.g., representations of sub-grid variability and hydrologic connectivity, coupling with groundwater, etc.). Application of this modeling framework across a collection of different research basins demonstrates that differences among model parameterizations are often overwhelmed by differences among equally-plausible model parameter sets, while differences in model architecture lead to pronounced differences in model simulations at larger spatial scales. Work is ongoing to use this modeling framework to understand differences among existing models, especially, to understand why different hydrologic models have a very different portrayal of the impacts of climate change on water resources.

  13. An integrated modeling environment within the CUAHSI Hydrologic Information System

    NASA Astrophysics Data System (ADS)

    Goodall, J. L.; Castronova, A. M.; Elag, M.; Ercan, M. B.

    2010-12-01

    Modeling complicated hydrologic systems often requires the integration of disparate data and models. The CUAHSI Hydrologic Information System targets the problem of integrating data by using a service-oriented architecture and data exchange standards to make heterogeneous databases appear to an end user as a single data resource. Similar integration problems exist with hydrologic models. If one wishes to analyze a problem that requires logic within multiple models, the challenge becomes how to couple those models so that they are able to exchange data during model runtime. A solution to this problem has been proposed through the Open Modeling Interface (OpenMI) standard for integrating hydrologic models. Building from the OpenMI standard, we have created a modeling environment within the CUAHSI Hydrologic Information System HydroDesktop application for performing integrated modeling. The modeling environment, which we have named HydroModeler, allows for loose coupling of model, analysis, and data components. We provide components for reading and writing data to the HydroDesktop database, as well as a number of example model configurations for demonstration and education purposes. An advantage of adopting the OpenMI standard is that it enables one to include OpenMI compliant models written by other groups within HydroModeler and, likewise, components written specifically for HydroModeler — e.g. the HydroDesktop database writer and reader components - can be used within other OpenMI-compliant modeling environments. Through the process of building HydroModeler we have investigated topics including (1) creating process-level OpenMI components, (2) modeling component configurations with bi-directional links (feedback loops), and (3) the process for re-scaling data exchanges between spatially and temporally misaligned data components “on-the-fly” during model configuration runs. These are general challenges faced by many modeling systems that adopt a loose coupling paradigm, and we will present how such issues can be addressed within HydroModeler using OpenMI. Our future plans are to continue to grow the number of model components within the environment, focusing specifically on decomposing large watershed models into functional components that can then be linked together to simulate hydrologic systems and address specific science or management questions.

  14. A physically-based Distributed Hydrologic Model for Tropical Catchments

    NASA Astrophysics Data System (ADS)

    Abebe, N. A.; Ogden, F. L.

    2010-12-01

    Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.

  15. Performance measures and criteria for hydrologic and water quality models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Performance measures and criteria are essential for model calibration and validation. This presentation will include a summary of one of the papers that will be included in the 2014 Hydrologic and Water Quality Model Calibration & Validation Guidelines Special Collection of the ASABE Transactions. T...

  16. A fully integrated SWAT-MODFLOW hydrologic model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT) and MODFLOW models are being used worldwide for managing surface and groundwater water resources. The SWAT models hydrological processes occurring at the surface including shallow aquifers, while MODFLOW simulate groundwater processes. However, neither SWAT ...

  17. Hydrologic and water quality teminology as applied to modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A survey of literature and examination in particular of terminology use in a previous special collection of modeling calibration and validation papers has been conducted to arrive at a list of consistent terminology recommended for writing about hydrologic and water quality model calibration and val...

  18. The Use of Simulation Models in Teaching Geomorphology and Hydrology.

    ERIC Educational Resources Information Center

    Kirkby, Mike; Naden, Pam

    1988-01-01

    Learning about the physical environment from computer simulation models is discussed in terms of three stages: exploration, experimentation, and calibration. Discusses the effective use of models and presents two computer simulations written in BBC BASIC, STORFLO (for catchment hydrology) and SLOPEK (for hillslope evolution). (Author/GEA)

  19. Modeling of reservoir operation in UNH global hydrological model

    NASA Astrophysics Data System (ADS)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik

    2015-04-01

    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large reservoirs designed for hydropower generation, water supply and flood control. Less reliable results were observed for Africa and dry areas of Asia and America. There are several possible causes of large uncertainties in discharge simulations for these areas including: accuracy of observational data, model underestimation of extensive water use and greater uncertainties of used climatic data in these regions due to sparser observational network. In general the applied approach for streamflow routing through reservoirs and large natural lakes has significantly improved simulated discharge estimates.

  20. Brokering as a framework for hydrological model repeatability

    NASA Astrophysics Data System (ADS)

    Fuka, Daniel; Collick, Amy; MacAlister, Charlotte; Braeckel, Aaron; Wright, Dawn; Jodha Khalsa, Siri; Boldrini, Enrico; Easton, Zachary

    2015-04-01

    Data brokering aims to provide those in the the sciences with quick and repeatable access to data that represents physical, biological, and chemical characteristics; specifically to accelerate scientific discovery. Environmental models are useful tools to understand the behavior of hydrological systems. Unfortunately, parameterization of these hydrological models requires many different data, from different sources, and from different disciplines (e.g., atmospheric, geoscience, ecology). In basin scale hydrological modeling, the traditional procedure for model initialization starts with obtaining elevation models, land-use characterizations, soils maps, and weather data. It is often the researcher's past experience with these datasets that determines which datasets will be used in a study, and often newer, or more suitable data products will exist. An added complexity is that various science communities have differing data formats, storage protocols, and manipulation methods, which makes use by a non native user exceedingly difficult and time consuming. We demonstrate data brokering as a means to address several of these challenges. We present two test case scenarios in which researchers attempt to reproduce hydrological model results using 1) general internet based data gathering techniques, and 2) a scientific data brokering interface. We show that data brokering can increase the efficiency with which data are obtained, models are initialized, and results are analyzed. As an added benefit, it appears brokering can significantly increase the repeatability of a given study.

  1. Integrating Geophysics, Geology, and Hydrology for Enhanced Hydrogeological Modeling

    NASA Astrophysics Data System (ADS)

    Auken, E.

    2012-12-01

    Geophysical measurements are important for providing information on the geological structure to hydrological models. Regional scale surveys, where several watersheds are mapped at the same time using helicopter borne transient electromagnetic, results in a geophysical model with a very high lateral and vertical resolution of the geological layers. However, there is a bottleneck when it comes to integrating the information from the geophysical models into the hydrological model. This transformation is difficult, because there is not a simple relationship between the hydraulic conductivity needed for the hydrological model and the electrical conductivity measured by the geophysics. In 2012 the Danish Council for Strategic Research has funded a large research project focusing on the problem of integrating geophysical models into hydrological models. The project involves a number of Danish research institutions, consulting companies, a water supply company, as well as foreign partners, USGS (USA), TNO (Holland) and CSIRO (Australia). In the project we will: 1. Use statistical methods to describe the spatial correlation between the geophysical and the lithological/hydrological data; 2. Develop semi-automatic or automatic methods for transforming spatially sampled geophysical data into geological- and/or groundwater-model parameter fields; 3. Develop an inversion method for large-scale geophysical surveys in which the model space is concordant with the hydrological model space 4. Demonstrate the benefits of spatially distributed geophysical data for informing and updating groundwater models and increasing the predictive power of management scenarios. 5. Develop a new receiver system for Magnetic Resonance Sounding data and further enhance the resolution capability of data from the SkyTEM system. 6. In test areas in Denmark, Holland, USA and Australia we will use data from existing airborne geophysical data, hydrological and geological data and also collect new airborne data, MRS surface and downhole data, and pump test data. The project is still in a startup phase but we already have results from two existing algorithms. The first one is an algorithm making a full joint inversion of Magnetic Resonance Sounding (MRS) data, Transient Electromagnetic Data (TEM) and pump test data. The second one is an algorithm using geostatistic and linear inverse theory to link boreholes categorized into clay and sand sequences together with electrical resistivities measured in spatially distributed soundings resulting in 3D models of clay and sand. We will present the HyGEM project and show results from the first two algorithms developed in the project.

  2. Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts

    NASA Astrophysics Data System (ADS)

    Kavetski, Dmitri; Kuczera, George; Franks, Stewart W.

    2006-03-01

    Conceptual hydrological modelling has traditionally been plagued by calibration difficulties due to the roughness and complex shape of objective functions. These problems led to the abandonment of powerful classical analysis methods (Newton-type optimisation, derivative-based uncertainty analysis) and have motivated extensive research into nonsmooth optimisation and even new parameter estimation philosophies (e.g. GLUE). This paper shows that some of these complexities are not inherent features of hydrological models, but are numerical artefacts due to model thresholds and poorly selected time stepping schemes. We present a numerically robust methodology for implementing conceptual models, including rainfall-runoff and snow models, that ensures micro-scale smoothness of objective functions and guarantees macro-scale model stability. The methodology employs robust and unconditionally stable time integration of the models, complemented by careful threshold smoothing. A case study demonstrates the benefits of these techniques.

  3. High resolution distributed hydrological modeling for river flood forecasting

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2014-12-01

    High resolution distributed hydrological model can finely describe the river basin hydrological processes, thus having the potential to improve the flood forecasting capabilities, and is regarded as the next generation flood forecast model. But there are great challenges in deploying it in real-time river flood forecasting, such as the awesome computation resources requirement, parameter determination, high resolution precipitation assimilation and uncertainty controls. Liuxihe Model is a physically-based distributed hydrological model proposed mainly for catchment flood forecasting, which is a process-based hydrological model. In this study, based on Liuxihe Model, a parallel computation algorithm for Liuxihe model flood forecasting is proposed, and a cloudy computation system is developed on a high performance computer, this largely improves the applicability of Liuxihe Model in large river. Without the parallel computation, the Liuxihe Model is computationally incapable in application to rivers with drainage area bigger than 10,000km2 at the grid size of 100m. With the parallel computation, the Liuxihe Model is used in a river with a drainage area of 60,000km2, and could be expended indefinitely. Based on this achievement, a model parameter calibration method by using Particle Swale Optimization is proposed and tested in several rivers in southern China with drainage areas ranging from several hundreds to tens thousands km2, and with the model parameter optimization, the model performance has been approved largely. The modeling approach is also tested for coupling radar-based precipitation estimation/prediction for small catchment flash forecasting and for coupling quantitative precipitation estimation/prediction from meteorological model for large river flood forecasting.

  4. Legacy model integration for enhancing hydrologic interdisciplinary research

    NASA Astrophysics Data System (ADS)

    Dozier, A.; Arabi, M.; David, O.

    2013-12-01

    Many challenges are introduced to interdisciplinary research in and around the hydrologic science community due to advances in computing technology and modeling capabilities in different programming languages, across different platforms and frameworks by researchers in a variety of fields with a variety of experience in computer programming. Many new hydrologic models as well as optimization, parameter estimation, and uncertainty characterization techniques are developed in scripting languages such as Matlab, R, Python, or in newer languages such as Java and the .Net languages, whereas many legacy models have been written in FORTRAN and C, which complicates inter-model communication for two-way feedbacks. However, most hydrologic researchers and industry personnel have little knowledge of the computing technologies that are available to address the model integration process. Therefore, the goal of this study is to address these new challenges by utilizing a novel approach based on a publish-subscribe-type system to enhance modeling capabilities of legacy socio-economic, hydrologic, and ecologic software. Enhancements include massive parallelization of executions and access to legacy model variables at any point during the simulation process by another program without having to compile all the models together into an inseparable 'super-model'. Thus, this study provides two-way feedback mechanisms between multiple different process models that can be written in various programming languages and can run on different machines and operating systems. Additionally, a level of abstraction is given to the model integration process that allows researchers and other technical personnel to perform more detailed and interactive modeling, visualization, optimization, calibration, and uncertainty analysis without requiring deep understanding of inter-process communication. To be compatible, a program must be written in a programming language with bindings to a common implementation of the message passing interface (MPI), which includes FORTRAN, C, Java, the .NET languages, Python, R, Matlab, and many others. The system is tested on a longstanding legacy hydrologic model, the Soil and Water Assessment Tool (SWAT), to observe and enhance speed-up capabilities for various optimization, parameter estimation, and model uncertainty characterization techniques, which is particularly important for computationally intensive hydrologic simulations. Initial results indicate that the legacy extension system significantly decreases developer time, computation time, and the cost of purchasing commercial parallel processing licenses, while enhancing interdisciplinary research by providing detailed two-way feedback mechanisms between various process models with minimal changes to legacy code.

  5. Flexible hydrological modeling - Disaggregation from lumped catchment scale to higher spatial resolutions

    NASA Astrophysics Data System (ADS)

    Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas

    2015-04-01

    Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional validation on spatial results was done for the groundwater head values at observation wells. To ensure that the lumped model can produce results as accurate as the spatially distributed models or close regardless to the number of parameters and implemented physical processes, it was checked whether the structure of the lumped models had to be adjusted. The concept has been implemented in a PCRaster - Python platform and tested for two Belgian case studies (catchments of the rivers Dijle and Grote Nete). So far, use is made of existing model structures (NAM, PDM, VHM and HBV). Acknowledgement: These results were obtained within the scope of research activities for the Flemish Environment Agency (VMM) - division Operational Water Management on "Next Generation hydrological modeling", in cooperation with IMDC consultants, and for Flanders Hydraulics Research (Waterbouwkundig Laboratorium) on "Effect of climate change on the hydrological regime of navigable watercourses in Belgium".

  6. Sharing hydrological knowledge: an international comparison of hydrological models in the Meuse River Basin

    NASA Astrophysics Data System (ADS)

    Bouaziz, Laurène; Sperna Weiland, Frederiek; Drogue, Gilles; Brauer, Claudia; Weerts, Albrecht

    2015-04-01

    International collaboration between institutes and universities working and studying the same transboundary basin is needed for consensus building around possible effects of climate change and climate adaptation measures. Education, experience and expert knowledge of the hydrological community have resulted in the development of a great variety of model concepts, calibration and analysis techniques. Intercomparison could be a first step into consensus modeling or an ensemble based modeling strategy. Besides these practical objectives, such an intercomparison offers the opportunity to explore different ranges of models and learn from each other, hopefully increasing the insight into the hydrological processes that play a role in the transboundary basin. In this experiment, different international research groups applied their rainfall-runoff model in the Ourthe, a Belgium sub-catchment of the Meuse. Data preparation involved the interpolation of hourly precipitation station data collected and owned by the Service Public de Wallonie1 and the freely available E-OBS dataset for daily temperature (Haylock et al., 2008). Daily temperature was disaggregated to hourly values and potential evaporation was derived with the Hargreaves formula. The data was made available to the researchers through an FTP server. The protocol for the modeling involved a split-sample calibration and validation for pre-defined periods. Objective functions for calibration were fixed but the calibration algorithm was a free choice of the research groups. The selection of calibration algorithm was considered model dependent because lumped as well as computationally less efficient distributed models were used. For each model, an ensemble of best performing parameter sets was selected and several performance metrics enabled to assess the models' abilities to simulate discharge. The aim of this experiment is to identify those model components and structures that increase model performance and may best represent the catchment's hydrological behavior. Further steps in the collaboration may include (1) repeating the experiment for other sub-catchments of the Meuse River Basin where different hydrological processes may be relevant and where other models may perform better; and (2) the comparison of hydrological model results obtained by forcing the model with daily local measured precipitation and lower resolution gridded precipitation from the E-OBS (Haylock et at., 2008) dataset to estimate the value of high-resolution data versus lower resolution gridded products. 1 Service Publique de Wallonie, Direction générale opérationnelle de la Mobilité et des Voies hydrauliques, Département des Etudes et de l'Appui à la Gestion, Direction de la Gestion hydrologique intégrée, Boulevard du Nord 8 - 5000 Namur "Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119, doi:10.1029/2008JD10201"

  7. Hydrologic and water quality modeling: spatial and temporal considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic and water quality models are used to help manage water resources by investigating the effects of climate, land use, land management, and water management on water resources. Each water-related issue is better investigated at a specific scale, which can vary spatially from point to watersh...

  8. Rangeland Hydrology and Erosion Model (RHEM) for ESD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-Natural Resources Conservation Service (NRCS) is currently engaged in updating and writing new ecological Site Descriptions (ESD’s). New and updated information about physiographic, soil, climate, and water features; plant communities—including “state and transition models”; and hydrology ...

  9. Hydrological modeling using a multi-site stochastic weather generator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weather data is usually required at several locations over a large watershed, especially when using distributed models for hydrological simulations. In many applications, spatially correlated weather data can be provided by a multi-site stochastic weather generator which considers the spatial correl...

  10. Modeling the Hydrologic Processes of a Permeable Pavement System

    EPA Science Inventory

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  11. Test plan for hydrologic modeling of protective barriers

    SciTech Connect

    Fayer, M.J.

    1990-03-01

    Pacific Northwest Laboratory prepared this test plan for the Model Applications and Validation Task of the Hanford Protective Barriers Program, which is managed by Westinghouse Hanford Company. The objectives of this plan are to outline the conceptual hydrologic model of protective barriers, discuss the available computer codes, describe the interrelationships between the modeling task and the other tasks of the Protective Barriers Program, present the barrier modeling tests, and estimate the schedule and costs of the hydrologic modeling task for planning purposes by the Protective Barriers Program. The purpose of the tests is to validate models that will be used to confirm the long-term performance of the barrier in minimizing drainage. A second purpose of the tests is to provide information to other parts of the Protective Barriers Program that require such information. 26 refs., 2 figs., 3 tabs.

  12. Geographically Isolated Wetlands and Catchment Hydrology: A Modified Model Analyses

    NASA Astrophysics Data System (ADS)

    Evenson, G.; Golden, H. E.; Lane, C.; D'Amico, E.

    2014-12-01

    Geographically isolated wetlands (GIWs), typically defined as depressional wetlands surrounded by uplands, support an array of hydrological and ecological processes. However, key research questions concerning the hydrological connectivity of GIWs and their impacts on downgradient surface waters remain unanswered. This is particularly important for regulation and management of these systems. For example, in the past decade United States Supreme Court decisions suggest that GIWs can be afforded protection if significant connectivity exists between these waters and traditional navigable waters. Here we developed a simulation procedure to quantify the effects of various spatial distributions of GIWs across the landscape on the downgradient hydrograph using a refined version of the Soil and Water Assessment Tool (SWAT), a catchment-scale hydrological simulation model. We modified the SWAT FORTRAN source code and employed an alternative hydrologic response unit (HRU) definition to facilitate an improved representation of GIW hydrologic processes and connectivity relationships to other surface waters, and to quantify their downgradient hydrological effects. We applied the modified SWAT model to an ~ 202 km2 catchment in the Coastal Plain of North Carolina, USA, exhibiting a substantial population of mapped GIWs. Results from our series of GIW distribution scenarios suggest that: (1) Our representation of GIWs within SWAT conforms to field-based characterizations of regional GIWs in most respects; (2) GIWs exhibit substantial seasonally-dependent effects upon downgradient base flow; (3) GIWs mitigate peak flows, particularly following high rainfall events; and (4) The presence of GIWs on the landscape impacts the catchment water balance (e.g., by increasing groundwater outflows). Our outcomes support the hypothesis that GIWs have an important catchment-scale effect on downgradient streamflow.

  13. JAMS - a software platform for modular hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kralisch, Sven; Fischer, Christian

    2015-04-01

    Current challenges of understanding and assessing the impacts of climate and land use changes on environmental systems demand for an ever-increasing integration of data and process knowledge in corresponding simulation models. Software frameworks that allow for a seamless creation of integrated models based on less complex components (domain models, process simulation routines) have therefore gained increasing attention during the last decade. JAMS is an Open-Source software framework that has been especially designed to cope with the challenges of eco-hydrological modelling. This is reflected by (i) its flexible approach for representing time and space, (ii) a strong separation of process simulation components from the declarative description of more complex models using domain specific XML, (iii) powerful analysis and visualization functions for spatial and temporal input and output data, and (iv) parameter optimization and uncertainty analysis functions commonly used in environmental modelling. Based on JAMS, different hydrological and nutrient-transport simulation models were implemented and successfully applied during the last years. We will present the JAMS core concepts and give an overview of models, simulation components and support tools available for that framework. Sample applications will be used to underline the advantages of component-based model designs and to show how JAMS can be used to address the challenges of integrated hydrological modelling.

  14. Spatial transferability of landscape-based hydrological models

    NASA Astrophysics Data System (ADS)

    Gao, Hongkai; Hrachowitz, Markus; Fenicia, Fabrizio; Gharari, Shervan; Sriwongsitanon, Nutchanart; Savenije, Hubert

    2015-04-01

    Landscapes, mainly distinguished by land surface topography and vegetation cover, are crucial in defining runoff generation mechanisms, interception capacity and transpiration processes. Landscapes information provides modelers with a way to take into account catchment heterogeneity, while simultaneously keeping model complexity low. A landscape-based hydrological modelling framework (FLEX-Topo), with parallel model structures, was developed and tested in various catchments with diverse climate, topography and land cover conditions. Landscape classification is the basic and most crucial procedure to create a tailor-made model for a certain catchment, as it explicitly relates hydrologic similarity to landscape similarity, which is the base of this type of models. Therefore, the study catchment is classified into different landscapes units that fulfil similar hydrological function, based on classification criteria such as the height above the nearest drainage, slope, aspect and land cover. At present, to suggested model includes four distinguishable landscapes: hillslopes, terraces/plateaus, riparian areas, and glacierized areas. Different parallel model structures are then associated with the different landscape units to describe their different dominant runoff generation mechanisms. These hydrological units are parallel and only connected by groundwater reservoir. The transferability of this landscape-based model can then be compared with the transferability of a lumped model. In this study, FLEX-Topo was developed and tested in three study sites: two cold-arid catchments in China (the upper Heihe River and the Urumqi Glacier No1 catchment), and one tropical catchment in Thailand (the upper Ping River). Stringent model tests indicate that FLEX-Topo, allowing for more process heterogeneity than lumped model formulations, exhibits higher capabilities to be spatially transferred. Furthermore, the simulated water balances, including internal fluxes, hydrograph components, interception and transpiration from different landscapes, fit well with our existing knowledge obtained from experimental hydrologists.

  15. Identification of possible structural error in hydrological models

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Bárdossy, A.; McMillan, H.

    2012-04-01

    Hydrological Models are simplifications and theoretical approximations of complex natural phenomena. Hence, they cannot predict perfectly what happen in natural systems. There are several reasons; some of the main reasons are error in the input data, imperfect model structure, insufficient information for parameter identification etc. The identification of structural error in a complex model is very difficult task. This is especially difficult as the final differences between observation and model results are a combined consequence of the above reasons. In this study we aimed to develop a tool to identify possible model structural error in hydrological model by using the concept of the data depth function. The model was calibrated using the ROPE (Bárdossy and Singh 2008) algorithm and the optimal parameter space was obtained. From N optimal parameter sets N discharge series were obtained and boundary of the convex hull from d-dimensional dataset corresponding N discharge series (DB) is taken for further analysis. A d-dimensional dataset corresponding to the observed discharge (DX) is taken and depth of the each elements of observed discharge is calculated with respect to the boundary of the convex hull from N model discharge series. If there are elements in DX whose depths are zero with respect to the convex hull (DB), then those corresponding to d-days trajectories of the observation for which there is no similarity in any of the model parameterization. These elements can give possible indication for model structure errors. The methodology was demonstrated on two models HYMOD and TopNet in Pelorous catchment of New Zealand. Bárdossy, A. and S. K. Singh (2008). "Robust estimation of hydrological model parameters." Hydrology and Earth System Sciences 12: 1273-1283.

  16. eWaterCycle: A global operational hydrological forecasting model

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and hydrodynamic models. The hydrological model will run operationally for the whole globe. Once special situations are predicted, such as floods, navigation hindrances, or water shortages, a detailed local hydraulic model will start to predict the exact local consequences. In Vienna, we will show for the first time the operational global eWaterCycle model, including high resolution forecasts, our new data assimilation technique, and coupled hydrological/hydraulic models.

  17. Development of A 2-D Large Basin Operational Hydrologic Model Chansheng He

    E-print Network

    Development of A 2-D Large Basin Operational Hydrologic Model Chansheng He Department of Geography This paper reviews recent developments in hydrologic modeling, and through development of a 2-D large basin runoff model (2-D LBRM), discusses five essential components in the development of operational hydrologic

  18. The application of remote sensing to the development and formulation of hydrologic planning models

    NASA Technical Reports Server (NTRS)

    Fowler, T. R.; Castruccio, P. A.; Loats, H. L., Jr.

    1977-01-01

    The development of a remote sensing model and its efficiency in determining parameters of hydrologic models are reviewed. Procedures for extracting hydrologic data from LANDSAT imagery, and the visual analysis of composite imagery are presented. A hydrologic planning model is developed and applied to determine seasonal variations in watershed conditions. The transfer of this technology to a user community and contract arrangements are discussed.

  19. Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models

    E-print Network

    Dozier, Jeff

    Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models-index Hydrologic model a b s t r a c t Two commonly used strategies in modeling snowmelt are the energy balance and temperature-index methods. Here we evaluate the distributed hydrologic impacts of these two different snowmelt

  20. A New Wavelet Based Approach to Assess Hydrological Models

    NASA Astrophysics Data System (ADS)

    Adamowski, J. F.; Rathinasamy, M.; Khosa, R.; Nalley, D.

    2014-12-01

    In this study, a new wavelet based multi-scale performance measure (Multiscale Nash Sutcliffe Criteria, and Multiscale Normalized Root Mean Square Error) for hydrological model comparison was developed and tested. The new measure provides a quantitative measure of model performance across different timescales. Model and observed time series are decomposed using the a trous wavelet transform, and performance measures of the model are obtained at each time scale. The usefulness of the new measure was tested using real as well as synthetic case studies. The real case studies included simulation results from the Soil Water Assessment Tool (SWAT), as well as statistical models (the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods). Data from India and Canada were used. The synthetic case studies included different kinds of errors (e.g., timing error, as well as under and over prediction of high and low flows) in outputs from a hydrologic model. It was found that the proposed wavelet based performance measures (i.e., MNSC and MNRMSE) are a more reliable measure than traditional performance measures such as the Nash Sutcliffe Criteria, Root Mean Square Error, and Normalized Root Mean Square Error. It was shown that the new measure can be used to compare different hydrological models, as well as help in model calibration.

  1. On the Usefulness of Hydrologic Landscapes on Hydrologic Model calibration and Selection

    EPA Science Inventory

    Hydrologic Landscapes (HLs) are units that can be used in aggregate to describe the watershed-scale hydrologic response of an area through use of physical and climatic properties. The HL assessment unit is a useful classification tool to relate and transfer hydrologically meaning...

  2. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    PubMed Central

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited PMID:26640746

  3. Mid-Holocene Hydrologic Model of the Shingobee Watershed, Minnesota

    NASA Astrophysics Data System (ADS)

    Filby, Sheryl K.; Locke, Sharon M.; Person, Mark A.; Winter, Thomas C.; Rosenberry, Donald O.; Nieber, John L.; Gutowski, William J.; Ito, Emi

    2002-11-01

    A hydrologic model of the Shingobee Watershed in north-central Minnesota was developed to reconstruct mid-Holocene paleo-lake levels for Williams Lake, a surface-water body located in the southern portion of the watershed. Hydrologic parameters for the model were first estimated in a calibration exercise using a 9-yr historical record (1990-1998) of climatic and hydrologic stresses. The model reproduced observed temporal and spatial trends in surface/groundwater levels across the watershed. Mid-Holocene aquifer and lake levels were then reconstructed using two paleoclimatic data sets: CCM1 atmospheric general circulation model output and pollen-transfer functions using sediment core data from Williams Lake. Calculated paleo-lake levels based on pollen-derived paleoclimatic reconstructions indicated a 3.5-m drop in simulated lake levels and were in good agreement with the position of mid-Holocene beach sands observed in a Williams Lake sediment core transect. However, calculated paleolake levels based on CCM1 climate forcing produced only a 0.05-m drop in lake levels. We found that decreases in winter precipitation rather than temperature increases had the largest effect on simulated mid-Holocene lake levels. The study illustrates how watershed models can be used to critically evaluate paleoclimatic reconstructions by integrating geologic, climatic, limnologic, and hydrogeologic data sets.

  4. eWaterCycle: A high resolution global hydrological model

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global hydrological model are presented.

  5. A NEW APPROACH TO HYDROLOGIC MODELING: DERIVED DISTRIBUTIONS REVISITED. (R824780)

    EPA Science Inventory

    A fractal geometric procedure to model hydrologic (geophysical) phenomena is introduced. The method consists of using derived distributions, obtained by transforming arbitrary multinomial multifractal measures via fractal interpolating functions, to represent observed hydrologic ...

  6. Hydrologic modeling to screen potential environmental management methods for malaria vector control in Niger

    E-print Network

    Gianotti, Rebecca Louise

    This paper describes the first use of Hydrology-Entomology and Malaria Transmission Simulator (HYDREMATS), a physically based distributed hydrology model, to investigate environmental management methods for malaria vector ...

  7. Development of a landscape unit delineation framework for ecoy-hydrologic models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A spatially distributed representation of basin hydrology and transport processes in eco-hydrological models facilitates the identification of critical source areas and the placement of management and conservation measures. Especially floodplains are critical landscape features that differ from nei...

  8. Validity of First-Order Approximations to Describe Parameter Uncertainty in Soil Hydrologic Models

    E-print Network

    Vrugt, Jasper A.

    hydrologic models. In this study, the posterior distribution of parameters in soil water retention- water hydrology; Kool and Parker [1988] in unsaturated soil water flow; Kuczera and Parent [1988Validity of First-Order Approximations to Describe Parameter Uncertainty in Soil Hydrologic Models

  9. Drought Analysis for River Basins, Using the Hydrological Model SIMGRO

    NASA Astrophysics Data System (ADS)

    Querner, E.; van Lanen, H.; Rhebergen, W.

    2009-05-01

    Drought is a recurring and worldwide phenomenon, with spatial and temporal characteristics that vary significantly from one region to another. Drought has major impacts on society and affects among others the environment and the economy. Impacts are likely to increase with time as societies demands higher services for water and the environment. This will even be more pronounced in the coming decades with the projected climate change, i.e. droughts are becoming more severe in large parts of the world. The prediction of droughts is an essential part of impact assessment for current and future conditions, as part of integrated land and water management. An important question is how changes in meteorological drought will propagate into hydrological droughts in terms of changes in the groundwater system or in the river flow. The objective of our study is to develop and test tools that quantify the space-time development of droughts in a river basin. The spatial aspect of a hydrological drought (spatially-distributed recharge and groundwater heads), in a river basin brings different challenges with respect to describing the characteristics of a drought, such as: onset, duration, severity and extend. We used the regional hydrological model SIMGRO as a basis to generate the necessary data for the drought analysis. SIMGRO is a distributed physically-based model that simulates regional transient saturated groundwater flow, unsaturated flow, actual evapotranspiration, sprinkler irrigation, stream flow, groundwater and surface water levels as a response to rainfall, reference evapotranspiration, and groundwater abstraction. The model is used within the GIS environment Arc-View, which enables the use of digital data, such as soil map, land use, watercourses, as input data for the model. It is also a tool for analysis, because interactively data and results can be presented, as will be shown. Droughts in different hydrological variables (recharge, groundwater heads, river flow) are identified by applying the fixed threshold concept to spatially-distributed simulated time series. The method captures the development of both the duration and the severity for the area in a drought. For the analysis we applied the model to the Taquari river basin (about 106.000 km2), which is situated in the Pantanal region, the upper part of the Paraguay River Basin, Brazil. The question we will address is: how does a hydrological drought develop and what are the spatial characteristics and what are the underlying mechanisms. Examples of the analysis will be shown that aim at a better understanding of the process involved which are essential; to assess the vulnerability of river basins for hydrological droughts.

  10. Selection of Hydrological Model for Waterborne Release

    SciTech Connect

    Blanchard, A.

    1999-02-03

    The purpose of this report is to evaluate the two available models and determine the appropriate model for use in following waterborne release analyses. Additionally, this report will document the DB and BDB accidents to be used in the future study.

  11. Selection of Hydrological Model for Waterborne Release

    SciTech Connect

    Blanchard, A.

    1999-04-21

    This evaluation will aid in determining the potential impacts of liquid releases to downstream populations on the Savannah River. The purpose of this report is to evaluate the two available models and determine the appropriate model for use in following waterborne release analyses. Additionally, this report will document the Design Basis and Beyond Design Basis accidents to be used in the future study.

  12. RECURSIVE PARAMETER ESTIMATION OF HYDROLOGIC MODELS

    EPA Science Inventory

    Proposed is a nonlinear filtering approach to recursive parameter estimation of conceptual watershed response models in state-space form. he conceptual model state is augmented by the vector of free parameters which are to be estimated from input-output data, and the extended Kal...

  13. Toward a Systematic Framework for Model Evaluation in Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Vrugt, J. A.

    2009-04-01

    In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for model evaluation and uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. Here, I compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) sampling with Generalized Likelihood Uncertainty Estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.

  14. Distributed Hydrologic Modeling Apps for Decision Support in the Cloud

    NASA Astrophysics Data System (ADS)

    Swain, N. R.; Latu, K.; Christiensen, S.; Jones, N.; Nelson, J.

    2013-12-01

    Advances in computation resources and greater availability of water resources data represent an untapped resource for addressing hydrologic uncertainties in water resources decision-making. The current practice of water authorities relies on empirical, lumped hydrologic models to estimate watershed response. These models are not capable of taking advantage of many of the spatial datasets that are now available. Physically-based, distributed hydrologic models are capable of using these data resources and providing better predictions through stochastic analysis. However, there exists a digital divide that discourages many science-minded decision makers from using distributed models. This divide can be spanned using a combination of existing web technologies. The purpose of this presentation is to present a cloud-based environment that will offer hydrologic modeling tools or 'apps' for decision support and the web technologies that have been selected to aid in its implementation. Compared to the more commonly used lumped-parameter models, distributed models, while being more intuitive, are still data intensive, computationally expensive, and difficult to modify for scenario exploration. However, web technologies such as web GIS, web services, and cloud computing have made the data more accessible, provided an inexpensive means of high-performance computing, and created an environment for developing user-friendly apps for distributed modeling. Since many water authorities are primarily interested in the scenario exploration exercises with hydrologic models, we are creating a toolkit that facilitates the development of a series of apps for manipulating existing distributed models. There are a number of hurdles that cloud-based hydrologic modeling developers face. One of these is how to work with the geospatial data inherent with this class of models in a web environment. Supporting geospatial data in a website is beyond the capabilities of standard web frameworks and it requires the use of additional software. In particular, there are at least three elements that are needed: a geospatially enabled database, a map server, and geoprocessing toolbox. We recommend a software stack for geospatial web application development comprising: MapServer, PostGIS, and 52 North with Python as the scripting language to tie them together. Another hurdle that must be cleared is managing the cloud-computing load. We are using HTCondor as a solution to this end. Finally, we are creating a scripting environment wherein developers will be able to create apps that use existing hydrologic models in our system with minimal effort. This capability will be accomplished by creating a plugin for a Python content management system called CKAN. We are currently developing cyberinfrastructure that utilizes this stack and greatly lowers the investment required to deploy cloud-based modeling apps. This material is based upon work supported by the National Science Foundation under Grant No. 1135482

  15. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10 to 20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50 to 80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority while both wetland conservation and restoration may be equally important. Moreover, although SWAT was used in this study, the HEW concept is generic and can also be applied with any other hydrologic models.

  16. Coupled Dynamic Modeling to Assess Human Impact on Watershed Hydrology

    NASA Astrophysics Data System (ADS)

    Mohammed, I. N.; Tsai, Y.; Turnbull, S.; Bomblies, A.; Zia, A.

    2014-12-01

    Humans are intrinsic to the hydrologic system, both as agents of change and as beneficiaries of ecosystem services. This connection has been underappreciated in hydrology. We present a modeling linkage framework of an agent-based land use change model with a physical-based watershed model. The coupled model framework presented constitutes part of an integrated assessment model that is being developed to study human-ecosystem interaction in Missisquoi Bay, spanning Vermont and Québec, which is experiencing high concentrations of nutrients from the Missisquoi River watershed. The integrated assessment approach proposed is comprised of linking two simulation models: the Interactive Land-Use Transition Agent-Based Model (ILUTABM) and a physically based process model, the Regional Hydro-Ecological Simulation System (RHESSys). The ILUTABM treats both landscape and landowners as agents and simulates annual land-use patterns resulting from landowners annual land-use decisions and Best Management Practices (BMPs) adaptations to landowners utilities, land productivity and perceived impacts of floods. The Missisquoi River at Swanton watershed RHESSys model (drainage area of 2,200 km2) driven by climate data was first calibrated to daily streamflows and water quality sensor data at the watershed outlet. Simulated land-use patterns were then processed to drive the calibrated RHESSys model to obtain streamflow nutrient loading realizations. Nutrients loading realizations are then examined and routed back to the ILUTAB model to obtain public polices needed to manage the Missisquoi watershed as well as the Lake Champlain in general. We infer that the applicability of this approach can be generalized to other similar watersheds. Index Terms: 0402: Agricultural systems; 1800: Hydrology; 1803: Anthropogenic effects; 1834 Human impacts; 6344: System operation and management; 6334: Regional Planning

  17. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    SciTech Connect

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects of local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects at large spatial scales as to generalize the directionality of hydrologic responses.

  18. Validation of Hydrological Models Using Stable Isotope Tracers.

    NASA Astrophysics Data System (ADS)

    Stadnyk, T. A.; Kouwen, N.; Edwards, T.

    2004-05-01

    The delineation of source areas for groundwater recharge is the first step in protecting groundwater resources as a source of water for human consumption and ecological preservation. To accomplish this task, a thorough understanding of water pathways from precipitation to streamflow is required. The rainfall-runoff process can be modelled using hydrological models, in which conservative tracers can be incorporated and used to disaggregate streamflow into its various origins and pathways. The measurement of naturally occurring isotopes in streamflow can then provide a relatively simplistic and inexpensive validation tool by verifying that flow paths and residence times are being correctly modelled. The objective of this research is to validate flowpaths in hydrological models by comparing modelled conservative tracers to measured isotopic data, where it is available. A tracer module has been integrated with the WATFLOOD model; a fully distributed, physically based, meso-scale hydrologic model for watersheds having response times larger than one hour. Conservative tracers are used to track water through the model by quantifying and segregating the various contributions to the total streamflow. Groundwater flow separation is accomplished using simplified storage routing of groundwater through the subsurface and into the stream. A specified concentration of tracer is added to the groundwater at its origin and upon reaching the stream; a mass balance is performed to determine the concentration of tracer in the stream, allowing for a separation of groundwater from streamflow. Other flow tracers have also been modelled, including ones for surface water, interflow, flows from different landcovers, and flows from different sub-basins. Validation of the WATFLOOD models flowpaths will be made using the flow separation tracers and measured isotope data from the lower Liard River Basin near Fort Simpson, Northwest Territories. Examples of flow separations using additional tracers will be presented for the Grand River watershed, where isotope data is not yet available for validation purposes, but other baseflow separation techniques have been applied and can be used for comparison.

  19. Calibration and validation of DRAINMOD to model bioretention hydrology

    NASA Astrophysics Data System (ADS)

    Brown, R. A.; Skaggs, R. W.; Hunt, W. F.

    2013-04-01

    SummaryPrevious field studies have shown that the hydrologic performance of bioretention cells varies greatly because of factors such as underlying soil type, physiographic region, drainage configuration, surface storage volume, drainage area to bioretention surface area ratio, and media depth. To more accurately describe bioretention hydrologic response, a long-term hydrologic model that generates a water balance is needed. Some current bioretention models lack the ability to perform long-term simulations and others have never been calibrated from field monitored bioretention cells with underdrains. All peer-reviewed models lack the ability to simultaneously perform both of the following functions: (1) model an internal water storage (IWS) zone drainage configuration and (2) account for soil-water content using the soil-water characteristic curve. DRAINMOD, a widely-accepted agricultural drainage model, was used to simulate the hydrologic response of runoff entering a bioretention cell. The concepts of water movement in bioretention cells are very similar to those of agricultural fields with drainage pipes, so many bioretention design specifications corresponded directly to DRAINMOD inputs. Detailed hydrologic measurements were collected from two bioretention field sites in Nashville and Rocky Mount, North Carolina, to calibrate and test the model. Each field site had two sets of bioretention cells with varying media depths, media types, drainage configurations, underlying soil types, and surface storage volumes. After 12 months, one of these characteristics was altered - surface storage volume at Nashville and IWS zone depth at Rocky Mount. At Nashville, during the second year (post-repair period), the Nash-Sutcliffe coefficients for drainage and exfiltration/evapotranspiration (ET) both exceeded 0.8 during the calibration and validation periods. During the first year (pre-repair period), the Nash-Sutcliffe coefficients for drainage, overflow, and exfiltration/ET ranged from 0.6 to 0.9 during both the calibration and validation periods. The bioretention cells at Rocky Mount included an IWS zone. For both the calibration and validation periods, the modeled volume of exfiltration/ET was within 1% and 5% of the estimated volume for the cells with sand (Sand cell) and sandy clay loam (SCL cell) underlying soils, respectively. Nash-Sutcliffe coefficients for the SCL cell during both the calibration and validation periods were 0.92.

  20. Modeling Soil Moisture Fields Using the Distributed Hydrologic Model MOBIDIC

    NASA Astrophysics Data System (ADS)

    Castillo, A. E.; Entekhabi, D.; Castelli, F.

    2011-12-01

    The Modello Bilancio Idrologico DIstributo e Continuo (MOBIDIC) is a fully-distributed physically-based basin hydrologic model [Castelli et al., 2009]. MOBIDIC represents watersheds using a system or reservoirs that interact through both mass and energy fluxes. The model uses a single-layered soil on a grid. For each grid element, soil moisture is conceptually partitioned into gravitational (free) and capillary-bound water. For computational parsimony, linear parameterization is used for infiltration rather than solving it using the nonlinear Richard's Equation. Previous applications of MOBIDIC assessed model performance based on streamflow which is a flux. In this study, the MOBIDIC simulated soil moisture, a state variable, is compared against observed values as well as values simulated by the legacy Simultaneous Heat and Water (SHAW) model [Flerchinger, 2000] which was chosen as the benchmark. Results of initial simulations with the original version of MOBIDIC prompted several model modifications such as changing the parameterization of evapotranspiration and adding capillary rise to make the model more robust in simulating the dynamics of soil moisture. In order to test the performance of the modified MOBIDIC, both short-term (a few weeks) and extended (multi-year) simulations were performed for 3 well-studied sites in the US: two sites are mountainous with deep groundwater table and semiarid climate, while the third site is fluvial with shallow groundwater table and temperate climate. For the multi-year simulations, both MOBIDIC and SHAW performed well in modeling the daily observed soil moisture. The simulations also illustrated the benefits of adding the capillary rise module and the other modifications introduced. Moreover, it was successfully demonstrated that MOBIDIC, with some conceptual approaches and some simplified parameterizations, can perform as good, if not better, than the more sophisticated SHAW model. References Castelli, F., G. Menduni, and B. Mazzanti (2009), A distributed package for sustainable water management: a case study in the Arno basin, IAHS Publ. 327 Flerchinger, G. N. (2000), The Simultaneous Heat and Water (SHAW) Model: Technical Documentation, Technical Report NWRC 2000-09, USDA Agricultural Research Service, Boise, Idaho

  1. Selection of Hydrological Model for Waterborne Release

    SciTech Connect

    Blanchard, A.

    1999-04-21

    Following a request from the States of South Carolina and Georgia, downstream radiological consequences from postulated accidental aqueous releases at the three Savannah River Site nonreactor nuclear facilities will be examined. This evaluation will aid in determining the potential impacts of liquid releases to downstream populations on the Savannah River. The purpose of this report is to evaluate the two available models and determine the appropriate model for use in following waterborne release analyses. Additionally, this report will document the accidents to be used in the future study.

  2. Hydrologic effects of evapotranspiration representation in a Richards equation based distributed hydrologic model at the catchment scale

    NASA Astrophysics Data System (ADS)

    Canon, C. C.; Valdes, J. B.; Gupta, H. V.

    2011-12-01

    Evapotranspiration (ET) is a key water budget term that is rarely evaluated in hydrologic modeling due to the scarcity of observed actual ET fluxes. However, the ET process representation within a hydrologic model is important as it affects the simulated hydrologic response. Here we illustrate how different ET representations affect both the hydrograph and the soil moisture states within MODHMS, a Richards' equation based distributed hydrologic model at the catchment scale. MODHMS, a MODFLOW based model, has a flexible modular structure that allowed testing of 4 different base case ET scenarios: two MODFLOW ET representations (linear and piece-wise linear) and one physically based ET model in two configurations. These 4 ET sub-models were applied sequentially for the case of the well-studied 10.5 ha - Tarrawarra catchment in Australia keeping the soil parameterization constant. The hydrologic response sensitivity to each of the ET sub-models parameterization was evaluated. The ET process representation chosen for use in MODHMS is important for adequately representing soil saturation areas, lateral flow and drying of the upslope areas of the catchment as well as the outflow hydrograph.

  3. Hydrologic effects of evapotranspiration representation in a Richards equation based distributed hydrologic model at the catchment scale

    NASA Astrophysics Data System (ADS)

    Cristea, N. C.; Burges, S. J.

    2013-12-01

    Evapotranspiration (ET) is a key water budget term that is rarely evaluated in hydrologic modeling due to the scarcity of observed actual ET fluxes. However, the ET process representation within a hydrologic model is important as it affects the simulated hydrologic response. Here we illustrate how different ET representations affect both the hydrograph and the soil moisture states within MODHMS, a Richards' equation based distributed hydrologic model at the catchment scale. MODHMS, a MODFLOW based model, has a flexible modular structure that allowed testing of 4 different base case ET scenarios: two MODFLOW ET representations (linear and piece-wise linear) and one physically based ET model in two configurations. These 4 ET sub-models were applied sequentially for the case of the well-studied 10.5 ha - Tarrawarra catchment in Australia keeping the soil parameterization constant. The hydrologic response sensitivity to each of the ET sub-models parameterization was evaluated. The ET process representation chosen for use in MODHMS is important for adequately representing soil saturation areas, lateral flow and drying of the upslope areas of the catchment as well as the outflow hydrograph.

  4. The hydrology of malaria : field observations and mechanistic modeling of the malaria transmission response to environmental climatic variability

    E-print Network

    Bomblies, Arne

    2009-01-01

    A coupled HYDrology, Entomology and MAlaria Transmission Simulator (HYDREMATS) has been developed. The model simulates the hydrological and climatological determinants of malaria transmission mechanistically and at high ...

  5. USING DIGITAL TERRAIN ANALYSIS MODELING TECHNIQUES FOR THE PARAMETERIZATION OF A HYDROLOGIC MODEL.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper discusses the application of digital terrain analysis modeling techniques to the parameterization of a semi-distributed hydrologic model. Most current techniques for deriving physiographic parameters in watershed analyses, including those using commercial geographic information systems (...

  6. Coupled geophysical-hydrological modeling of controlled NAPL spill

    NASA Astrophysics Data System (ADS)

    Kowalsky, M. B.; Majer, E.; Peterson, J. E.; Finsterle, S.; Mazzella, A.

    2006-12-01

    Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data interpretation. Combining multiple geophysical data types and incorporating constraints from hydrological models will potentially decrease the non-uniqueness in data interpretation and aid in site characterization. Large-scale laboratory experiments have been conducted over several years to evaluate the use of various geophysical methods, including ground-penetrating radar (GPR), seismic, and electrical methods, for monitoring controlled spills of tetrachloroethylene (PCE), a hazardous industrial solvent that is pervasive in the subsurface. In the current study, we consider an experiment in which PCE was introduced into a large tank containing a heterogeneous distribution of sand and clay mixtures, and allowed to migrate while time-lapse geophysical data were collected. We consider two approaches for interpreting the surface GPR and crosswell seismic data. The first approach involves (a) waveform inversion of the surface GPR data using a non-gradient based optimization algorithm to estimate the dielectric constant distributions and (b) conversion of crosswell seismic travel times to acoustic velocity distributions; the dielectric constant and acoustic velocity distributions are then related to NAPL saturation using appropriate petrophysical models. The second approach takes advantage of a recently developed framework for coupled hydrological-geophysical modeling, providing a hydrological constraint on interpretation of the geophysical data and additionally resulting in quantitative estimates of the most relevant hydrological parameters that determine NAPL behavior in the system. Specifically, we simulate NAPL migration using the multiphase multicomponent flow simulator TOUGH2 with a 2-D radial model that takes advantage of radial symmetry in the experimental setup. The flow model is coupled to forward models for simulating the GPR and seismic measurements, and joint inversion of the multiple data types results in images of time-varying NAPL saturation distributions. Comparison of the two approaches with results of the post-experiment excavation indicate that combining geophysical data types and incorporating hydrological constraints improves estimates of NAPL saturation relative to the conventional interpretation of the geophysical data sets. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect the official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use. This work was supported, in part, by the U.S. Dept. of Energy under Contract No. DE-AC02- 05CH11231.

  7. Intercomparison of hydrologic processes in global climate models

    NASA Technical Reports Server (NTRS)

    Lau, W. K.-M.; Sud, Y. C.; Kim, J.-H.

    1995-01-01

    In this report, we address the intercomparison of precipitation (P), evaporation (E), and surface hydrologic forcing (P-E) for 23 Atmospheric Model Intercomparison Project (AMIP) general circulation models (GCM's) including relevant observations, over a variety of spatial and temporal scales. The intercomparison includes global and hemispheric means, latitudinal profiles, selected area means for the tropics and extratropics, ocean and land, respectively. In addition, we have computed anomaly pattern correlations among models and observations for different seasons, harmonic analysis for annual and semiannual cycles, and rain-rate frequency distribution. We also compare the joint influence of temperature and precipitation on local climate using the Koeppen climate classification scheme.

  8. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2013-10-01

    Spatially distributed hydrological models are popular tools in hydrology and they are claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time-series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for the transport of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography. Around 40% of the catchment area are artificially drained. We measured weather data, discharge and groundwater levels in 11 piezometers for 1.5 yr. For broadening the spatially distributed data sets that can be used for model calibration and validation, we translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. We used redox-morphology signs for these estimates. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to the groundwater levels in the piezometers and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the accuracy of the groundwater level predictions was not high enough to be used for the prediction of saturated areas. The groundwater level dynamics were not adequately reproduced and the predicted spatial patterns of soil saturation did not correspond to the patterns estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a more complex model. Especially high spatial resolution and very detailed process representations at the boundary between the unsaturated and the saturated zone are expected to be crucial. The data needed for such a detailed model are not generally available. The high computational demand and the complex model setup would require more resources than the direct identification of saturated areas in the field. This severely hampers the practical use of such models despite their usefulness for scientific purposes.

  9. Integrated hydrological SVAT model for climate change studies in Denmark

    NASA Astrophysics Data System (ADS)

    Mollerup, M.; Refsgaard, J.; Sonnenborg, T. O.

    2010-12-01

    In a major Danish funded research project (www.hyacints.dk) a coupling is being established between the HIRHAM regional climate model code from Danish Meteorological Institute and the MIKE SHE distributed hydrological model code from DHI. The linkage between those two codes is a soil vegetation atmosphere transfer scheme, which is a module of MIKE SHE. The coupled model will be established for the entire country of Denmark (43,000 km2 land area) where a MIKE SHE based hydrological model already exists (Henriksen et al., 2003, 2008). The present paper presents the MIKE SHE SVAT module and the methodology used for parameterising and calibrating the MIKE SHE SVAT module for use throughout the country. As SVAT models previously typically have been tested for research field sites with comprehensive data on energy fluxes, soil and vegetation data, the major challenge lies in parameterisation of the model when only ordinary data exist. For this purpose annual variations of vegetation characteristics (Leaf Area Index (LAI), Crop height, Root depth and the surface albedo) for different combinations of soil profiles and vegetation types have been simulated by use of the soil plant atmosphere model Daisy (Hansen et al., 1990; Abrahamsen and Hansen, 2000) has been applied. The MIKE SHE SVAT using Daisy generated surface/soil properties model has been calibrated against existing data on groundwater heads and river discharges. Simulation results in form of evapotranspiration and percolation are compared to the existing MIKE SHE model and to observations. To analyse the use of the SVAT model in climate change impact assessments data from the ENSEMBLES project (http://ensembles-eu.metoffice.com/) have been analysed to assess the impacts on reference evapotranspiration (calculated by the Makkink and the Penmann-Monteith equations) as well as on the individual elements in the Penmann-Monteith equation (radiation, wind speed, humidity and temperature). The differences on the hydrological impacts of characterising climate change in terms of changes in the reference evapotranspiration or in the individual climate variables have been analysed. References Abrahamsen, P., and Hansen, S. (2000) Daisy: An Open Soil-Crop-Atmosphere System Model. Environ. Model. Software 15, 313-330. Hansen, S., Jensen, H. E., Nielsen, N. E., and Svendsen, H. (1990). Daisy - soil plant atmostphere system model. Technical Report A10, Miljostyrelsen. Henriksen, H. J., Troldborg, L., Nyegaard, P., Sonnenborg, T. O., Refsgaard, J. C. and Madsen, B. (2003) Methodology for construction, calibration and validation of a national hydrological model for Denmark. Journal of Hydrology 280(1-4), 52-71. Henriksen, H. J., Troldborg, L., Hojberg, A. L. and Refsgaard, J. C. (2008) Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater-surface water model. Journal of Hydrology 348(1-2), 224-240.

  10. Parallelization of a hydrological model using the message passing interface

    USGS Publications Warehouse

    Wu, Yiping; Li, Tiejian; Sun, Liqun; Chen, Ji

    2013-01-01

    With the increasing knowledge about the natural processes, hydrological models such as the Soil and Water Assessment Tool (SWAT) are becoming larger and more complex with increasing computation time. Additionally, other procedures such as model calibration, which may require thousands of model iterations, can increase running time and thus further reduce rapid modeling and analysis. Using the widely-applied SWAT as an example, this study demonstrates how to parallelize a serial hydrological model in a Windows® environment using a parallel programing technology—Message Passing Interface (MPI). With a case study, we derived the optimal values for the two parameters (the number of processes and the corresponding percentage of work to be distributed to the master process) of the parallel SWAT (P-SWAT) on an ordinary personal computer and a work station. Our study indicates that model execution time can be reduced by 42%–70% (or a speedup of 1.74–3.36) using multiple processes (two to five) with a proper task-distribution scheme (between the master and slave processes). Although the computation time cost becomes lower with an increasing number of processes (from two to five), this enhancement becomes less due to the accompanied increase in demand for message passing procedures between the master and all slave processes. Our case study demonstrates that the P-SWAT with a five-process run may reach the maximum speedup, and the performance can be quite stable (fairly independent of a project size). Overall, the P-SWAT can help reduce the computation time substantially for an individual model run, manual and automatic calibration procedures, and optimization of best management practices. In particular, the parallelization method we used and the scheme for deriving the optimal parameters in this study can be valuable and easily applied to other hydrological or environmental models.

  11. Therapeutic vaccines in HBV: lessons from HCV.

    PubMed

    Barnes, Eleanor

    2015-02-01

    Currently, millions of people infected with hepatitis B virus (HBV) are committed to decades of treatment with anti-viral therapy to control viral replication. However, new tools for immunotherapy that include both viral vectors and molecular checkpoint inhibitors are now available. This has led to a resurgence of interest in new strategies to develop immunotherapeutic strategies with the aim of inducing HBeAg seroconversion--an end-point that has been associated with a decrease in the rates of disease progression. Ultimately, a true cure will involve the elimination of covalently closed circular DNA which presents a greater challenge for immunotherapy. In this manuscript, I describe the development of immunotherapeutic strategies for HBV that are approaching or currently in clinical studies, and draw on observations of T cell function in natural infection supported by recent animal studies that may lead to additional rational vaccine strategies using checkpoint inhibitors. I also draw on our recent experience in developing potent vaccines for HCV prophylaxis based on simian adenoviral and MVA vectors used in prime-boost strategies in both healthy volunteers and HCV infected patients. I have shown that the induction of T cell immune responses is markedly attenuated when administered to people with persistent HCV viremia. These studies and recently published animal studies using the woodchuck model suggest that potent vaccines based on DNA or adenoviral vectored vaccination represent a rational way forward. However, combining these with drugs to suppress viral replication, alongside checkpoint inhibitors may be required to induce long-term immune control. PMID:25573348

  12. Modeling Hydrologic and Vegetation Responses in Freshwater Wetlands

    NASA Astrophysics Data System (ADS)

    Chui, Ting Fong May; Low, Swee Yang; Liong, Shie-Yui

    2010-05-01

    Wetlands constitute 6 - 7 % of the Earth's land surface and provide various critical ecosystem services such as purifying the air and water, mitigating floods and droughts, and supporting wildlife habitats. Despite the importance of wetlands, they are under threat of degradation by human-induced land use changes and climate change. Even if the value of wetlands is recognized, they are often not managed properly or restored successfully due to an inadequate understanding of the ecosystems and their responses to management scenarios. A better understanding of the main components of wetlands, namely the interdependent hydrologic and vegetation systems, and the sensitivity of their responses to engineering works and climate change, is crucial for the preservation of wetlands. To assess these potential impacts, a model is developed in this study for characterizing the coupled dynamics between soil moisture and plant biomass in wetland habitats. The hydrology component of the model is based on the Richards' equation and simulates spatially-varying groundwater movement and provides information on soil moisture at different depths. The plant growth component of the model is described through an equation of the Lotka-Volterra type modified for plant growth dynamics and is adapted from published literature. The two components are coupled via transpiration and ecosystem carrying capacity for plants. Transpiration is modeled for both unsaturated and saturated zones, while the carrying capacity describes limiting oxygen and subsequent nutrient availability in the soil column as a function of water table depth. Vegetation is represented by two species characteristic of mudflat herbaceous plants ranging from facultative wetland to upland plants. The model is first evaluated using a simplified domain and the hydrological information available in the RG2 site of the Everglades wetlands region. The modeled water table fluctuations in general are comparable to field data collected on-site, indicating the potential of the model in capturing soil moisture dynamics. Further application of the model for impact assessments demonstrates that drainage of wetlands resulting in groundwater drawdown is expected to produce appreciable effects on vegetation biomass response. The model developed in this study simulates the coupled and spatially-varying groundwater movement and plant growth dynamics, which allows researchers to better understand and protect the integrated hydrologic and vegetation systems of wetlands worldwide.

  13. Hydrological Response to Climate Change over the Blue Nile Basin Distributed hydrological modeling based on surrogate climate change scenarios

    NASA Astrophysics Data System (ADS)

    Berhane, F. G.; Anyah, R. O.

    2010-12-01

    The program Soil and Water Assessment Tool (SWAT2009) model has been applied to the Blue Nile Basin to study the hydrological response to surrogate climate changes over the Blue Nile Basin (Ethiopia) by downscaling gridded weather data. The specific objectives of the study include (i) examining the performance of the SWAT model in simulating hydrology-climate interactions and feedbacks within the entire Blue Nile Basin, and (ii) investigating the response of hydrological variables to surrogate climate changes. Monthly weather data from the Climate Research Unit (CRU) are converted to daily values as input into the SWAT using Monthly to Daily Weather Converter (MODAWEC). Using the program SUFI-2 (Sequential Uncertainty Fitting Algorithm), data from 1979 to 1983 are applied for sensitivity analysis and calibration (P-factor = 90%, R-factor =0.7, R2 =0.93 and NS=0.93) and subsequently to validate hindcasts over the period 1984-1989 (R2 =0.92 and NS=0.92). The period from 1960-2000 was used as baseline and has been used to determine the changes and the effect of the surrogate climate changes over the Blue Nile Basin. Overall, our surrogate climate change based simulations indicate the hydrology of the Blue Nile catchment is very sensitive to potential climate change with 100%, 34% and 51% increase to the surface runoff, lateral flow and water yield respectively for the A2 scenario surrogate. Key Words: SWAT, MODAWEC, Blue Nile Basin, SUFI-2, climate change, hydrological modeling, CRU

  14. How simple can a distributed hydrological model be?

    NASA Astrophysics Data System (ADS)

    Fenicia, Fabrizio; Kavetski, Dmitri; Savenije, Hubert H. G.; Pfister, Laurent

    2015-04-01

    It is well known that lumped conceptual models can often reproduce catchment streamflow response with about a 'handful' of model parameters. But what is the appropriate complexity of a distributed hydrological model, in order to reproduce the distinct streamflow response of heterogeneous internal subcatchments? Is the number of identifiable parameters proportional to the number of stream gauges? Into how many pieces should the catchment be broken-up? And which model structures are best suited to represent the behavior of particular landscape units? We investigated these questions in a case study based on the Attert basin in Luxembourg, where 10 subcatchments with clean and mixed geologies and land use manifested different rainfall-runoff behavior. The hydrological response of individual subcatchments was well represented using a range of lumped models with 4-8 parameters. We then attempted to simulate the 10 streamflow time series simultaneously, using a distributed model. Existing distributed models are often perceived to be over-parameterized. In order to avoid this problem, model development followed an iterative hypothesis-testing process. We developed, calibrated and compared alternative model variants, differing in the landscape classification approach, and in the structure of components intended to represent individual landscape elements. Decisions such as how to break-up the catchment, and which structure to assign to distinct landscape elements were found to significantly influence the model's predictive performance. In the present case, we determined that a geology-based landscape classification provided the best characterization of the observed differences in streamflow responses. In addition, we found that the individual geological units could be represented by remarkably simple model structures. The overall complexity of the distributed model was of about two 'handfuls' (10) of model parameters.

  15. Genetic Algorithm Optimization of Artificial Neural Networks for Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Abrahart, R. J.

    2004-05-01

    This paper will consider the case for genetic algorithm optimization in the development of an artificial neural network model. It will provide a methodological evaluation of reported investigations with respect to hydrological forecasting and prediction. The intention in such operations is to develop a superior modelling solution that will be: \\begin{itemize} more accurate in terms of output precision and model estimation skill; more tractable in terms of personal requirements and end-user control; and/or more robust in terms of conceptual and mechanical power with respect to adverse conditions. The genetic algorithm optimization toolbox could be used to perform a number of specific roles or purposes and it is the harmonious and supportive relationship between neural networks and genetic algorithms that will be highlighted and assessed. There are several neural network mechanisms and procedures that could be enhanced and potential benefits are possible at different stages in the design and construction of an operational hydrological model e.g. division of inputs; identification of structure; initialization of connection weights; calibration of connection weights; breeding operations between successful models; and output fusion associated with the development of ensemble solutions. Each set of opportunities will be discussed and evaluated. Two strategic questions will also be considered: [i] should optimization be conducted as a set of small individual procedures or as one large holistic operation; [ii] what specific function or set of weighted vectors should be optimized in a complex software product e.g. timings, volumes, or quintessential hydrological attributes related to the 'problem situation' - that might require the development flood forecasting, drought estimation, or record infilling applications. The paper will conclude with a consideration of hydrological forecasting solutions developed on the combined methodologies of co-operative co-evolution and operational specialization. The standard approach to neural-evolution is at the network level such that a population of working solutions is manipulated until the fittest member is found. SANE [Symbiotic Adaptive Neuro-Evolution]1 source code offers an alternative method based on co-operative co-evolution in which a population of hidden neurons is evolved. The task of each hidden neuron is to establish appropriate connections that will provide: [i] a functional solution and [ii] performance improvements. Each member of the population attempts to optimize one particular aspect of the overall modelling process and evolution can lead to several different forms of specialization. This method of adaptive evolution also facilitates the creation of symbiotic relationships in which individual members must co-operate with others - who must be present - to permit survival. 1http://www.cs.utexas.edu/users/nn/pages/software/abstracts.html#sane-c

  16. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    NASA Technical Reports Server (NTRS)

    Miller, L. D.; Tom, C.; Nualchawee, K.

    1977-01-01

    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  17. A conceptual data model coupling with physically-based distributed hydrological models based on catchment discretization schemas

    NASA Astrophysics Data System (ADS)

    Liu, Yuanming; Zhang, Wanchang; Zhang, Zhijie

    2015-11-01

    In hydrology, the data types, spatio-temporal scales and formats for physically-based distributed hydrological models and the distributed data or parameters may be different before significant data pre-processing or may change during hydrological simulation run time. A data model is devoted to these problems for sophisticated numerical hydrological modeling procedures. In this paper, we propose a conceptual data model to interpret the comprehensive, universal and complex water environmental entities. We also present an innovative integration methodology to couple the data model with physically-based distributed hydrological models (DHMs) based on catchment discretization schemas. The data model provides a reasonable framework for researchers of organizing and pre-processing water environmental spatio-temporal datasets. It also facilitates seamless data flow fluid and dynamic by hydrological response units (HRUs) as the core between the object-oriented databases and physically-based distributed hydrological models.

  18. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications

    NASA Astrophysics Data System (ADS)

    Song, Xiaomeng; Zhang, Jianyun; Zhan, Chesheng; Xuan, Yunqing; Ye, Ming; Xu, Chonggang

    2015-04-01

    Sensitivity analysis (SA) aims to identify the key parameters that affect model performance and it plays important roles in model parameterization, calibration, optimization, and uncertainty quantification. However, the increasing complexity of hydrological models means that a large number of parameters need to be estimated. To better understand how these complex models work, efficient SA methods should be applied before the application of hydrological modeling. This study provides a comprehensive review of global SA methods in the field of hydrological modeling. The common definitions of SA and the typical categories of SA methods are described. A wide variety of global SA methods have been introduced to provide a more efficient evaluation framework for hydrological modeling. We review, analyze, and categorize research into global SA methods and their applications, with an emphasis on the research accomplished in the hydrological modeling field. The advantages and disadvantages are also discussed and summarized. An application framework and the typical practical steps involved in SA for hydrological modeling are outlined. Further discussions cover several important and often overlooked topics, including the relationship between parameter identification, uncertainty analysis, and optimization in hydrological modeling, how to deal with correlated parameters, and time-varying SA. Finally, some conclusions and guidance recommendations on SA in hydrological modeling are provided, as well as a list of important future research directions that may facilitate more robust analyses when assessing hydrological modeling performance.

  19. Adeno-Associated Virus Vector Mediated Delivery of the HBV Genome Induces Chronic Hepatitis B Virus Infection and Liver Fibrosis in Mice

    PubMed Central

    Ye, Lei; Yu, Haisheng; Li, Chengwen; Hirsch, Matthew L.; Zhang, Liguo; Samulski, R. Jude; Li, Wuping; Liu, Zhong

    2015-01-01

    Liver cirrhosis and hepatocellular carcinomas are major health problems of chronic hepatitis B virus (HBV) infection. To date, rare model has reproduced liver fibrosis associated with long-term HBV infection which in turn has hindered both the understanding of HBV biology and the development of new treatment options. Here, using adeno-associated virus serotype 8 (AAV8) mediated delivery of a 1.2-kb HBV genome, we successfully generated a chronic HBV infectious mouse model that presents the associated liver fibrosis observed following human infection. After AAV8/HBV1.2 vector administration, mice demonstrated effective HBV replication and transcription which resulted in HBV antigen expression and viremia over 6 months. Although no obvious acute inflammatory response was noted, these mice still developed chronic liver disease and hepatic fibrogenesis as demonstrated by increased ground glass-like hepatocytes, an increasing trend of collagen deposition and upregulated fibrosis markers, including type I collagen, type III collagen, tissue inhibitor of metalloproteinase (TIMP), and transforming growth factor-?1(TGF-?1). Taken together, AAV-mediated HBV gene delivery to the mouse liver, induced HBV persistent infection accompanied by liver fibrosis which can serve as a model for investigating the precise mechanisms underlying liver fibrosis following chronic HBV infection as well as for the potential development of novel therapeutics. PMID:26075890

  20. Adaptable Web Modules to Stimulate Active Learning in Engineering Hydrology using Data and Model Simulations of Three Regional Hydrologic Systems

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.

    2013-12-01

    The hydrologic community has long recognized the need for broad reform in hydrologic education. A paradigm shift is critically sought in undergraduate hydrology and water resource education by adopting context-rich, student-centered, and active learning strategies. Hydrologists currently deal with intricate issues rooted in complex natural ecosystems containing a multitude of interconnected processes. Advances in the multi-disciplinary field include observational settings such as Critical Zone and Water, Sustainability and Climate Observatories, Hydrologic Information Systems, instrumentation and modeling methods. These research advances theory and practices call for similar efforts and improvements in hydrologic education. The typical, text-book based approach in hydrologic education has focused on specific applications and/or unit processes associated with the hydrologic cycle with idealizations, rather than the contextual relations in the physical processes and the spatial and temporal dynamics connecting climate and ecosystems. An appreciation of the natural variability of these processes will lead to graduates with the ability to develop independent learning skills and understanding. This appreciation cannot be gained in curricula where field components such as observational and experimental data are deficient. These types of data are also critical when using simulation models to create environments that support this type of learning. Additional sources of observations in conjunction with models and field data are key to students understanding of the challenges associated with using models to represent such complex systems. Recent advances in scientific visualization and web-based technologies provide new opportunities for the development of active learning techniques utilizing ongoing research. The overall goal of the current study is to develop visual, case-based, data and simulation driven learning experiences to instructors and students through a web server-based system. Open source web technologies and community-based tools are used to facilitate wide dissemination and adaptation by diverse, independent institutions. The new hydrologic learning modules are based on recent developments in hydrologic modeling, data, and resources. The modules are embedded in three regional-scale ecosystems, Coastal Louisiana, Florida Everglades, and Utah Great Salt Lake Basin. These sites provide a wealth of hydrologic concepts and scenarios that can be used in most water resource and hydrology curricula. The study develops several learning modules based on the three hydro-systems covering subjects such as: water-budget analysis, effects of human and natural changes, climate-hydrology teleconnections, and water-resource management scenarios. The new developments include an instructional interface to give critical guidance and support to the learner and an instructor's guide containing adaptation and implementation procedures to assist instructors in adopting and integrating the material into courses and provide a consistent experience. The design of the new hydrologic education developments will be transferable to independent institutions and adaptable both instructionally and technically through a server system capable of supporting additional developments by the educational community.

  1. Comprehensive Representation of Hydrologic and Geomorphic Process Coupling in Numerical Models: Internal Dynamics and Basin Evolution

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, E.; Vivoni, E. R.; Ivanov, V. Y.; Bras, R. L.

    2005-12-01

    Landscape morphology has an important control on the spatial and temporal organization of basin hydrologic response to climate forcing, affecting soil moisture redistribution as well as vegetation function. On the other hand, erosion, driven by hydrology and modulated by vegetation, produces landforms over geologic time scales that reflect characteristic signatures of the dominant land forming process. Responding to extreme climate events or anthropogenic disturbances of the land surface, infrequent but rapid forms of erosion (e.g., arroyo development, landsliding) can modify topography such that basin hydrology is significantly influenced. Despite significant advances in both hydrologic and geomorphic modeling over the past two decades, the dynamic interactions between basin hydrology, geomorphology and terrestrial ecology are not adequately captured in current model frameworks. In order to investigate hydrologic-geomorphic-ecologic interactions at the basin scale we present initial efforts in integrating the CHILD landscape evolution model (Tucker et al. 2001) with the tRIBS hydrology model (Ivanov et al. 2004), both developed in a common software environment. In this talk, we present preliminary results of the numerical modeling of the coupled evolution of basin hydro-geomorphic response and resulting landscape morphology in two sets of examples. First, we discuss the long-term evolution of both the hydrologic response and the resulting basin morphology from an initially uplifted plateau. In the second set of modeling experiments, we implement changes in climate and land-use to an existing topography and compare basin hydrologic response to the model results when landscape form is fixed (e.g. no coupling between hydrology and geomorphology). Model results stress the importance of internal basin dynamics, including runoff generation mechanisms and hydrologic states, in shaping hydrologic response as well as the importance of employing comprehensive conceptualizations of hydrology in modeling landscape evolution.

  2. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    NASA Astrophysics Data System (ADS)

    Dow, C. F.; Kulessa, B.; Rutt, I. C.; Tsai, V. C.; Pimentel, S.; Doyle, S. H.; As, D.; Lindbäck, K.; Pettersson, R.; Jones, G. A.; Hubbard, A.

    2015-06-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections.

  3. Approaches to handle data of low quality in hydrological modelling

    NASA Astrophysics Data System (ADS)

    Herma, Felix; Bárdossy, András; Hörning, Sebastian

    2015-04-01

    Hydrological modelling is an important tool for many applications in water resources engineering. It is widely used for designing storage reservoirs, flood protection measures or for prediction purposes. Therefore the quality of the required input data and the used hydrological model have a significant influence on the quality of the results and, consequently, on the reliability for the mentioned objectives above. Many factors affect the usefulness of data and models. In the first place, the number and spatial distribution of observation points build the base for all subsequent processes. Secondly, the quality of the input data, e.g. discharge, precipitation, has to be checked. It is known that rain gauge measurements underlie a high uncertainty, especially during periods with high rain intensities or snowfall. Last, the choice of the model according to the objective of its usage is the determining factor. Under such conditions a reliable assessment of the uncertainty is required. This contribution will focus on the described items and try to provide approaches on how to handle the presented problems. A hydrological model usually needs areal information of specific input data. The density and distribution of gauging stations lead to uncertainty if a spatial interpolation of the measures is applied. In the case of a high topographic variability within a catchment, uncertainties through the underestimation of rainfall amounts at exposed stations can occur. Drifts of rain or snow by wind are a central issue at this point. Common interpolation methods of precipitation are different forms of kriging which provide only the best estimate at the ungauged locations. However, these methods cannot correctly quantify the associated uncertainty of the estimation. Thus, this contribution applies a new method of random mixing of spatial random fields with the ability to incorporate equality and inequality constraints. Such conditions are applied to exposed gauging stations on different elevation levels. Instead of an interpolated kriging field, a number of simulated realizations of precipitation are passed to a hydrological model. This approach allows a better assessment of the uncertainty induced by the lack of spatial information at ungauged locations as well as the measurement inaccuracy under certain meteorological conditions at certain conditional points. The applied hydrological model has a lumped configuration and requires as input data just discharge, precipitation, temperature and evapotranspiration. Based on the comparatively simple model set-up it is checked if a distributed external pre-processing of the input data on a high spatial resolution yields a gain of information and an improved model performance. This is shown by using the example of temporal and spatial snow distributions. Hereby it is investigated if a simple model approach combined with an elaborated pre-processing is sufficient or even improving, for instance, the prediction of snowmelt caused flood events. The results are presented on the basis of a catchment in south-eastern Bavaria, Germany. The catchment is characterized by its high topographic variability. In addition, the measuring network is very unbalanced within the catchment and contains regions with very rare coverage of gauging stations. There, measured data of low quality can have an essential impact on spatial interpolations, model results and, finally, on the predictions.

  4. Implications of complete watershed soil moisture measurements to hydrologic modeling

    NASA Technical Reports Server (NTRS)

    Engman, E. T.; Jackson, T. J.; Schmugge, T. J.

    1983-01-01

    A series of six microwave data collection flights for measuring soil moisture were made over a small 7.8 square kilometer watershed in southwestern Minnesota. These flights were made to provide 100 percent coverage of the basin at a 400 m resolution. In addition, three flight lines were flown at preselected areas to provide a sample of data at a higher resolution of 60 m. The low level flights provide considerably more information on soil moisture variability. The results are discussed in terms of reproducibility, spatial variability and temporal variability, and their implications for hydrologic modeling.

  5. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2014-09-01

    Spatially distributed models are popular tools in hydrology claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for inputs of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography and artificial drainage. We translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to observed groundwater levels and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the the groundwater level predictions were not accurate enough to be used for the prediction of saturated areas. Groundwater level dynamics were not adequately reproduced and the predicted spatial saturation patterns did not correspond to those estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a model that better represents processes at the boundary between the unsaturated and the saturated zone. However, data needed for such a more detailed model are not generally available. This severely hampers the practical use of such models despite their usefulness for scientific purposes.

  6. A coupled hydrological-biogeochemical model to simulate DOC dynamics in a sub-arctic headwater catchment underlain by permafrost

    NASA Astrophysics Data System (ADS)

    Lessels, J. S.; Tetzlaff, D.; Carey, S. K.; Soulsby, C.

    2014-12-01

    Sub-arctic regions are currently undergoing climate induced changes, with projections of widespread degradation or loss of permafrost in these regions. While many studies have focussed on the controls of DOC exports in sub-arctic systems and many large scale models were applied, very few studies have investigated these processes in sub-arctic alpine, headwater catchments. With increasing air-temperatures it is predicted that the permafrost will be reduced and the depth of the thawing active layer may increase. The effect of these changes on the quantity and timing of DOC exports under these changes is still unclear. Therefore, it is important to understand the controls of DOC in these systems. These regions are characterised with high DOC concentrations during early spring melt when the thaw depth is shallow and the highly labile organic layer is the dominant flow pathway. As the season progresses and the active layer deepens, maximum soil water storage increases and DOC comes into contact with and is sorbed by less permeable mineral soils. Using a parsimonious coupled conceptual model to simulate stream discharge and DOC production and export for a small (c.a. 8 km2) sub-arctic alpine headwater catchment, this study aims to improve the understanding of stream discharge and DOC dynamics and the main underlying processes of DOC exports. Using a coupled process-based model to simulate DOC production and hydrological processes allows to integrate additional information gained concerning the controls of these processes. Model complexity is balanced with the complexity of the system to allow for the identification of the main controlling processes of DOC exports. Based on the HBV model, the model includes additional components to reflect the effect of slope aspect and the permafrost active layer dynamics and the production and loss of DOC. The results of the model provide valuable information on the dominant controlling processes of DOC in the catchment.

  7. Spatiotemporal variability of hydrologic response : an entropy-based approach using a distributed hydrologic model

    E-print Network

    Castillo, Aldrich Edra

    2014-01-01

    Basin hydrologic response pertains to the partitioning of precipitation into stream-flow, evapotranspiration, and change in storage. The ability to explain or predict the response has many applications e.g. flood forecasting, ...

  8. EFFICIENT HYDROLOGICAL TRACER-TEST DESIGN (EHTD) MODEL

    EPA Science Inventory

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test...

  9. Prospective comparison of Abbott RealTime HBV DNA and Versant HBV DNA 3.0 assays for hepatitis B DNA quantitation: impact on HBV genotype monitoring.

    PubMed

    Pol, Jonathan; Le Pendeven, Catherine; Beby-Defaux, Agnes; Rabut, Elodie; Jais, Jean Philippe; Pilloux, Marilyse; Osada, Catherine; Zatla, Fadila; Assami, Hichem; Grange, Jean Didier; Kremsdorf, Dina; Nicolas, Jean Claude; Soussan, Patrick

    2008-12-01

    The quantitation of human hepatitis B virus (HBV) in the serum of infected patients is recommended to characterize the course of chronic HBV infection. The aim of this prospective study was to evaluate the performance of the Abbott RealTime PCR assay for HBV DNA quantitation by comparison with the standard Versant HBV DNA 3.0 assay. The better sensitivity and broader dynamic range of HBV DNA quantitation using the Abbott RealTime PCR assay was confirmed by the study of 362 serum samples from 311 patients. In addition, data analysis revealed the concordance of HBV DNA quantitations between the two assays. When this evaluation was assessed as a function of HBV genotype, there was discordance for HBV genotype C samples. Thus, we performed an in-house PCR to confirm the discrepancy observed regarding the HBV genotypes. The in-house PCR results agreed better with the Abbott RealTime PCR method when compared with the standard hybridization assay. In conclusion, the wide dynamic range of HBV DNA quantitation achieved with the Abbott RealTime PCR assay makes it appropriate for the clinical monitoring of HBV infected patients. However, a change of HBV DNA quantitation method could influence results on the follow-up of HBV genotype C infected patients. PMID:18929599

  10. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    SciTech Connect

    Sun, Zhen; Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 ; Xiang, Wenqing; Guo, Yajuan; Chen, Zhi; Liu, Wei; Lu, Daru

    2011-06-10

    Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  11. Real Time Land-Surface Hydrologic Modeling Over Continental US

    NASA Technical Reports Server (NTRS)

    Houser, Paul R.

    1998-01-01

    The land surface component of the hydrological cycle is fundamental to the overall functioning of the atmospheric and climate processes. Spatially and temporally variable rainfall and available energy, combined with land surface heterogeneity cause complex variations in all processes related to surface hydrology. The characterization of the spatial and temporal variability of water and energy cycles are critical to improve our understanding of land surface-atmosphere interaction and the impact of land surface processes on climate extremes. Because the accurate knowledge of these processes and their variability is important for climate predictions, most Numerical Weather Prediction (NWP) centers have incorporated land surface schemes in their models. However, errors in the NWP forcing accumulate in the surface and energy stores, leading to incorrect surface water and energy partitioning and related processes. This has motivated the NWP to impose ad hoc corrections to the land surface states to prevent this drift. A proposed methodology is to develop Land Data Assimilation schemes (LDAS), which are uncoupled models forced with observations, and not affected by NWP forcing biases. The proposed research is being implemented as a real time operation using an existing Surface Vegetation Atmosphere Transfer Scheme (SVATS) model at a 40 km degree resolution across the United States to evaluate these critical science questions. The model will be forced with real time output from numerical prediction models, satellite data, and radar precipitation measurements. Model parameters will be derived from the existing GIS vegetation and soil coverages. The model results will be aggregated to various scales to assess water and energy balances and these will be validated with various in-situ observations.

  12. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    SciTech Connect

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G.; Meyer, Philip D.; Dorow, Kevin E.; Taira, Randal Y.

    2009-06-17

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and retrieve the required data, and their ability to integrate the data into environmental models using the FRAMES environment.

  13. A new selection metric for multiobjective hydrologic model calibration

    NASA Astrophysics Data System (ADS)

    Asadzadeh, Masoud; Tolson, Bryan A.; Burn, Donald H.

    2014-09-01

    A novel selection metric called Convex Hull Contribution (CHC) is introduced for solving multiobjective (MO) optimization problems with Pareto fronts that can be accurately approximated by a convex curve. The hydrologic model calibration literature shows that many biobjective calibration problems with a proper setup result in such Pareto fronts. The CHC selection approach identifies a subset of archived nondominated solutions whose map in the objective space forms convex approximation of the Pareto front. The optimization algorithm can sample solely from these solutions to more accurately approximate the convex shape of the Pareto front. It is empirically demonstrated that CHC improves the performance of Pareto Archived Dynamically Dimensioned Search (PA-DDS) when solving MO problems with convex Pareto fronts. This conclusion is based on the results of several benchmark mathematical problems and several hydrologic model calibration problems with two or three objective functions. The impact of CHC on PA-DDS performance is most evident when the computational budget is somewhat limited. It is also demonstrated that 1,000 solution evaluations (limited budget in this study) is sufficient for PA-DDS with CHC-based selection to achieve very high quality calibration results relative to the results achieved after 10,000 solution evaluations.

  14. ANNIE - INTERACTIVE PROCESSING OF DATA BASES FOR HYDROLOGIC MODELS.

    USGS Publications Warehouse

    Lumb, Alan M.; Kittle, John L.

    1985-01-01

    ANNIE is a data storage and retrieval system that was developed to reduce the time and effort required to calibrate, verify, and apply watershed models that continuously simulate water quantity and quality. Watershed models have three categories of input: parameters to describe segments of a drainage area, linkage of the segments, and time-series data. Additional goals for ANNIE include the development of software that is easily implemented on minicomputers and some microcomputers and software that has no special requirements for interactive display terminals. Another goal is for the user interaction to be based on the experience of the user so that ANNIE is helpful to the inexperienced user and yet efficient and brief for the experienced user. Finally, the code should be designed so that additional hydrologic models can easily be added to ANNIE.

  15. The application of remote sensing to the development and formulation of hydrologic planning models

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.

    1976-01-01

    A hydrologic planning model is developed based on remotely sensed inputs. Data from LANDSAT 1 are used to supply the model's quantitative parameters and coefficients. The use of LANDSAT data as information input to all categories of hydrologic models requiring quantitative surface parameters for their effects functioning is also investigated.

  16. Spatial calibration and temporal validation of flow for regional scale hydrologic modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physically based regional scale hydrologic modeling is gaining importance for planning and management of water resources. Calibration and validation of such regional scale model is necessary before applying it for scenario assessment. However, in most regional scale hydrologic modeling, flow validat...

  17. European Continental Scale Hydrological Model, Limitations and Challenges

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, E.; Abbaspour, K.

    2014-12-01

    The pressures on water resources due to increasing levels of societal demand, increasing conflict of interest and uncertainties with regard to freshwater availability create challenges for water managers and policymakers in many parts of Europe. At the same time, climate change adds a new level of pressure and uncertainty with regard to freshwater supplies. On the other hand, the small-scale sectoral structure of water management is now reaching its limits. The integrated management of water in basins requires a new level of consideration where water bodies are to be viewed in the context of the whole river system and managed as a unit within their basins. In this research we present the limitations and challenges of modelling the hydrology of the continent Europe. The challenges include: data availability at continental scale and the use of globally available data, streamgauge data quality and their misleading impacts on model calibration, calibration of large-scale distributed model, uncertainty quantification, and computation time. We describe how to avoid over parameterization in calibration process and introduce a parallel processing scheme to overcome high computation time. We used Soil and Water Assessment Tool (SWAT) program as an integrated hydrology and crop growth simulator to model water resources of the Europe continent. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals for the period of 1970-2006. The use of a large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation and provides the overall picture of water resources temporal and spatial distribution across the continent. The calibrated model and results provide information support to the European Water Framework Directive and lay the basis for further assessment of the impact of climate change on water availability in Europe. The approach and methods developed are general and can be applied to any large region around the world.

  18. Modelling of green roof hydrological performance for urban drainage applications

    NASA Astrophysics Data System (ADS)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Bergen Jensen, Marina; Binning, Philip John

    2014-11-01

    Green roofs are being widely implemented for stormwater management and their impact on the urban hydrological cycle can be evaluated by incorporating them into urban drainage models. This paper presents a model of green roof long term and single event hydrological performance. The model includes surface and subsurface storage components representing the overall retention capacity of the green roof which is continuously re-established by evapotranspiration. The runoff from the model is described through a non-linear reservoir approach. The model was calibrated and validated using measurement data from 3 different extensive sedum roofs in Denmark. These data consist of high-resolution measurements of runoff, precipitation and atmospheric variables in the period 2010-2012. The hydrological response of green roofs was quantified based on statistical analysis of the results of a 22-year (1989-2010) continuous simulation with Danish climate data. The results show that during single events, the 10 min runoff intensities were reduced by 10-36% for 5-10 years return period and 40-78% for 0.1-1 year return period; the runoff volumes were reduced by 2-5% for 5-10 years return period and 18-28% for 0.1-1 year return period. Annual runoff volumes were estimated to be 43-68% of the total precipitation. The peak time delay was found to greatly vary from 0 to more than 40 min depending on the type of event, and a general decrease in the time delay was observed for increasing rainfall intensities. Furthermore, the model was used to evaluate the variation of the average annual runoff from green roofs as a function of the total available storage and vegetation type. The results show that even a few millimeters of storage can reduce the mean annual runoff by up to 20% when compared to a traditional roof and that the mean annual runoff is not linearly related to the storage. Green roofs have therefore the potential to be important parts of future urban stormwater management plans.

  19. Hydrological modelling of slopes from field monitoring data

    NASA Astrophysics Data System (ADS)

    Comegna, Luca; Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano

    2013-04-01

    A simplified hydrological model of a steep slope covered with loose granular pyroclastic deposits is presented. The slope is located in the mountains northern of Naples, and the soil cover, constituted by layers of loose volcanic ashes and pumices with a total thickness of 2.5m, lays upon a fractured limestone bedrock. At the interface between the bedrock and the soil cover, a layer of weathered ashes, with significant clay fraction, is sometimes observed. The slope has a fairly regular inclination of 40°, and is covered by chestnut woods and thick brushwood growing in late spring. The inclination of the slope is comparable with the internal friction angle of the ashes, thus the equilibrium is possible thanks to the contribution offered to the shear strength by the soil suction in unsaturated conditions. Indeed, in December 1999, a landslide was triggered by prolonged and intense precipitations. As it frequently happens with similar pyroclastic covers, the triggered slide exhibited a flow-like behavior, covering 2km in few minutes, heavily hitting the nearby town of Cervinara (AV). Since then, the slope has been constantly monitored, and during the last two years an automated station with seven TDR probes for the measurement of soil water content, eight tensiometers for the measurement of soil suction, and a rain gauge, has been operating. The data, collected every two hours, allowed getting more insight of the hydrological behavior of the slope and building up an effective hydrological model. In the model, the layered soil profile has been replaced with a single homogeneous layer, with water retention curve estimated by coupling the values of water content and suction measured at various depths. A seasonal top boundary condition has been introduced, related to the annual cycle of the vegetation: the observed precipitations quickly caused changes of soil suction at the depth of -50cm during the entire year, with the exception of the period between the end of May and the early August. To reproduce the observed behavior of soil suction at the bottom of the profile, a linear reservoir model has been introduced as bottom boundary condition, related to the presence of a small aquifer in the fractured bedrock, which water table, affecting the hydraulic conditions of the soil cover, rapidly deepens during the dry season. The developed model, calibrated with the data of one year of observation, satisfactorily reproduces the observed soil hydraulic behaviour also during other periods.

  20. Reduction of uncertainty of hydrological modelling using different precipitation inputs

    NASA Astrophysics Data System (ADS)

    Pluntke, T.; Pavlik, D.; Bernhofer, C.

    2012-04-01

    Precipitation is one of the main sources of uncertainty in hydrological modelling, due to its high temporal and spatial variability. A dense network of rain gauge stations or a combination with, e.g., radar data is needed to account for the - in comparison to other climatic elements - pronounced variability. The density of existing station-networks is low in many countries worldwide. Alternative approaches that use additional information should be applied to improve the estimation of areal precipitation. Within the project "International Research Alliance Saxony" (http://www.iwas-sachsen.ufz.de/), one subproject aims at a system analysis of a meso-scale catchment of the Western Bug in Ukraine. Effective and sustainable measures have to be identified to improve the water quality of the Western Bug under the premise of upcoming changes of climate, land use and socio economy. An exact quantification of the water balance is needed as a pre-requisite for a matter balance. This contribution demonstrates possibilities to reduce the uncertainties of water balance modelling of the catchment Kamianka-Buzka/ Western Bug (2560 km2) by applying and combining alternative precipitation inputs. Available precipitation data were undergone an extensive quality check and were bias corrected. The Soil and Water Assessment Tool (SWAT, http://swatmodel.tamu.edu/) was used for water balance modelling. By default, meteorological observations are incorporated into SWAT using the station that is nearest to the centroid of each sub-catchment. Two alternative precipitation inputs were applied: 1) Data of 20 stations were regionalized using kriging methods. 2) The output of the Regional Climate Model CCLM that was set up for the region was used. After a pre-calibration of the model, three models - having different precipitation inputs - were set up and calibrated independently applying the auto-calibration procedure Sequential Uncertainty Fitting (Abbaspour et al. 2004). The performance of the models was evaluated with the Nash-Sutcliff-Efficiency coefficient (NSE) and the R2 between observed and modelled runoff. The model Stations performed better (R2/NSE: 0.66/0.61) than CCLM and Regionalized (0.54/0.54 and 0.57/0.53). Uncertainty of the hydrologic modelling (POC and d-factor) could not be reduced applying the alternative models. A promising method to improve the model performance and reduce the uncertainty is model averaging. Two model averaging methods were tested: arithmetic mean of the ensemble and a weighted mean (depending on NSE). The results show that the model performance could be improved (R2/NSE: 0.67/0.67) and the uncertainty reduced. Differences between the applied model averaging methods were marginal. Although not all observations could be reproduced, neither by the single models nor the ensemble averages, it was illustrated that combining different precipitation inputs improved the hydrologic predictions. Further calibration runs as well as the application of Bayesian Model Averaging are envisaged as next steps. Reference: Abbaspour, K. C., Johnson, C., & van Genuchten, M. T. (2004). Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal, (3), 1340-1352.

  1. Myths about Mathematical Modeling in Hydrology and Geomorphology

    NASA Astrophysics Data System (ADS)

    Bras, R. L.; Tucker, G. E.

    2005-12-01

    Models have always been essential in science. Unfortunately an artificial schism sometimes exists between modelers and experimentalist (or 'observationalists' ). On the one hand this schism is fueled by the abuse and misuse of readily available and commonly complicated mathematical models of modern days. On the other hand, it is also a result of lack of understanding of what lies behind models and of commonly polarized education, emphasizing one or another approach. In this paper we try to illustrate why we think mathematical models are useful and necessary in geomorphology and hydrology. We attempt to dispel myths that we believe hamper the appropriate use of mathematical models. First we argue that mechanistic rigor is not always possible or the best approach to problems. Second we discuss the meaning of 'verification' or 'confirmation' in a statistical, distributional, sense. Third we provide examples of how even 'unconfirmed' models can be useful tools and how 'failures' can lead to discoveries. Finally we show how complexity is not necessarily good or bad and how complex models commonly lead to simple solutions - or vice-versa. Mathematical modeling is a necessary tool of modern science, one that has expanded our horizons and ability to understand the natural world.

  2. Testing calibration routines for LISFLOOD, a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Pannemans, B.

    2009-04-01

    Traditionally hydrological models are considered as difficult to calibrate: their highly non-linearity results in rugged and rough response surfaces were calibration algorithms easily get stuck in local minima. For the calibration of distributed hydrological models two extra factors play an important role: on the one hand they are often costly on computation, thus restricting the feasible number of model runs; on the other hand their distributed nature smooths the response surface, thus facilitating the search for a global minimum. Lisflood is a distributed hydrological model currently used for the European Flood Alert System - EFAS (Van der Knijff et al, 2008). Its upcoming recalibration over more then 200 catchments, each with an average runtime of 2-3 minutes, proved a perfect occasion to put several existing calibration algorithms to the test. The tested routines are Downhill Simplex (DHS, Nelder and Mead, 1965), SCEUA (Duan et Al. 1993), SCEM (Vrugt et al., 2003) and AMALGAM (Vrugt et al., 2008), and they were evaluated on their capability to efficiently converge onto the global minimum and on the spread in the found solutions in repeated runs. The routines were let loose on a simple hyperbolic function, on a Lisflood catchment using model output as observation, and on two Lisflood catchments using real observations (one on the river Inn in the Alps, the other along the downstream stretch of the Elbe). On the mathematical problem and on the catchment with synthetic observations DHS proved to be the fastest and the most efficient in finding a solution. SCEUA and AMALGAM are a slower, but while SCEUA keeps converging on the exact solution, AMALGAM slows down after about 600 runs. For the Lisflood models with real-time observations AMALGAM (hybrid algorithm that combines several other algorithms, we used CMA, PSO and GA) came as fastest out of the tests, and giving comparable results in consecutive runs. However, some more work is needed to tweak the stopping criteria. SCEUA is a bit slower, but has very transparent stopping rules. Both have closed in on the minima after about 600 runs. DHS equals only SCEUA on convergence speed. The stopping criteria we applied so far are too strict, causing it to stop too early. SCEM converges 5-6 times slower. This is a high price for the parameter uncertainty analysis that is simultaneously done. The ease with which all algorithms find the same optimum suggests that we are dealing with a smooth and relatively simple response surface. This leaves room for other deterministic calibration algorithms being smarter than DHS in sliding downhill. PEST seems promising but sofar we haven't managed to get it running with LISFLOOD. • Duan, Q.; Gupta, V. & Sorooshian, S., 1993, Shuffled complex evolution approach for effective and efficient global minimization, J Optim Theory Appl, Kluwer Academic Publishers-Plenum Publishers, 76, 501-521 • Nelder, J. & Mead, R., 1965, A simplex method for function minimization, Comput. J., 7, 308-313 • Van Der Knijff, J. M.; Younis, J. & De Roo, A. P. J., 2008, LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation, International Journal of Geographical Information Science, • Vrugt, J.; Gupta, H.; Bouten, W. & Sorooshian, S., 2003, A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39 • Vrugt, J.; Robinson, B. & Hyman, J., 2008, Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces, IEEE Trans Evol Comput, IEEE,

  3. Assessing the hydropower potential of ungauged watersheds in Iceland using hydrological modeling and satellite retrieved snow cover images

    NASA Astrophysics Data System (ADS)

    Finger, David

    2015-04-01

    About 80% of the domestic energy production in Iceland comes from renewable energies. Hydropower accounts for about 20% this production, representing about 75% of the total electricity production in Iceland. In 2008 total electricity production from hydropower was about 12.5 TWh a-1, making Iceland a worldwide leader in hydropower production per capita. Furthermore, the total potential of hydroelectricity in Iceland is estimated to amount up to 220 TWh a-1. In this regard, hydrological modelling is an essential tool to adapt a sustainable management of water resources and estimate the potential of possible new sites for hydropower production. We used the conceptual lumped Hydrologiska Byråns Vattenbalansavdelning model (HBV) to estimate the potential of hydropower production in two remote areas in north-eastern Iceland (Leirdalshraun, a 274 km2 area above 595 m asl and Hafralónsá, a 946 km2 area above 235 m asl). The model parameters were determined by calibrating the model with discharge data from gauged sub catchments. Satellite snow cover images were used to constrain melt parameters of the model and assure adequate modelling of snow melt in the ungauged areas. This was particularly valuable to adequately estimate the contribution of snow melt, rainfall runoff and groundwater intrusion from glaciers outside the topographic boundaries of the selected watersheds. Runoff from the entire area potentially used for hydropower exploitation was estimated using the parameter sets of the gauged sub-catchments. Additionally, snow melt from the ungauged areas was validated with satellite based snow cover images, revealing a robust simulation of snow melt in the entire area. Based on the hydrological modelling the total amount of snow melt and rainfall runoff available in Leirdalshraun and Hafralónsá amounts up to 700 M m3 a-1 and 1000 M m3 a-1, respectively. These results reveal that the total hydropower potential of the two sites amounts up to 1.2 TWh a-1 hydroelectricity, accounting for about 10% of the current production in Iceland. These result are of eminent importance to embed sustainable and resilient based water management in discussions concerning future plans of national energy production.

  4. France-wide future evolution of discharges for the next decades: a multi-RCP/GCM/hydrological model and calibration exercise

    NASA Astrophysics Data System (ADS)

    Thirel, Guillaume; Nicolas, Madeleine; Beersma, Jules

    2015-04-01

    Due to complex interactions between atmosphere, vegetation, oceans, land and human beings, climate is continually evolving. The last IPCC report highlighted that by the end of the 21st century, dramatic climate modifications may occur: in Europe, the temperature is expected to increase by several degrees, and the evolution of precipitation is more uncertain. These changes will impact the water cycle, and as a consequence river discharges, which can potentially impact economical, industrial and touristic activities as well as the ecosphere. In order to provide new insights for hydrology in France, we propose to assess the impact of climate change on discharge module, high and low flows for over 800 river points in France. For this, the last CMIP5 projections are used for the periods 2021-2050 and 2071-2100. This country-wide evaluation, a compromise between basin-based and continental studies usually performed in literature, is of the utmost importance due to the numerous interconnections of water uses inside France. For this work, the 4 IPCC Representative Concentration Pathways (RCPs) were utilized to drive part or all of 27 Global Circulation Models (GCMs) or versions of GCMs, for which one to ten different runs were available. This represents a total of 183 climatic projections that were then downscaled using the Advanced Delta Change (ADC) method, a statistical method calibrated between a past reference period and the two future periods. In this study, we applied the ADC to an 8x8 km 52-year meteorological reanalysis available over France. Six global conceptual hydrological models (GR4J, GR5J, GR6J, MORD6, TOPMO, HBV0) were used to produce the hydrological projections, allowing the representation of uncertainty in hydrological modelling. Moreover, one of the hydrological models was calibrated with several objective functions and over contrasted climatic periods. By having several methods or models for every step (except regarding the downscaling method), we aimed at representing the uncertainty in all the components of the modelling chain. We will present the future evolution of climate and discharge over France. Regarding discharges, we will focus on several indicators dedicated to high and low flows, to discharge module and regimes. If possible, the intensity of the sources of variability from the different components of the modelling chain will be quantified.

  5. Anti-HBV Drugs: Progress, Unmet Needs, and New Hope

    PubMed Central

    Kang, Lei; Pan, Jiaqian; Wu, Jiaofen; Hu, Jiali; Sun, Qian; Tang, Jing

    2015-01-01

    Approximately 240 million people worldwide are chronically infected with hepatitis B virus (HBV), which represents a significant challenge to public health. The current goal in treating chronic HBV infection is to block progression of HBV-related liver injury and inflammation to end-stage liver diseases, including cirrhosis and hepatocellular carcinoma, because we are unable to eliminate chronic HBV infection. Available therapies for chronic HBV infection mainly include nucleos/tide analogues (NAs), non-NAs, and immunomodulatory agents. However, none of them is able to clear chronic HBV infection. Thus, a new generation of anti-HBV drugs is urgently needed. Progress has been made in the development and testing of new therapeutics against chronic HBV infection. This review aims to summarize the state of the art in new HBV drug research and development and to forecast research and development trends and directions in the near future. PMID:26389937

  6. Anti-HBV Drugs: Progress, Unmet Needs, and New Hope.

    PubMed

    Kang, Lei; Pan, Jiaqian; Wu, Jiaofen; Hu, Jiali; Sun, Qian; Tang, Jing

    2015-09-01

    Approximately 240 million people worldwide are chronically infected with hepatitis B virus (HBV), which represents a significant challenge to public health. The current goal in treating chronic HBV infection is to block progression of HBV-related liver injury and inflammation to end-stage liver diseases, including cirrhosis and hepatocellular carcinoma, because we are unable to eliminate chronic HBV infection. Available therapies for chronic HBV infection mainly include nucleos/tide analogues (NAs), non-NAs, and immunomodulatory agents. However, none of them is able to clear chronic HBV infection. Thus, a new generation of anti-HBV drugs is urgently needed. Progress has been made in the development and testing of new therapeutics against chronic HBV infection. This review aims to summarize the state of the art in new HBV drug research and development and to forecast research and development trends and directions in the near future. PMID:26389937

  7. Diagnosing non-stationary behaviour in a hydrological model

    NASA Astrophysics Data System (ADS)

    Thyer, Mark; Westra, Seth; Leonard, Michael; Kavetski, Dmitri; Lambert, Martin

    2013-04-01

    The stationarity of hydrological models is increasingly being called into question, due partly to changes in land cover as well as natural and anthropogenic climate change. This issue is manifest in model parameters which change over time, creating challenges in calibration and validation (as the joint distribution of model parameters is conditional to the period used for model calibration), and in prediction when one wishes to investigate runoff properties in the future. This paper describes the incorporation of non-stationary parameters into a well established rainfall-runoff model - GR4J - using a Bayesian framework for calibration and prediction, and the use of an information theoretic approach to evaluate whether the inclusion of non-stationary parameters was justified. A subcatchment of the Onkaparinga river in South Australia was used as a case study, and it was found that GR4J parameter 'x1' varied significantly seasonally and also exhibited a longer-term increasing trend over the calibration period from 1974 to 1999. The inclusion of this non-stationary parameter in the model reduced the over-prediction in the drier validation period from 2000 to 2010 from 25% to 1.5%. Whilst including non-stationarity parameters provided substantial improvements in prediction, it is advocated that this non-stationary parameters be used as a diagnostic tool to identify model deficiencies, rather than for prediction. Techniques to reduce the non-stationarity by enhancing the model structure will to include one or more missing processes will be discussed.

  8. HYDROLOGIC MODEL UNCERTAINTY ASSOCIATED WITH SIMULATING FUTURE LAND-COVER/USE SCENARIOS: A RETROSPECTIVE ANALYSIS

    EPA Science Inventory

    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...

  9. HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE (HELP) MODEL: USER'S GUIDE FOR VERSION 3

    EPA Science Inventory

    The Hydrologic Evaluation of Landfill Performance (HELP) computer program is a quasi-two-dimensional hydrologic model of water movement across, into, through and out of landfills. he model accepts weather, soil and design data. andfill systems including various combinations of ve...

  10. Evapotranspiration estimates from eddy covariance towers and hydrologic modeling in managed forests in

    E-print Network

    Noormets, Asko

    Evapotranspiration estimates from eddy covariance towers and hydrologic modeling in managed forests management plays a great role in regulating the hydrological cycle, such as streamflow and evapotranspiration a r t i c l e i n f o Keywords: Evapotranspiration Eddy covariance MIKE SHE modeling Management

  11. A Retrospective Analysis of Model Uncertainty for Forecasting Hydrologic Change 1884

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate potential environmental...

  12. Optimal application of conceptual rainfall-runoff hydrological models in the Jinshajiang River basin, China

    NASA Astrophysics Data System (ADS)

    Tayyab, M.; Zhou, J.; Zeng, X.; Chen, L.; Ye, L.

    2015-05-01

    For specific research areas different hydrological models have shown different characteristics. By comparing different hydrological models on the same area we should get better and more authentic results. The objective of this research study is to highlight the importance of model selection for specific research areas. For the Jinshajiang River basin, three conceptual hydrological models including the Xin'anjiang model, the Antecedent precipitation index (API) model and the Tank model are applied to select the most suitable model for flood forecasting, based on the hourly rainfall and hourly discharge data. Data were analysed by comparing the simulation outputs of the three models with the Nash-Sutcliffe efficiency and Correlation coefficient index. Results showed that the performance of the three models were not very different. On the basis of data need and the characteristics of the research basin, the Xin'anjiang model was selected as the optimal and practical conceptual hydrological model for the Jinshajiang River basin.

  13. A METHODOLOGY FOR ESTIMATING UNCERTAINTY OF A DISTRIBUTED HYDROLOGIC MODEL: APPLICATION TO POCONO CREEK WATERSHED

    EPA Science Inventory

    Utility of distributed hydrologic and water quality models for watershed management and sustainability studies should be accompanied by rigorous model uncertainty analysis. However, the use of complex watershed models primarily follows the traditional {calibrate/validate/predict}...

  14. Feedback Loop of Data Infilling Using Model Result of Actual Evapotranspiration from Satellites and Hydrological Model

    NASA Astrophysics Data System (ADS)

    Murdi Hartanto, Isnaeni; Alexandridis, Thomas K.; van Andel, Schalk Jan; Solomatine, Dimitri

    2014-05-01

    Using satellite data in a hydrological model has long been occurring in modelling of hydrological processes, as a source of low cost regular data. The methods range from using satellite products as direct input, model validation, and data assimilation. However, the satellite data frequently face the missing value problem, whether due to the cloud cover or the limited temporal coverage. The problem could seriously affect its usefulness in hydrological model, especially if the model uses it as direct input, so data infilling becomes one of the important parts in the whole modelling exercise. In this research, actual evapotranspiration product from satellite is directly used as input into a spatially distributed hydrological model, and validated by comparing the catchment's end discharge with measured data. The instantaneous actual evapotranspiration is estimated from MODIS satellite images using a variation of the energy balance model for land (SEBAL). The eight-day cumulative actual evapotranspiration is then obtained by a temporal integration that uses the reference evapotranspiration calculated from meteorological data [1]. However, the above method cannot fill in a cell if the cell is constantly having no-data value during the eight-day periods. The hydrological model requires full set of data without no-data cells, hence, the no-data cells in the satellite's evapotranspiration map need to be filled in. In order to fills the no-data cells, an output of hydrological model is used. The hydrological model is firstly run with reference evapotranspiration as input to calculate discharge and actual evapotranspiration. The no-data cells in the eight-day cumulative map from the satellite are then filled in with the output of the first run of hydrological model. The final data is then used as input in a hydrological model to calculate discharge, thus creating a loop. The method is applied in the case study of Rijnland, the Netherlands where in the winter, cloud cover is persistent and leads to many no-data cells in the satellite products. The Rijnland area is a low-lying area with tight water system control. The satellite data is used as input in a SIMGRO model, a spatially distributed hydrological model that is able to handle the controlled water system and that is suitable for the low-lying areas in the Netherlands. The application in the Rijnland area gives overall a good result of total discharge. By using the method, the hydrological model is improved in term of spatial hydrological state, where the original model is only calibrated to discharge in one location. [1] Alexandridis, T.K., Cherif, I., Chemin, Y., Silleos, G.N., Stavrinos, E. & Zalidis, G.C. (2009). Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas. Remote Sensing. 1

  15. Multi-model ensemble hydrologic prediction and uncertainties analysis

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Ren, L.; Yang, X.; Ma, M.; Liu, Y.

    2014-09-01

    Modelling uncertainties (i.e. input errors, parameter uncertainties and model structural errors) inevitably exist in hydrological prediction. A lot of recent attention has focused on these, of which input error modelling, parameter optimization and multi-model ensemble strategies are the three most popular methods to demonstrate the impacts of modelling uncertainties. In this paper the Xinanjiang model, the Hybrid rainfall-runoff model and the HYMOD model were applied to the Mishui Basin, south China, for daily streamflow ensemble simulation and uncertainty analysis. The three models were first calibrated by two parameter optimization algorithms, namely, the Shuffled Complex Evolution method (SCE-UA) and the Shuffled Complex Evolution Metropolis method (SCEM-UA); next, the input uncertainty was accounted for by introducing a normally-distributed error multiplier; then, the simulation sets calculated from the three models were combined by Bayesian model averaging (BMA). The results show that both these parameter optimization algorithms generate good streamflow simulations; specifically the SCEM-UA can imply parameter uncertainty and give the posterior distribution of the parameters. Considering the precipitation input uncertainty, the streamflow simulation precision does not improve very much. While the BMA combination not only improves the streamflow prediction precision, it also gives quantitative uncertainty bounds for the simulation sets. The SCEM-UA calculated prediction interval is better than the SCE-UA calculated one. These results suggest that considering the model parameters' uncertainties and doing multi-model ensemble simulations are very practical for streamflow prediction and flood forecasting, from which more precision prediction and more reliable uncertainty bounds can be generated.

  16. Core protein: A pleiotropic keystone in the HBV lifecycle.

    PubMed

    Zlotnick, Adam; Venkatakrishnan, Balasubramanian; Tan, Zhenning; Lewellyn, Eric; Turner, William; Francis, Samson

    2015-09-01

    Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates almost every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals - while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story." PMID:26129969

  17. Hydrologic modeling of two glaciated watersheds in Northeast Pennsylvania

    USGS Publications Warehouse

    Srinivasan, M.S.; Hamlett, J.M.; Day, R.L.; Sams, J.I.; Petersen, G.W.

    1998-01-01

    A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed streamflow during the entire simulation period was 13.36 x 106 m3 and the simulated streamflow volume was 13.82 x 106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed streamflow during the entire simulation period was 13.36??106 m3 and the simulated streamflow volume was 13.82??106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.

  18. A coupled energy transport and hydrological model for urban canopies

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Bou-Zeid, E.; Smith, J. A.

    2011-12-01

    Urban land-atmosphere interaction has been attracting more research efforts in order to understand the complex physics of flow and mass and heat transport in urban surfaces and the lower urban atmosphere. In this work, we developed and implemented a new physically-based single-layer urban canopy model, coupling the surface exchange of energy and the subsurface transport of water/soil moisture. The new model incorporates sub-facet heterogeneity for each urban surface (roof, wall or ground). This better simulates the energy transport in urban canopy layers, especially over low-intensity built (suburban type) terrains that include a significant fraction of vegetated surfaces. We implemented detailed urban hydrological models for both natural terrains (bare soil and vegetation) and porous engineered materials with water-holding capacity (concrete, gravel, etc). The skill of the new scheme was tested against experimental data collected through a wireless sensor network deployed over the campus of Princeton University. The model performance was found to be robust and insensitive to changes in weather conditions or seasonal variability. Predictions of the volumetric soil water content were also in good agreement with field measurements, highlighting the model capability of capturing subsurface water transport for urban lawns. The new model was also applied to a case study assessing different strategies, i.e. white versus green roofs, in the mitigation of urban heat island effect.

  19. MODIS-derived Potential Evapotranspiration Estimates for Operational Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Kim, J.; Hogue, T.

    2005-12-01

    The current SACramento Soil Moisture Accounting Model (SAC-SMA), used by the National Weather Service, is the primarily model for hydrologic forecasting across the United States. Potential evapotranspiration (PET), one of the required inputs, remains rather simplistic. The model traditionally uses a regional pan evaporation estimate due to the difficulty in acquiring more sophisticated measurements. This study explores an alternative methodology using only remote sensing information to capture the monthly mean distribution of potential evapotranspiration (PET) for the SAC-SMA model. We apply a simple scheme proposed by Jiang and Islam (2005) to estimate the net radiation and estimate PET within the context of the Priestley-Taylor equation using data gathered from the MODIS Terra platform. PET estimates from the MODIS data are compared with those derived from Oklahoma Mesonet ground-based measurements and traditional pan evaporation estimates. Preliminary results will be presented for the Illinois River basin at Watts (OK) identified as part of the National Weather Service's Distributed Modeling Intercomparison Project (DMIP). The resultant streamflow simulations will illustrate the sensitivity of the SAC-SMA model to potential evaporation inputs from different sources and the possibility of the application of a stand-alone PET method for un-gauged basins.

  20. Hydrologic Setting and Conceptual Hydrologic Model of the Walker River Basin, West-Central Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. Between 1882 and 2008, agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-ft. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes the hydrologic setting of the Walker River basin and a conceptual hydrologic model of the relations among streams, groundwater, and Walker Lake with emphasis on the lower Walker River basin from Wabuska to Hawthorne, Nevada. The Walker River basin is about 3,950 square miles and straddles the California-Nevada border. Most streamflow originates as snowmelt in the Sierra Nevada. Spring runoff from the Sierra Nevada typically reaches its peak during late May to early June with as much as 2,800 cubic feet per second in the Walker River near Wabuska. Typically, 3 to 4 consecutive years of below average streamflow are followed by 1 or 2 years of average or above average streamflow. Mountain ranges are comprised of consolidated rocks with low hydraulic conductivities, but consolidated rocks transmit water where fractured. Unconsolidated sediments include fluvial deposits along the active channel of the Walker River, valley floors, alluvial slopes, and a playa. Sand and gravel deposited by the Walker River likely are discontinuous strata throughout the valley floor. Thick clay strata likely were deposited in Pleistocene Lake Lahontan and are horizontally continuous, except where strata have been eroded by the Walker River. At Walker Lake, sediments mostly are clay interbedded with alluvial slope, fluvial, and deltaic deposits along the lake margins. Coarse sediments form a multilayered, confined-aquifer system that could extend several miles from the shoreline. Depth to bedrock in the lower Walker River basin ranges from about 900 to 2,000 feet. The average hydraulic conductivity of the alluvial aquifer in the lower Walker River basin is 10-30 feet per day, except where comprised of fluvial sediments. Fluvial sediments along the Walker River have an average hydraulic conductivity of 70 feet per day. Subsurface flow was estimated to be 2,700 acre-feet per year through Double Spring. Subsurface discharge to Walker Lake was estimated to be 4,400 acre-feet per year from the south and 10,400 acre-feet per year from the north. Groundwater levels and groundwater storage have declined steadily in most of Smith and Mason Valleys since 1960. Groundwater levels around Schurz, Nevada, have changed little during the past 50 years. In the Whisky Flat area south of Hawthorne, Nevada, agricultural and municipal pumpage has lowered groundwater levels since 1956. The water-level decline in Walker Lake since 1882 has caused the surrounding alluvial aquifer to drain and groundwater levels to decline. The Wabuska streamflow-gaging station in northern Mason Valley demarcates the upper and lower Walker River basin. The hydrology of the lower Walker River basin is considerably different than the upper basin. The upper basin consists of valleys separated by consolidated-rock mountains. The alluvial aquifer in each valley thins or pinches out at the downstream end, forcing most groundwater to discharge along the river near where the river is gaged. The lower Walker River basin is one surface-water/groundwater system of losing and gaining reaches from Wabuska to Walker Lake, which makes determining stream losses and the direction and amount of subsurface flow difficult. Isotopic data indicate surface water and groundwater in the lower Walker River basin are from two sources of precipitation that have evaporated. The Walker River, groundwater along the Wassuk Range, and Walker Lake plot along one evaporation line. Groundwater along th

  1. Urban Hydrology and Water Quality Modeling - Resolution Modeling Comparison for Water Quantity and Quality

    NASA Astrophysics Data System (ADS)

    Fry, T. J.; Maxwell, R. M.

    2014-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows. These hydrologic changes can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater represents a complex and dynamic component of the urban water cycle that requires careful mitigation. With the implementation of Phase II rules under the CWA, stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Large-scale patterns of stormwater runoff from urban environments are complex and it is unclear what the large-scale impacts of green infrastructure are on the water cycle. High resolution physically based hydrologic models can be used to more accurately simulate the urban hydrologic cycle. These types of models tend to be more dynamic and allow for greater flexibility in evaluating and accounting for various hydrologic processes in the urban environment that may be lost with lower resolution conceptual models. We propose to evaluate the effectiveness of high resolution models to accurately represent and determine the urban hydrologic cycle with the overall goal of being able to accurately assess the impacts of LID BMPs in urban environments. We propose to complete a rigorous model intercomparison between ParFlow and FLO-2D. Both of these models can be scaled to higher resolutions, allow for rainfall to be spatially and temporally input, and solve the shallow water equations. Each model is different in the way it accounts for infiltration, initial abstraction losses, and urban structures. The intercomparison of these models will help identify key areas of urban hydrology that can be used by agencies in developing design guidelines used in assessing LIDs in urban environments.

  2. The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion

    PubMed Central

    Chou, Shu-Fan; Tsai, Ming-Lin; Huang, Jyun-Yuan; Chang, Ya-Shu; Shih, Chiaho

    2015-01-01

    The Endosomal Sorting Complex Required for Transport (ESCRT) is an important cellular machinery for the sorting and trafficking of ubiquitinated cargos. It is also known that ESCRT is required for the egress of a number of viruses. To investigate the relationship between ESCRT and hepatitis B virus (HBV), we conducted an siRNA screening of ESCRT components for their potential effect on HBV replication and virion release. We identified a number of ESCRT factors required for HBV replication, and focused our study here on HGS (HRS, hepatocyte growth factor-regulated tyrosine kinase substrate) in the ESCRT-0 complex. Aberrant levels of HGS suppressed HBV transcription, replication and virion secretion. Hydrodynamic delivery of HGS in a mouse model significantly suppressed viral replication in the liver and virion secretion in the serum. Surprisingly, overexpression of HGS stimulated the release of HBV naked capsids, irrespective of their viral RNA, DNA, or empty contents. Mutant core protein (HBc 1–147) containing no arginine-rich domain (ARD) failed to secrete empty virions with or without HGS. In contrast, empty naked capsids of HBc 1–147 could still be promoted for secretion by HGS. HGS exerted a strong positive effect on the secretion of naked capsids, at the expense of a reduced level of virions. The association between HGS and HBc appears to be ubiquitin-independent. Furthermore, HBc is preferentially co-localized with HGS near the cell periphery, instead of near the punctate endosomes in the cytoplasm. In summary, our work demonstrated the importance of an optimum level of HGS in HBV propagation. In addition to an effect on HBV transcription, HGS can diminish the pool size of intracellular nucleocapsids with ongoing genome maturation, probably in part by promoting the secretion of naked capsids. The secretion routes of HBV virions and naked capsids can be clearly distinguished based on the pleiotropic effect of HGS involved in the ESCRT-0 complex. PMID:26431433

  3. Effects of soil parameterization on distributed hydrologic response: Testing a distributed hydrologic model using a hypothetical reality dataset

    NASA Astrophysics Data System (ADS)

    Cristea, N. C.; Kampf, S. K.; Mirus, B. B.; Loague, K.; Burges, S. J.

    2010-12-01

    Hydrologic data scarcity and discrepancies between model scale and point measurements are often identified as the most important limitations in evaluating distributed hydrologic models. To overcome data limitation issues, we present a framework for testing and evaluating distributed hydrologic models at the catchment scale using a hypothetical reality (HR) dataset. The HR is a synthetically generated dataset using the finite element 3D fully coupled surface-subsurface Integrated Hydrology Model (VanderKwaak, 1999) that emulates the hydrologic behavior of the real Tarrawarra catchment located in southeastern Australia. The long term HR dataset is composed of continuous outflow hydrograph and internal states at 55 observation nodes for an 11-year period as well as daily snapshots of the internal states at all nodes during the six months wet period of each year. A test model, MODHMS (HydroGeoLogic, Inc, 2000, Panday and Huyakorn, 2004), is used against the HR to illustrate the framework flexibility and functionality. We use examples from the long-term simulations to show the effects of the shape of the soil moisture retention curve and saturated hydraulic conductivity Ksat on both the integrated and distributed MODHMS hydrologic responses. We consider three base cases where we use class average van Genuchten parameters from the ROSETTA database (Schaap et al., 2001) for three soil types: clay loam, loamy sand and silty clay and one common Ksat value that is within one standard deviation interval of all three classes. For each of the three base cases we then vary Ksat sequentially to the one standard deviation interval limits for each class, according to ROSETTA, to illustrate the effects of Ksat variability for the same soil water retention curve. We examine a wet period and a dry period and discuss the range of simulated hydrographs and soil moisture states that result from different MODHMS soil parameterizations, as compared with the HR. We show soil moisture patterns in the top 2cm of soil during the wet and dry periods and illustrate the variability of surface runoff production in MODHMS for the range of parameters used.

  4. Predicting hydrological signatures in ungauged catchments using spatial interpolation, index model, and rainfall-runoff modelling

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Vaze, Jai; Chiew, Francis H. S.; Teng, Jin; Li, Ming

    2014-09-01

    Understanding a catchment's behaviours in terms of its underlying hydrological signatures is a fundamental task in surface water hydrology. It can help in water resource management, catchment classification, and prediction of runoff time series. This study investigated three approaches for predicting six hydrological signatures in southeastern Australia. These approaches were (1) spatial interpolation with three weighting schemes, (2) index model that estimates hydrological signatures using catchment characteristics, and (3) classical rainfall-runoff modelling. The six hydrological signatures fell into two categories: (1) long-term aggregated signatures - annual runoff coefficient, mean of log-transformed daily runoff, and zero flow ratio, and (2) signatures obtained from daily flow metrics - concavity index, seasonality ratio of runoff, and standard deviation of log-transformed daily flow. A total of 228 unregulated catchments were selected, with half the catchments randomly selected as gauged (or donors) for model building and the rest considered as ungauged (or receivers) to evaluate performance of the three approaches. The results showed that for two long-term aggregated signatures - the log-transformed daily runoff and runoff coefficient, the index model and rainfall-runoff modelling performed similarly, and were better than the spatial interpolation methods. For the zero flow ratio, the index model was best and the rainfall-runoff modelling performed worst. The other three signatures, derived from daily flow metrics and considered to be salient flow characteristics, were best predicted by the spatial interpolation methods of inverse distance weighting (IDW) and kriging. Comparison of flow duration curves predicted by the three approaches showed that the IDW method was best. The results found here provide guidelines for choosing the most appropriate approach for predicting hydrological behaviours at large scales.

  5. Simulating hydrological responses with a physically based model in a mountainous watershed

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Chen, X.; Bi, J.; Ouyang, R.; Ren, L.

    2015-06-01

    A physical and distributed approach was proposed by Reggiani et al. (1998) to describe the hydrological responses at the catchment scale. The rigorous balance equations for mass, momentum, energy and entropy are applied on the divided spatial domains which are called Representative Elementary Watershed (REW). Based on the 2nd law of thermodynamics, Reggiani (1999) put forward several constitutive relations of hydrological processes. Associated with the above equations, the framework of a physically based distributed hydrological model was established. The crucial step for successfully applying this approach is to develop physically based closure relations for these terms and simplify the set of equations. The paper showed how a theoretical hydrological model based on the REW method was applied to prosecute the hydrological response simulation for a humid watershed. The established model was used to carry on the long-term (daily runoff forecasting) and short-term (runoff simulation of storm event) hydrological simulation in the studied watershed and the simulated results were analysed. These results and analysis proved that this physically based distributed hydrological model can produce satisfied simulation results and describe the hydrological responses correctly. Finally, several aspects to improve the model demonstrated by the results and analysis were put forward which would be carried out in the future.

  6. HYDROLOGY AND SEDIMENT MODELING USING THE BASINS NON-POINT SOURCE MODEL

    EPA Science Inventory

    The Non-Point Source Model (Hydrologic Simulation Program-Fortran, or HSPF) within the EPA Office of Water's BASINS watershed modeling system was used to simulate streamflow and total suspended solids within Contentnea Creek, North Carolina, which is a tributary of the Neuse Rive...

  7. A New Global River Network Database for Macroscale Hydrologic modeling

    SciTech Connect

    Wu, Huan; Kimball, John S.; Li, Hongyi; Huang, Maoyi; Leung, Lai-Yung R.; Adler, Robert F.

    2012-09-28

    Coarse resolution (upscaled) river networks are critical inputs for runoff routing in macroscale hydrologic models. Recently, Wu et al. (2011) developed a hierarchical Dominant River Tracing (DRT) algorithm for automated extraction and spatial upscaling of basin flow directions and river networks using fine-scale hydrography inputs (e.g., flow direction, river networks, and flow accumulation). The DRT was initially applied using HYDRO1K baseline fine-scale hydrography inputs and the resulting upscaled global hydrography maps were produced at several spatial scales, and verified against other available regional and global datasets. New baseline fine-scale hydrography data from HydroSHEDS are now available for many regions and provide superior scale and quality relative to HYDRO1K. However, HydroSHEDS does not cover regions above 60°N. In this study, we applied the DRT algorithms using combined HydroSHEDS and HYDRO1K global fine-scale hydrography inputs, and produced a new series of upscaled global river network data at multiple (1/16° to 2°) spatial resolutions in a consistent (WGS84) projection. The new upscaled river networks are internally consistent and congruent with the baseline fine-scale inputs. The DRT results preserve baseline fine-scale river networks independent of spatial scales, with consistency in river network, basin shape, basin area, river length, and basin internal drainage structure between upscaled and baseline fine-scale hydrography. These digital data are available online for public access (ftp://ftp.ntsg.umt.edu/pub/data/DRT/) and should facilitate improved regional to global scale hydrological simulations, including runoff routing and river discharge calculations.

  8. Soil hydrologic characterization for modeling large scale soil remediation protocols

    NASA Astrophysics Data System (ADS)

    Romano, Nunzio; Palladino, Mario; Di Fiore, Paola; Sica, Benedetto; Speranza, Giuseppe

    2014-05-01

    In Campania Region (Italy), the Ministry of Environment identified a National Interest Priority Sites (NIPS) with a surface of about 200,000 ha, characterized by different levels and sources of pollution. This area, called Litorale Domitio-Agro Aversano includes some polluted agricultural land, belonging to more than 61 municipalities in the Naples and Caserta provinces. In this area, a high level spotted soil contamination is moreover due to the legal and outlaw industrial and municipal wastes dumping, with hazardous consequences also on the quality of the water table. The EU-Life+ project ECOREMED (Implementation of eco-compatible protocols for agricultural soil remediation in Litorale Domizio-Agro Aversano NIPS) has the major aim of defining an operating protocol for agriculture-based bioremediation of contaminated agricultural soils, also including the use of crops extracting pollutants to be used as biomasses for renewable energy production. In the framework of this project, soil hydrologic characterization plays a key role and modeling water flow and solute transport has two main challenging points on which we focus on. A first question is related to the fate of contaminants infiltrated from stormwater runoff and the potential for groundwater contamination. Another question is the quantification of fluxes and spatial extent of root water uptake by the plant species employed to extract pollutants in the uppermost soil horizons. Given the high variability of spatial distribution of pollutants, we use soil characterization at different scales, from field scale when facing root water uptake process, to regional scale when simulating interaction between soil hydrology and groundwater fluxes.

  9. The TopoFlow Hydrologic Model: A New Community Project

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.

    2004-05-01

    TopoFlow is a powerful, spatially-distributed hydrologic model with a user-friendly, wizard-style point-and-click interface. It is an open-source model that was designed to be easily modified and extended by a user community of hydrologists. Its main purpose is to model many different physical processes in a watershed with the goal of accurately predicting how various hydrologic variables will evolve in time in response to climatic forcings. The streamlined graphical interface makes it easy to perform multiple runs with different settings and different methods for parameterizing various physical processes; this makes it an excellent tool for research and teaching. Time evolutions for single pixels (such as hydrographs), collections of pixels, or entire grids (as animations) are all supported as output options. The currently supported physical processes are: Snowmelt (degree-day or energy balance method), Precipitation (uniform or varying in space/time), Evapotranspiration (Priestley-Taylor or energy balance), Infiltration (Green-Ampt coming soon), Channel/overland flow (Manning or law of wall) and Darcian, multi-layer subsurface flow. For each physical process, the user selects a "method" to be used to model that process from a droplist of options, and then specifies the input data that is required for that method and the output variables that are of interest. The ability to handle springs, sinks and canals was recently added. TopoFlow is designed so that users can use existing methods, share methods with others, or add their own methods and incorporate them into the graphical user interface. A method called "None" is always available to turn off any given physical process, and cleanly-written templates are provided to simplify the task of adding new methods. Input variables may be specified as a scalar (to be distributed uniformly), a time series, a spatial grid, or a grid seqence indexed by time. Many of the physical process methods used in TopoFlow are based on those in the ARHYTHM model, as documented by Zhang et el. (2000). ARHYTHM has been validated with data for many Arctic watersheds. TopoFlow is a work in progress and we are very interested in getting other groups involved as users, testers, and developers.

  10. Coupling of the simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To represent the effects of frozen soil on hydrology in cold regions, a new physically based distributed hydrological model has been developed by coupling the simultaneous heat and water model (SHAW) with the geomorphology based distributed hydrological model (GBHM), under the framework of the water...

  11. The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology

    ERIC Educational Resources Information Center

    Marshall, Jilll A.; Castillo, Adam J.; Cardenas, M. Bayani

    2015-01-01

    We investigated the effect of modeling and visualization resources on upper-division, undergraduate and graduate students' performance on an open-ended assessment of their understanding of physical hydrology. The students were enrolled in one of five sections of a physical hydrology course. In two of the sections, students completed homework…

  12. Development and application of a simple hydrologic model for water simulation for a Brazilian Headwater Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physically based hydrologic models for watershed are important tools to support water resources management and predicting hydrologic impacts produced by land-use change. Rio Grande Basin is located in south of Minas Gerais State, and the Rio Grande is the main tributary of basin which has 2080 km2 d...

  13. A model for simulation of the climate and hydrology of the Great Lakes basin

    E-print Network

    A model for simulation of the climate and hydrology of the Great Lakes basin Brent M. Lofgren Great of the land hydrology of the Great Lakes basin and of the evaporation and thermodynamics of the Great Lakes. It is intended for running coupled atmosphere-surface climate scenarios for the Great Lakes basin, to gain

  14. Evapotranspiration and irrigation algorithms in hydrologic modeling:Present Status and Opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic models are used extensively for predicting water availability and water quality responses to alternative irrigation, tillage, crop, and fertilizer management practices and global climate change. Modeling results have been frequently used by regulatory agencies for developing remedial meas...

  15. PREDICTIVE UNCERTAINTY IN HYDROLOGIC AND WATER QUALITY MODELING: APPROACHES, APPLICATION TO ENVIRONMENTAL MANAGEMENT, AND FUTURE CHALLENGES

    EPA Science Inventory

    Extant process-based hydrologic and water quality models are indispensable to water resources planning and environmental management. However, models are only approximations of real systems and often calibrated with incomplete and uncertain data. Reliable estimates, or perhaps f...

  16. Modeling low impact development potential with hydrological response units.

    PubMed

    Eric, Marija; Fan, Celia; Joksimovic, Darko; Li, James Y

    2013-01-01

    Evaluations of benefits of implementing low impact development (LID) stormwater management techniques can extend up to a watershed scale. This presents a challenge for representing them in watershed models, since they are typically orders of magnitude smaller in size. This paper presents an approach that is focused on trying to evaluate the benefits of implementing LIDs on a lot level. The methodology uses the concept of urban hydrological response Unit and results in developing and applying performance curves that are a function of lot properties to estimate the potential benefit of large-scale LID implementation. Lot properties are determined using a municipal geographic information system database and processed to determine groups of lots with similar properties. A representative lot from each group is modeled over a typical rainfall year using USEPA Stormwater Management Model to develop performance functions that relate the lot properties and the change in annual runoff volume and corresponding phosphorus loading with different LIDs implemented. The results of applying performance functions on all urban areas provide the potential locations, benefit and cost of implementation of all LID techniques, guiding future decisions for LID implementation by watershed area municipalities. PMID:24334886

  17. Regional scale hydrology with a new land surface processes model

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Crosson, William

    1995-01-01

    Through the CaPE Hydrometeorology Project, we have developed an understanding of some of the unique data quality issues involved in assimilating data of disparate types for regional-scale hydrologic modeling within a GIS framework. Among others, the issues addressed here include the development of adequate validation of the surface water budget, implementation of the STATSGO soil data set, and implementation of a remote sensing-derived landcover data set to account for surface heterogeneity. A model of land surface processes has been developed and used in studies of the sensitivity of surface fluxes and runoff to soil and landcover characterization. Results of these experiments have raised many questions about how to treat the scale-dependence of land surface-atmosphere interactions on spatial and temporal variability. In light of these questions, additional modifications are being considered for the Marshall Land Surface Processes Model. It is anticipated that these techniques can be tested and applied in conjunction with GCIP activities over regional scales.

  18. HBV genotype F: natural history and treatment.

    PubMed

    Marciano, Sebastián; Galdame, Omar A; Gadano, Adrián C

    2013-01-01

    The analysis of the HBV genome revealed the existence of 10 genotypes, named A-J. Evidence of the influence of the different genotypes in the natural history and treatment response to nucleoside/nucleotide analogues or interferon-based regimens is scant. HBV genotype F is one of the most prevalent circulating genotypes in South America and the Arctic Circle. Since most of the available information on HBV is from Asia, the US and Europe, it reflects their predominant genotypes: A, B, C and D. To date, the evidence is not fully confirmed, but it appears that genotype F chronic hepatitis B is associated with a more aggressive course of liver disease, reflected by higher histological indexes, a higher risk of development of hepatocellular carcinoma and a higher rate of liver-related mortality. In terms of treatment response, the available data is, unfortunately, even more limited; however, what data is available suggests acceptable and similar response rates to pegylated interferon-?2a in genotype F compared to genotype A. Response rates to nucleoside/nucleotide analogues is not influenced by genotype. The review of this limited data sheds light on the necessity to conduct further studies in South America and the Arctic Circle in order to better understand the different aspects of HBV genotype F, especially in relation to treatment response. PMID:23792712

  19. Detection of Hepatitis B Virus (HBV) Genomes and HBV Drug Resistant Variants by Deep Sequencing Analysis of HBV Genomes in Immune Cell Subsets of HBV Mono-Infected and/or Human Immunodeficiency Virus Type-1 (HIV-1) and HBV Co-Infected Individuals

    PubMed Central

    Lee, Z.; Nishikawa, S.; Gao, S.; Eksteen, J. B.; Czub, M.; Gill, M. J.; Osiowy, C.; van der Meer, F.; van Marle, G.; Coffin, C. S.

    2015-01-01

    The hepatitis B virus (HBV) and the human immunodeficiency virus type 1 (HIV-1) can infect cells of the lymphatic system. It is unknown whether HIV-1 co-infection impacts infection of peripheral blood mononuclear cell (PBMC) subsets by the HBV. Aims To compare the detection of HBV genomes and HBV sequences in unsorted PBMCs and subsets (i.e., CD4+ T, CD8+ T, CD14+ monocytes, CD19+ B, CD56+ NK cells) in HBV mono-infected vs. HBV/HIV-1 co-infected individuals. Methods Total PBMC and subsets isolated from 14 HBV mono-infected (4/14 before and after anti-HBV therapy) and 6 HBV/HIV-1 co-infected individuals (5/6 consistently on dual active anti-HBV/HIV therapy) were tested for HBV genomes, including replication indicative HBV covalently closed circular (ccc)-DNA, by nested PCR/nucleic hybridization and/or quantitative PCR. In CD4+, and/or CD56+ subsets from two HBV monoinfected cases, the HBV polymerase/overlapping surface region was analyzed by next generation sequencing. Results All analyzed whole PBMC from HBV monoinfected and HBV/HIV coinfected individuals were HBV genome positive. Similarly, HBV DNA was detected in all target PBMC subsets regardless of antiviral therapy, but was absent from the CD4+ T cell subset from all HBV/HIV-1 positive cases (P<0.04). In the CD4+ and CD56+ subset of 2 HBV monoinfected cases on tenofovir therapy, mutations at residues associated with drug resistance and/or immune escape (i.e., G145R) were detected in a minor percentage of the population. Summary HBV genomes and drug resistant variants were detectable in PBMC subsets from HBV mono-infected individuals. The HBV replicates in PBMC subsets of HBV/HIV-1 patients except the CD4+ T cell subpopulation. PMID:26390290

  20. On the use of spatially distributed, time-lapse microgravity surveys to inform hydrological modeling

    NASA Astrophysics Data System (ADS)

    Piccolroaz, Sebastiano; Majone, Bruno; Palmieri, Francesco; Cassiani, Giorgio; Bellin, Alberto

    2015-09-01

    In the last decades significant technological advances together with improved modeling capabilities fostered a rapid development of geophysical monitoring techniques in support of hydrological modeling. Geophysical monitoring offers the attractive possibility to acquire spatially distributed information on state variables. These provide complementary information about the functioning of the hydrological system to that provided by standard hydrological measurements, which are either intrinsically local or the result of a complex spatial averaging process. Soil water content is an example of state variable, which is relatively simple to measure pointwise (locally) but with a vanishing constraining effect on catchment-scale modeling, while streamflow data, the typical hydrological measurement, offer limited possibility to disentangle the controlling processes. The objective of this work is to analyze the advantages offered by coupling traditional hydrological data with unconventional geophysical information in inverse modeling of hydrological systems. In particular, we explored how the use of time-lapse, spatially distributed microgravity measurements may improve the conceptual model identification of a topographically complex Alpine catchment (the Vermigliana catchment, South-Eastern Alps, Italy). The inclusion of microgravity data resulted in a better constraint of the inversion procedure and an improved capability to identify limitations of concurring conceptual models to a level that would be impossible relying only on streamflow data. This allowed for a better identification of model parameters and a more reliable description of the controlling hydrological processes, with a significant reduction of uncertainty in water storage dynamics with respect to the case when only streamflow data are used.

  1. Two-Dimensional Coupled Distributed Hydrologic-Hydraulic Model Simulation on Watershed

    NASA Astrophysics Data System (ADS)

    Cea, Miguel; Rodriguez, Martin

    2015-10-01

    The objective of this work is to develop a coupled distributed model that enables to analyze water movement in watershed as well as analyze the rainfall-runoff. More specifically, it allows to estimate the various hydrologic water cycle variables at each point of the watershed. In this paper, we have carried out a coupled model of a distributed hydrological and two-dimensional hydraulic models. We have incorporated a hydrological rainfall-runoff model calculated by cell based on the Soil Conservation Service (SCS) method to the hydraulic model, leaving it for the hydraulic model (GUAD2D) to conduct the transmission to downstream cells. The goal of the work is demonstrate the improved predictive capability of the coupled Hydrological-Hydraulic models in a watershed.

  2. Statistical procedures for evaluating daily and monthly hydrologic model predictions

    USGS Publications Warehouse

    Coffey, M.E.; Workman, S.R.; Taraba, J.L.; Fogle, A.W.

    2004-01-01

    The overall study objective was to evaluate the applicability of different qualitative and quantitative methods for comparing daily and monthly SWAT computer model hydrologic streamflow predictions to observed data, and to recommend statistical methods for use in future model evaluations. Statistical methods were tested using daily streamflows and monthly equivalent runoff depths. The statistical techniques included linear regression, Nash-Sutcliffe efficiency, nonparametric tests, t-test, objective functions, autocorrelation, and cross-correlation. None of the methods specifically applied to the non-normal distribution and dependence between data points for the daily predicted and observed data. Of the tested methods, median objective functions, sign test, autocorrelation, and cross-correlation were most applicable for the daily data. The robust coefficient of determination (CD*) and robust modeling efficiency (EF*) objective functions were the preferred methods for daily model results due to the ease of comparing these values with a fixed ideal reference value of one. Predicted and observed monthly totals were more normally distributed, and there was less dependence between individual monthly totals than was observed for the corresponding predicted and observed daily values. More statistical methods were available for comparing SWAT model-predicted and observed monthly totals. The 1995 monthly SWAT model predictions and observed data had a regression Rr2 of 0.70, a Nash-Sutcliffe efficiency of 0.41, and the t-test failed to reject the equal data means hypothesis. The Nash-Sutcliffe coefficient and the R r2 coefficient were the preferred methods for monthly results due to the ability to compare these coefficients to a set ideal value of one.

  3. An Open Source modular platform for hydrological model implementation

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur; Bruland, Oddbjørn

    2010-05-01

    An implementation framework for setup and evaluation of spatio-temporal models is developed, forming a highly modularized distributed model system. The ENKI framework allows building space-time models for hydrological or other environmental purposes, from a suite of separately compiled subroutine modules. The approach makes it easy for students, researchers and other model developers to implement, exchange, and test single routines in a fixed framework. The open-source license and modular design of ENKI will also facilitate rapid dissemination of new methods to institutions engaged in operational hydropower forecasting or other water resource management. Written in C++, ENKI uses a plug-in structure to build a complete model from separately compiled subroutine implementations. These modules contain very little code apart from the core process simulation, and are compiled as dynamic-link libraries (dll). A narrow interface allows the main executable to recognise the number and type of the different variables in each routine. The framework then exposes these variables to the user within the proper context, ensuring that time series exist for input variables, initialisation for states, GIS data sets for static map data, manually or automatically calibrated values for parameters etc. ENKI is designed to meet three different levels of involvement in model construction: • Model application: Running and evaluating a given model. Regional calibration against arbitrary data using a rich suite of objective functions, including likelihood and Bayesian estimation. Uncertainty analysis directed towards input or parameter uncertainty. o Need not: Know the model's composition of subroutines, or the internal variables in the model, or the creation of method modules. • Model analysis: Link together different process methods, including parallel setup of alternative methods for solving the same task. Investigate the effect of different spatial discretization schemes. o Need not: Write or compile computer code, handle file IO for each modules, • Routine implementation and testing. Implementation of new process-simulating methods/equations, specialised objective functions or quality control routines, testing of these in an existing framework. o Need not: Implement user or model interface for the new routine, IO handling, administration of model setup and run, calibration and validation routines etc. From being developed for Norway's largest hydropower producer Statkraft, ENKI is now being turned into an Open Source project. At the time of writing, the licence and the project administration is not established. Also, it remains to port the application to other compilers and computer platforms. However, we hope that ENKI will prove useful for both academic and operational users.

  4. Modeling of Thermal-Hydrological-Chemical Laboratory Experiments

    SciTech Connect

    P. F. Dobson; T. J. Kneafsey; E. L. Sonnenthal; Nicolas Spycher

    2001-05-31

    The emplacement of heat-generating nuclear waste in the potential geologic repository at Yucca Mountain, Nevada, will result in enhanced water-rock interaction around the emplacement drifts. Water present in the matrix and fractures of the rock around the drift may vaporize and migrate via fractures to cooler regions where condensation would occur. The condensate would react with the surrounding rock, resulting in mineral dissolution. Mineralized water flowing under gravity back towards the heat zone would boil, depositing the dissolved minerals. Such mineral deposition would reduce porosity and permeability above the repository, thus altering the flow paths of percolating water. The objective of this research is to use coupled thermal-hydrological-chemical (THC) models to simulate previously conducted laboratory experiments involving tuff dissolution and mineral precipitation in a boiling, unsaturated fracture. Numerical simulations of tuff dissolution and fracture plugging were performed using a modified version of the TOUGHREACT code developed at LBNL by T. Xu and K. Pruess. The models consider the transport of heat, water, gas and dissolved constituents, reactions between gas, mineral and aqueous phases, and the coupling of porosity and permeability to mineral dissolution and precipitation. The model dimensions and initial fluid chemistry, rock mineralogy, permeability, and porosity were defined using the experimental conditions. A 1-D plug-flow model was used to simulate dissolution resulting from reaction between deionized water and crushed ash flow tuff. A 2-D model was developed to simulate the flow of mineralized water through a planar fracture within a block of ash flow tuff where boiling conditions led to mineral precipitation. Matrix blocks were assigned zero permeability to confine fluid flow to the fracture, and permeability changes in the fracture were specified using the porosity cubic law relationship.

  5. The Impact of Microwave-Derived Surface Soil Moisture on Watershed Hydrological Modeling

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Hsu, A. Y.; Jackson, T. J.; Wood, E. F.; Zion, M.

    1997-01-01

    The usefulness of incorporating microwave-derived soil moisture information in a semi-distributed hydrological model was demonstrated for the Washita '92 experiment in the Little Washita River watershed in Oklahoma. Initializing the hydrological model with surface soil moisture fields from the ESTAR airborne L-band microwave radiometer on a single wet day at the start of the study period produced more accurate model predictions of soil moisture than a standard hydrological initialization with streamflow data over an eight-day soil moisture drydown.

  6. Effect of length of the observed dataset on the calibration of a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Cui, X.; Sun, W.; Teng, J.; Song, H.; Yao, X.

    2015-05-01

    Calibration of hydrological models in ungauged basins is now a hot research topic in the field of hydrology. In addition to the traditional method of parameter regionalization, using discontinuous flow observations to calibrate hydrological models has gradually become popular in recent years. In this study, the possibility of using a limited number of river discharge data to calibrate a distributed hydrological model, the Soil and Water Assessment Tool (SWAT), was explored. The influence of the quantity of discharge measurements on model calibration in the upper Heihe Basin was analysed. Calibration using only one year of daily discharge measurements was compared with calibration using three years of discharge data. The results showed that the parameter values derived from calibration using one year's data could achieve similar model performance with calibration using three years' data, indicating that there is a possibility of using limited numbers of discharge data to calibrate the SWAT model effectively in poorly gauged basins.

  7. A Conceptual Model for Evaluating Hydrologic Connectivity in Geographically Isolated Wetlands (Invited)

    NASA Astrophysics Data System (ADS)

    Leibowitz, S. G.; Rains, M. C.

    2013-12-01

    Knowledge about hydrologic connectivity between aquatic resources is critical to understanding and managing watershed hydrology and to the legal status of those resources. In particular, information is needed on the hydrologic connectivity and effects of geographically isolated wetlands (GIWs) on downstream waters. GIWs mostly consist of depressions that typically lack surface water connections to other water bodies. However, GIWs may connect to downstream waters at a range of time scales through either surface water fill and spill events during flooding or through groundwater. Investigations of such connectivity are few, and have been limited to specific regional types of GIWs. An understanding of the general factors that control hydrologic connectivity of GIWs and downstream waters is lacking. Here we present a conceptual model that describes these general factors. By combining elements of the hydrologic budget with site and regional characteristics, we classify GIWs by type and magnitude of potential hydrologic connectivity. Combining this information with hydrologic landscape characteristics that are generally available throughout the US could allow GIW hydrologic connectivity to be evaluated. For example, GIWs that occur in areas that have high rainfall and/or snowmelt relative to basin capacity, that have low soil permeability, and occur on a high slope would have a higher probability of fill and spill connectivity. For these same climatic and basin characteristics, high soil and aquifer permeability would favor groundwater connectivity. We illustrate the conceptual model with several case studies of different GIW types.

  8. Review of soil water models with respect to savanna hydrology 

    E-print Network

    Derry, Julian F; Russell, Graham; Liedloff, Adam C

    2006-07-21

    Effective management leading towards sustainable rangeland production in arid and semi-arid regions will stem from effective soil water management and comprehension of the hydrological properties of the soil in relation ...

  9. Virtual Hydrologic Environment (VHE) - Design and implementation of a GIS data model for the integration with hydrologic modeling and its application to Meijiang watershed area in East China

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sun, F.; Lai, G. Y.; Kalbacher, T.; Kolditz, O.

    2009-04-01

    Virtual Hydrologic Environment (VHE) is an integrated approach where two major data systems are included: integration of different types of GIS and water resources data, integration of data and modeling. The Unified Modeling Language (UML) facilitates the design of GIS based relational database model GeoHydro/DataBase(GH/DB) and is used to create a specialized set of geo- and hydro-objects from both surface and subsurface hydrology in a consistent manner. Feather classes were created to store spatial data, such as sub-catchments and steam network. Tables were created to store time series and other parameters. Relationship classes were developed to link related objects. Furthermore, a graphical user interface is implemented as a link between object- and process-oriented numerical model GeoSys/RockFlow and GH/DB for the pre- and post-processing of model data and parameters. This VHE concept is applied to the Meijiang watershed area which belongs to the Poyang lake basin, the biggest freshwater drainage area in East China. A coupled regional hydrologic soil model is developed for the understanding of surface/subsurface water interaction. The GH/DB has been populated with data from the Meijiang site. The soil compartment is directly coupled to the atmosphere via the land surface and to the aquifers. The high-resolution modeling is achieved by parallel computation techniques. VHE as a bridge between surface and subsurface hydrology can improve our understanding of the hydrologic cycle, the interactions between water, earth, ecosystems and man and its role in the context of climate change. The integration of databases and modeling by the use of methods from scientific computing and information technology leads to a comprehensive and consistent representation of the VHE and thus enhances our understanding about the interactions and coupling processes between the different compartments of the hydrologic system.

  10. A framework to assess the realism of model structures using hydrological signatures

    NASA Astrophysics Data System (ADS)

    Euser, T.; Winsemius, H. C.; Hrachowitz, M.; Fenicia, F.; Uhlenbrook, S.; Savenije, H. H. G.

    2013-05-01

    The use of flexible hydrological model structures for hypothesis testing requires an objective and diagnostic method to identify whether a rainfall-runoff model structure is suitable for a certain catchment. To determine if a model structure is realistic, i.e. if it captures the relevant runoff processes, both performance and consistency are important. We define performance as the ability of a model structure to mimic a specific part of the hydrological behaviour in a specific catchment. This can be assessed based on evaluation criteria, such as the goodness of fit of specific hydrological signatures obtained from hydrological data. Consistency is defined as the ability of a model structure to adequately reproduce several hydrological signatures simultaneously while using the same set of parameter values. In this paper we describe and demonstrate a new evaluation Framework for Assessing the Realism of Model structures (FARM). The evaluation framework tests for both performance and consistency using a principal component analysis on a range of evaluation criteria, all emphasizing different hydrological behaviour. The utility of this evaluation framework is demonstrated in a case study of two small headwater catchments (Maimai, New Zealand, and Wollefsbach, Luxembourg). Eight different hydrological signatures and eleven model structures have been used for this study. The results suggest that some model structures may reveal the same degree of performance for selected evaluation criteria while showing differences in consistency. The results also show that some model structures have a higher performance and consistency than others. The principal component analysis in combination with several hydrological signatures is shown to be useful to visualise the performance and consistency of a model structure for the study catchments. With this framework performance and consistency are evaluated to identify which model structure suits a catchment better compared to other model structures. Until now the framework has only been based on a qualitative analysis and not yet on a quantitative analysis.

  11. Application of remote sensing to hydrology. [for the formulation of watershed behavior models

    NASA Technical Reports Server (NTRS)

    Ambaruch, R.; Simmons, J. W.

    1973-01-01

    Streamflow forecasting and hydrologic modelling are considered in a feasibility assessment of using the data produced by remote observation from space and/or aircraft to reduce the time and expense normally involved in achieving the ability to predict the hydrological behavior of an ungaged watershed. Existing watershed models are described, and both stochastic and parametric techniques are discussed towards the selection of a suitable simulation model. Technical progress and applications are reported and recommendations are made for additional research.

  12. Modeling Feedbacks Between Individual Human Decisions and Hydrology Using Interconnected Physical and Social Models

    NASA Astrophysics Data System (ADS)

    Murphy, J.; Lammers, R. B.; Proussevitch, A. A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Alessa, L.; Kliskey, A. D.

    2014-12-01

    The global hydrological cycle intersects with human decision making at multiple scales, from dams and irrigation works to the taps in individuals' homes. Residential water consumers are commonly encouraged to conserve; these messages are heard against a background of individual values and conceptions about water quality, uses, and availability. The degree to which these values impact the larger-hydrological dynamics, the way that changes in those values have impacts on the hydrological cycle through time, and the feedbacks by which water availability and quality in turn shape those values, are not well explored. To investigate this domain we employ a global-scale water balance model (WBM) coupled with a social-science-grounded agent-based model (ABM). The integration of a hydrological model with an agent-based model allows us to explore driving factors in the dynamics in coupled human-natural systems. From the perspective of the physical hydrologist, the ABM offers a richer means of incorporating the human decisions that drive the hydrological system; from the view of the social scientist, a physically-based hydrological model allows the decisions of the agents to play out against constraints faithful to the real world. We apply the interconnected models to a study of Tucson, Arizona, USA, and its role in the larger Colorado River system. Our core concept is Technology-Induced Environmental Distancing (TIED), which posits that layers of technology can insulate consumers from direct knowledge of a resource. In Tucson, multiple infrastructure and institutional layers have arguably increased the conceptual distance between individuals and their water supply, offering a test case of the TIED framework. Our coupled simulation allows us to show how the larger system transforms a resource with high temporal and spatial variability into a consumer constant, and the effects of this transformation on the regional system. We use this to explore how pricing, messaging, and social dynamics impact demand, how changes in demand affect the regional water system, and under what system challenges the values of the individuals are likely to change. This study is a preamble to modeling multiple regionally connected cities and larger systems with impacts on hydrology at the continental and global scales.

  13. Modelling socio-hydrological systems: a review of concepts, approaches and applications

    NASA Astrophysics Data System (ADS)

    Blair, P.; Buytaert, W.

    2015-09-01

    Interactions between humans and the environment are occurring on a scale that has never previously been seen; one environmental facet that has seen particular co-evolution with society is water. The scale of human interaction with the water cycle, along with the coupling present between social and hydrological systems, means that decisions that impact water also impact people. Models are often used to assist in decision-making regarding hydrological systems, and so in order for effective decisions to be made regarding water resource management, these interactions and feedbacks should be accounted for in models used to analyse systems in which water and humans interact. This paper reviews literature surrounding aspects of socio-hydrological modelling. It begins with background information regarding the current state of socio-hydrology as a discipline, before covering reasons for modelling and potential applications. Some important concepts that underlie socio-hydrological modelling efforts are then discussed, including ways of viewing socio-hydrological systems, space and time in modelling, complexity, data and model conceptualisation. Several modelling approaches are described, the stages in their development detailed and their applicability to socio-hydrological cases discussed. Gaps in research are then highlighted to guide directions for future research. The review of literature suggests that the nature of socio-hydrological study, being interdisciplinary, focusing on complex interactions between human and natural systems, and dealing with long horizons, is such that modelling will always present a challenge; it is, however, the task of the modeller to use the wide range tools afforded to them to overcome these challenges as much as possible. The focus in socio-hydrology is on understanding the human-water system in a holistic sense, which differs from the problem solving focus of other water management fields, and as such models in socio-hydrology should be developed with a view to gaining new insight into these dynamics. There is an essential choice that socio-hydrological modellers face in deciding between representing individual system processes, or viewing the system from a more abstracted level and modelling it as such; using these different approaches have implications for model development, applicability and the insight that they are capable of giving, and so the decision regarding how to model the system requires thorough consideration of, among other things, the nature of understanding that is sought.

  14. Coupling Radar Rainfall to Hydrological Models for Water Abstraction Management

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; MacDonald, Ken

    2015-04-01

    The impacts of climate change and growing water use are likely to put considerable pressure on water resources and the environment. In the UK, a reform to surface water abstraction policy has recently been proposed which aims to increase the efficiency of using available water resources whilst minimising impacts on the aquatic environment. Key aspects to this reform include the consideration of dynamic rather than static abstraction licensing as well as introducing water trading concepts. Dynamic licensing will permit varying levels of abstraction dependent on environmental conditions (i.e. river flow and quality). The practical implementation of an effective dynamic abstraction strategy requires suitable flow forecasting techniques to inform abstraction asset management. Potentially the predicted availability of water resources within a catchment can be coupled to predicted demand and current storage to inform a cost effective water resource management strategy which minimises environmental impacts. The aim of this work is to use a historical analysis of UK case study catchment to compare potential water resource availability using modelled dynamic abstraction scenario informed by a flow forecasting model, against observed abstraction under a conventional abstraction regime. The work also demonstrates the impacts of modelling uncertainties on the accuracy of predicted water availability over range of forecast lead times. The study utilised a conceptual rainfall-runoff model PDM - Probability-Distributed Model developed by Centre for Ecology & Hydrology - set up in the Dove River catchment (UK) using 1km2 resolution radar rainfall as inputs and 15 min resolution gauged flow data for calibration and validation. Data assimilation procedures are implemented to improve flow predictions using observed flow data. Uncertainties in the radar rainfall data used in the model are quantified using artificial statistical error model described by Gaussian distribution and propagated through the model to assess its influence on the forecasted flow uncertainty. Furthermore, the effects of uncertainties at different forecast lead times on potential abstraction strategies are assessed. The results show that over a 10 year period, an average of approximately 70 ML/d of potential water is missed in the study catchment under a convention abstraction regime. This indicates a considerable potential for the use of flow forecasting models to effectively implement advanced abstraction management and more efficiently utilize available water resources in the study catchment.

  15. On the Hydrologic Adjustment of Climate-Model Projections: The Potential Pitfall of Potential Evapotranspiration

    USGS Publications Warehouse

    Milly, Paul C.; Dunne, Krista A.

    2011-01-01

    Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median -11%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate-change impacts on water.

  16. Towards ecosystem accounting: a comprehensive approach to modelling multiple hydrological ecosystem services

    NASA Astrophysics Data System (ADS)

    Duku, C.; Rathjens, H.; Zwart, S. J.; Hein, L.

    2015-03-01

    Ecosystem accounting is an emerging field that aims to provide a consistent approach to analysing environment-economy interactions. In spite of the progress made in mapping and quantifying hydrological ecosystem services, several key issues must be addressed if ecohydrological modelling approaches are to be aligned with ecosystem accounting. They include modelling hydrological ecosystem services with adequate spatiotemporal detail and accuracy at aggregated scales to support ecosystem accounting, distinguishing between service capacity and service flow, and linking ecohydrological processes to the supply of dependent hydrological ecosystem services. We present a spatially explicit approach, which is consistent with ecosystem accounting, for mapping and quantifying service capacity and service flow of multiple hydrological ecosystem services. A grid-based setup of a modified Soil Water and Assessment Tool (SWAT), SWAT Landscape, is first used to simulate the watershed ecohydrology. Model outputs are then post-processed to map and quantify hydrological ecosystem services and to set up biophysical ecosystem accounts. Trend analysis statistical tests are conducted on service capacity accounts to track changes in the potential to provide service flows. Ecohydrological modelling to support ecosystem accounting requires appropriate decisions regarding model process inclusion, physical and mathematical representation, spatial heterogeneity, temporal resolution, and model accuracy. We demonstrate this approach in the Upper Ouémé watershed in Benin. Our analyses show that integrating hydrological ecosystem services in an ecosystem accounting framework provides relevant information on ecosystems and hydrological ecosystem services at appropriate scales suitable for decision-making. Our analyses further identify priority areas important for maintaining hydrological ecosystem services as well as trends in hydrological ecosystem services supply over time.

  17. Modelling hydrology and water quality in a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Candela, Angela; Viviani, Gaspare

    2010-05-01

    In this study the SWAT model has been used in order to analyse and quantify pollution dynamics at basin scale depending on concentrated and diffuse sources. Nowadays, the receiving water bodies quality safeguarding is of growing importance due to the promulgation of recent laws as well as the growing sensitivity regarding the environment issues by the scientific and practitioner committee. Recently the EU 2000/60 (Water Framework Directive) makes the analysis of receiving water bodies even more complex by integrating the pollution in urban areas in a framework of the pollution sources at catchment scale. and making necessary further integration of environmental impacts associated with discharges concentrates civilian and productive with the widespread pollution linked mainly to agriculture and zoo-technical activities. The complexity of natural systems and the large number of polluting sources and variables to be monitored requires the adoption of models able to get a better view of the whole system in a simplified way without neglecting the most important physical phenomena. Particularly, in this study the SWAT model was considered since it is an integrated hydrological model that are, nowadays, needed to support the implementation of integrated water management plans and to comply with the current requirements of the WFD. In addition, the SWAT model is interfaced with the ARC-VIEW software which allows easy pre-and post processing of the spatially distributed input data, driving the rainfall-runoff process. The model has been applied to the experimental Nocella catchment located in Sicily (Italy), with an area of about 50 km2. The river receives wastewater and stormwater from two urban areas drained by combined sewers. The study demonstrates that the analysis of water quality in partially urbanised natural basins is complex depending on variable polluting contributions of the different parts of the system depending on specific polluting compounds. The model was calibrated and then validated, obtaining satisfactory performance. The estimation of loads from diffuse sources was difficult due to limited data availability. Thus, it was only possible to include constant diffuse pollution concentrations at present. In spite of these limitations, the model captured rather well the dynamic of flow generation and was able to predict the range of nutrient concentrations in surface water. The contribution of urban areas to the polluting loads at catchment scale is relevant especially during the dry season.

  18. Enhancing Hydrologic Modelling in the Coupled Weather Research and Forecasting-Urban Modelling System

    NASA Astrophysics Data System (ADS)

    Yang, Jiachuan; Wang, Zhi-Hua; Chen, Fei; Miao, Shiguang; Tewari, Mukul; Voogt, James A.; Myint, Soe

    2015-04-01

    Urbanization modifies surface energy and water budgets, and has significant impacts on local and regional hydroclimate. In recent decades, a number of urban canopy models have been developed and implemented into the Weather Research and Forecasting (WRF) model to capture urban land-surface processes. Most of these models are inadequate due to the lack of realistic representation of urban hydrological processes. Here, we implement physically-based parametrizations of urban hydrological processes into the single layer urban canopy model in the WRF model. The new single-layer urban canopy model features the integration of, (1) anthropogenic latent heat, (2) urban irrigation, (3) evaporation from paved surfaces, and (4) the urban oasis effect. The new WRF-urban modelling system is evaluated against field measurements for four different cities; results show that the model performance is substantially improved as compared to the current schemes, especially for latent heat flux. In particular, to evaluate the performance of green roofs as an urban heat island mitigation strategy, we integrate in the urban canopy model a multilayer green roof system, enabled by the physical urban hydrological schemes. Simulations show that green roofs are capable of reducing surface temperature and sensible heat flux as well as enhancing building energy efficiency.

  19. On the hydrologic adjustment of climate-model projections: The potential pitfall of potential evapotranspiration

    USGS Publications Warehouse

    Milly, P.C.D.; Dunne, K.A.

    2011-01-01

    Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median 211%) caused by the hydrologic model's apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen-Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors' findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climatechange impacts on water. Copyright ?? 2011, Paper 15-001; 35,952 words, 3 Figures, 0 Animations, 1 Tables.

  20. Distributed hydrologic model testing at the catchment scale using a hypothetical reality data set

    NASA Astrophysics Data System (ADS)

    Cristea, N. C.; Kampf, S. K.; Mirus, B. B.; Loague, K.; Burges, S. J.

    2009-12-01

    Distributed hydrologic model performance is typically assessed by comparing the outlet simulated and measured hydrographs, without considering how well the model simulates internal states. The scarcity of observed internal hydrologic variables and the scale discrepancies between point measurements and simulations are some of the most important challenges for evaluating the internal dynamics of the modeled domain. To overcome the impediment of the reduced availability and level of detail in the observed data, we propose a testing framework based on a hypothetical reality approach to evaluate distributed hydrologic models at catchment scale. The hypothetical reality represents a computer generated data set designed to emulate the hydrologic behavior of a real catchment located in southeastern Australia. The hypothetical reality was generated using InHM which represents fully coupled 3D variably saturated subsurface and 2D surface flow. The hypothetical reality is composed of 11 years of continuous hydrologic response, including the discharge hydrograph, and saturation / total head time series at 55 locations. A test model can be evaluated against the hypothetical reality for both discharge and internal states. This experimental framework offers a robust structure for addressing a range of questions. Will the information on internal states improve the calibration process? What are the implications for our ability to design a monitoring network to assist model calibration and improve the model overall performance? What measurements will most effectively characterize the dynamics of the hydrologic response? As an example, we use the framework to test the performance of MODHMS, a distributed model that is similar to InHM but with a more modular structure that allows a wide range of model configurations. Long- term simulations were designed to evaluate how MODHMS performs relative to the hypothetical reality. We present examples of simulations from the battery of tests developed to show the use and functionality of the testing framework. We illustrate the importance of scale and evapotranspiration representation for the near surface hydrologic response and for calibrating a distributed hydrologic model using internal states data.

  1. Hydrological modelling of a small catchment using SWAT-2000 Ensuring correct flow partitioning for contaminant modelling

    NASA Astrophysics Data System (ADS)

    Kannan, N.; White, S. M.; Worrall, F.; Whelan, M. J.

    2007-02-01

    SummaryThe performance of the SWAT-2000 model was evaluated using stream flow at the outlet of the 142 ha Colworth catchment (Bedfordshire, UK). This catchment has been monitored since October 1999. The soil type consists of clay loam soil over stony calcareous clay and a rotation of wheat, oil seed rape, grass, beans and peas is grown. Much of the catchment is tile drained. Acceptable performance in hydrological modelling, along with correct simulation of the processes driving the water balance were essential first requirements for predicting contaminant transport. Initial results from SWAT-2000 identified some necessary modifications in the model source code for correct simulation of processes driving water balance. After modification of the code, hydrological simulation, crop growth and evapotranspiration (ET) patterns were realistic when compared with empirical data. Acceptable model performance (based on a number of error measures) was obtained in final model runs, with reasonable runoff partitioning into overland flow, tile drainage and base flow.

  2. Liver type I regulatory T cells suppress germinal center formation in HBV-tolerant mice.

    PubMed

    Xu, Long; Yin, Wenwei; Sun, Rui; Wei, Haiming; Tian, Zhigang

    2013-10-15

    The liver plays a critical role in inducing systemic immune tolerance, for example, during limiting hypersensitivity to food allergy and in rendering acceptance of allotransplant or even hepatotropic pathogens. We investigated the unknown mechanisms of liver tolerance by using an established hepatitis B virus (HBV)-carrier mouse model, and found that these mice exhibited an antigen-specific tolerance toward peripheral HBsAg vaccination, showing unenlarged draining lymph node (DLN), lower number of germinal centers (GC), and inactivation of GC B cells and follicular T helper (Tfh) cells. Both in vivo and in vitro immune responses toward HBsAg were suppressed by mononuclear cells from HBV-carrier mice, which were CD4(+) Foxp3(-) type 1 regulatory T (Tr1)-like cells producing IL-10. Using recipient Rag1(-/-) mice, hepatic Tr1-like cells from day 7 of HBV-persistent mice acquired the ability to inhibit anti-HBV immunity 3 d earlier than splenic Tr1-like cells, implying that hepatic Tr1-like cells were generated before those in spleen. Kupffer cell depletion or IL-10 deficiency led to impairment of Tr1-like cell generation, along with breaking HBV persistence. The purified EGFP(+)CD4(+) T cells (containing Tr1-like cells) from HBV-carrier mice trafficked in higher numbers to DLN in recipient mice after HBsAg vaccination, and subsequently inactivated both Tfh cells and GC B cells via secreting IL-10, resulting in impaired GC formation and anti-HB antibody production. Thus, our results indicate Tr1-like cells migrate from the liver to the DLN and inhibit peripheral anti-HBV immunity by negatively regulating GC B cells and Tfh cells. PMID:24089450

  3. Spinoculation Enhances HBV Infection in NTCP-Reconstituted Hepatocytes

    PubMed Central

    Yan, Ran; Zhang, Yongmei; Cai, Dawei; Liu, Yuanjie; Cuconati, Andrea; Guo, Haitao

    2015-01-01

    Hepatitis B virus (HBV) infection and its sequelae remain a major public health burden, but both HBV basic research and the development of antiviral therapeutics have been hindered by the lack of an efficient in vitro infection system. Recently, sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the HBV receptor. We herein report that we established a NTCP-complemented HepG2 cell line (HepG2-NTCP12) that supports HBV infection, albeit at a low infectivity level following the reported infection procedures. In our attempts to optimize the infection conditions, we found that the centrifugation of HepG2-NTCP12 cells during HBV inoculation (termed “spinoculation”) significantly enhanced the virus infectivity. Moreover, the infection level gradually increased with accelerated speed of spinoculation up to 1,000g tested. However, the enhancement of HBV infection was not significantly dependent upon the duration of centrifugation. Furthermore, covalently closed circular (ccc) DNA was detected in infected cells under optimized infection condition by conventional Southern blot, suggesting a successful establishment of HBV infection after spinoculation. Finally, the parental HepG2 cells remained uninfected under HBV spinoculation, and HBV entry inhibitors targeting NTCP blocked HBV infection when cells were spinoculated, suggesting the authentic virus entry mechanism is unaltered under centrifugal inoculation. Our data suggest that spinoculation could serve as a standard protocol for enhancing the efficiency of HBV infection in vitro. PMID:26070202

  4. Hydrologic modeling using triangulated irregular networks : terrain representation, flood forecasting and catchment response

    E-print Network

    Vivoni, Enrique R. (Enrique Rafael), 1975-

    2003-01-01

    Numerical models are modern tools for capturing the spatial and temporal variability in the land-surface hydrologic response to rainfall and understanding the physical relations between internal watershed processes and ...

  5. Parsimonious Hydrologic and Nitrate Response Models For Silver Springs, Florida

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Yaquian-Luna, Jose Antonio; Jawitz, James W.; Annable, Michael D.; Hatfield, Kirk

    2014-05-01

    Silver Springs with an approximate discharge of 25 m3/sec is one of Florida's first magnitude springs and among the largest springs worldwide. Its 2500-km2 springshed overlies the mostly unconfined Upper Floridan Aquifer. The aquifer is approximately 100 m thick and predominantly consists of porous, fractured and cavernous limestone, which leads to excellent surface drainage properties (no major stream network other than Silver Springs run) and complex groundwater flow patterns through both rock matrix and fast conduits. Over the past few decades, discharge from Silver Springs has been observed to slowly but continuously decline, while nitrate concentrations in the spring water have enormously increased from a background level of 0.05 mg/l to over 1 mg/l. In combination with concurrent increases in algae growth and turbidity, for example, and despite an otherwise relatively stable water quality, this has given rise to concerns about the ecological equilibrium in and near the spring run as well as possible impacts on tourism. The purpose of the present work is to elaborate parsimonious lumped parameter models that may be used by resource managers for evaluating the springshed's hydrologic and nitrate transport responses. Instead of attempting to explicitly consider the complex hydrogeologic features of the aquifer in a typically numerical and / or stochastic approach, we use a transfer function approach wherein input signals (i.e., time series of groundwater recharge and nitrate loading) are transformed into output signals (i.e., time series of spring discharge and spring nitrate concentrations) by some linear and time-invariant law. The dynamic response types and parameters are inferred from comparing input and output time series in frequency domain (e.g., after Fourier transformation). Results are converted into impulse (or step) response functions, which describe at what time and to what magnitude a unitary change in input manifests at the output. For the hydrologic response model, frequency spectra of groundwater recharge and spring discharge suggest an exponential response model, which may explain a significant portion of spring discharge variability with only two fitting parameters (mean response time 2.4 years). For the transport model, direct use of nitrate data is confounded by inconsistent data and a strong trend. Instead, chloride concentrations in rainfall and at the spring are investigated as a surrogate candidate. Preliminary results indicate that the transport response function of the springshed as a whole may be of the gamma type, which possesses both a larger initial peak as well as a longer tail than the exponential response function. This is consistent with the large range of travel times to be expected between input directly into fast conduits connected to the spring (e.g., though sinkholes) and input or back-diffusion from the rock matrix. The result implies that reductions in nitrate input, especially at remote and hydraulically not well connected locations, will only manifest in a rather delayed and smoothed out form in concentration observed at the spring.

  6. Using models for the optimization of hydrologic monitoring

    USGS Publications Warehouse

    Fienen, Michael N.; Hunt, Randall J.; Doherty, John E.; Reeves, Howard W.

    2011-01-01

    Hydrologists are often asked what kind of monitoring network can most effectively support science-based water-resources management decisions. Currently (2011), hydrologic monitoring locations often are selected by addressing observation gaps in the existing network or non-science issues such as site access. A model might then be calibrated to available data and applied to a prediction of interest (regardless of how well-suited that model is for the prediction). However, modeling tools are available that can inform which locations and types of data provide the most 'bang for the buck' for a specified prediction. Put another way, the hydrologist can determine which observation data most reduce the model uncertainty around a specified prediction. An advantage of such an approach is the maximization of limited monitoring resources because it focuses on the difference in prediction uncertainty with or without additional collection of field data. Data worth can be calculated either through the addition of new data or subtraction of existing information by reducing monitoring efforts (Beven, 1993). The latter generally is not widely requested as there is explicit recognition that the worth calculated is fundamentally dependent on the prediction specified. If a water manager needs a new prediction, the benefits of reducing the scope of a monitoring effort, based on an old prediction, may be erased by the loss of information important for the new prediction. This fact sheet focuses on the worth or value of new data collection by quantifying the reduction in prediction uncertainty achieved be adding a monitoring observation. This calculation of worth can be performed for multiple potential locations (and types) of observations, which then can be ranked for their effectiveness for reducing uncertainty around the specified prediction. This is implemented using a Bayesian approach with the PREDUNC utility in the parameter estimation software suite PEST (Doherty, 2010). The techniques briefly described earlier are described in detail in a U.S. Geological Survey Scientific Investigations Report available on the Internet (Fienen and others, 2010; http://pubs.usgs.gov/sir/2010/5159/). This fact sheet presents a synopsis of the techniques as applied to a synthetic model based on a model constructed using properties from the Lake Michigan Basin (Hoard, 2010).

  7. Constraining a Distributed Hydrologic Model Using Process Constraints derived from a Catchment Perceptual Model

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei; Duffy, Chris; Musuuza, Jude; Zhang, Jun

    2015-04-01

    The increased availability of spatial datasets and hydrological monitoring techniques improves the potential to apply distributed hydrologic models robustly to simulate catchment systems. However, distributed catchment modelling remains problematic for several reasons, including the miss-match between the scale of process equations and observations, and the scale at which equations (and parameters) are applied at the model grid resolution. A key problem is that when equations are solved over a distributed grid of the catchment system, models contain a considerable number of distributed parameters, and therefore degrees of freedom, that need to be constrained through calibration. Often computational limitations alone prohibit a full search of the multidimensional parameter space. However, even when possible, insufficient data results in model parameter and/or structural equifinality. Calibration approaches therefore attempt to reduce the dimensions of parameter space to constrain model behaviour, typically by fixing, lumping or relating model parameters in some way when calibrating the model to time-series of response data. An alternative approach to help reduce the space of feasible models has been applied to lumped and semi-distributed models, where additional, often semi-qualitative information is used to constrain the internal states and fluxes of the model, which in turn help to identify feasible sets of model structures and parameters. Such process constraints have not been widely applied to distributed hydrological models, despite the fact that distributed models make more predictions of distributed states and fluxes that can potentially be constrained. This paper presents a methodology for deriving process and parameter constraints through development of a perceptual model for a given catchment system, which can then be applied in distributed model calibration and sensitivity analysis to constrain feasible parameter and model structural space. We argue that the perceptual model of a catchment - a set of perceptions codified in some lingual, pictorial, mathematical or symbolic form that represents a current state of understanding about a catchment system - should be derived independently from any modelling exercise. Such a perceptual model should be constructed hierarchically in space and time, and contain constraints on our understanding of the magnitude of stores and fluxes in the system at different scales - typically in the form of inequalities or intervals. Such information can then be applied to constrain model behaviour, depending on the mapping between process constraints and model states. We derive a perceptual model of the Plynlimon catchment (UK), and investigate the ability of different process and parameter constraints derived from the perceptual model, based on different levels of data availability, to constrain the Penn State Integrated Hydrologic Modeling System (PIHM) when applied to the catchment.

  8. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  9. Can assimilation of crowdsourced streamflow observations in hydrological modelling improve flood prediction?

    NASA Astrophysics Data System (ADS)

    Mazzoleni, M.; Verlaan, M.; Alfonso, L.; Monego, M.; Norbiato, D.; Ferri, M.; Solomatine, D. P.

    2015-11-01

    Monitoring stations have been used for decades to properly measure hydrological variables and better predict floods. To this end, methods to incorporate such observations into mathematical water models have also being developed, including data assimilation. Besides, in recent years, the continued technological improvement has stimulated the spread of low-cost sensors that allow for employing crowdsourced and obtain observations of hydrological variables in a more distributed way than the classic static physical sensors allow. However, such measurements have the main disadvantage to have asynchronous arrival frequency and variable accuracy. For this reason, this study aims to demonstrate how the crowdsourced streamflow observations can improve flood prediction if integrated in hydrological models. Two different types of hydrological models, applied to two case studies, are considered. Realistic (albeit synthetic) streamflow observations are used to represent crowdsourced streamflow observations in both case studies. Overall, assimilation of such observations within the hydrological model results in a significant improvement, up to 21 % (flood event 1) and 67 % (flood event 2) of the Nash-Sutcliffe efficiency index, for different lead times. It is found that the accuracy of the observations influences the model results more than the actual (irregular) moments in which the streamflow observations are assimilated into the hydrological models. This study demonstrates how networks of low-cost sensors can complement traditional networks of physical sensors and improve the accuracy of flood forecasting.

  10. Hydrological modelling of changing catchments: lessons from a common testing experiment

    NASA Astrophysics Data System (ADS)

    Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles

    2015-04-01

    This communication will present a summary of the outcomes of a workshop session held in Gothenburg (Sweden) during the International Association of Hydrological Sciences (IAHS) General Assembly in 2013 on the topic of modelling of temporally-varying catchments, i.e. catchments that exhibit significant changes in their physical or climate conditions over a period of record. This workshop aimed at contributing to the Panta Rhei IAHS decade by offering a tribune to modellers to debate on hydrological modelling under change. For this workshop, the participants had been invited to apply a calibration and evaluation protocol to their own hydrological models on a given set of changing catchments and to come to Gothenburg to present their results (Thirel et al., 2015a). It was recognized that this protocol, based on calibration and evaluation over contrasted periods, is an appropriate way of assessing the suitability of hydrological models to handle changing conditions. Some modellers saw this exercise as an opportunity to confront their models to conditions different from their usual application area, or to use models to better understand hydrological changes. The crucial need for dedicated protocols to evaluate models under change was also stressed by some modellers who proposed complementary testing protocols (Thirel et al., 2015b). It is of utmost importance that studies for which models are applied under extreme conditions (meaning conditions very different from their calibration conditions) are performed using well-defined protocols. Several challenges for future research to improve the hydrological modelling of changing catchments were discussed during the workshop and will be presented. References Thirel G., V. Andréassian, C. Perrin, J.-N. Audouy, L. Berthet, P. Edwards, N. Folton, C. Furusho, A. Kuentz, J. Lerat, G. Lindström, E. Martin, T. Mathevet, R. Merz, J. Parajka, D. Ruelland, J. Vaze. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments. Hydrological Sciences Journal, 2015a. DOI:10.1080/02626667.2014.967248 Thirel G., V. Andréassian, C. Perrin. Editorial: Modelling Temporally-variable Catchments. Hydrological Sciences Journal, 2015b, under review.

  11. Improved ground hydrology calculations for global climate models (GCMs) - Soil water movement and evapotranspiration

    NASA Technical Reports Server (NTRS)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-01-01

    A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.

  12. Marrying Hydrological Modelling and Integrated Assessment for the needs of Water Resource Management

    NASA Astrophysics Data System (ADS)

    Croke, B. F. W.; Blakers, R. S.; El Sawah, S.; Fu, B.; Guillaume, J. H. A.; Kelly, R. A.; Patrick, M. J.; Ross, A.; Ticehurst, J.; Barthel, R.; Jakeman, A. J.

    2014-09-01

    This paper discusses the integration of hydrology with other disciplines using an Integrated Assessment (IA) and modelling approach to the management and allocation of water resources. Recent developments in the field of socio-hydrology aim to develop stronger relationships between hydrology and the human dimensions of Water Resource Management (WRM). This should build on an existing wealth of knowledge and experience of coupled human-water systems. To further strengthen this relationship and contribute to this broad body of knowledge, we propose a strong and durable "marriage" between IA and hydrology. The foundation of this marriage requires engagement with appropriate concepts, model structures, scales of analyses, performance evaluation and communication - and the associated tools and models that are needed for pragmatic deployment or operation. To gain insight into how this can be achieved, an IA case study in water allocation in the Lower Namoi catchment, NSW, Australia is presented.

  13. Coupling socio-economic factors and eco-hydrological processes using a cascade-modeling approach

    NASA Astrophysics Data System (ADS)

    Odongo, V. O.; Mulatu, D. W.; Muthoni, F. K.; van Oel, P. R.; Meins, F. M.; van der Tol, C.; Skidmore, A. K.; Groen, T. A.; Becht, R.; Onyando, J. O.; van der Veen, A.

    2014-10-01

    Most hydrological studies do not account for the socio-economic influences on eco-hydrological processes. However, socio-economic developments often change the water balance substantially and are highly relevant in understanding changes in hydrological responses. In this study a multi-disciplinary approach was used to study the cascading impacts of socio-economic drivers of land use and land cover (LULC) changes on the eco-hydrological regime of the Lake Naivasha Basin. The basin has recently experienced substantial LULC changes exacerbated by socio-economic drivers. The simplified cascade models provided insights for an improved understanding of the socio-ecohydrological system. Results show that the upstream population has transformed LULC such that runoff during the period 1986-2010 was 32% higher than during the period 1961-1985. Cut-flower export volumes and downstream population growth explain 71% of the water abstracted from Lake Naivasha. The influence of upstream population on LULC and upstream hydrological processes explained 59% and 30% of the variance in lake storage volumes and sediment yield respectively. The downstream LULC changes had significant impact on large wild herbivore mammal species on the fringe zone of the lake. This study shows that, in cases where observed socio-economic developments are substantial, the use of a cascade-modeling approach, that couple socio-economic factors to eco-hydrological processes, can greatly improve our understanding of the eco-hydrological processes of a catchment.

  14. HBV endemicity in Mexico is associated with HBV genotypes H and G

    PubMed Central

    Roman, Sonia; Panduro, Arturo

    2013-01-01

    Hepatitis B virus (HBV) genotypes have distinct genetic and geographic diversity and may be associated with specific clinical characteristics, progression, severity of disease and antiviral response. Herein, we provide an updated overview of the endemicity of HBV genotypes H and G in Mexico. HBV genotype H is predominant among the Mexican population, but not in Central America. Its geographic distribution is related to a typical endemicity among the Mexicans which is characterized by a low hepatitis B surface antigen seroprevalence, apparently due to a rapid resolution of the infection, low viral loads and a high prevalence of occult B infection. During chronic infections, genotype H is detected in mixtures with other HBV genotypes and associated with other co-morbidities, such as obesity, alcoholism and co-infection with hepatitis C virus or human immunodeficiency virus. Hepatocellular carcinoma prevalence is low. Thus, antiviral therapy may differ significantly from the standard guidelines established worldwide. The high prevalence of HBV genotype G in the Americas, especially among the Mexican population, raises new questions regarding its geographic origin that will require further investigation. PMID:24023487

  15. A simple hydrologically based model of land surface water and energy fluxes for general circulation models

    NASA Technical Reports Server (NTRS)

    Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.

    1994-01-01

    A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.

  16. Stepwise calibration procedure for regional coupled hydrological-hydrogeological models

    NASA Astrophysics Data System (ADS)

    Labarthe, Baptiste; Abasq, Lena; de Fouquet, Chantal; Flipo, Nicolas

    2014-05-01

    Stream-aquifer interaction is a complex process depending on regional and local processes. Indeed, the groundwater component of hydrosystem and large scale heterogeneities control the regional flows towards the alluvial plains and the rivers. In second instance, the local distribution of the stream bed permeabilities controls the dynamics of stream-aquifer water fluxes within the alluvial plain, and therefore the near-river piezometric head distribution. In order to better understand the water circulation and pollutant transport in watersheds, the integration of these multi-dimensional processes in modelling platform has to be performed. Thus, the nested interfaces concept in continental hydrosystem modelling (where regional fluxes, simulated by large scale models, are imposed at local stream-aquifer interfaces) has been presented in Flipo et al (2014). This concept has been implemented in EauDyssée modelling platform for a large alluvial plain model (900km2) part of a 11000km2 multi-layer aquifer system, located in the Seine basin (France). The hydrosystem modelling platform is composed of four spatially distributed modules (Surface, Sub-surface, River and Groundwater), corresponding to four components of the terrestrial water cycle. Considering the large number of parameters to be inferred simultaneously, the calibration process of coupled models is highly computationally demanding and therefore hardly applicable to a real case study of 10000km2. In order to improve the efficiency of the calibration process, a stepwise calibration procedure is proposed. The stepwise methodology involves determining optimal parameters of all components of the coupled model, to provide a near optimum prior information for the global calibration. It starts with the surface component parameters calibration. The surface parameters are optimised based on the comparison between simulated and observed discharges (or filtered discharges) at various locations. Once the surface parameters have been determined, the groundwater component is calibrated. The calibration procedure is performed under steady state hypothesis (to minimize the procedure time length) using recharge rates given by the surface component calibration and imposed fluxes boundary conditions given by the regional model. The calibration is performed using pilot point where the prior variogram is calculated from observed transmissivities values. This procedure uses PEST (http//:www.pesthomepage.org/Home.php) as the inverse modelling tool and EauDyssée as the direct model. During the stepwise calibration process, each modules, even if they are actually dependant from each other, are run and calibrated independently, therefore contributions between each module have to be determined. For the surface module, groundwater and runoff contributions have been determined by hydrograph separation. Among the automated base-flow separation methods, the one-parameter Chapman filter (Chapman et al 1999) has been chosen. This filter is a decomposition of the actual base-flow between the previous base-flow and the discharge gradient weighted by functions of the recession coefficient. For the groundwater module, the recharge has been determined from surface and sub-surface module. References : Flipo, N., A. Mourhi, B. Labarthe, and S. Biancamaria (2014). Continental hydrosystem modelling : the concept of nested stream-aquifer interfaces. Hydrol. Earth Syst. Sci. Discuss. 11, 451-500. Chapman,TG. (1999). A comparison of algorithms for stream flow recession and base-flow separation. hydrological Processes 13, 701-714.

  17. ESA STSE North Hydrology: Development of multi-mission satellite data products in support of atmospheric and hydrological modeling of cold regions

    NASA Astrophysics Data System (ADS)

    Fernández-Prieto, D.; Duguay, C.; Gauthier, Y.; Gustafsson, D.; Malnes, E.; Mattila, O.-P.; Rontu, L.; Rott, H.; Samuelsson, P.; Solberg, R.

    2012-04-01

    Through its Support To Science Element (STSE) Programme, the European Space Agency (ESA) is currently sponsoring the North Hydrology project. The overall goal of North Hydrology is to support the international efforts coordinated by the Climate and Cryosphere (CliC) project of the World Climate Research Programme (WCRP) to exploit the use of Earth Observation (EO) technology, models and in situ data to improve the characterization of river and lake ice processes and their contribution to the Northern Hydrology system. To attain this goal, the North Hydrology project is developing a portfolio of new multi-mission geo-information products, maximizing the use of ESA satellite data, to respond to the scientific requirements of the CliC community and the operational requirements of the weather and climate operational agencies, and the requirements of the operational user community to better characterize river-ice (and glacier temporary lakes) dynamics in flood forecasting models at the basin scale. This talk will provide an overview of the North Hydrology project, the EO-based products it is generating (e.g. lake and river ice, land water surface temperature, ice flow dynamics and mass balance of outlet glaciers), the atmospheric and hydrological models it is using, and the EO data integration/assimilation experiments it is conducting. More information about ESA's STSE North Hydrology project can be found at http://env-ic3-vw2k8.uwaterloo.ca:8080/

  18. Hydrological and pesticide transfer modeling in a tropical volcanic watershed with the WATPPASS model

    NASA Astrophysics Data System (ADS)

    Mottes, Charles; Lesueur-Jannoyer, Magalie; Charlier, Jean-Baptiste; Carles, Céline; Guéné, Mathilde; Le Bail, Marianne; Malézieux, Eric

    2015-10-01

    Simulation of flows and pollutant transfers in heterogeneous media is widely recognized to be a remaining frontier in hydrology research. We present a new modeling approach to simulate agricultural pollutions in watersheds: WATPPASS, a model for Watershed Agricultural Techniques and Pesticide Practices ASSessment. It is designed to assess mean pesticide concentrations and loads that result from the use of pesticides in horticultural watersheds located on heterogeneous subsoil. WATPPASS is suited for small watershed with significant groundwater flows and complex aquifer systems. The model segments the watershed into fields with independent hydrological and pesticide transfers at the ground surface. Infiltrated water and pesticides are routed toward outlet using a conceptual reservoir model. We applied WATPPASS on a heterogeneous tropical volcanic watershed of Martinique in the French West Indies. We carried out and hydrological analysis that defined modeling constraints: (i) a spatial variability of runoff/infiltration partitioning according to land use, and (ii) a predominance of groundwater flow paths in two overlapping aquifers under permeable soils (50-60% of annual flows). We carried out simulations on a 550 days period at a daily time step for hydrology (Nashsqrt > 0.75). Weekly concentrations and loads of a persistent organic pesticide (chlordecone) were simulated for 67 weeks to evaluate the modeling approach. Pesticide simulations without specific calibration detected the mean long-term measured concentration, leading to a good quantification of the cumulative loads (5% error), but failed to represent the concentration peaks at the correct timing. Nevertheless, we succeed in adjusting the model structure to better represent the temporal dynamic of pesticide concentrations. This modification requires a proper evaluation on an independent dataset. Finally, WATPPASS is a compromise between complexity and easiness of use that makes it suited for cropping system assessment in complex pedological and geological environment.

  19. Comparative Evaluation of Semiautomated COBAS AMPLICOR Hepatitis B Virus (HBV) MONITOR Test and Manual Microwell Plate-Based AMPLICOR HBV MONITOR Test

    PubMed Central

    Marin, Irena J.; Poljak, Mario; Seme, Katja; Meglic?-Volkar, Jelka; Matic?ic?, Mojca; Les?nic?ar, Gorazd; Brinovec, Vladimir

    2001-01-01

    Comparative evaluation of the semiautomated COBAS AMPLICOR hepatitis B virus (HBV) MONITOR Test (COBAS-HBV) and manual AMPLICOR HBV MONITOR Test (AMPLICOR-HBV) on 208 serum samples revealed no significant difference in the sensitivities of the two assays. Twenty samples tested HBV DNA negative and 183 samples tested HBV DNA positive by both assays. Three samples tested positive by COBAS-HBV only and two samples tested positive by AMPLICOR-HBV only. HBV DNA concentrations determined by the two assays were significantly related (n = 183, r = 0.97, P < 0.0001), which indicates that COBAS-HBV could replace AMPLICOR-HBV. The major inconvenience of COBAS-HBV is the required performance of appropriate predilutions of high-titer samples in order to extend the narrow dynamic range of the assay. PMID:11158145

  20. Simulation of groundwater and surface water over the continental US using a hyperresolution, integrated hydrologic model

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.; Kollet, S. J.

    2014-11-01

    Interactions between surface and groundwater systems are well-established theoretically and observationally. While numerical models that solve both surface and subsurface flow equations in a single framework (matrix) are increasingly being applied, computational limitations have restricted their use to local and regional studies. Regional or watershed, scale simulations have been effective tools in understanding hydrologic processes, however there are still many questions, such as the adaptation of water resources to anthropogenic stressors and climate variability, that need to be answered across large spatial extents at high resolution. In response to this "grand challenge" in hydrology, we present the results of a parallel, integrated hydrologic model simulating surface and subsurface flow at high spatial resolution (1 km) over much of continental North America (~ 6 300 000 or 6.3 million km2). These simulations provide predictions of hydrologic states and fluxes, namely water table depth and streamflow, at unprecedented scale and resolution. The physically-based modeling approach used here requires limited parameterizations and relies only on more fundamental inputs, such as topography, hydrogeologic properties and climate forcing. Results are compared to observations and provide mechanistic insight into hydrologic process interaction. This study demonstrates both the feasibility of continental scale integrated models and their utility for improving our understanding of large-scale hydrologic systems; the combination of high resolution and large spatial extent facilitates novel analysis of scaling relationships using model outputs.

  1. Rainfall-Runoff Modeling to Compare Hydrological Processes Governing Solute Transport in Five Different Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Linard, J. I.; Webb, R. M.; Wieczorek, M. E.; Wolock, D. M.

    2004-12-01

    Non-point sources of fertilizers and pesticides from agricultural areas can impair the water quality of streams. A better understanding of how hydrological processes affect the transport of agricultural chemicals to streams is required to improve management of fresh water resources. Examining how hydrological processes vary in agricultural landscapes and subsequently affect solute transport is a focus of the U.S. Geological Survey's (USGS) National Water Quality Assessment (NAWQA) Program. As part of the NAWQA Program, the quantities of precipitation, irrigation, recharge, ground water, seepage and streamflow are being monitored along with reported application rates of agricultural chemicals within five agricultural watersheds in California, Washington, Nebraska, Indiana, and Maryland. Two quasi-distributed hydrological models capable of simulating solute transport (the Soil and Water Assessment Tool (SWAT) and the Water, Energy, Biogeochemical Model (WEBMOD)) were applied to each watershed. Although the underlying environmental processes were represented differently in each model, both models were capable of simulating the expected hydrological characteristics and dominant flow paths in each watershed. In each model, the relative contributions of infiltration-excess overland flow, saturation-excess overland flow, shallow subsurface flow, preferential flow, and deep ground water flow were estimated. These fluxes then were compared to measured in-stream solute concentrations to assess how each hydrological flow path affected water quality. Generally, soil profile characteristics, land management practices, and irrigation methods regulated hydrological connections between watershed hillslopes and receiving streams.

  2. Consistency between hydrological models and field observations: Linking processes at the hillslope scale to hydrological responses at the watershed scale

    USGS Publications Warehouse

    Clark, M.P.; Rupp, D.E.; Woods, R.A.; Tromp-van, Meerveld, H. J.; Peters, N.E.; Freer, J.E.

    2009-01-01

    The purpose of this paper is to identify simple connections between observations of hydrological processes at the hillslope scale and observations of the response of watersheds following rainfall, with a view to building a parsimonious model of catchment processes. The focus is on the well-studied Panola Mountain Research Watershed (PMRW), Georgia, USA. Recession analysis of discharge Q shows that while the relationship between dQ/dt and Q is approximately consistent with a linear reservoir for the hillslope, there is a deviation from linearity that becomes progressively larger with increasing spatial scale. To account for these scale differences conceptual models of streamflow recession are defined at both the hillslope scale and the watershed scale, and an assessment made as to whether models at the hillslope scale can be aggregated to be consistent with models at the watershed scale. Results from this study show that a model with parallel linear reservoirs provides the most plausible explanation (of those tested) for both the linear hillslope response to rainfall and non-linear recession behaviour observed at the watershed outlet. In this model each linear reservoir is associated with a landscape type. The parallel reservoir model is consistent with both geochemical analyses of hydrological flow paths and water balance estimates of bedrock recharge. Overall, this study demonstrates that standard approaches of using recession analysis to identify the functional form of storage-discharge relationships identify model structures that are inconsistent with field evidence, and that recession analysis at multiple spatial scales can provide useful insights into catchment behaviour. Copyright ?? 2008 John Wiley & Sons, Ltd.

  3. Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model

    SciTech Connect

    Naz, Bibi S; Frans, Chris; Clarke, Garry; Burns,; Lettenmaier, Dennis

    2014-01-01

    We describe an integrated spatially distributed hydrologic and glacier dynamic model, and use it to investigate the effect of glacier recession on streamflow variations for the Upper Bow River basin, a tributary of the South Saskatchewan River. Several recent studies have suggested that observed decreases in summer flows in the South Saskatchewan River are partly due to the retreat of glaciers in the river's headwaters. Modeling the effect of glacier changes on streamflow response in river basins such as the South Saskatchewan is complicated due to the inability of most existing physically-based distributed hydrologic models to represent glacier dynamics. We compare predicted variations in glacier extent, snow water equivalent and streamflow discharge made with the integrated model with satellite estimates of glacier area and terminus position, observed streamflow and snow water equivalent measurements over the period of 1980 2007. Simulations with the coupled hydrology-glacier model reduce the uncertainty in streamflow predictions. Our results suggested that on average, the glacier melt contribution to the Bow River flow upstream of Lake Louise is about 30% in summer. For warm and dry years, however, the glacier melt contribution can be as large as 50% in August, whereas for cold years, it can be as small as 20% and the timing of glacier melt signature can be delayed by a month.

  4. Comparison between fully distributed model and semi-distributed model in urban hydrology modeling

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Giangola-Murzyn, Agathe; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe

    2013-04-01

    Water management in urban areas is becoming more and more complex, especially because of a rapid increase of impervious areas. There will also possibly be an increase of extreme precipitation due to climate change. The aims of the devices implemented to handle the large amount of water generate by urban areas such as storm water retention basins are usually twofold: ensure pluvial flood protection and water depollution. These two aims imply opposite management strategies. To optimize the use of these devices there is a need to implement urban hydrological models and improve fine-scale rainfall estimation, which is the most significant input. In this paper we suggest to compare two models and their sensitivity to small-scale rainfall variability on a 2.15 km2 urban area located in the County of Val-de-Marne (South-East of Paris, France). The average impervious coefficient is approximately 34%. In this work two types of models are used. The first one is CANOE which is semi-distributed. Such models are widely used by practitioners for urban hydrology modeling and urban water management. Indeed, they are easily configurable and the computation time is reduced, but these models do not take fully into account either the variability of the physical properties or the variability of the precipitations. An alternative is to use distributed models that are harder to configure and require a greater computation time, but they enable a deeper analysis (especially at small scales and upstream) of the processes at stake. We used the Multi-Hydro fully distributed model developed at the Ecole des Ponts ParisTech. It is an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. Four heavy rainfall events that occurred between 2009 and 2011 are analyzed. The data comes from the Météo-France radar mosaic and the resolution is 1 km in space and 5 min in time. The closest radar of the Météo-France network is a C-band one located at 37 km West. In this work we compare the hydrological response of two models for the 4 rainfall events first with the available radar data. Then a particular focus is made on the impact of small-scale unmeasured rainfall variability (i.e. occurring at scales below the available one). More precisely scaling properties of rainfall are used to generate an ensemble of downscaled rainfall fields (simply by continuing the underlying cascade process whose relevant parameters are estimated on the available range of scales). An ensemble of hydrological responses is then simulated, and the variability within it analyzed. It appears that the associated uncertainty is significant and should be taken into account. Finally we will discuss the interest of deploying X-band radars (which provide an hectometric resolution) in urban environment and the potential benefits of using these models and small-scale rainfall data for the management of sewerage and retentions basin. Further analysis on these issues will be carried out next year with the installation of an X-band radar near Marne-la-Vallée (located at roughly 10 Km of the studied catchment) in the framework of the RainGain project (European project financed by the Interreg IVB funds).

  5. Using field data to inform and evaluate a new model of catchment hydrologic connectivity

    NASA Astrophysics Data System (ADS)

    Smith, Tyler; Marshall, Lucy; McGlynn, Brian; Jencso, Kelsey

    2013-10-01

    We present a new hydrologic model based on the frequency distribution of hillslope landscape elements along the stream network as a basis for simulating landscape-scale hydrologic connectivity and catchment runoff. Hydrologic connectivity describes shallow water table continuity between upland and stream elements of the catchment and is important for the movement of water and solutes to streams. This concept has gained traction in physical hydrology but has received less attention in rainfall-runoff modeling. Our model is based on the empirical studies of Jencso et al. (2009, 2010), who found a strong correlation between the duration of shallow groundwater connectivity across hillslope, riparian, and stream zones and upslope accumulated area. We explored the relationship between catchment form and function by testing the extent to which streamflow generation could be predicted by a model based on the topographic form (distribution of landscape elements) of the catchment. We applied the model to the Stringer Creek catchment of the Tenderfoot Creek Experimental Forest, located in Montana, USA. Detailed field observations collected by Jencso et al. (2009) were used to inform the underpinnings of the model and to corroborate internal consistency of the model simulations. The model demonstrated good agreement between the observed and predicted streamflow and connectivity duration curves. The ability of this model to simulate internal dynamics without conditioning the parameters on these data suggests that it has the potential to be more confidently extrapolated to other shallow, topographically driven catchments than hydrologic models that fail to consistently reproduce internal variables.

  6. Towards Improved Modeling of the Hydrologic Cycle in Streamflow Prediction Models Through Satellite Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Bowman, A. L.; Franz, K.; Hogue, T. S.

    2013-12-01

    Improving the representation of the spatial and temporal variability of the surface water balance in streamflow forecasting models is critical for increasing the accuracy and utility of water supply, flood and drought predictions. Satellite products can play a vital role to assure that Earth system models and forecast products reflect rapid and continual changes in the physical system. A current limitation in operational hydrologic forecasting models is the use of climatological potential evapotranspiration (PET) inputs derived from historical pan evaporation observations dating back to the 1950s. These PET values do not vary from year to year, and are becoming less relevant with increasing climate variability and continual land use change. We have been evaluating a MODIS-derived mean daily PET product (MODIS-PET) for input in hydrologic forecast models. MODIS-PET reflects changes in seasonal land use and meteorological conditions by incorporating near real-time vegetation, surface albedo and atmospheric satellite observations. Initial evaluations of MODIS-PET using the current operational, spatially-lumped SACramento Soil Moisture Accounting model (SACSMA) and spatially-distributed Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) have been conducted. Overall, streamflow simulations using the MODIS-PET input produce discharge data comparable to simulations using historical pan evaporation observations. However, simulations of evapotranspiration (ET) produced by the two data sets are considerably different for some basins. Given the lack of validation data other than streamflow in most basins, our understanding of how changes in model structure or data input impact the simulation of all components of the hydrologic cycle is limited. Model evaluation using multiple variables is critical to avoid compromising the accuracy of one component of the model at the expense of improving another. Therefore, in the current study we will evaluate simulations of discharge, soil moisture and ET simultaneously. The evaluation will focus on two agricultural basins, located in north-central Iowa and south-eastern Mississippi where in situ observations are available. Simulations from various models, including the SACSMA, HL-RDHM, and the SACramento Soil Moisture Accounting Heat Transfer Component for Enhanced Evapotranspiration (SAC-HTET) are being compared to better understand the range of model uncertainty related to simulated processes and results will be presented.

  7. Development of An Integrated Hydrologic Model in Yolo County, California

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Taghavi, A.; Stevenson, M.; Najmus, S.

    2006-12-01

    To more efficiently use the Cache Creek flows and the groundwater basin as the sources of water supply and to restore the riparian ecosystem along the Cache Creek, Yolo County Flood Control and Water Conservation District (YCFCWCD) in Woodland, California plans to conduct the Cache Creek Groundwater Recharge and Recovery Program (CCGRRP). The concept of this program is to operate the groundwater basin to induce greater amounts of groundwater recharge from Cache Creek directly along the creek and to increase the recharge even further by diverting rainy season water at the District's Capay Diversion Dam into the West Adams Canal to a few recharge basins outside the active channel of Cache Creek. Besides the CCGRRP, cities of Woodland and Davis are in the process of conducting groundwater management plans, and the stakeholders in Yolo County developing a long-term integrated regional water management plan (IRWMP) for the entire county. To effectively evaluate the benefits and impacts of CCGRRP, local groundwater management plans, and the Yolo County IRWMP, the Integrated Groundwater and Surface water Model (IGSM) was applied to the Yolo groundwater basin. The IGSM is a comprehensive integrated hydrologic model that simulates both surface water and groundwater flow systems, including rainfall-runoff, soil moisture accounting and unsaturated flow, crop consumptive module, stream-aquifer interaction, and groundwater flow. The finite element code was originally developed in 1990 for the California Department of Water Resources and the State Water Resources Control Board. The IGSM code has subsequently been applied to more than 25 groundwater basins in California and other states. The model code has been peer reviewed and upgraded throughout its application to various projects, with the latest upgrade in 2004, as part of the application to the Stony Creek Fan area of Sacramento Valley. The Yolo County IGSM (YCIGSM) was calibrated against the historical (1970-2000) groundwater level records at 105 monitoring wells, and three streamflow gages along Cache Creek. Calibration results show that the YCIGSM is able to reasonably simulate the long-term groundwater level trends and short-term seasonal fluctuations. The YCIGSM will be used to develop operational guidelines to manage the groundwater basin, to determine the optimum yield of water projects, to identify benefits and impacts of projects on existing groundwater users, and to assess the environmental benefits and impacts during the development of projects, as well as during the environmental permitting process.

  8. Development and application of a soil classification-based conceptual catchment-scale hydrological model

    NASA Astrophysics Data System (ADS)

    Maréchal, D.; Holman, I. P.

    2005-10-01

    A conceptual, continuous, daily, semi distributed catchment-scale rainfall-runoff model that has the potential to be ultimately used in ungauged catchments is described. The Catchment Resources and Soil Hydrology (CRASH) model is developed from the basis that the transformation of rainfall into simulated river discharge can be parameterised using pre-existing national datasets of soil, land use and weather; and that the spatial variability in soil properties and land use are important to the hydrological response of a catchment and should be incorporated into the catchment representation. Both infiltration-excess and saturation-excess runoff mechanisms are simulated, with water movement through each soil layer simulated using a capacitance approach limited according to layer physical properties. The hydrological linkage between the response unit and catchment is parameterised using the existing national Hydrology of Soil Types (HOST) classification. The HOST classification groups all UK soil types into one of 29 hydrological classes for which nationally calibrated values of Base Flow Index and Standard Percentage Runoff are provided. CRASH has been calibrated and validated for three catchments in England with contrasting soil characteristics and meteorological conditions. The model was successful at simulating time series and flow duration curves in all catchments during the calibration and validation periods. The next development stage will be to test CRASH for a large number of catchments covering a wider range of soils, land uses and meteorological conditions, in order to derive a set of regionalised model parameters based upon the HOST classification. The successful cross-scale linkage between water movement through the response unit and the catchment-scale hydrological response using the HOST classification, which incorporates the scale effects between plot and catchment, suggests that such national soil hydrological classifications may provide a sound and consistent framework for hydrological modelling in both gauged and ungauged catchments which should be extended to other regions.

  9. Hydrologic analysis of a flood based on a new Digital Elevation Model

    NASA Astrophysics Data System (ADS)

    Nishio, M.; Mori, M.

    2015-06-01

    These The present study aims to simulate the hydrologic processes of a flood, based on a new, highly accurate Digital Elevation Model (DEM). The DEM is provided by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan, and has a spatial resolution of five meters. It was generated by the new National Project in 2012. The Hydrologic Engineering Center - Hydrologic Modeling System (HEC-HMS) is used to simulate the hydrologic process of a flood of the Onga River in Iizuka City, Japan. A large flood event in the typhoon season in 2003 caused serious damage around the Iizuka City area. Precise records of rainfall data from the Automated Meteorological Data Acquisition System (AMeDAS) were input into the HEC-HMS. The estimated flood area of the simulation results by HEC-HMS was identical to the observed flood area. A watershed aggregation map is also generated by HEC-HMS around the Onga River.

  10. NONLINEAR TIME SERIES MODELS AND THEIR EXTREMES, WITH HYDROLOGICAL APPLICATIONS

    E-print Network

    Ágoston, István

    ", hydrology has always played a crucial role in the development of extreme value theory (EVT). In fact, one of the earliest statistical estimation problems associated with EVT was raised after the disastrous flooding such that the probability of a future flood lies below a certain pre-specified level (de Haan, 1990). Since then, EVT has

  11. Effective and efficient algorithm for multiobjective optimization of hydrologic models

    E-print Network

    Vrugt, Jasper A.

    Resour. Res., 39(8), 1214, doi:10.1029/2002WR001746, 2003. 1. Introduction and Scope [2] Many hydrologic evaluated in terms of several subjective visual measures, and a semi-intuitive trial-and- error process- consuming nature of manual trial-and-error calibration, there has been a great deal of research

  12. Develop hydrological relationships using a modeling approach in Mississippi delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture management practices such as tillage and crop rotations alter the hydrological budget of watersheds. Changes happen to surface runoff can be easily identify with the help of intensive USGS stream gage network, available in Mississippi, but changes to ground water table is less understood...

  13. A Data Model for Hydrologic Observations By David R. Maidment

    E-print Network

    Tarboton, David

    and groundwater observations at about 1.4 million distinct geographic locations. The National Climate Data Center and groundwater data measured at observation sites and synthesize them into a single database. This paper examines hydrologic variables such as streamflow, water quality, groundwater levels and precipation

  14. Definition of Hydrologic Response Units in Depression Plagued Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Lindsay, J. B.; Creed, I. F.

    2002-12-01

    Definition of hydrologic response units using digital elevation models (DEMs) is sensitive to the occurrence of topographic depressions. Real depressions can be important to the hydrology and biogeochemistry a catchment, often coinciding with areas of surface saturation. Artifact depressions, in contrast, result in digital "black holes", artificially truncating the hydrologic flow lengths and altering hydrologic flow directions, parameters that are often used in defining hydrologic response units. Artifact depressions must be removed from DEMs prior to definition of hydrologic response units. Depression filling or depression trenching techniques can be used to remove these artifacts. Depression trenching methods are often considered more appropriate because they preserve the topographic variability within a depression thus avoiding the creation of spurious flat areas. Current trenching algorithms are relatively slow and unable to process very large or noisy DEMs. A new trenching algorithm that overcomes these limitations is described. The algorithm does not require finding depression catchments or outlets, nor does it need special handling for nested depressions. Therefore, artifacts can be removed from large or noisy DEMs efficiently, while minimizing the number of grid elevations requiring modification. The resulting trench is a monotonically descending path starting from the lowest point in a depression, passing through the depression's outlet, and ending at a point of lower elevation outside the depression. The importance of removing artifact depressions is demonstrated by showing hydrologic response units both before and after the removal of artifact depressions from the DEM.

  15. Assessing impacts of hydropower schemes in upland rivers and sensitivity to hydrological change: new modelling tools for evaluating environmental flows

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Geris, J.; Seibert, J.; Vis, M.; Soulsby, C.

    2013-12-01

    Upland river systems provide a suite of critical ecosystem services, such as the provision of high quality downstream water supplies and the maintenance of in-stream habitats. Environmental legislation dictates that exploiting the hydro-power potential of such headwaters requires that the ecological status of in-stream habitats is maintained. This requires that decision makers have adequate scientific understanding of natural flow regimes, the nature of regulation impacts, and the sensitivity of managed systems to future change. This is often limited by a lack of adequate pre- regulation data. Here we present a new modelling tool that can be used in data sparse mountain river ecosystems to assess current impacts, evaluate sensitivity to future change and provide a basis for discussing the development of new adaptive management strategies. The HBV rainfall-runoff model was adapted to incorporate regulation components (reservoirs, water transfers), and applied to the heavily regulated River Lyon (391 km2), Scotland, UK. The Lyon has long been subjected to hydropower generation, which is supported by several river impoundments and a complex network of inter- and intra-catchment water transfers, and there are concerns that these are affecting high conservation status freshwater populations of Atlantic Salmon (Salmo salar). In the absence of adequate pre-regulation data, the model was used to characterise the natural flow regime, assess the regulation impacts, and explore sensitivities to hydrological changes in water management. Overall, changes following regulation in the Lyon include decreases in inter-and intra annual variability of all parameters of the flow regime in terms of magnitude, frequency, duration and timing that are important in various life stages of the Atlantic Salmon. Although these effects are most pronounced closest to the impoundments, the regulation affects the regime for a considerable distance downstream. Sensitivity tests showed that a more variable release regime, as opposed to changes in the efficiency of the present regulation regime, could be most beneficial for the ecological status of the Lyon. The simple, conceptual modelling approach presented here captures the dominant catchment and regulation processes well, especially at the time scale at which operation rules apply. Consequentially, it is data undemanding, flexible, widely applicable, and its results are easily communicated to stakeholders. Hence, it is providing a basis for assessing impacts on flow regimes and informing environmental flows in other (data sparse) regions with heavily regulated mountain river ecosystems.

  16. Modeling and Analysis of Global and Regional Climate Change in Relation to Atmospheric Hydrologic Processes

    NASA Technical Reports Server (NTRS)

    Johnson, Donald R.

    2001-01-01

    This research was directed to the development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. An additional objective was to investigate the accuracy and theoretical limits of global climate predictability which are imposed by the inherent limitations of simulating trace constituent transport and the hydrologic processes of condensation, precipitation and cloud life cycles.

  17. Modeling Vegetation Dynamics in Response to Hydrological Changes in a Small Urban Tropical Freshwater Wetland

    NASA Astrophysics Data System (ADS)

    Chui, T. M.; Palanisamy, B.; Mohanadas, H.

    2011-12-01

    Wetlands worldwide face drastic degradation from human-induced changes. A small freshwater wetland located within the dense urbanized island state of Singapore---the Nee Soon Wetland---is no exception. It is the only significant locality in Singapore of peat swamp forest and is home to a wide range of rare and endangered floral and faunal species. Unfortunately, changes in downstream land use and surrounding reservoirs' operations may pose threats to the coupled hydrological and vegetation systems. This study develops and applies coupled hydrological-vegetation models to understand the dynamic relationships between hydrology and vegetation systems, and simulates vegetation responses to hydrological changes in Nee Soon. The models combine a hydrological component with a vegetation component. The hydrological component accounts for both saturated and unsaturated flows, and incorporates evapotranspiration, rainfall infiltration and recharge from streams and reservoirs. The vegetation component is described by Lokta-Volterra equations that are tailored for plant growth, to simulate the vegetation dynamics of up to three species that thrive in different flooding conditions. Important findings include: (1) groundwater levels within Nee Soon are not highly sensitive to the operating levels of the surrounding reservoirs. However, (2) downstream drainage results in a localized zone of influence with significant adverse impacts, especially on the less flood-tolerant species. In addition, (3) the severely impacted less flood-tolerant species is unable to recover even when previous hydrological conditions are restored, unless the downstream drainage duration is reduced, or the plant characteristics such as maximum assimilation rates or competitiveness are increased. Finally, (4) hydrological conditions and species competitiveness supersede any other plant growth characteristics in determining the stable coexistence of different species. The developed models and modeling results simulation results help preservation efforts and guide conservation strategies in Nee Soon, as well as many wetlands worldwide.

  18. Application of Hierarchy Theory to Cross-Scale Hydrologic Modeling of Nutrient Loads

    EPA Science Inventory

    We describe a model called Regional Hydrologic Modeling for Environmental Evaluation 16 (RHyME2) for quantifying annual nutrient loads in stream networks and watersheds. RHyME2 is 17 a cross-scale statistical and process-based water-quality model. The model ...

  19. On the effects of hydrological model structure on soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Corato, Giovanni; Matgen, Patrick; Giustarini, Laura; Fenicia, Fabrizio

    2013-04-01

    Nowadays, satellite sensors allow obtaining soil moisture estimates at global scale with an adequate temporal and spatial resolution, thereby offering a theoretical chance to improve flood-forecasting systems based on rainfall-runoff models. In fact, the knowledge of antecedent soil moisture conditions plays a crucial role in predicting catchment response to rainfall events. In the literature, several studies have focused on the assimilation of soil moisture data into hydrological models. The results of these studies tend to show that an improvement in discharge and soil moisture forecasts can be obtained when the assimilated information originates from accurate in situ measurements. When dealing with the assimilation of remote sensing-derived soil moisture data, the reported results are more controversial. There is no doubt that the performances of soil moisture data assimilation studies depend on many factors: data assimilation scheme, hydrological model structure, accuracy and resolution of soil moisture data. As of today, these dependences are not well understood and the disparity of outcomes in past studies arguably reflects the differences in the design of the experiments. In this general context, the aim of this study is to investigate the effects of hydrological model structures on soil moisture data assimilation performance. The analysis focuses on the vertical "stratification" of the soil column in a conceptual hydrological model. We consider multiple structures that differ by the number of soil reservoirs and their respective sizes. The recently introduced SUPERFLEX hydrological modelling framework is used to this end. In fact, this framework allows building and modifying multiple hydrological models by combining three basic building blocks: reservoirs, lag functions and junctions. As a data assimilation scheme, the particle filter was considered. The area of interest is the Alzette catchment (1200 km2), located in Luxembourg, while the analysed period spans from 2005 to 2011. The results of our study provide some insights on model structure requirements supporting an optimal usage of in situ measured and remotely sensed soil moisture data for operational hydrology.

  20. HYDROGEOCHEM: A coupled model of HYDROlogic transport and GEOCHEMical equilibria in reactive multicomponent systems

    SciTech Connect

    Yeh, G.T.; Tripathi, V.S.

    1990-11-01

    This report presents the development of a hydrogeochemical transport model for multicomponent systems. The model is designed for applications to proper hydrological setting, accommodation of complete suite of geochemical equilibrium processes, easy extension to deal with chemical kinetics, and least constraints of computer resources. The hydrological environment to which the model can be applied is the heterogeneous, anisotropic, saturated-unsaturated subsurface media under either transient or steady state flow conditions. The geochemical equilibrium processes included in the model are aqueous complexation, adsorption-desorption, ion exchange, precipitation-dissolution, redox, and acid-base reactions. To achieve the inclusion of the full complement of these geochemical processes, total analytical concentrations of all chemical components are chosen as the primary dependent variables in the hydrological transport equations. Attendant benefits of this choice are to make the extension of the model to deal with kinetics of adsorption-desorption, ion exchange, precipitation-dissolution, and redox relatively easy. To make the negative concentrations during the iteration between the hydrological transport and geochemical equilibrium least likely, an implicit form of transport equations are proposed. To alleviate severe constraints of computer resources in terms of central processing unit (CPU) time and CPU memory, various optional numerical schemes are incorporated in the model. The model consists of a hydrological transport module and geochemical equilibrium module. Both modules were thoroughly tested in code consistency and were found to yield plausible results. The model is verified with ten examples. 79 refs., 21 figs., 17 tabs.

  1. Assessment of Digital Elevation Model (DEM) aggregation methods for hydrological modeling: Lake Chad basin, Africa

    NASA Astrophysics Data System (ADS)

    Le Coz, Mathieu; Delclaux, François; Genthon, Pierre; Favreau, Guillaume

    2009-08-01

    Digital Elevation Models (DEMs) are used to compute the hydro-geomorphological variables required by distributed hydrological models. However, the resolution of the most precise DEMs is too fine to run these models over regional watersheds. DEMs therefore need to be aggregated to coarser resolutions, affecting both the representation of the land surface and the hydrological simulations. In the present paper, six algorithms (mean, median, mode, nearest neighbour, maximum and minimum) are used to aggregate the Shuttle Radar Topography Mission (SRTM) DEM from 3? (90 m) to 5' (10 km) in order to simulate the water balance of the Lake Chad basin (2.5 Mkm 2). Each of these methods is assessed with respect to selected hydro-geomorphological properties that influence Terrestrial Hydrology Model with Biogeochemistry (THMB) simulations, namely the drainage network, the Lake Chad bottom topography and the floodplain extent. The results show that mean and median methods produce a smoother representation of the topography. This smoothing involves the removing of the depressions governing the floodplain dynamics (floodplain area<5000 km 2) but it eliminates the spikes and wells responsible for deviations regarding the drainage network. By contrast, using other aggregation methods, a rougher relief representation enables the simulation of a higher floodplain area (>14,000 km 2 with the maximum or nearest neighbour) but results in anomalies concerning the drainage network. An aggregation procedure based on a variographic analysis of the SRTM data is therefore suggested. This consists of preliminary filtering of the 3? DEM in order to smooth spikes and wells, then resampling to 5' via the nearest neighbour method so as to preserve the representation of depressions. With the resulting DEM, the drainage network, the Lake Chad bathymetric curves and the simulated floodplain hydrology are consistent with the observations (3% underestimation for simulated evaporation volumes).

  2. Evaluating the SWAT Model for Hydrological Modeling in the Xixian Watershed and A Comparison with the XAJ Model

    SciTech Connect

    Shi, Peng; Chen, Chao; Srinivasan, Raghavan; Zhang, Xuesong; Cai, Tao; Fang, Xiuqin; Qu, Simin; Chen, Xi; Li, Qiongfang

    2011-09-10

    Already declining water availability in Huaihe River, the 6th largest river in China, is further stressed by climate change and intense human activities. There is a pressing need for a watershed model to better understand the interaction between land use activities and hydrologic processes and to support sustainable water use planning. In this study, we evaluated the performance of SWAT for hydrologic modeling in the Xixian River Basin, located at the headwaters of the Huaihe River, and compared its performance with the Xinanjiang (XAJ) model that has been widely used in China

  3. New insight into unstable hillslopes hydrology from hydrogeochemical modelling.

    NASA Astrophysics Data System (ADS)

    Bertrand, C.; Marc, V.; Malet, J.-P.

    2010-05-01

    In the black marl outcrops of the French South Alps, sub surface flow conditions are considered as the main triggering factor for initiation and reactivation of landslides. The problem is traditionally addressed in term of hydrological processes (how does percolation to the water table occur?) but in some cases the origin of water is also in question. Direct rainfall is generally assumed as the only water source for groundwater recharge in shallow hillslope aquifers. The bedrock is also supposed impervious and continuous. Yet the geological environment of the study area is very complex owing to the geological history of this alpine sector. The autochthonous callovo-oxfordian black marl bedrock is highly tectonized (Maquaire et al., 2003) and may be affected by large, possibly draining discontinuities. A deep water inflow at the slip surface may at least locally result in increase the pore pressure and decrease the effective shearing resistance of the landslide material. In the active slow-moving landslide of Super-Sauze (Malet and Maquaire, 2003), this question has been addressed using hydrochemical investigations. The groundwater was sampled during five field campaigns uniformly spread out over the year from a network of boreholes. Water chemistry data were completed by geochemical and mineralogical analyses of the marl material. The major hydro-geochemical processes over area proved (1) mixing processes, (2) pyrite alteration, (3) dissolution/precipitation of carbonates and (4) cations exchange (de Montety et al., 2007). A geochemical modelling was carried out using the model Phreeqc (Parkhurst and Appelo, version 2.15, 2008) to check how suitable was observed water chemistry with the reservoir characteristics. The modelling exercise was based on a kinetics approach of soil-water interactions. The model simulates the rock alteration by the dissolution of the primary minerals and the precipitation of new phases. Initial parameters were obtained from geochemical and mineralogical analyses or from the literature (kinetics constants). The simulations showed that pH, sulphate and calcium concentrations in groundwater could be reproduced from reasonable assumptions. However, the observed high concentrations in magnesium and sodium were not correctly simulated by the model. Furthermore, a particular anomaly in the Na+ concentration was observed in the most active part of the landslide. Lastly, isotopic investigation showed that groundwater 3H content in this sector was significantly lower than groundwater content in the other parts of the landslide and lower than the mean rainwater content. This result showed that the mean groundwater age in the active part was probably higher than elsewhere in the landslide. All these arguments led us to conclude that groundwater was locally recharged with saline waters from areas outside the watershed, coming up through the bedrock using major discontinuities. This assumption is in agreement with the geological context. de Montety, V., V. Marc, C. Emblanch, J.-P. Malet, C. Bertrand, O. Maquaire, and T. A. Bogaard, 2007, Identifying the origin of groundwater and flow processes in complex landslides affecting black marls: insights from a hydrochemical survey.: Earth Surface Processes and Landforms, v. 32, p. 32-48. Malet, J.-P. and Maquaire, O., 2003. Black marl earthflows mobility and long-term seasonal dynamic in southeastern France. In: Picarelli, L. (Ed). Proceedings of the International Conference on Fast Slope Movements: Prediction and Prevention for Risk Mitigation. Patron Editore, Bologna: 333-340. Maquaire, O., Malet, J.-P., Remaître, A., Locat, J., Klotz, S. and Guillon, J., 2003. Instability conditions of marly hillslopes: towards landsliding or gullying? The case of the Barcelonnette Bassin, South East France. Engineering Geology, 70(1-2): 109-130. Parkhurst, D.L. and Appelo, C.A.J., 1999, User's guide to PHREEQC (version 2)--A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources I

  4. Assessing anthropogenic influence on the hydrology of small peri-urban catchments: Development of the object-oriented PUMMA model by integrating urban and rural hydrological models

    NASA Astrophysics Data System (ADS)

    Jankowfsky, S.; Branger, F.; Braud, I.; Rodriguez, F.; Debionne, S.; Viallet, P.

    2014-09-01

    Distributed hydrological models are useful tools for process understanding and water management, especially in peri-urban catchments where the landscape heterogeneity is large, caused by a patchwork of natural and urbanized areas. This paper presents the Peri-Urban Model for landscape MAnagement (PUMMA) built within the LIQUID® modeling framework, specifically designed to study the hydrology of peri-urban catchments. It combines rural and urban hydrological models, and is used for process understanding. The originality of PUMMA is to follow a fully object-oriented approach, for both model mesh building and process representation. Urban areas, represented by cadastral units and rural areas divided in Hydrological Response Units are thus modeled with different interacting process modules. This provides a detailed representation of the runoff generation on natural and impervious areas. Furthermore, the exchange between process modules facilitates the simulation of subsurface and overland flow, as well as groundwater drainage by sewer pipes. Several drainage networks can coexist and interact (e.g. via storm water overflow devices) and water can be stored in retention basins, which allows the modeling of complex suburban drainage systems with multiple outlets. The model is then applied to the Chaudanne catchment (2.7 km2), located in the suburbs of Lyon, France. The uncalibrated model results show the importance of surface runoff from impervious areas for summer events and flow contributions from rural zones for winter events. Furthermore, the model reveals that the retention capacity of the Chaudanne catchment is larger than for classical urban catchments due to the peri-urban character of the catchment.

  5. Benchmarking the WaterGAP3 global hydrology model in reproducing streamflow characteristics

    NASA Astrophysics Data System (ADS)

    Eisner, Stephanie; Flörke, Martina

    2015-04-01

    Global hydrological models are key tools to understand and assess the current state of global freshwater resources. They facilitate quantifying the degree of human interference on the natural hydrological regime and help to assess impacts of global and climate change on water resources. Large to global scale hydrologic simulation is, however, prone to large uncertainties which originate from spatially distributed input data (atmospheric forcing and land surface parameters) and, in particular, the (often) simplified physical process representation. Most large-scale modelling approaches are constrained by the implicit assumption that one single model structure is globally valid and the fact that the modeler lacks location-specific knowledge. In order to evaluate the quality of water availability estimates and to quantify the uncertainty associated with these estimates, it is thus essential to examine systematically where and why large scale hydrological models perform well or poor in reproducing observed streamflow characteristics. This study presents an extensive benchmarking study of the WaterGAP3 (Water - Global Assessment and Prognosis) model to reproduce observed monthly stream characteristics on the basis of more than 2400 observed streamflow records globally. WaterGAP3 is a grid-based conceptual water balance model operating on a 5 arc minute global grid. The model is explicitly designed to account for human interference on the natural hydrologic regime through flow regulation and water abstractions. Monthly simulated discharges for the period 1958-2010 are evaluated against observations based on three complementary performance metrics. Subsequently, model performance is assessed against a set of generic catchment descriptors supported by available global datasets which characterize climatic and physiographic conditions in the individual catchments as well as the degree of human alteration of the hydrologic regime. These relationships between catchment characteristics and model efficiencies help to detect inadequacies in model structure as well as in the underlying input data, thus set the stage for further model development.

  6. Correcting Inadequate Model Snow Process Descriptions Dramatically Improves Mountain Hydrology Simulations

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Fang, X.

    2014-12-01

    The vast effort in hydrology devoted to parameter calibration as a means to improve model performance assumes that the models concerned are not fundamentally wrong. By focussing on finding optimal parameter sets and ascribing poor model performance to parameter or data uncertainty, these efforts may fail to consider the need to improve models with more intelligent descriptions of hydrological processes. To test this hypothesis, a flexible physically based hydrological model including a full suite of snow hydrology processes as well as warm season, hillslope and groundwater hydrology was applied to Marmot Creek Research Basin, Canadian Rocky Mountains where excellent driving meteorology and basin biophysical descriptions exist. Model parameters were set from values found in the basin or from similar environments; no parameters were calibrated. The model was tested against snow surveys and streamflow observations. The model used algorithms that describe snow redistribution, sublimation and forest canopy effects on snowmelt and evaporative processes that are rarely implemented in hydrological models. To investigate the contribution of these processes to model predictive capability, the model was "falsified" by deleting parameterisations for forest canopy snow mass and energy, blowing snow, intercepted rain evaporation, and sublimation. Model falsification by ignoring forest canopy processes contributed to a large increase in SWE errors for forested portions of the research basin with RMSE increasing from 19 to 55 mm and mean bias (MB) increasing from 0.004 to 0.62. In the alpine tundra portion, removing blowing processes resulted in an increase in model SWE MB from 0.04 to 2.55 on north-facing slopes and -0.006 to -0.48 on south-facing slopes. Eliminating these algorithms degraded streamflow prediction with the Nash Sutcliffe efficiency dropping from 0.58 to 0.22 and MB increasing from 0.01 to 0.09. These results show dramatic model improvements by including snow redistribution and melt processes associated with wind transport and forest canopies. As most hydrological models do not currently include these processes, it is suggested that modellers first improve the realism of model structures before trying to optimise what are inherently inadequate simulations of hydrology.

  7. Satellite remote sensing and hydrologic modeling for flood monitoring in data poor environments

    NASA Astrophysics Data System (ADS)

    Khan, Sadiq Ibrahim

    2011-12-01

    Study of hydroclimatology at a range of temporal scales is important in understanding and ultimately mitigating the potential severe impacts of hydrological extreme events such as floods and droughts. Using daily in-situ data combined with the recently available satellite remote sensing data, the hydroclimatology of Nzoia basin, one of the contributing sub-catchments of Lake Victoria in the East African highlands is analyzed. The basin, with a semi-arid climate, has no sustained base flow contribution to Lake Victoria. The short spell of high discharge showed that rain is the primary cause of floods in the basin. There is only a marginal increase in annual mean discharge over the last 21 years. The 2-, 5- and 10- year peak discharges, for the entire study period showed that more years since the mid 1990s have had high peak discharges despite having relatively less annual rain. The study also presents the hydrologic model calibration and validation results over the Nzoia basin. The spatiotemporal variability of the water cycle components were quantified using a hydrologic model, with in-situ and multi-satellite remote sensing datasets. The model is calibrated using daily observed discharge data for the period between 1985 and 1999, for which model performance is estimated with a Nash Sutcliffe Efficiency (NSCE) of 0.87 and 0.23% bias. The model validation showed an error metrics with NSCE of 0.65 and 1.04% bias. Moreover, the hydrologic capability of satellite precipitation (TRMM-3B42 V6) is evaluated. In terms of reconstruction of the water cycle components the spatial distribution and time series of modeling results for precipitation and runoff showed considerable agreement with the monthly model runoff estimates and gauge observations. Runoff values responded to precipitation events that occurred across the catchment during the wet season from March to early June.The spatially distributed model inputs, states, and outputs, were found to be useful for understanding the hydrologic behavior at the catchment scale. The monthly peak runoff is observed in the months of April, May and November. The analysis revealed a linear relationship between rainfall and runoff for both wet and dry seasons. Satellite precipitation forcing data showed the potential to be used not only for the investigation of water balance but also for addressing issues pertaining to sustainability of the resources at the catchment scale. Implementation of a flood prediction system can potentially help mitigate flood induced hazards. Such a system typically requires implementation and calibration of a hydrologic model using in-situ observations (e.g. rain gauges and stream gauges). Recently, satellite remote sensing data has emerged as a viable alternative or supplement to the in-situ observations due to its availability over vast ungauged regions. The focus of this study is to integrate the best available satellite products within a semi-distributed hydrologic model to characterize the spatial extent of flooding over sparsely-gauged or ungauged basins. A satellite remote sensing based approach is proposed to calibrate a hydrologic model, simulate the spatial extent of flooding, and evaluate the probability of detecting inundated areas. A raster-based semi-distributed hydrologic model, CREST, is implemented for the Nzoia basin, a sub-basin of Lake Victoria in Africa. MODIS Terra and ASTER-based raster flood inundation maps were produced over the region and used to benchmark the hydrologic model simulations of inundated areas. The analysis showed the value of integrating satellite data such as precipitation, land cover type, topography and other data products along with space based flood inundation extents as inputs for the hydrologic model. It is concluded that the quantification of flooding spatial extent through optical sensors can help to evaluate hydrologic models and hence potentially improve hydrologic prediction and flood management strategies in ungauged catchments.

  8. Intercomparison and suitability of five Greenland topographic datasets for the purpose of hydrologic runoff modeling

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Smith, L. C.; Rennermalm, A. K.; Chu, V. W.; Gleason, C. J.; Yang, K.; Finnegan, D. C.; LeWinter, A. L.; Moller, D.; Moustafa, S.

    2012-12-01

    Rapid melting of the Greenland Ice Sheet (GrIS) and subsequent sea level rise has underscored the need for accurate modeling of hydrologic processes. Researchers rely on the accuracy of topography datasets for this purpose, especially in remote areas like Greenland where in situ validation data are difficult to acquire. A number of new remotely-sensed Digital Elevation Models (DEMs) have recently become available for Greenland, but a comparative study of their respective quality and suitability for hydrologic modeling has not been undertaken. We examine five such remotely-sensed DEMs acquired for proglacial and supraglacial ablation zones of Greenland, namely (1) WorldView stereo DEMs, (2) NASA GLISTIN-A experimental radar, (3) NASA/IceBridge Airborne Topographic Mapper (ATM), (4) Greenland Ice Mapping Project (GIMP) DEM, and (5) ASTER DEM. The quality, strengths and weaknesses of these DEMs for GrIS hydrologic modeling is assessed through intercomparison and in situ terrestrial lidar scanning data with precise RTK GPS control. Additionally, gridded bedrock (i.e. NASA/IceBridge Multichannel Coherent Radar Depth Sounder (MCoRDS); Bamber DEMs) and surface topography datasets are combined to create a hydraulic potentiometric surface for hydrologic modeling. Finally, the suitability of these combined topographic products for hydrologic modeling, characterization of GrIS meltwater runoff, and estimating sub- and/or englacial pathways is explored.

  9. In Lieu of the Paired-Catchment Approach - Hydrologic Model Change Detection at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Zegre, N. P.

    2009-05-01

    Knowledge of the effects of forest management on hydrology primarily comes from paired-catchment studies conducted world-wide. While this approach has been useful for discerning changes in small experimental catchments and has contributed fundamental knowledge of the effects of forest and natural resources management on hydrology, results from experimental catchment studies exhibit temporal variability, have limited spatial inference, and lack insight into internal catchment processes. To address these limitations, traditional field experiments can be supplemented with numerical models to isolate the effects of disturbance on catchment behavior. Outlined in this study is an alternative method of change detection for daily time-series streamflow that integrates hydrologic modeling and statistical change detection methods used to discern the effects of contemporary forest management on the hydrology of western Oregon Cascades headwater catchments. In this study, a simple rainfall-runoff model was used to generate virtual reference catchments using attributes that reflect streamflow conditions absent of forest disturbance. Streamflow was simulated under three levels of model uncertainty using GLUE and were used to construct generalized least squares regression models to discern changes in hydrologic behavior. By considering processes within a single experimental catchment rather than the two spatially explicit catchments used in traditional paired experiments, it was possible to reduce unexplained variation and increase the likelihood of correctly detecting hydrologic effects following forest harvesting. In order to evaluate the stability of the hydrologic and statistical models and catchment behavior over time, the change detection method was applied to a contemporary reference catchment. By applying the change detection model to reference catchments, it was possible to eliminate unexpected variation as a cause for detected changes in observed hydrology. Further, it was possible to attribute increased streamflow to forest management with greater certainty. Shown is the importance and necessity of coupling hydrologic modeling studies with reference catchments in order to evaluate model performance and reduce false detections from statistical models. The proposed method appears to be a useful alternative to change detection using highly variable daily streamflow.

  10. Isotopes and Isoscapes: Tools for Testing Hydrological and Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Kendall, C.

    2014-12-01

    In the 21st century, the importance of high quality water resources cannot be overstated. New approaches are needed to pinpoint sources and ages of multiple contaminants, and to better understand critical hydrologic systems. Stable isotopic compositions of materials often show strong spatial and temporal distributions related to combinations of sources and processes. Isoscapes (spatial and/or temporal maps) of riverine and atmospheric data are increasingly being found to be effective means for assessing the effects of different land uses and biogeochemical processes on water resources. Hence, isotopes and isoscapes are a potentially powerful component of monitoring and assessment programs that are aimed at quantifying and mitigating alterations to environments from human activities (anthropogenic disturbances). Locations exhibiting unusually high rates of biogeochemical cycling or elevated pollution levels usually have distinctive isotopic compositions that are suggestive or diagnostic of specific reactions and pollution sources. Isotopes can be more effective at identifying hot spots and hot moments than concentrations alone because isotopic ratios may change even when concentrations do not. Hence, isotopes provide valuable additions to standard chemical and hydrological mass balance methods. This presentation will examine how the field of isotope hydrology has evolved over my 40+ year career as an isotope geochemist, highlight several exciting recent research thrusts, and share some thoughts on future research directions.

  11. Clinical correlation between HBV infection and concomitant bacterial infections

    PubMed Central

    Li, Wei; Jin, Ronghua; Chen, Peng; Zhao, Guoxian; Li, Ning; Wu, Hao

    2015-01-01

    Bacterial infections are common in patients suffering viral hepatitis and critical for prognosis. However, any correlation between HBV and concomitant bacterial infections is not well characterized. A retrospective study was conducted from Jan 2012 to Jan 2014 on 1333 hospitalized patients infected with bacteria. Among them, 491 HBV-infected patients were co-infected with E. coli (268), S. aureus (61), P. aeruginosa (64) or K. pneumoniae (98). A group of 300 complication-free chronically HBV-infected patients were controls. We found that HBV DNA levels were elevated in patients with each of the bacterial infections (all P?HBV DNA concentration. Patterns of determinants varied in infections by Gram-positive and Gram-negative bacteria. Patients with HBV DNA???2000?IU/mL had higher rates of all four concomitant bacterial infections (all P?HBV-positive patients showed less resistance to tested antimicrobials. The HBV DNA serum concentrations were inversely correlated to the number of ineffective antimicrobials in E. coli, P. aeruginosa and K. pneumoniae infections (P?=?0.022, 0.017 and 0.016, respectively), but not S. aureus (P?=?0.194). In conclusion, bacterial infections are associated with a high level of HBV replication, which, in turn, has a significant positive impact on bacterial resistance to antimicrobials. These correlations vary between Gram-negative and Gram-positive bacteria. PMID:26634436

  12. Clinical correlation between HBV infection and concomitant bacterial infections.

    PubMed

    Li, Wei; Jin, Ronghua; Chen, Peng; Zhao, Guoxian; Li, Ning; Wu, Hao

    2015-01-01

    Bacterial infections are common in patients suffering viral hepatitis and critical for prognosis. However, any correlation between HBV and concomitant bacterial infections is not well characterized. A retrospective study was conducted from Jan 2012 to Jan 2014 on 1333 hospitalized patients infected with bacteria. Among them, 491 HBV-infected patients were co-infected with E. coli (268), S. aureus (61), P. aeruginosa (64) or K. pneumoniae (98). A group of 300 complication-free chronically HBV-infected patients were controls. We found that HBV DNA levels were elevated in patients with each of the bacterial infections (all P?HBV DNA concentration. Patterns of determinants varied in infections by Gram-positive and Gram-negative bacteria. Patients with HBV DNA???2000?IU/mL had higher rates of all four concomitant bacterial infections (all P?HBV-positive patients showed less resistance to tested antimicrobials. The HBV DNA serum concentrations were inversely correlated to the number of ineffective antimicrobials in E. coli, P. aeruginosa and K. pneumoniae infections (P?=?0.022, 0.017 and 0.016, respectively), but not S. aureus (P?=?0.194). In conclusion, bacterial infections are associated with a high level of HBV replication, which, in turn, has a significant positive impact on bacterial resistance to antimicrobials. These correlations vary between Gram-negative and Gram-positive bacteria. PMID:26634436

  13. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    NASA Astrophysics Data System (ADS)

    Van Loon, A. F.; Van Huijgevoort, M. H. J.; Van Lanen, H. A. J.

    2012-07-01

    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is: how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that were part of the model intercomparison project of WATCH (WaterMIP). For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity), drought propagation features (pooling, attenuation, lag, lengthening), and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought). Drought characteristics simulated by large-scale models clearly reflected drought propagation, i.e. drought events became less and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having less and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an underestimation of wet-to-dry-season droughts and snow-related droughts. Furthermore, almost no composite droughts were simulated for slowly responding areas, while many multi-year drought events were expected in these systems. We conclude that drought propagation processes are reasonably well reproduced by the ensemble mean of large-scale models in contrasting catchments in Europe and that some challenges remain in catchments with cold and semi-arid climates and catchments with large storage in aquifers or lakes. Improvement of drought simulation in large-scale models should focus on a better representation of hydrological processes that are important for drought development, such as evapotranspiration, snow accumulation and melt, and especially storage. Besides the more explicit inclusion of storage (e.g. aquifers) in large-scale models, also parametrisation of storage processes requires attention, for example through a global scale dataset on aquifer characteristics.

  14. Development and Application of a Parsimonious Snow-Hydrologic Modeling Suite: Investigating the Link Between Model Complexity and Predictive Uncertainty

    NASA Astrophysics Data System (ADS)

    Smith, T. J.; Marshall, L. A.

    2008-12-01

    The simulation and modeling of snowmelt and hydrologic drivers is desirable for prediction of different hydrologic variables, most significantly streamflow at the catchment outlet. This is particularly true of mountainous regions where snowmelt drives major hydrologic events and water resource predictability. We have developed a suite of parsimonious models of first-order snow and hydrologic processes to investigate the link between overall model complexity (both snow and hydrologic elements) and predictive performance. The use of simper models is motivated by the desire to capture first-order processes, in line with a top-down modeling philosophy. Such models have the capability to be more efficient in modeling the system by having less uncertainty with similar predictive power when compared to more complex model structures. Constructed in a modular fashion, the modeling suite has the ability to assess the interaction between each snowmelt and hydrologic base structure coupling, as well as to separate error between each component. The modeling suite was applied to the Stringer Creek watershed of Tenderfoot Creek Experimental Forest (TCEF), located in central Montana, USA. Making use of meteorological data collected at one of the two NRCS SNOTEL stations within TCEF's borders and streamflow data from the USFS Rocky Mountain Research Station (TCEF's managing agency), we compare the performance of different model combinations using 6 years of available data. Implementation of a Markov chain Monte Carlo approach to parameter estimation and uncertainty estimation provides the ability to characterize errors in the models (including non-stationarities), explore complex parameter spaces and interdependence, and incorporate multiple sources of data for model conditioning. The necessity of such abilities becomes especially critical in the application of a top-down modeling approach, where conceptual models are used that often involve highly interdependent model parameters. Further, the flexibility and design of the coupled, modular framework allows for the separation of uncertainty with regard to both snow and hydrologic process components.

  15. Assessing the importance of rainfall uncertainty on hydrological models with different spatial and temporal scale

    NASA Astrophysics Data System (ADS)

    Nossent, Jiri; Pereira, Fernando; Bauwens, Willy

    2015-04-01

    Precipitation is one of the key inputs for hydrological models. As long as the values of the hydrological model parameters are fixed, a variation of the rainfall input is expected to induce a change in the model output. Given the increased awareness of uncertainty on rainfall records, it becomes more important to understand the impact of this input - output dynamic. Yet, modellers often still have the intention to mimic the observed flow, whatever the deviation of the employed records from the actual rainfall might be, by recklessly adapting the model parameter values. But is it actually possible to vary the model parameter values in such a way that a certain (observed) model output can be generated based on inaccurate rainfall inputs? Thus, how important is the rainfall uncertainty for the model output with respect to the model parameter importance? To address this question, we apply the Sobol' sensitivity analysis method to assess and compare the importance of the rainfall uncertainty and the model parameters on the output of the hydrological model. In order to be able to treat the regular model parameters and input uncertainty in the same way, and to allow a comparison of their influence, a possible approach is to represent the rainfall uncertainty by a parameter. To tackle the latter issue, we apply so called rainfall multipliers on hydrological independent storm events, as a probabilistic parameter representation of the possible rainfall variation. As available rainfall records are very often point measurements at a discrete time step (hourly, daily, monthly,…), they contain uncertainty due to a latent lack of spatial and temporal variability. The influence of the latter variability can also be different for hydrological models with different spatial and temporal scale. Therefore, we perform the sensitivity analyses on a semi-distributed model (SWAT) and a lumped model (NAM). The assessment and comparison of the importance of the rainfall uncertainty and the model parameters is achieved by considering different scenarios for the included parameters and the state of the models.

  16. Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Maharjan, G. R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y. S.; Peiffer, S.; Kim, B.; Park, J.-H.; Huwe, B.

    2014-02-01

    Watershed-scale modeling can be a valuable tool to aid in quantification of water quality and yield; however, several challenges remain. In many watersheds, it is difficult to adequately quantify hydrologic partitioning. Data scarcity is prevalent, accuracy of spatially distributed meteorology is difficult to quantify, forest encroachment and land use issues are common, and surface water and groundwater abstractions substantially modify watershed-based processes. Our objective is to assess the capability of the Soil and Water Assessment Tool (SWAT) model to capture event-based and long-term monsoonal rainfall-runoff processes in complex mountainous terrain. To accomplish this, we developed a unique quality-control, gap-filling algorithm for interpolation of high-frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. The interdisciplinary model was calibrated to a unique combination of statistical, hydrologic, and plant growth metrics. Our results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. The addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. While this study shows the challenges of applying the SWAT model to complex terrain and extreme environments; by incorporating anthropogenic features into modeling scenarios, we can enhance our understanding of the hydroecological impact.

  17. Collaborative experiment on intercomparison of regional-scale hydrological models for climate impact assessment

    NASA Astrophysics Data System (ADS)

    Krysanova, Valentina; Hattermann, Fred

    2015-04-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) is a community-driven modelling effort bringing together impact modellers across sectors and scales to create more consistent and comprehensive projections of the impacts of climate change. This project is aimed in establishing a long-term, systematic, cross-sectoral impact model intercomparison process, including comparison of climate change impacts for multiple sectors using ensemble of climate scenarios and applying global and regional impact models. The project is coordinated by the Potsdam Institute for Climate Impact Research. An overview of this project and collaborative experiment related to the regional-scale water sector model intercomparison in ISI-MIP will be presented. The regional-scale water sector modelling includes eleven models applied to eleven large-scale river basins worldwide (not every model is applied to every of eleven basins). In total, 60-65 model applications will be done by several collaborating groups from different Institutions. The modelling tools include: ECOMAG, HBV, HBV-light, HYPE, LASCAM, LISFLOOD, mHM, SWAT, SWIM, VIC and WaterGAP. Eleven river basins chosen for the model application and intercomparison are: the Rhine and Tagus in Europe, the Niger and Blue Nile in Africa, the Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, the Upper Mississippi and Upper Amazon in America, and the Murray-Darling in Australia. Their drainage areas range between 67,490 km2 (Tagus) to 2,460,000 km2 (Lena). Data from global and regional datasets are used for the model setup and calibration. The model calibration and validation was done using the WATCH climate data for all cases, also checking the representation of high and low percentiles of river discharge. For most of the basins, also intermediate gauge stations were included in the calibration. The calibration and validation results, evaluated with the Nash and Sutcliffe efficiency (NSE) and percent bias (PBIAS), are mostly satisfactory. As the next task, climate scenarios from five GCMs driven by four RCPs will be applied, and model outputs intercompared. The presentation will focus on coordination and communication problems, designing the modelling procedure, creating a modelling protocol, and data supply.

  18. Evaluating and improving hydrologic processes in the community land model for integrated earth system modeling

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Khamis, K.; Blaen, P. J.; Hainie, S.; Mellor, C.; Brown, L. E.; Milner, A. M.

    2011-12-01

    High climatic sensitivity and low anthropogenic influence make glacierized river basins important environments for examining hydrological and ecological response to global change. This paper synthesises findings from previous and ongoing research in glacierized Alpine and Arctic river basins (located in the French Pyrenees, New Zealand, Swedish Lapland and Svalbard), which adopts an interdisciplinary approach to investigate the climate-cryosphere-hydrology-ecology cascade. Data are used to advance hypotheses concerning the consequences of climate change/ variability on glacier river system hydrology and ecology. Aquatic ecosystems in high latitude and altitude environments are influenced strongly by cryospheric and hydrological processes due to links between atmospheric forcing, snowpack/ glacier mass-balance, river runoff, physico-chemistry and biota. In the current phase of global warming, many glaciers are retreating. Using downscaled regional climate projections as inputs to a distributed hydrological model for a study basin in the French Pyrenees (i.e. an environment at the contemporary limit of valley glaciation), we show how shrinking snow and ice-masses may alter space-time dynamics in basin runoff. Notably, the timing of peak snow- and ice-melt may shift; and the proportion of stream flow sourced from rainfall-runoff (cf. meltwater) may increase. Across our range of Alpine and Arctic study basins, we quantify observed links between relative water source contributions (% meltwater : % groundwater), physico-chemical habitat (e.g. water temperature, electrical conductivity, suspended sediment and channel stability) and benthic communities. At the site scale, results point towards increased community diversity (taxonomic and functional) as meltwater contributions decline and physico-chemical habitat becomes less harsh. However, basin-scale biodiversity may be reduced due to less spatio-temporal heterogeneity in water source contributions and habitats, and the extinction of cold stenothermic specialists. Similar integrated, long-term research into hydroecological connections in other glacierized river basins is vital: (1) to enable robust projections of stream hydrology (water source contributions and physico-chemical habitat) and ecological response under scenarios of future climate/ variability, and (2) to develop conservation strategies for these fragile Alpine and Arctic freshwater ecosystems.

  19. Using the cloud to speed-up calibration of watershed-scale hydrologic models (Invited)

    NASA Astrophysics Data System (ADS)

    Goodall, J. L.; Ercan, M. B.; Castronova, A. M.; Humphrey, M.; Beekwilder, N.; Steele, J.; Kim, I.

    2013-12-01

    This research focuses on using the cloud to address computational challenges associated with hydrologic modeling. One example is calibration of a watershed-scale hydrologic model, which can take days of execution time on typical computers. While parallel algorithms for model calibration exist and some researchers have used multi-core computers or clusters to run these algorithms, these solutions do not fully address the challenge because (i) calibration can still be too time consuming even on multicore personal computers and (ii) few in the community have the time and expertise needed to manage a compute cluster. Given this, another option for addressing this challenge that we are exploring through this work is the use of the cloud for speeding-up calibration of watershed-scale hydrologic models. The cloud used in this capacity provides a means for renting a specific number and type of machines for only the time needed to perform a calibration model run. The cloud allows one to precisely balance the duration of the calibration with the financial costs so that, if the budget allows, the calibration can be performed more quickly by renting more machines. Focusing specifically on the SWAT hydrologic model and a parallel version of the DDS calibration algorithm, we show significant speed-up time across a range of watershed sizes using up to 256 cores to perform a model calibration. The tool provides a simple web-based user interface and the ability to monitor the calibration job submission process during the calibration process. Finally this talk concludes with initial work to leverage the cloud for other tasks associated with hydrologic modeling including tasks related to preparing inputs for constructing place-based hydrologic models.

  20. A coupled ensemble filtering and probabilistic collocation approach for uncertainty quantification of hydrological models

    NASA Astrophysics Data System (ADS)

    Fan, Y. R.; Huang, W. W.; Li, Y. P.; Huang, G. H.; Huang, K.

    2015-11-01

    In this study, a coupled ensemble filtering and probabilistic collocation (EFPC) approach is proposed for uncertainty quantification of hydrologic models. This approach combines the capabilities of the ensemble Kalman filter (EnKF) and the probabilistic collocation method (PCM) to provide a better treatment of uncertainties in hydrologic models. The EnKF method would be employed to approximate the posterior probabilities of model parameters and improve the forecasting accuracy based on the observed measurements; the PCM approach is proposed to construct a model response surface in terms of the posterior probabilities of model parameters to reveal uncertainty propagation from model parameters to model outputs. The proposed method is applied to the Xiangxi River, located in the Three Gorges Reservoir area of China. The results indicate that the proposed EFPC approach can effectively quantify the uncertainty of hydrologic models. Even for a simple conceptual hydrological model, the efficiency of EFPC approach is about 10 times faster than traditional Monte Carlo method without obvious decrease in prediction accuracy. Finally, the results can explicitly reveal the contributions of model parameters to the total variance of model predictions during the simulation period.

  1. A limited-memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models

    NASA Astrophysics Data System (ADS)

    Kuczera, George; Kavetski, Dmitri; Renard, Benjamin; Thyer, Mark

    2010-07-01

    Hydrological calibration and prediction using conceptual models is affected by forcing/response data uncertainty and structural model error. The Bayesian Total Error Analysis methodology uses a hierarchical representation of individual sources of uncertainty. However, it is shown that standard multiblock "Metropolis-within-Gibbs" Markov chain Monte Carlo (MCMC) samplers commonly used in Bayesian hierarchical inference are exceedingly computationally expensive when applied to hydrologic models, which use recursive numerical solutions of coupled nonlinear differential equations to describe the evolution of catchment states such as soil and groundwater storages. This note develops a "limited-memory" algorithm for accelerating multiblock MCMC sampling from the posterior distributions of such models using low-dimensional jump distributions. The new algorithm exploits the decaying memory of hydrological systems to provide accurate tolerance-based approximations of traditional "full-memory" MCMC methods and is orders of magnitude more efficient than the latter.

  2. Inverse modeling for field-scale hydrologic and transport parameters of fractured basalt

    SciTech Connect

    Magnuson, S.O.

    1995-12-01

    A large-scale test of infiltration into a thick sequence Of fractured Snake River Plain basalts was performed during the summer of 1994 on the Idaho National Engineering Laboratory. Monitoring of moisture and tracer movement during this test provided a set of quantitative measurements from which to obtain a field-scale hydrologic description of the fractured basalts. An inverse modeling study using these quantitative measurements was performed to obtain the representative hydrologic description. This report describes the results of the inverse modeling study and includes the background and motivation for conducting the infiltration test; a brief overview of the infiltration test; descriptions of the calibration targets chosen for the simulation study, the simulation model, and the model implementation; and the simulation results with comparisons to hydrologic and tracer breakthrough data obtained from the infiltration test.

  3. Assessment of Required Accuracy of Digital Elevation Data for Hydrologic Modeling

    NASA Technical Reports Server (NTRS)

    Kenward, T.; Lettenmaier, D. P.

    1997-01-01

    The effect of vertical accuracy of Digital Elevation Models (DEMs) on hydrologic models is evaluated by comparing three DEMs and resulting hydrologic model predictions applied to a 7.2 sq km USDA - ARS watershed at Mahantango Creek, PA. The high resolution (5 m) DEM was resempled to a 30 m resolution using method that constrained the spatial structure of the elevations to be comparable with the USGS and SIR-C DEMs. This resulting 30 m DEM was used as the reference product for subsequent comparisons. Spatial fields of directly derived quantities, such as elevation differences, slope, and contributing area, were compared to the reference product, as were hydrologic model output fields derived using each of the three DEMs at the common 30 m spatial resolution.

  4. Data Services in Support of High Performance Computing-Based Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Horsburgh, J. S.; Dash, P. K.; Gichamo, T.; Yildirim, A. A.; Jones, N.

    2014-12-01

    We have developed web-based data services to support the application of hydrologic models on High Performance Computing (HPC) systems. The purposes of these services are to provide hydrologic researchers, modelers, water managers, and users access to HPC resources without requiring them to become HPC experts and understanding the intrinsic complexities of the data services, so as to reduce the amount of time and effort spent in finding and organizing the data required to execute hydrologic models and data preprocessing tools on HPC systems. These services address some of the data challenges faced by hydrologic models that strive to take advantage of HPC. Needed data is often not in the form needed by such models, requiring researchers to spend time and effort on data preparation and preprocessing that inhibits or limits the application of these models. Another limitation is the difficult to use batch job control and queuing systems used by HPC systems. We have developed a REST-based gateway application programming interface (API) for authenticated access to HPC systems that abstracts away many of the details that are barriers to HPC use and enhances accessibility from desktop programming and scripting languages such as Python and R. We have used this gateway API to establish software services that support the delineation of watersheds to define a modeling domain, then extract terrain and land use information to automatically configure the inputs required for hydrologic models. These services support the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation and generation of hydrology-based terrain information such as wetness index and stream networks. These services also support the derivation of inputs for the Utah Energy Balance snowmelt model used to address questions such as how climate, land cover and land use change may affect snowmelt inputs to runoff generation. To enhance access to the time varying climate data used to drive hydrologic models, we have developed services to downscale and re-grid nationally available climate analysis data from systems such as NLDAS and MERRA. These cases serve as examples for how this approach can be extended to other models to enhance the use of HPC for hydrologic modeling.

  5. Identifying Droughts by Modeling the Hydrologic and Ecologic Responses in the Medjerda River Basin, Tunisia

    NASA Astrophysics Data System (ADS)

    Sawada, Y.; Koike, T.; Jaranilla-sanchez, P. A.

    2013-12-01

    Drought brings severe damage to water and agricultural resources, and both of hydrological and ecological responses are important for understanding droughts. However, the ecological contributions to drought characteristics at the basin scale have not been quantified. To address this issue, we developed an eco-hydrological model that can calculate vegetation dynamics as a diagnostic valuable in a distributed-hydrological modeling framework and identified different drought types in the Medjerda River Basin where drought is a predominant issue. From the inputs and outputs of the model, we calculate drought indices for different drought types. The model shows reliable accuracy in reproducing the observed river discharge and the satellite observed leaf area index in the long-term (19-year) simulation. Moreover, the drought index calculated from model estimated annual peak of leaf area index is well correlated (correlation coefficient; r = 0.89; see Figure) with drought index from nationwide annual crop production, which show the modeled leaf area index has enough capacity to reproducing agricultural droughts that can be related with historical food shortage on 1988-1989 and 1993-1995. Our model can estimate vegetation dynamics and water cycle simultaneously in the enough accuracy to analyze the basin-scale agricultural and hydrological droughts separately. We clarify that vegetation dynamics has quicker response to meteorological droughts than river discharge and groundwater dynamics in Medjerda River Basin because vegetation dynamics is sensitive to soil moisture in surface layers while soil moisture in deeper layers strongly contributes to stream flow and depth of groundwater level. Therefore, historical agricultural droughts predominantly occurred prior to hydrological droughts and in the 1988-1989 drought, the hydrological drought lasted much longer even after crop production recovered. Standardized anomaly index (SA) for estimated annual maximum leaf area index (green line) from model and observed annual crop production in Tunisia (orange line).

  6. Assessment of NASA's Physiographic and Meteorological Datasets as Input to HSPF and SWAT Hydrological Models

    NASA Technical Reports Server (NTRS)

    Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David

    2011-01-01

    This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations

  7. Towards ecosystem accounting: a comprehensive approach to modelling multiple hydrological ecosystem services

    NASA Astrophysics Data System (ADS)

    Duku, C.; Rathjens, H.; Zwart, S. J.; Hein, L.

    2015-10-01

    Ecosystem accounting is an emerging field that aims to provide a consistent approach to analysing environment-economy interactions. One of the specific features of ecosystem accounting is the distinction between the capacity and the flow of ecosystem services. Ecohydrological modelling to support ecosystem accounting requires considering among others physical and mathematical representation of ecohydrological processes, spatial heterogeneity of the ecosystem, temporal resolution, and required model accuracy. This study examines how a spatially explicit ecohydrological model can be used to analyse multiple hydrological ecosystem services in line with the ecosystem accounting framework. We use the Upper Ouémé watershed in Benin as a test case to demonstrate our approach. The Soil Water and Assessment Tool (SWAT), which has been configured with a grid-based landscape discretization and further enhanced to simulate water flow across the discretized landscape units, is used to simulate the ecohydrology of the Upper Ouémé watershed. Indicators consistent with the ecosystem accounting framework are used to map and quantify the capacities and the flows of multiple hydrological ecosystem services based on the model outputs. Biophysical ecosystem accounts are subsequently set up based on the spatial estimates of hydrological ecosystem services. In addition, we conduct trend analysis statistical tests on biophysical ecosystem accounts to identify trends in changes in the capacity of the watershed ecosystems to provide service flows. We show that the integration of hydrological ecosystem services into an ecosystem accounting framework provides relevant information on ecosystems and hydrological ecosystem services at appropriate scales suitable for decision-making.

  8. Upscaling Empirically Based Conceptualisations to Model Tropical Dominant Hydrological Processes for Historical Land Use Change

    NASA Astrophysics Data System (ADS)

    Toohey, R.; Boll, J.; Brooks, E.; Jones, J.

    2009-12-01

    Surface runoff and percolation to ground water are two hydrological processes of concern to the Atlantic slope of Costa Rica because of their impacts on flooding and drinking water contamination. As per legislation, the Costa Rican Government funds land use management from the farm to the regional scale to improve or conserve hydrological ecosystem services. In this study, we examined how land use (e.g., forest, coffee, sugar cane, and pasture) affects hydrological response at the point, plot (1 m2), and the field scale (1-6ha) to empirically conceptualize the dominant hydrological processes in each land use. Using our field data, we upscaled these conceptual processes into a physically-based distributed hydrological model at the field, watershed (130 km2), and regional (1500 km2) scales. At the point and plot scales, the presence of macropores and large roots promoted greater vertical percolation and subsurface connectivity in the forest and coffee field sites. The lack of macropores and large roots, plus the addition of management artifacts (e.g., surface compaction and a plough layer), altered the dominant hydrological processes by increasing lateral flow and surface runoff in the pasture and sugar cane field sites. Macropores and topography were major influences on runoff generation at the field scale. Also at the field scale, antecedent moisture conditions suggest a threshold behavior as a temporal control on surface runoff generation. However, in this tropical climate with very intense rainstorms, annual surface runoff was less than 10% of annual precipitation at the field scale. Significant differences in soil and hydrological characteristics observed at the point and plot scales appear to have less significance when upscaled to the field scale. At the point and plot scales, percolation acted as the dominant hydrological process in this tropical environment. However, at the field scale for sugar cane and pasture sites, saturation-excess runoff increased as irrigation intensity and duration (e.g., quantity) increased. Upscaling our conceptual models to the watershed and regional scales, historical data (1970-2004) was used to investigate whether dominant hydrological processes changed over time due to land use change. Preliminary investigations reveal much higher runoff coefficients (<30%) at the larger watershed scales. The increase in importance of runoff at the larger geographic scales suggests an emerging process and process non-linearity between the smaller and larger scales. Upscaling is an important and useful concept when investigating catchment response using the tools of field work and/or physically distributed hydrological modeling.

  9. Moving university hydrology education forward with geoinformatics, data and modeling approaches

    NASA Astrophysics Data System (ADS)

    Merwade, V.; Ruddell, B. L.

    2012-02-01

    In this opinion paper, we review recent literature related to data and modeling driven instruction in hydrology, and present our findings from surveying the hydrology education community in the United States. This paper presents an argument that that Data and Modeling Driven Geoscience Cybereducation (DMDGC) approaches are valuable for teaching the conceptual and applied aspects of hydrology, as a part of the broader effort to improve Science, Technology, Engineering, and Mathematics (STEM) education at the university level. The authors have undertaken a series of surveys and a workshop involving the community of university hydrology educators to determine the state of the practice of DMDGC approaches to hydrology. We identify the most common tools and approaches currently utilized, quantify the extent of the adoption of DMDGC approaches in the university hydrology classroom, and explain the community's views on the challenges and barriers preventing DMDGC approaches from wider use. DMDGC approaches are currently emphasized at the graduate level of the curriculum, and only the most basic modeling and visualization tools are in widespread use. The community identifies the greatest barriers to greater adoption as a lack of access to easily adoptable curriculum materials and a lack of time and training to learn constantly changing tools and methods. The community's current consensus is that DMDGC approaches should emphasize conceptual learning, and should be used to complement rather than replace lecture-based pedagogies. Inadequate online material-publication and sharing systems, and a lack of incentives for faculty to develop and publish materials via such systems, is also identified as a challenge. Based on these findings, we suggest that a number of steps should be taken by the community to develop the potential of DMDGC in university hydrology education, including formal development and assessment of curriculum materials integrating lecture-format and DMDGC approaches, incentivizing the publication by faculty of excellent DMDGC curriculum materials, and implementing the publication and dissemination cyberinfrastructure necessary to support the unique DMDGC digital curriculum materials.

  10. Moving university hydrology education forward with community-based geoinformatics, data and modeling resources

    NASA Astrophysics Data System (ADS)

    Merwade, V.; Ruddell, B. L.

    2012-08-01

    In this opinion paper, we review recent literature related to data and modeling driven instruction in hydrology, and present our findings from surveying the hydrology education community in the United States. This paper presents an argument that that data and modeling driven geoscience cybereducation (DMDGC) approaches are essential for teaching the conceptual and applied aspects of hydrology, as a part of the broader effort to improve science, technology, engineering, and mathematics (STEM) education at the university level. The authors have undertaken a series of surveys and a workshop involving university hydrology educators to determine the state of the practice of DMDGC approaches to hydrology. We identify the most common tools and approaches currently utilized, quantify the extent of the adoption of DMDGC approaches in the university hydrology classroom, and explain the community's views on the challenges and barriers preventing DMDGC approaches from wider use. DMDGC approaches are currently emphasized at the graduate level of the curriculum, and only the most basic modeling and visualization tools are in widespread use. The community identifies the greatest barriers to greater adoption as a lack of access to easily adoptable curriculum materials and a lack of time and training to learn constantly changing tools and methods. The community's current consensus is that DMDGC approaches should emphasize conceptual learning, and should be used to complement rather than replace lecture-based pedagogies. Inadequate online material publication and sharing systems, and a lack of incentives for faculty to develop and publish materials via such systems, is also identified as a challenge. Based on these findings, we suggest that a number of steps should be taken by the community to develop the potential of DMDGC in university hydrology education, including formal development and assessment of curriculum materials, integrating lecture-format and DMDGC approaches, incentivizing the publication by faculty of excellent DMDGC curriculum materials, and implementing the publication and dissemination cyberinfrastructure necessary to support the unique DMDGC digital curriculum materials.

  11. Brief summary of LADHS: Los Alamos distributed hydrologic modeling system.

    SciTech Connect

    Murray, R. E.; Winter, C. L.; Springer, E. P.; Costigan, K. R.; Tseng, P. H.

    2001-01-01

    This report describes the current state of the fourth Thrust Area of the NSF Science and Technology Center for the Sustainability of Semi-Arid Hydrology and Riparian Areas (SAHRA). Sustainability of semi-arid regions has become a serious political and scientific concern. Increasing population has added stress to the water supply and other natural resources, notably, underground aquifers. Recent controversies in the Rio Grande Basin involving the competing interests of endangered species and humans for water have highlighted the delicate balance of biologically diverse southwestern riparian areas. Potentially, the warming climate may intensify summer storms and affect the amount and timing of snow melt, the largest renewable source of water in the southwest. It is, therefore, of great political, social and scientific interest to determine ways in which human activities can coexist with healthy riparian areas and a plentiful, clean water supply over the long run. An understanding of how all of these processes interrelate would allow regional decision-makers to consider a wide range of options and thereby develop useful plans for meeting societal needs. To make the best use of limited fresh water resources, decision makers must be able to make predictions about the entire hydrologic cycle, which is a complex combination of physical, chemical, and biological processes. Only then could they explore the potential effects of increased water use and of changes in the regional climate. The important processes in the hydrologic cycle include rainfall, snowmelt, storms, runoff, and flow in ephemeral streams, rivers, and underground aquifers. Riparian communities and evaporation play key roles in reducing the available water.

  12. Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Sankarasubramanian, A.

    2012-12-01

    Model errors are inevitable in any prediction exercise. One approach that is currently gaining attention in reducing model errors is by combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictions. A new dynamic approach (MM-1) to combine multiple hydrological models by evaluating their performance/skill contingent on the predictor state is proposed. We combine two hydrological models, "abcd" model and variable infiltration capacity (VIC) model, to develop multimodel streamflow predictions. To quantify precisely under what conditions the multimodel combination results in improved predictions, we compare multimodel scheme MM-1 with optimal model combination scheme (MM-O) by employing them in predicting the streamflow generated from a known hydrologic model (abcd model orVICmodel) with heteroscedastic error variance as well as from a hydrologic model that exhibits different structure than that of the candidate models (i.e., "abcd" model or VIC model). Results from the study show that streamflow estimated from single models performed better than multimodels under almost no measurement error. However, under increased measurement errors and model structural misspecification, both multimodel schemes (MM-1 and MM-O) consistently performed better than the single model prediction. Overall, MM-1 performs better than MM-O in predicting the monthly flow values as well as in predicting extreme monthly flows. Comparison of the weights obtained from each candidate model reveals that as measurement errors increase, MM-1 assigns weights equally for all the models, whereas MM-O assigns higher weights for always the best-performing candidate model under the calibration period. Applying the multimodel algorithms for predicting streamflows over four different sites revealed that MM-1 performs better than all single models and optimal model combination scheme, MM-O, in predicting the monthly flows as well as the flows during wetter months.

  13. Should HBV DNA NAT replace HBsAg and/or anti-HBc screening of blood donors?

    PubMed

    Busch, Michael P

    2004-02-01

    Prevention of transfusion-transmitted hepatitis B virus (HBV) has historically relied on serological screening of blood donors using progressively more sensitive HBsAg assays; in some countries anti-HBc assays have also been employed to detect chronic carriers with low-level viremia who lack detectable HBsAg. Nucleic acid amplification testing (NAT) for HCV and HIV has been successfully introduced to screen donors in many developed countries over the past several years; for logistical and cost reasons HCV/HIV NAT screening has been applied to mini-pools (MP) of eight to 96 donor specimens, with only minimal impact of MP dilutions on clinical sensitivity for interdiction of window period (WP) donations. In several countries (e.g., Japan and Germany), HBV NAT has been added to HIV/HCV MP-NAT blood donor screening with small incremental yields of HBsAg/anti-HBc-negative donations, and the major vendors of NAT systems (Roche and Chiron/Gen-Probe) have been developing triplex assays that include HBV DNA detection capacity without compromising HIV or HCV detection. Pooled specimen HBV NAT has also become the standard of practice for screening source plasma donors, with pressure to include HBV DNA detection as a required procedure for use of recovered plasma in manufacture of fractionated derivatives. However, there is controversy over the magnitude of the incremental yield and clinical benefit of HBV MP-NAT over serological screening strategies, as well as the impact of implementation of HBV NAT on need for retention of HBsAg and anti-HBc screening. This presentation will review recent modeled and empirical data on the value of HBV MP- and individual donation (ID)-NAT for detection of (1) pre-HBsAg WP units and (2) chronic anti-HBc-reactive carriers with undetectable HBsAg. The presentation will also review policy considerations and data that address the potential for discontinuation of either HBsAg or anti-HBc following implementation of HBV NAT. Finally it will address the cost effectiveness of incorporation of HBV DNA detection into HBV screening and NAT testing algorithms. PMID:14980546

  14. Gravity effects obtained from global hydrology models in comparison with high precision gravimetric time series

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Wilmes, Herbert; Güntner, Andreas; Creutzfeldt, Benjamin

    2010-05-01

    Water mass changes are a major source of variations in residual gravimetric time series obtained from the combination of observations with superconducting and absolute gravimeters. Changes in the local water storage are the main influence, but global variations contribute to the signal significantly. For three European gravity stations, Bad Homburg, Wettzell and Medicina, different global hydrology models are compared. The influence of topographic effects is discussed and due to the long-term stability of the combined gravity time series, inter-annual signals in model data and gravimetric observations are compared. Two sources of influence are discriminated, i.e., the effect of a local zone with an extent of a few kilometers around the gravimetric station and the global contribution beyond 50km. Considering their coarse resolution and uncertainties, local effects calculated from global hydrological models are compared with the in-situ gravity observations and, for the station Wettzell, with local hydrological monitoring data.

  15. Study of Parameters And Methods of LL-? Distributed Hydrological Model in DMIP2

    NASA Astrophysics Data System (ADS)

    Li, L.; Wu, J.; Wang, X.; Yang, C.; Zhao, Y.; Zhou, H.

    2008-05-01

    : The Physics-based distributed hydrological model is considered as an important developing period from the traditional experience-hydrology to the physical hydrology. The Hydrology Laboratory of the NOAA National Weather Service proposes the first and second phase of the Distributed Model Intercomparison Project (DMIP)?that it is a great epoch-making work. LL distributed hydrological model has been developed to the fourth generation since it was established in 1997 on the Fengman-I district reservoir area (11000 km2).The LL-I distributed hydrological model was born with the applications of flood control system in the Fengman-I in China. LL-II was developed under the DMIP-I support, it is combined with GIS, RS, GPS, radar rainfall measurement.LL-III was established along with Applications of LL Distributed Model on Water Resources which was supported by the 973-projects of The Ministry of Science and Technology of the People's Republic of China. LL-? was developed to face China's water problem. Combined with Blue River and the Baron Fork River basin of DMIP-II, the convection-diffusion equation of non-saturated and saturated seepage was derived from the soil water dynamics and continuous equation. In view of the technical characteristics of the model, the advantage of using convection-diffusion equation to compute confluence overall is longer period of predictable, saving memory space, fast budgeting, clear physical concepts, etc. The determination of parameters of hydrological model is the key, including experience coefficients and parameters of physical parameters. There are methods of experience, inversion, and the optimization to determine the model parameters, and each has advantages and disadvantages. This paper briefly introduces the LL-? distribution hydrological model equations, and particularly introduces methods of parameters determination and simulation results on Blue River and Baron Fork River basin for DMIP-II. The soil moisture diffusion coefficient and coefficient of hydraulic conductivity are involved all through the LL-? distribution of runoff and slope convergence model, used mainly empirical formula to determine. It's used optimization methods to calculate the two parameters of evaporation capacity (coefficient of bare land and vegetation land), two parameters of interception and wave velocity of Overland Flow, interflow and groundwater. The approach of determining wave velocity of River Network confluence and diffusion coefficient is: 1. Estimate roughness based mainly on digital information such as land use, soil texture, etc. 2.Establish the empirical formula. Another method is called convection-diffusion numerical inversion.

  16. Modelling the initial structure dynamics of soil and sediment exemplified for a constructed hydrological catchment

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Schneider, Anna; Gerke, Horst H.

    2014-05-01

    Knowledge about spatial heterogeneity is of essential for the analysis of the hydrological catchment behavior. Heterogeneity is directly related to the distribution of the solid phase, and in initial hydrological systems, the solid phase is mainly composed of mineral particles. In artificial catchments, such sediment structures relate to the applied construction technology. It is supposed that the development of catchment ecosystems is strongly influenced by such specific initial spatial distributions of the solid phase. Moreover, during the initial development period, the primary structures in a catchment are altered rapidly by translocation processes, thereby subdividing the initial system in different compartments. Questions are: How does initial sediment distribution affect further structural development? How is catchment hydrology influenced by the initial structural development? What structures have a relevant impact on catchment-scale hydrological behavior? We present results from a structural modelling approach using a process-based structure generator program. The constructed hydrological catchment 'Hühnerwasser' (Lower Lusatia, Brandenburg, Germany) served exemplarily for the model development. A set of scenarios was created describing possible initial heterogeneities of the catchment. Both the outcrop site from where the parent material was excavated and the specific excavation procedures were considered in the modelling approach. Generated distributions are incorporated in a gridded 3D volume model constructed with the GOCAD software. Results were evaluated by semivariogram analysis and by quantifying point-to-point deviations. We also introduce a modelling conception for simulating the highly dynamic initial structural change, based on the generated initial distributions. We present a strategy on how to develop the initial structure generator into an integrative tool in order to (i) simulate and analyse the spatio-temporal development dynamics depending on initial structures, and (ii) relate the simulated structural development to the (observed) hydrological behaviour. For the description of the initial development, already established "structure-generating" models were chosen for the simulation of erosion and deposition structures, crusts and vegetation. The OpenMI software interface was chosen to provide parameter exchange between the models. The impact of the structural development on the hydrological behaviour of the catchment will be evaluated by modelling water flow with HYDRUS 2D/3D. For that purpose, an approach to estimate 3D distributions of soil hydraulic parameter from generated sediment properties using adapted pedotransfer functions was already developed. Model results can be validated by comparing them to measured discharges from the catchment. By comparing different scenarios, the impact of spatial structures on flow behaviour can be analysed. Results may be transferred to similar environments by identifying generalizable eco-hydrological compartments ('Process Domains') from model data.

  17. The implementation and validation of improved landsurface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    Landsurface hydrological parameterizations are implemented in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: (1) runoff and evapotranspiration functions that include the effects of subgrid scale spatial variability and use physically based equations of hydrologic flux at the soil surface, and (2) a realistic soil moisture diffusion scheme for the movement of water in the soil column. A one dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three dimensional GCM. Results of the final simulation with the GISS GCM and the new landsurface hydrology indicate that the runoff rate, especially in the tropics is significantly improved. As a result, the remaining components of the heat and moisture balance show comparable improvements when compared to observations. The validation of model results is carried from the large global (ocean and landsurface) scale, to the zonal, continental, and finally the finer river basin scales.

  18. Use of an Instrumented Planar Experimental Plot to Provide Guidance for Physically-Based Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Kampf, S. K.; Burges, S. J.

    2005-12-01

    Physically-based hydrologic models represent the physical mechanisms that determine pathways of water through a watershed. Processes including surface overland flow, variably saturated subsurface flow, evapotranspiration, and channel flow are often studied individually rather then holistically; few existing data sets allow simultaneous assessment of how all of these hydrologic processes interact. This study examines whole-system hydrologic processes using a complete set of measurements collected at a 24 m2 test plot in Seattle, Washington. The plot has a 5% grade and is grass-covered, containing 0.3m of till-based soil above an impermeable base. Measurements collected at the site include precipitation, surface runoff, subsurface flow, short and longwave radiation, net radiation, air temperature, humidity, wind speed, soil water contents, soil temperatures, and soil heat fluxes. Hydrologic processes in the plot are simulated using the physically-based numerical models, HYDRUS 2D for variably saturated flow and MODHMS for fully-coupled groundwater and surface water flow. Results demonstrate the relative benefits of different types of hydrologic measurements, provide guidance for determining `physically-based' model parameter values, and yield insights into the level of complexity required for accurate simulation of water pathways.

  19. Digital Hydrologic Networks Supporting Applications Related to Spatially Referenced Regression Modeling1

    PubMed Central

    Brakebill, JW; Wolock, DM; Terziotti, SE

    2011-01-01

    Abstract Digital hydrologic networks depicting surface-water pathways and their associated drainage catchments provide a key component to hydrologic analysis and modeling. Collectively, they form common spatial units that can be used to frame the descriptions of aquatic and watershed processes. In addition, they provide the ability to simulate and route the movement of water and associated constituents throughout the landscape. Digital hydrologic networks have evolved from derivatives of mapping products to detailed, interconnected, spatially referenced networks of water pathways, drainage areas, and stream and watershed characteristics. These properties are important because they enhance the ability to spatially evaluate factors that affect the sources and transport of water-quality constituents at various scales. SPAtially Referenced Regressions On Watershed attributes (SPARROW), a process-based/statistical model, relies on a digital hydrologic network in order to establish relations between quantities of monitored contaminant flux, contaminant sources, and the associated physical characteristics affecting contaminant transport. Digital hydrologic networks modified from the River Reach File (RF1) and National Hydrography Dataset (NHD) geospatial datasets provided frameworks for SPARROW in six regions of the conterminous United States. In addition, characteristics of the modified RF1 were used to update estimates of mean-annual streamflow. This produced more current flow estimates for use in SPARROW modeling. PMID:22457575

  20. Large-scale hydrological model prediction uncertainties estimated from an ensemble of hydrostratigraphic models based on resistivity and borehole data

    NASA Astrophysics Data System (ADS)

    Marker, P. A.; Ferré, T. P. A.; Foged, N.; Christiansen, A. V.; Auken, E.; Mosegaard, K.; Bauer-Gottwein, P.

    2014-12-01

    Large-scale hydrological models are important tools for water resources management. Model predictions are used in agricultural, contamination, water scarcity, and groundwater depletion applications and for well-field management. The predictions, used for management and practical decision-making, are sensitive to variations in hydrostratigraphy, thus uncertainty can be addressed by sampling the structural model space. Hydrostratigraphic input to large-scale hydrologic models is commonly based on one-truth geologic models. High resolution airborne electromagnetic (AEM) data with extensive spatial coverage are valuable for use in hydrostratigraphic modeling. In particular, geological structures and within-unit heterogeneity, which are poorly identified with spatially scarce borehole lithology data, are well resolved by AEM data. The challenge is to combine geophysical and hydrological information in a common parameter space. We propose to estimate hydrological model prediction uncertainties using an ensemble of resistivity and borehole based hydrostratigraphic models. Single hydrostratigraphic models are created using a semi-automatic sequential hydrogeophysical inversion method, which integrates AEM and borehole data. A spatially variable translator function converts electrical resistivities obtained from geophysical inversion into clay fractions through correlation with borehole lithological observations. The subsurface domain is divided into zones by k-means clustering on the inferred clay fractions and electrical resistivities. Hydraulic conductivities of the zones are estimated through hydrological model calibration using head and discharge observations. An ensemble of behavioral hydrostratigraphic models is sampled based on a threshold value of the objective function of the clustering algorithm, and goodness of fit to hydrological data. Hydrological predictions are capture zones and drawdown responses to pumping in areas of interest for management. Results will be shown for a Danish case study.

  1. GIS/RS-based Integrated Eco-hydrologic Modeling in the East River Basin, South China

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    Land use/cover change (LUCC) has significantly altered the hydrologic system in the East River (Dongjiang) Basin. Quantitative modeling of hydrologic impacts of LUCC is of great importance for water supply, drought monitoring and integrated water resources management. An integrated eco-hydrologic modeling system of Distributed Monthly Water Balance Model (DMWBM), Surface Energy Balance System (SEBS) was developed with aid of GIS/RS to quantify LUCC, to conduct physically-based ET (evapotranspiration) mapping and to predict hydrologic impacts of LUCC. To begin with, in order to evaluate LUCC, understand implications of LUCC and provide boundary condition for the integrated eco-hydrologic modeling, firstly the long-term vegetation dynamics was investigated based on Normalized Difference Vegetation Index (NDVI) data, and then LUCC was analyzed with post-classification methods and finally LUCC prediction was conducted based on Markov chain model. The results demonstrate that the vegetation activities decreased significantly in summer over the years. Moreover, there were significant changes in land use/cover over the past two decades. Particularly there was a sharp increase of urban and built-up area and a significant decrease of grassland and cropland. All these indicate that human activities are intensive in the East River Basin and provide valuable information for constructing scenarios for studying hydrologic impacts of LUCC. The physically-remote-sensing-based Surface Energy Balance System (SEBS) was employed to estimate areal actual ET for a large area rather than traditional point measurements . The SEBS was enhanced for application in complex vegetated area. Then the inter-comparison with complimentary ET model and distributed monthly water balance model was made to validate the enhanced SEBS (ESEBS). The application and test of ESEBS show that it has a good accuracy both monthly and annually and can be effectively applied in the East River Basin. The results of ET mapping based on ESEBS demonstrate that actual ET in the East River Basin decreases significantly in the last two decades, which is probably caused by decrease of sunshine duration. In order to effectively simulate hydrologic impact of LUCC, an integrated model of ESEBS and distributed monthly water balance model has been developed in this study. The model is capable of considering basin terrain and the spatial distribution of precipitation and soil moisture. Particularly, the model is unique in accounting for spatial and temporal variations of vegetation cover and ET, which provides a powerful tool for studying the hydrologic impacts of LUCC. The model was applied to simulate the monthly runoff for the period of 1980-1994 for model calibration and for the period of 1995-2000 for validation. The calibration and validation results show that the newly integrated model is suitable for simulating monthly runoff and studying hydrologic impacts ofLUCC in the East River Basin. Finally, the newly integrated model was firstly applied to analyze the relationship of land use and hydrologic regimes based on the land use maps in 1980 and 2000. Then the newly integrated model was applied to simulate the potential impacts of land use change on hydrologic regimes in the East River Basin under a series of hypothetical scenarios. The results show that ET has a positive relationship with Leaf Area Index (LAI) while runoff has a negative relationship with LAI in the same climatic zone, which can be elaborated by surface energy balance and water balance equation. Specifically, on an annual basis, ET of forest scenarios is larger than that of grassland or cropland scenarios. On the contrary, runoff of forest scenarios is less than that of grassland or cropland scenarios. On a monthly basis, for most of the scenarios, particularly the grassland and cropland scenarios, the most significant changes occurred in the rainy season. The results indicate that deforestation would cause increase of runoff and decrease of ET on an annual basis in the East River Basin. On a monthly basis, de

  2. Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2015-10-01

    Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.

  3. Stochastic Residual-Error Analysis For Estimating Hydrologic Model Predictive Uncertainty

    EPA Science Inventory

    A hybrid time series-nonparametric sampling approach, referred to herein as semiparametric, is presented for the estimation of model predictive uncertainty. The methodology is a two-step procedure whereby a distributed hydrologic model is first calibrated, then followed by brute ...

  4. Hydrologic nonstationarity and extrapolating models to predict the future: overview of session and proceeding

    NASA Astrophysics Data System (ADS)

    Chiew, F. H. S.; Vaze, J.

    2015-06-01

    This paper provides an overview of this IAHS symposium and PIAHS proceeding on "hydrologic nonstationarity and extrapolating models to predict the future". The paper provides a brief review of research on this topic, presents approaches used to account for nonstationarity when extrapolating models to predict the future, and summarises the papers in this session and proceeding.

  5. VERIFICATION OF THE HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE (HELP) MODEL USING FIELD DATA

    EPA Science Inventory

    The report describes a study conducted to verify the Hydrologic Evaluation of Landfill Performance (HELP) computer model using existing field data from a total of 20 landfill cells at 7 sites in the United States. Simulations using the HELP model were run to compare the predicted...

  6. A LAND-SURFACE HYDROLOGY PARAMETERIZATION WITH SUBGRID VARIABILITY FOR GENERAL CIRCULATION MODELS

    EPA Science Inventory

    Most of the existing generation of general circulation models (GCMs) use so-called bucket algorithms to represent land-surface hydrology. iosphere-atmosphere models that include the transfer of energy, mass, and momentum between the atmosphere and the land surface are a recent al...

  7. A global river routing network for use in hydrological modeling H. Renssen1

    E-print Network

    Renssen, Hans

    A global river routing network for use in hydrological modeling H. Renssen1 , J.M. Knoop* National a relatively simple procedure is presented to construct a global river routing network on a 0.5 latitude it a useful tool in the modeling of river flow on a global scale. The flow directions are based on a digital

  8. Performance of a distributed semi-conceptual hydrological model under tropical watershed conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many hydrologic models have been developed to help manage natural resources all over the world. Nevertheless, most models have presented a high complexity in terms of data base requirements, as well as, many calibration parameters. This has resulted in serious difficulties to application in catchmen...

  9. Hydrologic Modeling of a Canal-Irrigated Agricultural Watershed with Irrigation Best Management

    E-print Network

    Case Study Hydrologic Modeling of a Canal-Irrigated Agricultural Watershed with Irrigation Best Management Practices: Case Study N. Kannan1 ; J. Jeong2 ; and R. Srinivasan3 Abstract: Simulating irrigation canal-irrigated watersheds. The existing approaches to modeling canal irrigation use situation

  10. The Hydrology of Malaria: Model Development and Application to a Sahelian Village

    NASA Astrophysics Data System (ADS)

    Bomblies, A.; Duchemin, J.; Eltahir, E. A.

    2008-12-01

    We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semi-arid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations which lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely-sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic stage and adult stage components. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual time scales, and highlights individual pool persistence as a dominant control. Future developments to the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.

  11. HYDROLOGIC MODELING OF AN EASTERN PENNSYLVANIA WATERSHED WITH NEXRAD AND RAIN GAUGE DATA

    EPA Science Inventory

    This paper applies the Soil Water Assessment Tool (SWAT) to model the hydrology in the Pocono Creek watershed located in Monroe County, Pa. The calibrated model will be used in a subsequent study to examine the impact of population growth and rapid urbanization in the watershed o...

  12. Diagnosing the regional sensitivity of a process-based hydrologic model

    NASA Astrophysics Data System (ADS)

    Smith, T. J.; Hayes, K. D.; Marshall, L. A.; McGlynn, B. L.

    2014-12-01

    Despite commonly being able to match streamflow dynamics (following calibration), hydrologic models often fail to produce simulations that are consistent with internal watershed processes. The Catchment Connectivity Model (CCM) was developed collaboratively by physical and computational hydrologists, following a dominant process conceptualization based on hillslope hydrologic connectivity at the Tenderfoot Creek Experimental Forest (TCEF; Montana, USA). The three-parameter CCM is a spatially explicit model structure that has been validated against extensive field observations of hillslope hydrologic connectivity (an internal process simulated by the model) to demonstrate its internal consistency, in addition to a traditional assessment to the external streamflow dynamics. In this study, we sought to examine the regional sensitivity of the CCM parameters. Specifically, we explored the catchment scale variation in model parameterization across seven TCEF watersheds. A diagnostic model calibration analysis was considered where the role of a priori parameter ranges was explored in relation to both external (streamflow) and internal (hydrologic connectivity) model performance. This investigation allowed us to develop a more in-depth understanding of the model structure, its flexibility, its regional sensitivity, and its transferability.

  13. Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions

    E-print Network

    Pan, Ming

    Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions Lifeng 2007; published 17 May 2007. [1] This study uses a Bayesian approach to merge ensemble seasonal climate model hindcasts and the corresponding observations. The resulting posterior distribution is the merged

  14. eWaterCycle: Developing a hyper resolution global hydrological model

    NASA Astrophysics Data System (ADS)

    Drost, N.; Sutanudjaja, E.; Hut, R.; Steele-Dunne, S. C.; de Jong, K.; Van Beek, L. P.; Karssenberg, D.; Bierkens, M. F.; Van De Giesen, N.

    2013-12-01

    The development of a high resolution global hydrological model has recently been put forward as Grand Challenge for the hydrological community (Wood et al., 2011). The eWaterCycle project aims at developing a high resolution global hydrological model allowing for a better representation of the effects of spatial heterogeneity in topography, soil, and vegetation on hydrological dynamics. The original version of the global hydrological model PCR-GLOBWB (van Beek et al., 2011) runs at a relatively coarse spatial grid (i.e. 0.5° or about 50 km at the equator), which is well below the hyper resolution envisioned in the Grand Challenge (i.e. 100 m). The development of such a hyper resolution model requires utilizing recent computational advances and massive parallel computer systems. So far, the hydrological community has not yet made full use of such possibilities. The eWaterCycle is a close cooperation between hydrologists (Delft University of Technology and Utrecht University) and the Netherlands eScience Center (NLeSC) - that intends to supports and reinforce data-intensive research through creative and innovative use of information and communication technology (ICT). In this project, we modify and extend PCR-GLOBWB so that it runs at much higher resolution, on the order of 1 km or finer. This model refinement is a huge step forward as increasing resolution also requires adding an explicit spatial representation of local processes (groundwater flow, water diversions, glaciers, etc.) that greatly enhance the regional to local applicability of the model. In this project, we also aim to run the model operationally with a data assimilation scheme that incorporates satellite soil moisture observations and other relevant variables. The outcome of the eWaterCycle project will be relevant for addressing critical water cycle science questions and hydrological applications such as assessing water resources sustainability, flood and drought frequency under climate change. For this session, we intend to share and discuss some first results of this novel hydrological model.

  15. A comparison of hydrologic models for ecological flows and water availability

    USGS Publications Warehouse

    Caldwell, Peter V; Kennen, Jonathan G.; Sun, Gee; Kiang, Julie E.; Butcher, John B; Eddy, Michelle C; Hay, Lauren E.; LaFontaine, Jacob H.; Hain, Ernie F.; Nelson, Stacy C; McNulty, Steve G

    2015-01-01

    Robust hydrologic models are needed to help manage water resources for healthy aquatic ecosystems and reliable water supplies for people, but there is a lack of comprehensive model comparison studies that quantify differences in streamflow predictions among model applications developed to answer management questions. We assessed differences in daily streamflow predictions by four fine-scale models and two regional-scale monthly time step models by comparing model fit statistics and bias in ecologically relevant flow statistics (ERFSs) at five sites in the Southeastern USA. Models were calibrated to different extents, including uncalibrated (level A), calibrated to a downstream site (level B), calibrated specifically for the site (level C) and calibrated for the site with adjusted precipitation and temperature inputs (level D). All models generally captured the magnitude and variability of observed streamflows at the five study sites, and increasing level of model calibration generally improved performance. All models had at least 1 of 14 ERFSs falling outside a +/?30% range of hydrologic uncertainty at every site, and ERFSs related to low flows were frequently over-predicted. Our results do not indicate that any specific hydrologic model is superior to the others evaluated at all sites and for all measures of model performance. Instead, we provide evidence that (1) model performance is as likely to be related to calibration strategy as it is to model structure and (2) simple, regional-scale models have comparable performance to the more complex, fine-scale models at a monthly time step.

  16. Bloodborne Pathogens: HIV and HBV Contagion Risks at Camp.

    ERIC Educational Resources Information Center

    Skaros, Susan

    1996-01-01

    AIDS and hepatitis B are diseases caused by the viruses HIV and HBV, respectively, which are spread in blood and body fluids. HBV is 100 times more contagious than HIV. Diligent implementation of universal precautions, an exposure control plan, use of personal protective equipment, a vaccination program, and ongoing staff and camper education can…

  17. Multi-Model Combination techniques for Hydrological Forecasting: Application to Distributed Model Intercomparison Project Results

    SciTech Connect

    Ajami, N K; Duan, Q; Gao, X; Sorooshian, S

    2005-04-11

    This paper examines several multi-model combination techniques: the Simple Multi-model Average (SMA), the Multi-Model Super Ensemble (MMSE), Modified Multi-Model Super Ensemble (M3SE) and the Weighted Average Method (WAM). These model combination techniques were evaluated using the results from the Distributed Model Intercomparison Project (DMIP), an international project sponsored by the National Weather Service (NWS) Office of Hydrologic Development (OHD). All of the multi-model combination results were obtained using uncalibrated DMIP model outputs and were compared against the best uncalibrated as well as the best calibrated individual model results. The purpose of this study is to understand how different combination techniques affect the skill levels of the multi-model predictions. This study revealed that the multi-model predictions obtained from uncalibrated single model predictions are generally better than any single member model predictions, even the best calibrated single model predictions. Furthermore, more sophisticated multi-model combination techniques that incorporated bias correction steps work better than simple multi-model average predictions or multi-model predictions without bias correction.

  18. Representing northern peatland microtopography and hydrology within the Community Land Model

    NASA Astrophysics Data System (ADS)

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; Hanson, P. J.; Mao, J.; Sebestyen, S. D.; Griffiths, N. A.; Bisht, G.

    2015-02-01

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.

  19. Representing northern peatland microtopography and hydrology within the Community Land Model

    NASA Astrophysics Data System (ADS)

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; Hanson, P. J.; Mao, J.; Sebestyen, S. D.; Griffiths, N. A.; Bisht, G.

    2015-11-01

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.

  20. Representing northern peatland microtopography and hydrology within the Community Land Model

    DOE PAGESBeta

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; Hanson, P. J.; Mao, J.; Sebestyen, S. D.; Griffiths, N. A.; Bisht, G.

    2015-02-20

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore »the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less

  1. Representing northern peatland microtopography and hydrology within the Community Land Model

    SciTech Connect

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; Hanson, P. J.; Mao, J.; Sebestyen, S. D.; Griffiths, N. A.; Bisht, G.

    2015-02-20

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.

  2. Development of a biosphere hydrological model considering vegetation dynamics and its evaluation at basin scale under climate change

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Ishidaira, Hiroshi

    2012-01-01

    SummaryThe biosphere and hydrosphere are intrinsically coupled. The scientific question is if there is a substantial change in one component such as vegetation cover, how will the other components such as transpiration and runoff generation respond, especially under climate change conditions? Stand-alone hydrological models have a detailed description of hydrological processes but do not sufficiently parameterize vegetation as a dynamic component. Dynamic global vegetation models (DGVMs) are able to simulate transient structural changes in major vegetation types but do not simulate runoff generation reliably. Therefore, both hydrological models and DGVMs have their limitations as well as advantages for addressing this question. In this study a biosphere hydrological model (LPJH) is developed by coupling a prominent DGVM (Lund-Postdam-Jena model referred to as LPJ) with a stand-alone hydrological model (HYMOD), with the objective of analyzing the role of vegetation in the hydrological processes at basin scale and evaluating the impact of vegetation change on the hydrological processes under climate change. The application and validation of the LPJH model to four basins representing a variety of climate and vegetation conditions shows that the performance of LPJH is much better than that of the original LPJ and is similar to that of stand-alone hydrological models for monthly and daily runoff simulation at the basin scale. It is argued that the LPJH model gives more reasonable hydrological simulation since it considers both the spatial variability of soil moisture and vegetation dynamics, which make the runoff generation mechanism more reliable. As an example, it is shown that changing atmospheric CO 2 content alone would result in runoff increases in humid basins and decreases in arid basins. Theses changes are mainly attributable to changes in transpiration driven by vegetation dynamics, which are not simulated in stand-alone hydrological models. Therefore LPJH potentially provides a powerful tool for simulating vegetation response to climate changes in the biosphere hydrological cycle.

  3. Application of CRISPR/Cas9 Technology to HBV

    PubMed Central

    Lin, Guigao; Zhang, Kuo; Li, Jinming

    2015-01-01

    More than 240 million people around the world are chronically infected with hepatitis B virus (HBV). Nucleos(t)ide analogs and interferon are the only two families of drugs to treat HBV currently. However, none of these anti-virals directly target the stable nuclear covalently closed circular DNA (cccDNA), which acts as a transcription template for viral mRNA and pre-genomic RNA synthesis and secures virus persistence. Thus, the fact that only a small number of patients treated achieve sustained viral response (SVR) or cure, highlights the need for new therapies against HBV. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system can specifically target the conserved regions of the HBV genome. This results in robust viral suppression and provides a promising tool for eradicating the virus. In this review, we discuss the function and application of the CRISPR/Cas9 system as a novel therapy for HBV. PMID:26540039

  4. Application of CRISPR/Cas9 Technology to HBV.

    PubMed

    Lin, Guigao; Zhang, Kuo; Li, Jinming

    2015-01-01

    More than 240 million people around the world are chronically infected with hepatitis B virus (HBV). Nucleos(t)ide analogs and interferon are the only two families of drugs to treat HBV currently. However, none of these anti-virals directly target the stable nuclear covalently closed circular DNA (cccDNA), which acts as a transcription template for viral mRNA and pre-genomic RNA synthesis and secures virus persistence. Thus, the fact that only a small number of patients treated achieve sustained viral response (SVR) or cure, highlights the need for new therapies against HBV. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system can specifically target the conserved regions of the HBV genome. This results in robust viral suppression and provides a promising tool for eradicating the virus. In this review, we discuss the function and application of the CRISPR/Cas9 system as a novel therapy for HBV. PMID:26540039

  5. A Study of Recently Developed MCMC Techniques for Efficiently Characterizing the Uncertainty of Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Marshall, L. A.; Smith, T. J.

    2008-12-01

    The implementation of Bayesian methods, and specifically Markov chain Monte Carlo (MCMC) methods, are becoming much more widespread due to their usefulness in uncertainty assessment of hydrologic models. These methods have the ability to explicitly account for non-stationarities in model errors (via the likelihood), complex parameter interdependence and uncertainty, and multiple sources of data for model conditioning. These properties hold particular importance for hydrologic models where we need to characterize complex model errors (including heteroscedasticity and correlation) and where a full assessment of the uncertainty associated with the modeled results is desirable. Traditional MCMC algorithms can be difficult to implement due to computational constraints for high-dimensional models with complex parameter spaces and expensive model functions. Failure to effectively explore the parameter space can lead to false convergence to a local optimum and a misunderstanding of the model's ability to characterize the system. While past studies have shown adaptive MCMC techniques to be more desirable than traditional MCMC approaches, few hydrologic studies have taken advantage of these new advances, given their varying difficulty in implementation. We investigated three recently developed MCMC algorithms, the Adaptive Metropolis (AM), the Delayed Rejection Adaptive Metropolis (DRAM) and the Differential Evolution Markov Chain (DE-MC). These algorithms are newly devised and intended to better handle issues common to hydrologic modeling including multi-modality of parameter spaces, complex parameter interactions, and the computational cost associated with potentially expensive hydrologic functions. We evaluated each algorithm through application to two case studies; (1) a synthetic Gaussian mixture with five parameters and two modes and (2) a nine-dimensional snowmelt-hydrologic modeling study applied to an experimental watershed. Each of the three algorithms was compared in terms of its efficiency in converging to the posterior density, its effectiveness in searching the posterior parameter space (including the sampling of the tails of the posterior parameter distributions), its computational burden, and the ease of implementation of the algorithm for hydrologic settings. While the more complicated algorithms are shown to be more effective in simulating a model's posterior distribution, they suffer from increased computational and logistical costs.

  6. Opportunities for Improved Integration of Soil Science and Catchment Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Ebel, B. A.

    2013-12-01

    Estimating spatially-variable parameter values for physically-based models presents a major challenge in catchment hydrology. Characterization of subsurface heterogeneity and natural structures associated with pedogenesis and bioturbation therefore has great potential to inform integrated hydrologic models. Soil structures at the pore and pedon scale have an aggregated influence on the hydraulic properties needed to simulate the flow of water and transport of solutes at the hillslope, catchment, and watershed scales. Similarly, inverse model estimates of effective hydraulic properties based on observed hydrologic-response to natural rainfall are useful for identifying the hydraulically important soil structures, weathering horizons, and natural heterogeneities. This work presents examples of hydrologic response for selected experimental catchments simulated with a fully-coupled surface/ subsurface flow model in combination with a variety of field experiments in soil physics. The simulations illustrate the influence of soil horizons, hydraulic properties, topography, and surface roughness on variably-saturated subsurface flow dynamics. The experimental data highlight the importance of soil structures and heterogeneity on preferential flow and soil-water retention at different scales. Catchments in disturbed landscapes (e.g., wildfire, insect and disease, military activities, forestry) are also included because soil properties and structure are often impacted by disturbance, which in turn affects hydrologic processes. These examples help demonstrate the great potential for synergistic integration of detailed soils characterization with the prediction of runoff generation and streamflow at the scales needed in the land and water resources management arena. As we face increasing pressure on water resources resulting from climate and land use impacts, merging concepts in soil science and catchment hydrology can a play critical role.

  7. Hydrology of malaria: Model development and application to a Sahelian village

    NASA Astrophysics Data System (ADS)

    Bomblies, Arne; Duchemin, Jean-Bernard; Eltahir, Elfatih A. B.

    2008-12-01

    We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semiarid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations that lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic-stage and adult-stage components. Through a dependence of aquatic-stage mosquito development and adult emergence on pool persistence, we model small-scale hydrology as a dominant control of mosquito abundance. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. A 16% increase in rainfall between the two years was accompanied by a 132% increase in mosquito abundance between 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual timescales and highlights individual pool persistence as a dominant control. Future developments of the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.

  8. Development of a Coupled Hydrological/Sediment Yield Model for a Watershed at Regional Level

    NASA Technical Reports Server (NTRS)

    Rajbhandaril, Narayan; Crosson, William; Tsegaye, Teferi; Coleman, Tommy; Liu, Yaping; Soman, Vishwas

    1998-01-01

    Development of a hydrologic model for the study of environmental conservation requires a comprehensive understanding of individual-storm affecting hydrologic and sedimentologic processes. The hydrologic models that we are currently coupling are the Simulator for Hydrology and Energy Exchange at the Land Surface (SHEELS) and the Distributed Runoff Model (DRUM). SHEELS runs continuously to estimate surface energy fluxes and sub-surface soil water fluxes, while DRUM operates during and following precipitation events to predict surface runoff and peak flow through channel routing. The lateral re-distribution of surface water determined by DRUM is passed to SHEELS, which then adjusts soil water contents throughout the profile. The model SHEELS is well documented in Smith et al. (1993) and Laymen and Crosson (1995). The model DRUM is well documented in Vieux et al. (1990) and Vieux and Gauer (1994). The coupled hydrologic model, SHEELS/DRUM, does not simulate sedimentologic processes. The simulation of the sedimentologic process is important for environmental conservation planning and management. Therefore, we attempted to develop a conceptual frame work for coupling a sediment yield model with SHEELS/DRUM to estimate individual-storm sediment yield from a watershed at a regional level. The sediment yield model that will be used for this study is the Universal Soil Loss Equation (USLE) with some modifications to enable the model to predict individual-storm sediment yield. The predicted sediment yield does not include wind erosion and erosion caused by irrigation and snow melt. Units used for this study are those given by Foster et al. (1981) for SI units.

  9. A common framework for the development and analysis of process-based hydrological models

    NASA Astrophysics Data System (ADS)

    Clark, Martyn; Kavetski, Dmitri; Fenicia, Fabrizio; Gupta, Hoshin

    2013-04-01

    Building an environmental model requires making a series of decisions regarding the appropriate representation of natural processes. While some of these decisions can already be based on well-established physical understanding, gaps in our current understanding of environmental dynamics, combined with incomplete knowledge of properties and boundary conditions of most environmental systems, make many important modeling decisions far more ambiguous. There is consequently little agreement regarding what a "correct" model structure is, especially at relatively larger spatial scales such as catchments and beyond. In current practice, faced with such a range of decisions, different modelers will generally make different modeling decisions, often on an ad hoc basis, based on their balancing of process understanding, the data available to evaluate the model, the purpose of the modeling exercise, and other considerations. This presentation describes the application of the multiple-hypothesis methodology for developing and evaluating process-based hydrological models. Multiple-hypothesis methods provide a flexible (and extensible) approach to model development, including capabilities to 1) support multiple alternative decisions regarding process selection and representation; 2) accommodate different options for the model architecture, representing the connectivity between different model components; and 3) separate the hypothesized model equations from their solutions. Such flexibility in the selection of model architecture and components can be exploited to design various strategies for a controlled and thorough exploration of the hypothesis space, increasing the explanatory power of stringent model diagnostics that challenge both individual constituent hypotheses and the overall model architecture. Moreover, the availability of multiple modeling options improves representation of model uncertainty. In our application of multiple hypothesis methods in hydrology we seek to provide a common framework for model development and analysis. We recognize that the majority of process-based hydrological models use the same set of physics - most models use Darcy's Law to represent the flow of water through the soil matrix and Fourier's Law for thermodynamics. Our numerical model uses robust solutions of the hydrology and thermodynamic governing equations as the structural core, and incorporates multiple options to represent the impact of different modeling decisions, including different methods to represent spatial variability and different parameterizations of surface fluxes and shallow groundwater. Our analysis isolates individual modeling decisions and uses orthogonal diagnostic signatures to evaluate model behavior. Application of this framework in research basins demonstrates that the combination of (1) flexibility in the numerical model and (2) comprehensive scrutiny of orthogonal signatures provides a powerful approach to identify the suitability of different modeling options and different model parameter values. We contend that this common framework has general utility, and its widespread application in both research basins and at larger spatial scales will help accelerate the development of process-based hydrologic models.

  10. Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, I. G.; Arheimer, B.

    2015-11-01

    The scientific initiative Prediction in Ungauged Basins (PUB) (2003-2012 by the IAHS) put considerable effort into improving the reliability of hydrological models to predict flow response in ungauged rivers. PUB's collective experience advanced hydrologic science and defined guidelines to make predictions in catchments without observed runoff data. At present, there is a raised interest in applying catchment models to large domains and large data samples in a multi-basin manner, to explore emerging spatial patterns or learn from comparative hydrology. However, such modelling involves additional sources of uncertainties caused by the inconsistency between input data sets, i.e. particularly regional and global databases. This may lead to inaccurate model parameterisation and erroneous process understanding. In order to bridge the gap between the best practices for flow predictions in single catchments and multi-basins at the large scale, we present a further developed and slightly modified version of the recommended best practices for PUB by Takeuchi et al. (2013). By using examples from a recent HYPE (Hydrological Predictions for the Environment) hydrological model set-up across 6000 subbasins for the Indian subcontinent, named India-HYPE v1.0, we explore the PUB recommendations, identify challenges and recommend ways to overcome them. We describe the work process related to (a) errors and inconsistencies in global databases, unknown human impacts, and poor data quality; (b) robust approaches to identify model parameters using a stepwise calibration approach, remote sensing data, expert knowledge, and catchment similarities; and (c) evaluation based on flow signatures and performance metrics, using both multiple criteria and multiple variables, and independent gauges for "blind tests". The results show that despite the strong physiographical gradient over the subcontinent, a single model can describe the spatial variability in dominant hydrological processes at the catchment scale. In addition, spatial model deficiencies are used to identify potential improvements of the model concept. Eventually, through simultaneous calibration using numerous gauges, the median Kling-Gupta efficiency for river flow increased from 0.14 to 0.64. We finally demonstrate the potential of multi-basin modelling for comparative hydrology using PUB, by grouping the 6000 subbasins based on similarities in flow signatures to gain insights into the spatial patterns of flow generating processes at the large scale.

  11. Field experiment and Modeling full coupling hydrologic model with mircotopography in typical watershed

    NASA Astrophysics Data System (ADS)

    Xiang, Long; Zhu, Yongshu; Xu, Ruchao; Yu, Zhongbo; Chen, Li

    2015-04-01

    With high human activties and landscape remodeling, the various landuse and micropography are newly added in scienctific sight. In order to quanify the solpo effect in high resolution sub-grid system, three-dimensional Richards' equations and the two-dimensional diffusion wave equations are chosen to solve the output difference between hydro-flows, The difficulty of quantitating surface water and groundwater interaction and parameterizing the microtopography with the help of multi-scale observation experiments. For three-dimensional coupling mechanism in surface-subsurface system, we design real-time observations on water flow at Hydrologic Response Units (HRU) located on various landuse and outlet in Meilin experimental watershed. The continuously observed data disclose the principle of runoff yield spatially and temporally, and show the surface runoff redistribution, unsaturated soil water dynamics, shallow groundwater response to typical rainfall-runoff events on complex microtopographic slope. A surface storage function with elevation various is embeded into diffuse wave equations to describe microtopographic effect. we improve for paramterizing microtopography in subelements and evaluate the strength of microtopography and couple length at soil-water interface impacting the hydrologic modeling. Based on observed conclusions, a full physical based distributed model system is established at Meilin watershed to quantify the hydrodynamic processes of overland flow, soil water saturation, and groundwater level and analyze dynamic exchanges among them in simulation. The relationships between the various saturation area (VSA) and runoff yield and flow confluence in each typical event are quantified statistically. With the field work and simulations, we demostrated the approach to describe complex hydrologic processes in human-interrupted watershed. Keywords: micropography, coupling mechanism, various saturation area, surface storage

  12. Quantifying conceptual hydrological flow paths across heterogeneous conditions using a tailored catchment model

    NASA Astrophysics Data System (ADS)

    Mockler, Eva M.; Bruen, Michael

    2015-04-01

    As hydrology drives the nutrient and sediment processes at catchment scale, the hydrological processes in a model must be adequately represented in order for water quality simulations to be meaningful. Focus is increasingly turning to the internal movement of water within conceptual rainfall runoff models to investigate if the simulated processes contributing to the total flows are realistic. Difficulty arises when defining two or more flow paths that are conceptually distinct in relation to nutrient and sediment signatures, but have similar or overlapping discharge hydrograph responses. When this occurs, methods relating to physical hydrograph separation cannot be expected to distinguish between the different responses. There is a wealth of knowledge and conceptual understanding of hydrological and hydrogeological processes across Ireland. This knowledge has been incorporated into several spatial datasets of catchment characteristics including the Geological Survey of Ireland Groundwater Vulnerability Map and National Recharge Map. A tailored conceptual model for simulating flows in Irish catchments was developed that is linked with catchment characteristics to constrain internal flow paths and guide parameterisation. Simulations for 31 catchments were compared with output from two established models. The additional process information in the new model structure resulted in an improved or equalled performance in most catchment, with an increase in overall average performance criteria. This was attributed to the tailored model structure that more closely reflects the dominant hydrological processes in Irish catchments. The proportion of flow through groundwater or 'quick' flow paths varies considerably depending on catchment settings, with examples of groundwater dominated and 'flashy' catchments included in the study. In contrast to earlier studies, results showed interflow, as opposed to overland flow, as the dominant flow path in Irish catchments. This new finding was influenced by the inclusion of artificial land drains in the conceptual model, which is an important flow path in low permeability agricultural areas. Work is on-going to couple the hydrological model with water quality components so these results can inform the simulation of nutrients and sediments.

  13. Expression quantitative trait loci in long non-coding RNA ZNRD1-AS1 influence both HBV infection and hepatocellular carcinoma development.

    PubMed

    Wen, Juan; Liu, Yao; Liu, Jibin; Liu, Li; Song, Ci; Han, Jing; Zhu, Liguo; Wang, Cheng; Chen, Jianguo; Zhai, Xiangjun; Shen, Hongbin; Hu, Zhibin

    2015-11-01

    Zinc ribbon domain containing 1 (ZNRD1), cloned from human leukocyte antigen (HLA) region, may play integral roles in diverse processes including immune response against HBV infection and hepatocarcinogenesis. ZNRD1-AS1 (ZNRD1 antisense RNA 1) may be an important regulator of ZNRD1. By bioinformatics analyses, we identified that several single nucleotide polymorphisms (SNPs) in ZNRD1-AS1 may be expression quantitative trait loci (eQTLs) for ZNRD1. In this study, we hypothesized that these eQTLs SNPs in ZNRD1-AS1 may influence both chronic HBV infection and hepatocellular carcinoma (HCC) development. We designed a case-control study of 1300 HBV-positive HCC patients, 1344 HBV persistent carriers and, 1344 HBV natural clearance subjects to test the associations of three ZNRD1 eQTLs SNPs (rs3757328, rs6940552 and, rs9261204) in ZNRD1-AS1 with the risk of both chronic HBV infection and HCC. Logistic regression analyses in additive genetic model showed that variant alleles of all the three SNPs increased host HCC risk, whereas variant allele of rs3757328 was associated with HBV clearance. Moreover, the haplotype containing variant alleles of the three SNPs was significantly associated with both HCC development (adjusted OR?=?1.18, 95% CI?=?1.01-1.38, P?=?0.035) and HBV clearance (adjusted OR?=?0.83, 95% CI?=?0.71-0.96, P?=?0.013), when compared with the most frequent haplotype. In vitro experiments showed that ZNRD1 knockdown inhibited the expression of HBV mRNA and promoted proliferation of HepG2.2.15 cells. These findings suggest that ZNRD1 regulatory SNPs may be susceptibility makers for risk of both chronic HBV infection and HCC. © 2014 Wiley Periodicals, Inc. PMID:25110835

  14. Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Khosa, Rakesh; Adamowski, Jan; ch, Sudheer; Partheepan, G.; Anand, Jatin; Narsimlu, Boini

    2014-12-01

    The temporal dynamics of hydrological processes are spread across different time scales and, as such, the performance of hydrological models cannot be estimated reliably from global performance measures that assign a single number to the fit of a simulated time series to an observed reference series. Accordingly, it is important to analyze model performance at different time scales. Wavelets have been used extensively in the area of hydrological modeling for multiscale analysis, and have been shown to be very reliable and useful in understanding dynamics across time scales and as these evolve in time. In this paper, a wavelet-based multiscale performance measure for hydrological models is proposed and tested (i.e., Multiscale Nash-Sutcliffe Criteria and Multiscale Normalized Root Mean Square Error). The main advantage of this method is that it provides a quantitative measure of model performance across different time scales. In the proposed approach, model and observed time series are decomposed using the Discrete Wavelet Transform (known as the à trous wavelet transform), and performance measures of the model are obtained at each time scale. The applicability of the proposed method was explored using various case studies--both real as well as synthetic. The synthetic case studies included various kinds of errors (e.g., timing error, under and over prediction of high and low flows) in outputs from a hydrologic model. The real time case studies investigated in this study included simulation results of both the process-based Soil Water Assessment Tool (SWAT) model, as well as statistical models, namely the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods. For the SWAT model, data from Wainganga and Sind Basin (India) were used, while for the Wavelet Volterra, ANN and ARMA models, data from the Cauvery River Basin (India) and Fraser River (Canada) were used. The study also explored the effect of the choice of the wavelets in multiscale model evaluation. It was found that the proposed wavelet-based performance measures, namely the MNSC (Multiscale Nash-Sutcliffe Criteria) and MNRMSE (Multiscale Normalized Root Mean Square Error), are a more reliable measure than traditional performance measures such as the Nash-Sutcliffe Criteria (NSC), Root Mean Square Error (RMSE), and Normalized Root Mean Square Error (NRMSE). Further, the proposed methodology can be used to: i) compare different hydrological models (both physical and statistical models), and ii) help in model calibration.

  15. Simulation of soil moisture on a hillslope using multiple hydrologic models in comparison to field measurements

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; An, Hyunuk; Kim, Sanghyun; Kim, Hyeonjun

    2015-04-01

    Soil moisture in a hillslope is simulated using three multi-dimensional hydrologic models: a 3D surface-subsurface integrated model and two 2D distributed hydrologic models, MIKE-SHE and WEP, which adopt the Richards equation at different levels of approximation. High-resolution topographic data (1 m in horizontal accuracy), soil depth, hydraulic conductivity, porosity, and soil characteristics obtained from the literature and in-situ measurements were used as prior information for modeling. Numerical simulations were compared with multiple TDR sensor measurements from different locations and depths. Using available input data, the models had limited ability to reproduce the soil moisture dynamics shown in field measurements. The 3D model estimated the spatial diversity of the infiltration process of soil water movement more accurately than the distributed hydrologic models, MIKE-SHE and WEP. Suitable model parameters and correlations among them were estimated through Monte Carlo simulation using the 3D model. Parameters selected through the Monte Carlo method were used to simulate soil moisture variations at measurement sites. Relatively high correlations were found among the van Genuchten model parameters and the bottom boundary condition (bed rock). An increasing pattern of correlation between porosity to the downstream direction was found, which shows connectivity between parameter correlation and identifiability. Simulation results imply that multi-dimensional modeling of soil moisture in a hillslope may benefit from ensemble-based simulations that consider inherent uncertainty from model parameters and structures.

  16. Design, synthesis, and bioevaluation of paeonol derivatives as potential anti-HBV agents.

    PubMed

    Huang, Tsurng-Juhn; Chuang, Hong; Liang, Yu-Chuan; Lin, Hui-Hsien; Horng, Jia-Cherng; Kuo, Yu-Cheng; Chen, Chia-Wen; Tsai, Fu-Yuan; Yen, Shih-Chieh; Chou, Shih-Ching; Hsu, Ming-Hua

    2015-01-27

    Hepatitis B virus (HBV) is a causative reagent that frequently causes progressive liver diseases, leading to the development of acute, chronic hepatitis, cirrhosis, and eventually hepatocellular carcinoma (HCC). Despite several antiviral drugs including interferon-? and nucleotide derivatives are approved for clinical treatment for HBV, critical issues remain unresolved, e.g., low-to-moderate efficacy, adverse side effects, and resistant strains. In this study, novel Paeonol-phenylsulfonyl derivatives were synthesized and their antiviral effect against HBV was evaluated. The experimental results indicated that these compounds process significant antiviral potential, including the inhibition of viral antigen expression and secretion, and the suppression of HBV viral DNA replication. Among compounds synthesized in this research, compound 2-acetyl-5-methoxyphenyl 4-methoxybenzenesulfonate (7f) had the most potent inhibitory activity with IC50 value of 0.36 ?M, and high selectivity index, SI (TC50/IC50) 47.75; which exhibited an apparent inhibition effect on viral gene expression and viral propagation in cell culture model. So, we believe our compounds could serve as reservoir for antiviral drug development. PMID:25461891

  17. Exploiting remote sensing LST in distributed hydrological modelling: the example of the Continuum model

    NASA Astrophysics Data System (ADS)

    Rudari, Roberto; Silvestro, Francesco; Gabellani, Simone; Delogu, Fabio; Boni, Giorgio

    2013-04-01

    Complete and distribute models, based on physical equations must mimic a variety of hydro-meteorological processes. This can produce very complex models with a high degree of parameterization. The necessity to assimilate data of different nature observed by ground stations and remote sensors can be sometimes incompatible with the degree of complexity and parameterization of such models. In this work a model that balance the need of reproducing the physic of the processes and the practical goal of avoiding over-parameterization is presented. It is developed to be easily applied in different contexts even in data scarce environments. All main hydrological phenomena are modeled in a fully distributed way: overland flow, infiltration, sub-surface flow, vegetation, deep flow, water table evolution and evapotranspiration. Complete mass balance and energy balance are introduced with the capability of soil surface temperature estimation. A performance evaluation, based on both traditional and satellite derived data, is presented with a specific reference to the application to an Italian catchment. The model has been firstly calibrated and validated following a standard approach based on streamflow data. The capability of the model in reproducing both the streamflow measurements and the land surface temperature from satellites, has been investigated. The model has been then calibrated using satellite data and geomorphologic characteristic of the basin only in order to test its application on a basin where standard hydrologic observations (e.g., streamflow data) are not available. The results have been compared with those obtained by the standard calibration strategy based on streamflow data.

  18. Review of Understanding of Earth's Hydrological Cycle: Observations, Theory and Modelling

    NASA Astrophysics Data System (ADS)

    Rast, Michael; Johannessen, Johnny; Mauser, Wolfram

    2014-05-01

    Water is our most precious and arguably most undervalued natural resource. It is essential for life on our planet, for food production and economic development. Moreover, water plays a fundamental role in shaping weather and climate. However, with the growing global population, the planet's water resources are constantly under threat from overuse and pollution. In addition, the effects of a changing climate are thought to be leading to an increased frequency of extreme weather causing floods, landslides and drought. The need to understand and monitor our environment and its resources, including advancing our knowledge of the hydrological cycle, has never been more important and apparent. The best approach to do so on a global scale is from space. This paper provides an overview of the major components of the hydrological cycle, the status of their observations from space and related data products and models for hydrological variable retrievals. It also lists the current and planned satellite missions contributing to advancing our understanding of the hydrological cycle on a global scale. Further details of the hydrological cycle are substantiated in several of the other papers in this Special Issue.

  19. Sensitivity of an ecological model to soil moisture simulations from two different hydrological models

    NASA Astrophysics Data System (ADS)

    Ren, D.; Leslie, L. M.; Karoly, D. J.

    2008-08-01

    Although advanced land surface schemes have been developed in the past decade, many biosphere models still use the simple bucket model, partly due to its efficiency when it is coupled with an CGCM model. In this paper, we use a sophisticated land surface model, the Simulator for Hydrology and Energy Exchange at the Land Surface (SHEELS), including an explicit vegetation canopy and its physiological control on evapotranspiration and multiple, interactive subsurface soil layers. It is found that this model has potential for improving the carbon cycling description of a widely used biosphere model, the Carnegie-Ames-Stanford approach (CASA), especially for multiple seasonal integrations. Verifying with observations from Oklahoma Atmospheric Surface-layer Instrumentation System (OASIS) stations, we show that a bucket model as implemented in the CASA produces good simulations of the seasonal cycle of soil moisture content, but only for the upper 15-cm soil depth, no matter how it is initialized. This is partly due to its inability to include vegetation characteristics other than a fixed wilting point. Although only approximate, the soil depth to which CASA simulates storage of below-ground carbon is assumed to be about 30 cm depth, significantly deeper than the 15 cm depth. The bucket model cannot utilize the soil profile measurements that have recently been made widely available. A major finding of this study is that carbon fluxes are sensitive to the soil moisture simulations, especially the soil water content of the upper 30 cm. The SHEELS exhibits potential for simulating soil moisture, and hence the total soil water amount, accurately at every level. For the Net Primary Production (NPP) parameter, the differences between two hydrological schemes occur primarily during the growing seasons, when the land surface processes are more important for climate. However, soil microbial respiration is found to be sensitive all year round to soil moisture simulations at our 7 selected Oklahoma Mesonet stations. These suggest that for future implementing of interactive representation of soil carbon in CGCMs, the accompanying hydrological scheme should not be over-simplified.

  20. Hydrology of Malaria: A New Class of Models for Environmental Management and Studies of Climate Change

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A.

    2011-12-01

    A mechanistic and spatially-explicit model of hydrological and entomological processes that lead to malaria transmission is developed and tested against field observations. HYDREMATS (HYDRology, Entomology, and MAlaria Transmission Simulator) is described in (Bomblies and Eltahir, WRR, 44,2008). HYDREMATS is suitable for low cost screening of environmental management interventions, and for studying the impact of climate change on malaria transmission. Examples of specific applications will be presented from Niger in Africa. The potential for using HYDREMATS to study the impact of water reservoirs on malaria transmission will be discussed.

  1. Hydrological modelling of an artificial headwater catchment using the model system WaSiM-ETH

    NASA Astrophysics Data System (ADS)

    Hölzel, H.; Diekkrüger, B.

    2009-04-01

    The hydrological headwater catchment Chicken Creek (6.5 ha) was constructed in a lignite open-cast mine by Cottbus (Germany) to study initial processes of ecosystem development. The catchment has been intensively monitored for more than three years. Thereby, it is well suited to test and develop hydrological models. The construction of a clay layer in the basement simplifies the balancing of the water cycle since lateral inflows and vertical outflows can be neglected. For modelling purposes all basic input data were given, but neither discharge nor soil moisture measurements were provided. Hence, no high model quality can be feigned by fitting simulated results on observed output data. To compare the ability of different models and modellers to describe the hydrological behaviour of that catchment, a model competition was declared, on which several international scientists take part, all specialised in hydrological modelling. The contest is conducted in different levels, whereupon the knowledge of modellers concerning the investigated catchment will be increased stepwise. All modellers use the same database and results will be evaluated by an independent observer group. Thereby, the comparability between different model applications is guaranteed. We applied the process-based distributed Water balance Simulation Model (WaSiM-ETH) by Schulla & Jasper (2007) to simulate the first three years since the catchment construction was finished (Sep. 2005 - Aug. 2008). For the first modelling exercise important initial conditions (e.g. soil moisture) were unknown. Due to the lack of field experiences, effects of a constructed lake were disregarded. Therefore, the results of the first level were far away from being perfect, e.g. discharge was simulated from the beginning which was not observed because in reality soil water and lake storages were filled up first. The biggest differences occurred between simulated and observed surface runoff. In reality, surface runoff is the dominant runoff part responsible for approximately 70 % of the total runoff, but only half a percent was simulated. Hence, runoff dynamic and runoff peaks were underestimated. The simulated result is physically vindicated through the given data, because the sandy soils (sand content of 70 - 90 %) leads to high infiltration rates. During a first survey a compact and sealed layer was identified as the reason for high surface runoff, which could not be derived from the given date. For the second step of the modelling exercise the lake and the improved knowledge about the initial conditions were considered. Now, the simulated discharge shows the same delay as observed. Furthermore, effects of the sealed layer could be considered by a differentiated representation of soil conditions. Thereby, the simulated surface runoff increased up to 60 % of total runoff, which leads to an enforced runoff dynamic with higher peaks. Now, it is up to the observer group to evaluate whether or not the simulated results of the second modelling level has improved.

  2. A new adaptation of linear reservoir models in parallel sets to assess actual hydrological events

    NASA Astrophysics Data System (ADS)

    Mateo Lázaro, Jesús; Sánchez Navarro, José Ángel; García Gil, Alejandro; Edo Romero, Vanesa

    2015-05-01

    A methodology based on Parallel Linear Reservoir (PLR) models is presented. To carry it out has been implemented within the software SHEE (Simulation of Hydrological Extreme Events), which is a tool for the analysis of hydrological processes in catchments with the management and display of DEM and datasets. The algorithms of the models pass throughout the cells and drainage network, by means of the Watershed Traversal Algorithm (WTA) that runs the entire drainage network of a basin in both directions, upwards and downwards, which is ideal for incorporating the models of the hydrological processes of the basins into its structure. The WTA methodology is combined with another one based on models of Parallel Linear Reservoirs (PLR) whose main qualities include: (1) the models are defined by observing the recession curves of actual hydrographs, i.e., the watershed actual responses; (2) the models serve as a way to simulate the routing through the watershed and its different reservoirs; and (3) the models allow calculating the water balance, which is essential to the study of actual events in the watershed. A complete hydrometeorological event needs the combination of several models, each one of which represents a hydrological process. The PLR model is a routing model, but it also contributes to the adjustment of other models (e.g., the rainfall-runoff model) and allows establishing a distributed model of effective rainfall for an actual event occurred in a basin. On the other hand, the proposed formulation solves the rainfall distribution problem for each deposit in the reservoir combination models.

  3. HBV DNA integration and HBV-transcript expression in non-B, non-C hepatocellular carcinoma in Japan.

    PubMed

    Tamori, Akihiro; Nishiguchi, Shuhei; Kubo, Shoji; Narimatsu, Takashi; Habu, Daiki; Takeda, Tadashi; Hirohashi, Kazuhiro; Shiomi, Susumu

    2003-12-01

    Few studies have examined the etiology of hepatocellular carcinoma (HCC) in patients without hepatitis virus infection. We evaluated the role of occult hepatitis B virus (HBV) infection in the development of HCC in Japanese patients without hepatitis B surface antigen (HBsAg) and antibodies to hepatitis C antigen (anti-HCV). Twenty-one HBsAg negative and anti-HCV negative (non-B, non-C) patients with HCC were studied. HBV DNA in serum and HBV transcripts in liver were examined by polymerase chain reaction (PCR) or reverse transcription and PCR. HBV DNA integration was examined by Southern blot analysis or cassette-ligation-mediated PCR as described previously. p53 mutations were examined by direct sequencing. HBV DNA was not detected in serum from any patients. HBV-related transcripts were detected in 5 of 7 HCCs from patients with antibodies to hepatitis core antigen (anti-HBc) and in 3 of 14 HCCs from patients without anti-HBc (P = 0.0261). HBV DNA was integrated into human genome in two non-B, non-C HCCs. Of the 14 patients without anti-HBc, 5 had a history of excessive alcohol intake. In exons 5 through 8 of the p53 gene, mutations were detected in 2 of 8 HCCs with HBV-transcripts and in 5 of 13 HCCs without such transcripts. p53 mutation at codon 159 was found in 2 of 6 patients with excessive alcohol intake without HBV-transcripts. These results suggested that occult HBV infection might play an important role in hepatocarcinogenesis in non-B, non-C patients with anti-HBc and that excessive alcohol intake might be related to HCC in non-B, non-C patients in Japan. PMID:14556260

  4. Hydrologic modeling to screen potential environmental management methods for malaria vector control in Niger

    NASA Astrophysics Data System (ADS)

    Gianotti, Rebecca L.; Bomblies, Arne; Eltahir, Elfatih A. B.

    2009-08-01

    This paper describes the first use of Hydrology-Entomology and Malaria Transmission Simulator (HYDREMATS), a physically based distributed hydrology model, to investigate environmental management methods for malaria vector control in the Sahelian village of Banizoumbou, Niger. The investigation showed that leveling of topographic depressions where temporary breeding habitats form during the rainy season, by altering pool basin microtopography, could reduce the pool persistence time to less than the time needed for establishment of mosquito breeding, approximately 7 days. Undertaking soil surface plowing can also reduce pool persistence time by increasing the infiltration rate through an existing pool basin. Reduction of the pool persistence time to less than the rainfall interstorm period increases the frequency of pool drying events, removing habitat for subadult mosquitoes. Both management approaches could potentially be considered within a given context. This investigation demonstrates that management methods that modify the hydrologic environment have significant potential to contribute to malaria vector control in water-limited, Sahelian Africa.

  5. Hydrological modeling of upper Indus Basin and assessment of deltaic ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Managing water resources is mostly required at watershed scale where the complex hydrology processes and interactions linking land surface, climatic factors and human activities can be studied. Geographical Information System based watershed model; Soil and Water Assessment Tool (SWAT) is applied f...

  6. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  7. CORDEX - a treasure trove of open climate data for hydrological modelling

    NASA Astrophysics Data System (ADS)

    O'Rourke, Eleanor; Nikulin, Grigory; Kjellström, Erik

    2015-04-01

    The Coordinated Regional Downscaling Experiment (CORDEX) was initiated by the World Climate Research Programme (WCRP) to coordinate high-resolution Regional Climate Modelling and provide a set of regional climate projections for the majority of global land regions. Additionally making this data available, and importantly useable, to impact and adaptation communities was a fundamental goal. Phase I of CORDEX, which came to a close in November 2013, was successful in developing a framework in which scientists around the world adopted a common protocol to guide the development of high-resolution Regional Climate Model (RCM) and empirical statistical downscaling (ESD) projections, and the intercomparison of these projections, on each continent, with a particular focus on the African region. As a result of these intensive activities by groups across the globe more than 47000 quality checked open datasets are now freely available to users through the searchable Earth System Grid Federation (ESGF). The integration of this data into large scale hydrological modelling is in action within the Swedish Meteorological & Hydrological Institute (SMHI) exemplifying the great potential use of this resource to the hydrological community. The aim of CORDEX Phase II is to enhance the dialogue with end-users so as to meet the growing demand for tailored regional climate information. Here, greater interaction between the CORDEX and hydrological modelling community can only prove hugely beneficial leading to greater protection for those vulnerable to the impacts of a changing climate.

  8. Scale-dependent complexity in soil and hydrologic systems and models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complexity of soil and hydrologic systems is easy to perceive but is very difficult to represent in mathematical terms. This causes the structural uncertainty of models which introduces uncontrollable uncertainty in forecast results. Various measures of system complexity have been proposed. The obje...

  9. Where and why do models fail? Perspectives from Oregon Hydrologic Landscape classification

    EPA Science Inventory

    A complete understanding of why rainfall-runoff models provide good streamflow predictions at catchments in some regions, but fail to do so in other regions, has still not been achieved. Here, we argue that a hydrologic classification system is a robust conceptual tool that is w...

  10. AUTOMATIC CALIBRATION OF A HYDROLOGIC MODEL FOR SIMULATING GROUNDWATER TABLE FLUCTUATIONS ON FARMS IN THE EVERGLADES

    E-print Network

    Grunwald, Sabine

    AUTOMATIC CALIBRATION OF A HYDROLOGIC MODEL FOR SIMULATING GROUNDWATER TABLE FLUCTUATIONS ON FARMS-UA) is an automatic calibration algorithm that has shown success in finding a globally optimum objective function, utilizing an ontology-based simulation (OntoSim-Sugarcane) framework adapted to analyze ground- water table

  11. On the effect of digital elevation model accuracy on hydrology and geomorphology

    E-print Network

    Walker, Jeff

    and photogrammetric digital elevation models (DEMs) of various grid spacings with a ground truth data set, obtained hydrology, erosion, and landscape evolution by Earth and water scientists rely heavily on the integrity the results and computational efficiency; (3) grid spacing needs to be based on the roughest terrain

  12. HydroShare: An online, collaborative environment for the sharing of hydrologic data and models (Invited)

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Arrigo, J.; Hooper, R. P.; Valentine, D. W.; Maidment, D. R.

    2013-12-01

    HydroShare is an online, collaborative system being developed for sharing hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. HydroShare will use the integrated Rule-Oriented Data System (iRODS) to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.

  13. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-10-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.

  14. On noise specification in data assimilation schemes for improved flood forecasting using distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Noh, S.; Rakovec, O.; Weerts, A.; Tachikawa, Y.

    2013-12-01

    While important advances have been achieved in flood forecasting, due to various uncertainties that originate from simulation models, observations, and forcing data, they are still insufficient to obtain accurate prediction results with the required lead times. To increase the certainty of the hydrological forecast, data assimilation (DA) may be utilized to consider or propagate all of these sources of uncertainty through the hydrological modelling chain embedded in a flood forecasting system. Although numerous sophisticated DA algorithms have been proposed to mitigate uncertainty, DA methods dealing with the correction of model inputs, states, and initial conditions are conducted in a rather empirical and subjective way, which may reduce credibility and transparency to operational forecasts. In this study, we investigate the effect of noise specification on the quality of hydrological forecasts via an advanced DA procedure using a distributed hydrological model driven by numerical weather predictions. The sequential DA procedure is based on (1) a multivariate rainfall ensemble generator, which provides spatial and temporal correlation error structures of input forcing and (2) lagged particle filtering to update past and current state variables simultaneously in a lag-time window to consider the response times of internal hydrologic processes. The strength of the proposed procedure is that it requires less subjectivity to implement DA compared to conventional methods using consistent and objectively-induced error models. The procedure is evaluated for streamflow forecasting of three flood events in two Japanese medium-sized catchments. The rainfall ensembles are derived from ground based rain gauge observations for the analysis step and numerical weather predictions for the forecast step. Sensitivity analysis is performed to assess the impacts of uncertainties coming from DA such as random walk state noise and different DA methods with/without objectively-induced rainfall uncertainty conditions. The results show that multivariate rainfall ensembles provide sound input perturbations and model states updated by lagged particle filtering produce improved streamflow forecasts in conjunction with fine-resolution numerical weather predictions.

  15. Development and application of a modular watershed-scale hydrologic model using the object modeling system: runoff response evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports on: 1) the integration of the European J2K model (an object-oriented, modular hydrological system for fully distributed simulation of the water balance in large watersheds) under the Object Modeling System (OMS) environmental modeling framework; and 2) evaluation of OMS-J2K perfor...

  16. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    NASA Astrophysics Data System (ADS)

    Van Loon, A. F.; Van Huijgevoort, M. H. J.; Van Lanen, H. A. J.

    2012-11-01

    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP). For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity), drought propagation features (pooling, attenuation, lag, lengthening), and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought). Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an underestimation of wet-to-dry-season droughts and snow-related droughts. Furthermore, almost no composite droughts were simulated for slowly responding areas, while many multi-year drought events were expected in these systems. We conclude that most drought propagation processes are reasonably well reproduced by the ensemble mean of large-scale models in contrasting catchments in Europe. Challenges, however, remain in catchments with cold and semi-arid climates and catchments with large storage in aquifers or lakes. This leads to a high uncertainty in hydrological drought simulation at large scales. Improvement of drought simulation in large-scale models should focus on a better representation of hydrological processes that are important for drought development, such as evapotranspiration, snow accumulation and melt, and especially storage. Besides the more explicit inclusion of storage in large-scale models, also parametrisation of storage processes requires attention, for example through a global-scale dataset on aquifer characteristics, improved large-scale datasets on other land characteristics (e.g. soils, land cover), and calibration/evaluation of the models against observations of storage (e.g. in snow, groundwater).

  17. The role of observation uncertainty in the calibration of hydrologic rainfall-runoff models

    NASA Astrophysics Data System (ADS)

    Ghizzoni, T.; Giannoni, F.; Roth, G.; Rudari, R.

    2007-06-01

    Hydrologic rainfall-runoff models are usually calibrated with reference to a limited number of recorded flood events, for which rainfall and runoff measurements are available. In this framework, model's parameters consistency depends on the number of both events and hydrograph points used for calibration, and on measurements reliability. Recently, to make users aware of application limits, major attention has been devoted to the estimation of uncertainty in hydrologic modelling. Here a simple numerical experiment is proposed, that allows the analysis of uncertainty in hydrologic rainfall-runoff modelling associated to both quantity and quality of available data. A distributed rainfall-runoff model based on geomorphologic concepts has been used. The experiment involves the analysis of an ensemble of model runs, and its overall set up holds if the model is to be applied in different catchments and climates, or even if a different hydrologic model is used. With reference to a set of 100 synthetic rainfall events characterized by a given rainfall volume, the effect of uncertainty in parameters calibration is studied. An artificial truth - perfect observation - is created by using the model in a known configuration. An external source of uncertainty is introduced by assuming realistic, i.e. uncertain, discharge observations to calibrate the model. The range of parameters' values able to "reproduce" the observation is studied. Finally, the model uncertainty is evaluated and discussed. The experiment gives useful indications about the number of both events and data points needed for a careful and stable calibration of a specific model, applied in a given climate and catchment. Moreover, an insight on the expected and maximum error in flood peak discharge simulations is given: errors ranging up to 40% are to be expected if parameters are calibrated on insufficient data sets.

  18. A four-stage hybrid model for hydrological time series forecasting.

    PubMed

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782

  19. Modeling and Analysis of Global and Regional Climate Change in Relation to Atmospheric Hydrologic Processes

    NASA Technical Reports Server (NTRS)

    Johnson, Donald R.

    1998-01-01

    The goal of this research is the continued development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. This work involves a combination of modeling and analysis efforts involving 4DDA datasets and simulations from the University of Wisconsin (UW) hybrid isentropic-sigma (theta-sigma) coordinate model and the GEOS GCM.

  20. A Four-Stage Hybrid Model for Hydrological Time Series Forecasting

    PubMed Central

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782

  1. Development of a coupled model of a distributed hydrological model and a rice growth model for optimizing irrigation schedule

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Kumiko; Homma, Koki; Koike, Toshio; Ohta, Tetsu

    2013-04-01

    A coupled model of a distributed hydrological model and a rice growth model was developed in this study. The distributed hydrological model used in this study is the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM) developed by Wang et al. (2009). This model includes a modified SiB2 (Simple Biosphere Model, Sellers et al., 1996) and the Geomorphology-Based Hydrological Model (GBHM) and thus it can physically calculate both water and energy fluxes. The rice growth model used in this study is the Simulation Model for Rice-Weather relations (SIMRIW) - rainfed developed by Homma et al. (2009). This is an updated version of the original SIMRIW (Horie et al., 1987) and can calculate rice growth by considering the yield reduction due to water stress. The purpose of the coupling is the integration of hydrology and crop science to develop a tool to support decision making 1) for determining the necessary agricultural water resources and 2) for allocating limited water resources to various sectors. The efficient water use and optimal water allocation in the agricultural sector are necessary to balance supply and demand of limited water resources. In addition, variations in available soil moisture are the main reasons of variations in rice yield. In our model, soil moisture and the Leaf Area Index (LAI) are calculated inside SIMRIW-rainfed so that these variables can be simulated dynamically and more precisely based on the rice than the more general calculations is the original WEB-DHM. At the same time by coupling SIMRIW-rainfed with WEB-DHM, lateral flow of soil water, increases in soil moisture and reduction of river discharge due to the irrigation, and its effects on the rice growth can be calculated. Agricultural information such as planting date, rice cultivar, fertilization amount are given in a fully distributed manner. The coupled model was validated using LAI and soil moisture in a small basin in western Cambodia (Sangker River Basin). This basin is mostly rainfed paddy so that irrigation scheme was firstly switched off. Several simulations with varying irrigation scheme were performed to determine the optimal irrigation schedule in this basin.

  2. Modelling past hydrology of an interfluve area in the Campine region (NE Belgium)

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Beerten, Koen; Gedeon, Matej; Vandersteen, Katrijn

    2015-04-01

    This study aims at hydrological model verification of a small lowland interfluve area (18.6 km²) in NE Belgium, for conditions that are different than today. We compare the current state with five reference periods in the past (AD 1500, 1770, 1854, 1909 and 1961) representing important stages of landscape evolution in the study area. Historical information and proxy data are used to derive conceptual model features and boundary conditions specific to each period: topography, surface water geometry (canal, drains and lakes), land use, soils, vegetation and climate. The influence of landscape evolution on the hydrological cycle is assessed using numerical simulations of a coupled unsaturated zone - groundwater model (HYDRUS-MODFLOW). The induced hydrological changes are assessed in terms of groundwater level, recharge, evapotranspiration, and surface water discharge. HYDRUS-MODFLOW coupling allows including important processes such as the groundwater contribution to evapotranspiration. Major land use change occurred between AD 1854 and 1909, with about 41% of the study area being converted from heath to coniferous forest, together with the development of a drainage network. Results show that this led to a significant decrease of groundwater recharge and lowering of the groundwater table. A limitation of the study lies in the comparison of simulated past hydrology with appropriate palaeo-records. Examples are given as how some indicators (groundwater head, swamp zones) can be used to tend to model validation. Quantifying the relative impact of land use and climate changes requires running sensitivity simulations where the models using alternative land use are run with the climate forcing of other periods. A few examples of such sensitivity runs are presented in order to compare the influence of land use and climate change on the study area hydrology.

  3. Detecting land use and land management influences on catchment hydrology by modelling and wavelets

    NASA Astrophysics Data System (ADS)

    Rust, W.; Corstanje, R.; Holman, I. P.; Milne, A. E.

    2014-09-01

    There exists a widespread recognition that land use and management change should affect catchment response to precipitation (and therefore stream flow characteristics). Previous studies have shown that this affect exists at a local scale, but there is a paucity of evidence that local scale effects aggregate to detectable impacts within downstream catchments. This paper describes a novel wavelet-based analysis of hydrological model residuals to examine the effect of land-use change on the catchment hydrology across four UK catchments (the Kird, Lod, Coalburn and Wye), of which all but the Wye experienced significant changes in their land use. The HySim rainfall-runoff model was calibrated against observed long term flow series assuming a static land hydrology to allow for the effects of climatic variability. Deviations of model fit were assessed in relation to changes to catchment land hydrology. The wavelet transform was used to decompose both simulated and observed flows into different scale components and to assess changes in catchment hydrology across different temporal scales; model residuals and model performance were tested for significant changes in wavelet variance and wavelet correlation respectively. Significant changes in wavelet variance and wavelet correlation corresponded with changes in catchment land use for two of the three catchments that experience land use change, in the third there were significant changes in wavelet variation that may have resulted from land-use change, but no changes in wavelet correlation. The control catchment showed no significant features of variances and no significant change in wavelet correlation across the scales. This new approach holds great potential for separating the influences of land use and management change on catchment stream flow based on frequency scale.

  4. Improving USGS National Hydrologic Model Parameterization with Satellite-Based Phenology Products

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Hogue, T. S.; Hay, L.; Markstrom, S. L.; Regan, R. S.

    2014-12-01

    Hydrologists and water resource engineers are simulating hydrologic processes at the continental scale assisted by the advancement of high-performance computing and the accessibility of large-scale climate and hydrologic datasets. The United States Geological Survey (USGS) is developing a National Hydrologic Model (NHM) that supports coordinated, comprehensive, and consistent hydrologic model development and simulations of the conterminous United States (CONUS). The goal of this project is to improve model parameterization and ultimately streamflow predictions across the CONUS using remotely sensed data products. The current work will specifically improve estimates of the growing season in the NHM through the integration of satellite-based phenology products developed at the USGS Earth Resources Observation and Science (EROS) Center. Currently, the NHM defines the growing season using one of three temperature-index methods: 1) first and last freezing air temperatures; 2) temperature threshold for a specified begin and end month; and 3) dynamic specification. The USGS/EROS RSP products are based on a timeseries analysis of the normalized difference vegetation index (NDVI) from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors. Using the phenological metrics derived from AVHRR, we define a new growing season parameter set for the CONUS from 1989 to 2013, which ultimately will enhance estimations of daily transpiration rates throughout the model domain. Using default temperature-index based estimates of growing season and RSP derived estimates, we provide statistical evaluation and comparison of the NHM simulations related to growing season. The RSP growing season dates may improve model hydrologic simulations especially in drought periods when water availability, demand, and usage are critical, or in areas where the temperature-index based growing season estimates lack skill, such as some California grasslands which have winter growing seasons.

  5. Remote sensing and hydrologic modeling of arid watersheds: A scale analysis: Progress report

    SciTech Connect

    Not Available

    1988-01-01

    The ultimate goal of this multiyear research effort is to model long-term (10/sup 2/--10/sup 4/ yrs), cut and fill cycles in arid region fluvial systems (arroyos). Historic and geologic (late Quaternary) data bases indicate that arid region fluvial systems have oscillated between periods of pronounced aggradation and degradation. This cyclic behavior has affected both water and sediment discharge from arid watersheds as well as ecosystem habitats along hillslopes and valley bottoms. One of the primary causes that has been proposed for this cyclic activity is climatic change for gradual (glacial-interglacial) and catastrophic (volcanic eruptions, el Nino) rates of climatic change on a global scale. The immediate goal of this multiyear research effort is to modify existing numeric hydrologic models (SPUR, KINEROS) which utilize as input multilayered, co-registered remotely sensed data for the prediction of surface hydrology and sediment erosion, transport and deposition in arid region watersheds. It is hypothesized that different types of co-registered, remotely sensed data including digital elevation data sets (DEDS), multispectral scanner (TM, SPOT), and thermal infrared multispectral scanner (TIMS) can be used in conjunction with limited ground truth data to predict values of input parameters for numeric watershed hydrology models and thus to compute watershed hydrologic and sedimentologic characteristics.

  6. Modeling the mechanical and hydrological controls of vegetation in shallow landslides

    NASA Astrophysics Data System (ADS)

    Arnone, Elisa; Noto, Leonardo V.; Sivandran, Gajan; Bras, Rafael L.

    2014-05-01

    Coupled hydrological-stability models are widely used to evaluate rain triggered shallow landslide hazards at basin. Vegetation influences landslides in several ways. Plants directly interact with many of the hydrological processes (e.g. foliage interception, evapotranspiration, root water uptaking), and lead to a reduction of the amount of water available for infiltration which can cause instability. From a mechanical point of view, the root system increases the resistance of soil through its tensile strength and frictional or adhesive properties (apparent root cohesion); however, such an effect is rarely explicitly considered in the spatially distributed applications. This study proposes a methodology for modeling the mechanical control of vegetation within an existing physically-based, eco-hydrological and stability model. The approach is based on the estimation of the apparent root cohesion term as a function of the spatial distribution of the roots in soil expressed in terms of Root Area Ratio (RAR). A synthetic case study is presented to assess the consistency and the capability of the methodology, by investigating both the hydrological and mechanical controls.

  7. A community initiative for developing data and modeling driven curriculum modules for hydrology education

    NASA Astrophysics Data System (ADS)

    Ruddell, B. L.; Merwade, V.

    2010-12-01

    Hydrology and geoscience education at the undergraduate and graduate levels may benefit greatly from a structured approach to pedagogy that utilizes modeling, authentic data, and simulation exercises to engage students in practice-like activities. Extensive evidence in the educational literature suggests that students retain more of their instruction, and attain higher levels of mastery over content, when interactive and practice-like activities are used to contextualize traditional lecture-based and theory-based instruction. However, it is also important that these activities carefully link the use of data and modeling to abstract theory, to promote transfer of knowledge to other contexts. While this type of data-based activity has been practiced in the hydrology classroom for decades, the hydrology community still lacks a set of standards and a mechanism for community-based development, publication, and review of this type of curriculum material. A community-based initiative is underway to develop a set curriculum materials to teach hydrology in the engineering and geoscience university classroom using outcomes-based, pedagogically rigorous modules that use authentic data and modeling experiences to complement traditional lecture-based instruction. A preliminary design for a community cyberinfrastructure for shared module development and publication, and for module topics and outcomes and ametadata and module interoperability standards, will be presented, along with the results of a series of community surveys and workshops informing this design.

  8. Debates—Perspectives on socio-hydrology: Modeling flood risk as a public policy problem

    NASA Astrophysics Data System (ADS)

    Gober, Patricia; Wheater, Howard S.

    2015-06-01

    Socio-hydrology views human activities as endogenous to water system dynamics; it is the interaction between human and biophysical processes that threatens the viability of current water systems through positive feedbacks and unintended consequences. Di Baldassarre et al. implement socio-hydrology as a flood risk problem using the concept of social memory as a vehicle to link human perceptions to flood damage. Their mathematical model has heuristic value in comparing potential flood damages in green versus technological societies. It can also support communities in exploring the potential consequences of policy decisions and evaluating critical policy tradeoffs, for example, between flood protection and economic development. The concept of social memory does not, however, adequately capture the social processes whereby public perceptions are translated into policy action, including the pivotal role played by the media in intensifying or attenuating perceived flood risk, the success of policy entrepreneurs in keeping flood hazard on the public agenda during short windows of opportunity for policy action, and different societal approaches to managing flood risk that derive from cultural values and economic interests. We endorse the value of seeking to capture these dynamics in a simplified conceptual framework, but favor a broader conceptualization of socio-hydrology that includes a knowledge exchange component, including the way modeling insights and scientific results are communicated to floodplain managers. The social processes used to disseminate the products of socio-hydrological research are as important as the research results themselves in determining whether modeling is used for real-world decision making.

  9. Socio-Hydrology Modelling for an Uncertain Future, with Examples from the USA and Canada (Invited)

    NASA Astrophysics Data System (ADS)

    White, D. D.; Gober, P.; Sampson, D. A.; Quay, R.; Kirkwood, C.

    2013-12-01

    Socio-hydrology brings an interest in human values, markets, social organizations and public policy to the traditional emphasis of water science on climate, hydrology, toxicology,and ecology. It also conveys a decision focus in the form of decision support tools, engagement, and new knowledge about the science-policy interface. This paper demonstrates how policy decisions and human behavior can be better integrated into climate and hydrological models to improve their usefulness for support in decision making. Examples from the Southwest USA and Western Canada highlight uncertainties, vulnerabilities, and critical tradeoffs facing water decision makers in the face of rapidly changing environmental and societal conditions. Irreducible uncertainties in downscaled climate and hydrological models limit the usefulness of climate-driven, predict-and-plan methods of water resource planning and management. Thus, it is argued that such methods should be replaced by approaches that use exploratory modelling, scenario planning, and risk assessment in which the emphasis is on managing uncertainty rather than on reducing it.

  10. A Distributed Hydrologic Model For Wide-Area Flood Risk Monitoring

    NASA Astrophysics Data System (ADS)

    Artan, G.; Restrepo, M.; Asante, K.; Verdin, J.

    2002-05-01

    Large areas of the African continent have experienced widespread flooding in the last four years. Deployment of hydrologic models can reduce the human and economic losses in these regions by providing improved monitoring and forecast information to guide relief activities in the flood-affected areas. Hydrologic models need to be calibrated for the specific region where they will be used to produce reliable results, but most of the countries in the region lack extended historical hydrometeorological data. In this study, we describe a spatially distributed, physically based hydrologic model used for wide-area flood risk monitoring. The model is forced by daily estimates of rainfall and evapotranspiration derived from remotely sensed data and assimilation fields. In most developing countries hydro-meteorological station networks are sparse, if the data are available at all there are significant delays in receiving them. In the model described in this paper the operational rainfall data are produced by the National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA/CPC) from satellite imagery and ground station data. Model input parameters were derived from widely available continental-scale data sets for topography, soils, and land cover. The model performed well in simulating the timing and magnitude of stream flow in the major rivers of Southern African region during the recent episode of flooding in Mozambique. The model will part of the USGS/EDC contribution to the Distributed Models Intercomparison Project (DMIP).

  11. The CAOS model: a physically based, flexible hydrological model for the mesoscale

    NASA Astrophysics Data System (ADS)

    Westhoff, Martijn; Zehe, Erwin

    2014-05-01

    Hydrological models are not only tools to predict discharge, but they are also hypotheses of how a catchment functions with respect to rainfall-runoff behaviour. In this work in progress, we present a new (physically based) model concept that should ultimately be suitable to run at the mesoscale. To be able to run it efficiently on the mesoscale, the model cannot be too complex. Yet, we wanted it physically based, with explicit incorporation of dissipative structures, such as macropores and lateral preferential flow paths. Besides water fluxes it should also be able to simulate solute concentrations and energy fluxes. This helps to parameterize the model while the model is also thermodynamically consistent, meaning that it is suitable to test thermodynamic optimality principles (such as maximum entropy production principle). With these constraints in mind, we developed a model where, in each subroutine, flow is modelled in only one dimension (vertical for the unsaturated zone and lateral for subsurface storm flow, groundwater flow and stream flow routines, making the model multiple 1-D), decreasing computation time significantly. The code is developed in an object oriented way, leading to more flexibility to test different model structures. For example, we will demonstrate the effect on simulated rapid subsurface flow for different mathematical descriptions (i.e. the Darcy-Weisbach equation vs. the diffusive wave and kinematic wave equation). For this study, the model will also be evaluated for hillslopes in three different geological settings within the Attert Basin in Luxembourg.

  12. A digital model for simulation of ground-water hydrology in the Houston area, Texas

    USGS Publications Warehouse

    Meyer, Walter R.; Carr, Jerry E.

    1979-01-01

    This report documents the construction and calibration of a digital model for the simulation of hydrologic conditions in the Chicot and Evangeline aquifers in the Houston area of southeastern Texas. The model is a five-layer finite-difference model, with a grid pattern of 63 x 67 nodes representing an area of 27,000 square miles, for simulation of three- dimensional ground-water flow. The hydrologic properties and processes modeled were ground-water withdrawals, transmissivities, storage coefficients of the aquifers and clays, quantity of water derived from storage in the clays, and vertical hydraulic conductivity and vertical leakage. The model, which simulates water-level declines, changes in storage in the clay layers, and land-surface subsidence, was calibrated by use of historical records from 1890 to 1975. It is very sensitive to variations in transmissivities and to variations in water-table and artesian storage. It is less sensitive to variations in clay storage.

  13. Development of Conceptual Benchmark Models to Evaluate Complex Hydrologic Model Calibration in Managed Basins Using Python

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; White, J.

    2013-12-01

    For many numerical hydrologic models it is a challenge to quantitatively demonstrate that complex models are preferable to simpler models. Typically, a decision is made to develop and calibrate a complex model at the beginning of a study. The value of selecting a complex model over simpler models is commonly inferred from use of a model with fewer simplifications of the governing equations because it can be time consuming to develop another numerical code with data processing and parameter estimation functionality. High-level programming languages like Python can greatly reduce the effort required to develop and calibrate simple models that can be used to quantitatively demonstrate the increased value of a complex model. We have developed and calibrated a spatially-distributed surface-water/groundwater flow model for managed basins in southeast Florida, USA, to (1) evaluate the effect of municipal groundwater pumpage on surface-water/groundwater exchange, (2) investigate how the study area will respond to sea-level rise, and (3) explore combinations of these forcing functions. To demonstrate the increased value of this complex model, we developed a two-parameter conceptual-benchmark-discharge model for each basin in the study area. The conceptual-benchmark-discharge model includes seasonal scaling and lag parameters and is driven by basin rainfall. The conceptual-benchmark-discharge models were developed in the Python programming language and used weekly rainfall data. Calibration was implemented with the Broyden-Fletcher-Goldfarb-Shanno method available in the Scientific Python (SciPy) library. Normalized benchmark efficiencies calculated using output from the complex model and the corresponding conceptual-benchmark-discharge model indicate that the complex model has more explanatory power than the simple model driven only by rainfall.

  14. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    PubMed

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on river ecosystems. PMID:26188405

  15. Water Storage Dynamics of Saturated and Unsaturated Zones and its Function in Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zhang, Z.; Gao, M.; Song, Q.

    2012-12-01

    Subsurface water storage for hydrological processes can be divided into unsaturated soil moisture and saturated water storage (a shallow groundwater aquifer). Surface layer moisture content is a state variable that is either simulated or required as input in many hydrological models. The high or low of the shallow groundwater reservoir fast or slow of saturated flow and flow discharges from the catchment outlet. As a result of heterogeneity of soil properties, topography, land cover, evapotranspiration and precipitation, the soil moisture content and the shallow groundwater reservoir is highly variable in three-dimensional space and time (Engman, 1974; Wood et al., 1992). Expression of heterogeneity of soil moisture content and the shallow groundwater storage is critical for hydrological model development and success in hydrological simulation. In this study, we developed a new hydrological model with functions of water storage dynamics of saturated and unsaturated zones. A mathematical expression of topographic and soil controlled spatial heterogeneity of soil moisture holding capacity was derived in terms of Van Genuchten model and topographical index. The subsurface store and storage-discharge process is expressed by a horizontal Boussinesq equation with a power law hydraulic conductivity profile (Rupp and Selker, 2005). The "top-down" approach according to unsaturated accounting and the "bottom-up" approach according to baseflow separation were used to integrate both storage dynamics for developing the new model. The top-down and bottom-up methods enable the model parameters to be determined according to watershed soil, topography and flow discharge. Model testing was carried out in a number of nested sub-basins of a watershed (Huangnizhuang River in Huaihe basin) in the humid region in China. Simulation results show that the model is capable of describing spatial and temporal variations of water balance components, including soil moisture content, shallow groundwater storage, evapotranspiration and runoff, over the watershed. References: Engman, E.T., Rogowski, A.S. 1974. A partial area model for storm flow synthesis. Water Resources Research, 10: 464 - 472. Rupp D R, Selker J S. 2005. Drainage of a horizontal Boussinesq aquifer with a power law hydraulic conductivity profile.Water Resource Research, 41, W11422, doi:10.1029/2005WR004241. Wood, E.F., Lettenmaier, D.P., Zatarian, V.G. 1992. A land surface hydrology parameterization with subgrid variability for general circulation models. Journal of Geophysical Research, 97: 2717 - 2728.

  16. Groundwater and surface water scaling over the continental US using a hyperresolution, integrated hydrologic model.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.; Kollet, S. J.

    2014-12-01

    Groundwater is an important component of the hydrologic cycle yet its importance is often overlooked. Aquifers are a critical water resource, particularly in irrigation, but also participates in moderating the land-energy balance over the so-called critical zone of 2-10m in water table depth. Yet, the scaling behavior of groundwater is not well known. Here we present the results of a parallel, integrated hydrologic model simulating surface and subsurface flow and conservative transport at high spatial resolution (1km) over much of continental North America (~6,300,000 or 6.3M km2), which is considered a grand challenge in hydrology. In addition to simulating coupled groundwater, surface-water and unsaturated flow, we incorporate a Lagrangian transport component that provides an estimate of both mean travel time and distribution of water recharged at the ground surface over North America, an open question in hydrology. Results show power-law scaling of flow and water table depth and a complex, non-Gaussian residence time distribution indicating that temporal scaling of flow paths observed in small catchments (1-3.5 km2) may persist to continental scales (6.3M km2). These results provide mechanistic insight into several important questions in earth science such as the paradox of old carbon in streams or hydrologic controls on chemical weathering and land formation. Furthermore, results are used to understand the scaling behavior of groundwater over the continent at high resolution. Implications for understanding dominant hydrological processes at large scales will be discussed.

  17. Modeling the hydrological behavior of a karst spring using a nonlinear reservoir-pipe model

    NASA Astrophysics Data System (ADS)

    Chang, Yong; Wu, Jichun; Jiang, Guanghui

    2015-08-01

    Karst aquifers are commonly simulated based on conceptual models. However, most karst conceptual models hardly consider the function of turbulent conduits. The conduit network acts as the main draining passage of the karst aquifer and may also have a strong influence on the hydrological processes, especially during storm events. A conceptual model with a nonlinear reservoir and a turbulent pipe (representing the conduit system) in series is proposed according to the basic structure of a typical karst aquifer, to simulate the karst spring. The model indicates whether the spring discharge is influenced by the turbulent pipe; this not only depends on the parameters of the nonlinear reservoir and turbulent pipe, but also depends on the volume of spring discharge itself. Even though the spring discharge is strongly influenced by the turbulent pipe during the storm, this influence decreases with the rainfall intensity and volume of spring discharge. In addition, an `evapotranspiration store' is used to consider the moisture loss through evapotranspiration and to calculate the effective rainfall on the proposed model. Then, this simple conceptual model is used to simulate a karst spring (named S31) near Guilin city, China, with satisfactory results, especially with respect to discharge peaks and recession curves of the spring under storm conditions. The proposed model is also compared with the Vensim model of similar complexity, which has been applied to the same spring catchment. The comparison shows the superiority and better performance of the nonlinear reservoir-pipe model.

  18. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A distributed biosphere hydrological model, the so called water and energy budget-based distributed hydrological model (WEB-DHM), has been developed by fully coupling a biosphere scheme (SiB2) with a geomorphology-based hydrological model (GBHM). SiB2 describes the transfer of turbulent fluxes (ener...

  19. hydrological and hydrodynamic modeling on la plata river basin using mgb-iph

    NASA Astrophysics Data System (ADS)

    Pontes, Paulo; Collischonn, Walter; Paiva, Rodrigo; Fan, Fernando

    2015-04-01

    In this paper, we present an improving of Large Scale Hydrological Model (MGB-IPH). The improving consists in implementing a new hydrodynamic model (Inertial) and considering of flooded areas. The Inertial model, which is a simplification of Saint-Venant equations, replaced the Muskingum-Cunge flow routing model. The Inertial equation allows represent the flow in low slope rivers, the backwater, and the tide effects. We tested the model on La Plata River Basin (3,100,000 km²) which is a complex hydrological system located on South America. The aim of this paper is assess the MGB-IPH with the Inertial model and identify regions where is required new modification on model to represent others hydrological process. Furthermore, we developed an algorithm to extract of the Digital Elevation Model the required information about unit catchment, river length and river slope, flooded areas and cross section information. For this, we used available global data, as DEM of Shuttle Radar Topography Mission and HYDROSHEDS flow direction map. We used climate data available on Climate Research Unit and satellite precipitation (MERGE). The results show that this new version of MGB-IPH can reproduce the flow on La Plata river Basin.

  20. Sensitivity of hydrological performance assessment analysis to variations in material properties, conceptual models, and ventilation models

    SciTech Connect

    Sobolik, S.R.; Ho, C.K.; Dunn, E.; Robey, T.H.; Cruz, W.T.

    1996-07-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface- based and underground testing. Analyses have been performed to support the design of an Exploratory Studies Facility (ESF) and the design of the tests performed as part of the characterization process, in order to ascertain that they have minimal impact on the natural ability of the site to isolate waste. The information in this report pertains to sensitivity studies evaluating previous hydrological performance assessment analyses to variation in the material properties, conceptual models, and ventilation models, and the implications of this sensitivity on previous recommendations supporting ESF design. This document contains information that has been used in preparing recommendations for Appendix I of the Exploratory Studies Facility Design Requirements document.

  1. Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko

    2015-04-01

    One of the famous paradoxes of the Greek philosopher Zeno of Elea (~450 BC) is the one with the arrow: If one shoots an arrow, and cuts its motion into such small time steps that at every step the arrow is standing still, the arrow is motionless, because a concatenation of non-moving parts does not create motion. Nowadays, this reasoning can be refuted easily, because we know that motion is a change in space over time, which thus by definition depends on both time and space. If one disregards time by cutting it into infinite small steps, motion is also excluded. This example shows that time and space are linked and therefore hard to evaluate separately. As hydrologists we want to understand and predict the motion of water, which means we have to look both in space and in time. In hydrological models we can account for space by using spatially explicit models. With increasing computational power and increased data availability from e.g. satellites, it has become easier to apply models at a higher spatial resolution. Increasing the resolution of hydrological models is also labelled as one of the 'Grand Challenges' in hydrology by Wood et al. (2011) and Bierkens et al. (2014), who call for global modelling at hyperresolution (~1 km and smaller). A literature survey on 242 peer-viewed articles in which the Variable Infiltration Capacity (VIC) model was used, showed that the spatial resolution at which the model is applied has decreased over the past 17 years: From 0.5 to 2 degrees when the model was just developed, to 1/8 and even 1/32 degree nowadays. On the other hand the literature survey showed that the time step at which the model is calibrated and/or validated remained the same over the last 17 years; mainly daily or monthly. Klemeš (1983) stresses the fact that space and time scales are connected, and therefore downscaling the spatial scale would also imply downscaling of the temporal scale. Is it worth the effort of downscaling your model from 1 degree to 1/24 degree, if in the end you only look at monthly runoff? In this study an attempt is made to link time and space scales in the VIC model, to study the added value of a higher spatial resolution-model for different time steps. In order to do this, four different VIC models were constructed for the Thur basin in North-Eastern Switzerland (1700 km²), a tributary of the Rhine: one lumped model, and three spatially distributed models with a resolution of respectively 1x1 km, 5x5 km, and 10x10 km. All models are run at an hourly time step and aggregated and calibrated for different time steps (hourly, daily, monthly, yearly) using a novel Hierarchical Latin Hypercube Sampling Technique (Vo?echovský, 2014). For each time and space scale, several diagnostics like Nash-Sutcliffe efficiency, Kling-Gupta efficiency, all the quantiles of the discharge etc., are calculated in order to compare model performance over different time and space scales for extreme events like floods and droughts. Next to that, the effect of time and space scale on the parameter distribution can be studied. In the end we hope to find a link for optimal time and space scale combinations.

  2. Empirical Validation of Integrated Learning Performances for Hydrologic Phenomena: 3rd-Grade Students' Model-Driven Explanation-Construction

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Zangori, Laura; Schwarz, Christina V.

    2015-01-01

    Water is a crucial topic that spans the K-12 science curriculum, including the elementary grades. Students should engage in the articulation, negotiation, and revision of model-based explanations about hydrologic phenomena. However, past research has shown that students, particularly early learners, often struggle to understand hydrologic…

  3. Framework for Understanding Structural Errors (FUSE): a modular framework to diagnose differences between hydrological models

    USGS Publications Warehouse

    Clark, Martyn P.; Slater, Andrew G.; Rupp, David E.; Woods, Ross A.; Vrugt, Jasper A.; Gupta, Hoshin V.; Wagener, Thorsten; Hay, Lauren E.

    2008-01-01

    The problems of identifying the most appropriate model structure for a given problem and quantifying the uncertainty in model structure remain outstanding research challenges for the discipline of hydrology. Progress on these problems requires understanding of the nature of differences between models. This paper presents a methodology to diagnose differences in hydrological model structures: the Framework for Understanding Structural Errors (FUSE). FUSE was used to construct 79 unique model structures by combining components of 4 existing hydrological models. These new models were used to simulate streamflow in two of the basins used in the Model Parameter Estimation Experiment (MOPEX): the Guadalupe River (Texas) and the French Broad River (North Carolina). Results show that the new models produced simulations of streamflow that were at least as good as the simulations produced by the models that participated in the MOPEX experiment. Our initial application of the FUSE method for the Guadalupe River exposed relationships between model structure and model performance, suggesting that the choice of model structure is just as imp