Science.gov

Sample records for hydrophilic polymers experimental

  1. Tunable hydrophilicity on a hydrophobic fluorocarbon polymer coating on silicon

    SciTech Connect

    Kolari, K.; Hokkanen, A.

    2006-07-15

    An efficient, economic, reliable, and repeatable patterning procedure of hydrophobic surfaces was developed. A fluorocarbon polymer derived from the C{sub 4}F{sub 8} gas in an inductively coupled plasma etcher was used as the hydrophobic coating. For a subsequent patterning of hydrophilic apertures on the polymer, a short O{sub 2} plasma exposure through a silicon shadow mask was utilized. The overall hydrophilicity of the patterned surface can be tuned by the duration of the O{sub 2} plasma exposure, and also by the density and the size of the hydrophilic apertures. The laborious photolithography and tricky lift-off procedures are avoided. Optimization of the whole patterning process is explained thoroughly and supported with experimental data. The hydrophilic adhesion of the patterned polymer was evaluated with aqueous droplets, which were studied on matrices of the hydrophilic apertures of different sizes. The deposition parameters of the fluorocarbon polymer, the size of the droplet required to enable rolling on the patterned surface, and the duration of the O{sub 2} plasma exposure were considered as the main parameters. To determine the achievable resolution of the patterning procedure, the subsurface etching beneath the shadow mask was evaluated. The results show that a resolution of less than 10 {mu}m can be achieved. The simple hydrophilic patterning procedure described here can be used for the production of on-plane microfluidics, where a controlled adhesion or decohesion of 8-50 {mu}l droplets on the surface with a variable hydrophilicity from one location to another can be achieved.

  2. Effect of polymer surface modification on polymer-protein interaction via hydrophilic polymer grafting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface modification of flat sheet ultrafiltration membranes, polyethersulfone (PES) was investigated to improve the hydrophilicity of the membrane surface thereby reducing adsorption of the proteins onto the membrane. Grafting of hydrophilic polymers onto UV/ozone treated PES was used to improve t...

  3. Temperature Dependence of the Surface and Volume Hydrophilicity of Hydrophilic Polymer Brushes.

    PubMed

    Zhuang, Pengyu; Dirani, Ali; Glinel, Karine; Jonas, Alain M

    2016-04-12

    The temperature-dependence of the volume and surface hydrophilicity of a series of water-swollen dense polymer brushes is measured by contact angle measurements in the captive bubble configuration, by ellipsometry, and by quartz crystal microbalance with dissipation monitoring (QCM-D). Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and poly(di(methoxyethoxy)ethyl methacrylate) (PMEO2MA), strongly hydrophilic poly(N,N-dimethylacrylamide) (PDMA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA), and weakly hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) brushes were synthesized by surface-initiated atom-transfer radical polymerization (SI-ATRP). Conditions leading to reproducible measurements of the contact angle are first provided, giving access to the surface hydrophilicity. Volume hydrophilicity is quantified by measuring the swelling of the brushes, either by QCM-D or by ellipsometry. A model-free methodology is proposed to analyze the QCM-D data. Comparison between the acoustic and optical swelling coefficients shows that QCM-D is sensitive to the maximal thickness of swollen brushes, while ellipsometry provides an integral thickness. Diagrams of surface versus volume hydrophilicity of the brushes finally lead to identify two types of behavior: strongly water-swollen brushes exhibit a progressive decrease of volume hydrophilicity with temperature, while surface hydrophilicity changes moderately; weakly water-swollen brushes have a close-to-constant volume hydrophilicity, while surface hydrophilicity decreases with temperature. Thermoresponsive brushes abruptly switch from one behavior to the other, and do not exhibit an abrupt change of surface hydrophilicity across their collapse transition contrarily to a common erroneous belief. In general, there is no direct correlation between surface and volume hydrophilicity, because surface properties are dependent on the details of conformation and composition at the surface, whereas volume properties

  4. Materials comprising polydienes and hydrophilic polymers and related methods

    DOEpatents

    Mays, Jimmy W.; Deng, Suxiang; Mauritz, Kenneth A.; Hassan, Mohammad K.; Gido, Samuel P.

    2011-11-22

    Materials prepared from polydienes, such as poly(cyclohexadiene), and hydrophilic polymers, such as poly(alkylene oxide), are described. Methods of making the materials and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization are also provided. The materials can be crosslinked and sulfonated, and can include copolymers and polymer blends.

  5. Study of Hydrophobic and Ionizable Hydrophilic Copolymers at Polymer/Solid and Polymer/Liquid Interfaces

    SciTech Connect

    Perahia, Dvora

    2011-11-01

    Joint experimental-computational efforts were set to characterize the interfacial effects on the structure and dynamics of polymers consisting of highly rigid hydrophilic-ionizable and hydrophobic sub-units within one polymeric chain casted into thin films of several molecular dimensions. Focusing on the ultra thin film region we separate out the interfacial effects from bulk characteristics. Specifically, the study sought to: identify the parameters that control the formation of a stable polymer-solid interface. The study consists of two components, experimental investigations and computational efforts. The experimental component was designed to derive empirical trends that can be used to correlate the set of coupled polymer molecular parameters with the interfacial characteristics of these polymers, and their response to presence of solvents. The computational study was designed to provide molecular insight into the ensemble averages provided by the experimental efforts on multiple length scales from molecular dimensions, to the nanometer lengths to a macroscopic understanding of solvent interactions with structured polymers. With the ultimate goal of correlating molecular parameters to structure, dynamics and properties of ionic polymers, the first stage of the research began with the study of two systems, one which allowed tailoring the flexibility of the backbone without the presence of ionic groups, but with a potential to sulfonate groups at a later stage, and a polymer whose backbone is rigid and the density of the ionic group can be varied. The combined experimental and computational studies significantly extended the understanding of polymers at interfaces from model systems to polydispersed copolymers with blocks of varying nature and complexity. This new insight directly affects the design of polymers for sustainable energy applications from batteries and fuel cells to solar energy.

  6. Surprising high hydrophobicity of polymer networks from hydrophilic components.

    PubMed

    Attanasio, Agnese; Bayer, Ilker S; Ruffilli, Roberta; Ayadi, Farouk; Athanassiou, Athanassia

    2013-06-26

    We report a simple and inexpensive method of fabricating highly hydrophobic novel materials based on interpenetrating networks of polyamide and poly(ethyl cyanoacrylate) hydrophilic components. The process is a single-step solution casting from a common solvent, formic acid, of polyamide and ethyl cyanoacrylate monomers. After casting and subsequent solvent evaporation, the in situ polymerization of ethyl cyanoacrylate monomer forms polyamide-poly(ethyl cyanoacrylate) interpenetrating network films. The interpenetrating networks demonstrate remarkable waterproof properties allowing wettability control by modulating the concentration of the components. In contrast, pure polyamide and poly(ethyl cyanoacrylate) films obtained from formic acid solutions are highly hygroscopic and hydrophilic, respectively. The polymerization of ethyl cyanoacrylate in the presence of polyamide promotes molecular interactions between the components, which reduce the available hydrophilic moieties and render the final material hydrophobic. The wettability, morphology, and thermo-physical properties of the polymeric coatings were characterized. The materials developed in this work take advantage of the properties of both polymers in a single blend and above all, due to their hydrophobic nature and minimal water uptake, can extend the application range of the individual polymers where water repellency is required. PMID:23713478

  7. Structure and Hydrogen Bonding of Water in Polyacrylate Gels: Effects of Polymer Hydrophilicity and Water Concentration.

    PubMed

    Mani, Sriramvignesh; Khabaz, Fardin; Godbole, Rutvik V; Hedden, Ronald C; Khare, Rajesh

    2015-12-10

    The ability to tune the hydrophilicity of polyacrylate copolymers by altering their composition makes these materials attractive candidates for membranes used to separate alcohol-water mixtures. The separation behavior of these polyacrylate membranes is governed by a complex interplay of factors such as water and alcohol concentrations, water structure in the membrane, polymer hydrophilicity, and temperature. We use molecular dynamics simulations to investigate the effect of polymer hydrophilicity and water concentration on the structure and dynamics of water molecules in the polymer matrix. Samples of poly(n-butyl acrylate) (PBA), poly(2-hydroxyethyl acrylate) (PHEA), and a 50/50 copolymer of BA and HEA were synthesized in laboratory, and their properties were measured. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. Molecular simulations of polyacrylate gels swollen in water and ethanol mixtures showed that water exhibits very different affinities toward the different (carbonyl, alkoxy, and hydroxyl) functional groups of the polymers. Water molecules are well dispersed in the system at low concentrations and predominantly form hydrogen bonds with the polymer. However, water forms large clusters at high concentrations along with the predominant formation of water-water hydrogen bonds and the acceleration of hydrogen bond dynamics. PMID:26514915

  8. Hydrophilic Polymers Enhance Early Functional Outcomes after Nerve Autografting

    PubMed Central

    Sexton, Kevin W.; Pollins, Alonda C.; Cardwell, Nancy L.; Del Corral, Gabriel A.; Bittner, George D.; Shack, R. Bruce; Nanney, Lillian B.; Thayer, Wesley P.

    2014-01-01

    Background Approximately 12% of operations for traumatic neuropathy are for patients with segmental nerve loss and less than 50% of these injuries obtain meaningful functional recovery. Polyethylene glycol (PEG) therapy has been shown to improve functional outcomes after nerve severance and we hypothesized this therapy could also benefit nerve autografting. Methods A segmental rat sciatic nerve injury model was used, whereby a 0.5 cm defect was repaired with an autograft using microsurgery. Experimental animals were treated with solutions containing methylene blue (MB) and PEG; control animals did not receive PEG. Compound Actions Potentials (CAPs) were recorded before nerve transection, after solution therapy, and at 72 hours postoperatively. The animals underwent behavioral testing at 24 and 72 hours postoperatively. After sacrifice, nerves were fixed, sectioned, and immunostained to allow for quantitative morphometric analysis. Results The introduction of hydrophilic polymers greatly improved morphological and functional recovery of rat sciatic axons at 1–3 days following nerve autografting. PEG therapy restored CAPs in all animals and CAPs were still present 72 hours postoperatively. No CAPS were detectable in control animals. Footfall asymmetry scores and sciatic functional index scores were significantly improved for PEG therapy group at all time points (p <0.05 and p<0.001; p <0.001 and p <0.01). Sensory and motor axon counts were increased distally in nerves treated with PEG compared to control (p = 0.0189 and p = 0.0032). Conclusions PEG therapy improves early physiologic function, behavioral outcomes, and distal axonal density after nerve autografting. PMID:22521220

  9. Hydrophilic polymer composites synthesized by electrospinning under dense carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wahyudiono, Okamoto, Koichi; Machmudah, Siti; Kanda, Hideki; Goto, Motonobu

    2015-12-01

    Electrospinning technique is feasible in some applications, it has attracted more attention in recent years. Various polymers have been successfully electrospun into ultrafine fibers in solvent solution and some in melt form. In this work, polyvinylpyrrolidone (PVP) as a hydrophilic polymer would be synthesized by electrospinning under dense carbon dioxide (CO2). The experiments were performed at 40 °C and ˜ 5 MPa. During the electrospinning process, the applied voltage was 10-17 kV and the distance of nozzle and collector was 8 cm. The concentration of PVP solution as a major component was 4 wt%. The results showed that the fibers surface morphology from PVP which blended with poly L-lactide acid (PLLA) were smooth with hollow core fibers at 5 MPa. At the same conditions, PVP-carbon nanotube was also successfully generated into electrospun fiber products with diameter ˜ 2 μm.

  10. Thermogelling Biodegradable Polymers with Hydrophilic Backbones: PEG-g-PLGA

    SciTech Connect

    Jeong, Byeongmoon; Kibbey, Merinda R.; Birnbaum, Jerome C.; Won, You-Yeong; Gutowska, Anna

    2000-10-31

    The aqueous solutions of poly(ethylene glycol)grafted with poly(lactic acid-co-glycolic acid) flow freely at room temperature but form gels at higher temperature. The existence of micelles in water at low polymer concentration was confirmed by Cro-transmission electron microscopy and dye solubilization studies. The micellar diameter and critical micelle concentration are about 9 nm and 0.47 wt.% respectively. The critical gel concentration, above which a gel phase appears was 16 wt.% and sol-to-gel transition temperature was slightly affected by the concentration in the range of 16 {approx} 25 wt.%. At sol-to-gel transition, viscosity increased abruptly and C-NMR showed molecular motion of hydrophilic poly(lactic acid-co-glycolic acid) side-chains increased. The hydrogel of PEG-g-PLGA with hydrophilic backbones was transparent during degradation and remained a gel for one week, suggesting a promising material for short-term drug delivery.

  11. Histologic findings following use of hydrophilic polymer with potassium ferrate for hemostasis.

    PubMed

    Barlev, Danny; Spicknall, Kerith E

    2014-12-01

    Hydrophilic polymer with potassium salt is a hemostatic agent marketed for use by healthcare professionals and as an over-the-counter product available to healthcare consumers. In particular, dermatologic surgeons may use hydrophilic polymer for hemostasis in wounds left to heal by secondary intention. Foreign body reaction to hydrophilic polymer was recently reported. The microscopic findings in four additional patients treated with hydrophilic polymer are presented. The wounds of three patients were treated with hydrophilic polymer following a dermatologic surgical procedure while one patient used over-the-counter hydrophilic polymer on an abrasion. Three patients developed a foreign body reaction. Histopathologic examination revealed angulated fragments of deep purple material representing hydrophilic polymer admixed with round orange-red bodies and yellow-brown granules representing potassium ferrate. The components were found both free in the dermis and within multinucleated giant cells. Hydrophilic polymer must be differentiated from other materials observed in re-excision specimens, including ferric subsulfate, aluminum chloride and Gelfoam(®) (Pharmacia and Upjohn Co., New York, NY, USA). PMID:25376897

  12. Role of hydrophilicity and length of diblock arms for determining star polymer physical properties.

    PubMed

    Felberg, Lisa E; Brookes, David H; Head-Gordon, Teresa; Rice, Julia E; Swope, William C

    2015-01-22

    We present a molecular simulation study of star polymers consisting of 16 diblock copolymer arms bound to a small adamantane core by varying both arm length and the outer hydrophilic block when attached to the same hydrophobic block of poly-δ-valerolactone. Here we consider two biocompatible star polymers in which the hydrophilic block is composed of polyethylene glycol (PEG) or polymethyloxazoline (POXA) in addition to a polycarbonate-based polymer with a pendant hydrophilic group (PC1). We find that the different hydrophilic blocks of the star polymers show qualitatively different trends in their interactions with aqueous solvent, orientational time correlation functions, and orientational correlation between pairs of monomers of their polymeric arms in solution, in which we find that the PEG polymers are more thermosensitive compared with the POXA and PC1 star polymers over the physiological temperature range we have investigated. PMID:25254622

  13. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.

    PubMed

    Zilio, Caterina; Sola, Laura; Damin, Francesco; Faggioni, Lucia; Chiari, Marcella

    2014-02-01

    A number of materials used to fabricate disposable microfluidic devices are hydrophobic in nature with water contact angles on their surface ranging from 80° to over 100°. This characteristic makes them unsuitable for a number of microfluidic applications. Both the wettability and analyte adsorption parameters are highly dependent on the surface hydrophobicity. In this article, we propose a general method to coat the surface of five materials: polydimethylsiloxane (PDMS), cyclic olefin copolymer (COC), polyethylene terephthalate (PET), polycarbonate (PC), and polytetrafluoroethylene (PTFE). This fast and robust process, which is easily implementable in any laboratory including microfabrication clean room facilities, was devised by combining gas-phase and wet chemical modification processes. Two different coatings that improve the surface hydrophilicity were prepared via the "dip and rinse" approach by immersing the plasma oxidized materials into an aqueous solution of two different poly(dimethylacrylamide) copolymers incorporating a silane moiety and functionalized with either N-acryloyloxysuccinimide (NAS) (poly(DMA-NAS-MAPS) or glycidyl methacrylate (GMA) (poly(DMA-GMA-MAPS). The coating formation was confirmed by contact angle (CA) analysis comparing the variation of CAs of uncoated and coated surfaces subjected to different aging treatments. The antifouling character of the polymer was demonstrated by fluorescence and interferometric detection of proteins adsorbed on the surafce. This method is of great interest in microfluidics due to its broad applicability to a number of materials with varying chemical compositions. PMID:24037663

  14. Effect of hydrophilicity of end-grafted polymers on protein adsorption behavior: A Monte Carlo study.

    PubMed

    Han, Yuanyuan; Jin, Jing; Cui, Jie; Jiang, Wei

    2016-06-01

    Monte Carlo simulation is employed to investigate protein adsorption behavior on end-grafted polymers. The effect of hydrophilicity of end-grafted polymers on protein adsorption behavior is investigated in detail. The simulation results indicate that the hydrophilicity of the end-grafted polymers can affect both the amount and speed of protein adsorption. An increase in the hydrophilicity of the end-grafted polymers can significantly decrease the amount and speed of protein adsorption first. However, a further increase in the hydrophilicity of the end-grafted polymers results in the increase in the amount and speed of protein adsorption. This phenomenon is easier to be observed in the end-grafted polymer systems with lower grafting density and longer chain length. In addition, the investigation of the chain conformation of the end-grafted polymers reveals that the end-grafted polymers with mediate hydrophilicity have relatively small size difference along the parallel and perpendicular directions to the substrate, and these end-grafted polymers have relatively wide height distribution. Such characteristics favor covering the space above the hydrophobic substrate and thus can effectively resist protein adsorption. PMID:26925724

  15. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  16. Influence of hydrophilic polymers on the complexation of carbamazepine with hydroxypropyl-β-cyclodextrin.

    PubMed

    Medarević, Djordje; Kachrimanis, Kyriakos; Djurić, Zorica; Ibrić, Svetlana

    2015-10-12

    In this study binary carbamazepine-hydroxypropyl-β-cyclodextrin, as well as ternary carbamazepine-hydroxypropyl-β-cyclodextrin-hydrophilic polymer systems were used to improve dissolution rate of carbamazepine. It has been shown that addition of hydrophilic polymers (Soluplus® and two types of hydroxypropyl methylcellulose-Metolose® 90SH-100 and Metolose® 65SH-1500) significantly increased solubilization capacity of hydroxypropyl-β-cyclodextrin for carbamazepine. Evaluation of carbamazepine-hydroxypropyl-β-cyclodextrin-hydrophilic polymer interactions using molecular modeling techniques showed interactions between carbamazepine, which dissociates from inclusion complexes and hydroxypropyl methylcellulose that can prevent crystallization of dissolved carbamazepine. These results can contribute to better understanding of drug-cyclodextrin-hydrophilic polymer interactions which are still not well understood. After evaluation of carbamazepine solubilization with hydroxypropyl-β-cyclodextrin and hydrophilic polymers, both binary carbamazepine-hydroxypropyl-β-cyclodextrin and ternary carbamazepine-hydroxypropyl-β-cyclodextrin-hydrophilic polymer systems were prepared by spray drying. The results of solid state characterization methods showed amorphous nature of carbamazepine in all spray dried systems, which together with the results of molecular modeling techniques indicates inclusion complex formation. Carbamazepine dissolution rate was significantly improved from spray dried formulations compared to pure drug. Binary carbamazepine-hydroxypropyl-β-cyclodextrin and ternary carbamazepine-hydroxypropyl-β-cyclodextrin-Soluplus® systems exhibited the fastest carbamazepine release, wherein the entire amount of carbamazepine was released during first 5 min. PMID:26255049

  17. Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer.

    PubMed

    Haginaka, J; Takehira, H; Hosoya, K; Tanaka, N

    1999-07-23

    A uniform-sized molecularly imprinted polymer (MIP) for (S)-naproxen selectively modified with hydrophilic external layer has been prepared. First, the molecularly imprinted polymer for (S)-naproxen was prepared using 4-vinylpyridine and ethylene glycol dimethacrylate (EDMA) as a functional monomer and cross-linker, respectively, by a multi-step swelling and thermal polymerization method. Next, a 1:1 mixture of glycerol monomethacrylate (GMMA) and glycerol dimethacrylate (GDMA) was used for hydrophilic surface modification, and it was added directly to the molecularly imprinted polymer for (S)-naproxen 4 h after the start of molecular imprinting. The retention factors of all solutes tested were decreased with the surface modified molecularly imprinted polymer, compared with the unmodified molecularly imprinted polymer. However, chiral recognition of racemic naproxen was attained with the surface modified molecularly imprinted polymer as well as the unmodified molecularly imprinted polymer. Further, bovine serum albumin was completely recovered from the surface modified molecularly imprinted polymer. These results revealed that the chiral recognition sites of (S)-naproxen remained unchanged with hydrophilic surface modification, and that the molecularly imprinted polymer for (S)-naproxen was selectively modified with hydrophilic external layer. Preliminary results reveal that the surface modified molecularly imprinted polymer could be applicable to direct serum injection assays of (S)-naproxen. PMID:10457431

  18. Experimental Study of Water Transport through Hydrophilic Nanochannels

    NASA Astrophysics Data System (ADS)

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2015-11-01

    In this paper, we investigate one of the fundamental aspects of Nanofluidics, which is the experimental study of water transport through nanoscale hydrophilic conduits. A new method based on spontaneous filling and a novel hybrid nanochannel design is developed to measure the pure mass flow resistance of single nanofluidic channels/tubes. This method does not require any pressure and flow sensors and also does not rely on any theoretical estimations, holding the potential to be standards for nanofluidic flow characterization. We have used this method to measure the pure mass flow resistance of single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our experimental results quantify the increased mass flow resistance as a function of nanochannel height, showing a 45% increase for a 7nm channel compared with classical hydrodynamics, and suggest that the increased resistance is possibly due to formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. It has been further shown that this method can reliably measure a wide range of pure mass flow resistances of nanoscale conduits, and thus is promising for advancing studies of liquid transport in hydrophobic graphene nanochannels, CNTs, as well as nanoporous media. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  19. Long-Term Sustained Ciprofloxacin Release from PMMA and Hydrophilic Polymer Blended Nanofibers.

    PubMed

    Zupančič, Špela; Sinha-Ray, Sumit; Sinha-Ray, Suman; Kristl, Julijana; Yarin, Alexander L

    2016-01-01

    Nanofibers represent an attractive novel drug delivery system for prolonged and controlled release. However, sustained release of hydrophilic drugs, like ciprofloxacin hydrochloride (CIP), from polymeric nanofibers is not an easy task. The present study investigates the effect of different hydrophobic polymers (PCL and PMMA) alone in monolithic nanofibers or with hydrophilic polymers (PVA, PEO, and chitosan) in blended nanofibers aiming to achieve sustained CIP release. CIP release from PCL nanofibers was 46% and from PMMA just 1.5% over 40 day period. Thus, PMMA holds great promise for modification of CIP release from blended nanofibers. PMMA blends with 10% PEO, PVA, or chitosan were used to electrospin nanofibers from solution in the mixture of acetic and formic acid. These nanofibers exhibited different drug-release profiles: PEO containing nanofiber mats demonstrated high burst effect, chitosan containing mats revealed very slow gradual release, and PVA containing mats yielded smaller burst effect with favorable sustained release. We have also shown that gradual sustain release of antibiotic like CIP can be additionally tuned over 18 days with various blend ratios of PMMA with PVA or chitosan reaching almost 100%. A mathematical model in agreement with the experimental observation revealed that the sustained CIP release from the blended nanofibers corresponded to the two-stage desorption process. PMID:26635214

  20. Thermoswitchable Janus Gold Nanoparticles with Stimuli-Responsive Hydrophilic Polymer Brushes.

    PubMed

    Niu, Xiaoqin; Ran, Fen; Chen, Limei; Lu, Gabriella Jia-En; Hu, Peiguang; Deming, Christopher P; Peng, Yi; Rojas-Andrade, Mauricio D; Chen, Shaowei

    2016-05-01

    Well-defined thermoswitchable Janus gold nanoparticles with stimuli-responsive hydrophilic polymer brushes were fabricated by combining ligand exchange reactions and the Langmuir technique. Stimuli-responsive polydi(ethylene glycol) methyl ether methacrylate was prepared by addition-fragmentation chain-transfer polymerization. The polymer brushes were then anchored onto the nanoparticle surface by interfacial ligand exchange reactions with hexanethiolate-protected gold nanoparticles, leading to the formation of a hydrophilic (polymer) hemisphere and a hydrophobic (hexanethiolate) one. The resulting Janus nanoparticles showed temperature-switchable wettability, hydrophobicity at high temperatures, and hydrophilicity at low temperatures, due to thermally induced conformational transition of the polymer ligands. The results further highlight the importance of interfacial engineering in the deliberate functionalization of nanoparticle materials. PMID:27064754

  1. Fabricating Nanometer-Thick Simultaneously Oleophobic/Hydrophilic Polymer Coatings via a Photochemical Approach.

    PubMed

    Wang, Yongjin; Dugan, Michael; Urbaniak, Brian; Li, Lei

    2016-07-01

    The simultaneously oleophobic/hydrophilic coatings are highly desirable in antifogging, oil-water separation, and detergent-free cleaning. However, such coatings require special chemical structure, i.e., perfluorinated backbone and polar end-groups, and are too expensive for real-life application. Here, we have developed an UV-based photochemical approach to make nanometer-thick perfluoropolyethers without polar end-groups, which are not intrinsically simultaneously oleophobic/hydrophilic but cost-effective, become simultaneously oleophobic/hydrophilic. The contact angle, ellipsometry, and X-ray photoelectron spectroscopy (XPS) results indicated that the UV irradiation results in the covalent bonding between the polymer and the substrate, which renders more ordered packing of polymer chains and thus the appropriately small interchain distance. As a result, the small water molecules penetrate the polymer network while large oil molecules do not. As a result, the oil contact angle is larger than the water contact angle and the coating shows the simultaneous oleophobicity/hydrophilicity. Moreover, we also demonstrated that this nanometer-thick simultaneously oleophobic/hydrophilic coating has improved long-term antifogging performance and detergent-free cleaning capability and is mechanically robust. The photochemical approach established here potentially can be applied on many other polymers and greatly accelerate the development and application of simultaneously oleophobic/hydrophilic coatings. PMID:27249169

  2. Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Z. K.; Zheng, H. Y.; Lim, C. P.; Lam, Y. C.

    2009-09-01

    Controlled modification of surface wettability of polymethyl methacrylate (PMMA) was achieved by irradiation of PMMA surface with femtosecond laser pulses at various laser fluences and focus distances. Fluences from 0.40 to 2.1 J/cm2 produced a hydrophobic surface and 2.1 to 52.7 J/cm2 (maximum investigated) produced a hydrophilic surface. Fluences less than 0.31 J/cm2 had no effect on the wettability of the raw PMMA. This change in wettability was caused dominantly by laser induced chemical structure modification and not by a change in surface roughness.

  3. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    NASA Astrophysics Data System (ADS)

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon

    2014-03-01

    This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films.

  4. Mixed Polymer-Coated Magnetic Nanoparticles as Forward Osmosis Draw Agents of Tuned Hydrophilicity.

    PubMed

    Dey, Priyanka; Izake, Emad L

    2016-08-01

    We recently reported a polymer-coated magnetic nanoparticle (MNP) draw agent for the forward osmosis (FO) water desalination process. The water flux was found to increase when the polymer poly(sodium acrylate) (PSA) was anchored to the MNP surface as compared to the polymer (or polyelectrolyte solution) alone, due to the polymer chains being stretched out and most of the hydrophilic groups on the polymer contributing to water flux. We herein report the use of a secondary polymer poly(N-isopropylacrylamide) PNIPAM to manipulate the PSA polymer conformation and influence inter- and intrachain interactions to enhance the efficiency of the FO draw agent. These PSA-PNIPAM-coated MNPs generated a much higher water flux of ∼11.66 LMH when compared to the 100 % PSA-coated MNPs featuring a value of ∼5.32 LMH under identical FO conditions. The osmotic pressure and water flux driven by the mixed polymer-coated MNPs were found to be a strong function of the net polymer coverage on MNPs, that is, net available hydrophilic groups. Our new draw agent demonstrates potential for use in the water industry due to its improved efficiency and cost effectiveness as it uses only ∼0.062 % (w/v) of the draw agent solution. PMID:27376360

  5. Immobilization of trypsin on porous glycidyl methacrylate beads: effects of polymer hydrophilization.

    PubMed

    Malmsten; Larsson

    2000-10-01

    The immobilization of trypsin at porous glycidyl methacrylate (GMA-GDMA) beads was investigated. In particular, the effects of surface modification of the beads through hydrophilic polymers on the amount protein immobilized and on the extent of retained activity after immobilization were adressed. Furthermore, immobilization at unmodified and hydrophilized beads from aqueous solution was compared to that from a water-in-oil microemulsion. It was found that the amount trypsin immobilized at the unmodified GMA-GDMA beads was significantly higher than that at hydrophilized GMA-GDMA beads. However, also the extent of specific activity loss after immobilization was larger for the unmodified than for the hydrophilized beads. Despite the latter, however, the total activity displayed by the hydrophilized beads was comparable to the unmodified beads at best. On the other hand, by peforming the immobilization from the microemulsion a high immobilization yield can be reached even for the hydrophilized beads, which also results in a higher degree of retained activity in the latter case than obtained for immobilization at the unmodified beads. Using this approach therefore resulted in the highest total activity of the trypsin-activated GMA-GDMA beads. PMID:10915949

  6. BIODEGRADABLE BRANCHED POLYCATIONIC POLYMERS WITH VARYING HYDROPHILIC SPACERS FOR NON-VIRAL GENE DELIVERY

    PubMed Central

    Chew, Sue Anne; Hacker, Michael C.; Saraf, Anita; Raphael, Robert M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2009-01-01

    Biodegradable branched polycationic polymers with varying hydrophilic spacer lengths were synthesized from different triacrylate monomers and the amine monomer 1-(2-aminoethyl)piperazine by Michael addition polymerization. The hydrophilic spacers were varied by the number of ethyleneoxy groups in the triacrylate monomer (E/M) that ranged from 0 to 14. The polymer degradation depended on the spacer length and pH; the amount of ester degraded as determined by 1H-NMR after 14 days was 43.4 ± 2.1% (pH 5.0) and 89.7 ± 1.3% (pH 7.4) for the polymer with 0 E/M compared to 55.7 ± 2.6% (pH 5.0) and 98.5 ± 1.6% (pH 7.4) for the polymer with 14 E/M. Cell viability of rat fibroblasts after exposure to polymer solutions of concentrations up to 1000 μg/mL remained high (above 66.9 ± 12.1% compared to below 7.6 ± 1.1% for polyethylenimine at a concentration of 50 μg/mL or higher) and increased with the spacer length. The polyplexes made with all the synthesized polymers showed higher transfection efficiency (4.5 ± 1.7% to 9.4 ± 2.0%, dependent on the polymer/pDNA weight ratio) with an enhanced green fluorescent protein reporter gene compared to naked pDNA (0.8 ± 0.4%) as quantified by flow cytometry. This study demonstrates that hydrophilic spacers can be incorporated into polycationic polymers to reduce their cytotoxicity and enhance their degradability for non-viral gene delivery. PMID:19678696

  7. Micellar interactions in water-AOT based droplet microemulsions containing hydrophilic and amphiphilic polymers

    NASA Astrophysics Data System (ADS)

    Appel, Markus; Spehr, Tinka Luise; Wipf, Robert; Moers, Christian; Frey, Holger; Stühn, Bernd

    2013-11-01

    We investigate the influence of addition of hydrophilic and amphiphilic polymer on percolation behavior and micellar interactions in AOT-based water-in-oil droplet microemulsions. We focus on two series of samples having constant molar water to surfactant ratio W = 20 and constant droplet volume fraction Φ = 30%, respectively. From dielectric spectroscopy experiments, we extract the bending rigidity of the surfactant shell by percolation temperature measurements. Depending on droplet size, we find stabilization and destabilization of the surfactant shell upon addition of hydrophilic poly(ethylene glycol) (PEG) (Mn = 3100 g mol-1) and amphiphilic poly(styrene)-b-poly(ethylene glycol) copolymer with comparable length of the hydrophilic block. Complementary small angle X-ray scattering experiments corroborate the finding of stabilization for smaller droplets and destabilization of larger droplets. Subsequent analysis of dielectric spectra enables us to extract detailed information about micellar interactions and clustering by evaluating the dielectric high frequency shell relaxation. We interpret the observed results as a possible modification of the inter-droplet charge transfer efficiency by addition of PEG polymer, while the amphiphilic polymer shows a comparable, but dampened effect.

  8. Anionic surfactant with hydrophobic and hydrophilic chains for nanoparticle dispersion and shape memory polymer nanocomposites.

    PubMed

    Iijima, Motoyuki; Kobayakawa, Murino; Yamazaki, Miwa; Ohta, Yasuhiro; Kamiya, Hidehiro

    2009-11-18

    An anionic surfactant comprising a hydrophilic poly(ethylene glycol) (PEG) chain, hydrophobic alkyl chain, and polymerizable vinyl group was synthesized as a capping agent of nanoparticles. TiO(2) nanoparticles modified by this surfactant were completely dispersible in various organic solvents with a wide range of polarities, such as nitriles, alcohols, ketones, and acetates. Furthermore, these particles were found to be dispersible in various polymers with different properties, such as thermosetting epoxy resins and radical polymerized poly(methylmethacrylate) (PMMA). A polymer composite of surface-modified TiO(2) nanoparticles in epoxy resins prepared by using the developed surfactant also possessed temperature-induced shape memory properties. PMID:19852463

  9. Anodic, cathodic, and annihilation electrochemiluminescence emissions from hydrophilic conjugated polymer dots in aqueous medium.

    PubMed

    Dai, Ruiping; Wu, Fanmin; Xu, Huifeng; Chi, Yuwu

    2015-07-22

    Hydrophilic poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conjugated polymer dots (CP-dots) capped by Triton X-100 were synthesized. For the first time, the electrochemiluminescence (ECL) emission of CP-dots was investigated in aqueous solution. At the glassy carbon/water interface, the CP-dots have excellent and multichannel ECL properties, such as having annihilation ECL activity in the absence of coreactants, and give bright anodic and cathodic ECL emission (590 nm) in the presence of tri-n-propylamine (TPrA) and peroxydisulfate (S2O8(2-)), respectively. The versatile ECL properties of the hydrophilic CP-dots combined with their low cytotoxicity, good biocompatibility, and easy bioconjugation may suggest promising applications of this new type of ECL nanomaterial in novel biosensing and bioimaging, and new types of light-emitting devices. PMID:26115552

  10. Integrated reactive ion etching to pattern cross-linked hydrophilic polymer structures for protein immobilization

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Parijat; Strickland, Aaron D.; Kim, Il; Malliaras, George G.; Batt, Carl A.

    2007-04-01

    Patterning of cross-linked hydrophilic polymer features using reactive ion etching (RIE) capable of covalently immobilizing proteins has been achieved. Projection photolithography was used to pattern photoresist to create micromolds. Vapor phase molecular self-assembly of polymerizable monolayer in molds allowed covalent binding of hydrogel on surface during free-radical polymerization. Excess hydrogel blanket film was consumed with oxygen RIE resulting into hydrogel pattern of 1μm size aligned to prefabricated silicon oxide structures. Proteins were finally coupled through their primary amine groups selectively to acid functionalized hydrogel features through stable amide linkages using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride and N-hydroxysulfosuccinimide.

  11. Grafting of silica with a hydrophilic triol acrylamide polymer via surface-initiated "grafting from" method for hydrophilic-interaction chromatography.

    PubMed

    Peng, Xi-Tian; Yuan, Bi-Feng; Feng, Yu-Qi

    2011-11-01

    A novel hydrophilic polymer-coated silica sorbent has been prepared using the radical "grafting from" polymerization method through surface-bound azo initiators for hydrophilic-interaction chromatography (HILIC). The azo groups were introduced to the surface of silica gel through the reaction with amino groups on the surface of silica gel with 4,4'-azobis(4-cyanopentanoic acid chloride) (ACVC). The resultant azo-immobilized silica gel served as surface initiator to polymerize hydrophilic triol acrylamide monomer N-acryloyltris(hydroxymethyl) aminomethane (NA) in methanol to get hydrophilic polymer-coated silica sorbent. The obtained poly(NA)-coated silica (pNA-sil) was characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), and nitrogen sorption porosimetry (NSP). Then the pNA-sil was packed into the stainless-steel column and evaluated in high-performance liquid chromatography (HPLC). Good chromatographic performance for the separation of peptides and nucleosides was obtained under HILIC mode. The results indicated that the pNA-sil stationary phase behaved as mixed-mode retention mechanisms of hydrophilic and ionic interactions. Furthermore, the pNA-sil phase was used to separate tryptic digest of β-casein and our results showed that more than 12 peptides peaks were resolved and well distributed within the elution window. Finally, the pNA-sil stationary phase was demonstrated to possess remarkable reproducibility and stability. Taken together, the pNA-sil stationary phase prepared in the current study offers a potential application in proteomics study. PMID:21998034

  12. Hydrophilic polymer embolism and associated vasculopathy of the lung: prevalence in a retrospective autopsy study.

    PubMed

    Mehta, Rupal I; Mehta, Rashi I; Choi, Julia M; Mukherjee, Arnob; Castellani, Rudy J

    2015-02-01

    Hydrophilic polymers are commonly applied as surface coatings on vascular devices and have been shown to dissociate during endovascular use, causing hydrophilic polymer embolism (HPE). Adverse effects related to this phenomenon have been recognized and reported. The prevalence of this complication is unknown. We conducted a retrospective study to determine the prevalence of HPE among hospital autopsies over a 29-month period. Postmortem tissue was histologically evaluated for the presence, location(s) and extent of HPE. HPE findings were correlated with documented clinical and laboratory data and patient outcome. Of 136 hospital autopsies examined, 18 (13%) showed evidence of HPE involving the lungs (n = 18), heart (n = 1) or central nervous system (n = 1). Localized pulmonary HPE was seen in 12 patients (9%). Multifocal pulmonary HPE was found in 6 patients (4%) and was associated with clinical vasculitis (33%; P < .0001), suspected pulmonary ischemia (50%; P = .008), coagulopathy (67%; P = .002), and constitutional disease (83%; P = .01). Within affected lung, associated histopathologic changes included occlusive intravascular or perivascular inflammation (89%), intravascular fibrous response (56%), microthrombus formation (44%), vasculitis (28%), and/or pulmonary microinfarction (28%). Statistically significant differences in hospital days (P = .008) and number of vascular interventions (P = .01) were noted between affected and unaffected patients. We conclude that HPE is an underdiagnosed phenomenon with primary involvement of the lungs, where secondary vascular changes are common. Additional studies may be needed to clarify risks and to identify preventative strategies for this iatrogenic complication of catheterizations and "minimally invasive" endovascular techniques. PMID:25543660

  13. Effect of several hydrophilic polymers on the permeation of morphine and salicylic acid through excised hairless rat skin.

    PubMed

    Hosoya, O; Sano, M; Wada, Y; Seki, T; Sugibayashi, K; Juni, K; Morimoto, Y

    1998-05-01

    Several hydrophilic polymers changed the cumulative amount of morphine (MOR) permeated through excised hairless rat skin from 1% MOR hydrochloride solution containing ethanol and l-menthol at concentrations of 40% and 5%, respectively, as permeation enhancers. Anionic polymers (carboxyvinylpolymer and methylvinylether-maleic anhydride copolymer) in the test solutions decreased the skin permeation of MOR, whereas cationic polymers (polyethyleneimine and chitosan) increased it, compared with that without polymers. Little change, however, was observed by the addition of nonionic polymers (hydroxypropylcellulose and polyethyleneoxide). On the other hand, the cationic and anionic polymers in the test solutions decreased and increased, respectively, the skin permeation of salicylic acid (SA) from the same enhancing system containing sodium salicylate. These opposite results were probably caused by the change in escaping tendency of the drugs from the vehicles, which was due to the drug-polymer interaction. (The escaping tendency has a great effect on the drug partition from the polymer solution to the skin barrier). The effect of hydrophilic polymers on the partition was then evaluated by Donnan membrane theory. The partition of MOR was increased and decreased by the presence of polymers having identical and opposite charge to MOR. The low partition of the drugs to skin may also be caused by low diffusion of the drugs in the polymer solutions. The drug release from the hydrophilic polymer solutions was then measured, and the release rate was found to have decreased in the presence of polymers having opposite charge to MOR and SA. It is suggested that these drug-polymer interactions changed the drug partition to skin thus changing the skin permeation of the drug. PMID:9621424

  14. Physical Identification of Binary System of Gliclazide-Hydrophilic Polymers Using X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Rachmawati, H.; Yatinasari, Faizatun, Syarie, S. A.

    2008-03-01

    The formation of binary system in pharmaceutical solid state is aimed to improve the physicochemical characteristics of active compound, such as its solubility. To identify the physical change of the binary system including crystallinity or particle morphology, there are many methods can be applied. In present report, we study the physical interaction of the binary system of gliclazide and hydrophilic polymers. In this binary system, gliclazide was either dispersed or mixed with polyvinyl pirrolidone (PVP K30) or polyethylene glycol (PEG 6000). The dispersion system of gliclazide in the polymeric carriers was prepared by solvation-evaporation method, using dichloromethane/methylene chloride as an organic solvent. The physical characterization of both dispersed and mixed of gliclazide was studied using X-ray diffraction at interval 6-50 °/2θ. As a comparison, the same procedure was performed for pure gliclazide. To confirm the diffractogram of this binary system, Fourier Transform Infrared (FT-IR) spectroscopy was carried out as well. Both diffarctogram and FT-IR spectra revealed that there was no new compound formed in the solid dispersion system of gliclazide:PEG 6000 and gliclazide:PVP K30. In contrast, the solubility as well as the dissolution rate of gliclazide in the presence of both hydrophilic polymers was increased as compared to pure gliclazide. We conclude therefore that solvatation followed by evaporation of gliclazide in the presence of either PEG 6000 or PVP K30 did not alter its crystalline characteristic. The improved of gliclazide solubility in the binary system might due to other mechanism such as increased in the wettability and the hydrophylicity effect of the polymers.

  15. Nontoxic, Hydrophilic Cationic Polymers-Identified as Class of Antimicrobial Polymers.

    PubMed

    Strassburg, Arne; Kracke, Frauke; Wenners, Julia; Jemeljanova, Anna; Kuepper, Jannis; Petersen, Hanne; Tiller, Joerg C

    2015-12-01

    Amphiphilic polycations are an alternative to biocides but also toxic to mammalian cells. Antimicrobially active hydrophilic polycations based on 1,4-dibromo-2-butene and tetramethyl-1,3-propanediamine named PBI are not hemotoxic for porcine red blood cells with a hemocytotoxicity (HC50) of more than 40,000 μg · mL(-1). They are quickly killing bacterial cells at their MIC (minimal inhibitory concentration). The highest found selectivity HC50 /MIC is more than 20,000 for S. epidermidis. Investigations on sequentially prepared PBIs with defined molecular weight Mn and tailored end groups revealed that there is a dependence of antimicrobial activity and selectivity on Mn and nature of the end groups. PMID:26240988

  16. Magnetic hydrophilic methacrylate-based polymer microspheres designed for polymerase chain reactions applications.

    PubMed

    Spanová, Alena; Horák, Daniel; Soudková, Eva; Rittich, Bohuslav

    2004-02-01

    Magnetic hydrophilic non-porous P(HEMA-co-EDMA), P(HEMA-co-GMA) and PGMA microspheres were prepared by dispersion (co)polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) or glycidyl methacrylate (GMA) in the presence of several kinds of magnetite. It was found that some components used in the preparation of magnetic carriers interfered with polymerase chain reaction (PCR). Influence of non-magnetic and magnetic microspheres, including magnetite nanoparticles and various components used in their synthesis, on the PCR course was thus investigated. DNA isolated from bacterial cells of Bifidobacterium longum was used in PCR evaluation of non-interfering magnetic microspheres. The method enabled verification of the incorporation of magnetite nanoparticles in the particular methacrylate-based polymer microspheres and evaluation of suitability of their application in PCR. Preferably, electrostatically stabilized colloidal magnetite (ferrofluid) should be used in the design of new magnetic methacrylate-based microspheres by dispersion polymerization. PMID:14698232

  17. Exploring the segregating and mineralization-inducing capacities of cationic hydrophilic polymers for preparation of robust, multifunctional mesoporous hybrid microcapsules.

    PubMed

    Shi, Jiafu; Zhang, Wenyan; Wang, Xiaoli; Jiang, Zhongyi; Zhang, Shaohua; Zhang, Xiaoman; Zhang, Chunhong; Song, Xiaokai; Ai, Qinghong

    2013-06-12

    A facile approach to preparing mesoporous hybrid microcapsules is developed by exploring the segregating and mineralization-inducing capacities of cationic hydrophilic polymer. The preparation process contains four steps: segregation of cationic hydrophilic polymer during template formation, cross-linking of the segregated polymer, biomimetic mineralization within cross-linked polymer network, and removal of template to simultaneously generate capsule lumen and mesopores on the capsule wall. Poly(allylamine hydrochloride) (PAH) is chosen as the model polymer, its hydrophilicity renders the segregating capacity and spontaneous enrichment in the near-surface region of CaCO3 microspheres; its biopolyamine-mimic structure renders the mineralization-inducing capacity to produce titania from the water-soluble titanium(IV) precursor. Meanwhile, CaCO3 microspheres serve the dual templating functions in the formation of hollow lumen and mesoporous wall. The thickness of capsule wall can be controlled by changing the polymer segregating and cross-linking conditions, while the pore size on the capsule wall can be tuned by changing the template synthesizing conditions. The robust hybrid microcapsules exhibit desirable efficiency in enzymatic catalysis, wastewater treatment and drug delivery. This approach may open facile, generic, and efficient pathway to designing and preparing a variety of hybrid microcapsules with high and tunable permeability, good stability and multiple functionalities for a broad range of applications. PMID:23675684

  18. The effect of polymer surface modification on polymer-protein interaction via interfacial polymerization and hydrophilic polymer grafting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein membrane separation is prone to fouling on the membrane surface resulting from protein adsorption onto the surface. Surface modification of synthetic membranes is one way to reduce fouling. We investigated surface modification of polyethersulfone (PES) as a way of improving hydrophilicity ...

  19. Comparison of the performances of four hydrophilic polymers as supports for lipase immobilisation

    PubMed Central

    Toscano, Lydia; Montero, Gisela; Stoytcheva, Margarita; Cervantes, Lourdes; Gochev, Velizar

    2014-01-01

    Four hydrophilic polymers in the form of beads – chitosan, alginate, alginate/polyvinyl alcohol (PVA), and chitosan-coated alginate – were used as supports for lipase immobilisation. Hydrogel beads were characterised by bead-size-distribution estimation, surface morphology studies, and polymer interactions assessment. Matrix performances – loading efficiency, immobilisation yield, enzyme activity, and stability retention – were evaluated and compared. Although the loading efficiency of the chitosan-coated Ca-alginate beads (79.8%) was inferior to that of the Ca-alginate (87%) and of the Ca-alginate/PVA beads (81.3%), their enzyme immobilisation yield (63.96%) was the most important. Moreover, lipase encapsulated in chitosan-coated Ca-alginate beads demonstrated better pH, thermal, and storage (89% residual activity after 30 days) stabilities. Immobilised lipase activity also increased in the order: alginate/PVA > chitosan > alginate > alginate/chitosan, and displayed a maximum at pH 8 and at temperatures of 45 °C (chitosan and Ca-alginate/PVA beads) and 50 °C (Ca-alginate and chitosan-coated Ca-alginate beads). Thus, chitosan-coated Ca-alginate beads could be considered as a suitable support for lipase immobilisation. PMID:26019488

  20. Determination of gelation doses of gamma-irradiated hydrophilic polymers by different methods

    NASA Astrophysics Data System (ADS)

    Yiǧit, Fatma; Tekin, Niket; Erkan, Sevin; Güven, Olgun

    1994-04-01

    Poly(acrylic acid) and poly(vinyl pyrrolidone) are hydrophilic polymers. Poly(acrylic acid) is a polyelectrolyte which ionizes in water to produce an electrically conducting medium. Therefore, the gelation dose of poly(acrylic acid) can be determined by conductometric titration, simple titration and the measurement of pH. The conventional techniques of determining gelation dose are very time and material consuming especially for poly(acrylic acid) and subject to serious errors due to its electrolytic behavior. In this study, it has been shown that the gelation dose of poly(acrylic acid) can be determined by conductimetric and titrimetric methods with NaOH and measuring pH of aqueous solution of γ-irradiated polymer. In order to develop new, simpler and rapid methods for the determination of gelation dose of PVP, its complexation with gallic acid in dilute aqueous solution has been used. The complex formation between gallic acid and irradiated PVP in aqueous solutions is followed by UV-vis spectroscopy. The reliability of the dose value found, 120 kGy for poly(acrylic acid) and 140 kGy for poly(vinyl pyrrolidone), are also verified by viscometric and solubility measurements.

  1. Superoleophobic polymers with metal ion affinity toward materials with both oleophobic and hydrophilic properties.

    PubMed

    Darmanin, Thierry; Guittard, Frédéric

    2013-10-15

    Bis(trifluoromethane)sulfonimide salts are used as electrolyte for the elaboration of superoleophobic properties by electrodeposition using a monomer containing a short perfluorobutyl (C4F9), separated from the polymer backbone by a long alkyl spacer, to reduce the mobility of these chains, and an amido connector to form complexes with ions. The electrodeposition in some of these electrolytes induces the formation of microstructures composed of nanosheets able to reach superoleophobic properties. When complexant ions (Na(+), Mg(2+), Ca(2+), Ba(2+)) are used as cation of the electrolyte, these ions are incorporated in the polymer leading to a material with higher oleophobicity than hydrophobicity. Indeed, when a water droplet is deposited on the surface, the migration of the ions induces a decrease in the surface hydrophobicity, while the deposition of an oil droplet (diiodomethane or hexadecane) does not induce this migration. If the incorporation of these ions is not sufficiently stable for applications in oil/water separation, this work opens new strategies in the elaboration of both superoleophobic/oleophobic and superhydrophilic/hydrophilic materials. Such materials can also be used for the ion capture and release. PMID:23932086

  2. Potent catenation of supercoiled and gapped DNA circles by topoisomerase I in the presence of a hydrophilic polymer.

    PubMed

    Low, R L; Kaguni, J M; Kornberg, A

    1984-04-10

    An exceptionally potent DNA catenation activity, identified in an extract from Escherichia coli, has been purified and partially characterized. Catenation results from the sequential action of the following two polypeptides: beta, 34 kDa and identical to exonuclease III; and alpha, 101 kDa and identical to DNA topoisomerase I (omega protein). An additional requirement is that a small proportion of the circles be nicked in order to provide the substrate for exonuclease III to generate gaps, estimated to be about 100 nucleotides long. Following exonuclease III digestion, one molecule of topoisomerase I can interlock per minute at 30 degrees C about 20 supercoiled and gapped DNA circles into a massively catenated network. The reaction requires Mg2+ and a hydrophilic polymer (polyvinyl alcohol or polyethylene glycol) at about 7%, but neither ATP nor spermidine. The hydrophilic polymer appears to drive catenation by condensing the DNA; decatenation by topoisomerase I proceeds upon removal of the polymer. PMID:6323479

  3. Aptamer functionalized hydrophilic polymer monolith with gold nanoparticles modification for the sensitive detection of human α-thrombin.

    PubMed

    Chen, Yuanbo; Deng, Nan; Wu, Ci; Liang, Yu; Jiang, Bo; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-07-01

    Low abundant proteins of body fluids participate nearly all physiological processes and indicate various kinds of diseases. The development of specific enrichment techniques is the key to identify and quantify the low abundant proteins. Herein, a novel kind of aptamer functionalized hydrophilic polymer monolith was developed for the specific enrichment and detection of human α-thrombin from the human plasma. Human α-thrombin aptamer, with thiol group modified at the 5' terminal, was immobilized on the gold nanoparticles (AuNPs) modified poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate) monolithic column, with the binding capacity of 277.1μmol/L. Due to the hydrophilic poly(ethylene glycol) diacrylate) as the cross-linking monomer, the detection recovery of the aptamer-functionalized hydrophilic polymer monolithic column could reach to 92.6±5.2% (n=3) and the dynamic range could reach 0.5-300ng/μL (S/N>10) with on-line UV detection. Meanwhile, the column could run over 100 times, because the poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate) stability structure and the AuNPs improved the stability of the matrix material. Furthermore, this column could even capture the target α-thrombin, which was spiked in 1000 folds of original human plasma. All these results demonstrated the great potential of the prepared aptamer functionalized hydrophilic polymer monolith for the recognition of the trace proteins in the biological samples. PMID:27154714

  4. Immobilization of Myoglobin from Horse Skeletal Muscle in Hydrophilic Polymer Networks

    PubMed Central

    Castro-Forero, Angelines; Jiménez, David; López-Garriga, Juan; Torres-Lugo, Madeline

    2009-01-01

    This work examines the immobilization of myoglobin from horse skeletal muscle in hydrophilic polymer networks. Due to specific changes in the spectroscopic properties of hemoproteins during ligand binding, they could be employed in optical sensing devices. Two immobilization techniques were considered: imbibition and entrapment. Anionic hydrogels composed of methacrylic acid (MAA), cationic hydrogels composed of dimethylamino ethyl methacrylate (DMAEM), and neutral hydrogels composed of poly(ethylene glycol) monomethyl ether monomethacrylate (PEGMA; molecular weight = 200, 400, or 1000), all crosslinked with poly(ethylene glycol) dimethacrylate (PEGDMA) (molecular weight = 200, 600, or 1000), were synthesized by free-radical solution polymerization. By the imbibition method, MAA-based hydrogels incorporated the highest amount of myoglobin in comparison with PEGMA or DMAEM polymers. The evaluation of the correlation length of the networks revealed that MAA hydrogels had the highest correlation length in comparison with PEGMA-containing matrices or DMAEM hydrogels. Release experiments from MAA hydrogels at pHs 5.8 and 7.0 showed that the solute-transport mechanism was a combination of Fickian and chain relaxation diffusion. Myoglobin-loaded MAA hydrogels retained their heme reactivity after the immobilization process. The release of myoglobin incorporated by entrapment in MAA–PEGDMA hydrogels was highly influenced by the chain relaxation process. The diffusion coefficients of myoglobin incorporated by entrapment into anionic hydrogels were 2 orders of magnitude smaller (~10–13) than those for myoglobin incorporated by imbibition (10–11), both evaluated at pH 7.0. Substrate binding studies indicated that the protein biological activity was not compromised in those hydrogels loaded by the imbibition method, whereas prepolymeric solutions showed detrimental effects on protein stability. PMID:19777086

  5. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I.; Pino, Gustavo A.; Ferrero, Juan C.; Rossa, Maximiliano

    2016-04-01

    This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  6. Ionic liquid-based zwitterionic organic polymer monolithic column for capillary hydrophilic interaction chromatography.

    PubMed

    Wang, Tingting; Chen, Yihui; Ma, Junfeng; Zhang, Xiaodan; Zhang, Lihua; Zhang, Yukui

    2015-08-21

    In the current study, a novel ionic liquid-based zwitterionic organic polymer monolithic column was developed by copolymerizing 1-vinyl-3-(butyl-4-sulfonate) imidazolium, acrylamide and N,N'-methylenebisacrylamide in a quaternary porogenic solvent consisting of formamide, dimethyl sulphoxide, polyethylene glycol 8000 and polyethylene glycol 10,000 for capillary hydrophilic interaction chromatography. The monolithic stationary phase was optimized by adjusting the amount of monomer in the polymerization solution along with the composition of porogenic solvent. The optimized monolith exhibited excellent selectivity and favorable retention for nucleosides and benzoic acid derivatives. The primary factors affecting the separation efficiency of the monolithic column (including acetonitrile content, pH, and buffer salt concentration in the mobile phase) have been thoroughly evaluated. Excellent reproducibility of the retention times for five nucleosides was achieved, with relative standard deviations of run-to-run (n = 3), column-to-column (n = 3) and batch-to-batch (n = 3) in the range of 0.18-0.48%, 2.33-4.20% and 3.07-6.50%, respectively. PMID:26114194

  7. Collaboration between HPMC and NaCMC in order to Reach the Polymer Critical Point in Theophylline Hydrophilic Matrices

    PubMed Central

    Contreras, L.; Melgoza, L. M.; Aguilar-de-Leyva, A.; Caraballo, I.

    2012-01-01

    Percolation theory has been applied in order to study the existence of critical points as well as the possibility to find a “combined percolation threshold” for ternary hydrophilic matrices prepared with HPMC, NaCMC, and theophylline. For this purpose, different batches of ternary as well as binary hydrophilic matrices have been prepared. Critical points have been found for binary hydrophilic matrices between 21.5 and 31.3% (v/v) of HPMC and between 39 and 54% (v/v) of NaCMC, respectively. In a previous work carried out with the same polymers but a much more soluble drug (KCl), it was demonstrated the existence of a partial collaboration between the polymers in order to establish the gel layer. In this work, it has been observed for the first time the need of a minimum concentration of one of the matrix-forming polymer (between 10 and 20% v/v, approximately) for establishing an effective collaboration. PMID:22919292

  8. Surface modification of medical implant materials with hydrophilic polymers for enhanced biocompatibility and delivery of therapeutic agents

    NASA Astrophysics Data System (ADS)

    Urbaniak, Daniel J.

    2004-11-01

    In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens

  9. Use of hydrophilic polymers from diapers to aid the establishment of Spergularia purpurea in a mine soil.

    PubMed

    Qu, G; de Varennes, A

    2010-06-15

    We used hydrophilic polymers from diapers to aid the establishment of an indigenous plant (Spergularia purpurea (Persoon) G. Don fil.) in a soil from a pyrite mine. Lysimeters were filled with the mine soil with no amendment (control), with a polyacrylate polymer, with a polymer removed from diapers, and with shredded diapers. The establishment of a plant cover was faster in soil amended with polymer from diapers, and 85 days after sowing the soil was completely covered in all treatments except control. The concentrations of trace elements in plant shoots decreased in amended soil. The activities of soil acid phosphatase, beta-glucosidase, protease and cellulase were greatest in soil amended with the polyacrylate polymer or with polymer removed from diapers, while the application of shredded diapers leads to values that were in general intermediate between these treatments and unamended control. Basal- and substrate-induced respirations, and dehydrogenase were greatest in soil amended with polymers, but the presence of a plastic film and fibrous materials from shredded diapers prevented any improvement in these parameters compared with unamended soil. In the second experiment, we evaluated the risk of downward movement of polymers in columns of a sandy soil. Polymer from diapers, with or without Cu, was placed at a 10 cm-depth. Five leaching cycles with artificial rain took place and leachates were analyzed for organic matter and Cu. At the end of the experiment, the soil columns were sliced and each layer was analyzed separately. Some repacking of soil and polymer particles took place, but there was no indication that polymers moved to any great depth in soil columns. PMID:20207477

  10. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Sun, Linyu; Luo, Yuting; Wu, Ruomei; Jiang, Haiyun; Chen, Yi; Zeng, Guangsheng; Liu, Yuejun

    2013-09-01

    The transition from the hydrophilic surface to the superhydrophilic and superhydrophobic surface on aluminum alloy via hydrochloric acid etching and polymer coating was investigated by contact angle (CA) measurements and scanning electron microscope (SEM). The effects of etching and polymer coating on the surface were discussed. The results showed that a superhydrophilic surface was facilely obtained after acid etching for 20 min and a superhydrophobic surface was readily fabricated by polypropylene (PP) coating after acid etching. When the etching time was 30 min, the CA was up to 157̊. By contrast, two other polymers of polystyrene (PS) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after acid etching. The results showed that the CA was up to 159̊ by coating PP-g-MAH, while the CA was only 141̊ by coating PS. By modifying the surface with the silane coupling agent before PP coating, the durability and solvent resistance performance of the superhydrophobic surface was further improved. The micro-nano concave-convex structures of the superhydrophilic surface and the superhydrophobic surface were further confirmed by scanning electron microscope (SEM). Combined with the natural hydrophilicity of aluminum alloy, the rough micro-nano structures of the surface led to the superhydrophilicity of the aluminum alloy surface, while the rough surface structures led to the superhydrophobicity of the aluminum alloy surface by combination with the material of PP with the low surface free energy.

  11. Tuning of Polymeric Nanoparticles by Coassembly of Thermoresponsive Polymers and a Double Hydrophilic Thermoresponsive Block Copolymer.

    PubMed

    Zhang, Qilu; Voorhaar, Lenny; Filippov, Sergey K; Yeşil, Berin Fatma; Hoogenboom, Richard

    2016-05-26

    The coassembly behavior of thermoresponsive statistical copolymers and a double hydrophilic block copolymer having a permanently hydrophilic block and a thermoresponsive block is investigated. By adjusting the hydrophilicity of the thermoresponsive statistical copolymers, hybrid nanoparticles are obtained with various ratios of the two species. Importantly, the size of these nanoparticles can be controlled in between 40 and 250 nm dependent on the TCP and the amount of statistical copolymers in the solution. Simultaneous analysis of static and dynamic light scattering data indicates that the possible structure of nanoparticles varies from hard sphere to less compact architecture and most probably depends on a difference between cloud point temperatures of individual components. This developed coassembly method provides a simple platform for the preparation of defined polymeric nanoparticles. PMID:27144970

  12. Adhesion forces in AFM of redox responsive polymer grafts: Effects of tip hydrophilicity

    NASA Astrophysics Data System (ADS)

    Feng, Xueling; Kieviet, Bernard D.; Song, Jing; Schön, Peter M.; Vancso, G. Julius

    2014-02-01

    The adherence between silicon nitride AFM tips and redox-active poly(ferrocenylsilanes) (PFS) grafts on gold was investigated by electrochemical AFM force spectroscopy. Before the adhesion measurements silicon nitride AFM probes were cleaned with organic solvents (acetone and ethanol) or piranha solution. Interestingly, these different AFM tip cleaning procedures drastically affected the observed adhesion forces. Water contact angle measurements on the corresponding AFM probe chips showed that piranha treatment resulted in a significant increase of AFM probe chip surface hydrophilicity compared to the organic solvent treatment. Obviously this hydrophilicity change caused drastic, even opposite changes in the tip-PFS adhesive force measurement upon electrode potential change to reversibly oxidize and reduce the PFS grafts. Our findings are of pivotal importance for AFM tip adhesion measurements utilizing standard silicon nitride AFM tips. Probe hydrophilicity must be carefully taken into consideration and controlled.

  13. Hydrophilic Hollow Molecularly Imprinted Polymer Microparticles with Photo- and Thermoresponsive Template Binding and Release Properties in Aqueous Media.

    PubMed

    Li, Chenxi; Ma, Yue; Niu, Hui; Zhang, Huiqi

    2015-12-16

    A facile, general, and efficient approach to prepare hydrophilic hollow molecularly imprinted polymer (MIP) microparticles with photo- and thermoresponsive template binding and release behaviors in aqueous media is described, which includes the preparation of uniform "living" silica submicrospheres bearing surface atom transfer radical polymerization (ATRP)-initiating groups (i.e., alkyl halide groups) via a one-pot sol-gel method, their subsequent grafting of azobenzene (azo)-containing MIP shell and poly(N-isopropylacrylamide)-block-poly(2-hydroxyethyl methacrylate) (PNIPAAm-b-PHEMA) brushes via successive surface-initiated ATRP, and final removal of the silica core. The successful synthesis of such hydrophilic hollow MIP microparticles was confirmed with SEM, FT-IR, water dispersion stability, and static contact angle studies. They proved to show apparently higher template binding capacities than the corresponding solid ones and obvious photo- and thermoresponsive template binding properties in aqueous solutions. Moreover, their pronounced light- and temperature-controlled template release in aqueous media was also demonstrated. In particular, the introduction of PNIPAAm-b-PHEMA brushes onto hollow MIP microparticles imparted them with high surface hydrophilicity both below and above the lower critical solution temperature of PNIPAAm, which paves the way for their applications in such areas as controlled drug/chemical delivery and smart bioanalysis. PMID:26630256

  14. Radical graft polymerization of an Allyl Monomer onto Hydrophilic Polymers and their antibacterial nanofibrous membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrophilic poly (vinyl alcohol-co-ethylene) (PVA-co-PE) copolymers with 27 mol %, 32 mol % and 44 mol % ethylene were functionalized by melt radical graft copolymerization with 2,4-diamino-6-diallylamino-1,3,5-triazine (NDAM) using reactive extrusion. This functionalization imparts antibacterial pr...

  15. Construction and application of a pH-sensitive nanoreactor via a double-hydrophilic multiarm hyperbranched polymer.

    PubMed

    Zhu, Lijuan; Shi, Yunfeng; Tu, Chunlai; Wang, Ruibing; Pang, Yan; Qiu, Feng; Zhu, Xinyuan; Yan, Deyue; He, Lin; Jin, Chengyu; Zhu, Bangshang

    2010-06-01

    A double-hydrophilic multiarm hyperbranched polymer with a hyperbranched poly(amidoamine) (HPAMAM) core and many poly(ethylene glycol) monomethyl ether (MPEG) arms connected by pH-sensitive acylhydrazone bonds (HPAMAM-g-MPEG) was successfully prepared. Benefiting from the cationic dendritic core and PEGylation shell, the double-hydrophilic multiarm hyperbranched polymer was used as a nanoreactor for CdS quantum dots (CdS QDs) synthesis in aqueous solution. The obtained HPAMAM-g-MPEG and CdS/HPAMAM-g-MPEG nanocomposites were carefully characterized by (1)H NMR, (13)C NMR, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis), fluorescence spectroscopy (FL), dynamic light scattering (DLS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and electronic dispersive X-ray spectroscopy (EDS) analysis. Both (1)H NMR and fluorescence spectroscopy investigations confirmed that the acylhydrazone linkage between the dendritic core and linear arms was readily broken under acidic condition (pH <5.5). When MPEG arms departed from the HPAMAM core, the fluorescence intensity of CdS/HPAMAM-g-MPEG nanocomposites greatly increased. Such pH-responsive behavior of CdS/HPAMAM-g-MPEG nanocomposites was utilized as an exploration of a novel fluorescence probe in an acidic lysosome exemplified by COS-7 cells. PMID:20225825

  16. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers.

    PubMed

    Xu, Wei-Juan; Xie, Hong-Juan; Cao, Qing-Ri; Shi, Li-Li; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao

    2016-01-01

    This study aimed to improve the dissolution rate and oral bioavailability of valsartan (VAL), a poorly soluble drug using solid dispersions (SDs). The SDs were prepared by a freeze-drying technique with polyethylene glycol 6000 (PEG6000) and hydroxypropylmethylcellulose (HPMC 100KV) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant without using any organic solvents. In vitro dissolution rate and physicochemical properties of the SDs were characterized using the USP paddle method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and Fourier transform-infrared (FT-IR) spectroscopy, respectively. In addition, the oral bioavailability of SDs in rats was evaluated by using VAL (pure drug) as a reference. The dissolution rates of the SDs were significantly improved at pH 1.2 and pH 6.8 compared to those of the pure drug. The results from DSC, XRD showed that VAL was molecularly dispersed in the SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between VAL and its carriers. The SDs exhibited significantly higher values of AUC 0-24 h and Cmax in comparison with the pure drug. In conclusion, hydrophilic polymer-based SDs prepared by a freeze-drying technique can be a promising method to enhance dissolution rate and oral bioavailability of VAL. PMID:24735247

  17. Enhanced surface hydrophilicity of thin-film composite membranes for nanofiltration: an experimental and DFT study.

    PubMed

    Lv, Zhiwei; Hu, Jiahui; Zhang, Xuan; Wang, Lianjun

    2015-10-01

    In the current study, thin-film composite (TFC) nanofiltration membranes desirable for water softening were successfully developed through interfacial polymerization using N-(2-hydroxyethyl)ethylenediamine (HEDA) as the amine monomer in the aqueous phase. The hydrophilicity of the membrane surface was greatly enhanced with the introduction of the residual hydroxyl groups during the fabrication process. The TFC membranes possessed a permeate flux of 15.8 L m(-2) h(-1) under 0.6 MPa, with a rejection of 85.9%, 73.8%, and 99.8% for Na2SO4, MgSO4 and Congo red, respectively. The interplays of the solvent, solute and polymer matrix on the separation performance were investigated by means of the solubility parameter study. Moreover, density functional theory was employed to calculate the Fukui function by the Hirshfeld charge, which gave the global and local softness values to predict the reactivity of the atomic sites in the HEDA molecule. The findings of this study support the possible forming mechanism of the barrier layer for the first time. The TFC membrane was found to be stable and displayed good separation ability over a week-long filtration process. The combined results of this work suggest that these HEDA/TMC TFC nanofiltration membranes are promising candidates for various applications, such as desalination and dye removal from wastewater. PMID:26327592

  18. Modulated dissolution rate from the inclusion complex of antichagasic benznidazole and cyclodextrin using hydrophilic polymer.

    PubMed

    Sá-Barreto, Lívia C L; Gustmann, Pricila C; Garcia, Felipe S; Maximiano, Flávia P; Novack, Kátia M; Cunha-Filho, Marcílio S S

    2013-01-01

    Benznidazole (BNZ) is the primary chemotherapeutic agent for treating Chagas' disease; however, its poor water solubility and irregular oral absorption lead to the treatment failure in the chronic phase. The aim of this work was to investigate the utility of the polymer hydroxypropyl methylcellulose (HPMC) in controlling the release of BNZ from solid inclusion complexes with cyclodextrin to overcome the problem of its bioavailability. Preliminary studies of solubility were conducted in solution using selected β-cyclodextrin derivatives according to an experimental mixture design. The best cyclodextrin composition was used to produce solid-state systems by kneading in the presence or absence of HPMC. The formulations were characterized by different physico-chemical techniques, including the dissolution rate. Hydroxypropyl-β-cyclodextrin (HPβCD) produced the greatest improvement in drug solubility and was selected for the development of solid systems. Assays confirmed the production of true inclusion complexes between BNZ and HPβCD. The dissolution rate of the BNZ-HPβCD system was markedly increased, while the presence of HPMC retarded drug release. An optimal formulation obtained by the combination of kneading systems developed in appropriate ratios could be a promising drug delivery system with a prolonged therapeutic effect coupled with more balanced bioavailability. The produced systems present interesting perspectives for Chagas' therapy. PMID:22200091

  19. Restricted access molecularly imprinted polymers obtained by bovine serum albumin and/or hydrophilic monomers' external layers: a comparison related to physical and chemical properties.

    PubMed

    Santos, Mariane Gonçalves; Moraes, Gabriel de Oliveira Isac; Nakamura, Maurício Gustavo; dos Santos-Neto, Álvaro José; Figueiredo, Eduardo Costa

    2015-11-21

    Molecularly imprinting polymers (MIPs) can be modified with external layers in order to obtain restricted access molecularly imprinted polymers (RAMIPs) able to exclude macromolecules and retain low weight compounds. These modifications have been frequently achieved using hydrophilic monomers, chemically bound on the MIP surface. Recently, our group proposed a new biocompatible RAMIP based on the formation of a bovine serum albumin coating on the surface of MIP particles. This material has been used to extract drugs directly from untreated human plasma samples, but its physicochemical evaluation has not been carried out yet, mainly in comparison with RAMIPs obtained by hydrophilic monomers. Thus, we proposed in this paper a comparative study involving the surface composition, microscopic aspect, selectivity, binding kinetics, adsorption and macromolecule elimination ability of these different materials. We concluded that the synthesis procedure influences the size and shape of particles and that hydrophilic co-monomer addition as well as coating with BSA do not alter the chemical recognition ability of the material. The difference between imprinted and non-imprinted polymers' adsorption was evident (suggesting that imprinted polymers have a better capacity to bind the template than the non-imprinted ones). The Langmuir model presents the best fit to describe the materials' adsorption profile. The polymer covered with hydrophilic monomers presented the best adsorption for the template in an aqueous medium, probably due to a hydrophilic layer on its surface. We also concluded that an association of the hydrophilic monomers with the bovine serum albumin coating is important to obtain materials with higher capacity of macromolecule exclusion. PMID:26460233

  20. Top-down mass spectrometry of hybrid materials with hydrophobic peptide and hydrophilic or hydrophobic polymer blocks.

    PubMed

    Alalwiat, Ahlam; Grieshaber, Sarah E; Paik, Bradford A; Kiick, Kristi L; Jia, Xinqiao; Wesdemiotis, Chrys

    2015-11-21

    A multidimensional mass spectrometry (MS) methodology is introduced for the molecular level characterization of polymer-peptide (or polymer-protein) copolymers that cannot be crystallized or chromatographically purified. It encompasses electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALDI) coupled with mass analysis, tandem mass spectrometry (MS(2)) and gas-phase separation by ion mobility mass spectrometry (IM-MS). The entire analysis is performed in the mass spectrometer ("top-down" approach) within milliseconds and with high sensitivity, as demonstrated for hybrid materials composed of hydrophobic poly(tert-butyl acrylate) (PtBA) or hydrophilic poly(acrylic acid) (PAA) blocks tethered to the hydrophobic decapeptide VPGVGVPGVG (VG2) via triazole linkages. The composition of the major products can be rapidly surveyed by MALDI-MS and MS(2). For a more comprehensive characterization, the ESI-IM-MS (and MS(2)) combination is more suitable, as it separates the hybrid materials based on their unique charges and shapes from unconjugated polymer and partially hydrolyzed products. Such separation is essential for reducing spectral congestion, deconvoluting overlapping compositions and enabling straightforward structural assignments, both for the hybrid copolymers as well as the polymer and peptide reactants. The IM dimension also permits the measurement of collision cross-sections (CCSs), which reveal molecular architecture. The MS and MS(2) spectra of the mobility separated ions conclusively showed that [PtBA-VG2]m and [PAA-VG2]m chains with the expected compositions and sequences were formed. Single and double copolymer blocks (m = 1-2) could be detected. Further, the CCSs of the hybrids, which were prepared via azide/alkyne cycloadditions, confirmed the formation of macrocyclic structures. The top-down methodology described would be particularly useful for the detection and identification of peptide/protein-polymer conjugates which are

  1. A fast low-temperature micromolding process for hydrophilic microfluidic devices using UV-curable acrylated hyperbranched polymers

    NASA Astrophysics Data System (ADS)

    Jin, Young-Hyun; Cho, Young-Ho; Schmidt, Lars E.; Leterrier, Yves; Månson, Jan-Anders E.

    2007-06-01

    A novel UV-curable low-stress hyperbranched polymer (HBP) micromolding process is presented for the fast and low-temperature fabrication of hydrophilic microfluidic devices. Process, material and surface properties of the acrylated polyether HBP are also characterized and compared to those of polydimethylsiloxane (PDMS) and cyclic olefin copolymers (COC). The HBP dispensed on a PDMS master was cured at room temperature using a 3 min UV exposure at the intensity of 22.2 mW cm-2. Thermal, mechanical and surface properties of the micromolded HBP structures have been characterized and resulted in a glass transition temperature of 55 °C, Young's modulus of 770 MPa and hydrophilic surface having a water contact angle of 54°. Micromolding of 33 µm thick HBP microstructures has been demonstrated. We achieved 14.5 µm wide vertical walls, 14.7 µm wide fluidic channels, 24.1 µm wide square pillars and 53.4 µm wide square holes. A microfluidic network device, composed of microfluidic channels and reservoirs, was fabricated and its microfluidic performance has been verified by a fluidic test.

  2. Effect of hydroxypropyl-β-cyclodextrin and coadjuvants on the sorption capacity of hydrophilic polymer films for monoterpene alcohols.

    PubMed

    Higueras, Laura; López-Carballo, Gracia; Gavara, Rafael; Hernández-Muñoz, Pilar

    2016-10-20

    Chitosan films filled with hydroxypropyl-β-cyclodextrin at a 1:1 weight ratio and plasticized with 35 or 50% glycerol or 35% propylene glycol were prepared by casting and conditioned at different relative humidities to achieve a similar water content. Sorption properties of the films for various monoterpene compounds with phenolic, or with linear or cyclohexyl alcohol structures were studied after their immersion in the volatile liquids. In general, the films presented a considerable capacity to retain monophenolic compounds, with sorption values ranging from 455% for meta-cumenol to 193% for guaiacol, for chitosan films with the same formulation. These values were two orders of magnitude higher than those of compounds without the phenol group. The affinity for monophenolic compounds decreased in films plasticized with hydrophilic propylene glycol, whereas no changes were observed in the retention of non-phenolic monoterpenes. Replacement of chitosan with polyvinyl alcohol polymer considerably decreased the retention of monophenolic compounds, with the exception of isoeugenol. Finally, the antimicrobial activity of monoterpenes and films loaded with them was evaluated in vitro by the microatmosphere test against Escherichia coli and Staphylococcus aureus. The present study shows that hydroxypropyl-β-cyclodextrin and the plasticization level achieved by hydrophilic films can be used to regulate loading capacity and sorption selectivity of naturally occurring antimicrobial compounds. PMID:27474670

  3. Efficient one-pot synthesis of hydrophilic and fluorescent molecularly imprinted polymer nanoparticles for direct drug quantification in real biological samples.

    PubMed

    Niu, Hui; Yang, Yaqiong; Zhang, Huiqi

    2015-12-15

    Efficient one-pot synthesis of hydrophilic and fluorescent molecularly imprinted polymer (MIP) nanoparticles and their application as optical chemosensor for direct drug quantification in real, undiluted biological samples are described. The general principle was demonstrated by preparing tetracycline (Tc, a broad-spectrum antibiotic)-imprinted fluorescent polymer nanoparticles bearing hydrophilic polymer brushes via poly(2-hydroxyethyl methacrylate) (PHEMA) macromolecular chain transfer agent-mediated reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization in the presence of a fluorescent monomer. The introduction of hydrophilic PHEMA brushes and fluorescence labeling onto/into the MIP nanoparticles proved to not only significantly improve their surface hydrophilicity and lead to their obvious specific binding and high selectivity toward Tc in the undiluted bovine serum, but also impart them with strong fluorescent properties. In particular, significant fluorescence quenching was observed upon their binding with Tc in such complex biological milieu, which makes these Tc-MIP nanoparticles useful optical chemosensor with a detection limit of 0.26 μM. Furthermore, such advanced functional MIP nanoparticles-based chemosensor was also successfully utilized for the direct, sensitive, and accurate determination of Tc in another biological medium (i.e., the undiluted pig serum) with average recoveries ranging from 98% to 102%, even in the presence of several interfering drugs. PMID:26164489

  4. iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties

    PubMed Central

    Šácha, Pavel; Knedlík, Tomáš; Schimer, Jiří; Tykvart, Jan; Parolek, Jan; Navrátil, Václav; Dvořáková, Petra; Sedlák, František; Ulbrich, Karel; Strohalm, Jiří; Majer, Pavel

    2016-01-01

    Abstract Antibodies are indispensable tools for biomedicine and anticancer therapy. Nevertheless, their use is compromised by high production costs, limited stability, and difficulty of chemical modification. The design and preparation of synthetic polymer conjugates capable of replacing antibodies in biomedical applications such as ELISA, flow cytometry, immunocytochemistry, and immunoprecipitation is reported. The conjugates, named “iBodies”, consist of an HPMA copolymer decorated with low‐molecular‐weight compounds that function as targeting ligands, affinity anchors, and imaging probes. We prepared specific conjugates targeting several proteins with known ligands and used these iBodies for enzyme inhibition, protein isolation, immobilization, quantification, and live‐cell imaging. Our data indicate that this highly modular and versatile polymer system can be used to produce inexpensive and stable antibody substitutes directed toward virtually any protein of interest with a known ligand. PMID:26749427

  5. iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties.

    PubMed

    Šácha, Pavel; Knedlík, Tomáš; Schimer, Jiří; Tykvart, Jan; Parolek, Jan; Navrátil, Václav; Dvořáková, Petra; Sedlák, František; Ulbrich, Karel; Strohalm, Jiří; Majer, Pavel; Šubr, Vladimír; Konvalinka, Jan

    2016-02-12

    Antibodies are indispensable tools for biomedicine and anticancer therapy. Nevertheless, their use is compromised by high production costs, limited stability, and difficulty of chemical modification. The design and preparation of synthetic polymer conjugates capable of replacing antibodies in biomedical applications such as ELISA, flow cytometry, immunocytochemistry, and immunoprecipitation is reported. The conjugates, named "iBodies", consist of an HPMA copolymer decorated with low-molecular-weight compounds that function as targeting ligands, affinity anchors, and imaging probes. We prepared specific conjugates targeting several proteins with known ligands and used these iBodies for enzyme inhibition, protein isolation, immobilization, quantification, and live-cell imaging. Our data indicate that this highly modular and versatile polymer system can be used to produce inexpensive and stable antibody substitutes directed toward virtually any protein of interest with a known ligand. PMID:26749427

  6. In vitro release of ketoprofen from hydrophilic matrix tablets containing cellulose polymer mixtures.

    PubMed

    Vueba, M L; Batista de Carvalho, L A E; Veiga, F; Sousa, J J; Pina, M E

    2013-11-01

    The effect of cellulose ether polymer mixtures, containing both hydroxypropylcellulose (HPC) and hydroxypropylmethylcellulose (HPMC K15M or K100M), on ketoprofen (KTP) release from matrix tablets was investigated. In order to evaluate the compatibility between the matrix components, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray powder diffraction (XRPD) experiments were performed. The results evidence the absence of significant intermolecular interactions that could eventually lead to an incompatibility between the drug and the different excipients. Formulations containing mixtures of polymers with both low and high viscosity grades were prepared by a direct compression method, by varying the polymer/polymer (w/w) ratio while keeping the drug amount incorporated in the solid dispersion constant (200 mg). The hardness values of different matrices were found within the range 113.8 to 154.9 N. HPLC analysis showed a drug content recovery between 99.3 and 102.1%, indicating that no KTP degradation occurred during the preparation process. All formulations attained a high hydration degree after the first hour, which is essential to allow the gel layer formation prior to tablet dissolution. Independent-model dissolution parameters such as t(10%) and t(50%) dissolution times, dissolution efficiency (DE), mean dissolution time (MDT), and area under curve (AUC) were calculated for all formulations. Zero-order, first-order, Higuchi, and Korsmeyer-Peppas kinetic models were employed to interpret the dissolution profiles: a predominantly Fickian diffusion release mechanism was obtained - with Korsmeyer-Peppas exponent values ranging from 0.216 to 0.555. The incorporation of HPC was thus found to play an essential role as a release modifier from HPMC containing tablets. PMID:23094867

  7. Fluorescent graphene oxide via polymer grafting: an efficient nanocarrier for both hydrophilic and hydrophobic drugs.

    PubMed

    Kundu, Aniruddha; Nandi, Sudipta; Das, Pradip; Nandi, Arun K

    2015-02-18

    Functionalized graphene-based drug delivery vehicles have conquered a significant position because functionalization improves its biocompatibility and stability in cell medium, leaving sufficient graphitic basal plane for drug loading through π-π stacking. In this study, poly(N-isopropylacrylamide) (PNIPAM) is covalently grafted from the surface of graphene oxide (GO) via a facile, eco-friendly and an easy procedure of free radical polymerization (FRP) using ammonium persulfate initiator. Various spectroscopic and microscopic studies confirm the successful grafting of PNIPAM from GO surface. PNIPAM-grafted GO (GPNM) exhibits enhanced thermal stability, improved dispersibility both in aqueous and cell medium, and better biocompatibility and cell viability compared to GO. Interestingly, GPNM displays an exciting fluorescence property in aqueous medium, which is a hike of intensity at 36 °C due to the lower critical solution temperature (LCST) of PNIPAM chains (32 °C). Moreover both hydrophilic (doxorubicin (DOX)) and hydrophobic (indomethacin (IMC)) drugs loaded on the surface of GPNM hybrid exhibits its efficacy as an efficient carrier for both types of drugs. Cellular uptakes of free DOX and DOX-loaded GPNM (GPNM-DOX) are evidenced both from optical and fluorescence imaging of live cells, and the efficiency of drug is significantly improved in the loaded system. The release of DOX from GPNM-DOX was achieved at pH 4, relevant to the environment of cancer cells. The pH-triggered release of hydrophobic drug was also studied using UV-vis spectroscopy via alginate encapsulation, showing a great enhancement at pH = 7.4. The IMC is also found to be released by human serum albumin using dialysis technique. The GPNM nanomaterial shows the property of simultaneous loading of DOX and IMC as well as pH-triggered simultaneous release of both of the drugs. PMID:25612470

  8. Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling.

    PubMed

    Yandi, Wetra; Mieszkin, Sophie; di Fino, Alessio; Martin-Tanchereau, Pierre; Callow, Maureen E; Callow, James A; Tyson, Lyndsey; Clare, Anthony S; Ederth, Thomas

    2016-07-01

    The resistance of charged polymers to biofouling was investigated by subjecting cationic (PDMAEMA), anionic (PSPMA), neutral (PHEMA-co-PEG10MA), and zwitterionic (PSBMA) brushes to assays testing protein adsorption; attachment of the marine bacterium Cobetia marina; settlement and adhesion strength of zoospores of the green alga Ulva linza; settlement of barnacle (Balanus amphitrite and B. improvisus) cypris larvae; and field immersion tests. Several results go beyond the expected dependence on direct electrostatic attraction; PSPMA showed good resistance towards attachment of C. marina, low settlement and adhesion of U. linza zoospores, and significantly lower biofouling than on PHEMA-co-PEG10MA or PSBMA after a field test for one week. PDMAEMA showed potential as a contact-active anti-algal coating due to its capacity to damage attached spores. However, after field testing for eight weeks, there were no significant differences in biofouling coverage among the surfaces. While charged polymers are unsuitable as antifouling coatings in the natural environment, they provide valuable insights into fouling processes, and are relevant for studies due to charging of nominally neutral surfaces. PMID:27125564

  9. Surface Treatment of Polymer Film by Atmospheric Pulsed Microplasma: Study on Gas Humidity Effect for Improving the Hydrophilic Property

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuo; Umeda, Akira; Blajan, Marius

    2011-08-01

    Surface treatment of a poly(ethylene naphthalate) (PEN) film by atmospheric pulsed microplasma with humid Ar gas was experimentally investigated. A Marx generator with metal-oxide-semiconductor field-effect transistor (MOSFET) switches that generates negative pulses was used for generating microplasma. Hydrophilization was estimated by measuring contact angle before and after the microplasma surface treatment by a remote process. The initial contact angle was about 76°. The minimum contact angle of about 20° was obtained after a treatment, a discharge voltage of -1.3 kV negative pulse, a frequency of 24 kHz, a gas relative humidity of about 60%. Analysis by X-ray photoelectron spectroscopy (XPS) showed a decrease in the C 1s peak corresponding to the C-H bond or C-C bond, and increases in the O 1s peaks corresponding to the C=O bond or O-H bond.

  10. Formulation and Evaluation of a Sustained-Release Tablets of Metformin Hydrochloride Using Hydrophilic Synthetic and Hydrophobic Natural Polymers

    PubMed Central

    Wadher, K. J.; Kakde, R. B.; Umekar, M. J.

    2011-01-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study was to develop an oral sustained release metformin hydrochloride tablet by using hydrophilic Eudragit RSPO alone or its combination with hydrophobic natural polymers Gum copal and gum damar as rate controlling factor. The tablets were prepared by wet granulation method. The in vitro dissolution study was carried out using USP 22 apparatus I, paddle method and the data was analysed using zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The drug release study revealed that Eudragit RSPO alone was unable to sustain the drug release. Combining Eudragit with gum Copal and gum Damar sustained the drug release for more than 12 h. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport. Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release. PMID:22303065

  11. Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers.

    PubMed

    Wadher, K J; Kakde, R B; Umekar, M J

    2011-03-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study was to develop an oral sustained release metformin hydrochloride tablet by using hydrophilic Eudragit RSPO alone or its combination with hydrophobic natural polymers Gum copal and gum damar as rate controlling factor. The tablets were prepared by wet granulation method. The in vitro dissolution study was carried out using USP 22 apparatus I, paddle method and the data was analysed using zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The drug release study revealed that Eudragit RSPO alone was unable to sustain the drug release. Combining Eudragit with gum Copal and gum Damar sustained the drug release for more than 12 h. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport. Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release. PMID:22303065

  12. Effect of hydrophilic additives on the dissolution and pharmacokinetic properties of itraconazole-enteric polymer hot-melt extruded amorphous solid dispersions.

    PubMed

    Lang, Bo; Liu, Sha; McGinity, James W; Williams, Robert O

    2016-01-01

    Hot-melt extrusion technology has been widely reported for producing amorphous solid dispersions of poorly water-soluble compounds. A number of studies revealed that enteric polymers containing ionizable groups are able to improve the physical stability and maintain drug supersaturation, thereby enhancing oral bioavailability. However, our previous studies found that itraconazole (ITZ)-enteric polymer amorphous solid dispersions are hydrophobic and poorly wettable. Moreover, drug release in an acidic environment (i.e. stomach) is very limited, indicating a narrow absorption window. In the present study, we investigated the effect of hydrophilic additives on the in vitro and in vivo performance of ITZ-enteric polymer amorphous solid dispersions. Incorporating Vitamin E TPGS into ITZ-HPMCAS amorphous solid dispersions significantly improved drug release in the acidic media. Surprisingly, a low concentration of Vitamin E TPGS also enhanced the degree of drug supersaturation in neutral pH media, which is unique as compared with other tested hydrophilic additives. This effect is not due to the solubilization of the surfactant. We further formulated the amorphous solid dispersions into tablet dosage forms and evaluated their performance in a bio-relevant dissolution media. Our optimized formulations exhibited drastically enhanced dissolution profiles as compared with the commercial ITZ product and ITZ amorphous solid dispersion without hydrophilic additive. In vivo study showed that Vitamin E TPGS induced rapid drug absorption after oral administration. Moreover, the elimination half-life of ITZ was prolonged due to the enzyme inhibition effect of Vitamin E TPGS. PMID:26355819

  13. Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state.

    PubMed

    Jablan, Jasna; Szalontai, Gábor; Jug, Mario

    2012-12-01

    The aim of this work was to investigate the potential synergistic effect of water-soluble polymers (hypromellose, HPMC and polyvinylpyrrolidone, PVP) on zaleplon (ZAL) complexation with parent β-cyclodextrin (βCD) and its randomly methylated derivative (RAMEB) in solution and in solid state. The addition of HPMC to the complexation medium improved ZAL complexation and solubilization with RAMEB (K(ZAL/RAMEB)=156±5M(-1) and K(ZAL/RAMEB/HPMC)=189±8M(-1); p<0.01), while such effect was not observed for βCD (K(ZAL/βCD)=112±2M(-1) and K(ZAL/βCD/HPMC)=119±8M(-1); p>0.05). Although PVP increased the ZAL aqueous solubility from 0.22 to 0.27mg/mL, it did not show any synergistic effects on ZAL solubilization with the cyclodextrins tested. Binary and ternary systems of ZAL with βCD, RAMEB and HPMC were prepared by spray-drying. Differential scanning calorimetry, X-ray powder diffraction and scanning electron microscopy demonstrated a partial ZAL amorphization in spray-dried binary and ternary systems with βCD, while the drug was completely amorphous in all samples with RAMEB. Furthermore, inclusion complex formation in all systems prepared was confirmed by solid-state NMR spectroscopy. The in vitro dissolution rate followed the rank order ZAL/RAMEB/HPMC>ZAL/RAMEB=ZAL/βCD/HPMC>ZAL/βCD≫ZAL, clearly demonstrating the superior performance of RAMEB on ZAL complexation in the solid state and its synergistic effect with HPMC on drug solubility. Surprisingly, when loaded into tablets made with insoluble microcrystalline cellulose, RAMEB complexes had no positive effect on drug dissolution, because HPMC and RAMEB acted as a binders inside the tablets, prolonging their disintegration. Oppositely, the formulation with mannitol, a soluble excipient, containing a ternary RAMEB system, released the complete drug-dose in only 5min, clearly demonstrating its suitability for the development of immediate-release oral formulation of ZAL. PMID:22898722

  14. New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica.

    PubMed

    Li, Yun; Yang, Jiajia; Jin, Jing; Sun, Xiaoli; Wang, Longxing; Chen, Jiping

    2014-04-11

    A novel dendritic polymer-modified silica (DPS) stationary phase was prepared by a divergent synthesis scheme starting from propylamine on silica by consecutive amine-epoxy reactions with 1,4-butanedioldiglycidyl ether and aniline. Both elemental analysis and infrared spectra data shows the successful growth of dendritic polymer on silica particles. The carbon and nitrogen contents increased with an increasing number of reaction cycles and achieved 25.2% and 2.1% (w/w) after 11 reaction cycles. The combination of a phenyl ring with a quaternary ammonium, or a tertiary amine at the branch point along with embedded polar functionalities (including ether and hydroxyl groups) in the branch, generated hydrophobic, electrostatic, as well as hydrophilic interactive domains. Depending on solute structure and mobile phase composition, the DPS stationary phase provided multiple retention mechanisms, including reversed phase (RP), anion-exchange (AEX), and hydrophilic interactions. The RP capability achieved separation of polycyclic aromatic hydrocarbons. Basic, neutral and acidic molecules were well separated under RP/AEX mixed mode. Effective separation of small polar compounds (such as nucleobases and nucleosides) was also obtained under hydrophilic interaction liquid chromatography (HILIC) mode. PMID:24630062

  15. Facile synthesis of hydrophilic polyamidoxime polymers as a novel solid-phase extraction matrix for sequential characterization of glyco- and phosphoproteomes.

    PubMed

    Wang, Jiaxi; Wang, Yanan; Gao, Mingxia; Zhang, Xiangmin; Yang, Pengyuan

    2016-02-11

    Selective enrichment of glycopeptides or phosphopeptides with great biological significance is essential for high-throughput mass spectrometry analysis. However, most previously reported methods only focused on enriching either glycopeptides or phosphopeptides rather than enriching them both. In this work, for the first time, a facile route was developed for the synthesis of polyamidoxime polymers with intrinsic hydrophilic skeletons and attractive long chain structure. The polyamidoxime materials (co-PAN) were synthesized from polyacrylonitrile (PAN) precursor and were successfully used for selective enrichment of glycopeptides. After that, co-PAN as a matrix functionalized with titanium ions (co-PAN@Ti(4+)) could efficiently enrich phosphopeptides. The performances of the polymers for sequential selective and effective enrichment of glycopeptides and phosphopeptides were evaluated with standard peptide mixtures and human serum. Moreover, the efficiency of enrichment of the material was still retained after being used repeatedly. These results demonstrated that the polymers showed great potential in the practical application of proteomics. PMID:26803004

  16. Experimental aluminum pathology in rabbits: effects of hydrophilic and lipophilic compounds.

    PubMed Central

    Bombi, G G; Corain, B; Favarato, M; Giordano, R; Nicolini, M; Perazzolo, M; Tapparo, A; Zatta, P

    1990-01-01

    Aluminum lactate [Al(lact)3] (hydrophilic, hydrolytically unstable) and aluminum acetylacetonate [Al(acae)3] (lipophilic, hydrolytically stable) were tested as potential toxicants to rabbits upon IV administration both as aqueous solutions and as liposome suspensions. Both chemicals behaved as cardiotoxic agents when administered as aqueous solutions, but Al(acae)3 was at least two orders of magnitude more active than Al(lact)3. Al(acae)3, but not Al(lact)3, caused myocardial infarcts resembling those in humans (with contraction bands) at doses as low as 0.24 mg/kg body weight, as well as a prominent acanthocytosis. Al(lact)3, when administered as a liposome suspension, was about 300 times more toxic than in aqueous solution, although cardiac damage was not infarctual in character. Both chemical and physical speciation of aluminum(III) thus play an essential role in determining the toxicity of the metal. Images FIGURE 2. FIGURE 3. PMID:2088750

  17. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers.

    PubMed

    Ungaro, Francesca; d'Angelo, Ivana; Coletta, Ciro; d'Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella; Perfetto, Brunella; Tufano, Maria Antonietta; Miro, Agnese; La Rotonda, Maria Immacolata; Quaglia, Fabiana

    2012-01-10

    Although few experimental studies have been handled so far to exploit the potential of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in the production of dry powders for antibiotic inhalation, there has been no comprehensive study on the role played by NP composition. In this work, we try to shed light on this aspect by designing and developing a pulmonary delivery system for antibiotics, such as tobramycin (Tb), based on PLGA NPs embedded in an inert microcarrier made of lactose, referred to as nano-embedded micro-particles (NEM). At nanosize level, helper hydrophilic polymers were used to impart the desired surface, bulk and release properties to PLGA NPs prepared by a modified emulsion-solvent diffusion technique. Results showed that poly(vinyl alcohol) (PVA) and chitosan (CS) are essential to optimise the size and modulate the surface properties of Tb-loaded PLGA NPs, whereas the use of alginate (Alg) allows efficient Tb entrapment within NPs and its release up to one month. Optimized formulations display good in vitro antimicrobial activity against P. aeruginosa planktonic cells. Furthermore, spray-drying of the NPs with lactose yielded NEM with peculiar but promising flow and aerosolization properties, while preserving the peculiar NP features. Nonetheless, in vivo biodistribution studies showed that PVA-modified Alg/PLGA NPs reached the deep lung, while CS-modified NPs were found in great amounts in the upper airways, lining lung epithelial surfaces. In conclusion, PLGA NP composition appears to play a crucial role in determining not only the technological features of NPs but, once processed in the form of NEM, also their in vitro/in vivo deposition pattern. PMID:21864595

  18. Spatially defined hydrophobic coating of a microwell-patterned hydrophilic polymer substrate for targeted adhesion with high-resolution soft lithography.

    PubMed

    Lee, Nae Yoon

    2013-11-01

    In this study, a simple and facile scheme for selectively hydrophobizing microwell-patterned hydrophilic polymer substrate is demonstrated, and applied for a targeted adhesion. Microwell-patterned polymer substrate was replicated from a silicon mold using a photocurable prepolymer under ultraviolet (UV) light for 30min. While the surface of the replica was partially cured, it was contact printed with a flat, hydrophobic poly(dimethylsiloxane) (PDMS) elastomer, and the assembly was further cured under UV light for approximately 3h and detached. In this manner, the PDMS molecules were transferred selectively onto the protruding regions of the partially cured microwell-patterned substrate, while the inner walls of the microwells remained hydrophilic. The surface hydrophobization was characterized by contact angle measurement and X-ray photoelectron spectroscopy (XPS). In addition, time-dependent contact angle variations were investigated to verify the robustness and durability of the coating of the PDMS functional group. As a proof-of-concept experiment, functionalized polymer beads were targeted and successfully guided selectively into arrays of microwells without being adsorbed onto the protruding regions of the microwell-patterned substrate, which could further be applied for the targeted immobilization of biomolecules with high selectivity in a relatively simple and facile manner. PMID:23838198

  19. Direct and Highly Selective Drug Optosensing in Real, Undiluted Biological Samples with Quantum-Dot-Labeled Hydrophilic Molecularly Imprinted Polymer Microparticles.

    PubMed

    Yang, Yaqiong; Niu, Hui; Zhang, Huiqi

    2016-06-22

    Quantum-dot (QD)-labeled hydrophilic molecularly imprinted polymer (MIP) microparticles were prepared for direct and highly selective optosensing of an antibiotic drug (i.e., tetracycline (Tc)) in pure bovine/goat milks and bovine/porcine serums. "Living" CdTe QD-SiO2 composite microparticles with alkyl bromide groups on their surfaces were first obtained via the one-pot sol-gel reaction, and they were subsequently grafted with a Tc-imprinted polymer layer and poly(glyceryl monomethacrylate) brushes via the successive surface-initiated atom transfer radical polymerizations. The resulting MIP microparticles with QD labeling and hydrophilic polymer brushes could function properly in biological samples and showed obvious template-binding-induced fluorescence quenching, which make them a useful fluorescent chemosensor with limits of detection down to 0.14 μM in complex biological media. Moreover, a facile and effective approach was developed based on a newly derived equation to eliminate the false positives of the fluorescent chemosensor and provide it with wider linear detection concentration ranges in comparison with those obtained using the generally adopted Stern-Volmer equation. Furthermore, the fluorescent MIP chemosensor was also successfully applied for directly, sensitively, selectively, and accurately quantifying Tc in biological media, and the average recoveries were in the range of 95%∼105% even when several other drugs and the fluorescently interfering chlortetracycline were present in the samples. PMID:27238184

  20. Water vapor exchange system using a hydrophilic microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells without cathode humidification

    NASA Astrophysics Data System (ADS)

    Kitahara, Tatsumi; Nakajima, Hironori; Morishita, Masashi

    2012-09-01

    Polymer electrolyte fuel cells (PEFCs) generally have external humidifiers to supply humidified hydrogen and oxidant gases, which prevents dehydration of the membrane. If a PEFC could be operated without humidification, then external humidifiers could be removed, which would result in a simplified PEFC system with increased total efficiency and reduced cost. A water vapor exchange system installed in the PEFC was developed to enhance the performance without cathode humidification. A gas diffusion layer (GDL) coated with a hydrophobic microporous layer (MPL) was used at the active reaction area. A GDL coated with a hydrophilic MPL consisting of polyvinyl alcohol (PVA) and carbon black was used at the cathode water vapor exchange area to promote water transport from the cathode outlet wet gas to the anode inlet dry gas. This is effective for reducing the IR overpotential, which enhances the PEFC performance. Appropriate enhancement of hydrophilicity by increasing the PVA content in the MPL to 20 mass% is effective to increase water transport from the cathode to anode. At the anode water exchange area, a GDL without the hydrophilic MPL is effective to promote water transport from the water exchange area to the active reaction area, which enhances the PEFC performance.

  1. A novel hydrophilic polymer-brush pattern for site-specific capture of blood cells from whole blood.

    PubMed

    Hou, Jianwen; Shi, Qiang; Ye, Wei; Fan, Qunfu; Shi, Hengchong; Wong, Shing-Chung; Xu, Xiaodong; Yin, Jinghua

    2015-03-11

    A novel hydrophilic PAMPS-PAAm brush pattern is fabricated to selectively capture blood cells from whole blood. PAMPS brushes provide antifouling surfaces to resist protein and cell adhesion while PAAm brushes effectively entrap targeted proteins for site-specific and cell-type dependent capture of blood cells. PMID:25469596

  2. Simulated space environmental effects on some experimental high performance polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1993-01-01

    High performance polymers for potential space applications were evaluated under simulated space environmental conditions. Experimental resins from blends of acetylene terminated materials, poly(arylene ether)s and low color polyimides were exposed to high energy electron and ultraviolet radiation in an attempt to simulate space environmental effects. Thin films, neat resin moldings, and carbon fiber reinforced composites were exposed, and the effect on certain polymer properties were determined. Recent research involving the effects of various radiation exposures on the physical, optical, and mechanical properties of several experimental polymer systems is reviewed.

  3. Use of the Dynamic Gastric Model as a tool for investigating fed and fasted sensitivities of low polymer content hydrophilic matrix formulations.

    PubMed

    Mason, Laura M; Chessa, Simona; Huatan, Hiep; Storey, David E; Gupta, Pranav; Burley, Jonathan; Melia, Colin D

    2016-08-20

    The Dynamic Gastric Model (DGM) is an in-vitro system which aims to closely replicate the complex mixing, dynamic biochemical release and emptying patterns of the human stomach. In this study, the DGM was used to understand how the polymer content of hydrophilic matrices influences drug release in fasted and fed dissolution environments. Matrices containing a soluble model drug (caffeine) and between 10 and 30% HPMC 2208 (METHOCEL(®) K4M CR) were studied in the DGM under simulated fasted and fed conditions. The results were compared with compendial USP I and USP II dissolution tests. The USP I and II tests clearly discriminated between formulations containing different polymer levels, whereas the fasted DGM test bracketed drug release profiles into three groups and was not able to distinguish between some different formulations. DGM tests in the fed state showed that drug release was substantially influenced by the presence of a high fat meal. Under these conditions, there was a delay before initial drug release, and differences between matrices with different polymer contents were no longer clear. Matrices containing the typical amount of HPMC polymer (30% w/w) exhibited similar release rates under fed and fasted DGM conditions, but matrices with lower polymer contents exhibited more rapid drug release in the fasted state. In both the fasted and fed states erosion mechanisms appeared to dominate drug release in the DGM: most likely a consequence of the changing, cylindrical forces exerted during simulated antral cycling. This is in contrast to the USP tests in which diffusion played a significant role in the drug release process. This study is one of the first publications where a series of extended release (ER) formulations have been studied in the DGM. The technique appears to offer a useful tool to explore the potential sensitivity of ER formulations with respect to the gastric environment, especially the presence of food. PMID:27311354

  4. Experimental investigation of the streaming potential hypothesis for ionic polymer transducers in sensing

    NASA Astrophysics Data System (ADS)

    Kocer, Bilge; Mauck Weiland, Lisa

    2013-03-01

    Ionic polymer transducers (IPTs) are ionomers that are plated with conductive media such as metals, leading to capacitive behavior. IPTs exhibit bending deformation when a voltage difference is applied across the surfaces of the transducer, thus displaying actuation. A current is generated when they are deformed, thus exhibiting sensing. However, the mechanisms responsible for actuation and sensing differ; research to date has focused predominantly on actuation, while identification of the dominant mechanism responsible for IPT sensing remains an open topic. The goal of this work is to initiate experimental investigations of the streaming potential hypothesis for IPT sensing. This hypothesis argues that the presence of unbound counter-ions within the hydrophilic phase of an ionic polymer behaves as an electrolyte in the presence of the electrode. Thus, as per classic streaming potential analyses, relative motion of the electrolyte with respect to the electrode will result in the evolution of a streaming potential. According to this hypothesis, the extent of communication between the electrode and electrolyte becomes important in the evolution of an electrical signal. This study experimentally explores the effect of electrode architecture on the sensing response where the IPTs are prepared via the direct assembly process (DAP). The DAP is selected because it enables control over the fabrication of the electrode structure. In this study, cantilevered IPT samples having different electrode composition are tested under several step input tip displacements. The experimental outcomes are consistent with predicted trends via streaming potential theory.

  5. Size exclusion chromatography of synthetic polymers and biopolymers on common reversed phase and hydrophilic interaction chromatography columns.

    PubMed

    Caltabiano, Anna M; Foley, Joe P; Barth, Howard G

    2016-03-11

    This work describes the applicability of common reversed phase and HILIC columns for size exclusion chromatography of synthetic and natural polymers. Depending on the nature of the solute and column stationary phase, a "non-retention" condition must be created with the aid of the mobile phase to achieve a unique size-based separation in isocratic mode. The various bonded phases show remarkable differences in size separations that are controlled by mobile phase conditions. Polymer-mobile phase and column-mobile phase solvation interactions determine polymer hydrodynamic volume (or solute bulkiness) and polymer-column steric interaction. Solvation interactions in turn depend on polymer, mobile phase and stationary phase polarities. Column-mobile phase solvation interactions determine the structural order of the bonded ligands that can vary from ordered (extended, aligned away from the silica substrate) to disordered (folded, pointing toward the silica substrate). Chain order increases with increased solvent penetration into the bonded phase. Increased chain order reduces pore volume, and therefore decreases the size-separation efficiency of a column. Conversely, decreased chain order increases pore volume and therefore increases the size-separation efficiency. The thermodynamic quality of the mobile phase also plays a significant role in the separation of polymers. "Poor" solvents can significantly reduce the hydrodynamic diameter of a solute and thus change their retention behavior. Medium polarity stationary phases, such as fluoro-phenyl and cyano, exhibit a unique retention behavior. With an appropriate polarity mobile phase, polar and non-polar synthetic polymers of the same molecular masses can be eluted at the same retention volumes. PMID:26877177

  6. BOP: biocompatible osteoconductive polymer: an experimental approach.

    PubMed

    Buron, F; Bourgois, R; Burny, F; Chaboteaux, C; d'Hemricourt, J; el Banna, S; Pasteels, J L; Sintzoff, S; Vienne, A

    1994-01-01

    BOP (biocompatible osteoconductive polymer) is a material proposed for osteosyntheses and for filling of bone defects in orthopaedics, neurosurgery and stomatology. It is a composite made of a copolymer of N-vinylpyrrolidone and methylmethacrylate, of polyamide-6 fibers and of calcium gluconate. The histological investigation includes the study of 30 intact rabbit femurs instrumented with a BOP rod, as well as the study of organs of the reticuloendothelial system. The currently available results show the absence of toxicity on hematopoietic tissue. Zones of osteoblastic activity surround the rods, coupled with an osteoclastic reaction which may result in the partial fragmentation of the polyamide fibers and its incorporation in the newly formed bone. We also observed the encapsulation of the material. The biomechanical approach investigated the mechanical properties of the material in bending and in shear. The radiological aspects of the investigation consisted of computerized axial tomography of the implanted femurs to measure density at the bone-implant interface. PMID:10150170

  7. Determination of diazepam and its metabolites in human urine by liquid chromatography/tandem mass spectrometry using a hydrophilic polymer column.

    PubMed

    Umezawa, Hironobu; Lee, Xiao-Pen; Arima, Yoshiko; Hasegawa, Chika; Marumo, Akemi; Kumazawa, Takeshi; Sato, Keizo

    2008-08-01

    Diazepam and its major metabolites, nordazepam, temazepam and oxazepam, in human urine samples, were analyzed by liquid chromatography (LC)/tandem mass spectrometry (MS/MS) using a hydrophilic polymer column (MSpak GF-310 4B), which enables direct injection of crude biological samples. Matrix compounds in urine were eluted first from the column, while the target compounds were retained on the polymer stationary phase. The analytes retained on the column were then eluted into an acetonitrile-rich mobile phase using a gradient separation technique. All compounds showed base-peak ions due to [M+H]+ ions on LC/MS with positive ion electrospray ionization, and product ions were produced from each [M+H]+ ion by LC/MS/MS. Quantification was performed by selected reaction monitoring. All compounds spiked into urine showed method recoveries of 50.1-82.0%. The regression equations for all compounds showed excellent linearity in the range of 0.5-500 ng/mL of urine. The limits of detection and quantification for each compound were 0.1 and 0.5 ng/mL of urine, respectively. The intra- and inter-day coefficients of variation for all compounds in urine were not greater than 9.6%. The data obtained from actual determination of diazepam and its three metabolites, oxazepam, nordazepam and temazepam, in human urine after oral administration of diazepam, are also presented. PMID:18618924

  8. Enhancing water retention and low-humidity proton conductivity of sulfonated poly(ether ether ketone) composite membrane enabled by the polymer-microcapsules with controllable hydrophilicity-hydrophobicity

    NASA Astrophysics Data System (ADS)

    He, Guangwei; Li, Yifan; Li, Zongyu; Nie, Lingli; Wu, Hong; Yang, Xinlin; Zhao, Yuning; Jiang, Zhongyi

    2014-02-01

    Four kinds of polymer microcapsules (PMCs) with different hydrophilicity-hydrophobicity are synthesized via distillation-precipitation polymerization (polymer microcapsules form by self-crosslinking of monomers/crosslinkers in this process) and incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare composite membranes. To improve the water retention of the PMCs, the hydrophilicity-hydrophobicity of the PMCs is manipulated by regulating the proportion of hydrophilic ethylene glycol dimethacrylate (EGDMA) and hydrophobic divinylbenzene (DVB) crosslinkers in the synthesis formula. The hydrophilicity of the PMCs decreases with increasing the content of polyDVB in the PMCs. The four kinds of PMCs exhibit different water retention properties. The PMCs with appropriate hydrophilic/hydrophobic balance (EGDMA: DVB = 1:1) possess the best water retention properties. Incorporation of PMCs into SPEEK matrix enhances the water-retention properties, and consequently increases proton conductivity to 0.0132 S cm-1 under 20% relative humidity, about thirteen times higher than that of the SPEEK control membrane. Moreover, the incorporation of PMCs reduces the activation energy for proton conduction and the methanol permeability of the membranes. This study may be helpful to rational design of excellent water-retention materials.

  9. Parmacokinetic evaluation of ibuprofen controlled release matrix tablets using hydrophilic Eudragit® polymer and co-excipients.

    PubMed

    Bakhsh, Sattar; Khan, Gul Majid; Menaa, Farid; Khan, Barkat Ali

    2015-09-01

    The present study was conducted to formulate controlled release dosage forms containing Ibuprofen with Eudragit® S 100 polymer. The tablets were formulated at three different ratios with the polymer to investigate the effect of different concentrations of polymer on in vitro drug release patterns/kinetics and in vivo absorption/pharmacokinetics. Pre-formulation studies were conducted including bulk density, tapped density, compressibility index, Hausner ratio and angle of repose. In vitro studies were conducted using phosphate buffer (pH 7.4) as dissolution medium. In vivo performance was evaluated using albino rabbits. Physico-chemical characteristics (i.e. dimensional tests, weight variation, hardness, friability and drug content determination) fell in the USP acceptable limits. The compressibility index was found to range between 12.02 ± 0.01% and 18.66 ± 0.03%, the Hausner ratio varied between 1.02 ± 0.01 and 1.19 ± 0.10 and the angle of repose ranged from 15.19 ± 0.01 to 24.52 ± 0.10, all indicating better flow properties than the bulk-reference standard. Both bulk and tapped densities also fell in the USP acceptable range. Ibuprofen market tablets showed Tmax of 2.1 ± 0.4h, which was significantly (P-value <0.05) lower compared to that of the reference standard (i.e. 4.09 ± 1.3h). Ibuprofen test formulation has a half-life (t1/2) of 16.9 ± 2.5h, which was significantly (P-value<0.001) higher compared to that of the reference standard (i.e. 9.23 ± 2.9h). Eudragit® S 100 polymers can be used efficiently to develop directly compressed prolonged release tablets. PMID:26408874

  10. In vitro Evaluation of the Effect of Combination of Hydrophilic and Hydrophobic Polymers on Controlled Release Zidovudine Matrix Tablets.

    PubMed

    Ganesh, S; Radhakrishnan, M; Ravi, M; Prasannakumar, B; Kalyani, J

    2008-01-01

    The aim of the present study was to prepare and characterize controlled-release matrix tablets of zidovudine using hydrophilic HPMC K4 M or Carbopol 934 alone or in combination with hydrophobic ethyl cellulose. Release kinetics was evaluated by using USP XXIV dissolution apparatus No.2 (paddle) type. Scanning electron microscopy was used to visualize the effect of dissolution medium on matrix tablet surface. The in vitro results of controlled - release zidovudine tablets were compared with conventional marketed tablet Zidovir. The in vitro drug release study revealed that HPMC K4 M or Carbopol 934 preparation was able to sustain the drug release near to 6 hours. Combining HPMC K4 M or Carbopol 934 with ethyl cellulose sustained the drug release for nearly 12 h. The in vitro evaluation showed that the drug release may be by diffusion along with erosion. Results suggest that the developed controlled-release tablets of zidovudine could perform therapeutically better than marketed dosage forms, leading to improve efficacy, controlling the release and better patient compliance. PMID:20046771

  11. Simulated space environmental effects on some experimental high performance polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1991-01-01

    Organic polymeric materials are currently being considered for long term use (more than 10 years) in structural (adhesives and composite matrices) and functional (films and coatings) applications on spacecraft. Although organic polymers have been utilized successfully in short term missions, the long term durability of these materials in space is of concern. As part of a NASA effort on high performance polymers for potential space applications, various experimental polymeric materials recently synthesized at NASA Langley Research Center were evaluated under simulated space environmental conditions. Experimental resins from blends of acetylene terminated materials, poly(arylene ether)s and low color polyimides were exposed to high energy electron and ultraviolet radiation in an attempt to simulate space environmental effects. Thin films, neat resin moldings and carbon fiber reinforced composites were exposed and the effect on certain polymer properties were determined. This paper reviews recent research involving the effects of various radiation exposures on the physical, optical and mechanical properties of several experimental polymer systems.

  12. From the Solution Processing of Hydrophilic Molecules to Polymer-Phthalocyanine Hybrid Materials for Ammonia Sensing in High Humidity Atmospheres

    PubMed Central

    Gaudillat, Pierre; Jurin, Florian; Lakard, Boris; Buron, Cédric; Suisse, Jean-Moïse; Bouvet, Marcel

    2014-01-01

    We have prepared different hybrid polymer-phthalocyanine materials by solution processing, starting from two sulfonated phthalocyanines, s-CoPc and CuTsPc, and polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), poly(acrylic acid-co-acrylamide) (PAA-AM), poly(diallyldimethylammonium chloride) (PDDA) and polyaniline (PANI) as polymers. We also studied the response to ammonia (NH3) of resistors prepared from these sensing materials. The solvent casted films, prepared from s-CoPc and PVP, PEG and PAA-AM, were highly insulating and very sensitive to the relative humidity (RH) variation. The incorporation of s-CoPc in PDDA by means of layer-by-layer (LBL) technique allowed to stabilize the film, but was too insulating to be interesting. We also prepared PANI-CuTsPc hybrid films by LBL technique. It allowed a regular deposition as evidenced by the linear increase of the absorbance at 688 nm as a function of the number of bilayers. The sensitivity to ammonia (NH3) of PANi-CuTsPc resistors was very high compared to that of individual materials, giving up to 80% of current decrease when exposed to 30 ppm NH3. Contrarily to what happens with neutral polymers, in PANI, CuTsPc was stabilized by strong electrostatic interactions, leading to a stable response to NH3, whatever the relative humidity in the range 10%–70%. Thus, the synergy of PANI with ionic macrocycles used as counteranions combined with their simple aqueous solution processing opens the way to the development of new gas sensors capable of operating in real world conditions. PMID:25061841

  13. Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions

    NASA Astrophysics Data System (ADS)

    Kitahara, Tatsumi; Nakajima, Hironori; Okamura, Kosuke

    2015-06-01

    Gas diffusion layers (GDLs) coated with a hydrophobic microporous layer (MPL) composed of carbon black and polytetrafluoroethylene (PTFE) have been commonly used to improve the water management characteristics of polymer electrolyte fuel cells (PEFCs). However, the hydrophobic MPL coated GDL designed to prevent dehydration of the membrane under low humidity conditions is generally inferior at reducing flooding under high humidity conditions. It is therefore important to develop a robust MPL coated GDL that can enhance the PEFC performance regardless of the humidity conditions. In the present study, a GDL coated with an MPL containing hydrophilic carbon nanotubes (CNTs) was developed. The less hydrophobic pores incorporating CNTs are effective at conserving the membrane humidity under low humidity conditions. The MPL with CNTs is also effective at expelling excess water from the catalyst layer while maintaining oxygen flow pathways from the GDL substrate, allowing the mean flow pore diameter to be decreased to 2 μm without reducing the ability of the MPL to prevent flooding under high humidity conditions. An MPL coated GDL with a CNT content of 4 mass% exhibits significantly higher performance under both low and high humidity conditions than a hydrophobic MPL coated GDL.

  14. Experimental studies of electro-optic polymer modulators and waveguides

    NASA Astrophysics Data System (ADS)

    Hedin, Eric R.; Goetz, Frederick J.

    1995-03-01

    The results of an experimental study of electro-optic modulators and waveguides based on polymeric materials are presented. Included are the design, fabrication, and testing of integrated Mach-Zehnder modulators, which are based on polymer films that contain a novel, nonlinear electro-optic chromophore. Studies also show the efficacy of photolithography or photobleaching by the use of this chromophore to form passive, branching waveguides, which are operated at the 1300-nm wavelength.

  15. Semisynthetic Hydrophilic Polyals

    PubMed Central

    Papisov, Mikhail I.; Hiller, Alexander; Yurkovetskiy, Alexander; Yin, Mao; Barzana, Marlene; Hillier, Shawn; Fischman, Alan J.

    2012-01-01

    Nonbioadhesive, fully biodegradable soluble polymers would be very instrumental in advanced biomedical applications, such as gene and drug delivery and tissue engineering. However, rational development of such materials is hindered by the complexity of macromolecule interactions with biological milieu. The prevalence of carbohydrates in naturally occurring interface structures suggests an alternative, biomimetic approach. Interface carbohydrates, regardless of their biological function, have common nonsignaling substructures (e.g., acetal and ketal groups, secondary and primary alcohols). We hypothesized that hydrophilic polymers (polyals) consisting of acyclic units built of nonsignaling carbohydrate substructures would be highly biocompatible and nonbioadhesive, while intrachain acetal or ketal groups would enable nonenzymatic biodegradation upon uptake by cells. Acyclic hydrophilic polyals can be prepared via either polymerization of suitable monomers or lateral cleavage of cyclic polyals (e.g., polysaccharides). In this study, model polyals were produced via lateral cleavage of polyaldoses and polyketoses. Best results were achieved using dextran B-512 as a precursor. The resultant poly[hydroxymethylethylene hydroxymethylformal], in agreement with the hypothesis, demonstrated excellent biological properties and technological flexibility. Materials of this type can potentially have several applications in pharmacology and bioengineering. PMID:16153104

  16. A comparative study on the effects of amphiphilic and hydrophilic polymers on the release profiles of a poorly water-soluble drug.

    PubMed

    Irwan, Anastasia W; Berania, Jacqueline E; Liu, Xueming

    2016-03-01

    This paper reports the use of two crystalline polymers, an amphiphilic Pluronic® F-127 (PF-127) and a hydrophilic poly(ethylene glycol) (PEG6000) as drug delivery carriers for improving the drug release of a poorly water-soluble drug, fenofibrate (FEN), via micelle formation and formation of a solid dispersion (SD). In 10% PF-127 (aq.), FEN showed an equilibrium solubility of ca. 0.6 mg/mL, due to micelle formation. In contrast, in 10% PEG6000 (aq.), FEN only exhibited an equilibrium solubility of 0.0037 mg/mL. FEN-loaded micelles in PF-127 were prepared by direct dissolution and membrane dialysis. Both methods only yielded a highest drug loading (DL) of 0.5%. SDs of FEN in PF-127 and PEG6000, at DLs of 5-80%, were prepared by solvent evaporation. In-vitro dissolution testing showed that both micelles and SDs significantly improved FEN's release rate. The SDs of FEN in PF-127 showed significantly faster release than crystalline FEN, when the DL was as high as 50%, whereas SDs of PEG6000 showed similar enhancement in the release rate when the DL was not more than 20%. The DSC thermograms of SDs of PF-127 exhibited a single phase transition peak at ca. 55-57 °C when the DL was not more than 50%, whereas those in PEG6000 exhibited a similar peak at ca. 61-63 °C when the DL was not more than 35%. When the DL exceeded 50% for SDs of PF-127 and 35% for SDs of PEG6000, DSC thermograms showed two melting peaks for the carrier polymer and FEN, respectively. FT-IR studies revealed that PF-127 has a stronger hydrophobic-hydrophobic interaction with FEN than PEG6000. It is likely that both dispersion and micelle formation contributed to the stronger effect of PF-127 on enhancing the release rate of FEN in its SDs. PMID:25496001

  17. A study of the polymer-cnt interactions in polymer/cnt composites using experimental and computational methods

    NASA Astrophysics Data System (ADS)

    Meng, Jiangsha

    This dissertation work focuses on research related to understanding and controlling the polymer-carbon nanotube (CNT) interactions during composite fiber processing using both experimental and computational means, in order to achieve consistent formation of the interphase regions for various polymers in the vicinity of CNT. The development of the polymer crystalline interphase is important, since it has been shown to have a significant and positive impact on the mechanical performance of polymer/CNT composites. This is achieved by the improvement of stress transfer mechanisms between the polymer matrix and CNT. The preliminary results (i.e., both experimental and computational) provide insight toward understanding the fundamental mechanisms of polymer-CNT interactions under various processing conditions, as well as the resultant polymer or CNT behaviors and composite fibers performance governed by them. In this thesis work, the initialization and the development of the interphase region in fibers throughout all processing steps are investigated using full-atomistic molecular dynamics (MD) approach as well as experimental means. SWNT dispersion quality with and without polymers present during sonication process is also investigated experimentally, where the polymer-SWNT interactions are impacted by SWNT dispersion qualities. The resultant morphologies and composite fibers properties are also analyzed. The effect of laminar-flow rates (used during spinning) on the polymer/SWNT composite fiber properties as well as on the fundamental polymer-SWNT interactions and the resultant chain morphologies near the SWNT surface are studied in detail. Full-atomistic MD simulations are conducted to study the influence of various laminar-flow rates on the chain morphologies in the vicinity of SWNT. By combining results from both experimentation and computation, a better understanding of the spinning parameters on the microscopic fiber properties as well as on the microscopic

  18. Experimental studies of siloxane polymers and their elastomeric networks

    SciTech Connect

    Kuo, Chung Mien

    1992-12-31

    Siloxane polymers have been investigated systematically for the purpose of a greater understanding of the structure-property relationships in terms of their synthesis, polymer blends and rubber elasticity of their crosslinked networks. This study includes a variety of topological structures: linear, cyclic and crosslinked networks of poly(dimethylsiloxane) (PDMS) and poly(dimethylco-methylphenylsiloxane) copolymers. Siloxane polymers with a narrow molecular weight distribution were prepared by a series of well-characterized organometallic polymerizations. The reaction conditions and mechanisms for preparing polyorganosiloxane chains and networks using organotin catalyst and promoters were discussed. Experimental evidence shows that formamide was one of the best additives to improve the reactivity of the tin dicarboxylate catalyst, which seems to suggest that the nucleophilic function of the additive was on the Sn atom. Since the PDMS and PMPS are immiscible under most conditions, the miscibility and phase behavior of siloxane blends were studied by a static light scattering t technique. THe influence of molar mass, the topological effect of cyclic and linear structures, the end-group effect, and the configurational isomerism effect on miscibility were examined. Silicon networks of PDMS, PMPS and their copolymers were prepared at room temperature using the crosslinked siloxane homopolymer and copolymer networks at equilibrium swelling in organic solvents and in liquid siloxane oligomers were investigated as function of crosslinking density and composition variation. The resulting interaction parameters for PDMS and PMPS from the swollen siloxane networks in siloxane oligomers individually were compared with those from measurements of the corresponding blend systems. Moreover, the stress-strain behavior of the siloxane polymer networks undergoing uniaxial deformation were evaluated by a stress-strain experiment.

  19. Homopolymer Dissolution in a Hydrophilic Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Harner, John

    2010-03-01

    Dissolution, structure, and dynamics of both neutral and charged polymers dissolved in a hydrophilic room temperature ionic liquid (IL), ethylmethylimidazolium ethyl sulfate [EMIM][EtSO4], have been studied by classical physicochemical methods (static and dynamic light scattering, intrinsic viscosity, refractometry) to determine differences in solution behavior from conventional aqueous and organic solvents. This IL is water miscible. Many neutral polymers and charged polymer salts molecularly dissolve, although solubility doesn't correlate with polymer hydrophilicity. Model neutral soluble polymers are polyvinylpyrrolidone and hydroroxyethyl cellulose while sodium poly(styrene sulfonate) and the iodo salt of methyl-quaternized poly(vinyl pyridine) fill the same role for charged polymers. The latter display none of the polyelectrolyte effects found in low ionic strength water, consistent with strong electrostatic screening in IL. In virial coefficient and coil size, the IL acts for these neutral and charged polymers as a classical good solvent. (Support: UMass MRSEC)

  20. Experimental and computational investigation of percolation in complex polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Stevens, Derrick; Downen, Lori; Gorga, Russell; Clarke, Laura

    2009-03-01

    The continuing development of polymer nanocomposites has led to increasingly complex morphology, such as the mats of composite nanofibers formed from electrospinning. The formation of particle networks within the composite volume that leads to enhanced properties, such as electrical conductivity, may be influenced by this complex sample geometry. In this work, experimental and computational efforts are utilized to understand and predict the percolation threshold (critical volume fraction) for two cases: single ultra-high aspect ratio fibers (where fiber diameter can be similar to the particle dimensions) and these same fibers arranged in a random mat with up to 80% porosity. 2D and 3D Monte Carlo simulations, modeled on the actual parameters of our experimental system [1], are utilized and the results are compared with our experimental findings. In particular, confinement to fibers increases the percolation threshold; however the multi-fiber pathways available in mats partially reduce this constraint [2]. [1] S.S. Ojha, D.R. Stevens, K. Stano, T. Hoffman, L.I. Clarke, R.E. Gorga, Macromolecules 41, 2509 (2008). [2] D.R. Stevens, L.N. Downen, L.I. Clarke, Phys. Rev. B in press (2008).

  1. Attraction between hydrated hydrophilic surfaces

    NASA Astrophysics Data System (ADS)

    Kanduč, Matej; Schneck, Emanuel; Netz, Roland R.

    2014-08-01

    According to common knowledge, hydrophilic surfaces repel via hydration forces while hydrophobic surfaces attract, but mounting experimental evidence suggests that also hydrophilic surfaces can attract. Using all-atom molecular dynamics simulations at prescribed water chemical potential we study the crossover from hydration repulsion to hydrophobic attraction for planar polar surfaces of varying stiffness and hydrogen-bonding capability. Rescaling the partial charges of the polar surface groups, we cover the complete spectrum from very hydrophobic surfaces (characterized by contact angles θ ≃ 135°) to hydrophilic surfaces exhibiting complete wetting (θ = 0°). Indeed, for a finite range θadh < θ < 90°, we find a regime where hydrophilic surfaces attract at sub-nanometer separation and stably adhere without intervening water. The adhesive contact angle θadh depends on surface type and lies in the range 65° < θadh < 80°, in good agreement with experiments. Analysis of the total number of hydrogen bonds (HBs) formed by water and surface groups rationalizes this crossover between hydration repulsion and hydrophilic attraction in terms of a subtle balance: Highly polar surfaces repel because of strongly bound hydration water, less polar hydrophilic surfaces attract because water-water HBs are preferred over surface-water HBs. Such solvent reorganization forces presumably underlie also other important phenomena, such as selective ion adsorption to interfaces as well as ion pair formation.

  2. Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces

    NASA Astrophysics Data System (ADS)

    Hemmilä, Samu; Cauich-Rodríguez, Juan V.; Kreutzer, Joose; Kallio, Pasi

    2012-10-01

    This paper describes rapid, simple, and cost-effective treatments for producing biocompatible and long-term hydrophilic polydimethylsiloxane (PDMS) surfaces identified in an experimental study investigating 39 treatments in all. The wetting of the surfaces was monitored during six months. Changes in surface morphology and chemical composition were also analyzed. Some of the treatments are presented here for the first time, while for earlier presented treatments the selection of investigated parameters was wider and the observation period for the surface wetting longer. The PDMS surfaces were modified by surface activation, physisorption, and synthesis of both “grafting to” and “grafting from” polymer brushes. In surface activation, the PDMS sample was exposed to oxygen plasma, with several combinations of exposure time and RF power. In the physisorption and synthesis of polymer brushes, three commercially available and biocompatible chemicals were used: 2-hydroxyethyl methacrylate (HEMA), polyethylene glycol (PEG), and polyvinylpyrrolidone (PVP). Thirty-three of the 39 treatments rendered the PDMS hydrophilic, and in 12 cases the hydrophilicity lasted at least six months. Seven of these long-term hydrophilic coatings supported a contact angle of 30° or less. Three of the long-lasting hydrophilic coatings required only minutes to prepare.

  3. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties.

    PubMed

    Yin, Ruixue; Zhang, Nan; Wu, Wentao; Wang, Kemin

    2016-05-01

    Cyclic acetals based biomaterial without acidic products during hydrolytic degradation is a promising candidate for tissue engineering applications; however, low hydrophilicity is still one limitation for its biomedical application. In this work, we aim to achieve non-water-swellable cyclic acetal networks with improved hydrophilicity and surface wettability by copolymerization of cyclic acetal units based monomer, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1, 3-dioxane-2-ethanol diacrylate (EHD) and methoxy poly(ethylene glycol) monoacrylate (mPEGA) under UV irradiation, to avoid swelling of conventional hydrogels which could limit their applicability in particular of the mechanical properties and geometry integrity. Various EHD/mPEGA networks were fabricated with different concentrations of mPEGA from 0 to 30%, and the results showed photopolymerization behavior, mechanical property and thermal stability could not be significantly affected by addition of mPEGA, while the surface hydrophilicity was dramatically improved with the increase of mPEGA and could achieve a water contact angle of 37° with 30% mPEGA concentration. The obtained EHD/mPEGA network had comparative degradation rate to the PECA hydrogels reported previously, and MTT assay indicated it was biocompatible to L929 cells. PMID:26952407

  4. Photothermally actuated interfacial hydration for fast friction switch on hydrophilic polymer brush modified PDMS sheet incorporated with Fe3O4 nanoparticles.

    PubMed

    Liu, Guoqiang; Cai, Meirong; Feng, Yange; Wang, Xiaolong; Zhou, Feng; Liu, Weimin

    2016-03-01

    A near-infrared light triggered fast interfacial friction switch was achieved with polyelectrolyte brush grafted PDMS embedded with Fe3O4 nanoparticles, where the in situ heating up of the photothermal Fe3O4 nanoparticles in the polymer matrix changes the interface humidity and thereafter alters the hydration level of the interfacial polymer brushes. PMID:26856309

  5. Effects of polymer chemistry on polymer-electrolyte dye sensitized solar cell performance: A theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Smolin, Yuriy Y.; Nejati, Siamak; Bavarian, Mona; Lee, Daeyeon; Lau, Kenneth K. S.; Soroush, Masoud

    2015-01-01

    The effects of polymer chemistry on interfacial properties and overall performance in polymer-electrolyte dye sensitized solar cells (DSSCs) are investigated theoretically and experimentally. Specifically, polymer electrolytes based on poly(2-hydroxyethyl methacrylate) (PHEMA), poly(glycidyl methacrylate) (PGMA), and poly(4-vinylpyridine) (P4VP) are considered. These polymers are grown directly within the mesoporous TiO2 photoanode via a single step polymerization and coating using initiated chemical vapor deposition (iCVD) to maximize pore filling. The experimental study coupled with a 1-D first-principles macroscopic DSSC mathematical model provides insight into the cell interfacial processes and overall performance. Parameter estimation using the macroscopic model indicates that the pendant groups on the polymers strongly affect the conduction band position of TiO2, the back electron transfer at the photoanode-electrolyte interface, and the exchange current density at the platinum cathode. The estimated difference between the TiO2 conduction band edge and the redox potential of the electrolyte are 0.87, 0.99 and 1.06 eV for P4VP, PGMA, and PHEMA, respectively. Estimated recombination rate constants for P4VP and PGMA are respectively 54% and 19% lower than that of PHEMA. This study indicates that by varying polymer electrolyte chemistry, DSSC characteristics including open-circuit voltage, short-circuit current density, and fill factor can be tuned.

  6. Rheology of cross-linked polymers and polymer foams: Theory and experimental results

    NASA Astrophysics Data System (ADS)

    Herman, John N.

    Typical polymers have a time-dependent response to loading which results in stress relaxation or creep. Models using springs/dashpots or Volterra integrals are capable of predicting the material response, but place little or no emphasis on the reasoning behind the response. This research proposes a microscopic reasoning behind polymer chain movement, while developing a model to predict the creep and stress relaxation of a polymer foam. Based on the theorized slip/stick of polymer chains as they slide past each other, this model successfully predicts the behavior of a PMI polymer foam under tensile loads. This model lends insights into polymer microscopic behavior, which may be used for the development of future polymer materials. When possible, industry standard test methods are used to obtain tensile creep and stress relaxation results from rectangular specimens of Rohacell 31 IG foam. A common set of material parameters is fitted to the data, validating the micromechanic reasoning to polymer chain movement. To gain insight into observed test result variability, an investigation of the elastic modulus and material density relationship is performed using nominal foam densities of 31 kg/m3, 51 kg/m3,, 71 kg/m3. Additional testing and modeling is performed to validate the model under load/partial-unload/ hold, load/unload/recovery, and load/instantaneous-unload test cycles. The model successfully captures the observed material nuances during these more complex loading cycles.

  7. Preparation of polymer-modified electrodes: A literature and experimental study

    SciTech Connect

    Jayanta, P.S.; Ishida, Takanobu.

    1991-05-01

    A literature review is presented on the field of polymer modified electrodes which can be electrochemically generated. It is suggested that a possible application of these polymer modified electrodes is as a regeneratable catalysis packing material for use in couter-current exchange columns. Secondly, there is a presentation of experimental results dealing with possible electrode modification using difluoro- and dimethyl- phenols and fluorinated derivatives of styrene, benzoquinone and hydroquinone. It appears that dimethylphenol shows the most potential of the monomers experimentally tested in providing a stable polymer modified electrode surface. 170 refs., 31 figs., 1 tab.

  8. Experimental Cosserat elasticity in open-cell polymer foam

    NASA Astrophysics Data System (ADS)

    Rueger, Zach; Lakes, Roderic S.

    2016-01-01

    Reticulated open-cell polymer foams exhibit substantial size effects in torsion and bending: slender specimens are more rigid than anticipated via classical elasticity. Such size effects are predicted by Cosserat (micropolar) elasticity, which allows points to rotate as well as translate and incorporates distributed moments (couple stresses). The Cosserat characteristic length is larger than the cell size. The Cosserat coupling coefficient is larger than in dense closed-cell foams and approaches 1 for foam with 0.4 mm cells.

  9. Experimental Results on Electrorheology of Liquid Crystalline Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Neves, S.; Leal, C. R.; Cidade, M. T.

    2008-07-01

    The electrorheological (ER) effect is known as the enhancement of the apparent viscosity upon application of an external electric field. Suspensions of polarizable particles in non-conducting solvents are the most studied electrorheological fluids, however, liquid crystalline materials may also present ER effect as long as their dielectric anisotropy is positive. In the liquid crystalline state of a positive dielectric anisotropy, the application of the electric field makes the director align perpendicular to the flow direction, thus increasing the apparent viscosity. In this work results of two liquid crystalline polymer solutions, acetoxypropylcellulose (APC) in dimethylacetamide (DMAc) and poly-γ-benzyl-L-glutamate (PBLG) in 1,4-dioxane, presenting opposite behavior upon application of the electric field, will be presented. APC/DMAc (negative dielectric anisotropy) presents a decrease of the apparent viscosity upon application of the electric field, as expected, while PBLG/1,4-dioxane (positive dielectric anisotropy) presents the opposite behavior. For this last solution we will present the shear flow curves for different electric fields in function of polymer molecular weight and solution concentration.

  10. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers.

    PubMed

    Carrillo, Carlos A; Nypelö, Tiina; Rojas, Orlando J

    2016-03-14

    A route for the compatibilization of aqueous dispersions of cellulose nanofibrils (CNFs) with a non-polar polymer matrix is proposed to overcome a major challenge in CNF-based material synthesis. Non-ionic surfactants were used in CNF aqueous dispersions equilibrated with an organic phase (for demonstration, a polystyrene solution, PS, was used). Stable water-in-oil-in-water (W/O/W) double emulsions were produced as a result of the compromise between composition and formulation variables. Most remarkably, the proposed route for CNF integration with hydrophobic polymers removed the need for drying or solvent-exchange of the CNF aqueous dispersion prior to processing. The rheological behavior of the double emulsions showed strong shear thinning behavior and facilitated CNF-PS co-mixing in solid nanofibers upon electrospinning. The morphology and thermal properties of the resultant nanofibers revealed that CNFs were efficiently integrated in the hydrophobic matrix which was consistent with the high interfacial area of the precursor double emulsion. In addition, the morphology and quality of the composite nanofibers can be controlled by the conductivity (ionic strength) of the CNF dispersion. Overall, double emulsion systems are proposed as a novel, efficient and scalable platform for CNF co-processing with non-polar systems and they open up the possibility for the redispersion of CNFs after removal of the organic phase. PMID:26876673

  11. Synthesis of lab-in-a-pipette-tip extraction using hydrophilic nano-sized dummy molecularly imprinted polymer for purification and analysis of prednisolone.

    PubMed

    Arabi, Maryam; Ghaedi, Mehrorang; Ostovan, Abbas; Wang, Shaobin

    2016-10-15

    A novel pipette-tip based on nano-sized dummy molecularly imprinted polymer (PT-DMIP) assisted by ultrasonication for the effective enrichment and analysis of prednisolone from urine samples was developed. The PT-DMIP cartridge was prepared by packing the dummy molecularly imprinted polymer at the tip of the micropipette. The polymerization used betamethasone (BM) as the dummy template, 3-aminopropyltrimethoxysilane (APTMS) as the functionalized monomer, tetraethyl orthosilicate (TEOS) as the cross-linker and aluminum ion (Al(3+)) as a dopant to produce Lewis acid sites in the silica matrix for metal coordinative interactions with the analyte. Compared to conventional solid phase extraction (SPE), the PT-DMIP is cost-effective, fast, and easy to handle, while the system is very approachable and reduces the consumption of toxic organic solvent. HPLC-UV analysis revealed successful applicability of the sorbent for highly efficient extraction of perdnisolone from urine matrices. The extraction recovery was investigated and optimum conditions were obtained using central composite design. Good linearity for prednisolone in the range of 0.22-220μgL(-1) with regression coefficients of 0.99 reveals high applicability of the method for trace analysis. Under the optimized conditions, the recoveries are 89.0-96.1 with relative standard deviations (RSD) of less than 9.0%. PMID:27442150

  12. Mesoscopic simulations of hydrophilic cross-linked polycarbonate polyurethane networks: structure and morphology.

    PubMed

    Iype, E; Esteves, A C C; de With, G

    2016-06-14

    Polyurethane (PU) cross-linked networks are frequently used in biomedical and marine applications, e.g., as hydrophilic polymer coatings with antifouling or low-friction properties and have been reported to exhibit characteristic phase separation between soft and hard segments. Understanding this phase-separation behavior is critical to design novel hydrophilic polymer coatings. However, most of the studies on the structure and morphology of cross-linked coatings are experimental, which only assess the phase separation via indirect methods. Herein we present a mesoscopic simulation study of the network characteristics of model hydrophilic polymer networks, consisting of PU with and without methyl-polyethylene glycol (mPEG) dangling chains. The systems are analyzed using a number of tools, such as the radial distribution function, the cross-link point density distribution and the Voronoi volume distribution (of the cross-linking points). The combined results show that the cross-linked networks without dangling chains are rather homogeneous but contain a small amount of clustering of cross-linker molecules. A clear phase separation is observed when introducing the dangling chains. In spite of that, the amount of cross-linker molecules connected to dangling chains only, i.e., not connected to the main network, is relatively small, leading to about 3 wt% extractables. Thus, these cross-linked polymers consist of a phase-separated, yet highly connected network. This study provides valuable guidelines towards new self-healing hydrophilic coatings based on the molecular design of cross-linked networks in direct contact with water or aqueous fluids, e.g., as anti-fouling self-repairing coatings for marine applications. PMID:27174657

  13. Contribution of hydrophobic/hydrophilic modification on cationic chains of poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) amphiphilic co-polymer in gene delivery.

    PubMed

    Han, Shangcong; Wan, Haiying; Lin, Daoshu; Guo, Shutao; Dong, Hongxu; Zhang, Jianhua; Deng, Liandong; Liu, Ruming; Tang, Hua; Dong, Anjie

    2014-02-01

    Nanoparticles (NPs) assembled from amphiphilic polycations have been certified as potential carriers for gene delivery. Structural modification of polycation moieties may be an efficient route to further enhance gene delivery efficiency. In this study two electroneutral monomers with different hydrophobicities, 2-hydroxyethyl methacrylate (HEMA) and 2-hydroxyethyl acrylate (HEA), were incorporated into the cationic poly(dimethylamino ethyl methacrylate) (PDMAEMA) side-chains of amphiphilic poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) (PCD) by random co-polymerization, to obtain poly(ε-caprolactone)-graft-poly(dimethylamino ethyl methacrylate-co-2-hydroxyethyl methacrylate) (PCD-HEMA) and poly(ε-caprolactone)-graft-poly(dimethylamino ethyl methacrylate-co-2-hydroxyethyl acrylate) (PCD-HEA). Minimal HEA or HEMA moieties in PDMAEMA do not lead to statistically significant changes in particle size, zeta potential, DNA condensation properties and buffering capacity of the naked NPs. However, the incorporation of HEMA and HEA lead to reductions and increases, respectively, in the surface hydrophilicity of the naked NPs and NPs/DNA complexes, which was confirmed by water contact angle assay. These simple modifications of PDMAEMA with HEA and HEMA moieties significantly affect the gene transfection efficiency on HeLa cells in vitro: PCD-HEMA NP/DNA complexes show a much higher transfection efficiency than PCD NPs/DNA complexes, while PCD-HEA NPs/DNA complexes show a lower transfection efficiency than PCD NP/DNA complexes. Fluorescence activated cell sorter and confocal laser scanning microscope results indicate that the incorporation of hydrophobic HEMA moieties facilitates an enhancement in both cellular uptake and endosomal/lysosomal escape, leading to a higher transfection efficiency. Moreover, the process of endosomal/lysosomal escape confirmed in our research that PCD and its derivatives do not just rely on the proton sponge mechanism, but also

  14. Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations.

    PubMed

    Sun, Bing; Mindemark, Jonas; V Morozov, Evgeny; Costa, Luciano T; Bergman, Martin; Johansson, Patrik; Fang, Yuan; Furó, István; Brandell, Daniel

    2016-03-30

    Among the alternative host materials for solid polymer electrolytes (SPEs), polycarbonates have recently shown promising functionality in all-solid-state lithium batteries from ambient to elevated temperatures. While the computational and experimental investigations of ion conduction in conventional polyethers have been extensive, the ion transport in polycarbonates has been much less studied. The present work investigates the ionic transport behavior in SPEs based on poly(trimethylene carbonate) (PTMC) and its co-polymer with ε-caprolactone (CL) via both experimental and computational approaches. FTIR spectra indicated a preferential local coordination between Li(+) and ester carbonyl oxygen atoms in the P(TMC20CL80) co-polymer SPE. Diffusion NMR revealed that the co-polymer SPE also displays higher ion mobilities than PTMC. For both systems, locally oriented polymer domains, a few hundred nanometers in size and with limited connections between them, were inferred from the NMR spin relaxation and diffusion data. Potentiostatic polarization experiments revealed notably higher cationic transference numbers in the polycarbonate based SPEs as compared to conventional polyether based SPEs. In addition, MD simulations provided atomic-scale insight into the structure-dynamics properties, including confirmation of a preferential Li(+)-carbonyl oxygen atom coordination, with a preference in coordination to the ester based monomers. A coupling of the Li-ion dynamics to the polymer chain dynamics was indicated by both simulations and experiments. PMID:26984668

  15. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. I. Pulse-field-gradient spin-echo NMR study of sodium salicylate diffusivity in swollen hydrogels with respect to polymer matrix physical structure.

    PubMed

    Ferrero, Carmen; Massuelle, Danielle; Jeannerat, Damien; Doelker, Eric

    2008-05-22

    Cellulose ethers have been increasingly used in the formulation of controlled release dosage forms; among them, compressed hydrophilic matrices for the oral route of administration are of special importance. Much interest has also been expressed in the study of the drug release mechanism from such swellable systems, in particular, in trying to explain deviations from Fickian diffusion. Thus, swelling-controlled transport is often invoked without any rationale. It is the purpose of the present work to provide independently determined diffusivity data for elucidating the drug release mechanism from the water-soluble cellulose derivatives. In the first part of this work, pulsed-field-gradient spin-echo nuclear magnetic resonance (PFG-SE NMR) was used to investigate the self-diffusion of the model solute sodium salicylate and, incidentally, that of water, in hydrogels made of hydroxypropyl methylcellulose (HPMC), hydroxyethylcellulose (HEC) and hydroxypropylcellulose (HPC) of varying polymer weight fraction and molecular weight in D2O. In parallel, the extent of bound water in the gels was determined using differential scanning calorimetry (DSC), and the presence of liquid crystals in the gels was examined by polarized light microscopy, as these are the structural factors capable of affecting drug diffusion. Solute diffusivity was not significantly affected by the substitution type of the cellulose ether, and an exponential polymer weight fraction dependence of the solute's self-diffusion coefficient was observed, ascertaining the validity of the free-volume theory, with extrapolated self-diffusion coefficient values similar to those in pure solvent. This also indicates that diffusion also takes place in the so-called bound water (which represents about 40% of the hydrogel weight). This questions the existence of thermodynamically different classes of water. Slightly reduced solute diffusion was measured in the HPC hydrogel of the highest polymer concentration (45 wt

  16. Improving Drug Loading of Mucosal Solvent Cast Films Using a Combination of Hydrophilic Polymers with Amoxicillin and Paracetamol as Model Drugs

    PubMed Central

    Kianfar, Farnoosh

    2013-01-01

    Solvent cast mucosal films with improved drug loading have been developed by combining carboxymethyl cellulose (CMC), sodium alginate (SA), and carrageenan (CAR) using paracetamol and amoxicillin as model drugs and glycerol (GLY) as plasticizer. Films were characterized using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), folding resilience, swelling capacity, mucoadhesivity, and drug dissolution studies. SA, CMC, and GLY (5 : 3 : 6) films showed maximum amoxicillin loading of 26.3% whilst CAR, CMC, and GLY (1 : 2 : 3) films had a maximum paracetamol loading of 40%. XRPD analysis showed different physical forms of the drugs depending on the amount loaded. Films containing 29.4% paracetamol and 26.3% amoxicillin showed molecular dispersion of the drugs while excess paracetamol was observed on the film surface when the maximum 40% was loaded. Work of adhesion was similar for blank films with slightly higher cohesiveness for CAR and CMC based films, but the differences were significant between paracetamol and amoxicillin containing films. The stickiness and cohesiveness for drug loaded films were generally similar with no significant differences. The maximum percentage cumulative drug release was 84.65% and 70.59% for paracetamol and amoxicillin, respectively, with anomalous case two transport mechanism involving both drug diffusion and polymer erosion. PMID:23841056

  17. Experimental study of the effect of electromagnetic microwave radiation on parts made of high-energy polymer materials

    NASA Astrophysics Data System (ADS)

    Khimenko, L. L.; Rybakov, A. P.; Rybakov, N. A.; Kozlov, A. N.

    2014-07-01

    Results of experimental measurements of Young's modulus, burning rate, and specific heat of condensed high-energy polymer compositions (solid propellants) subjected to microwave radiation are reported. Experimental equipment and arrangement of experiments are described; the results obtained are analyzed.

  18. Experimental observation of effects of seeds on polymer crystallization

    NASA Astrophysics Data System (ADS)

    Zhu, Peng-Wei; Phillips, Andy; Edward, Graham; Nichols, Lance

    2009-11-01

    The effects of two seeds on the melt crystallization of isotactic polypropylene were experimentally investigated. The seed, which has the flat surface full of a nonuniform size distribution, has provided a right surface pattern to activate effectively the heterogeneous nucleation. In contrast, the seed, which has the curved surface full of a uniform size distribution, has failed to induce the heterogeneous nucleation. The results from the present work have also shown that the seed with strong nucleating ability leads to the formation of large crystals but the seed without nucleating ability does not influence much the crystal size.

  19. An Experimental-Theoretical Analysis of Protein Adsorption on Peptidomimetic Polymer Brushes

    PubMed Central

    Lau, K.H. Aaron; Ren, Chunlai; Park, Sung Hyun; Szleifer, Igal; Messersmith, Phillip B.

    2012-01-01

    Surface-grafted water soluble polymer brushes are being intensely investigated for preventing protein adsorption to improve biomedical device function, prevent marine fouling, and enable applications in biosensing and tissue engineering. In this contribution, we present an experimental-theoretical analysis of a peptidomimetic polymer brush system with regard to the critical brush density required for preventing protein adsorption at varying chain lengths. A mussel adhesive-inspired DOPA-Lys pentapeptide surface grafting motif enabled aqueous deposition of our peptidomimetic polypeptoid brushes over a wide range of chain densities. Critical densities of 0.88 nm−2 for a relatively short polypeptoid 10-mer to 0.42 nm−2 for a 50-mer were identified from measurements of protein adsorption. The experiments were also compared with the protein adsorption isotherms predicted by a molecular theory. Excellent agreements in terms of both the polymer brush structure and the critical chain density were obtained. Furthermore, atomic force microscopy (AFM) imaging is shown to be useful in verifying the critical brush density for preventing protein adsorption. The present co-analysis of experimental and theoretical results demonstrates the significance of characterizing the critical brush density in evaluating the performance of an anti-fouling polymer brush system. The high fidelity of the agreement between the experiments and molecular theory also indicate that the theoretical approach presented can aid in the practical design of antifouling polymer brush systems. PMID:22107438

  20. Modelling Viscoelastic Behaviour of Polymer by A Mixed Velocity, Displacement Formulation - Numerical and Experimental Results

    SciTech Connect

    Pham, VT.; Silva, L.; Digonnet, H.; Combeaud, C.; Billon, N.; Coupez, T.

    2011-05-04

    The objective of this work is to model the viscoelastic behaviour of polymer from the solid state to the liquid state. With this objective, we perform experimental tensile tests and compare with simulation results. The chosen polymer is a PMMA whose behaviour depends on its temperature. The computation simulation is based on Navier-Stokes equations where we propose a mixed finite element method with an interpolation P1+/P1 using displacement (or velocity) and pressure as principal variables. The implemented technique uses a mesh composed of triangles (2D) or tetrahedra (3D). The goal of this approach is to model the viscoelastic behaviour of polymers through a fluid-structure coupling technique with a multiphase approach.

  1. Experimental and Numerical Investigations on the Ballistic Performance of Polymer Matrix Composites Used in Armor Design

    NASA Astrophysics Data System (ADS)

    Colakoglu, M.; Soykasap, O.; Özek, T.

    2007-01-01

    Ballistic properties of two different polymer matrix composites used for military and non-military purposes are investigated in this study. Backside deformation and penetration speed are determined experimentally and numerically for Kevlar 29/Polivnyl Butyral and Polyethylene fiber composites because designing armors for only penetration is not enough for protection. After experimental ballistic tests, a model is constructed using finite element program, Abaqus. The backside deformation and penetration speed are determined numerically. It is found that the experimental and numeric results are in agreement and Polyethylene fiber composite has much better ballistic limit, the backside deformation, and penetration speed than those of Kevlar 29/Polivnyl Butyral composite if areal densities are considered.

  2. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    SciTech Connect

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.

  3. Experimental and modelling studies of the shape memory properties of amorphous polymer network composites

    NASA Astrophysics Data System (ADS)

    Arrieta, J. S.; Diani, J.; Gilormini, P.

    2014-09-01

    Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP.

  4. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  5. Experimental and numerical investigations on the use of polymer Hopkinson pressure bars.

    PubMed

    Harrigan, John J; Ahonsi, Bright; Palamidi, Elisavet; Reid, Steve R

    2014-08-28

    Split Hopkinson pressure bar (SHPB) testing has traditionally been carried out using metal bars. For testing low stiffness materials such as rubbers or low strength materials such as low density cellular solids considered primarily herein, there are many advantages to replacing the metal bars with polymer bars. An investigation of a number of aspects associated with the accuracy of SHPB testing of these materials is reported. Test data are used to provide qualitative comparisons of accuracy using different bar materials and wave-separation techniques. Sample results from SHPB tests are provided for balsa, Rohacell foam and hydroxyl-terminated polybutadiene. The techniques used are verified by finite-element (FE) analysis. Experimentally, the material properties of the bars are determined from impact tests in the form of a complex elastic modulus without curve fitting to a rheological model. For the simulations, a rheological model is used to define the bar properties by curve fitting to the experimentally derived properties. Wave propagation in a polymer bar owing to axial impact of a steel bearing ball is simulated. The results indicate that the strain histories can be used to determine accurately the viscoelastic properties of polymer bars. An FE model of the full viscoelastic SHPB set-up is then used to simulate tests on hyperelastic materials. PMID:25071237

  6. Theoretical investigations of the experimentally observed selectivity of a cobalt imprinted polymer.

    PubMed

    Bhaskarapillai, Anupkumar; Chandra, Sharat; Sevilimedu, Narasimhan V; Sellergren, Börje

    2009-11-15

    A cobalt imprinted polymer synthesised, for reducing the volume of radioactive waste generated during nuclear reactor decontaminations, using vinylbenzyl iminodiacetate (VbIDA) as the functional ligand, has been found to be selective for cobaltous ions over excess ferrous ions. The selectivity of the polymer has been investigated through theoretical calculation of the formation energies of complexes involved by using the ab-initio density functional theory (DFT) code SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms). The formation energies of complexes of Fe(2+), Co(2+), Cu(2+) and Ni(2+) with the free functional ligands as well as with ligands attached to the crosslinkers have been calculated. The calculations revealed that the ferrous forms an unstable complex with the ligands attached to the crosslinkers. The formation energy calculation results were found to corroborate the experimentally observed selectivity order. PMID:19414245

  7. Experimental Studies on (PVC+LiCIO4+DMP) Polymer Electrolyte Systems for Lithium Battery

    NASA Astrophysics Data System (ADS)

    Subba Reddy, Ch. V.; Qi, Y. Y.; Zhu, Q. Y.; Liu, H. X.; Zhao, X. J.; Chen, W.

    2006-06-01

    Poly (vinyl chloride)(PVC)-based solid polymer electrolyte films with LiClO4+plasticizer (dimethyl phthalate) have been prepared by the solution -cast technique. Various experimental techniques have been used, such as X-ray diffraction (XRD) and infrared spectroscopy (IR), a.c. impedance spectroscopy and transport number measurements, to characterize these polymer electrolyte films. The complexation has been confirmed from XRD and IR studies. A maximum room temperature conductivity (1.1 × 10-4S/cm) has been observed for (PVC+LiClO4+DMP)(20:5:75) complex. The temperature dependent conductivity plots show Arrhenius behaviour. The activation energy is estimated and the results are discussed. The transference number data indicated that the conducting species in these electrolytes are the anions. Using this electrolyte, electrochemical cells are fabricated and their discharge profiles are studied under constant load.

  8. Nanotube dispersion and polymer conformational confinement in a nanocomposite fiber: a joint computational experimental study.

    PubMed

    Meng, Jiangsha; Zhang, Yiying; Cranford, Steven W; Minus, Marilyn L

    2014-08-01

    A combination of computational and experimental methods was implemented to understand and confirm that conformational changes of a polymer [specifically polyacrylonitrile (PAN)] vary with the dispersion quality and confinement between single-wall carbon nanotubes (SWNT) in the composite fibers. A shear-flow gel-spinning approach was utilized to produce PAN-based composite fibers with high concentration (i.e., loading of 10 wt %) of SWNT. Dispersion qualities of SWNT ranging from low to high were identified in the fibers, and their effects on the structural morphologies and mechanical properties of the composites were examined. These results show that, as the SWNT dispersion quality in terms of distribution in the fiber and exfoliation increases, PAN conformations were confined to the extended-chain form. Full atomistic computational results show that the surface interaction energy between isolated PAN and SWNT was not preferred, leading to the self-agglomeration of PAN. However, confinement of the polymer chains between SWNT bundles or individual tubes (i.e., molecular crowding) resulted in large increases in the PAN-SWNT interaction energy. In other words, the crowding of polymer chains by the SWNT at high concentrations can promote extended-chain conformational development during fiber spinning. This was also evidenced experimentally by the observance of significantly improved PAN orientation and crystallization in the composite. Ultimately this work provides fundamental insight toward the specific structural changes capable at the polymer/nanotube interface which are important toward improvement of the effective contribution of the SWNT to the mechanical performance of the composite. PMID:25011016

  9. Synthesis, Experimental Characterization and Parametric Identification of Ionic-Polymer Metal Composite Bending Actuators

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Li, Huibiao; Chen, Hualing; Zhou, Jinxiong

    2012-03-01

    Ionic polymer metal composite (IPMC) actuator is a sandwiched structure with a thin polyelectrolyte strip or membrane plated with metal electrodes on both sides. Under a low applied voltage the IPMC strip bends toward either electrode depending on its polarity, forming a soft actuator for potential diverse applications. We report in details our methodologies for synthesizing IPMC with high quality electrode morphologies. We describe our experimental setup for measuring the physical and mechanical properties of IPMC. In conjunction with the experimental characterization, we finally present a parameter identification scheme to identify two key parameters for establishing relationship between unbalanced charge density and the associated electrostatic eigenstress, a constitutive law widely used in IPMC literature. The experimental and simulation procedures presented herein pave the avenue for fabrication, characterization and development of novel IPMC-based sensors and actuators.

  10. Hydrophilic Domains Enhance Nanobubble Stability.

    PubMed

    Nishiyama, Takashi; Takahashi, Koji; Ikuta, Tatsuya; Yamada, Yutaka; Takata, Yasuyuki

    2016-05-18

    Highly stable nanoscale gas states at solid/liquid interfaces, referred to as nanobubbles, have been widely studied for over a decade. In this study, nanobubbles generated on a hydrophobic Teflon amorphous fluoroplastic thin film in the presence and absence of hydrophilic carbon domains are investigated by peak force quantitative nanomechanics. On the hydrophobic surface without hydrophilic domains, a small number of nanobubbles are generated and then rapidly decrease in size. On the hydrophobic surface with hydrophilic domains, the hydrophilic domains have a significant effect on the generation and stability of nanobubbles, with bubbles remaining on the surface for up to three days. PMID:26864857

  11. Hydrophilicity of unset and set elastomeric impression materials.

    PubMed

    Rupp, Frank; Geis-Gerstorfer, Jurgen

    2010-01-01

    The aim of this study was to compare the initial hydrophilicity of unset and set elastomeric impression materials. Initial water contact angles were studied on thin unset and set films of one polyether and six polyvinyl siloxane (PVS) impression materials using high-resolution drop shape analysis at drop ages of 1 and 3 seconds. All unset PVS materials were very hydrophobic initially but showed different kinetics of hydrophilization. In contrast, the unset polyether was more hydrophilic initially but lacked distinct hydrophilization. All impression materials showed statistically significant contact angle differences between unset and set surfaces (P < .05). Dependent on the drop age, two PVS materials reached or exceeded the hydrophilicity of the polyether (P < .05). It can be concluded that studies on the wetting behavior of elastomeric impression materials should consider both the experimental drop age and set and unset material surfaces. PMID:21209992

  12. Latex elastomer with a permanently hydrophilic surface

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    1991-03-01

    WATER wettability is important in many applications of polymeric materials, including fabrics, printing and biomedical uses1,2. Various surface-modification techniques are available to convert the intrinsically hydrophobic surfaces of plastic to water-wettable ones, by incorporating chemically polar functional groups at the surface4-7. Although such chemically induced surface hydrophilicity can be relatively long-lived while the substrates remain rigid, increases in the mobility of surface molecules, for example, due to increasing temperature, can cause rapid loss of hydrophilicity, driven by the tendency of surfaces to minimize their free energy2-5. As the polar groups are not often bound to the polymer matrix (usually being instead free surfactant molecules), they may also be flushed from the surface by repeated exposure to water. Here I report the preparation of permanently water-wettable elastomeric films from a latex synthesized by polymerization of monomers in the presence of an amphiphilic block copolymer. By migration of the hydrophilic segments to the surface during film formation, the film is rendered essentially completely wettable by water. Applications may include flexible coatings that can introduce spatially selective wettability to solid surfaces, for example one-side wettable perforated films used for bandages and disposable diapers8.

  13. An experimental study on infrared drying kinetics of an aqueous adhesive supported by polymer composite

    NASA Astrophysics Data System (ADS)

    Allanic, Nadine; Le Bideau, Pascal; Glouannec, Patrick; Deterre, Rémi

    2016-04-01

    The infrared drying of an aqueous polymer emulsion spread on a thin composite flat film is experimentally studied. The composite film is composed of polyamide fibers supported by a poly(vinyl fluoride) film. The aqueous polymer is an Ethylene Vinyl Acetate emulsion playing the role of adhesive. It is spread over the film with a low thickness, about one hundred micrometers. The aim of this work is to understand the effects of the presence of fibers on the drying of this thin-layer product. With this in mind, a specific laboratory set up composed of a near infrared heater is used in order to get the drying kinetics. First, incident heat fluxes received at the product surface and transmittances of materials (semi-transparent medium) are measured with an ad-hoc heat flux sensor. Then, many experiments are performed with and without fibers. For linking the final moisture content to the fibers thermal and hydric behavior, a microscopic analysis of the dried samples is investigated. This analysis is performed for two thicknesses of polymer corresponding to two covering rates of fibers.

  14. Polymer-phyllosilicate nanocomposites and their preparation

    DOEpatents

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  15. Photocatalytic, highly hydrophilic porcelain stoneware slabs

    NASA Astrophysics Data System (ADS)

    Raimondo, M.; Guarini, G.; Zanelli, C.; Marani, F.; Fossa, L.; Dondi, M.

    2011-10-01

    Photocatalytic, highly hydrophilic industrial porcelain stoneware large slabs were realized by deposition of nanostructured TiO2 coatings. Different surface finishing and experimental conditions were considered in order to assess the industrial feasibility. Photocatalytic and wetting behaviour of functionalized slabs mainly depends on surface phase composition in terms of anatase/rutile ratio, this involving - as a key issue - the deposition of TiO2 on industrially sintered products with an additional annealing step to strengthen coatings' performances and durability.

  16. Bacterial Interaction with Hydrophobic and Hydrophilic Interfaces

    NASA Astrophysics Data System (ADS)

    Pedri, Laura; Itier, Sophie; Schraft, Heidi; Hawton, Margaret

    2004-03-01

    Bacterial adhesion is believed to be governed by physical-chemical laws in the initial stages of attachment. We calculate the free energy of adhesion for a Pseudomonas putida bacterium interacting with either mercaptoundecanol or dodecanethiol self-assembled monolayers using the Young-Dupré equation and experimentally measured contact angles. We then compare our model with preliminary biological studies involving the analysis of real-time laser scanning confocal microscopy images of bacteria attaching to hydrophobic and hydrophilic substrates.

  17. Effect of surface hydrophilicity on the confined water film

    NASA Astrophysics Data System (ADS)

    Liu, Shuhai; Ma, Liran; Zhang, Chenhui; Lu, Xinchun

    2007-12-01

    The effect of surface hydrophilicity on the water film confined within a nanogap between a smooth plate and a highly polished steel ball has been investigated. It was found that the confined water film formed the thicker lubricate film than the prediction of elastic-isoviscous lubrication theory. Experimental results indicated that the hydrophobic surface induced the thicker water film than the hydrophilic one. It is thought that the "structured" interfacial water layer is formed between the solid surfaces and the hydrophobic group induces the more ordered hydrogen-bonding network of clathrate cages which forms the thicker water film than hydrophilic one.

  18. Flooding of the diffusion layer in a polymer electrolyte fuel cell: Experimental and modelling analysis

    NASA Astrophysics Data System (ADS)

    Casalegno, A.; Bresciani, F.; Groppi, G.; Marchesi, R.

    Water management is widely investigated because it affects both the performance and the lifetime of polymer electrolyte fuel cells. Membrane hydration is necessary to ensure the high proton conductivity, but too much water can cause flooding and pore obstruction within the cathode gas diffusion layer and the electrode. Experimental studies prove that the characteristics of the diffusion layer have great influence on water transport; the introduction of a micro-porous layer between the gas diffusion layer and the electrode reduces flooding and stabilizes the performance of the fuel cell, although the reason is not fully explained. A quantitative method to characterize water transport through the diffusion layers was proposed in our previous work, and the present work aims to further understand the flooding phenomenon and the role of the micro-porous layer. The improved experimental setup and methodology allow an accurate and reliable evaluation of water transport through the diffusion layer in a wide range of operating conditions. The proposed 1D + 1D model faithfully reproduces the experimental data adopting effective diffusivity values in agreement with literature. The presented experimental and modelling analysis allows us to evaluate the influence of pore obstruction on the effective diffusivity, the overall transport coefficient and water flow through the diffusion layer, elucidating the effect of the micro-porous layer on fuel cell performance and operation stability.

  19. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes

    PubMed Central

    Abidian, Mohammad Reza; Martin, David C.

    2009-01-01

    Neural prostheses transduce bioelectric signals to electronic signals at the interface between neural tissue and neural microelectrodes. A low impedance electrode-tissue interface is important for the quality of signal during recording as well as quantity of applied charge density during stimulation. However, neural microelectrode sites exhibit high impedance because of their small geometric surface area. Here we analyze nanostructured-conducting polymers that can be used to significantly decrease the impedance of microelectrode typically by about two orders of magnitude and increase the charge transfer capacity of microelectrodes by three orders of magnitude. In this study poly(pyrrole) (PPy) and poly(3, 4- ethylenedioxythiophene) (PEDOT) nanotubes were electrochemically polymerized on the surface of neural microelectrode sites (1250 μm2). An equivalent circuit model comprising a coating capacitance in parallel with a pore resistance and interface impedance in series was developed and fitted to experimental results to characterize the physical and electrical properties of the interface. To confirm that the fitting parameters correlate with physical quantities of interface, theoretical equations were used to calculate the parameter values thereby validating the proposed model. Finally, an apparent diffusion coefficient was calculated for PPy film (29.2 ± 1.1 cm2/s), PPy nanotubes (72.4 ± 3.3 cm2/s), PEDOT film (7.4 ± 2.1 cm2/s), and PEDOT nanotubes (13.0 ± 1.8 cm2/s). The apparent diffusion coefficient of conducting polymer nanotubes was larger than the corresponding conducting polymer films. PMID:18093644

  20. Thermo-responsive behavior of borinic acid polymers: experimental and molecular dynamics studies.

    PubMed

    Wan, Wen-Ming; Zhou, Peng; Cheng, Fei; Sun, Xiao-Li; Lv, Xin-Hu; Li, Kang-Kang; Xu, Hai; Sun, Miao; Jäkle, Frieder

    2015-09-28

    The thermo-responsive properties of borinic acid polymers were investigated by experimental and molecular dynamics simulation studies. The homopolymer poly(styrylphenyl(tri-iso-propylphenyl)borinic acid) (PBA) exhibits an upper critical solution temperature (UCST) in polar organic solvents that is tunable over a wide temperature range by addition of small amounts of H2O. The UCST of a 1 mg mL(-1) PBA solution in DMSO can be adjusted from 20 to 100 °C by varying the H2O content from ∼0-2.5%, in DMF from 0 to 100 °C (∼3-17% H2O content), and in THF from 0 to 60 °C (∼4-19% H2O). The UCST increases almost linearly from the freezing point of the solvent with higher freezing point to the boiling point of the solvent with the lower boiling point. The mechanistic aspects of this process were investigated by molecular dynamics simulations. The latter indicate rapid and strong hydrogen-bond formation between BOH moieties and H2O molecules, which serve as crosslinkers to form an insoluble network. Our results suggest that borinic acid-containing polymers are promising as new "smart" materials, which display thermo-responsive properties that are tunable over a wide temperature range. PMID:26256052

  1. Experimental and theoretical characterization of non-bending ionic polymer transducer sensing

    NASA Astrophysics Data System (ADS)

    Kocer, Bilge; Zangrilli, Ursula T.; Weiland, Lisa M.

    2012-04-01

    Ionic Polymer Transducers (IPTs) have both actuation and sensing capabilities. However, the electromechanical response of an IPT as a sensor is quite different from the response as an actuator. IPT sensors are not limited to bending, i.e., they also produce current for compressive, extensional, and shear deformations. A robust physical model must be able to predict the existence of a sensing signal in all modes of deformation. Such a model could subsequently be adapted to form a roadmap toward enhancing sensitivity. In this study, the objective is to experimentally define IPT sensing characteristics in shear deformation (non-bending) and compare the empirical results with predictions derived from a model based on the streaming potential hypothesis. An in-house displacement control rig is employed to establish empirical results in shear sensing. A finite element approach is employed in the companion model development. The IPTs considered employ Nafion as the ionic polymer layer, while the electrode includes high surface area ruthenium oxide, RuO2, metallic powder and deposited per the Direct Assembly Process.

  2. Simulation and experimental characterization of polymer/carbon nanotubes composites for strain sensor applications

    NASA Astrophysics Data System (ADS)

    De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V.; Vertuccio, L.; Vittoria, V.

    2014-08-01

    In this paper, a numerical model is presented in order to analyze the electrical characteristics of polymer composites filled by carbon nanotubes (CNTs) subject to tensile stress and investigate the possible usage of such materials as innovative sensors for small values of strain. The simulated mechano-electrical response of the nanocomposite is obtained through a multi-step approach which, through different modeling stages, provides a simple and effective tool for material analysis and design. In particular, at first, the morphological structures of the composites are numerically simulated by adopting a previously presented model based on a Monte Carlo procedure in which uniform distributions of the CNTs, approximated as of solid cylinders and ensuring some physical constraints, are dispersed inside a cubic volume representing the polymer matrix. Second, a geometrical analysis allows to obtain the percolation paths detected in the simulated structures. Suitable electrical networks composed by resistors and capacitors associated to the complex charge transport and polarization mechanisms occurring in the percolation paths are then identified. Finally, the variations of these circuit parameters, which are differently affected by the mechanical stresses applied to the composites, are considered to analyze the electromechanical characteristics of the composites and hence their performances as stress sensors. The proposed approach is used to investigate the impact on the electro-mechanical response of some physical properties of the base materials, such as the type of carbon nanotube, the height of energy barrier of polymer resin, as well as characteristics of the composite, i.e., the volume fraction of the filler. The tunneling effect between neighboring nanotubes is found to play a dominant role in determining the composite sensitivity to mechanical stresses. The simulation results are also compared with the experimental data obtained by performing stress tests on

  3. Controlling electroosmotic flows by polymer coatings: A joint experimental-theoretical investigation

    NASA Astrophysics Data System (ADS)

    Monteferrante, Michele; Sola, Laura; Cretich, Marina; Chiari, Marcella; Marini Bettolo Marconi, Umberto; Melchionna, Simone

    2015-11-01

    We analyze the electroosmotic flow (EOF) of an electrolytic solution in a polymer coated capillary electrophoresis tube. The polymeric density, charge, thickness, and the capillary tube charge vary as a function of pH and produce a non-trivial modulation of the EOF, including a flow reversal at acid pH conditions. By means of a theoretical argument and numerical simulations, we recover the experimental curve for the EOF, providing a firm approach for predictive analysis of electroosmosis under different polymeric coating conditions. A proposed application of the approach is to determine the near-wall charge of the coating to be used for further quantitative analysis of the electroosmotic flow and mobility.

  4. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    PubMed

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat

  5. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    DOE PAGESBeta

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less

  6. Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes

    PubMed Central

    2015-01-01

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials. PMID:27162971

  7. Experimental characterization and modeling of isothermal and nonisothermal physical aging in glassy polymer films

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong

    This dissertation focuses on nonisothermal physical aging of polymers from both experimental and theoretical aspects. The study concentrates on pure polymers rather than fiber-reinforced composites; this step removes several complicating factors to simplify the study. It is anticipated that the findings of this work can then be applied to composite materials applications. The physical aging tests in this work are performed using a dynamic mechanical analyzer (DMA). The viscoelastic response of glassy polymers under various loading and thermal histories are observed as stress-strain data at a series of time points. The first stage of the experimental work involves the characterization of the isothermal physical aging behavior of two advanced thermoplastics. The second stage conducts tests on the same materials with varying thermal histories and with long-term test duration. This forms the basis to assess and modify a nonisothermal physical aging model (KAHR-ate model). Based on the experimental findings, the KAHR-ate model has been revised by new correlations between aging shift factors and volume response; this revised model performed well in predicting the nonisothermal physical aging behavior of glassy polymers. In the work on isothermal physical aging, short-term creep and stress relaxation tests were performed at several temperatures within 15-35°C below the glass transition temperature (Tg) at various aging times, using the short-term test method established by Struik. Stress and strain levels were such that the materials remained in the linear viscoelastic regime. These curves were then shifted together to determine momentary master curves and shift rates. In order to validate the obtained isothermal physical aging behavior, the results of creep and stress relaxation testing were compared and shown to be consistent with one another using appropriate interconversion of the viscoelastic material functions. Time-temperature superposition of the master curves

  8. Enchanced methods of hydrophilized CdSe quantum dots synthesis

    NASA Astrophysics Data System (ADS)

    Potapkin, D. V.; Zharkova, I. S.; Goryacheva, I. Y.

    2015-03-01

    Quantum dots are bright and stable fluorescence signal sources, but for most of applications they need an additional hydrophilization step. Unfortunately, most of existing approaches lead to QD's fluorescence quenching, so there is a need for additional enhancing of hydrophilized QD's brightness like UV irradiation, which can be used both on water insoluble QD's with oleic acid ligands (in toluene) and on hydrophilized QD's covered with UV-stable polymer (in aqueous solution). For synthesis of bright water-soluble fluorescent labels CdSe/CdS/ZnS colloidal quantum dots were covered with PAMAM dendrimer and irradiated with UV lamp in quartz cuvettes for 3 hours at the room temperature and then compared with control sample.

  9. Can a hydrophilic guidewire be resterilized?

    PubMed

    Eiley, D M; Hettiarachchi, J; Sahin, A; Olsen, C; Smith, A D

    1998-04-01

    The Glidewire (Microvasive, Natick, MA) or Terumo wire (Terumo, Japan) is constructed with a hydrophilic polymer surface that enables easier passage through narrowed lumens in the urinary tract. This study examined the effects of gas sterilization on Glidewire surface structure, slipperiness, and ability to support bacterial growth. Light microscopy at 100x and 400x and scanning electron microscopy at 100 to 1300x were used to compare the surface tips of five new 0.038-inch Glidewires with those resterilized one or three times. The tips were immersed in water prior to standard gas sterilization for operating room equipment. Subjective evaluation of slipperiness involved asking 10 blinded urologists to assess the nature of new and resterilized wires by feel. Support of bacterial growth was assessed by comparing cultures performed on new wires (control) with those of wires incubated with Bacillus stearothermophilus. Microscopy, reviewed by a pathologist, revealed no perceivable surface differences after one and three gas sterilizations. Eight of the urologists noted similar or improved slipperiness of resterilized wires compared with new wires. Bacterial cultures of intentionally infected wire segments showed no growth after standard gas sterilization in all cases. In this study, gas sterilization did not adversely affect the lubricious nature or the surface coating of the hydrophilic coating of Glidewires. Also, gas resterilization was bactericidal to new and used wires that had been infected with a heat-tolerant organism. PMID:9607451

  10. The effect of Low Earth Orbit exposure on some experimental fluorine and silicon-containing polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Young, Philip R.; Kalil, Carol G.; Chang, Alice C.; Siochi, Emilie J.

    1994-01-01

    Several experimental fluorine and silicon-containing polymers in film form were exposed to low Earth orbit (LEO) on a Space Shuttle flight experiment (STS-46, Evaluation of Oxygen Interaction with Materials, EOIM-3). The environmental parameters of primary concern were atomic oxygen (AO) and ultraviolet (UV) radiation. The materials were exposed to 2.3 plus or minus 0.1 x 10(exp 20) oxygen atoms/sq cm and 30.6 UV sun hours during the flight. In some cases, the samples were exposed at ambient, 120 C and 200 C. The effects of exposure on these materials were assessed utilizing a variety of characterization techniques including optical, scanning electron (SEM) and scanning tunneling (STM) microscopy, UV-visible (UV-VIS) transmission, diffuse reflectance infrared (DR-FTIR), x-ray photoelectron (XPS) spectroscopy, and in a few cases, gel permeation chromatography (GPC). In addition, weight losses of the films, presumably due to AO erosion, were measured. The fluorine-containing polymers exhibited significant AO erosion and exposed films were diffuse or 'frosted' in appearance and consequently displayed dramatic reductions in optical transmission. The silicon-containing films exhibited minimum AO erosion and the optical transmission of exposed films was essentially unchanged. The silicon near the exposed surface in the films was converted to silicate/silicon oxide upon AO exposure which subsequently provided protection for the underlying material. The silicon-containing epoxies are potentially useful as AO resistant coatings and matrix resins as they are readily processed into carbon fiber reinforced composites and cured via electron radiation.

  11. Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers.

    PubMed

    Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B; Ebenso, Eno E

    2016-01-01

    Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results. PMID:27515383

  12. Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers

    PubMed Central

    Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O.; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B.; Ebenso, Eno E.

    2016-01-01

    Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results. PMID:27515383

  13. Non-immunogenic, hydrophilic/cationic block copolymers and uses thereof

    DOEpatents

    Scales, Charles W.; Huang, Faqing; McCormick, Charles L.

    2010-05-18

    The present invention provides novel non-immunogenic, hydrophilic/cationic block copolymers comprising a neutral-hydrophilic polymer and a cationic polymer, wherein both polymers have well-defined chain-end functionality. A representative example of such a block copolymer comprises poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly(N-[3-(dimethylamino)propyl]methacrylamide) (PDMAPMA). Also provided is a synthesis method thereof in aqueous media via reversible addition fragmentation chain transfer (RAFT) polymerization. Further provided are uses of these block copolymers as drug delivery vehicles and protection agents.

  14. Effect of cross-link density and hydrophilicity of PU on blood compatibility of hydrophobic PS/hydrophilic PU IPNs.

    PubMed

    Roh, H W; Song, M J; Han, D K; Lee, D S; Ahn, J H; Kim, S C

    1999-01-01

    To investigate the effect of the hydrophilic and hydrophobic microdomain structure on blood compatibility, a series of interpenetrating polymer networks (IPNs) composed of hydrophilic polyurethane (PU) and hydrophobic polystyrene (PS) was prepared. One series was prepared with varying cross-link densities of each network, the other with varying hydrophilicity of the PU component. All PU/PS IPNs exhibited microphase-separated structures that had dispersed PS domains in the continuous PU matrix. The domain size decreased with decreasing the hydrophilicity of the PU component and increasing the cross-link density of each network. As the cross-link density and hydrophobicity of the PU component was increased, an inward shift of Tgs was observed, which was due to the decrease in phase separation between the hydrophobic PS component and hydrophilic PU component. In the in vitro platelet adhesion test, as the microdomain size of PU/PS IPN surface decreased, the number of adhered platelets on the PU/PS IPN surface was reduced and deformation of the adhered platelets decreased. It could be concluded that blood compatibility of PU/PS IPN was mainly affected by the degree of mixing between PU and PS component, which was reflected by the domain size of PS rich phase. PMID:10091927

  15. An experimental investigation into the behavior of glassfiber reinforced polymer elements at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Qian, Kenny Zongxi

    This thesis presents a literature review and results of an experimental study about the effects of high temperatures and cyclic loading on the physical and mechanical properties of pultruded glass fiber reinforced polymer (GFRP) square tubes used in civil engineering structural applications. Most laboratory researches have focused mainly on the effect of elevated temperature on the compressive strength of the GFRP square tubes. Limited research has focused on the tensile strength of GFRP coupons under elevated temperatures. Dynamic Mechanical Analyses (DMA) was performed to assess the viscoelastic behavior including the glass transition temperature of GFRP. Sixteen GFRP coupons were tested under elevated temperatures to investigate the tensile strength and the effect of elevated temperatures to the tensile strength of GFRP. The results of an experimental program performed on fifty GFRP square tubes with different designs in 1.83m at normal temperatures were discussed to investigate compression performance. Another experimental program was performed on 20 GFRP square tubes with different designs in 1.22m under elevated temperatures. The experiments results were discussed and showed that the compressive strength of GFRP material was influenced by several factors including the glass transition v temperature and the connection bolts. Failure modes under 25°C and 75°C were crushing and the failure modes with the temperatures above 75°C were not typical crushing due to the glass transition of GFRP. Sixteen GFRP square tubes with length of 0.61m were tested with the same experimental program under elevated temperatures as the control group. Twelve GFRP square tubes with the same size were subjected to cyclic loading under elevated temperatures to investigate the effect of the cyclic loading to the compression properties of GFRP material. According to the experimental results and the discussion, the stiffness was reduced by the cyclic loading. On the contrary, the

  16. Adhesive Measurements of Polymer Bonded Explosive Constituents using the JKR Experimental Technique and Finite Element Modelling of Viscoelastic Adhesive Contact

    NASA Astrophysics Data System (ADS)

    Hamilton, Neil; Williamson, David; Lewis, Daniel; Glauser, Annette; Jardine, Andrew

    2015-06-01

    It has been shown experimentally that under many circumstances the strength limiting factor of Polymer Bonded Explosives (PBXs) is the adhesion which exists between the filler crystals and the polymer matrix. Experimental measurements of the Work of Adhesion between different binders and glass have been conducted using the JKR experimental technique; a reversible axisymmetric fracture experiment in which the area of contact and the applied force are both measured during loading and unloading of the interface. The data taken with this technique show a rate dependence not described by the analytical JKR theory, which considers only elastic bodies, that arises from the viscoelastic properties of the bulk polymer. To understand and describe the effects of viscosity on the adhesive measurements a finite element model (ABAQUS) of the idealized geometry used in the JKR experiment has been constructed. It is intended to bridge the gap between the purely elastic analytical JKR theory and the viscoelastic experimental results. Together, the experimental data and the computational model are intended to inform the development, and validate the predictions of, microstructural models of PBX deformation and failure.

  17. Functional data analysis of experimental parameters obtained in PVA doped CdCl2 polymer composites

    NASA Astrophysics Data System (ADS)

    Prakash, M. B. Nanda; Urs, Gopal Krishne; Somashekar, R.

    2016-05-01

    Using solution casting method, PVA based polymer composites films with various concentrations of CdCl2 were prepared. Prepared polymer composites films were investigated using XRD. Crystallite size for different concentrations of CdCl2 are computed here using Williamson and Hall plot (WH plot), an in-house program developed by us. To correlate between two independent physical parameters size and conductivity, we have chosen functional data analysis to estimate the maxima and minima in these polymer composites systems.

  18. Experimental Research on Profile Control for Oil Displacement by Functional Polymer in Low Permeability Fractured Reservoir

    NASA Astrophysics Data System (ADS)

    Li, Li; Xiuting, Han; Lin, Meng

    Utilizing artificial fractured cores with low permeability, a physical simulation experiment on profile control for oil displacement was carried out. The result showed that 23.63% extra oil recovery was realized by functional polymer, and 29.05% extra oil recovery was realized by functional polymer with gas which is higher than water flooding alone. The experiment demonstrates that functional polymer is effective for enhance oil recovery for low permeability fractured reservoir significantly.

  19. The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation.

    PubMed

    Limbert, Georges; Omar, Rodaina; Krynauw, Hugo; Bezuidenhout, Deon; Franz, Thomas

    2016-01-01

    Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds. Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days. A microstructurally-based transversely isotropic hyperelastic continuum constitutive formulation was developed and its parameters were identified from the experimental stress-strain data of the scaffolds at various stages of degradation. During scaffold degradation, maximum stress and strain in circumferential direction decreased from 1.02 ± 0.23 MPa to 0.38 ± 0.004 MPa and from 46 ± 11 % to 12 ± 2 %, respectively. In longitudinal direction, maximum stress and strain decreased from 0.071 ± 0.016 MPa to 0.010 ± 0.007 MPa and from 69 ± 24 % to 8 ± 2 %, respectively. The constitutive parameters were identified for both directions of the non-degraded and degraded scaffold for strain range varying between 0% and 16% with coefficients of determination r(2)>0.871. The six-parameter constitutive formulation proved versatile enough to capture the varying non-linear transversely isotropic behaviour of the fibrous scaffold throughout various stages of degradation. PMID:26301317

  20. Interleukin 10 suppresses experimental chronic, granulomatous inflammation induced by bacterial cell wall polymers.

    PubMed Central

    Herfarth, H H; Mohanty, S P; Rath, H C; Tonkonogy, S; Sartor, R B

    1996-01-01

    BACKGROUND AND AIMS: Interleukin 10 (IL10) inhibits monocyte/macrophage and T lymphocyte effector functions. This study examined the effect of systemically administered IL10 on acute and chronic granulomatous enterocolitis, hepatitis, and arthritis in a rat model. METHODS: Lewis rats were injected intramurally with streptococcal peptidoglycan-polysaccharide (PG-APS) polymers. Beginning 12 hours before PG-APS injection, rats were treated daily with subcutaneous murine recombinant IL10 or vehicle for three or 17 days. RESULTS: IL10 attenuated acute enterocolitis in a dose dependent fashion (p < 0.01). Protective effects were more profound in the chronic granulomatous phase with decreased enterocolitis and markedly inhibited leucocytosis, hepatic granulomas, and chronic erosive arthritis (p < 0.001). IL10 downregulated tissue IL1, IL6, tumour necrosis factor alpha, and interferon gamma gene expression, consistent with the in vitro effects of IL10 on PG-APS-stimulated splenocytes. Caecal IL1 protein concentrations and IL2 and interferon gamma secretion by in vitro stimulated mesenteric lymph nodes were downregulated in IL10 treated animals. CONCLUSIONS: These results indicate that exogenous IL10 can inhibit experimental granulomatous inflammatory responses and suggest that IL10 treatment could be an effective new therapeutic approach in human disorders such as Crohn's disease, rheumatoid arthritis, and sarcoidosis. Images Figure 1 Figure 3 Figure 5 Figure 6 PMID:9038666

  1. Experimental analysis of biasing elements for dielectric electro-active polymers

    NASA Astrophysics Data System (ADS)

    Hodgins, Micah; Seelecke, Stefan

    2011-04-01

    This paper presents an experimental investigation of three different, small profile and scalable DEAP actuators. These actuators are designed for use in small scale pumping and valve applications. The actuators used in this paper consist of a biasing element (either a mass, linear spring, or a non-linear spring) coupled with a circular dielectric electro-active polymer (DEAP). These mechanisms bias the DEAP allowing out-of-plane actuation when the voltage is cycled. A constant force input, a linear spring, and a non-linear spring are separately tested as the biasing element of a circular/diaphragm DEAP. Tests are systematically performed at various DEAP pre-deflections, biasing stiffness and electrical loading rates. The displacement stroke performance of each test is examined and analyzed. It was found that the non-linear spring provided the largest displacement stroke over two other biasing elements. It also showed better performance at higher electrical loading rates. Thus, of the three types of biasing tested the non-linear spring shows most promise for use in fluid pump/valve applications. Future work will include optimizing this biasing element for the current DEAP design.

  2. Basic study of monitoring on fibre reinforced polymers: theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Bonfiglioli, B.; Strauss, A.; Pascale, G.; Bergmeister, K.

    2005-06-01

    Recent research activities, technological utilization and commercialization activities in sensors and acquisition systems for monitoring have strongly supported the introduction of these innovations and new concepts in civil structural engineering. The impact of monitoring and assessing the health state of infrastructures, as well as new and old constructions, has become important and it seems to be one of the largest industries in the world. With the aim of monitoring new or repaired structures various monitoring systems have been extensively employed in recent years. In particular, in this paper attention is focused on the procedures usually adopted for monitoring the strengthening systems based on fibre reinforced polymers (FRPs) applied to civil structures. Electrical strain gauges are often used to detect strain variations, but on composite materials the measures can be affected by various factors, such as the characteristics of the resin coating, the type of glue and the gauge length. In this paper the measurement errors on FRP elements are studied, from a theoretical approach developed in previous work on a deterministic basis. This approach is extended to the probabilistic field, with the aim of performing a sensitivity analysis of the basic variables which can cause errors in strain measurements. Additionally, the previous approach is extended to study the effect of the deviation of the direction of the gauges from the longitudinal axis of the FRP sheets. Finally, a comparison with experimental data is performed.

  3. Kinetics of aqueous lubrication in the hydrophilic hydrogel Gemini interface.

    PubMed

    Dunn, Alison C; Pitenis, Angela A; Urueña, Juan M; Schulze, Kyle D; Angelini, Thomas E; Sawyer, W Gregory

    2015-12-01

    The exquisite sliding interfaces in the human body share the common feature of hydrated dilute polymer mesh networks. These networks, especially when they constitute a sliding interface such as the pre-corneal tear film on the ocular interface, are described by the molecular weight of the polymer chains and a characteristic size of a minimum structural unit, the mesh size, ξ. In a Gemini interface where hydrophilic hydrogels are slid against each other, the aqueous lubrication behavior has been shown to be a function of sliding velocity, introducing a sliding timescale competing against the time scales of polymer fluctuation and relaxation at the surface. In this work, we examine two recent studies and postulate that when the Gemini interface slips faster than the single-chain relaxation time, chains must relax, suppressing the amplitude of the polymer chain thermal fluctuations. PMID:26614802

  4. Dispersing Zwitterions into Comb Polymers for Nonviral Transfection: Experiments and Molecular Simulation.

    PubMed

    Ghobadi, Ahmadreza F; Letteri, Rachel; Parelkar, Sangram S; Zhao, Yue; Chan-Seng, Delphine; Emrick, Todd; Jayaraman, Arthi

    2016-02-01

    Polymer-based gene delivery vehicles benefit from the presence of hydrophilic groups that mitigate the inherent toxicity of polycations and that provide tunable polymer-DNA binding strength and stable complexes (polyplexes). However, hydrophilic groups screen charge, and as such can reduce cell uptake and transfection efficiency. We report the effect of embedding zwitterionic sulfobetaine (SB) groups in cationic comb polymers, using a combination of experiments and molecular simulations. Ring-opening metathesis polymerization (ROMP) produced comb polymers with tetralysine (K4) and SB pendent groups. Dynamic light scattering, zeta potential measurements, and fluorescence-based experiments, together with coarse-grained molecular dynamics simulations, described the effect of SB groups on the size, shape, surface charge, composition, and DNA binding strength of polyplexes formed using these comb polymers. Experiments and simulations showed that increasing SB composition in the comb polymers decreased polymer-DNA binding strength, while simulations indicated that the SB groups distributed throughout the polyplex. This allows polyplexes to maintain a positive surface charge and provide high levels of gene expression in live cells. Notably, comb polymers with nearly 50 mol % SB form polyplexes that exhibit positive surface charge similarly as polyplexes formed from purely cationic comb polymers, indicating the ability to introduce an appreciable amount of SB functionality without screening surface charge. This integrated simulation-experimental study demonstrates the effectiveness of incorporating zwitterions in polyplexes, while guiding the design of new and effective gene delivery vectors. PMID:26741292

  5. Swollen-dry-layer model for the pervaporation of ethanol-water solution through hydrophilic membranes

    SciTech Connect

    Ito, A.; Watanabe, K.; Feng, Y.

    1995-09-01

    A swollen-dry-layer model is presented for the pervaporation of ethanol-water solution through hydrophilic polymer membranes: poly(vinyl alcohol) and carboxymethyl cellulose. Independent measurements were conducted of the sorption equilibrium, the hydraulic permeation rates through the swollen membranes, and the permeabilities of ethanol and water vapors. The hydraulic permeabilities were estimated from the mutual diffusion coefficients of solution in the swollen membrane. Sorption behavior and hydraulic permeabilities showed a dependence on feed concentration. Vapor permeabilities of water and ethanol through dry membranes differ by a factor of about 20. Comparisons between the experimental data from the pervaporation run and the results calculated from the model were made. The model offers a quantitative explanation for the dependency of selectivity and flux on feed concentration. The model explained that the flux dependency caused by a change in the swollen-dry-layer ratio, and that the selectivity is governed by vapor permeabilities through the dry layer.

  6. Preparation of hydrophilic styrene maleic anhydride copolymer fibers for use in papermaking

    DOEpatents

    Rave, Terence W.

    1979-01-01

    Hydrophilic fibers may be prepared by discharging a heated and pressurized dispersion of a styrene-maleic anhydride copolymer into a zone of reduced temperature and pressure, and then modifying the fibers so produced by treatment with an aqueous admixture of selected cationic and anionic water-soluble, nitrogen-containing polymers. Blends of the hydrophilic fibers with wood pulp provide paper products having improved physical properties.

  7. Hydrophilic-Core Microcapsules and Their Formation

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophilic-core microcapsules and methods of their formation are provided. A hydrophilic-core microcapsule may include a shell that encapsulates water with the core substance dissolved or dispersed therein. The hydrophilic-core microcapsules may be formed from an emulsion having hydrophilic-phase droplets dispersed in a hydrophobic phase, with shell-forming compound contained in the hydrophilic phase or the hydrophobic phase and the core substance contained in the hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  8. Hydrophilic Organic Electrodes on Flexible Hydrogels.

    PubMed

    Moser, Thierry; Celma, Coralie; Lebert, Audrey; Charrault, Eric; Brooke, Robert; Murphy, Peter J; Browne, Gareth; Young, Richard; Higgs, Timothy; Evans, Drew

    2016-01-13

    Prompted by the rapidly developing field of wearable electronics, research into biocompatible substrates and coatings is intensifying. Acrylate-based hydrogel polymers have gained widespread use as biocompatible articles in applications such as contact and intraocular lenses. Surface treatments and/or coatings present one strategy to further enhance the performance of these hydrogels or even realize novel functionality. In this study, the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is deposited from the vapor phase onto hydrated hydrogel substrates and blended with biocompatibilizing coconstituents incorporating polyethylene glycol (PEG) and polydimethyl siloxane (PDMS) moieties. Plasma pretreatment of the dehydrated hydrogel substrate modifies its surface topography and chemical composition to facilitate the attachment of conductive PEDOT-based surface layers. Manipulating the vapor phase polymerization process and constituent composition, the PEDOT-based coating is engineered to be both hydrophilic (i.e. to promote biocompatibility) and highly conductive. The fabrication of this conductively coated hydrogel has implications for the future of wearable electronic devices. PMID:26698297

  9. Preparation of a bifunctional pyrazosulfuron-ethyl imprinted polymer with hydrophilic external layers by reversible addition-fragmentation chain transfer polymerization and its application in the sulfonylurea residue analysis.

    PubMed

    Yang, Meixian; Zhang, Yingying; Lin, Shen; Yang, Xinlin; Fan, Zhijin; Yang, Lixia; Dong, Xiangchao

    2013-09-30

    A new bifunctional pyrazosulfuron-ethyl imprinted polymer was synthesized by the combination of molecular imprinting technology and living radical polymerization. In the synthesis, the pyrazosulfuron-ethyl imprinted polymer was obtained by the reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization followed by grafting poly(glyceryl monomethacrylate) (pGMMA) by the post-RAFT polymerization. In this research, we used polyethylene glycol (PEG) as the polymeric porogen in order to increase the porosity of the material which is a new porogen application in the precipitation polymerization. The imprinted polymer has selectivity for the template and ability of humic acids exclusion which has shown the merits of molecularly imprinted polymers and restricted access materials. An online solid-phase extraction/HPLC method for the analysis of three sulfonylurea residues in soil samples has been developed and validated. The recovery of 81-99% in the spiked levels of 40-200 μg kg(-1) was obtained and the limit of detection (LOD) and limit of quantification (LOQ) were less than 4.8 and 15.9 μg kg(-1) respectively. The results demonstrated that this bifunctional material can be used for the efficient pyrazosulfuron-ethyl extraction in the sulfonylurea residue analysis from environmental samples. PMID:23953454

  10. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Belmonte, Guilherme Kretzmann; Charles, German; Strumia, Miriam Cristina; Weibel, Daniel Eduardo

    2016-09-01

    Polypropylene (PP) and Poly(vinyl alcohol) (PVA) both synthetics polymers but one of them biodegradable, were surface modified by vacuum ultraviolet (VUV) irradiation. After VUV irradiation in an inert nitrogen atmosphere, the films were exposed to oxygen gas. The treated films were characterized by water contact angle measurements (WCA), optical profilometry, FTIR-ATR, XPS, UPS and NEXAFS techniques. PP and PVA VUV-treated films reached superhydrophilic conditions (WCAs <10°) in about 30 min of irradiation under our experimental conditions. It was observed that when the WCAs reached about 35-40° the hydrophilicity was permanent in both polymers. These results contrasted with typical plasma treatments were a rapid hydrophobic recovery with aging time is usually observed. UPS and XPS data showed the presence of new functionalities on the PP and PVA surfaces that were assigned to COO, Cdbnd O, Csbnd O and Cdbnd C functional groups. Finally, grafting of styrene (ST) as a typical monomer was tested on PP films. It was confirmed that only in the VUV irradiated region an efficient grafting of ST or polymerized ST was found. Outside the irradiated regions no ST grafted was observed. Our results showed the potential use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region.

  11. Cytostatic and immunomobilizing activities of polymer-bound drugs: experimental and first clinical data.

    PubMed

    Ríhová, Blanka; Strohalm, Jirí; Prausová, Jana; Kubácková, Katerina; Jelínková, Markéta; Rozprimová, Lad'ka; Sírová, Milada; Plocová, Dana; Etrych, Tomás; Subr, Vladimír; Mrkvan, Tomás; Kovár, Marek; Ulbrich, Karel

    2003-08-28

    An N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer carrier containing doxorubicin and human immunoglobulin as an actively/passively targeting moiety was used in four patients with generalized breast cancer resistant to standard cytotoxic chemotherapy. The dose and time schedule were deduced from a Phase I clinical trial in which doxorubicin bound to HPMA copolymer carrier (PK1) was tested. It was confirmed that the Dox-HPMA-HuIg conjugate is stable and doxorubicin remains in the peripheral blood with a small amount also in the urine, mostly in its polymer-bound form. More than 116 biochemical, immunological and hematological parameters were determined for blood samples taken from patients 24 h, 48 h, 72 h and 1 to 11 weeks after treatment. Depending on the patient, some parameters decreased permanently or temporarily to the normal level (CRP, C3, CA 72-4, beta(2)-microglobulin, ferritin, CEA, CA 125, CD4, CD8, CE19, CD16(+)56(+), leu, ery) and some moved markedly towards physiological values (AST, ALT, ALP, GMT, CA 15-3, NSE, AFP). While the number of peripheral blood reticulocytes was significantly decreased after treatment with the classical free drug, their number was not affected or was even elevated after treatment with Dox-HPMA-HuIg. Increased absolute numbers of CD16(+)56(+) and CD4(+) cells in the peripheral blood and activation of NK and LAK cells in all patients support data obtained in experimental animals, pointing to a dual, i.e. cytostatic and immunomobilizing character of Dox-HPMA conjugates containing a targeting immunoglobulin moiety. PMID:12932633

  12. Method of making a membrane having hydrophilic and hydrophobic surfaces for adhering cells or antibodies by using atomic oxygen or hydroxyl radicals

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)

    1994-01-01

    A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.

  13. Hydrophilic structures for condensation management in appliances

    DOEpatents

    Kuehl, Steven John; Vonderhaar, John J.; Wu, Guolian; Wu, Mianxue

    2016-02-02

    An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.

  14. Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Arscott, Steve

    2013-06-01

    Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation--the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90° whereas using a superhydrophobic surface one observes 134°. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.

  15. An experimental study of the PTC properties of polymers with carbon black fillers

    NASA Astrophysics Data System (ADS)

    Lin, Jianlian

    The Positive Temperature Coefficient (PTC) phenomenon, first discovered by Harman in 1957, is defined as the sharp increase of the electrical resistivity of the material with temperature, especially at the Curie transition temperature. Polymeric PTC materials have been widely used since 1975 as self-regulating components, over current or over heat protectors, sensors, etc. In this project a detailed study of polymeric PTC materials has been carried out. Polymeric PTC materials consist of a non-conducting polymeric phase in which conductive particles, such as CB's, are added. Previously most of the studies of the polymer matrices of PTC materials were limited to single component semi-crystalline polymers, such as HDPE, LDPE, EVA etc. In this work, the PTC effects of carbon black filled binary polymer blends, such as LDPE/EPDM, HDPD/EPDM, HDPE/EVA, etc. are mainly studied. For the LDPE/EPDM/CB system, it is found that the PTC intensity of the blends after gamma-ray irradiation increases by almost 5 orders of magnitude compared with that of irradiated LDPE/CB compound. This increase in PTC intensity is due to the greater thermal expansion coefficient of the rubber (EPDM) phase. In addition, a comparison of E-beam and gamma-ray irradiation is made and the resulting effect on the PTC properties of LDPE/EPDM/CB blends is studied in detail. It is found that with higher dose of gamma-ray, the material undergoes significant radiation damage, while irradiation with E-beam prevents radiation damage due to shorter exposure time. The influence of using treated carbon blacks on the PTC/NTC effects of the composites is also studied. The polymer blends filled with oxidized carbon black display higher PTC intensity followed by a weaker NTC effect, which is due to stronger interactions between oxidized CB's & polymer. It is concluded that strong interactions between polymers and fillers suppress the NTC effect. Finally ESR analysis is used to study the interactions between the

  16. High surface area electrodes in ionic polymer transducers: Numerical and experimental investigations of the electro-chemical behavior

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Habchi, Wassim; Wallmersperger, Thomas; Akle, Etienne J.; Leo, Donald J.

    2011-04-01

    Ionomeric polymer transducer (IPT) is an electroactive polymer that has received considerable attention due to its ability to generate large bending strain (>5%) and moderate stress at low applied voltages (±2 V). Ionic polymer transducers consist of an ionomer, usually Nafion, sandwiched between two electrically conductive electrodes. A novel fabrication technique denoted as the direct assembly process (DAP) enabled controlled electrode architecture in ionic polymer transducers. A DAP built transducer consists of two high surface area electrodes made of electrically conducting particles uniformly distributed in an ionomer matrix sandwiching an ionomer membrane. The purpose of this paper is to investigate and simulate the effect of these high surface area particles on the electro-chemical response of an IPT. Theoretical investigations as well as experimental verifications are performed. The model used consists of a convection-diffusion equation describing the chemical field as well as a Poisson equation describing the electrical field. The two-dimensional model incorporates highly conductive particles randomly distributed in the electrode area. Traditionally, these kinds of electrodes were simulated with boundary conditions representing flat electrodes with a large dielectric permittivity at the polymer boundary. This model enables the design of electrodes with complicated geometrical patterns. In the experimental section, several transducers are fabricated using the DAP process on Nafion 117 membranes. The architecture of the high surface area electrodes in these samples is varied. The concentration of the high surface area RuO2 particles is varied from 30 vol% up to 60 vol% at a fixed thickness of 30 μm, while the overall thickness of the electrode is varied from 10 μm up to 40 μm at a fixed concentration of 45%. The flux and charge accumulation in the materials are measured experimentally and compared to the results of the numerical simulations. Trends of

  17. Experimental evidence of ultrathin polymer film stratification by AFM force spectroscopy.

    PubMed

    Delorme, Nicolas; Chebil, Mohamed Souheib; Vignaud, Guillaume; Le Houerou, Vincent; Bardeau, Jean-François; Busselez, Rémi; Gibaud, Alain; Grohens, Yves

    2015-06-01

    By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior. PMID:26087914

  18. Electrostatic Properties of Polymers Subjected to Atmospheric Pressure Plasma Treatment; Correlation of Experimental Results with Atomistic Modeling

    NASA Technical Reports Server (NTRS)

    Trigwell, S.; Boucher, D.; Calle, C. I.

    2007-01-01

    this study, PE, PTFE, PS and PMMA were exposed to a He+O2, APGD and pre and post treatment surface chemistries were analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab-initio calculations were performed to correlate the experimental results with sonic plausible molecular and electronic structure features of the oxidation process. For the PE and PS, significant surface oxidation showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angles was observed. For the PTFE and PM MA, little change in the surface composition was observed. The molecular modeling calculations were performed on single and multiple oligomers and showed regardless of oxidation mechanism, e.g. -OH, =O or a combination thereof, experimentally observed levels of surface oxidation were unlikely to lead to a significant change in the electronic structure of PE and PS, and that the increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. Calculations for PTFE and PMMA argue strongly against significant oxidation of those materials, as confirmed by the XPS results.

  19. Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films.

    PubMed

    Wilpiszewska, Katarzyna; Antosik, Adrian Krzysztof; Spychaj, Tadeusz

    2015-09-01

    Preparation of novel carboxymethyl starch (CMS)-based biodegradable films with calcium montmorillonite has been described. The biocomposites were obtained by casting method, glycerol and citric acid were used as plasticizer and crosslinking agent, respectively. The effect of calcium montmorillonite (MMT-Ca) on hydrophilicity (moisture absorption, solubility in water as well as contact angle measurements) was evaluated. Moreover, thermomechanical and mechanical properties of nanocomposites were determined. For all the systems tested intercalated structure of MMT-Ca was revealed, however the most efficient clay platelets dispersion was noted for film containing 5 wt.% MMT-Ca. Such biodegradable CMS/MMT-Ca films exhibiting relatively good mechanical properties could find application in controlled delivery systems as well as in agriculture for seed tapes production where hydrophilicity of polymer carrier is strongly advantageous. PMID:26005142

  20. Computational and experimental investigation of molecular imprinted polymers for selective extraction of dimethoate and its metabolite omethoate from olive oil.

    PubMed

    Bakas, Idriss; Oujji, Najwa Ben; Moczko, Ewa; Istamboulie, Georges; Piletsky, Sergey; Piletska, Elena; Ait-Addi, Elhabib; Ait-Ichou, Ihya; Noguer, Thierry; Rouillon, Régis

    2013-01-25

    This work presents the development of molecularly imprinted polymers (MIPs) for the selective extraction of dimethoate from olive oil. Computational simulations allowed selecting itaconic acid as the monomer showing the highest affinity towards dimethoate. Experimental validation confirmed modelling predictions and showed that the polymer based on IA as functional monomer and omethoate as template molecule displays the highest selectivity for the structurally similar pesticides dimethoate, omethoate and monocrotophos. Molecularly imprinted solid phase extraction (MISPE) method was developed and applied to the clean-up of olive oil extracts. It was found that the most suitable solvents for loading, washing and elution step were respectively hexane, hexane-dichloromethane (85:15%) and methanol. The developed MIPSE was successfully applied to extraction of dimethoate from olive oil, with recovery rates up to 94%. The limits of detection and quantification of the described method were respectively 0.012 and 0.05 μg g(-1). PMID:23290360

  1. A Combined Experimental and Numerical Approach to the Laser Joining of Hybrid Polymer - Metal Parts

    NASA Astrophysics Data System (ADS)

    Rodríguez-Vidal, E.; Lambarri, J.; Soriano, C.; Sanz, C.; Verhaeghe, G.

    A two-step method for the joining of opaque polymer to metal is presented. Firstly, the metal is structured locally on a micro-scale level, to ensure adhesion with the polymeric counterpart. In a second step, the opposite side of the micro-structured metal is irradiated by means of a laser source. The heat thereby created is conducted by the metal and results in the melting of the polymer at the interface. The polymer thereby adheres to the metal and flows into the previously engraved structures, creating an additional mechanical interlock between the two materials. The welding parameters are fine-tuned with the assistance of a finite element model, to ensure the required interface temperature. The method is illustrated using a dual phase steel joined to a fiber-reinforced polyamide. The effect of different microstructures, in particular geometry and cavity aspect ratio, on the joint's tensile-shear mechanical performance is discussed.

  2. Dissolving Polymers in Ionic Liquids.

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Harner, John

    2009-03-01

    Dissolution and phase behavior of polymers in ionic liquids have been assessed by solution characterization techniques such as intrinsic viscosity and light scattering (static and dynamic). Elevated viscosity proved the greatest obstacle. As yet, whether principles standard to conventional polymer solutions apply to ionic liquid solutions is uncertain, especially for polymers such as polyelectrolytes and hydrophilic block copolymers that may specifically interact with ionic liquid anions or cations. For flexible polyelectrolytes (polymers releasing counterions into high dielectric solvents), characterization in ionic liquids suggests behaviors more typical of neutral polymer. Coil sizes and conformations are approximately the same as in aqueous buffer. Further, several globular proteins dissolve in a hydrophilic ionic liquid with conformations analogous to those in buffer. General principles of solubility, however, remain unclear, making predictions of which polymer dissolves in which ionic liquid difficult; several otherwise intractable polymers (e.g., cellulose, polyvinyl alcohol) dissolve and can be efficiently functionalized in ionic liquids.

  3. An experimental study of non-Newtonian polymer rheology effects on oil recovery and injectivity

    SciTech Connect

    Gleasure, R.W.; Phillips, C.R. )

    1990-11-01

    Pseudoplastic non-Newtonian polymer solutions were examined for their enhanced oil recovery performance. Detailed results are reported for xanthan gum (XAN), Kelzan XCD, and a viscoelastic polyethylene oxide (PEO), Polyox OF-50. Increases in the power-law coefficient resulted in improved displacement efficiency. Effects were also observed in the injectivity-index parameter results.

  4. Novel highly hydrophilic zwitterionic monolithic column for hydrophilic interaction chromatography.

    PubMed

    Jiang, Zhengjin; Smith, Norman W; Ferguson, Paul D; Taylor, Mark R

    2009-08-01

    A novel zwitterionic hydrophilic porous poly(SPV-co-MBA) monolithic column was prepared by thermal co-polymerisation of 1-(3-sulphopropyl)-4-vinylpyridinium-betaine (4-SPV) and N,N'-methylenebisacrylamide (MBA). An HILIC/RP dual separation mechanism was observed on this optimised poly(SPV-co-MBA) monolithic column and the composition of the mobile phase corresponding to the transition from the HILIC to the RP mode was around 30% ACN in water. Higher hydrophilicity was achieved on this novel monolithic column compared to the poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulphopropyl)ammonium betaine-co-ethylene dimethacrylate) monolithic column. Permeability studies showed slight swelling and/or shrinking with mobile phases of different polarity. As might be anticipated, a weak electrostatic interaction for charged analytes was also observed by studying the influence of mobile phase pH and salt concentration on their retention on the poly(SPV-co-MBA) monolithic column. The final optimised poly(SPV-co-MBA) monolith showed comparable selectivities to commercial ZIC-pHILIC phases for polar test analytes. Fast separation of five pyrimidines and purines was achieved in less than 1 min due to the high permeability of the monolithic column. Additionally, baseline separation of nine benzoic acid derivatives was also observed using either a pH or ACN gradient. PMID:19606441

  5. Preparation of patterned ultrathin polymer films.

    PubMed

    Yang, Huige; Su, Meng; Li, Kaiyong; Jiang, Lei; Song, Yanlin; Doi, Masao; Wang, Jianjun

    2014-08-12

    Though patterned ultrathin polymer films (<100 nm) are of great importance in the fields of sensors and nanoelectronic devices, the fabrication of patterned ultrathin polymer films remains a great challenge. Herein, patterned ultrathin polymer films are fabricated facilely on hydrophobic substrates with different hydrophilic outline patterns by the pinning of three-phase contact lines of polymer solution on the hydrophilic outlines. This method is universal for most of the water-soluble polymers, and poly(vinyl alcohol) (PVA) has been selected as a model polymer due to its biocompatibility and good film-forming property. The results indicate that the morphologies of ultrathin polymer films can be precisely adjusted by the size of the hydrophilic outline pattern. Specifically, patterned hydrophilic outlines with sizes of 100, 60, and 40 μm lead to the formation of concave-shaped ultrathin PVA films, whereas uniform ultrathin PVA films are formed on 20 and 10 μm patterned substrates. The controllabilities of morphologies can be interpreted through the influences of the slip length and coffee ring effect. Theoretical analysis shows that when the size of the hydrophilic outline patterns is smaller than a critical value, the coffee ring effect disappears and uniform patterned ultrathin polymer films can be formed for all polymer concentrations. These results provide an effective methodology for the fabrication of patterned ultrathin polymer films and enhance the understanding of the coffee ring effect. PMID:25066958

  6. Ab initio and experimental studies of glow-discharge polymer used in Laser MégaJoule capsules

    NASA Astrophysics Data System (ADS)

    Colin-Lalu, Pierre; Huser, Gaël; Recoules, Vanina; Salin, Gwenael; CEA DAM DIF Team

    2015-06-01

    Equations of state tables used in Initial Confinement Fusion capsule design tools are highly dependent on the cold curve in the multimegabar range. Original ab-initio molecular dynamic simulations were performed to get accurate cold curves of glow-discharge polymer (GDP) plastics. Furthermore the effect of oxygen absorption by GDP structure is studied on the cold curve, as well as its impact on the Hugoniot curves. Results are compared with Hugoniot experimental data obtained in a recent experiment at the LULI2000 laser facility in France. This study leads to improve equation of states knowledge of ablator materials, which is of primary importance for NIF and LMJ experiments.

  7. Experimental studies on physical deterioration and electrical fatigue behavior in ferroelectric polymers

    NASA Astrophysics Data System (ADS)

    He, Xiangtong

    Ferroelectric materials are widely used in various electronic applications based upon their excellent electrical bi-stabilities and dielectric performance in response to the applied electric field. They have been utilized to make nonvolatile electronic memories by exploiting the hysteretic behavior and high energy density capacitors in regard to the high capability of electrical energy storage. One critical issue is that the ferroelectrics are required to endure a large number of electrical cycles. A large body of scientific efforts has been devoted to high fatigue failure resistance of ferroelectric-based electronic devices. Fatigue failure of ferroelectric materials still needs to be solved. It is the objective of this work to explore the intrinsic origin of fatigue failure mechanisms. In this study, it was found that electric-field-induced stress relaxation in α-phase poly(vinylidene fluoride) (PVDF) films can be well described by using the Kohlraush function groups, also known as the stretched exponential relaxation function. The electric strength of the dielectric is strongly dependent on its elastic properties due to the electromechanical coupling effect. Our fitting result of the stretched exponent is in accordance with a Weibull cumulative distribution function. This indicates that the elastic properties of insulating polymers are crucial to the capability of electrical energy storage. In ferroelectric materials, the electromechanical coupling may be indicative of the microscopic origin of polarization fatigue. Further experiments were focused on the polarization fatigue in semi-crystalline poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] copolymers films, whose ferroelectric response is superior to PVDF homopolymer films. Fatigue resistance of normal virgin P(VDF-TrFE) films was compared to that of P(VDF-TrFE) films modulated by using magnetic field. It was shown that normal P(VDF-TrFE) films exhibit a higher fatigue resistance. The artificially

  8. Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium.

    PubMed

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-10-01

    Amorphous solid dispersions (ASDs) have the potential to offer higher apparent solubility and bioavailability of BCS class II drugs. Knowledge of the solid state drug-polymer solubility/miscibility and their mutual interaction are fundamental requirements for the effective design and development of such systems. To this end, we have carried out a comprehensive investigation of various ASD systems of dipyridamole and cinnarizine in polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) at different drug loadings. Theoretical and experimental examinations (by implementing binary and ternary Flory-Huggins (F-H) theory) related to drug-polymer interaction/miscibility including solubility parameter approach, melting point depression method, phase diagram, drug-polymer interaction in the presence of moisture and the effect of drug loading on interaction parameter were performed. The information obtained from this study was used to predict the stability of ASDs at different drug loadings and under different thermal and moisture conditions. Thermal and moisture sorption analysis not only provided the composition-dependent interaction parameter but also predicted the composition dependent miscibility. DPM-PVP, DPM-PAA and CNZ-PAA systems have shown molecular level mixing over the complete range of drug loading. For CNZ-PVP, the presence of a single Tg at lower drug loadings (10, 20 and 35%w/w) indicates the formation of solid solution. However, drug recrystallization was observed for samples with higher drug weight fractions (50 and 65%w/w). Finally, the role of polymer in maintaining drug supersaturation has also been explored. It has been found that drug-polymer combinations capable of hydrogen-bonding in the solution state (DPM-PVP, DPM-PAA and CNZ-PAA) are more effective in preventing drug crystallization compared to the drug-polymer systems without such interaction (CNZ-PVP). The DPM-PAA system outperformed all other ASDs in various stability conditions (dry-state, in

  9. The Effect of Contact Angles and Capillary Dimensions on the Burst Frequency of Super Hydrophilic and Hydrophilic Centrifugal Microfluidic Platforms, a CFD Study

    PubMed Central

    Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J.

    2013-01-01

    This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms. PMID:24069169

  10. The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study.

    PubMed

    Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J

    2013-01-01

    This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms. PMID:24069169

  11. Influence of the physical state of water on the barrier properties of hydrophilic and hydrophobic films.

    PubMed

    Morillon, V; Debeaufort, F; Capelle, M; Blond, G; Voilley, A

    2000-01-01

    Water transfer through different films, as a function of the physical state of water in contact with the film, the relative humidity difference, and the water vapor pressure difference, was investigated. The films were two synthetic packagings (hydrophobic polyethylene and hydrophilic cellophane) and an edible film. The physical state of water affects water sensitive films, such as cellophane, inducing a higher liquid water transfer due to interactions with the polymer. For hydrophobic polymers, such as polyethylene, neither the physical state of water nor the relative humidity has an influence on the water permeability. In complex system, such as an edible film composed of hydrophilic particles dispersed in a lipid phase, barrier efficiency is influenced by the continuous hydrophobic phase but could also be affected by the physical state of water due to the presence of hydrophilic compounds. PMID:10637042

  12. Experimental simulation of internal short circuit in Li-ion and Li-ion-polymer cells

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Wang, Hsin; Maleki, Hossein; Howard, Jason; Lara-Curzio, Edgar

    A multi-parameter controlled pinch test was developed to study the occurrence of internal short circuits in Li-ion and Li-ion-polymer cells. By tuning the control parameters (i.e., cell voltage as well as pinching area, load, and speed), the pinch test can reproducibly create an internal short between a cell jelly-roll's inner layer electrodes as small as 1-mm wide. This recreates conditions similar to those that may occur during service. In this paper we demonstrate the use of the pinch test as a means to assess design and manufacturing changes in Li-ion-polymer cells on their thermal stability and to identify features or characteristics that lower risk of potential thermal events created by internal short circuits.

  13. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  14. Triggered Release of Pharmacophores from [Ni(HAsO3)]-Loaded Polymer-Caged Nanobin Enhances Pro-Apoptotic Activity: A Combined Experimental and Theoretical Study

    PubMed Central

    Lee, Sang-Min; Lee, One-Sun; O'Halloran, Thomas V.; Schatz, George C.; Nguyen, SonBinh T.

    2013-01-01

    Nanoscale drug delivery platforms can provide an attractive therapeutic strategy for cancer treatments as they can substantially reduce the adverse side effects associated with toxic small-molecule anticancer agents. For enhanced therapeutic efficacy to be achieved with such platforms, tumor-specific drug-release trigger is a critical requirement. This manuscript reports the use of a pH-sensitive polymer network that surrounds a nanoscale liposome core to trigger the release of both encapsulated hydrophilic, membrane-impermeable NiII cations and amphipathic, membrane-permeable AsIII anticancer agents under acidic conditions commonly encountered in hypoxic tumor tissues and late endosomes. Computational modeling studies provide clear evidence that the acid-triggered drug-release mechanism for this polymer-caged nanobin (PCN) platform arises from a pH- and temperature-responsive conformation change of the cross-linked polymer cage. As a result, the simultaneous release of both of the active agents in this multi-component therapeutic enhances the pro-apoptotic activity of AsIII while diminishing its acute toxicity, potentially reducing the undesirable side effects commonly associated with this free drug. The ability to engender acid-triggered release of drugs co-encapsulated inside a liposomal template makes drug delivery using PCN an attractive strategy for triggered drug release. PMID:21466214

  15. Numerical and Experimental Investigation of Cold Spray Gas Dynamic Effects for Polymer Coating

    NASA Astrophysics Data System (ADS)

    Alhulaifi, Abdulaziz S.; Buck, Gregory A.; Arbegast, William J.

    2012-09-01

    Low melting temperature materials such as polymers are known to be difficult to deposit using traditional cold spray techniques. Computational fluid dynamics (CFD) models were created for various nozzle geometries and flow conditions. A schlieren optical system was used to visualize the density gradients and flow characteristics in the free jet impingement region. Based on the CFD models, it was determined that a diffuser placed into the carrier gas flow near the nozzle exit not only leads to lower particle impact velocity required for polymer deposition, but also provides for appropriate application of compression heating of the particles to produce the conditions necessary at impact for successful coating adhesion of these materials. Experiments subsequently confirmed the successful deposition of polyethylene powder onto a 7075-T6 aluminum substrate. Using air as the carrier gas, polyethylene particles of 53-75 μm diameter and 0.94 g/cm3 density, were cold spray deposited onto the aluminum substrate, with a critical impact velocity of 191 m/s. No apparent melting of the polymer particles was observed. Refinements to these concepts are currently under investigation and a patent disclosure for the idea is pending.

  16. Experimental and modeling approaches for the formation of hydroperoxide during the auto-oxidation of polymers: Thermal-oxidative degradation of polyethylene oxide

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Yamane, Shogo; Sago, Tomohiro; Hagihara, Hideaki; Kutsuna, Shuzo; Uchimaru, Tadafumi; Suda, Hiroyuki; Sato, Hiroaki; Mizukado, Junji

    2016-07-01

    ROOH was a key intermediate compound in oxidation of polymer because it was only source of radOH radicals. ROOH was believed to be produced by ROOrad abstraction H-atom from polymer, which is thermodynamically unfavorable, but it may be facilitated due to the high polymer concentration. However, ROOH also could be produced by ROOrad reaction with HO2rad. For examining the formation scheme of ROOH, kinetics and mechanism for the thermal-oxidative degradation of PEO at 473 K in air was investigated by using the experimental and modeling approaches. The contribution of HO2rad reaction with ROOrad to the formation of ROOH was estimated.

  17. Experimental investigations on PVC-LiAsF 6-DBP polymer electrolyte systems

    NASA Astrophysics Data System (ADS)

    Rajendran, S.; Uma, T.

    Poly(vinyl chloride) (PVC)-LiAsF 6 polymer electrolytes plasticized with dibutyl phthalate in different mole ratios have been studied by means of X-ray diffraction (XRD), infrared spectroscopy (IR) and a.c. impedance spectroscopy. The complexation has been confirmed from XRD and IR studies. A maximum room temperature conductivity (3.938×10 -5 S cm -1) has been observed for PVC: LiAsF 6: DBP (10:5:85 mol%) complex. The log σ vs. 1/ T plots ( σ=electrical conductivity; T=temperature) show Arrhenius behaviour. The activation energy is estimated and the results are discussed.

  18. Bulk and Surface Interactions of Hydrophilic Polyacrylates with Water

    NASA Astrophysics Data System (ADS)

    Chen, Wan-Lin; Shull, Kenneth R.

    1998-03-01

    The adsorption of water by a series of hydrophilic acrylic coatings has been investigated in controlled humidity environments using a quartz crystal microbalance. The amounts of water adsorption are strongly dependent on the lengths of the polyethylene glycol (PEG) side chains of the acrylic polymers. We have also studied the properties of block copolymers which have a PEG-acrylate block coupled to hydrophobic poly(methyl methacrylate) (PMMA) or polystyrene (PS) blocks. The dynamic wetting behavior of water on these polymeric surfaces has been monitored by video microscopy during spreading of water drops on polymer thin films. The swelling and spreading rate data provide a useful characterization of the interactions of these materials with water.

  19. Formation of hydrophilic nanofibers from nanoemulsions through electrospinning.

    PubMed

    Gordon, V; Marom, G; Magdassi, S

    2015-01-15

    This study presents a method for one step incorporation of lipophilic compounds in hydrophilic nanofibers. By this method nanodroplets of oil and of volatile solvent are entrapped within polymer nanofibers during an electrospinning process. While performing the process with a volatile oil with dissolved lipophilic material, such as the drug celecoxib, nanofiber-nanoparticle composites are formed. The polymer used to form the fibers is a high molecular weight poly(vinyl alcohol) which enables rapid dissolution and release of the incorporated lipophilic material. The resulting celecoxib nanoparticles that are embedded within the nanofiber are amorphous and their average size is in between 21 and 93 nm, thus potentially lead to their increased dissolution rate. The preparation of such a solid matrix containing nanodroplets or nanoparticles may be applied as a fast dissolving delivery system for water insoluble materials. PMID:25448579

  20. Hydrophilic behavior of graphene and graphene-based materials

    NASA Astrophysics Data System (ADS)

    Accordino, Sebastián R.; Montes de Oca, Joan Manuel; Rodriguez Fris, J. Ariel; Appignanesi, Gustavo A.

    2015-10-01

    Graphene and the graphene-based materials like graphite, carbon nanotubes, and fullerenes are not only usually regarded as hydrophobic but also have been widely employed as paradigms for the investigation of the behavior of water under nonpolar confinement, a question of major concern for fields ranging from biology to materials design. However, some experimental and theoretical insights seem to contradict, at least partially, such a picture. In this work, we will provide firm evidence for a neat hydrophilic nature of graphene surfaces. Our molecular dynamics studies will demonstrate that parallel graphene sheets present a strong tendency to remain fully hydrated for moderately long times (even when the equilibrium state is indeed the collapse of the plates), and thus, they are less prone to self-assembly than model hydrophobic surfaces we shall employ as control which readily undergo a hydrophobic collapse. Potential of mean force calculations will indeed make evident that the solvent exerts a repulsive contribution on the self-assembly of graphene surfaces. Moreover, we shall also quantify graphene hydrophilicity by means of the calculation of water density at two pressures and water density fluctuations. This latter study has never been performed on graphene and represents a means both to confirm and to quantify its neat hydrophilic behavior. We shall also make evident the relevance of the mildly attractive water-carbon interactions, since their artificial weakening will be shown to revert from typically hydrophilic to typically hydrophobic behavior.

  1. Experimental and numerical investigation of the dynamic response of highly compliant, polymer-enhanced, graphite-reinforced cementitious composites

    NASA Astrophysics Data System (ADS)

    Ooi, Teng Keong

    This dissertation demonstrates how composite materials, fabricated by placing a low modulus, lightweight polymer-enhanced, cementitious matrix over multiple layers of stiff reinforcement, can be used to create a composite material with relatively high tension and compression properties. This extraordinary combination allows a structure to be highly stressed and deformed to store large amounts of elastic strain energy, thus providing more design flexibility than traditional materials. When the structural response is modified as the service loads are decreased, the energy is released in a controlled fashion to do useful work. Prior research shows that the standard transform section method fails to provide accurate results when the elastic modulus ratio exceeds 20. A modified transformed section is formulated by using the rule of mixture to determine the effective material properties for the composite. Finite element analysis is used to verify the experimental results and a good agreement is obtained. This dissertation investigates the experimental and numerical methods to determine the dynamic response of this new class of highly compliant, Polymer-Enhanced, Graphite Reinforced Cementitious Composite (PEGRCC) materials. Highly compliant, PEGRCC structures are designed based on the strength, stiffness, and the position of the component materials in the composite section. Their ability to store and release energy depends upon a complex interaction between the shape, modal response, and the forcing function initiated to the structure. This dissertation shows that the PEGRCC materials behave like a composite material and the classical mechanics of composite material theory is applicable to PEGRCC laminates. The good agreement between the experimental natural frequencies and mode shapes and the finite element predictions indicate that the standard mechanical impact testing can be adopted to test PEGRCC materials. The accuracy of the finite element dynamic analysis shows

  2. Filtration of triazine herbicides by polymer-clay sorbents: coupling an experimental mechanistic approach with empirical modeling.

    PubMed

    Gardi, Ido; Nir, Shlomo; Mishael, Yael G

    2015-03-01

    Triazine herbicides detected in surface and groundwater pose environmental and health risks. Removal of triazine herbicides (simazine, atrazine and terbuthylazine) by polymer-clay composites was studied and modeled. Their binding by a poly 4-vinyl pyridine co styrene-montmorillonite (HPVP-CoS-MMT) composite was especially high due to specific interactions between the herbicides and polymer, mainly hydrogen bonds and π-π stacking. The binding kinetics to the composite was in the order of simazine > atrazine > terbuthylazine, which was in accord with their equilibrium Langmuir binding coefficients; 44,000, 17,500 and 16,500 M(-1), respectively, which correlated with herbicide accessibility to form specific interaction with the polymer. Simazine binding kinetics to the composite was significantly faster than to granulated activated carbon (GAC), reaching 93% vs 38% of the maximal adsorption within 10 min, respectively. Herbicide filtration by composite columns was adequately fitted by a model which considers convection and employs Langmuir formalism for kinetics of adsorption/desorption. Filtration of simazine (10 μg L(-1)) by composite columns (40 cm long, which included 26 g composite mixed with sand 1:40 (weight ratio)), was well predicted by the model with nearly 120 L purified, i.e., effluent concentrations were below regulation limit (3 μg L(-1)). Effluent concentrations from GAC columns exceeded the limit after filtering 5 L. Experimental results and model predictions suggest that while GAC has a high capacity for simazine binding, the composite has higher affinity towards the herbicide and its adsorption is faster, which yields more efficient filtration by composite columns. PMID:25506764

  3. Experimental and simulation-based investigation of He, Ne and Ar irradiation of polymers for ion microscopy

    PubMed Central

    Rzeznik, Lukasz; Fleming, Yves; Wirtz, Tom

    2016-01-01

    Summary Secondary ion mass spectrometry (SIMS) on the helium ion microscope (HIM) promises higher lateral resolution than on classical SIMS instruments. However, full advantage of this new technique can only be obtained when the interaction of He+ or Ne+ primary ions with the sample is fully controlled. In this work we investigate how He+ and Ne+ bombardment influences roughness formation and preferential sputtering for polymer samples and how they compare to Ar+ primary ions used in classical SIMS by combining experimental techniques with Molecular Dynamics (MD) simulations and SD_TRIM_SP modelling. The results show that diffusion coefficients for He, Ne and Ar in polymers are sufficiently high to prevent any accumulation of rare gas atoms in the polymers which could lead to some swelling and bubble formation. Roughness formation was also not observed. Preferential sputtering is more of a problem, with enrichment of carbon up to surface concentrations above 80%. In general, the preferential sputtering is largely depending on the primary ion species and the impact energies. For He+ bombardment, it is more of an issue for low keV impact energies and for the heavier primary ion species the preferential sputtering is sample dependent. For He+ steady state conditions are reached for fluences much higher than 1018 ions/cm2. For Ne+ and Ar+, the transient regime extends up to fluences of 1017–1018 ions/cm2. Hence, preferential sputtering needs to be taken into account when interpreting images recorded under He+ or Ne+ bombardment on the HIM. PMID:27547629

  4. Cohesive-zone laws for void growth — I. Experimental field projection of crack-tip crazing in glassy polymers

    NASA Astrophysics Data System (ADS)

    Hong, Soonsung; Chew, Huck Beng; Kim, Kyung-Suk

    2009-08-01

    A hybrid framework for inverse analysis of crack-tip cohesive-zone model is developed in this two-part paper to measure cohesive-zone laws of void growth in polymers by combining analytical, experimental, and numerical approaches. This paper focuses on experimental measurements of the cohesive-zone laws for two nonlinear fracture processes in glassy polymers, namely multiple crazing in crack-growth toughening of rubber-toughened high-impact polystyrene (HIPS) and crazing of steady-state crack growth in polymethylmethacrylate (PMMA) under a methanol environment. To this end, electronic speckle pattern interferometry (ESPI) is first applied to measure the crack-tip displacement fields surrounding the fracture process zones in these polymers. These fields are subsequently equilibrium smoothed and used in the extraction of the cohesive-zone laws via an analytical solution method of the inverse problem, the planar field projection method (P-FPM) [Hong, S., Kim, K.-S., 2003. Extraction of cohesive-zone laws from elastic far-fields of a cohesive crack tip: a field projection method. Journal of the Mechanics and Physics of Solids 51, 1267-1286]. Results show that the proposed framework of the P-FPM could provide a systematic way of finding the shape of the cohesive-zone laws governed by the different micro-mechanisms in the fracture processes. In HIPS, inter-particle multiple crazing develops and the craze zone broadens ahead of a crack-tip under mechanical loading. The corresponding cohesive-zone relationship of the multiple-craze zone is found to be highly convex, which indicates effectiveness of rubber particle toughening. It is also observed that the effective peak traction, 7 MPa, in the crack-tip cohesive zone of HIPS (30% rubber content) is lower than the uniaxial yield stress of 9 MPa, presumably due to stress multi-axiality effects. In contrast, in PMMA, methanol localizes the crack-tip craze, weakening the craze traction for craze-void initiation to about 9 MPa

  5. Electric field driven fractal growth in polymer electrolyte composites: Experimental evidence of theoretical simulations

    NASA Astrophysics Data System (ADS)

    Dawar, Anit; Chandra, Amita

    2012-11-01

    The influence of electric field on the diffusion limited aggregation has been observed experimentally. The observation provides experimental confirmation of the theoretical model proposed by Zhi-Jie Tan et al. [Phys. Lett. A 268 (2000) 112]. Most strikingly, a transition from a disordered ramified pattern to an ordered pattern (chain-like growth) has been observed. The growth is governed by diffusion, convection and migration in an electric field which give rise to the different patterns. This Letter can also be considered as an experimental evidence of computer simulated fractal growth given by Huang and Hibbert [Physica A 233 (1996) 888].

  6. Triplet energy transfer in conjugated polymers. I. Experimental investigation of a weakly disordered compound

    NASA Astrophysics Data System (ADS)

    Sudha Devi, Lekshmi; Al-Suti, Mohammad K.; Dosche, Carsten; Khan, Muhammad S.; Friend, Richard H.; Köhler, Anna

    2008-07-01

    Efficient triplet exciton emission has allowed improved operation of organic light-emitting diodes (LEDs). To enhance the device performance, it is necessary to understand what governs the motion of triplet excitons through the organic semiconductor. Here, we have investigated triplet diffusion using a model compound that has weak energetic disorder. The Dexter-type triplet energy transfer is found to be thermally activated down to a transition temperature TT , below which the transfer rate is only weakly temperature dependent. We show that above the transition temperature, Dexter energy transfer can be described within the framework of Marcus theory. We suggest that below TT , the nature of the transfer changes from phonon-assisted hopping to quantum-mechanical tunneling. The lower electron-phonon coupling and higher electronic coupling in the polymer compared to the monomer results in an enhanced triplet diffusion rate.

  7. Contact electrochemical replication of hydrophilic-hydrophobic monolayer patterns.

    PubMed

    Zeira, Assaf; Chowdhury, Devasish; Maoz, Rivka; Sagiv, Jacob

    2008-12-23

    Contact electrochemical replication (CER) is a novel pattern replication methodology advanced in this laboratory that offers the unprecedented capability of direct one-step reproduction of monolayer surface patterns consisting of hydrophilic domains surrounded by a hydrophobic monolayer background (hydrophilic @ hydrophobic monolayer patterns), regardless of how the initial "master" pattern was created. CER is based on the direct electrochemical transfer of information, through aqueous electrolyte bridges acting as an information transfer medium, between two organosilane monolayers self-assembled on smooth silicon wafer surfaces. Upon the application of an appropriate voltage bias between a patterned monolayer/silicon specimen playing the role of "stamp" and a monolayer/silicon specimen playing the role of "target", the hydrophilic features of the stamp are copied onto the hydrophobic surface of the target. It is shown that this electrochemical printing process may be implemented under a variety of experimental configurations conducive to the formation of nanometric electrolyte bridges between stamp and target; however, using plain liquid water for this purpose is, in general, not satisfactory because of the high surface tension, volatility, and incompressibility of water. High-fidelity replication of monolayer patterns with variable size of hydrophilic features was achieved by replacing water with a sponge-like hydrogel that is nonvolatile, compressible, and binds specifically to the hydrophilic features of such patterns. Since any copy resulting from the CER process can equally perform as stamp in a subsequent CER step, this methodology offers the rather unique option of multiple parallel reproduction of an initially fabricated master pattern. PMID:19206292

  8. Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches

    SciTech Connect

    Mishchenko, Lidiya; Khan, M.; Aizenberg, Joanna; Hatton, Benjamin

    2013-09-25

    Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescence of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Furthermore, control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. The combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.

  9. Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches

    SciTech Connect

    Mishchenko, L; Khan, M; Aizenberg, J; Hatton, BD

    2013-07-03

    Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescence of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.

  10. Lanthanide-Functionalized Hydrophilic Magnetic Hybrid Nanoparticles: Assembly, Magnetic Behaviour, and Photophysical Properties.

    PubMed

    Han, Shuai; Tang, Yu; Guo, Haijun; Qin, Shenjun; Wu, Jiang

    2016-12-01

    The lanthanide-functionalized multifunctional hybrid nanoparticles combining the superparamagnetic core and the luminescent europium complex were successfully designed and assembled via layer-by-layer strategy in this work. It is noted that the hybrid nanoparticles were modified by a hydrophilic polymer polyethyleneimine (PEI) through hydrogen bonding which bestowed excellent hydrophilicity and biocompatibility on this material. A bright-red luminescence was observed by fluorescence microscopy, revealing that these magnetic-luminescent nanoparticles were both colloidally and chemically stable in PBS solution. Therefore, the nanocomposite with magnetic resonance response and fluorescence probe property is considered to be of great potential in multi-modal bioimaging and diagnostic applications. PMID:27245169

  11. Lanthanide-Functionalized Hydrophilic Magnetic Hybrid Nanoparticles: Assembly, Magnetic Behaviour, and Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Han, Shuai; Tang, Yu; Guo, Haijun; Qin, Shenjun; Wu, Jiang

    2016-05-01

    The lanthanide-functionalized multifunctional hybrid nanoparticles combining the superparamagnetic core and the luminescent europium complex were successfully designed and assembled via layer-by-layer strategy in this work. It is noted that the hybrid nanoparticles were modified by a hydrophilic polymer polyethyleneimine (PEI) through hydrogen bonding which bestowed excellent hydrophilicity and biocompatibility on this material. A bright-red luminescence was observed by fluorescence microscopy, revealing that these magnetic-luminescent nanoparticles were both colloidally and chemically stable in PBS solution. Therefore, the nanocomposite with magnetic resonance response and fluorescence probe property is considered to be of great potential in multi-modal bioimaging and diagnostic applications.

  12. Facile transformation of superhydrophobicity to hydrophilicity by silica/poly(ɛ-caprolactone) composite film

    NASA Astrophysics Data System (ADS)

    Gao, Zhengxin; Zhai, Xianglin; Wang, Chengyu

    2015-12-01

    A smart surface with thermo-responsive wettability was fabricated on the cross section of wood with simple bench chemistry. The surface showed fast response between superhydrophobic and hydrophilic under different temperatures. The reversible wettability from superhydrophobicity to hydrophilicity can be easily achieved by adjusting the temperature between 25 and 60 °C. This reversible wettability is resulted from the synergistic effect of the crystallinity transition of the polymer coated on the surface and the optimized roughness controlled by the silica particles with different sizes. Furthermore, the modified wood surface showed an excellent chemical stability to corrosive liquids under ambient conditions.

  13. Advances in mechanistic understanding of release rate control mechanisms of extended-release hydrophilic matrix tablets.

    PubMed

    Timmins, Peter; Desai, Divyakant; Chen, Wei; Wray, Patrick; Brown, Jonathan; Hanley, Sarah

    2016-08-01

    Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed. PMID:27444495

  14. Expanded experimental parameter space of semiflexible polymer assemblies through programmable nanomaterials

    NASA Astrophysics Data System (ADS)

    Smith, David; Schuldt, Carsten; Lorenz, Jessica; Tschirner, Teresa; Moebius-Winkler, Maximilian; Kaes, Josef; Glaser, Martin; Haendler, Tina; Schnauss, Joerg

    2015-03-01

    Biologically evolved materials are often used as inspiration in the development of new materials as well as examinations into the underlying physical principles governing their behavior. For instance, the biopolymer constituents of the highly dynamic cellular cytoskeleton such as actin have inspired a deep understanding of soft polymer-based materials. However, the molecular toolbox provided by biological systems has been evolutionarily optimized to carry out the necessary functions of cells, and the inability modify basic properties such as biopolymer stiffness hinders a meticulous examination of parameter space. Using actin as inspiration, we circumvent these limitations using model systems assembled from programmable materials such as DNA. Nanorods with comparable, but controllable dimensions and mechanical properties as actin can be constructed from small sets of specially designed DNA strands. In entangled gels, these allow us to systematically determine the dependence of network mechanical properties on parameters such as persistence length and crosslink strength. At higher concentrations in the presence of local attractive forces, we see a transition to highly-ordered bundled and ``aster'' phases similar to those previously characterized in systems of actin or microtubules.

  15. Experimental study on detection of electrostatic discharges generated by polymer granules inside a metal silo.

    PubMed

    Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo

    2014-04-01

    To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study. PMID:24784647

  16. Experimental study on detection of electrostatic discharges generated by polymer granules inside a metal silo

    NASA Astrophysics Data System (ADS)

    Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo

    2014-04-01

    To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.

  17. Hydrophilic-oleophobic stimuli-responsive materials and surfaces

    NASA Astrophysics Data System (ADS)

    Howarter, John A.

    Due to their high surface energy, hydrophilic surfaces are susceptible to contamination which is difficult to remove and often ruins the surface. Hydrophilic-oleophobic coatings have a diverse engineering potential including applications as self-cleaning surfaces, extended life anti-fog coatings, and environmental remediation in the selective filtration of oil-in-water mixtures. A successful design model for hydrophilic-oleophobic behavior has been developed using perfluorinated surfactants covalently bound to a surface. Within this design model, a variety of materials have been explored which the surfactants are covalently bound to a substrate; similarly, the surfactants may also be incorporated as a monomer into bulk copolymers. Surfactant based surfaces exhibited simultaneous hydrophilicity, necessary for anti-fogging, and oleophobicity, necessary for contamination resistance. The combination of these features rendered the surface as self-cleaning. Surfactant based brushes, composed of polyethylene glycol and perfluorinated constituents were grafted on to silica surfaces. The relationship between brush density and stimuli-responsiveness was determined by varying grafting conditions. The resultant surfaces were characterized with respect to chemical composition, brush thickness, and wetting behavior of water and hexadecane. Optimized surfaces exhibited stimuli-responsive behavior such that the surfaces will be wetted by water but not by oil. Surfactants were incorporated into random copolymers to create self-cleaning polymers which could be easily coated on to surfaces post-synthesis. Acrylic acid, methyl methacrylate, and hydroxyethyl methacrylate were used as comonomers; feed ratio was varied to establish compositional limits of stimuli-responsive behavior. Polymer composition dictated coating durability and self-cleaning performance as determined by water and hexadecane contact angle. The ability of select coatings to mitigate fogging was assessed in two

  18. Metal ion binding by pyridylethyl-containing polymers: experimental and theoretical study.

    PubMed

    Bratskaya, Svetlana; Voit, Alexey; Privar, Yuliya; Ziatdinov, Albert; Ustinov, Alexander; Marinin, Dmitry; Pestov, Alexander

    2016-08-01

    Binding of Cu(2+), Ni(2+) and Ag(+) ions to polyallylamine (PAA), polyethylenimine (PEI), poly(N-2-(2-pyridyl)ethylallylamine) (PEPAA), poly(N-2-(2-pyridyl)ethylethylenimine) (PEPEI), and N-2-(2-pyridyl)ethylchitosan (PEC) has been investigated using batch sorption experiments, spectrophotometric titration, ESR, and XPS to elucidate how the structure of polymer precursors affects the ion binding efficiency of their pyridylethylated derivatives. It has been shown that pyridylethylation increases the sorption capacities of PAA and PEI cross-linked with epichlorohydrin toward Ag(+) and Ni(2+) ions, but does not improve or decrease that toward Cu(2+) ions. PEC was the most efficient material for Ag(+) ion sorption with the sorption capacity of 1.21 mmol g(-1). The highest sorption capacity for Ni(2+) (0.62 mmol g(-1)) was found for PEPEI. According to density functional theory (DFT) calculations, lower Cu(2+) binding efficiency to PEPEI results from the "looser" structure of this complex in comparison with unmodified PEI. DFT calculations have also suggested that the Cu(2+) ion is four-coordinated in the complexes with PEPAA and PAA and five-coordinated in all other complexes, which have the structures of distorted square pyramids with Cu-N bond lengths varying significantly depending on the ligand nature. The results of the theoretical investigations of the Cu(2+) complex structures were supported by the ESR data, which revealed the decrease of A‖ and the increase of g‖ values with increasing deviation from the square planar geometry of complexes in the ligands in the order PEI < PEPEI < PEPAA. PMID:27417529

  19. On the Mechanism of Hydrophilicity of Graphene.

    PubMed

    Hong, Guo; Han, Yang; Schutzius, Thomas M; Wang, Yuming; Pan, Ying; Hu, Ming; Jie, Jiansheng; Sharma, Chander S; Müller, Ulrich; Poulikakos, Dimos

    2016-07-13

    It is generally accepted that the hydrophilic property of graphene can be affected by the underlying substrate. However, the role of intrinsic vs substrate contributions and the related mechanisms are vividly debated. Here, we show that the intrinsic hydrophilicity of graphene can be intimately connected to the position of its Fermi level, which affects the interaction between graphene and water molecules. The underlying substrate, or dopants, can tune hydrophilicity by modulating the Fermi level of graphene. By shifting the Fermi level of graphene away from its Dirac point, via either chemical or electrical voltage doping, we show enhanced hydrophilicity with experiments and first principle simulations. Increased vapor condensation on graphene, induced by a simple shifting of its Fermi level, exemplifies applications in the area of interfacial transport phenomena. PMID:27248183

  20. A novel technique using hydrophilic polymers to promote axonal fusion

    PubMed Central

    Bamba, Ravinder; Riley, D. Colton; Kelm, Nathaniel D.; Does, Mark D.; Dortch, Richard D.; Thayer, Wesley P.

    2016-01-01

    The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily repaired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion. PMID:27212898

  1. A novel technique using hydrophilic polymers to promote axonal fusion.

    PubMed

    Bamba, Ravinder; Riley, D Colton; Kelm, Nathaniel D; Does, Mark D; Dortch, Richard D; Thayer, Wesley P

    2016-04-01

    The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily repaired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion. PMID:27212898

  2. Study on experimental characterization of carbon fiber reinforced polymer panel using digital image correlation: A sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Kashfuddoja, Mohammad; Prasath, R. G. R.; Ramji, M.

    2014-11-01

    In this work, the experimental characterization of polymer-matrix and polymer based carbon fiber reinforced composite laminate by employing a whole field non-contact digital image correlation (DIC) technique is presented. The properties are evaluated based on full field data obtained from DIC measurements by performing a series of tests as per ASTM standards. The evaluated properties are compared with the results obtained from conventional testing and analytical models and they are found to closely match. Further, sensitivity of DIC parameters on material properties is investigated and their optimum value is identified. It is found that the subset size has more influence on material properties as compared to step size and their predicted optimum value for the case of both matrix and composite material is found consistent with each other. The aspect ratio of region of interest (ROI) chosen for correlation should be the same as that of camera resolution aspect ratio for better correlation. Also, an open cutout panel made of the same composite laminate is taken into consideration to demonstrate the sensitivity of DIC parameters on predicting complex strain field surrounding the hole. It is observed that the strain field surrounding the hole is much more sensitive to step size rather than subset size. Lower step size produced highly pixilated strain field, showing sensitivity of local strain at the expense of computational time in addition with random scattered noisy pattern whereas higher step size mitigates the noisy pattern at the expense of losing the details present in data and even alters the natural trend of strain field leading to erroneous maximum strain locations. The subset size variation mainly presents a smoothing effect, eliminating noise from strain field while maintaining the details in the data without altering their natural trend. However, the increase in subset size significantly reduces the strain data at hole edge due to discontinuity in

  3. A separation of tyramine on a 2-(4-methoxyphenyl)ethylamine imprinted polymer: an answer from theoretical and experimental studies.

    PubMed

    Luliński, Piotr; Sobiech, Monika; Zołek, Teresa; Maciejewska, Dorota

    2014-11-01

    A 2-(4-methoxyphenyl)ethylamine imprinted polymer (MIP) was successfully applied for the selective separation of tyramine. A computational analysis was used to predict the affinity of the polymer matrix towards tyramine and a preliminary experimental evaluation was made for the target analyte. Then the experimental analysis of polymer towards tyramine was continued. The binding sites were characterized with employment of the Langmuir and Freudlich models. After the optimization of solid phase extraction towards tyramine, the most appropriate systems for the extraction steps were chosen: methanol-water 85:15 v/v for the loading and the washing as well as 0.04 M aq. ammonium acetate-methanol 30:70 v/v for the elution steps. The biogenic compounds as tryptamine, serotonin, octopamine, synephrine, and l-tyrosine were used for the selectivity study on the basis of binding capacities of the analytes on the imprinted and the non-imprinted polymers. The theoretical approach to obtained results allowed to explain the adsorption selectivity of the tested polymer. Finally, the complex matrix of bovine serum albumin was used to show the usefulness of imprinted material for bioanalysis. The obtained recoveries showed the superiority of MIP over the commercial sorbent C18. Total recoveries of tyramine from spiked bovine serum albumin sample were determined as: 95±2%, 14±3%, and 1.9±0.4% for the imprinted, non-imprinted, and commercial C18 sorbents, respectively. PMID:25127579

  4. Theoretical and computer simulation insights into stimuli-responsive polymer systems

    NASA Astrophysics Data System (ADS)

    Kisselev, Alexei M.

    The phase behavior of temperature-responsive polymers with tunable lower critical solution temperatures (LCST) and light-responsive polymers was explored using statistical mechanics and molecular dynamics (MD) simulations. The LCST in water of (ethylene oxide)/ethylene copolymers is tailored by their chemical composition, specifically by the balance of hydrophilic to hydrophobic groups in the polymer. For the first time, the general formalism of the lattice-fluid with hydrogen-bonding (LFHB) theory has been successfully applied to a water-polymer system, a type of system known to be particularly difficult from the modeling perspective. This theory, modified here to account for multiple types of hydrogen bonds, has been shown to be effective when making theoretical predictions as justified by comparison with experimental results. It has been shown that a successful implementation of the LFHB theory is contingent upon an effective numerical implementation, and a numerical algorithm has been developed that specifically targets the computational complexities associated with this model. The series of (ethylene oxide)/ethylene copolymers were studied further with the modified Flory-Huggins with hydrogen bonding (FHHB) approach. A comparative study of LFHB and FHHB theories was undertaken and their relative advantages and drawbacks were revealed. Both theoretical models were shown to be successful in describing the phase behavior of these systems, and the model parameters were found to be transferable between different homologous copolymer series. Expanding beyond temperature-responsive polymer solutions, systems that can potentially find applications in antifouling, drug delivery, and surfaces with switchable tackiness, we subsequently focused on a light-responsive polymer film systems that have applications in photolithography. Similarly to the temperatureresponsive solutions above, for photolithography light-responsive materials exposure to UV radiation triggers the

  5. Pressure dependence of space charge deposition in piezoelectric polymer foams: simulations and experimental verification

    NASA Astrophysics Data System (ADS)

    Harris, Scott; Mellinger, Axel

    2012-06-01

    The piezoelectric activity of PQ-50 cellular polypropylene (PP) foam (an example of a so-called ferroelectret) is measured after repeated charging in a nitrogen atmosphere at a range of pressures between 61 and 381 kPa. The results are compared against simulations using a multilayer electromechanical model based on Townsend's model of Paschen breakdown and a realistic distribution of void heights determined from scanning electron micrographs. The modeled piezoelectric coefficients versus pressure are in good agreement with experimental data when adjusted Paschen coefficients are used, indicating that the Paschen curve for electric breakdown in gases needs to be modified for dielectric barrier discharges in microcavities. The highest d 33 coefficients were achieved for pressures above 251 kPa. For previously uncharged PP foam, the model predicts an optimal charging pressure of 186 kPa.

  6. Switchable Hydrophobic-Hydrophilic Surfaces

    SciTech Connect

    BUNKER, BRUCE C.; HUBER, DALE L.; KENT, MICHAEL S.; YIM, HYUN; CURRO, JOHN G.; LOPEZ, GABRIEL P.; KUSHMERICK, JAMES G.; MANGINELL, RONALD P.; MENDEZ, SERGIO

    2002-12-01

    Tethered films of poly n-isopropylacrylamide (PNIPAM) films have been developed as materials that can be used to switch the chemistry of a surface in response to thermal activation. In water, PNIPAM exhibits a thermally-activated phase transition that is accompanied by significant changes in polymer volume, water contact angle, and protein adsorption characteristics. New synthesis routes have been developed to prepare PNIPAM films via in-situ polymerization on self-assembled monolayers. Swelling transitions in tethered films have been characterized using a wide range of techniques including surface plasmon resonance, attenuated total reflectance infrared spectroscopy, interfacial force microscopy, neutron reflectivity, and theoretical modeling. PNIPAM films have been deployed in integrated microfluidic systems. Switchable PNIPAM films have been investigated for a range of fluidic applications including fluid pumping via surface energy switching and switchable protein traps for pre-concentrating and separating proteins on microfluidic chips.

  7. An experimental and theoretical study of the effect of temperature on the mechanical behavior of nanoclay reinforced polymers

    NASA Astrophysics Data System (ADS)

    Bastos, Nuno R. O.

    The goals of this study are to investigate the tensile loading and low velocity impact response of nanoclay reinforced polymers at various temperatures. Three types of polypropylene (PP 3371, Borealis and TP 3868) and epoxy with various nanoclay reinforcement percentages were considered. Tensile tests were conducted on ASTM Type I specimens instrumented with strain gauges using an MTS testing machine equipped with an environmental chamber. Low velocity impact tests were also performed using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Tensile test results were used to determine the effect of nanoclay reinforcement and different resins on the mechanical properties at various temperatures. The tensile tests results indicate that the Young's modulus of the nanocomposite increases with increasing nanoclay reinforcement percentage. The temperature has even a more significant effect. It was observed that as the temperature decreases the material becomes brittle, has higher stiffness and fails at lower strains. High temperatures have the opposite effect, in that, as the temperature increases the material loses stiffness and becomes more ductile. Temperature and nanoclay reinforcement affect the Poisson's ratio also, but this effect is less significant. In general, as the temperature increases the Poisson's ratio also increases. However, an increase in nanoclay reinforcement generally reduces the Poisson's ratio. The mechanical properties of polymer/clay nanocomposites were also calculated using the Mori-Tanaka formulation and the finite element method. Furthermore, the Mori-Tanaka model was modified to include the effect of temperature and voids. In the Mori-Tanaka formulation three types of nanoclay particle distribution was assumed: oriented nanoclay particles parallel to the direction of tensile loading, 2-D randomly distributed particles and 3-D randomly distributed particles. The finite element calculations were performed on a

  8. Improvement of PET surface hydrophilicity and roughness through blending

    SciTech Connect

    Kolahchi, Ahmad Rezaei; Ajji, Abdellah; Carreau, Pierre J.

    2015-05-22

    Controlling the adhesion of the polymer surface is a key issue in surface science, since polymers have been a commonly used material for many years. The surface modification in this study includes two different aspects. One is to enhance the hydrophilicity and the other is to create the roughness on the PET film surface. In this study we developed a novel and simple approach to modify polyethylene terephthalate (PET) film surface through polymer blending in twin-screw extruder. One example described in the study uses polyethylene glycol (PEG) in polyethylene terephthalate (PET) host to modify a PET film surface. Low content of polystyrene (PS) as a third component was used in the system to increase the rate of migration of PEG to the surface of the film. Surface enrichment of PEG was observed at the polymer/air interface of the polymer film containing PET-PEG-PS whereas for the PET-PEG binary blend more PEG was distributed within the bulk of the sample. Furthermore, a novel method to create roughness at the PET film surface was proposed. In order to roughen the surface of PET film, a small amount of PKHH phenoxy resin to change PS/PET interfacial tension was used. The compatibility effect of PKHH causes the formation of smaller PS droplets, which were able to migrate more easily through PET matrix. Consequently, resulting in a locally elevated concentration of PS near the surface of the film. The local concentration of PS eventually reached a level where a co-continuous morphology occurred, resulting in theinstabilities on the surface of the film.

  9. Improvement of PET surface hydrophilicity and roughness through blending

    NASA Astrophysics Data System (ADS)

    Kolahchi, Ahmad Rezaei; Ajji, Abdellah; Carreau, Pierre. J.

    2015-05-01

    Controlling the adhesion of the polymer surface is a key issue in surface science, since polymers have been a commonly used material for many years. The surface modification in this study includes two different aspects. One is to enhance the hydrophilicity and the other is to create the roughness on the PET film surface. In this study we developed a novel and simple approach to modify polyethylene terephthalate (PET) film surface through polymer blending in twin-screw extruder. One example described in the study uses polyethylene glycol (PEG) in polyethylene terephthalate (PET) host to modify a PET film surface. Low content of polystyrene (PS) as a third component was used in the system to increase the rate of migration of PEG to the surface of the film. Surface enrichment of PEG was observed at the polymer/air interface of the polymer film containing PET-PEG-PS whereas for the PET-PEG binary blend more PEG was distributed within the bulk of the sample. Furthermore, a novel method to create roughness at the PET film surface was proposed. In order to roughen the surface of PET film, a small amount of PKHH phenoxy resin to change PS/PET interfacial tension was used. The compatibility effect of PKHH causes the formation of smaller PS droplets, which were able to migrate more easily through PET matrix. Consequently, resulting in a locally elevated concentration of PS near the surface of the film. The local concentration of PS eventually reached a level where a co-continuous morphology occurred, resulting in theinstabilities on the surface of the film.

  10. Hydrophilic surface modification of acrylate-based biomaterials.

    PubMed

    Arnal-Pastor, M; Comín-Cebrián, S; Martínez-Ramos, C; Monleón Pradas, M; Vallés-Lluch, A

    2016-04-01

    Acrylic polymers have proved to be excellent with regard to cell adhesion, colonization and survival, in vitro and in vivo. Highly ordered and regular pore structures thereof can be produced with the help of polyamide templates, which are removed with nitric acid. This treatment converts a fraction of the ethyl acrylate side groups into acrylic acid, turning poly(ethyl acrylate) scaffolds into a more hydrophilic and pH-sensitive substrate, while its good biological performance remains intact. To quantify the extent of such a modification, and be able to characterize the degree of hydrophilicity of poly(ethyl acrylate), poly(ethyl acrylate) was treated with acid for different times (four, nine and 17 days), and compared with poly(acrylic acid) and a 90/10%wt. EA/AAc copolymer (P(EA-co-AAc)). The biological performance was also assessed for samples immersed in acid up to four days and the copolymer, and it was found that the incorporation of acidic units on the material surface was not prejudicial for cells. This surface modification of 3D porous hydrophobic scaffolds makes easier the wetting with culture medium and aqueous solutions in general, and thus represents an advantage in the manageability of the scaffolds. PMID:26767395

  11. Dispersion of carbon nanotubes in organic solvent by commercial polymers with ethylene chains: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Shigeta, Masahiro; Kamiya, Katsumasa; Uejima, Mitsugu; Okada, Susumu

    2015-03-01

    We demonstrate the possible candidate dispersion agents that can uniformly disperse carbon nanotubes (CNTs) into organic solvent, from among commercially available polymers. We find that CNTs were well dispersed into dimethylacetamide with the use of polystyrene, poly(vinyl chloride), and poly(vinyl pyrrolidone) as dispersion agents. Theoretical calculations revealed that the dispersibility of these polymers arises from the moderate strength and preferential directionality of the interactions between the CNTs and the polymers.

  12. A Simplified Model of Moisture Transport in Hydrophilic Porous Media With Applications to Pharmaceutical Tablets.

    PubMed

    Klinzing, Gerard R; Zavaliangos, Antonios

    2016-08-01

    This work establishes a predictive model that explicitly recognizes microstructural parameters in the description of the overall mass uptake and local gradients of moisture into tablets. Model equations were formulated based on local tablet geometry to describe the transient uptake of moisture. An analytical solution to a simplified set of model equations was solved to predict the overall mass uptake and moisture gradients with the tablets. The analytical solution takes into account individual diffusion mechanisms in different scales of porosity and diffusion into the solid phase. The time constant of mass uptake was found to be a function of several key material properties, such as tablet relative density, pore tortuosity, and equilibrium moisture content of the material. The predictions of the model are in excellent agreement with experimental results for microcrystalline cellulose tablets without the need for parameter fitting. The model presented provides a new method to analyze the transient uptake of moisture into hydrophilic materials with the knowledge of only a few fundamental material and microstructural parameters. In addition, the model allows for quick and insightful predictions of moisture diffusion for a variety of practical applications including pharmaceutical tablets, porous polymer systems, or cementitious materials. PMID:27381910

  13. Selective extraction and determination of chlorogenic acid in fruit juices using hydrophilic magnetic imprinted nanoparticles.

    PubMed

    Hao, Yi; Gao, Ruixia; Liu, Dechun; He, Gaiyan; Tang, Yuhai; Guo, Zengjun

    2016-06-01

    In this paper, the novel hydrophilic magnetic molecularly imprinted nanoparticles were developed for selective separation and determination of chlorogenic acid in aqueous fruit juices. The polymers were prepared by using amino-functionalized magnetic nanoparticles as carriers, branched polyethyleneimine as functional monomer, and chlorogenic acid as template molecule. Branched polyethyleneimine with abundant active amino groups could react with template sufficiently, and its unique dendritic structure may amplify the number of the imprinted cavities. Meanwhile, it would improve the hydrophilicity of imprinted materials for attaining high extraction efficiency. The resulted polymers exhibit fast kinetics, high adsorption capacity, and favorable selectivity. In addition, the obtained nanoparticles were used as solid-phase extraction sorbents for selective isolation and determination of chlorogenic acid in peach, apple, and grape juices (0.92, 4.21, and 0.75 μg mL(-1), respectively). PMID:26830581

  14. Hydrophilic quantum dots stability against an external low-strength electric field

    NASA Astrophysics Data System (ADS)

    Goftman, Valentina V.; Pankratov, Vladislav A.; Markin, Alexey V.; Ginste, Dries Vande; De Saeger, Sarah; Goryacheva, Irina Yu.

    2016-02-01

    Since the stability of nanobiolabels plays a key role in their application, we thoroughly investigated how an external, low-strength electric field impacts on the fluorescent properties of hydrophilic quantum dots (QDs). Two fundamentally different approaches were applied to make the QDs water-soluble, i.e. ligand exchange (namely silica covering) and encapsulation with an amphiphilic polymer. It is shown that, even under a low-strength electric field, the polymer-coated QDs could lose 90% of their brightness because of the weak interaction between the QD's surface and the polymeric molecule. Silica-covered QDs, on the contrary, stay bright and stable owing to the covalently attached dense silica shell. These findings, which are clearly explained and illustrated in the present paper, are of critical importance in the context of hydrophilic QDs' bioapplication.

  15. Tuning the dispersibility of carbon nanostructures from organophilic to hydrophilic: towards the preparation of new multipurpose carbon-based hybrids.

    PubMed

    Georgakilas, Vasilios; Kouloumpis, Antonios; Gournis, Dimitrios; Bourlinos, Athanasios; Trapalis, Christos; Zboril, Radek

    2013-09-16

    The hydroxyphenyl derivatives of carbon nanostructures (graphene and carbon nanotubes) can be easily transformed into highly organophilic or hydrophilic derivatives by using the ionic interactions between the phenolic groups and oleylamine or tetramethylammonium hydroxide, respectively. The products were finely dispersed in homo-polymers or block co-polymers to create homogeneous carbon-based nanocomposites and were used as nanocarriers for the dispersion and protection of strongly hydrophobic compounds, such as large aromatic chromophores or anticancer drugs in aqueous solutions. PMID:23934746

  16. Viscosity and yield stress reduction in non-colloidal concentrated suspensions by surface modification with polymers and surfactants and/or nanoparticle addition.

    PubMed

    Marquez, Maricel; Robben, Amanda; Grady, Brian P; Robb, Ian

    2006-03-15

    A custom-designed apparatus termed the yield stress adaptor (YSA) has been used to evaluate the effect of polymer-surfactant coatings, and the addition of nanoparticles of different size, shape and surface chemistry, on the rheological properties of large hydrophilic particulates, sand, with the aim of reducing interparticle friction forces. Experimental results show that the flow properties of sand slurries at high volume fractions of sand (>50%) can be significantly enhanced by adding nanoparticles, and by surface modification with polymer/surfactant mixtures. A lesser effect is observed for polymer-only and surfactant-only coated samples. X-ray photoelectron spectroscopy was used to determine the concentration of organic species at the surface. The effect of polymer/surfactant concentration, adsorption time, polymer molecular weight, as well as surfactant charge and chemical structure were also addressed. PMID:16289129

  17. Experimental simulation of radiation damage of polymers in space applications by cosmic-ray-type high energy heavy ions and the resulting changes in optical properties

    NASA Astrophysics Data System (ADS)

    Hossain, U. H.; Ensinger, W.

    2015-12-01

    Devices operating in space, e.g. in satellites, are being hit by cosmic rays. These include so-called HZE-ions, with High mass (Z) and energy (E). These highly energetic heavy ions penetrate deeply into the materials and deposit a large amount of energy, typically several keV per nm range. Serious damage is created. In space vehicles, polymers are used which are degraded under ion bombardment. HZE ion irradiation can experimentally be simulated in large scale accelerators. In the present study, the radiation damage of aliphatic vinyl- and fluoro-polymers by heavy ions with energies in the GeV range is described. The ions cause bond scission and create volatile small molecular species, leading to considerable mass loss of the polymers. Since hydrogen, oxygen and fluorine-containing molecules are created and these elements are depleted, the remaining material is carbon-richer than the original polymers and contains conjugated CC double bonds. This process is investigated by measuring the optical band gap with UV-Vis absorption spectrometry as a function of ion fluence. The results show how the optical band gaps shift from the UV into the Vis region upon ion irradiation for the different polymers.

  18. Polymers for Drug Delivery Systems

    PubMed Central

    Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.

    2012-01-01

    Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577

  19. Antirestenotic Effects of a Novel Polymer-Coated D-24851 Eluting Stent. Experimental Data in a Rabbit Iliac Artery Model

    SciTech Connect

    Lysitsas, Dimitrios N.; Katsouras, Christos S.; Papakostas, John C.; Toumpoulis, Ioannis K.; Angelidis, Charalampos; Bozidis, Petros; Thomas, Christopher G.; Seferiadis, Konstantin; Psychoyios, Nikolaos; Frillingos, Stathis; Pavlidis, Nikolaos; Marinos, Euaggelos; Khaldi, Lubna; Sideris, Dimitris A.; Michalis, Lampros K.

    2007-11-15

    Experimental and clinical data suggest that stents eluting antiproliferative agents can be used for the prevention of in-stent restenosis. Here we investigate in vitro the antiproliferative and apoptotic effect of D-24851 and evaluate the safety and efficacy of D-24851-eluting polymer-coated stents in a rabbit restenosis model (n = 53). Uncoated stents (n = 6), poly (dl-lactide-co-glycolide) (PLGA)-coated stents (n = 7), and PLGA-coated stents loaded with 0.08 {+-} 0.0025 {mu}M (31 {+-} 1 {mu}g; low dose; n = 7), 0.55 {+-} 0.02 {mu}M (216 {+-} 8 {mu}g; high dose; n = 6), and 4.55 {+-} 0.1 {mu}M (1774 {+-} 39 {mu}g; extreme dose; n = 5) of D-24851 were randomly implanted in New Zealand rabbit right iliac arteries and the animals were sacrificed after 28 days for histomorphometric analysis. For the assessment of endothelial regrowth in 90 days, 12 rabbits were subjected to PLGA-coated (n = 3), low-dose (n = 3), high-dose (n = 3), and extreme-dose (n = 3) stent implantation. In vitro studies revealed that D-24851 exerts its growth inhibitory effects via inhibition of proliferation and induction of apoptosis without increasing the expression of heat shock protein-70, a cytoprotective and antiapoptotic protein. Treatment with low-dose D-24851 stents was associated with a significant reduction in neointimal area and percentage stenosis only compared with bare metal stents (38% [P = 0.029] and 35% [P = 0.003] reduction, respectively). Suboptimal healing, however, was observed in all groups of D-24851-loaded stents in 90 days in comparison with PLGA-coated stents. We conclude that low-dose D-24851-eluting polymer-coated stents significantly inhibit neointimal hyperplasia at 28 days through inhibition of proliferation and enhancement of apoptosis. In view of the suboptimal re-endothelialization, longer-term studies are needed in order to establish whether the inhibition of intimal growth is maintained.

  20. Elucidating the Origin of the Attractive Force among Hydrophilic Macroions

    PubMed Central

    Liu, Zhuonan; Liu, Tianbo; Tsige, Mesfin

    2016-01-01

    Coarse-grained simulation approach is applied to provide a general understanding of various soluble, hydrophilic macroionic solutions, especially the strong attractions among the like-charged soluble macroions and the consequent spontaneous, reversible formation of blackberry structures with tunable sizes. This model captures essential molecular details of the macroions and their interactions in polar solvents. Results using this model provide consistent conclusions to the experimental observations, from the nature of the attractive force among macroions (counterion-mediated attraction), to the blackberry formation mechanism. The conclusions can be applied to various macroionic solutions from inorganic molecular clusters to dendrimers and biomacromolecules. PMID:27215898

  1. Elucidating the origin of the attractive force among hydrophilic macroions

    DOE PAGESBeta

    Liu, Zhuonan; Liu, Tianbo; Tsige, Mesfin

    2016-05-24

    In this study, coarse-grained simulation approach is applied to provide a general understanding of various soluble, hydrophilic macroionic solutions, especially the strong attractions among the like-charged soluble macroions and the consequent spontaneous, reversible formation of blackberry structures with tunable sizes. This model captures essential molecular details of the macroions and their interactions in polar solvents. Results using this model provide consistent conclusions to the experimental observations, from the nature of the attractive force among macroions (counterion-mediated attraction), to the blackberry formation mechanism. The conclusions can be applied to various macroionic solutions from inorganic molecular clusters to dendrimers and biomacromolecules.

  2. Elucidating the Origin of the Attractive Force among Hydrophilic Macroions.

    PubMed

    Liu, Zhuonan; Liu, Tianbo; Tsige, Mesfin

    2016-01-01

    Coarse-grained simulation approach is applied to provide a general understanding of various soluble, hydrophilic macroionic solutions, especially the strong attractions among the like-charged soluble macroions and the consequent spontaneous, reversible formation of blackberry structures with tunable sizes. This model captures essential molecular details of the macroions and their interactions in polar solvents. Results using this model provide consistent conclusions to the experimental observations, from the nature of the attractive force among macroions (counterion-mediated attraction), to the blackberry formation mechanism. The conclusions can be applied to various macroionic solutions from inorganic molecular clusters to dendrimers and biomacromolecules. PMID:27215898

  3. Coherent structures in liquid water close to hydrophilic surfaces

    NASA Astrophysics Data System (ADS)

    Del Giudice, Emilio; Tedeschi, Alberto; Vitiello, Giuseppe; Voeikov, Vladimir

    2013-06-01

    Quantum Electrodynamics (QED) predicts the occurrence of a number of coherent dynamical phenomena in liquid water. In the present paper we focus our attention on the joint coherent oscillation of the almost free electrons produced by the coherent oscillation of the electron clouds of water molecules, which has been described in previous publications, and of the negative electric charges lying on the solid surfaces wet by water. This joint coherent oscillation gives rise to a number of phenomenological consequences which are found to exist in the physical reality and coincide with the layers of Exclusion Zone (EZ) water experimentally observed close to hydrophilic surfaces.

  4. Superhydrophobic floatability of a hydrophilic object driven by edge effect

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-11-01

    It is generally believed that a water-repellent surface is necessary for small insects to stand on water. Through a combined experimental and theoretical study, we demonstrate that an object with hydrophilic surface can float with apparent contact angle greater than 90° due to edge effect. The apparent contact angle rises with increasing loading even to a value typically displayed only by superhydrophobic surfaces. On the basis of free energy minimization, two regimes are identified. When buoyancy controls, the meniscus meets the object with the intrinsic contact angle. As surface tension dominates, however, contact angle is regulated by total force balance.

  5. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    PubMed Central

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  6. Hydration force fluctuations in hydrophilic planar systems.

    PubMed

    Kanduč, Matej; Netz, Roland R

    2016-03-01

    Utilizing all-atom simulations with explicit solvent, the authors model hydrophilic surfaces interacting across water at a fixed chemical potential. They extract the hydration forces acting between the surfaces and assess force fluctuations as well as interlamellar water number fluctuations. The trends obtained from the simulations are captured by a continuum-based description with effective model parameters. The significance of fluctuations depends on surface hydrophilicity and rigidity. The authors show that the force fluctuations play an important role in kinetic processes in systems with lateral sizes smaller than several tens of nanometers. PMID:26746163

  7. Stabilization of magnetorheological suspensions by polyacrylic acid polymers.

    PubMed

    Viota, J L; de Vicente, J; Durán, J D G; Delgado, A V

    2005-04-15

    This work is devoted to the synthesis and stabilization of magnetorheological suspensions constituted by monodisperse micrometer-sized magnetite spheres in aqueous media. The electrical double-layer characteristics of the solid/liquid interface were studied in the absence and presence of adsorbed layers of high molecular weight polyacrylic acids (PAA; Carbopol). Since the Carbopol-covered particles can be thought of as "soft" colloids, Ohshima's theory was used to gain information of the surface potential and the charge density of the polymer layer. The effect of the pH of the solution on the double-layer characteristics is related to the different conformations of the adsorbed molecules provoked by the dissociation of the acrylic groups present in polymer molecules. The stability of the suspensions was experimentally studied for different pH and polymer concentrations, and in the absence or presence of a weak magnetic field applied. The stability of the suspensions was explained using the classical DLVO theory of colloidal stability extended to account for hydration, steric, and magnetic interactions between particles. Diagrams of potential energy vs interparticle distance show the predominant effect of steric, hydrophilic/hydrophobic, and magnetic interactions on the whole stability of the system. The best conditions to obtain stable suspensions were found when strong steric and hydrophilic repulsions hinder the coagulation between polymer-covered particles, simultaneously avoiding sedimentation by the thickening effect of the polymer solution. When a not too high molecular weight PAA was employed in a low concentration, the task of a long-time antisettling effect compatible with the desired magnetic response of the fluid was achieved. PMID:15780292

  8. Theoretical development and experimental validation of a thermally dissipative cohesive zone model for dynamic fracture of amorphous polymers

    NASA Astrophysics Data System (ADS)

    Bjerke, Todd W.; Lambros, John

    2003-06-01

    A thermally dissipative cohesive zone model is developed for predicting the temperature increase at the tip of a crack propagating dynamically in a nominally brittle material exhibiting a cohesive-type failure such as crazing. The model assumes that fracture energy supplied to the crack tip region that is in excess of that needed for the creation of new free surfaces during crack advance is converted to heat within the cohesive zone. Bulk dissipation mechanisms, such as plasticity, are not accounted for. Several cohesive traction laws are examined, and the model is then used to make predictions of crack tip heating at various crack propagation speeds in the nominally brittle amorphous polymer PMMA, observed to fail by a crazing-type mechanism. The heating predictions are compared to experimental data where the temperature field surrounding a high speed crack in PMMA was measured. Measurements are made in real time using a multi-point high speed HgCdTe infrared radiation detector array. At the same time as temperature, simultaneous measurement of fracture energy is made by a strain gauge technique, and crack tip speed is monitored through a resistance ladder method. Material strength can be estimated through uniaxial tension tests, thus minimizing the need for parameter fitting in the stress-opening traction law. Excellent agreement between experiments and theory is found for two of the cohesive traction law temperature predictions, but only for the case where a single craze is active during the dynamic fracture of PMMA, i.e. crack tip speed up to approximately 0.2 cR. For higher speed fracture where subsurface damage becomes prominent, the line dissipation model of a cohesive zone is inadequate, and a distributed damage model is needed.

  9. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Beger, Lauren; Roberts, Lily; deGroh, Kim; Banks, Bruce

    2007-01-01

    In the low Earth orbit (LEO) space environment, spacecraft surfaces can be altered during atomic oxygen exposure through oxidation and erosion. There can be terrestrial benefits of such interactions, such as the modification of hydrophobic or hydrophilic properties of polymers due to chemical modification and texturing. Such modification of the surface may be useful for biomedical applications. For example, atomic oxygen texturing may increase the hydrophilicity of polymers, such as chlorotrifluoroethylene (Aclar), thus allowing increased adhesion and spreading of cells on textured Petri dishes. The purpose of this study was to determine the effect of atomic oxygen exposure on the hydrophilicity of nine different polymers. To determine whether hydrophilicity remains static after atomic oxygen exposure or changes with exposure, the contact angles between the polymer and a water droplet placed on the polymer s surface were measured. The polymers were exposed to atomic oxygen in a radio frequency (RF) plasma asher. Atomic oxygen plasma treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Significant decreases in the water contact angle occurred with atomic oxygen exposure. Fluorinated polymers were found to be less sensitive to changes in hydrophilicity for equivalent atomic oxygen exposures, and two of the fluorinated polymers became more hydrophobic. The majority of change in water contact angle of the non-fluorinated polymers was found to occur with very low fluence exposures, indicating potential cell culturing benefit with short treatment time.

  10. Nanostructured polymer membranes for proton conduction

    DOEpatents

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.