These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Advanced Hydropower Turbine Systems  

NSDL National Science Digital Library

The Idaho National Engineering and Environmental Laboratory manages this program, which explores and develops technology to improve current hydropower resources. Although hydroelectric generation systems produce far fewer harmful emissions than other options, they can have a detrimental effect to downstream water quality. Fish are very susceptible to injury or death from turbine systems. Several reports from the Advanced Hydropower Turbine Systems program, addressing these issues and documenting research into possible solutions, are available from this site. One of the most interesting projects of the program is the Sensor Fish. This device is used "to characterize physical conditions fish experience during passage through hydro turbines, spill stilling basins, high-discharge outfalls, and other dam passage routes."

2002-01-01

2

Development of environmentally advanced hydropower turbine system design concepts  

SciTech Connect

A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

1997-08-01

3

Analysis of Pump-Turbine S Instability and Reverse Waterhammer Incidents in Hydropower Systems  

SciTech Connect

Hydraulic systems continually experience dynamic transients or oscillations which threaten the hydroelectric plant from extreme water hammer pressures or resonance. In particular, the minimum pressure variations downstream of the turbine runner during the load rejection or other events may cause dangerous water column separation and subsequent rejoinder. Water column separation can be easily observed from the measurements of site transient tests, and has indeed caused serious historical damages to the machine and water conveyance system. Several technical issues regarding water column separation in draft tubes, including S instability of turbine characteristic curves, numerical instability and uncertainty of computer programs, are discussed here through case studies and available model and site test data. Catastrophic accidents experienced at a Kaplan turbine and in a long tailrace tunnel project, as well as other troubles detected in a more timely fashion, are revisited in order to demonstrate the severity of reverse water hammer. However, as there is no simple design solutions for such complex systems, this paper emphasizes that the design of hydraulic systems is always difficult, difficulties that are compounded when the phenomena in question are non-linear (water hammer), dynamic (involving wave interaction and complex devices of turbines, controls, and electrical systems), and non-monotonic (severity of response is seldom simply connected to severity of load as with vibrations and resonance, and the complexity of transient loads), and thus may lead to high economic and safety challenges and consequences.

Pejovic, Dr. Stanislav [University of Toronto] [University of Toronto; Zhang, Qin Fen [ORNL] [ORNL; Karney, Professor Byran W. [University of Toronto] [University of Toronto; Gajic, Prof. Aleksandar [University of Belgrade, Belgrade, Serbia] [University of Belgrade, Belgrade, Serbia

2011-01-01

4

Dan jiang kou hydropower station turbine refurbishment  

NASA Astrophysics Data System (ADS)

Dan jiangkou hydropower station refurbished project, isan important project of Chinese refurbishment market. Tianjin Alstom Hydro Co., ltd won this contract by right of good performance and design technology,Its design took into account all the constraints linked to the existing frame. It results in a specific and highly advanced shape.The objective of this paper is to introduce the successful turbine hydraulic design, model test and mechanical design of Dan jiangkou project; and also analyze the cavitation phenomena occurred on runner band surface of Unit 4 after putting into commercial operation. These technology and feedback shall be a good reference and experience for other similar projects

Zhang, R. Y.; Nie, S. Q.; Bazin, D.; Cheng, J. H.

2012-11-01

5

Development of a Simple Impulse Turbine for Nano Hydropower  

NASA Astrophysics Data System (ADS)

The aim of this work is to provide an impulse type hydraulic turbine to utilize unexploited water resources as nano hydropower in the mountainous area. The turbine is simplified to make cheap energy and uses inexpensive components for widespread utilization. The turbine model is tested experimentally to reveal the power characteristics. The flow visualization and numerical simulation are conducted to clarify the behavior of free surface flow in the runner with different nozzle positions. The experimental results show that the maximum runner efficiency of the prototype turbine is 0.56. Numerical simulation shows that the output power depends on the nozzle positions with the impingement of the tail of the jet portion to the backside of the blade. This study gives the fundamental information of the turbine performance to acquire a guideline for future practical applications.

Nakanishi, Yuji; Iio, Shouichiro; Takahashi, Yoji; Kato, Akito; Ikeda, Toshihiko

6

Hydropower development in remote locations of developing countries. [Cross-flow turbines  

Microsoft Academic Search

In many developing countries hydropower can be used to replace the consumption of imported oil. The economic advantage of using hydropower increases if a low cost, locally manufactured turbine, called the cross flow turbine, can be used. This paper discusses the technical design and use of the cross flow turbine in the context of a hydroelectric development project in Africa.

G. J. II

1985-01-01

7

Hydropower development in remote locations of developing countries. [Cross-flow turbines  

SciTech Connect

In many developing countries hydropower can be used to replace the consumption of imported oil. The economic advantage of using hydropower increases if a low cost, locally manufactured turbine, called the cross flow turbine, can be used. This paper discusses the technical design and use of the cross flow turbine in the context of a hydroelectric development project in Africa. 12 references, 8 figures, 2 tables.

Smith, G.J. II

1985-01-01

8

Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling  

SciTech Connect

In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

2011-01-04

9

Fish behavior in relation to modeling fish passage through hydropower turbines: A review  

SciTech Connect

We evaluated the literature on fish behavior as it relates to passage of fish near or through hydropower turbines. The goal was to foster compatibility of engineered systems with the normal behavior patterns of fish species and life stages such that entrainment into turbines and injury in passage are minimized. We focused on aspects of fish behavior that could be used for computational fluid dynamics (CFD) modeling of fish trajectories through turbine systems. Downstream-migrating salmon smolts are generally surface oriented and follow flow. Smolts orient to the ceilings of turbine intakes but are horizontally distributed more evenly, except as affected by intake-specific turbulence and vortices. Smolts often enter intakes oriented head-upstream. Non-salmonids are entrained episodically, suggesting accidental capture of schools (often of juveniles or in cold water) and little behavioral control during turbine passage. Models of fish trajectories should not assume neutral buoyancy throughout the time a fish passes through a turbine, largely because of pressure effects on swim bladders. Fish use their lateral line system to sense obstacles and change their orientation, but this sensory-response system may not be effective in the rapid passage times of turbine systems. A Effects of pre-existing stress levels on fish performance in turbine passage are not well known but may be important. There are practical limits of observation and measurement of fish and flows in the proximity of turbine runners that may inhibit development of information germane to developing a more fish-friendly turbine. We provide recommendations for CFD modelers of fish passage and for additional research. 20 refs., 2 figs.

Coutant, C.C. [Oak Ridge National Lab., TN (United States); Whitney, R.R.

1997-06-01

10

EPRI-DOE Conference on Environmentally- Enhanced Hydropower Turbines: Technical Papers  

SciTech Connect

The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held in Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world

None

2011-12-01

11

Numerical and in-situ investigations of water hammer effects in Drava river Kaplan turbine hydropower plants  

NASA Astrophysics Data System (ADS)

This paper deals with critical flow regimes that may induce unacceptable water hammer in Kaplan turbine hydropower plants. Water hammer analysis should be performed for normal, emergency and catastrophic operating conditions. Hydropower plants with Kaplan turbines are usually comprised of relatively short inlet and outlet conduits. The rigid water hammer theory can be used for this case. For hydropower plants with long penstocks the elastic water hammer should be used. Some Kaplan turbine units are installed in systems with long open channels. In this case, water level oscillations in the channels should be carefully investigated. Computational results are compared with results of measurements in recently rehabilitated seven Drava river hydroelectric power plants in Slovenia. Water hammer in the six power plants is controlled by appropriate adjustment of the wicket gates and runner blades closing/opening manoeuvres. Due to very long inflow and outflow open channels in Zlatoli?je HPP a special vaned pressure regulating device attenuates extreme pressures in Kaplan turbine flow-passage system and controls unsteady flow in both open channels. Comparisons of results include normal operating regimes. The agreement between computed and measured results is reasonable.

Bergant, A.; Gregorc, B.; Gale, J.

2012-11-01

12

Study on Nonlinear Dynamical Model and Control Strategy of Transient Process in Hydropower Station with Francis Turbine  

Microsoft Academic Search

The transient process in conduits of hydropower stations is a very complicated dynamic procedure coupled with fluid, machines, electricity. In this paper, a whole nonlinear dynamical model of transient process in hydropower station with Francis turbine has been developed, and the control strategies of each transient process are studied. The nonlinear characteristics of hydraulic turbine and the elastic water hammer

Haiyan Bao; Jiandong Yang; Liang Fu

2009-01-01

13

Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems  

Microsoft Academic Search

This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water. The

A. Tilmant; Q. Goor; D. Pinte

2009-01-01

14

Fuzzy multiobjective models for optimal operation of a hydropower system  

NASA Astrophysics Data System (ADS)

Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

2013-06-01

15

Modeling California's high-elevation hydropower systems in energy units  

NASA Astrophysics Data System (ADS)

This paper presents a novel approach for modeling high-elevation hydropower systems. Conservation of energy and energy flows (rather than water volume or mass flows) is used as the basis for modeling more than 135 high-elevation high-head hydropower sites throughout California. The unusual energy basis for reservoir modeling allows for development of hydropower operations models for a large number of plants to estimate large-scale system behavior without the expense and time needed to develop traditional streamflow and reservoir volume-based models in absence of storage and release capacity, penstock head, and efficiency information. Potential applications of the developed Energy-Based Hydropower Optimization Model (EBHOM) include examination of the effects of climate change and energy prices on system-wide generation and hydropower revenues. An extensive comparison of the EBHOM with a traditional hydropower optimization model used in California produced similar results and indicated good reliability of EBHOM's predictions.

Madani, Kaveh; Lund, Jay R.

2009-09-01

16

Research on Darrieus-type hydraulic turbine for extra-low head hydropower utilization  

NASA Astrophysics Data System (ADS)

A Darrieus-type turbine has been investigated for extra-low head hydropower utilization. In the present paper, authors'research on Darrieus-type hydraulic turbine is briefly reviewed. The working principle of Darrieus turbine is explained with advantage of its simple structure, at first. Then the fluid-dynamic difference between rotating and linear motions of a blade in a uniform flow is clarified with guiding principle of high performance design of Darrieus turbine. Cavitation problem is also described. Next, effects of duct-casing, consisting of an intake, runner section and draft tube, are discussed and a simplified structure of Darrieus turbine is shown by installing the inlet nozzle. Finally, in the practical use, an adjustment of inlet nozzle section by lowering the inlet nozzle height is proposed when flow rate is varied temporally and seasonally.

Furukawa, A.; Watanabe, S.; Okuma, K.

2012-11-01

17

Harnessing Hydropower: The Earth's Natural Resource  

SciTech Connect

This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

none,

2011-04-01

18

Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing  

SciTech Connect

The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

None

2011-10-01

19

Velocity field in the wake of a hydropower farm equipped with Achard turbines  

NASA Astrophysics Data System (ADS)

The study consists of experimental and numerical investigations related to the water flow in the wake of a hydropower farm, equipped with three Achard turbines. The Achard turbine is a French concept of vertical axis cross-flow marine current turbine, with three vertical delta-blades, which operates irrespective of the water flow direction. A farm model built at 1:5 scale has been tested in a water channel. The Achard turbines run in stabilized current, so the flow can be assumed to be almost unchanged in horizontal planes along the vertical z-axis, thus allowing 2D numerical modelling, for different farm configurations: the computational domain is a cross-section of all turbines at a certain z-level. The two-dimensional numerical model of that farm has been used to depict the velocity field in the wake of the farm, with COMSOL Multiphysics and FLUENT software, to compute numerically the overall farm efficiency. The validation of the numerical models with experimental results is performed via the measurement of velocity distribution, by Acoustic Doppler Velocimetry, in the wake of the middle turbine within the farm. Three basic configurations were studied experimentally and numerically, namely: with all turbines aligned on a row across the upstream flow direction; with turbines in an isosceles triangular arrangement pointing downstream; with turbines in an isosceles triangular arrangement pointing upstream. As long as the numerical flow in the wake fits the experiments, the numerical results for the power coefficient (turbine efficiency) are trustworthy. The farm configuration with all turbines aligned on a same row leads to lower values of the experimental velocities than the numerical ones, while the farm configurations where the turbines are in isosceles triangular arrangement, pointing downstream or upstream, present a better match between numerical and experimental data.

Georgescu, A.-M.; Georgescu, S. C.; Cosoiu, C. I.; Alboiu, N.; Hamzu, Al

2010-08-01

20

Environmental and water-quality operational studies: improvement of hydropower-release dissolved oxygen with turbine venting. Final report  

Microsoft Academic Search

This report summarizes various in-lake, in-structure, and downstream techniques to enhance the dissolved oxygen concentration of hydropower releases. In-lake and in-structure techniques appear to be the most applicable for Corps of Engineers projects because of the large discharges of most hydropower projects. Of these, the in-structure techniques, particularly turbine venting, appear very attractive considering cost and degree of improvement. Tests

S. C. Wilhelms; M. L. Schneider; S. E. Howington

1987-01-01

21

Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming  

NASA Astrophysics Data System (ADS)

Hydropower systems and other river regulation often harm instream ecosystems, partly by altering the natural flow and temperature regimes that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower and ecosystems are increasingly valued globally due to growing values for clean energy and native species as well as and new threats from climate warming, it is important to understand how climate warming might affect these systems, to identify tradeoffs between different water uses for different climate conditions, and to identify promising water management solutions. This research uses traditional simulation and optimization to explore these issues in California's upper west slope Sierra Nevada mountains. The Sierra Nevada provides most of the water for California's vast water supply system, supporting high-elevation hydropower generation, ecosystems, recreation, and some local municipal and agricultural water supply along the way. However, regional climate warming is expected to reduce snowmelt and shift runoff to earlier in the year, affecting all water uses. This dissertation begins by reviewing important literature related to the broader motivations of this study, including river regulation, freshwater conservation, and climate change. It then describes three substantial studies. First, a weekly time step water resources management model spanning the Feather River watershed in the north to the Kern River watershed in the south is developed. The model, which uses the Water Evaluation And Planning System (WEAP), includes reservoirs, run-of-river hydropower, variable head hydropower, water supply demand, and instream flow requirements. The model is applied with a runoff dataset that considers regional air temperature increases of 0, 2, 4 and 6 °C to represent historical, near-term, mid-term and far-term (end-of-century) warming. Most major hydropower turbine flows are simulated well. Reservoir storage is also generally well simulated, mostly limited by the accuracy of inflow hydrology. System-wide hydropower generation is reduced by 9% with 6 °C warming. Most reductions in hydropower generation occur in the highly productive watersheds in the northern Sierra Nevada. The central Sierra Nevada sees less reduction in annual runoff and can adapt better to changes in runoff timing. Generation in southern watersheds is expected to decrease. System-wide, reservoirs adapt to capture earlier runoff, but mostly decrease in mean reservoir storage with warming due to decreasing annual runoff. Second, a multi-reservoir optimization model is developed using linear programming that considers the minimum instream flows (MIFs) and weekly down ramp rates (DRRs) in the Upper Yuba River in the northern Sierra Nevada. Weekly DRR constraints are used to mimic spring snowmelt flows, which are particularly important for downstream ecosystems in the Sierra Nevada but are currently missing due to the influence of dams. Trade-offs between MIFs, DRRs and hydropower are explored with air temperature warming (+0, 2, 4 and 6 °C). Under base case operations, mean annual hydropower generation increases slightly with 2 °C warming and decreases slightly with 6 °C warming. With 6 °C warming, the most ecologically beneficial MIF and DRR reduce hydropower generation 5.5% compared to base case operations and a historical climate, which has important implications for re-licensing the hydropower project. Finally, reservoir management for downstream temperatures is explored using a linear programming model to optimally release water from a reservoir using selective withdrawal. The objective function is to minimize deviations from desired downstream temperatures, which are specified to mimic the natural temperature regime in the river. One objective of this study was to develop a method that can be readily integrated into a basin-scale multi-reservoir optimization model using a network representation of system features. The second objective was to explore the potential use of reservoirs to maintain an ideal str

Rheinheimer, David Emmanuel

22

Enhancing water quality in hydropower system operations  

NASA Astrophysics Data System (ADS)

The quality of impounded waters often degrades over time because of thermal stratification, sediment oxygen demands, and accumulation of pollutants. Consequently, reservoir releases impact water quality in tailwaters, channels, and other downstream water bodies. Low dissolved oxygen (DO) concentrations in the Cumberland River below Old Hickory dam result from stratification of upstream reservoirs and seasonally low release rates. Operational changes in upstream hydropower reservoirs may be one method to increase DO levels without substantially impacting existing project purposes. A water quality model of the upper Cumberland basin is integrated into an optimal control algorithm to evaluate water quality improvement opportunities through operational modifications. The integrated water quantity/quality model maximizes hydropower revenues, subject to various flow and headwater operational restrictions for satisfying multiple project purposes, as well as maintenance of water quality targets. Optimal daily reservoir release policies are determined for the summer drawdown period which increase DO concentrations under stratification conditions with minimal impact on hydropower production and other project purposes. Appendixes A-D available with entire article on microfiche. Order by mail from AGU, 2000 Florida Ave., N.W., Washington, DC 20009 or by phone at 800-966-2481; $2.50. Document W97-003. Payment must accompany order.

Hayes, Donald F.; Labadie, John W.; Sanders, Thomas G.; Brown, Jackson K.

1998-03-01

23

Development of a more fish-tolerant turbine runner, advanced hydropower turbine project  

Microsoft Academic Search

Alden Research Laboratory, Inc. (ARL) and Northern Research and Engineering Corporation (NREC) conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. ARL?NREC have developed a runner shape which minimizes the number of blade leading edges, reduces the pressure versus time and the velocity versus distance gradients within the runner, minimizes

T. C. Cook; G. E. Hecker; H. B. Faulkner; W. Jansen

1997-01-01

24

Development of a more fish-tolerant turbine runner, advanced hydropower turbine project  

SciTech Connect

Alden Research Laboratory, Inc. (ARL) and Northern Research and Engineering Corporation (NREC) conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. ARL?NREC have developed a runner shape which minimizes the number of blade leading edges, reduces the pressure versus time and the velocity versus distance gradients within the runner, minimizes or eliminates the clearance between the runner and runner housing, and maximizes the size of the flow passages, all with minimal penalty on turbine efficiency. An existing pump impeller provided the starting point for developing the fish tolerant turbine runner. The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Conceptual design of the new runner began with a re-evaluation of studies which have been previously conducted to identify probable sources of injury to fish passing through hydraulic turbines. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. 86 figs., 5 tabs.

Cook, T.C.; Hecker, G.E. [Worcester Polytechnic Inst., Holden, MA (United States). Alden Research Lab.; Faulkner, H.B.; Jansen, W. [Northern Research and Engineering Corp., Woburn, MA (United States)

1997-02-01

25

Development of a more fish tolerant turbine runner advanced hydropower turbine project. Final report  

SciTech Connect

The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. Flow characteristics of the new runner were analyzed using two- dimensional and three-dimensional Computational Fluid Dynamic (CFD) models. The basic runner geometry was initially selected using the two-dimensional model. The three-dimensional model was used to investigate the flow characteristics in detail through the entire runner and to refine the design by eliminating potential problem areas at the leading and trailing edges. Results of the analyses indicated that the runner has characteristics which should provide safe fish passage with an overall power efficiency of approximately 90%. The size of the new runner, which is larger than conventional turbine runners with the same design flow and head, will provide engineering, fabrication, and installation.challenges related to the turbine components and the civil works. A small reduction in the overall efficiency would reduce the size of the runner considerably, would simplify the turbine manufacturing operations, and would allow installation of the new turbine at more hydroelectric sites.

Cook, T.C.; Hecker, G.E. [Worcester Polytechnic Inst., Holden, MA (United States). Alden Research Lab.; Faulkner, H.B.; Jansen, W. [Northern Research and Engineering Corp., Cambridge, MA (United States)

1997-01-01

26

Floating wind turbine system  

NASA Technical Reports Server (NTRS)

A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

Viterna, Larry A. (Inventor)

2009-01-01

27

Turbine power plant with steam and exhaust turbine systems  

Microsoft Academic Search

This patent describes a turbine power plant having a closed loop steam turbine system and a closed loop exhaust turbine system; a closed loop steam turbine system which comprises the combination of: a steam turbine having a fluid inlet and fluid outlet mounted on a shaft; a generator means operatively connected to the shaft; a condenser having a fluid inlet

Papastavros

1988-01-01

28

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-01-01

29

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-12-31

30

DOE Hydropower Program Annual Report for FY 2002  

SciTech Connect

The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

Garold L. Sommers; R. T. Hunt

2003-07-01

31

Gas turbine vane cooling system  

Microsoft Academic Search

A cooling system for stationary vanes in the turbine section of a gas turbine is described. Combustors for the turbine are disposed in a chamber that receives compressed air from a compressor section. This compressed air forms both combustion air and cooling air. The cooling air portion of the compressed air is recirculated through the vanes by bleeding it from

A. G. Chen; G. G. McQuiggan

1995-01-01

32

Gas turbine cooling system  

DOEpatents

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01

33

Hydropower research and development  

SciTech Connect

This report is a compilation of information on hydropower research and development (R and D) activities of the Federal government and hydropower industry. The report includes descriptions of on-going and planned R and D activities, 1996 funding, and anticipated future funding. Summary information on R and D projects and funding is classified into eight categories: fish passage, behavior, and response; turbine-related; monitoring tool development; hydrology; water quality; dam safety; operations and maintenance; and water resources management. Several issues in hydropower R and D are briefly discussed: duplication; priorities; coordination; technical/peer review; and technology transfer/commercialization. Project information sheets from contributors are included as an appendix.

NONE

1997-03-01

34

Turbine nozzle positioning system  

DOEpatents

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1996-01-30

35

Turbine nozzle attachment system  

DOEpatents

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1995-01-01

36

Turbine nozzle attachment system  

DOEpatents

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

Norton, P.F.; Shaffer, J.E.

1995-10-24

37

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect

The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

Sy Ali

2002-03-01

38

Inexpensive cross-flow hydropower turbine at Arbuckle Mountain Hydroelectric Project  

SciTech Connect

This report documents the first three and half years of operation and maintenance on the Arbuckle Mountain Hydroelectric Project. Located on a flashy mountain stream in northern California, the project was designed, built and tested through a Cooperative Agreement between the US DOE and OTT Engineering, Inc. (OTT). The purpose of the Agreement is to build and intensively test an inexpensive American-made cross-flow turbine and to provide information to the DOE on the cost, efficiency, operation, and maintenance of the unit. It requires that OTT document for DOE a summary of the complete operating statistics, operation and maintenance cost, and revenues from power sales for a two-year operating period. Several unique events occurred between the initial start-up (December 1986) and the beginning of the 1989 generation season (October 1988) that delayed the first year's full operation and provided unique information for a demonstration project of this type. Accordingly, this report will discuss certain major problems experienced with the design, operation and maintenance, and energy production, as well as the operation and maintenance costs and value of the power produced for the first three and half years of operation. 9 figs., 2 tabs.

Not Available

1991-07-01

39

Stability of a pump storage hydro-power station connected to a power system  

Microsoft Academic Search

The operational flexibility of pumped storage hydropower stations means that they are often used for the control of power system frequency. When used in this role, the response of the power station is determined by the behaviour of its governor, the stiffness of the connected grid and the interaction between the governor and the grid. An investigation into the governor

S. P. Mansoor; D. J. Jones; D. A. Bradley; F. C. Aris; G. R. Jones

1999-01-01

40

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2000-01-01

41

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-02-01

42

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-04-01

43

Turbine power plant with steam and exhaust turbine systems  

SciTech Connect

This patent describes a turbine power plant having a closed loop steam turbine system and a closed loop exhaust turbine system; a closed loop steam turbine system which comprises the combination of: a steam turbine having a fluid inlet and fluid outlet mounted on a shaft; a generator means operatively connected to the shaft; a condenser having a fluid inlet and a fluid outlet and a cooling means between its inlet and outlet; a pump having a fluid inlet and fluid outlet and a pressurizing and circulating means between its inlet and outlet; a heater having a fluid inlet and fluid outlet which uses an external fuel source to superheat fluid flowing between its inlet and outlet; a fluid conduit means operatively connecting the following in a closed loop cycle; a closed loop exhaust turbine system which comprises the combination of: a first, second, and third turbines each having a fluid inlet and outlet and each mounted on a common shaft; a generator means operatively connected to the shaft; a first, second and third pump each having a fluid inlet and outlet, and a pressurizing and circulating means between the inlets and outlets all connected to the common shaft; a first, second and third condensers each having a fluid inlet and outlet and a cooling means between their inlets and outlets; and a first, second and third heat exchangers.

Papastavros, D.

1988-03-29

44

Renewable Energy: Hydropower  

NSDL National Science Digital Library

This lesson introduces students to the use of flowing or falling water (hydropower) to perform work, particularly electric power generation. Topics include the history of hydropower development, the invention of turbines and electric generators, and the history of hydroelectric power development in the United States. There is also discussion of the environmental issues associated with the construction of large dams and flooding large tracts of land, as well as some of the physics involved in the transfer of energy from moving water to a mechanical device such as a turbine. The lesson includes an activity in which students use a model turbine and generator and vary the height from which water flows into them to examine how energy output and efficiency varies.

Pratte, John

45

Gas turbine vane cooling system  

SciTech Connect

A cooling system for stationary vanes in the turbine section of a gas turbine is described. Combustors for the turbine are disposed in a chamber that receives compressed air from a compressor section. This compressed air forms both combustion air and cooling air. The cooling air portion of the compressed air is recirculated through the vanes by bleeding it from the chamber and further pressurizing it, after which it flows through a cooling air flow path in the vanes, thereby resulting in the cooling of the vanes and the heating of the air. The heated air is then returned to the chamber where it mixes with the incoming combustion air, thereby giving up a portion of the heat transferred from the vane to the combustion air. As a result, the temperature of the combustion air is increased, thereby increasing the thermodynamic efficiency of the gas turbine. The cooling scheme provides cooling to the vane inner and outer shrouds, as well as the airfoil, by means of circumferentially extending holes in the shrouds that connect with a cooling air cavity in the airfoil. 5 figs.

Chen, A.G.; McQuiggan, G.G.

1995-03-07

46

Braking System for Wind Turbines  

NASA Technical Reports Server (NTRS)

Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

Krysiak, J. E.; Webb, F. E.

1987-01-01

47

DOE Hydropower Program biennial report 1996-1997 (with an updated annotated bibliography)  

SciTech Connect

This report, the latest in a series of biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1996 and 1997. The report discusses the activities in the six areas of the hydropower program: advanced hydropower turbine systems; environmental research; hydropower research and development; renewable Indian energy resources; resource assessment; and technology transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering and Environmental Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

1997-06-01

48

Hydro-power development in remote locations of developing countries  

NASA Astrophysics Data System (ADS)

In many developing countries hydropower can be used to replace the consumption of imported oil. The economic advantage of using hydropower increases if a low cost, locally manufactured turbine, called the cross flow turbine, can be used. This paper discusses the technical design and use of the cross flow turbine in the context of a hydroelectric development project in Africa.

Smith, Granville J.

1985-11-01

49

Hydropower development in remote locations of developing countries  

Microsoft Academic Search

In many developing countries hydropower can be used to replace the consumption of imported oil. The economic advantage of using hydropower increases if a low cost, locally manufactured turbine, called the cross flow turbine, can be used. This paper discusses the technical design and use of the cross flow turbine in the context of a hydroelectric development project in Africa.

Granville J. Smith

1985-01-01

50

Seasonal-Scale Optimization of Conventional Hydropower Operations in the Upper Colorado System  

NASA Astrophysics Data System (ADS)

Sandia National Laboratories is developing the Hydropower Seasonal Concurrent Optimization for Power and the Environment (Hydro-SCOPE) tool to examine basin-wide conventional hydropower operations at seasonal time scales. This tool is part of an integrated, multi-laboratory project designed to explore different aspects of optimizing conventional hydropower operations. The Hydro-SCOPE tool couples a one-dimensional reservoir model with a river routing model to simulate hydrology and water quality. An optimization engine wraps around this model framework to solve for long-term operational strategies that best meet the specific objectives of the hydrologic system while honoring operational and environmental constraints. The optimization routines are provided by Sandia's open source DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) software. Hydro-SCOPE allows for multi-objective optimization, which can be used to gain insight into the trade-offs that must be made between objectives. The Hydro-SCOPE tool is being applied to the Upper Colorado Basin hydrologic system. This system contains six reservoirs, each with its own set of objectives (such as maximizing revenue, optimizing environmental indicators, meeting water use needs, or other objectives) and constraints. This leads to a large optimization problem with strong connectedness between objectives. The systems-level approach used by the Hydro-SCOPE tool allows simultaneous analysis of these objectives, as well as understanding of potential trade-offs related to different objectives and operating strategies. The seasonal-scale tool will be tightly integrated with the other components of this project, which examine day-ahead and real-time planning, environmental performance, hydrologic forecasting, and plant efficiency.

Bier, A.; Villa, D.; Sun, A.; Lowry, T. S.; Barco, J.

2011-12-01

51

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01

52

CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER  

E-print Network

CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER SYSTEM Energy Commission's California Climate Change Center JULY 2012 CEC5002012020 Prepared for: California consideration of climate change effects on highelevation hydropower supply and demand in California. Artificial

53

Combustion modeling in advanced gas turbine systems  

SciTech Connect

Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

1995-12-31

54

Operation of a hydropower system considering environmental flow requirements: A case study in La Nga river basin, Vietnam  

Microsoft Academic Search

A reservoir operation simulation study is carried out to analyze the impact of alternative scenarios of a hydropower system operation on energy production and natural flow regime in the La Nga river basin in Vietnam. The current operation policy causes severe hydrologic alteration in the natural flow regime represented by 32 parameters of the Range of Variability Approach (RVA). In

Mukand S. Babel; Nguyen Dinh Chien; Umamahesh V. Nanduri

55

DOE Hydropower Program Biennial Report for FY 2005-2006  

SciTech Connect

SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users.

Sale, Michael J [ORNL; Cada, Glenn F [ORNL; Acker, Thomas L. [Northern Arizona State University and National Renewable Energy Laboratory; Carlson, Thomas [Pacific Northwest National Laboratory (PNNL); Dauble, Dennis D. [Pacific Northwest National Laboratory (PNNL); Hall, Douglas G. [Idaho National Laboratory (INL)

2006-07-01

56

Short-term Hydropower Reservoir Operations in Chile's Central Interconnected System: Tradeoffs between Hydrologic Alteration and Economic Performance  

NASA Astrophysics Data System (ADS)

Hydropower accounts for about 50% of the installed capacity in Chile's Central Interconnected System (CIS) and new developments are envisioned in the near future. Large projects involving reservoirs are perceived negatively by the general public. In terms of operations, hydropower scheduling takes place at monthly, weekly, daily and hourly intervals, and operations at each level affect different environmental processes. Due to its ability to quickly and inexpensively respond to short-term changes in demand, hydropower reservoirs often are operated to provide power during periods of peak demand. This operational scheme, known as hydropeaking, changes the hydrologic regime by altering the rate and frequency of changes in flow magnitude on short time scales. To mitigate impacts on downstream ecosystems, operational constraints -typically minimum instream flows and maximum ramping rates- are imposed on hydropower plants. These operational restrictions limit reduce operational flexibility and can reduce the economic value of energy generation by imposing additional costs on the operation of interconnected power systems. Methods to predict the degree of hydrologic alteration rely on statistical analyses of instream flow time series. Typically, studies on hydrologic alteration use historical operational records for comparison between pre- and post-dam conditions. Efforts to assess hydrologic alteration based on future operational schemes of reservoirs are scarce. This study couples two existing models: a mid-term operations planning and a short-term economic dispatch to simulate short-term hydropower reservoir operations under different future scenarios. Scenarios of possible future configurations of the Chilean CIS are defined with emphasis on the introduction of non-conventional renewables (particularly wind energy) and large hydropower projects in Patagonia. Both models try to reproduce the actual decision making process in the Chilean Central Interconnected System (CIS). Chile's CIS is structured as a mandatory pool with audited costs and therefore the economic dispatch can be formulated as a cost minimization problem. Consequently, hydropower reservoir operations are controlled by the ISO. Reservoirs with the most potential to cause short-term hydrologic alteration were identified from existing operational records. These records have also been used to validate our simulated operations. Results in terms of daily and subdaily hydrologic alteration as well as the economic performance of the CIS are presented for alternative energy matrix scenarios. Tradeoff curves representing the compromise between indicators of hydrologic alteration and economic indicators of the CIS operation are developed.

Olivares, M. A.

2011-12-01

57

Airfoil seal system for gas turbine engine  

DOEpatents

A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

Diakunchak, Ihor S.

2013-06-25

58

Development of a multiplane multispeed balancing system for turbine systems  

NASA Technical Reports Server (NTRS)

A prototype high speed balancing system was developed for assembled gas turbine engine modules. The system permits fully assembled gas turbine modules to be operated and balanced at selected speeds up to full turbine speed. The balancing system is a complete stand-alone system providing all necesary lubrication and support hardware for full speed operation. A variable speed motor provides the drive power. A drive belt and gearbox provide rotational speeds up to 21,000 rpm inside a vacuum chamber. The heart of the system is a dedicated minicomputer with attendant data acquisition, storage and I/O devices. The computer is programmed to be completely interactive with the operator. The system was installed at CCAD and evaluated by testing 20 T55 power turbines and 20 T53 power turbines. Engine test results verified the performance of the high speed balanced turbines.

Martin, M. R.

1984-01-01

59

Turbine Aerodynamic Design System Improvements  

NASA Technical Reports Server (NTRS)

Presentation outline includes the following: 1. Volute manifold design and analysis methodology. 2. Meanline modification for compatibility with engine analysis code. Objective is to develop a manifold design methodology for turbines and pumps, and to enable rapid screening of candidate flow paths.

Huber, Frank W.; Griffin, Lisa W.; Simpson, Steven P.

2003-01-01

60

Overview of Advanced Turbine Systems Program  

NASA Astrophysics Data System (ADS)

The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

Webb, H. A.; Bajura, R. A.

61

Steam turbine flow direction control system  

SciTech Connect

This patent describes, in a reheat steam turbine having at least one turbine element with an impulse chamber and an exhaust stage, the steam turbine having other elements and zones wherein the pressure is lower than that of the exhaust stage, a system for reducing windage heating and resulting distress to turbine blading by prevention of Coanda-type flow. It comprises: outlet means located upstream of the exhaust stage for extraction of steam therethrough; first duct means connecting the outlet means to a relatively low pressure zone; first valve means connected to the duct means for controlling steam flow through the outlet means; inlet means into the impulse chamber for introduction of exhaust steam from the exhaust stage; second duct means connected between the inlet means and the exhaust stage; and second valve means connected to the second duct means for controlling the flow to exhaust steam into the impulse chamber.

Silvestri, G.J. Jr.

1990-09-18

62

14 CFR 23.1111 - Turbine engine bleed air system.  

Code of Federal Regulations, 2012 CFR

...TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

2012-01-01

63

14 CFR 23.1111 - Turbine engine bleed air system.  

Code of Federal Regulations, 2013 CFR

...TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

2013-01-01

64

14 CFR 23.1111 - Turbine engine bleed air system.  

Code of Federal Regulations, 2011 CFR

...TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

2011-01-01

65

14 CFR 23.1111 - Turbine engine bleed air system.  

...TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

2014-01-01

66

Industrial Advanced Turbine Systems Program overview  

SciTech Connect

DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

Esbeck, D.W.

1995-12-31

67

Stability Simulation of Wind Turbine Systems  

Microsoft Academic Search

A simulation and digital computer modeling effort is described in which a wind turbine-generator system is adapted for stability evaluation using a large scale transient stability computer program. Component models of the MOD-2 wind generator system are described and their digital model equations are provided. A versatile wind velocity model is described, which provides the capability of simulating a wide

P. M. Anderson; Anjan Bose

1983-01-01

68

Fault tolerant generator systems for wind turbines  

Microsoft Academic Search

The objective of this paper is to review the possibilities of applying fault tolerance in generator systems for wind turbines based on what has been presented in the literature. In order to make generator systems fault tolerant in a suitable way, it is necessary to gain insight into the probability of different failures, so that suitable measures can be taken.

H. Polinder; H. Lendenmann; R. Chin; W. M. Arshad

2009-01-01

69

Adaptation to Climate Change in the Management of a Canadian Water-Resources System Exploited for Hydropower  

Microsoft Academic Search

The management adaptation potential of the Peribonka River water resource system (Quebec, Canada) is investigated in the context\\u000a of the evolution of climate change. The objective of this study is to evaluate the impacts on hydropower, power plant efficiency,\\u000a unproductive spills and reservoir reliability due to changes in the hydrological regimes. The climate change projections used\\u000a here are from the

Marie Minville; François Brissette; Stéphane Krau; Robert Leconte

2009-01-01

70

Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine  

SciTech Connect

This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01

71

ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM  

SciTech Connect

Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

Frank Macri

2003-10-01

72

Plasma-Sprayed Dual Density Ceramic Turbine Seal System.  

National Technical Information Service (NTIS)

Dual density, plasma sprayed ceramic coating systems were investigated for possible application as abradable turbine tip seal systems in small gas turbine engines. Abradability, erosion resistance, internal leakage, and microstructural characterization we...

D. L. Clingman, B. Schechter, K. R. Cross, J. R. Cavanagh

1979-01-01

73

Advanced Gas Turbine Powertrain System Development Project  

NASA Technical Reports Server (NTRS)

A progress report on the Advanced Gas Turbine Powertrain System Development Project being performed under contract from NASA Lewis is presented. The goals and objectives of the project are described noting that funds from the DOE, Office of Transportation Programs are used to sponsor the project. Among the demonstration objectives are attaining a fuel economy of 42.5 miles per gallon in a 1985 Pontiac Phoenix, multifuel capability, and emission levels within the federal standards. Design objectives examined include competitive reliability and life as well as competitive initial and life cycle costs. Finally, it is stressed that high risk and key elements in this advanced powertrain project are the development of ceramic turbine engine components and the aerodynamic development of small size turbine components.

Helms, H. E.

1980-01-01

74

A review of large wind turbine systems  

Microsoft Academic Search

Research areas in the design and operation of large wind turbines in the U.S. and Europe are detailed, with attention given to current and completed programs. Theoretical work in the U.S. is focused on aerodynamics of blades, structural dynamics, control systems, and safety through safe life design, redundancy, and quality assurance. Work is continuing on wind characteristics over the rotor

H. Selzer; J. I. Lerner

1983-01-01

75

Dynamic wind turbine models in power system simulation tool  

E-print Network

Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

76

Closed loop air cooling system for combustion turbines  

DOEpatents

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

Huber, D.J.; Briesch, M.S.

1998-07-21

77

Drive turbine systems for 20-inch turbofan simulators. 1: Duct turbine design  

NASA Technical Reports Server (NTRS)

A study was made to evolve the turbine drive systems for 20-inch turbofan engine simulators. The fan designs used in the simulators included single-stage and two-stage configurations that covered a wide range of rotative speed and power requirement. The objective assumed for the study was to evolve one core turbine design that could drive all of the single-stage fans and, when operated in combination with one duct turbine design, drive all of the two-stage fans. The duct turbine power output is then needed to determine the make-up power required of the core turbine over the range of two-stage fan operating conditions. The duct turbine design analysis is reported and includes the selection of the duct turbine velocity diagram, a description of the blade design, and a determination of its off-design performance. Adjustable stators were found to be quite advantageous to the duct turbine off-design operation. The use of adjustable stators enabled the duct turbine to accommodate fan mass flow at all operating points and caused the duct turbine power output to increase as the total power requirement increased. This in turn resulted in a core turbine make-up power requirement that was not significantly greater than that required for driving the single-stage fans.

Whitney, W. J.

1972-01-01

78

Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine  

SciTech Connect

In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

Capstone Turbine Corporation

2007-12-31

79

Initialization of wind turbine models in power system dynamics simulations  

Microsoft Academic Search

As a result of increasing environmental concern, increasing amounts of electricity are generated from renewable sources. One way of generating electricity from renewable sources is to use wind turbines. A tendency to erect more wind turbines can be observed. As a result of this, in the near future wind turbines may start to influence the behavior of electrical power systems.

J. G. Slootweg; H. Polinder; W. L. Kling

2001-01-01

80

Closed-loop air cooling system for a turbine engine  

DOEpatents

Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

North, William Edward (Winter Springs, FL)

2000-01-01

81

IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies  

SciTech Connect

This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

Acker, T.

2011-12-01

82

Optical monitoring system for a turbine engine  

DOEpatents

The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

2013-05-14

83

Advanced Turbine Systems Program. Topical report  

SciTech Connect

The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.

NONE

1993-03-01

84

Advanced Turbine Systems Program industrial system concept development  

SciTech Connect

Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

Gates, S.

1995-12-31

85

Control system for a gas turbine engine, especially a vehicular gas turbine engine  

Microsoft Academic Search

A control system is disclosed for a gas turbine engine, especially a vehicular gas turbine engine, having a speed governor responsive to a controlled variable which is the speed of a gas generator shaft for providing an output to control fuel flow to the engine, a temperature regulator device responsive to a controlled variable which is the gas temperature of

C. Greune; F. Hackl

1979-01-01

86

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for the reporting period October 1, 2002 to December 31, 2002 are described in this quarterly report. No new membership, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, six research progress reports were received (3 final reports and 3 semi-annual reports). The University of Central Florida contract SR080 was terminated during this period, as UCF was unable to secure research facilities. AGTSR now projects that it will under spend DOE obligated funds by approximately 340-350K$.

Lawrence P. Golan

2003-05-01

87

Hydrogen turbines for space power systems: A simplified axial flow gas turbine model  

SciTech Connect

This paper descirbes a relatively simple axial flow gas expansion turbine mass model, which we developed for use in our space power system studies. The model uses basic engineering principles and realistic physical properties, including gas conditions, power level, and material stresses, to provide reasonable and consistent estimates of turbine mass and size. Turbine design modifications caused by boundary layer interactions, stress concentrations, stage leakage, or bending and thermal stresses are not accounted for. The program runs on an IBM PC, uses little computer time and has been incorporated into our system-level space power platform analysis computer codes. Parametric design studies of hydrogen turbines using this model are presented for both nickel superalloy and carbon/carbon composite turbines. The effects of speed, pressure ratio, and power level on hydrogen turbine mass are shown and compared to a baseline case 100-MWe, 10,000-rpm hydrogen turbine. Comparison with more detailed hydrogen turbine designs indicates that our simplified model provides mass estimates that are within 25% of the ones provided by more complex calculations. 8 figs.

Hudson, S.L.

1988-01-01

88

Turbine  

SciTech Connect

A turbine suitable for a gas turbine engine is provided with a bearing support member which is interconnected with the turbine casing by means of an annular array of aerofoil guide vanes. The whole assembly of support member and aerofoil guide vanes is maintained in a state of tension. The degree of tension in the assembly is controlled so as to be substantially constant throughout the normal operating cycle of the turbine.

Coplin, J.F.; Hadaway, E.S.

1984-01-31

89

ADAPTIVE CLEARANCE CONTROL SYSTEMS FOR TURBINE ENGINES  

NASA Technical Reports Server (NTRS)

The Controls and Dynamics Technology Branch at NASA Glenn Research Center primarily deals in developing controls, dynamic models, and health management technologies for air and space propulsion systems. During the summer of 2004 I was granted the privilege of working alongside professionals who were developing an active clearance control system for commercial jet engines. Clearance, the gap between the turbine blade tip and the encompassing shroud, increases as a result of wear mechanisms and rubbing of the turbine blades on shroud. Increases in clearance cause larger specific fuel consumption (SFC) and loss of efficient air flow. This occurs because, as clearances increase, the engine must run hotter and bum more fuel to achieve the same thrust. In order to maintain efficiency, reduce fuel bum, and reduce exhaust gas temperature (EGT), the clearance must be accurately controlled to gap sizes no greater than a few hundredths of an inch. To address this problem, NASA Glenn researchers have developed a basic control system with actuators and sensors on each section of the shroud. Instead of having a large uniform metal casing, there would be sections of the shroud with individual sensors attached internally that would move slightly to reform and maintain clearance. The proposed method would ultimately save the airline industry millions of dollars.

Blackwell, Keith M.

2004-01-01

90

Power and energy analysis of commercial small wind turbine systems  

Microsoft Academic Search

Small wind turbines harvest wind energy to provide carbon free energy for residential and small commercial applications. Current technology consists of a diode-bridge rectifier and an off-the-shelf generator. Such a simplified system does not utilize the full capacity of the turbine because the generator drive system is not designed specifically for wind turbine applications. This paper presents the technology that

Nikola Milivojevic; Igor Stamenkovic; Nigel Schofield

2010-01-01

91

Representing wind turbine electrical generating systems in fundamental frequency simulations  

Microsoft Academic Search

Increasing numbers of wind turbines are being erected. In the near future, they may start to influence the dynamics of electrical power systems by interacting with conventional generation equipment and with loads. The impact of wind turbines on the dynamics of electrical power systems therefore becomes an important subject, studied by means of power system dynamics simulations. Various types of

J. G. Slootweg; H. Polinder; W. L. Kling

2003-01-01

92

Performance optimization of a dual-rotor wind turbine system  

Microsoft Academic Search

We are building an efficient and smart wind turbine system. The significant features of this turbine are its dual rotor blade system which is positioned horizontally at upwind and downwind locations, its drive train which is installed horizontally inside the tower with a new efficient induction generator, and its control and safety systems. The project focuses mainly on the methodology

Riadh W. Y. Habash; Voicu Groza; Pierre Guillemette

2010-01-01

93

Horizontal axis wind turbine systems: optimization using genetic algorithms  

Microsoft Academic Search

A method for the optimization of a grid-connected wind turbine system is presented. The behaviour of the system components is coupled in a non-linear way, and optimization must take into account technical and economical aspects of the complete system design. The annual electrical energy cost is estimated using a cost model for the wind turbine rotor, nacelle and tower and

T. Diveux; P. Sebastian; D. Bernard; J. R. Puiggali; J. Y. Grandidier

2001-01-01

94

Development of an operational, full-scale fish protection system at a major pumped-storage hydropower dam  

SciTech Connect

A large scale, fully operational, integrated fish protection system was developed for Richard B. Russell Dam, a Corps of Engineers pumped-storage hydropower facility with 640 MW conventional generation capacity and 340 MW pumping capacity, on the Savannah River between Georgia and South Carolina. The fish protection system, designed to operate during pumping operation only, combines: (1) knowledge of seasonal and diel movement patterns of fishes to develop guidelines to restrict pumping to periods of minimal fish entrainment potential; (2) detailed 2-dimensional physical and numerical hydraulic modeling to identify high velocity entraining flow zones, low velocity zones, and slack water zones; (3) an acoustic repulsion system employing high-frequency sound to divert blueback herring out of the entraining zone and into low velocity or slack water zones; (4) banks of high pressure sodium incandescent lights located in the low velocity-slack water zones to attract and hold fishes during pumping operation; and (5) a veneer made of 0.32-cm wedge wire on 5.08-cm centers that is placed directly over the trash racks to divert fishes larger than about 35-cm in length from the trash racks. Strobe lights were initially included in the system, but later abandoned after evaluation for effectiveness. Yearlong full recovery net monitoring supplemented by fixed aspect hydroacoustics sampling using two of the four pumped-storage units demonstrates the effectiveness of the fish protection. The total cost of the system was less than one million dollars. Integrating separate fish protection technologies into a comprehensive fish protection system can be used to increase fish protection at hydropower dams.

Nestler, J.M.; Ploskey, G.R. [Army Engineer Waterways Experiment Station, Vicksburg, MD (United States); Weeks, G. [AScI, Inc., Calhoun Falls, SC (United States)] [and others

1995-12-31

95

Steady and transient regimes in hydropower plants  

NASA Astrophysics Data System (ADS)

Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock.

Gajic, A.

2013-12-01

96

Advanced turbine blade tip seal system  

NASA Technical Reports Server (NTRS)

An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.

Zelahy, J. W.

1981-01-01

97

Actuation system for variable nozzle turbine  

SciTech Connect

This patent describes a turbocharger, for use in association with an engine, comprising: an exhaust gas driven turbine rotatably mounted to a shaft having a compressor impeller; a compressor housing enclosing the compressor impeller; a center housing including bearing means for rotatably supporting the shaft; a turbine housing forming a volute for directing exhaust gas; a backplate mounted between the center housing and the turbine housing and defining an annular cavity; an annular unison ring positioned within the annular cavity of the backplate; a turbine side wall, independent of the turbine housing; the side wall defining one side of an annular passage, the unison ring and backplate defining the other side; vanes pivotably mounted between the backplate and the turbine side wall; means for pivoting the vanes; and at least three spacers between the backplate and the turbine side wall.

Swihart, W.R.; Deacon, E.R.

1987-07-14

98

State estimation for wind turbine system based on Kalman filter  

Microsoft Academic Search

Consider the parameter uncertainty of the wind power station, wind turbine system state space model with uncertainty and disturb is modeled. State estimation Kalman filter for wind turbine system is designed based on Kalman filter theory. The effectiveness of the proposed Kalman filter is demonstrated with a simulation example.

Huo Zhihong; Zheng Yuan; Xu Chang

2008-01-01

99

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

Microsoft Academic Search

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the

E. N. Wayman; P. D. Sclavounos; S. Butterfield; J. Jonkman; W. Musial

2006-01-01

100

Advanced coal-fueled gas turbine systems  

SciTech Connect

Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01

101

Advanced turbine systems program conceptual design and product development  

NASA Astrophysics Data System (ADS)

This report describes progress made in the advanced turbine systems program conceptual design and product development. The topics of the report include selection of the Allison GFATS, castcool technology development for industrial engines test plan and schedule, code development and background gathering phase for the ultra low NOx combustion technology task, active turbine clearance task, and water vapor/air mixture cooling of turbine vanes task.

1995-01-01

102

Mod-2 wind turbine system development. Volume 2: Detailed report  

NASA Technical Reports Server (NTRS)

Progress in the design, fabrication, and testing of a wind turbine system is reported. The development of the MOD-2 wind turbine through acceptance testing and initial operational evaluation is documented. The MOD-2 project intends to develop early commercialization of wind energy. The first wind turbine farm (three MOD-2 units) are now being operated at the Bonneville Power Administration site near Goldendale, Washington.

1982-01-01

103

Turbine protection system for bypass operation  

SciTech Connect

In a steam turbine installation having a high pressure turbine, a steam generator is described for providing steam to the turbine, at least a lower pressure turbine, a reheater in the steam path between the high and lower pressure turbines, and a steam bypass path for bypassing the turbines, the high pressure turbine having a one-way check valve in its output steam line to prevent bypass steam from entering its output. The improvement described here consists of: (A) a second bypass path for passing steam around the high pressure turbine; (B) the second bypass path including, (i) steam jet compressor means including two input sections and an output section, with one input section being connected to the high pressure turbine output, the other input section being connected to receive steam from the steam generator and the output section being connected to the input of the reheater, (ii) valving means for controlling the steam supply from the steam generator to the steam jet compressor means; and (C) control means responsive to an output condition at the high pressure turbine output for controlling the valving means.

Silvestri, G.J. Jr.

1986-03-18

104

Pilot Scale Tests Alden/Concepts NREC Turbine  

SciTech Connect

Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

2003-09-30

105

WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM  

SciTech Connect

The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

Mcintosh, J.

2012-01-03

106

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading. No new memberships, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, nine subcontractor reports were received (5 final reports and 4 semi-annual reports). The report technology distribution is as follows: 3--aero-heat transfer, 2--combustion and 4--materials. AGTSR continues to project that it will under spend DOE obligated funds by approximately $329K.

Lawrence P. Golan

2003-05-01

107

Advanced turbine systems study system scoping and feasibility study  

SciTech Connect

United Technologies Research Center, Pratt Whitney Commercial Engine Business, And Pratt Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R D programs is adapted to aero-derivative industrial engines.

Not Available

1993-04-01

108

Fuel economy drive favours gas turbine power systems  

Microsoft Academic Search

Changing market and fuel supply conditions tending to favor more widespread use of gas turbine power systems (GTPS) are examined. Two decades of changes in the costs of steam generating plant, labor, materials, and combustion turbine plants are surveyed, and attention is centered on changes in fuel costs and returns on investment. Combined power plants incorporating a GTPS or GTPS

A. F. Finizio

1977-01-01

109

Grid interface for a wind turbine-fuel cell system  

Microsoft Academic Search

Environmental and sustainability concerns are increasing the importance of distributed generation based on renewable energy sources and its grid integration. This paper proposes a grid interface for a hybrid system composed by fuel cells, a wind turbine and supercapacitors. Such grid interface permits to control the wind turbine energy using a diode rectifier and an intermediate DC boost converter and

E. Ribeiro; A. J. M. Cardoso; C. Boccaletti

2010-01-01

110

Open cycle air turbine solar thermal power system  

Microsoft Academic Search

Solar electrical power generation using a heated air turbine in conjunction with a tower-mounted central receiver and heliostat field can be hybrid fossil fuel fired so as to avoid thermal storage problems. Using a regenerative gas turbine open cycle, no cooling system is required. It is shown that with a solar receiver concept allowing a fast thermal response to transient

E. Le Grives

1979-01-01

111

An open cycle turbine solar thermal power system  

Microsoft Academic Search

Solar electrical power generation using a heated air turbine in conjunction with a tower mounted central receiver and heliostat field was hybrid fossil fuel fired so as to avoid thermal storage problems. Using a regenerative gas turbine open cycle, no cooling system was required. It is shown that with a solar receiver concept allowing a fast thermal response to transient

E. Legrives

1979-01-01

112

Gas turbine fuel control systems for unmanned applications  

SciTech Connect

The technique of controlling engine acceleration has made possible gas turbine controls with simple hydromechanics and a minimal number of inputs into the electronics. This paper describes a control and electrical power generation system developed for an unmanned aircraft gas turbine, and the results obtained from the development engine running carried out with it.

Harrison, R.A.; Yates, M.S.

1987-01-01

113

General Aviation Propulsion (GAP) Program, Turbine Engine System Element  

NASA Technical Reports Server (NTRS)

The goal of the General Aviation Propulsion (GAP) Program Turbine Engine System Elements is to conduct a shared resource project to develop an affordable gas turbine engine for use on 4 to 6 place, light aircraft that will lead to revitalization of the general aviation industry in the United States, creating many new, high-quality jobs.

1997-01-01

114

Fault detection of large scale wind turbine systems  

Microsoft Academic Search

Fault diagnosis of large scale wind turbine systems has received much attention in the recent years. Effective fault prediction would allow for scheduled maintenance and for avoiding catastrophic failures. Thus the availability of wind turbines can be enhanced and the cost for maintenance can be reduced. In this paper, we consider the sensor and actuator fault detection issue for large

Xiukun Wei; Lihua Liu

2010-01-01

115

Fault estimation of large scale wind turbine systems  

Microsoft Academic Search

Fault diagnosis of large scale wind turbine systems has received much attention in the recent years. Effective fault prediction would allow for scheduled maintenance and for avoiding catastrophic failures. Thus the availability of wind turbines can be enhanced and the cost for maintenance can be reduced. In this paper, we consider the sensor and actuator fault detection issue for large

Wei Xiukun; Liu Lihua

2010-01-01

116

Heating system for a steam turbine energy producing plant  

SciTech Connect

The system comprises a series of heaters arranged in cascade and fed with steam from drawoffs at pressures which progressively decrease from the steam boiler side to the condenser side of the plant. In order to improve the efficiency of the plant with which the system is associated, the system comprises a plurality of biphase turbines arranged in cascade. The first of the turbines is fed from the drain of the heater at the highest pressure and the following turbines are each fed at least in part with the outlet liquid of the biphase turbine preceding it. These biphase turbines produce mechanical energy by recovery of the kinetic energy of the condensates of the heaters feeding them.

Paquet, A.J.

1983-10-11

117

Cam-driven valve system for steam turbines  

SciTech Connect

This patent describes, in a steam turbine system including a source of motive steam and a turbine adapted to operate at less than a full load, the turbine including an improved cam-driven valve system for activating a varying number of steam control valves to permit transferring between a maximum arc-admission mode and a minimum arc-admission mode. It comprises: a steam chest for receiving the motive steam from the source, the steam chest including a plurality of valves connected to a corresponding turbine section and set for a minimum admission of motive steam into the turbine below 100 percent; a first cam lift means for actuating a portion of the valves and second cam lift means for actuating the remainder of the valves.

Silvestri, G.J. Jr.

1990-02-27

118

Performance and Internal Flow Characteristics of a Cross-Flow Hydro Turbine by the Shapes of Nozzle and Runner Blade  

Microsoft Academic Search

Recently, small hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. Therefore, a cross-flow hydraulic turbine is proposed for small hydropower in this study because the turbine has relatively simple structure and high possibility of applying to small hydropower. The purpose of this study is to investigate the effect of the turbine's structural configuration on

Young-Do Choi; Jae-Ik Lim; You-Taek Kim; Young-Ho Lee

2008-01-01

119

Overview of and trends in wind turbine generator systems  

Microsoft Academic Search

This paper gives an overview of wind turbine generator systems and describes some trends. Around 1998, many wind turbine manufacturers changed from constant speed systems to variable speed with doubly-fed induction generators. Since around 2005, they have come with a number of alternative generators systems, mainly to comply with grid requirements as grid-fault ride-through. Most alternatives have brushless generators and

Henk Polinder

2011-01-01

120

77 FR 32497 - Grant of Authority for Subzone Status; Mitsubishi Power Systems Americas, Inc. (Wind Turbine...  

Federal Register 2010, 2011, 2012, 2013

...Power Systems Americas, Inc. (Wind Turbine Nacelles and Generating Sets) Fort Smith...special-purpose subzone at the wind turbine nacelle and generating set manufacturing...activity related to the manufacturing of wind turbine nacelles and generating sets at the...

2012-06-01

121

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY  

SciTech Connect

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

M. A. Alvin

2010-06-18

122

Advanced coal-fueled gas turbine systems  

Microsoft Academic Search

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO emissions from fuel-bound nitrogen, and greater understanding of deposition\\/erosion\\/corrosion and their control. Several Advanced Coal-Fueled

Wenglarz

1994-01-01

123

Optical systems for gas turbine engines  

Microsoft Academic Search

The design and fabrication of a turbine-blade pyrometer transducer for in situ measurements of blade temperature in operating gas-turbine engines are described and illustrated with diagrams, drawings, graphs, and photographs. Consideration is given to the primary components (optical probe, fiber-optic cable, and electronics), the operating environment (extreme temperatures and pressures, vibration, EMI, and liquids), the design specifications, and specific fabrication

Mark Wrigley

1986-01-01

124

Advanced Gas Turbine (AGT) powertrain system development for automotive applications  

NASA Technical Reports Server (NTRS)

Compressor development, turbine, combustion, regenerator system, gearbox/transmission, ceramic material and component development, foil gas bearings, bearings and seals, rotor dynamics development, and controls and accessories are discussed.

1981-01-01

125

Developing international hydropower  

SciTech Connect

Through the rest of the decade, many of the available hydropower development opportunities will be in the international marketplace. Tapping into this market will be particularly difficult for US companies without a decisive support strategy. Non-US companies have several distinct advantages for developing hydropower projects overseas. With more government support and unified industry efforts, US developers might level the playing field.

Smith, W.B. (Benham-Holway Power Group, Tulsa, OK (United States))

1993-03-01

126

NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY  

SciTech Connect

Building upon the 1999 AD Little Study, an expanded market analysis was performed by GE Power Systems in 2001 to quantify the potential demand for an NGGT product. This analysis concluded that improvements to the US energy situation might be best served in the near/mid term (2002-2009) by a ''Technology-Focused'' program rather than a specific ''Product-Focused'' program. Within this new program focus, GEPS performed a parametric screening study of options in the three broad candidate categories of gas turbines: aero-derivative, heavy duty, and a potential hybrid combining components of the other two categories. GEPS's goal was to determine the best candidate systems that could achieve the DOE PRDA expectations and GEPS's internal design criteria in the period specified for initial product introduction, circa 2005. Performance feasibility studies were conducted on candidate systems selected in the screening task, and critical technology areas were identified where further development would be required to meet the program goals. DOE PRDA operating parameters were found to be achievable by 2005 through evolutionary technology. As a result, the study was re-directed toward technology enhancements for interim product introductions and advanced/revolutionary technology for potential NGGT product configurations. Candidate technologies were identified, both evolutionary and revolutionary, with a potential for possible development products via growth step improvements. Benefits were analyzed from two perspectives: (1) What would be the attributes of the top candidate system assuming the relevant technologies were developed and available for an NGGT market opportunity in 2009/2010; and (2) What would be the expected level of public benefit, assuming relevant technologies were incorporated into existing new and current field products as they became available. Candidate systems incorporating these technologies were assessed as to how they could serve multiple applications, both in terms of incorporation of technology into current products, as well as to an NGGT product. In summary, potential program costs are shown for development of the candidate systems along with the importance of future DOE enabling participation. Three main conclusions have been established via this study: (1) Rapid recent changes within the power generation regulatory environment and the resulting ''bubble'' of gas turbine orders has altered the timing and relative significance associated with the conclusions of the ADL study upon which the original DOE NGGT solicitation was based. (2) Assuming that the relevant technologies were developed and available for an NGGT market opportunity circa 2010, the top candidate system that meets or exceeds the DOE PRDA requirements was determined to be a hybrid aero-derivative/heavy duty concept. (3) An investment by DOE of approximately $23MM/year to develop NGGT technologies near/mid term for validation and migration into a reasonable fraction of the installed base of GE F-class products could be leveraged into $1.2B Public Benefit, with greatest benefits resulting from RAM improvements. In addition to the monetary Public Benefit, there is also significant benefit in terms of reduced energy consumption, and reduced power plant land usage.

Unknown

2001-12-05

127

INDUSTRIAL ADVANCED TURBINE SYSTEMS: DEVELOPMENT & DEMONSTRATION  

SciTech Connect

Rochelle Municipal Utilities (RMU) was selected for the field evaluation site and placed an order for the first Mercury 50 generator set in November 1997. Field evaluation of the Mercury 50 package at Rochelle began in June 2000 and ran through December 2003. A total of 4,749 package hours were achieved on two generation 2-design engines. Engine Serial Number (ESN) 6 was installed in April 2000 and accumulated 2,324 hours and 267 starts until it was exchanged for ESN 7 in April 2001. ESN 7 ran until completion of the field evaluation period accumulating 2,426 hours and 292 starts. While the 4,749 hours of package operation falls short of the 8,000-hour goal, important lessons were learned at the Rochelle site that resulted in bringing a far superior generation 3 Mercury 50 package to commercialization. Among the issues raised and resolved were: (1) Engine shaft stability; (2) Engine power and efficiency degradation--Air inlet Restrictions, Compressor Efficiency, Turbine Efficiency, Exhaust System Cracks/Leaks; (3) Recuperator Core Durability; (4) Cold Weather Operations; (5) Valve Actuator Reliability; and (6) Remote Operation and Maintenance Support.

George Escola

2004-02-20

128

Advanced Turbine Systems Program: Conceptual design and product development  

SciTech Connect

Objective is to provide the conceptual design and product development plant for an ultra high efficiency, environmentally superior, and cost competitive industrial gas turbine system to be commercialized by the year 2000 (secondary objective is to begin early development of technologies critical to the success of ATS). This report addresses the remaining 7 of the 9 subtasks in Task 8, Design and Test of Critical Components: catalytic combustion, recuperator, high- temperature turbine disc, advanced control system, and ceramic materials.

NONE

1996-12-31

129

Integrated bleed load compressor and turbine control system  

SciTech Connect

This patent describes a turbine engine and control system therefor. It comprises: a turbine engine adapted to be coupled to a load and including interconnected first and second stage compressors, a turbine wheel connected in driving relation thereto, and exhaust from the turbine wheel, a combustor interposed between the turbine wheel and the second stage compressor, and variable inlet guide vanes at the inlet to the first stage compressor; means defining a controllable bleed air flow path connected between the first and second stage compressor and including a bleed air flow sensor associated therewith; a fuel system including a fuel flow control for providing fuel to the combustor to be combusted therein; a turbine wheel speed sensor connected to the turbine engine; means for moving the inlet guide vanes between open, closed and intermediate positions; means for sensing the position of the inlet guide vanes and for providing a signal representative thereof; means for providing a variable bleed air signal to command varying bleed air flows.

McArthur, M.; Rodgers, C.

1992-06-02

130

PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM  

SciTech Connect

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

2000-02-01

131

Thermal chemical recuperation method and system for use with gas turbine systems  

DOEpatents

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27

132

Thermal chemical recuperation method and system for use with gas turbine systems  

DOEpatents

A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

1999-01-01

133

Coordinate Control of Wind Turbine and Battery in Wind Turbine Generator System  

NASA Astrophysics Data System (ADS)

Battery is installed for with wind power generator to level the output power fluctuations, since output power fluctuations of wind power generator are large. However, if large battery is installed in wind turbine generator, the capital cost for wind power system will increase. Hence, the smallest size of battery should be preferable to save the capital cost. In this paper, we propose a methodology for controlling combined system output power and storage energy capacity of battery system. The system consists of wind turbine generator and battery energy storage system. The generated power fluctuation in low and high frequency range are smoothed by pitch angle control and battery charge or discharge. This coordinated control reduces the rated battery capacity and windmill blade stress. In our proposed method, we apply H? control theory to achieve good response and robustness. The effectiveness of the proposed control system is simulated.

Senjyu, Tomonobu; Kikunaga, Yasuaki; Tokudome, Motoki; Uehara, Akie; Yona, Atsushi; Funabashi, Toshihisa

134

DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES  

E-print Network

) Inlet, diffuser and nozzle design system (6) Gas Turbine Component Matching (3) Gas Turbine HealthDESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES (AERSP 597/497-K) SPRING 814 865 9871 cxc11@psu.edu Summary : The proposed course is a three-credit gas turbine design course

Camci, Cengiz

135

Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems  

E-print Network

of the turbines. Contained gas turbine engines turn out to be safer in case of fan blade-out events by protectingModeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems J. Sharda1 ; C of multilayer composite fabrics used in a gas turbine engine containment system is developed. Specifically

Mobasher, Barzin

136

Hybrid Power Generation System Using Offshore-Wind Turbine and Tidal Turbine for Power Fluctuation Compensation (HOT-PC)  

Microsoft Academic Search

Hybrid power generation system using Offshore-wind turbine and Tidal turbine for Power fluctuation Compensation (HOT-PC) is an autonomous power system. Electric power is generated from both offshore wind and tidal and is distributed over the load system. Power quality problems such as frequency fluctuations and voltage sags, which arise due to a fault or a pulsed load, can cause interruptions

Mohammad Lutfur Rahman; Shunsuke Oka; Yasuyuki Shirai

2010-01-01

137

Monitoring system of wind turbine rotor blades  

Microsoft Academic Search

Conventionally, modal monitoring of Wind Turbine Rotor Blades is primarily based on the evaluation of eigenfrequencies. Beyond this, combining a sensor network with the Operational Modal Analysis (OMA) method, mode shape and parallely a local component are utilized here. In addition it is expected that the damping, which is also determined by the OMA method, will give a lead on

B. Frankenstein; L. Schubert; N. Meyendorf; H. Friedmann; C. Ebert

2009-01-01

138

Lightning current monitoring system for wind turbines  

Microsoft Academic Search

Lightning protection and surge protection measures are essential for the availability of wind turbines and for their profitability. Whereas the electric and electronic equipment can be protected by a comprehensive surge protection concept, outer structures particularly the rotor blades are hit by direct lightning strikes. In defined maintenance cycles these damages are inspected and repaired in costly operations. In this

Martin Wetter; Arno Kiefer; Achim Zirkel

2011-01-01

139

Characterizing wind turbine system response to lightning activity  

SciTech Connect

A lightning protection research program was instituted by National Renewable Energy Laboratory to minimize lightning damage to wind turbines and to further the understanding of effective damage mitigation techniques. To that end, a test program is under way to observe lightning activity, protection system response, and damage at a wind power plant in the Department of Energy (DOE) and Electric Power Research Institute (EPRI) Turbine Verification Program. The authors installed Lightning activated surveillance cameras along with a special storm tracking device to observe the activity in the wind plant area. They instrumented the turbines with lightning and ground current detection devices to log direct and indirect strike activity at each unit. They installed a surge monitor on the utility interface to track incoming activity from the transmission lines. Maintenance logs are used to verify damage and determine downtime and repair costs. Actual strikes to turbines were recorded on video and ancillary devices. The test setup and some results are discussed in this paper.

McNiff, B.; LaWhite, N. [McNiff Light Industry, Harborside, ME (United States); Muljadi, E. [National Renewable Energy Lab., Golden, CO (United States)

1998-07-01

140

Thermochemically recuperated and steam cooled gas turbine system  

DOEpatents

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11

141

Thermochemically recuperated and steam cooled gas turbine system  

DOEpatents

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01

142

UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

Kenneth A. Yackly

2001-06-01

143

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

SciTech Connect

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

2006-03-01

144

Investigation of geothermal energy technologies and gas turbine hybrid systems  

SciTech Connect

This paper presents a preliminary study of the technical and economic feasibilities of integrating gas turbine systems into geothermal technologies. Levelized cost analysis employing revenue requirement approach was used to measure the economic feasibility of the geothermal and gas turbine hybrids at different geothermal sites. Twelve geothermal resource areas were included in this study; Brawley, CA, Coso Hot Springs, CA, Dixie Valley, NV, East Mesa, CA, Glass Mountain, CA, Heber, CA, Mono-Long Valley, CA, Salton Sea, CA, Stillwater, NV, Surprise Valley, CA, Vale, OR, and Wabuska, NV. The geothermal power generation technologies included in this study were air-cooled subcritical binary, condensate-cooled dual flash, and gas turbine hybrids of these two technologies. Geothermal/gas turbine concepts can be cost-effective at many geothermal resource areas. This study indicated that integrating gas turbine systems using GE LM2500 with binary cycles is potentially more cost effective than stand alone binary power plants in low temperature resource areas such as East Mesa, CA, Heber, CA, Stillwater, NV, Vale, OR and Wabuska, NV. In addition, this study showed that dual flash/gas turbine hybrid power plants maybe considered for higher temperature resources with high O&M costs.

Tiangco, V.; McCluer, P.; Hughes, E.

1996-12-31

145

Hydropower Resource Assessment of Brazilian Streams  

SciTech Connect

The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

Douglas G. Hall

2011-09-01

146

Wind Turbine Blade Design System - Aerodynamic and Structural Analysis  

NASA Astrophysics Data System (ADS)

The ever increasing need for energy and the depletion of non-renewable energy resources has led to more advancement in the "Green Energy" field, including wind energy. An improvement in performance of a Wind Turbine will enhance its economic viability, which can be achieved by better aerodynamic designs. In the present study, a design system that has been under development for gas turbine turbomachinery has been modified for designing wind turbine blades. This is a very different approach for wind turbine blade design, but will allow it to benefit from the features inherent in the geometry flexibility and broad design space of the presented system. It starts with key overall design parameters and a low-fidelity model that is used to create the initial geometry parameters. The low-fidelity system includes the axisymmetric solver with loss models, T-Axi (Turbomachinery-AXIsymmetric), MISES blade-to-blade solver and 2D wing analysis code XFLR5. The geometry parameters are used to define sections along the span of the blade and connected to the CAD model of the wind turbine blade through CAPRI (Computational Analysis PRogramming Interface), a CAD neutral API that facilitates the use of parametric geometry definition with CAD. Either the sections or the CAD geometry is then available for CFD and Finite Element Analysis. The GE 1.5sle MW wind turbine and NERL NASA Phase VI wind turbine have been used as test cases. Details of the design system application are described, and the resulting wind turbine geometry and conditions are compared to the published results of the GE and NREL wind turbines. A 2D wing analysis code XFLR5, is used for to compare results from 2D analysis to blade-to-blade analysis and the 3D CFD analysis. This kind of comparison concludes that, from hub to 25% of the span blade to blade effects or the cascade effect has to be considered, from 25% to 75%, the blade acts as a 2d wing and from 75% to the tip 3D and tip effects have to be taken into account for design considerations. In addition, the benefits of this approach for wind turbine design and future efforts are discussed.

Dey, Soumitr

147

Advanced Gas Turbine (AGT) powertrain system development for automotive applications  

NASA Technical Reports Server (NTRS)

Preliminary layouts were made for the exhaust system, air induction system, and battery installation. Points of interference were identified and resolved by altering either the vehicle or engine designs. An engine general arrangement evolved to meet the vehicle engine compartment constraints while minimizing the duct pressure losses and the heat rejection. A power transfer system (between gasifier and power turbines) was developed to maintain nearly constant temperatures throughout the entire range of engine operation. An advanced four speed automatic transmission was selected to be used with the engine. Performance calculations show improvements in component efficiencies and an increase in fuel economy. A single stage centrifugal compressor design was completed and released for procurement. Gasifier turbine, power turbine, combustor, generator, secondary systems, materials, controls, and transmission development are reported.

1981-01-01

148

System for admitting steam into a turbine  

SciTech Connect

This patent describes an improved method of admitting steam into a steam turbine having an upper casing and a lower casing with a large nozzle chamber and at least one small nozzle chamber in each of the casings through which steam is admitted into the turbine. It comprises: controlling steam flow to each nozzle chamber with a single correspondingly-sized steam supply port and associated valve in a steam chest; orienting adjacent ones of the steam supply ports in opposite directions within the steam chest so that steam flow destined for nozzle chambers in the upper casing is directed upwardly, and steam flow destined for nozzle chambers in the lower casing is directed downwardly; and connecting each of the ports to its corresponding nozzle chamber with a single pipe means and an inlet pipe.

Silvestri, G.J. Jr.

1990-07-10

149

Benefits of solar/fossil hybrid gas turbine systems  

NASA Technical Reports Server (NTRS)

The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

Bloomfield, H. S.

1978-01-01

150

Benefits of solar/fossil hybrid gas turbine systems  

NASA Technical Reports Server (NTRS)

The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

Bloomfield, H. S.

1979-01-01

151

SYSTEMIC ASSESSMENT AND ANALYSIS OF FACTORS AFFECT THE RELIABILITY OF A WIND TURBINE  

Microsoft Academic Search

Nowadays, the availability of wind turbines usually approaches the 98%. The objective is to increase the turbines availability, by improving the wind turbine reliability especially for offshore plants. The wind turbines reliability is a pivotal factor in the successfully function of a wind power plant. High reliability can be achieved by understanding and minimizing the failures of the system. Maintenance

Pantelis N. Botsaris; D. Pitsa

2012-01-01

152

Research and Development Activity on Small Hydropower in Poland  

Microsoft Academic Search

Starting from the beginning of the 1980s efforts have been made by subsequent Polish governments to reconstruct small hydropower plants in this country. The paper brings basic data on two series of types of Banki-Michell (cross-flow) turbines as well as those of tubular and siphon turbines developed in Poland within the framework of government-sponsored research and development programs on renewable

K. STELLER; J. STELLER

1993-01-01

153

Research and development activity on small hydropower in Poland  

Microsoft Academic Search

Starting from the beginning of the 1980s efforts have been made by subsequent Polish governments to reconstruct small hydropower plants in this country. This paper brings basic data on two series of types of Banki-Michell (cross-flow) turbines as well as those of tubular and siphon turbines developed in Poland within the framework of government-sponsored research and development programs on renewable

Steller

2009-01-01

154

BIOMASS COMBUSTION IN GAS-TURBINE-BASED SYSTEMS  

EPA Science Inventory

The paper gives results of a comparative evaluation of a range of biomass power generation systems. he objective was to identify systems most suitable for unique properties of biomass. he characteristics of biomass fuels were reviewed, and the performance of several gas-turbine-b...

155

Abradable Dual-Density Ceramic Turbine Seal System.  

National Technical Information Service (NTIS)

A plasma sprayed dual density ceramic abradable seal system for direct application to the HPT seal shroud of small gas turbine engines. The system concept is based on the thermal barrier coating and depends upon an additional layer of modified density cer...

D. L. Clingman, B. Schechter, K. R. Cross, J. R. Cavanagh

1981-01-01

156

Single module pressurized fuel cell turbine generator system  

DOEpatents

A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

George, Raymond A. (Pittsburgh, PA); Veyo, Stephen E. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA)

2001-01-01

157

Voltage analysis of distribution systems with DFIG wind turbines  

Microsoft Academic Search

Wind energy is becoming the most viable renewable energy source mainly because of the growing concerns over carbon emissions and uncertainties in fossil fuel supplies and the government policy impetus. The increasing penetration of wind power in distribution systems may significantly affect voltage stability of the systems, particularly during wind turbine cut-in and cut-off disturbances. Currently, doubly fed induction generator

Baohua Dong; Sohrab Asgarpoor; Wei Qiao

2009-01-01

158

System for removing uncondensed products from a steam turbine condenser  

Microsoft Academic Search

This patent describes improvement in a steam condenser system for a turbine, which system includes: a condenser having an outlet for conveying uncondensed products out of the condenser; an exhauster having a housing, an inlet connected between the housing and the condenser outlet, an exhaust outlet connected to the housing, and a rotatable member, disposed in the housing and rotatable

P. W. Viscovich; J. A. Martin

1991-01-01

159

SPECIFICATIONS FOR SMALL WIND TURBINES FOR AUTONOMOUS ENERGY SYSTEMS  

Microsoft Academic Search

For a wide implementation of Wind Energy Conversion Systems (WECS) in island areas, it is imperative to produce a simple and effective design concept, to enhance their robustness and to minimise their cost. It is evident that the experience coming from the large Wind Turbines technology cannot be applied to the isolated medium and small systems. This is mainly because

C. G. Condaxakis; D. G. Christakis; C. A. Tsambazis; T. A. Chortatsos

160

Water augmented indirectly-fired gas turbine systems and method  

DOEpatents

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

1992-01-01

161

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15

162

Final Report: Retrofit Aeration System (RAS) for Francis Turbine  

SciTech Connect

Osage Plant and Bagnell Dam impounds the Osage River forming the Lake of the Ozarks in Missouri. Since it is nearly 100 feet deep, the lake stratifies during the summer months causing low DO water to be discharged into the Osage river below the dam. To supplement DO, the turbines are vented during the low DO season. AmerenUE is continually researching new methods of DO enhancement. New turbines, manufactured by American Hydro Corporation, were installed in Units 3 & 5 during the spring of 2002. Additional vent capacity and new nosecones were included in the new turbine design. The retrofit aeration system is an attempt to further enhance the DO in the tailrace by installation of additional venting capability on Unit 6 (not upgraded with new turbine) and refining design on special nosecones which will be mounted on both Unit 3 (upgraded turbine) and Unit 6. Baseline DO testing for Units 3 & 6 was conducted mid August, 2002. This data wascompared to further tests planned for the summer of 2003 and 2004 after installation of the retrofit aeration system.

Alan Sullivan; DOE Project Officer Keith Bennett

2006-08-01

163

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOEpatents

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01

164

A decision support system for real-time hydropower scheduling in a competitive power market environment  

NASA Astrophysics Data System (ADS)

The electricity supply market is rapidly changing from a monopolistic to a competitive environment. Being able to operate their system of reservoirs and generating facilities to get maximum benefits out of existing assets and resources is important to the British Columbia Hydro Authority (B.C. Hydro). A decision support system has been developed to help B.C. Hydro operate their system in an optimal way. The system is operational and is one of the tools that are currently used by the B.C. Hydro system operations engineers to determine optimal schedules that meet the hourly domestic load and also maximize the value B.C. Hydro obtains from spot transactions in the Western U.S. and Alberta electricity markets. This dissertation describes the development and implementation of the decision support system in production mode. The decision support system consists of six components: the input data preparation routines, the graphical user interface (GUI), the communication protocols, the hydraulic simulation model, the optimization model, and the results display software. A major part of this work involved the development and implementation of a practical and detailed large-scale optimization model that determines the optimal tradeoff between the long-term value of water and the returns from spot trading transactions in real-time operations. The postmortem-testing phase showed that the gains in value from using the model accounted for 0.25% to 1.0% of the revenues obtained. The financial returns from using the decision support system greatly outweigh the costs of building it. Other benefits are the savings in the time needed to prepare the generation and trading schedules. The system operations engineers now can use the time saved to focus on other important aspects of their job. The operators are currently experimenting with the system in production mode, and are gradually gaining confidence that the advice it provides is accurate, reliable and sensible. The main lesson learned from developing and implementing the system was that there is no alternative to working very closely with the intended end-users of the system, and with the people who have deep knowledge, experience and understanding of how the system is and should be operated.

Shawwash, Ziad Khaled Elias

2000-10-01

165

Report to Congress: Comprehensive Program Plan for Advanced Turbine Systems  

NASA Astrophysics Data System (ADS)

Consistent with the Department of Energy (DOE) mission, the Advanced Turbine Systems (ATS) Program will develop more efficient gas turbine systems for both utility and industrial electric power generation (including cogeneration). The program will develop base-load power systems for commercial offering in the year 2000. Although the target fuel is natural gas, the ATS will be adaptable to coal and biomass firing. All ATS will exhibit these characteristics: Ultra-high efficiency utility systems: 60 percent (lower heating value basis); industrial systems--15 percent improvement over today's best gas turbine systems; Environmental superiority (reduced nitrogen oxides (NO(x)), carbon dioxide (CO2), carbon monoxide (CO), and unburned hydrocarbons (UHC)); and cost competitiveness (10 percent lower cost of electricity). This Program Plan was requested in the House, Senate, and Conference Reports on the FY 1993 Interior and Related Agencies Appropriations Act, Public Law 102--381, and is consistent with the Energy Policy Act of 1992, which (in Section 2112) identifies work for improving gas turbines. This plan outlines the 8-year ATS Program and discusses rationale and planning. Total Program costs are estimated to be $700 million, consisting of an approximate $450 million government share, and an approximate $250 million cost-share by industrial participants.

1993-07-01

166

Thermal Performance of Wind Turbine Power System's Engine Room  

NASA Astrophysics Data System (ADS)

Greatly expanded use of wind energy has been proposed to reduce dependence on fossil and nuclear fuels for electricity generation. For wind turbine power generation, as a mature technology in the field of wind power utilization, its large-scale deployment is limited by the cooling technology. Therefore, the temperature distribution of the wind turbine power generation is a key issue for the design of the cooling system. It is because the characteristics of cooling system have a great effect on the performance of the wind turbine power generation. Based on some assumptions and simplifications, a thermal model is developed to describe the heat transfer behavior of wind turbine power system. The numerical calculation method is adopted to solve the governing equation. The heat generation and heat flux are investigated with a given operating boundary. The achieved results can be used to verify whether the cooling system meets the design requirements. Meanwhile, they also can reveal that among the influencing factors, the meteorological conditions, generated output and operation state as well seriously influence its thermal performance. Numerical calculation of the cooling system enables better understanding and results in performance improvement of the system.

Liu, Zhili; Jiang, Yanlong; Zhou, Nianyong; Shi, Hong; Kang, Na; Wang, Yu

167

Mixed integer programming approach to optimal short-term unit commitment for hydropower systems  

Microsoft Academic Search

Unit commitment problem is a complex decision-making process which involves the scheduling of generators over a set of time\\u000a periods to satisfy system load demand, water demand, system reliability, operational, and security constraints. Mathematically,\\u000a this is a nonlinear, nonconvex, high dimensional, and large-scale optimization problem over mixed integer variables. Additionally,\\u000a for a short-term unit commitment problem such as hourly or

Jaeeung Yi

1998-01-01

168

A combined flow prediction and reservoir control system for optimising hydropower production  

Microsoft Academic Search

A combined flow prediction and control system is described for optimisation of multi-purpose reservoir operation. The system integrates a numerical model for simulation of river flow and reservoir operation with an optimisation tool. The optimisation tool includes a general multi-objective framework that searches for the set of non-dominated or Pareto-optimal solutions according to the trade-offs between the various objectives. The

H. Madsen; J. Høst-Madsen; L. L. Ngo; D. Rosbjerg; Kongens Lyngby

169

Materials/manufacturing element of the Advanced Turbine System Program  

SciTech Connect

One of the supporting elements of the Advanced Turbine Systems (ATS) Program is the materials/manufacturing technologies task. The objective of this element is to address critical materials issues for both industrial and utility gas turbines. DOE Oak Ridge Operations Office (ORO) will manage this element of the program, and a team from DOE-ORO and Oak Ridge National Laboratory is coordinating the planning for the materials/manufacturing effort. This paper describes that planning activity which is in the early stages.

Karnitz, M.A.; Devan, J.H.; Holcomb, R.S.; Ferber, M.K.; Harrison, R.W.

1994-08-01

170

Materials/manufacturing element of the Advanced Turbine System Program  

NASA Astrophysics Data System (ADS)

One of the supporting elements of the Advanced Turbine Systems (ATS) Program is the materials/manufacturing technologies task. The objective of this element is to address critical materials issues for both industrial and utility gas turbines. DOE Oak Ridge Operations Office (ORO) will manage this element of the program, and a team from DOE-ORO and Oak Ridge National Laboratory is coordinating the planning for the materials/manufacturing effort. This paper describes that planning activity which is in the early stages.

Karnitz, M. A.; Devan, J. H.; Holcomb, R. S.; Ferber, M. K.; Harrison, R. W.

171

Advanced Gas Turbine (AGT) powertrain system development for automotive applications  

NASA Technical Reports Server (NTRS)

Progress in the development of a gas turbine engine to improve fuel economy, reduce gaseous emissions and particulate levels, and compatible with a variety of alternate fuels is reported. The powertrain is designated AGT101 and consists of a regenerated single shaft gas turbine engine, a split differential gearbox and a Ford Automatic Overdrive production transmission. The powertrain is controlled by an electronic digital microprocessor and associated actuators, instrumentation, and sensors. Standard automotive accessories are driven by engine power provided by an accessory pad on the gearbox. Component/subsystem development progress is reported in the following areas: compressor, turbine, combustion system, regenerator, gearbox/transmission, structures, ceramic components, foil gas bearing, bearings and seals, rotor dynamics, and controls and accessories.

1980-01-01

172

The Use of Advanced Hydroelectric Turbines to Improve Water Quality and Fish Populations  

SciTech Connect

Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the world?s electrical energy. It is a renewable energy source that can contribute significantly to reduction of greenhouse gases by offsetting conventional carbon-based electricity generation. However, rather than growing in importance, hydroelectric generation has actually declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, ?environmentally friendly? turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been developed in the initial phases of the AHTS program are described.

Brookshier, P.A.; Cada, G.F.; Flynn, J.V.; Rinehart, B.N.; Sale, M.J.; Sommers, G.L.

1999-09-20

173

Advanced, Environmentally Friendly Hydroelectric Turbines for the Restoration of Fish and Water Quality  

SciTech Connect

Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the world?s electrical energy. The contribution of hydroelectric generation has declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, ?environmentally friendly? turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been he AHTS program are described.

Brookshier, P.A.; Cada, G.F.; Flynn, J.V.; Rinehart, B.N.; Sale, M.J.; Sommers, G.L.

1999-09-06

174

Fixed pitch wind turbine system utilizing aerodynamic stall  

Microsoft Academic Search

A fixed-pitch wind turbine system utilizing a permanent magnet alternator. Optimum output power is achieved by controlling the load on the stator output armature of the permanent magnet alternator. Energy is stored in the ac utility grid utilizing a synchronous inverter which couples energy from the alternator for storage in the ac utility grid in a controlled manner to regulate

A. Migliori; J. Humphrey; J. Midyette

1984-01-01

175

Potential of Hybrid PV \\/ Wind Turbine System in Jordan  

Microsoft Academic Search

Renewable resources gained more attention during the last two decades because of the continues energy demand increasing parallel with fossil fuel resources decreases, additional to the environmental effect to the earth. In this article a feasibility of using the renewable resources for power generation was done by proposed a hybrid system (PV and Wind turbine) for grid connected applications for

Salwan S. Dihrab; M. A. Alghoul; K. Sopian; M. Y. Sulaiman

2009-01-01

176

Optimizing turbine-condenser system steam consumption  

SciTech Connect

When a turbine with both bleeding and condensing sections is designed, it is possible to vary widely the load distribution between the two sections and, hence to optimize operation of the plant under given conditions. If air condensers are used for the condensation of steam, the ratio of the amount of bled steam and that of steam passed into the condensers depends on the cooling air temperature. This influence can be partly offset by adjusting the rate of air flow across the condenser tubes. The flowrate may be controlled where applicable by changing the number of operating fans, by varying the fan speed, or by adjusting the angle of the fan blades. At higher air temperatures, however, all these measures are no more applicable, steam pressure in condensers is increasing and, if the flowrate of bled steam remains constant, the consumption of inlet steam grows proportionally.

Novotny, P.

1987-07-01

177

Analyzing tradeoffs between hydropower production and hydrological alteration to support water resources planning in large river systems  

NASA Astrophysics Data System (ADS)

In many countries water is a key renewable resource to complement carbon-emitting energy production in the face of demand pressure from fast-growing industrial production and urbanization. In this study, we analyze the case of the Red River Vietnam, a large basin of 169.000 kmq where the storing capacity, mainly targeted at hydropower production, has steadily increased since from the Eighties through the construction of a number of reservoirs (Hoa Binh completed in 1994, Tuyen Quang in 2008, Son La in 2012), which nowadays account for the 15% of the national electric power production. On the other hand, reservoir operation dramatically alters downstream river hydrology, geomorphological processes and riverine ecosystems. In this work, we focus in particular on the alteration of the hydrological regime downstream of the Hoa Binh reservoir and explore re-operation options to mitigate the hydrological alteration while guaranteeing reasonable hydropower production. To reach this goal we (i) define an index of hydrological alteration starting from the well established set of Indicators of Hydrological Alteration and applying a novel selection and aggregation procedure; (ii) embed such an index into a multi-objective optimization process, to design reservoir operating policies that represent Pareto-optimal solutions between maximization of hydropower production and minimization of hydrological alteration. This work demonstrates the potential of multi-objective optimization and simulation tools to analyze tradeoffs between conflicting needs and thus support the evaluation and planning of sustainable energy production programs.

Micotti, Marco; Pianosi, Francesca; Bizzi, Simone; Mason, Emanuele; Weber, Enrico

2014-05-01

178

Dynamic behaviour of a DFIG wind turbine subjected to power system faults  

E-print Network

Dynamic behaviour of a DFIG wind turbine subjected to power system faults Gabriele Michalke+, Anca of the dynamic interaction between variable speed DFIG wind turbines and the power system subjected the power converter control and protection system during grid faults. A DFIG wind turbine dynamic model

179

A High Efficiency PSOFC/ATS-Gas Turbine Power System  

SciTech Connect

A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

2001-02-01

180

Using Conventional Hydropower to Help Alleviate Variable Resource Grid Integration Challenges in the Western U.S  

NASA Astrophysics Data System (ADS)

Integrating high penetration levels of wind and solar energy resources into the power grid is a formidable challenge in virtually all interconnected systems due to the fact that supply and demand must remain in balance at all times. Since large scale electricity storage is currently not economically viable, generation must exactly match electricity demand plus energy losses in the system as time unfolds. Therefore, as generation from variable resources such as wind and solar fluctuate, production from generating resources that are easier to control and dispatch need to compensate for these fluctuations while at the same time respond to both instantaneous change in load and follow daily load profiles. The grid in the Western U.S. is not exempt to grid integration challenges associated with variable resources. However, one advantage that the power system in the Western U.S. has over many other regional power systems is that its footprint contains an abundance of hydropower resources. Hydropower plants, especially those that have reservoir water storage, can physically change electricity production levels very quickly both via a dispatcher and through automatic generation control. Since hydropower response time is typically much faster than other dispatchable resources such as steam or gas turbines, it is well suited to alleviate variable resource grid integration issues. However, despite an abundance of hydropower resources and the current low penetration of variable resources in the Western U.S., problems have already surfaced. This spring in the Pacific Northwest, wetter than normal hydropower conditions in combination with transmission constraints resulted in controversial wind resource shedding. This action was taken since water spilling would have increased dissolved oxygen levels downstream of dams thereby significantly degrading fish habitats. The extent to which hydropower resources will be able to contribute toward a stable and reliable Western grid is currently being studied. Typically these studies consider the inherent flexibility of hydropower technologies, but tend to fall short on details regarding grid operations, institutional arrangements, and hydropower environmental regulations. This presentation will focus on an analysis that Argonne National Laboratory is conducting in collaboration with the Western Area Power Administration (Western). The analysis evaluates the extent to which Western's hydropower resources may help with grid integration challenges via a proposed Energy Imbalance Market. This market encompasses most of the Western Electricity Coordinating Council footprint. It changes grid operations such that the real-time dispatch would be, in part, based on a 5-minute electricity market. The analysis includes many factors such as site-specific environmental considerations at each of its hydropower facilities, long-term firm purchase agreements, and hydropower operating objectives and goals. Results of the analysis indicate that site-specific details significantly affect the ability of hydropower plant to respond to grid needs in a future which will have a high penetration of variable resources.

Veselka, T. D.; Poch, L.

2011-12-01

181

Utilizing hydropower for load balancing non-storable renewable energy sources - technical and environmental challenges  

NASA Astrophysics Data System (ADS)

About 99% of the total energy production in Norway comes from hydropower, and the total production of about 120 TWh makes Norway Europe's largest hydropower producer. Most hydropower systems in Norway are based on high-head plants with mountain storage reservoirs and tunnels transporting water from the reservoirs to the power plants. In total, Norwegian reservoirs contributes around 50% of the total energy storage capacity in Europe. Current strategies to reduce emission of greenhouse gases from energy production involve increased focus on renewable energy sources, e.g. the European Union's 202020 goal in which renewable energy sources should be 20% of the total energy production by 2020. To meet this goal new renewable energy installations must be developed on a large scale in the coming years, and wind power is the main focus for new developments. Hydropower can contribute directly to increase renewable energy through new development or extensions to existing systems, but maybe even more important is the potential to use hydropower systems with storage for load balancing in a system with increased amount of non-storable renewable energies. Even if new storage technologies are under development, hydro storage is the only technology available on a large scale and the most economical feasible alternative. In this respect the Norwegian system has a high potential both through direct use of existing reservoirs and through an increased development of pump storage plants utilizing surplus wind energy to pump water and then producing during periods with low wind input. Through cables to Europe, Norwegian hydropower could also provide balance power for the North European market. Increased peaking and more variable operation of the current hydropower system will present a number of technical and environmental challenges that needs to be identified and mitigated. A more variable production will lead to fluctuating flow in receiving rivers and reservoirs, and it will also lead to more dynamic water temperatures and alter the interaction with the adjacent hyporheic zone. Frequent drying and wetting may impact the aquatic ecosystem e.g. through stranding of fish, and it may increase erosion and sediment transport in receiving reservoirs and rivers. During winter, most Norwegian systems currently adapt releases to prevent unstable ice conditions and ice runs and a more intermittent production schedule may lead to more unstable ice conditions. More transient flow may also have implications in the transfer tunnels and new methods are needed to monitor conditions to avoid turbine damage and loss of production. As a part of the Norwegian governments focus on developing renewable energy, a number of research centers for environmentally friendly energy production were created in 2009. For one of these centers, Center for environmentally design of renewable energy (CEDREN), one of the main objectives is to study the use of the Norwegian hydropower system for large scale peaking and load balancing, and to provide means of mitigating possible unwanted impacts. We will present data on how increased load balancing will influence the Norwegian hydropower system and an overview of challenges and possible solutions that the new operational strategy may incur.

Alfredsen, K. T.; Killingtveit, A.

2011-12-01

182

Advanced coal-fueled gas turbine systems reference system definition update  

SciTech Connect

The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

Not Available

1991-09-01

183

Steam cooling system for a gas turbine  

DOEpatents

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

2002-01-01

184

Infrared applications for steam turbine condenser systems  

NASA Astrophysics Data System (ADS)

Infrared inspection of the main steam condensers at the Peach Bottom Atomic Power Station has been utilized successfully in detecting condenser air in-leakage problems. Air in-leakage lowers the condenser's vacuum, thus decreasing the condenser's efficiency. This creates backpressure on the turbine which lowers its efficiency, resulting in fewer megawatts generated. Air in-leakage also creates an increase in off-gas flow which is a radiological concern for both the plant and the public. Inspections are normally performed on the condenser's manway covers and rupture disks prior to an outage during coast down and post outage. The optimum conditions are 100% power and temperature, however, a high radiation field prevents the inspection until reactor power is down to 65% or less. Anomalies are typically indicated by cooling in the effected areas of the air in-leakage. The anomalies are not limited to air in-leakage. Intermittent water out-leakage, due to a heater dump valve cycling, has been detected when visual inspections field nothing.

Lanius, Mark A.

2000-03-01

185

Modeling and Control of Micro-Turbine Based Distributed Generation System  

Microsoft Academic Search

Micro turbine generation is currently attracting lot of attention to meet users need in the distributed generation market due to the deregulation of electric power utilities, advancement in technology, environmental concerns. In this paper modeling of micro-turbine distributed generation system has been implemented and a new converter controller for a simulation of dynamic model of a micro-turbine generation system (MTG)

Ashwani Kumar; K. S. Sandhu; S. P. Jain; P. Sharath Kumar

186

Clean Energy: Hydropower  

NSDL National Science Digital Library

Hydropower generation is introduced to students as a common purpose and benefit of constructing dams. Through an introduction to kinetic and potential energy, students come to understand how a dam creates electricity. They also learn the difference between renewable and non-renewable energy.

Integrated Teaching And Learning Program

187

Developing hydropower overseas  

SciTech Connect

This article examines how the National Hydropower Association (NHA) has found ways to support its members who desire to expand their business programs to foreign markets through participation in a wide range of government programs. The topics of the article include the market in developing countries, the certificate of review, products and services, and domestic and international competition.

Smith, W.B. (Benham-Holway Power Group, Tulsa, OK (United States))

1991-10-01

188

Advanced Combustion Systems for Next Generation Gas Turbines  

SciTech Connect

Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

2006-01-01

189

Integrated Low Emissions Cleanup system for direct coal fueled turbines  

SciTech Connect

The United States Department of.Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technology in the areas of Pressurized Fluidized Bed Combustion, Integrated Gasification Combined Cycles, and Direct Coal-Fired Turbines. A major technical challenge remaining for the development of coal-fired turbine systems is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic barrier filter, ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases, and is considering cleaning temperatures up to 2100{degrees}F. This document describes Phase II of the program, the design, construction, and shakedown of a bench-scale facility to test and confirm the feasibility of this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Lippert, T.E.

1993-07-01

190

The Tremblay-Turbiner-Winternitz system as extended Hamiltonian  

E-print Network

We generalize the idea of "extension of Hamiltonian systems" -- developed in a series of previous articles -- which allows the explicit construction of Hamiltonian systems with additional non-trivial polynomial first integrals of arbitrarily high degree, as well as the determination of new superintegrable systems from old ones. The present generalization, that we call "modified extension of Hamiltonian systems", produces the third independent first integral for the (complete) Tremblay-Turbiner-Winternitz (TTW) system, as well as for the caged anisotropic oscillator in dimension two.

Claudia Maria Chanu; Luca Degiovanni; Giovanni Rastelli

2014-04-18

191

UNIVERSITY TURBINE SYSTEMS RESEARCH-HIGH EFFICIENCY ENGINES AND TURBINES (UTSR-HEET)  

SciTech Connect

In 2002, the U S Department of Energy established a cooperative agreement for a program now designated as the University Turbine Systems (UTSR) Program. As stated in the cooperative agreement, the objective of the program is to support and facilitate development of advanced energy systems incorporating turbines through a university research environment. This document is the first annual, technical progress report for the UTSR Program. The Executive Summary describes activities for the year of the South Carolina Institute for Energy Studies (SCIES), which administers the UTSR Program. Included are descriptions of: Outline of program administrative activities; Award of the first 10 university research projects resulting from a year 2001 RFP; Year 2002 solicitation and proposal selection for awards in 2003; Three UTSR Workshops in Combustion, Aero/Heat Transfer, and Materials; SCIES participation in workshops and meetings to provide input on technical direction for the DOE HEET Program; Eight Industrial Internships awarded to higher level university students; Increased membership of Performing Member Universities to 105 institutions in 40 states; Summary of outreach activities; and a Summary table describing the ten newly awarded UTSR research projects. Attachment A gives more detail on SCIES activities by providing the monthly exceptions reports sent to the DOE during the year. Attachment B provides additional information on outreach activities for 2002. The remainder of this report describes in detail the technical approach, results, and conclusions to date for the UTSR university projects.

Lawrence P. Golan; Richard A. Wenglarz; William H. Day

2003-03-01

192

Proceedings of the Advanced Turbine Systems annual program review meeting  

SciTech Connect

Goals of the 8-year program are to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. During this Nov. 9-11, 1994, meeting, presentations on energy policy issues were delivered by representatives of regulatory, industry, and research institutions; program overviews and technical reviews were given by contractors; and ongoing and proposed future projects sponsored by university and industry were presented and displayed at the poster session. Panel discussions on distributed power and Advanced Gas Systems Research education provided a forum for interactive dialog and exchange of ideas. Exhibitors included US DOE, Solar Turbines, Westinghouse, Allison Engine Co., and GE.

NONE

1994-12-31

193

State of direct fuel cell/turbine systems development  

NASA Astrophysics Data System (ADS)

FuelCell Energy Inc. (FCE) is actively developing fuel cell/gas turbine hybrid systems, DFC/T ®, for generation of clean electric power with very high efficiencies. The gas turbine extends the high efficiency of the fuel cell without the need for supplementary fuel. Key features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas (60% on coal gas), minimal emissions, simple design, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed sub-MW scale proof-of-concept tests (pre-alpha DFC/T hybrid power plant). The tests demonstrated that the concept results in higher power plant efficiency. A small packaged natural gas fueled sub-MW unit is being developed for demonstrations (alpha and beta units). Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Ghezel-Ayagh, Hossein; Walzak, Jim; Patel, Dilip; Daly, Joseph; Maru, Hans; Sanderson, Robert; Livingood, William

194

Boiler-turbine control system design using a genetic algorithm  

Microsoft Academic Search

This paper discusses the application of a genetic algorithm to control system design for boiler-turbine plant. In particular we study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a nonlinear multi-input\\/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller

Robert Dimeo; Kwang Y. Lee

1995-01-01

195

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1990-07-01

196

Doubly fed induction generator systems for wind turbines  

Microsoft Academic Search

This article shows that adjustable speed generators for wind turbines are necessary when output power becomes higher than 1 MW. The doubly fed induction generator (DFIG) system presented in this article offers many advantages to reduce cost and has the potential to be built economically at power levels above 1.5 MW, e.g., for off-shore applications. A dynamic model of the

S. Muller; M. Deicke; R. W. De Doncker

2002-01-01

197

Analysis of Some Exergoeconomic Parameters of Small Wind Turbine System  

Microsoft Academic Search

This paper investigates some exergoeconomic parameters (energy and exergy loss ratios) for a 1.5 kW wind turbine system, linking capital costs and thermodynamic losses, based on some operating conditions. The results show that while the ratio of energy loss rate to capital cost (Ren) changes between 0.007 and 0.813 at different wind speeds, the ratio of exergy loss rate to

Onder Ozgener; Leyla Ozgener; Ibrahim Dincer

2009-01-01

198

STRUCTURAL HEALTH MONITORING OF THE SUPPORT STRUCTURE OF WIND TURBINE USING WIRELESS SENSING SYSTEM  

E-print Network

practical alternative today. Currently, through the development of wind energy, the number of wind turbineSTRUCTURAL HEALTH MONITORING OF THE SUPPORT STRUCTURE OF WIND TURBINE USING WIRELESS SENSING SYSTEM, Taiwan kclu@narlabs.org.tw ABSTRACT The wind turbine heavily depends on the success of the support

Boyer, Edmond

199

Int. Symp. on Heat Transfer in Gas Turbine Systems 9 14 August, 2009, Antalya, Turkey  

E-print Network

generate an accurately measurable amount of heat transfer from the gas side to turbine blades in a linearInt. Symp. on Heat Transfer in Gas Turbine Systems 9 ­ 14 August, 2009, Antalya, Turkey the full-scale operational conditions of a modern gas turbine dictate high temperatures well in excess

Camci, Cengiz

200

DEVELOPMENT OF AN ULTRASONIC NDT SYSTEM FOR AUTOMATED IN-SITU INSPECTION OF WIND TURBINE BLADES  

E-print Network

DEVELOPMENT OF AN ULTRASONIC NDT SYSTEM FOR AUTOMATED IN- SITU INSPECTION OF WIND TURBINE BLADES Abington, Cambridge, CB21 6AL, UK bic@brunel.ac.uk ABSTRACT It is crucial to maintain wind turbine blades. This work investigates using pulse-echo ultrasound to detect internal damages in wind turbine blades without

Boyer, Edmond

201

Impact of DFIG wind turbines on transient stability of power systems a review  

E-print Network

Impact of DFIG wind turbines on transient stability of power systems ­ a review Authors Na Abstract of wind farms are using variable speed wind turbines equipped with doubly-fed induction generators (DFIG) due to their advantages over other wind turbine generators. Therefore, the analysis of wind power

Pota, Himanshu Roy

202

Structural health monitoring of wind turbines using fiber Bragg grating based sensing system  

Microsoft Academic Search

As the size of wind turbines increases, the early detection of structural instability becomes increasingly important for safety. This paper introduces a fiber Bragg grating-based sensing system for use in multi-MW scale wind turbine health monitoring, and describes the results of preliminary field tests of dynamic strain monitoring of the tower structure of an onshore wind turbine. For this research,

Hyung-Joon Bang; Moonseok Jang; Hyungki Shin

2011-01-01

203

Sidewall effect of runner casing on performance of Darrieus-type hydro turbine with inlet nozzle for extra-low head utilization  

Microsoft Academic Search

A ducted Darrieus-type turbine has been proposed for hydropower utilization of extra-low head less than 2 m. Though the hydro\\u000a turbine system, in general, might consist of an intake, runner casing section and a draft tube for higher efficiency operation,\\u000a it was clarified in previous experiment that there was no need of the side-walls of runner casing section and a

Kai Shimokawa; Akinori Furukawa; Kusuo OKuma; Daisuke Matsushita; Satoshi Watanabe

2010-01-01

204

Advanced technology cogeneration system conceptual design study: Closed cycle gas turbines  

NASA Technical Reports Server (NTRS)

The results of a three task study performed for the Department of Energy under the direction of the NASA Lewis Research Center are documented. The thermal and electrical energy requirements of three specific industrial plants were surveyed and cost records for the energies consumed were compiled. Preliminary coal fired atmospheric fluidized bed heated closed cycle gas turbine and steam turbine cogeneration system designs were developed for each industrial plant. Preliminary cost and return-on-equity values were calculated and the results compared. The best of the three sites was selected for more detailed design and evaluation of both closed cycle gas turbine and steam turbine cogeneration systems during Task II. Task III involved characterizing the industrial sector electrical and thermal loads for the 48 contiguous states, applying a family of closed cycle gas turbine and steam turbine cogeneration systems to these loads, and conducting a market penetration analysis of the closed cycle gas turbine cogeneration system.

Mock, E. A. T.; Daudet, H. C.

1983-01-01

205

Advanced Gas Turbine (AGT) powertrain system initial development report  

NASA Technical Reports Server (NTRS)

The powertrain consists of a single shaft regenerated gas turbine engine utilizing ceramic hot section components, coupled to a slit differential gearbox with an available variable stator torque converter and an available Ford intergral overdrive four-speed automatic transmission. Predicted fuel economy using gasoline fuel over the combined federal driving cycle (CFDC) is 15.3 km/1, which represents a 59% improvement over the spark-ignition-powered baseline vehicle. Using DF2 fuel, CFDC mileage estimates are 17.43 km/1. Zero to 96.6 km/hr acceleration time is 11.9 seconds with a four-second accleration distance of 21.0 m. The ceramic radial turbine rotor is discussed along with the control system for the powertrain.

1980-01-01

206

Solid fuel combustion system for gas turbine engine  

DOEpatents

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01

207

Evaluating lens purge systems for optical sensors on turbine engines  

NASA Astrophysics Data System (ADS)

The present numerical analysis and experiments attempt to characterize purge air systems applicable to gas turbine engine optical sensors, with emphasis on 'scrubbing' type purge systems employing contaminated compressor bleed air. The primary particle-deposition mechanism is found to be the eddy diffusion of submicron-sized particles, followed by the turbulent deposition and inertial impact of particles larger than 1 micron in aerodynamic diameter. Large, nonsticky particles are easily removed by a purge air system due to the exertion of the fluid drag force's exertion on a larger projection area; nevertheless, a virtual impactor has had to be incorporated in order to remove large, sticky particles.

Hayden, T.; Myhre, D.; Pui, David Y. H.; Kuehn, Thomas H.; Tsai, C. J.

1988-07-01

208

Boiler-turbine control system design using a genetic algorithm  

SciTech Connect

This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.

Dimeo, R.; Lee, K.Y. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Electrical Engineering] [Pennsylvania State Univ., University Park, PA (United States). Dept. of Electrical Engineering

1995-12-01

209

Gas turbine control system having optimized ignition air flow control  

Microsoft Academic Search

This patent describes apparatus for generating an ignition enabling signal for use with a given combustion turbine, wherein a turbine speed signal is given and wherein the combustion turbine includes ignition means for igniting the turbine in response to an ignition enabling signal. It comprises: sensor means for sensing the temperature of ambient air and for generating an ambient air

S. E. Mumford; W. L. McCarty

1992-01-01

210

Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model  

SciTech Connect

Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL

2006-07-01

211

Turbine Engine Clearance Control Systems: Current Practices and Future Directions  

NASA Astrophysics Data System (ADS)

Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed 1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

Lattime, Scott B.; Steinetz, Bruce M.

2002-09-01

212

Turbine Engine Clearance Control Systems: Current Practices and Future Directions  

NASA Technical Reports Server (NTRS)

Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed $1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

Lattime, Scott B.; Steinetz, Bruce M.

2002-01-01

213

Design and Implementation of a Control System for the Mesabi V27 Wind Turbine  

NASA Astrophysics Data System (ADS)

The focus of this thesis is the design and implementation of a control law for a Vestas V27 turbine. There are two motivations for this work. First, there is a rapidly growing industry to refurbish turbines and the proposed control design can be used to update V27 turbines to extend their operational life. Second, the proposed control design will be open-source thus enabling the V27 turbine to be used for research purposes. The thesis will first provide a review of traditional wind turbine control systems. Next the V27 turbine hardware, software, and design specification are described. A control system is then described that includes supervisory control and a SISO classical control for the rotor speed tracking controller. Experimental test results are presented using a V27 turbine installed at the Mesabi Range Community and Technical College.

Thorson, William M.

214

Design of advanced turbopump drive turbines for National Launch System application  

NASA Astrophysics Data System (ADS)

The aerodynamic design of advanced fuel and oxidizer pump drive turbine systems being developed for application in the main propulsion system of the National Launch System are discussed. The detail design process is presented along with the final baseline fuel and oxidizer turbine configurations. Computed airfoil surface static pressure distributions and flow characteristics are shown. Both turbine configurations employ unconventional high turning blading (approximately 160 deg) and are expected to provide significant cost and performance benefits in comparison with traditional configurations.

Huber, F. W.; Johnson, P. D.; Montesdeoca, X. A.; Rowey, R. J.; Griffin, L. W.

1992-07-01

215

An artificial neural network system for diagnosing gas turbine engine fuel faults  

SciTech Connect

The US Army Ordnance Center & School and Pacific Northwest Laboratories are developing a turbine engine diagnostic system for the M1A1 Abrams tank. This system employs Artificial Neural Network (AN) technology to perform diagnosis and prognosis of the tank`s AGT-1500 gas turbine engine. This paper describes the design and prototype development of the ANN component of the diagnostic system, which we refer to as ``TEDANN`` for Turbine Engine Diagnostic Artificial Neural Networks.

Illi, O.J. Jr. [Army Ordnance Center and School, Aberdeen Proving Ground, MD (United States). Knowledge Engineering Group (KEG); Greitzer, F.L.; Kangas, L.J. [Pacific Northwest Lab., Richland, WA (United States); Reeve, T. [Expert Solutions, Stratford, CT (United States)

1994-04-01

216

Efficiency comparison of two possible grid connected small wind turbine systems  

Microsoft Academic Search

This paper presents expected efficiency studies on two possible grid connected small wind turbine systems. One of the systems is based on Permanent Magnet Generator (PMG) and the other system is based on Wound Rotor Induction Generator (WRIG). Experimental test benches for both systems are implemented using Wind Turbine Emulator (WTE) and Maximum Power Point Tracking (MPPT) control strategy. The

M. Arifujjaman; M. T. Iqbal; J. E. Quaicoe

2010-01-01

217

Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine  

SciTech Connect

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

Huskey, A.; Bowen, A.; Jager, D.

2010-05-01

218

Analysis methods for wind turbine control and electrical system dynamics  

NASA Technical Reports Server (NTRS)

The integration of new energy technologies into electric power systems requires methods which recognize the full range of dynamic events in both the new generating unit and the power system. Since new energy technologies are initially perceived as small contributors to large systems, little attention is generally paid to system integration, i.e. dynamic events in the power system are ignored. As a result, most new energy sources are only capable of base-load operation, i.e. they have no load following or cycling capability. Wind turbines are no exception. Greater awareness of this implicit (and often unnecessary) limitation is needed. Analysis methods are recommended which include very low penetration (infinite bus) as well as very high penetration (stand-alone) scenarios.

Hinrichsen, E. N.

1995-01-01

219

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

Unknown

1998-10-01

220

Utility Advanced Turbine Systems (ATS) Technology Readiness Testing  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

NONE

1998-10-29

221

Utility Advanced Turbine Systems (ATS) technology readiness testing  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

1999-05-01

222

Utility advanced turbine systems (ATS) technology readiness testing  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

2000-09-15

223

Lightning accommodation systems for wind turbine generator safety  

NASA Technical Reports Server (NTRS)

The wind turbine safety program identifies the naturally occurring lightning phenomenon as a hazard with the potential to cause loss of program objectives, injure personnel, damage system instrumentation, structure or support equipment and facilities. Several candidate methods of lightning accommodation for each blade were designed, analyzed, and tested by submitting sample blade sections to simulated lightning. Lightning accommodation systems for composite blades were individually developed. Their effectiveness was evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system designs were reviewed on the basis of the analysis. This activity is directed at defining design and procedural constraints, requirements for safety devices and warning methods, special procedures, protective equipment and personnel training.

Bankaitis, H.

1981-01-01

224

Variable speed, condensing steam turbine and power system  

Microsoft Academic Search

The variable speed condensing steam turbine is a simplified and effective steam expander which is built mainly of simple, lowcost sheet metal parts and is designed to provide a variable speed\\/torque output range. The turbine concept is based on the past tesla turbine principle of equally spaced rotor discs to provide a long helical path for steam expansion with high

1980-01-01

225

Shaken, not stirred: The recipe for a fish-friendly turbine  

SciTech Connect

It is generally agreed that injuries and mortalities among turbine-passed fish can result from several mechanisms, including rapid and extreme water pressure changes, cavitation, shear, turbulence, and mechanical injuries (strike and grinding). Advances in the instrumentation available for monitoring hydraulic conditions and Computational Fluid Dynamics (CFD) techniques now make it possible both to estimate accurately the levels of these potential injury mechanisms in operating turbines and to predict the levels in new turbine designs. This knowledge can be used to {open_quotes}design-out{close_quotes} the most significant injury mechanisms in the next generation of turbines. However, further improvements in turbine design are limited by a poor understanding of the levels of mechanical and hydraulic stresses that can be tolerated by turbine-passed fish. The turbine designers need numbers (biological criteria) that define a safety zone for fish within which pressures, shear forces, cavitation, and chance of mechanical strike are all at acceptable levels for survival. This paper presents the results of a literature review of fish responses to the types of biological stresses associated with turbine passage, as studied separately under controlled conditions in the laboratory rather than in combination at field sites. Some of the controlled laboratory and field studies reviewed here were bioassays carried out for reasons unrelated to hydropower production. Analysis of this literature was used to develop provisional biological criteria for hydroelectric turbine designers. These biological criteria have been utilized in the U.S. Department of Energy`s Advanced Hydropower Turbine System (AHTS) Program to evaluate the results of conceptual engineering designs and the potential value of future turbine models and prototypes.

Cada, G.F.

1997-03-01

226

Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems  

PubMed Central

It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

2013-01-01

227

Turbine design  

NASA Astrophysics Data System (ADS)

Turbines for most space propulsion applications, such as the hydrogen and oxygen pump turbines for the Vulcain engine, are characterized by a high pressure ratio, a highly energetic working fluid, and a small size. Data on Vulcain turbines are given. The following topics are reviewed: turbine concept design and design tools; blade design; losses occurring in a blade which are due to friction, secondary flow, tip clearance and shock formation; and turbine testing. The purpose of any turbine is to provide power for other parts of an engineering system (compressors, electrical generators, pumps) or to drive mechanical components such as wheels or propellers to give propulsion to a vehicle. It should therefore always be the performance and cost effectiveness of this larger system and not of the isolated turbine that are the main objectives for the turbine design engineer.

Andersson, Per

228

Advanced Gas Turbine (AGT) powertrain system development for automotive applications  

NASA Technical Reports Server (NTRS)

An automotive gas turbine powertrain system which, when installed in a 1985 production vehicle (3000 pounds inertia weight), is being developed with a CFDC fuel economy of 42.8 miles per gallon based on Environmental Protection Agency (EPA) test procedures and diesel No. 2 fuel. The AGT-powered vehicle shall give substantially the same overall vehicle driveability and performance as a comparable 1985 production vehicle powered by a conventional spark ignition powertrain system (baseline system). Gaseous emissions and particulate levels less than: NOx = 0.4 gm/mile, HC = 0.41 gm/mile, and CO = 3.4 gm/mile, and a total particulate of 0.2 gm/mile, using the same fuel as used for fuel economy measurements is expected, along with the ability to use a variety of alternate fuels.

1981-01-01

229

Smolt-to-adult return rates of juvenile chinook salmon transported through the Snake-Columbia River hydropower system, USA, in relation to densities of co-transported juvenile steelhead  

Microsoft Academic Search

To reduce mortality associated with passage of migrating juvenile salmonids through the Snake-Columbia River Federal power system, a large percentage of smolts migrating from the Snake River basin are currently transported downstream through the hydropower system in fish-transport barges. It has recently been suggested that transportation-associated stressors may reduce the fitness of juvenile chinook salmon Oncorhynchus tshawytscha and increase mortality

Tyler Wagner; James L Congleton; Douglas M Marsh

2004-01-01

230

Hydropower Resource Assessment Modeling Results  

SciTech Connect

The U.S. Department of Energy?s Hydropower Program developed the Hydropower Evaluation Software to model the undeveloped hydropower resources in the United States based on environmental, legal, and institutional constraints. This Hydropower Resource Assessment effort has identified 5,677 sites that have an undeveloped total capacity of about 30,000 megawatts. The Hydropower Evaluation Software uses the Federal Energy Regulatory Commission?s Hydroelectric Power Resource Assessment database to identify sites with undeveloped hydropower capacity and the estimated megawatts of undeveloped capacity at each site. The software integrates this information with environmental values from the National Park Service?s National Rivers Inventory database. Other constraints to development that are modeled include Federal and state legislative protection for river segments that have been identified as being wild and scenic river segments. River segments containing threatened and/or endangered wildlife and fish are also modeled for their influence on hydropower development. The amount that each attribute affects the likelihood of development is dependent on the prior development of a site.

A. M. Conner; J. E. Francfort

1999-07-06

231

Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine  

NASA Technical Reports Server (NTRS)

Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.

2011-01-01

232

Stability Analysis of a Run-of-River Diversion Hydropower Plant with Surge Tank and Spillway in the Head Pond  

PubMed Central

Run-of-river hydropower plants usually lack significant storage capacity; therefore, the more adequate control strategy would consist of keeping a constant water level at the intake pond in order to harness the maximum amount of energy from the river flow or to reduce the surface flooded in the head pond. In this paper, a standard PI control system of a run-of-river diversion hydropower plant with surge tank and a spillway in the head pond that evacuates part of the river flow plant is studied. A stability analysis based on the Routh-Hurwitz criterion is carried out and a practical criterion for tuning the gains of the PI controller is proposed. Conclusions about the head pond and surge tank areas are drawn from the stability analysis. Finally, this criterion is applied to a real hydropower plant in design state; the importance of considering the spillway dimensions and turbine characteristic curves for adequate tuning of the controller gains is highlighted.

Sarasua, Jose Ignacio; Elias, Paz; Wilhelmi, Jose Roman; Sanchez, Jose Angel

2014-01-01

233

Electro-Hydraulic Proportional Synchronous Control System of Ring Gate for Hydraulic Turbine  

Microsoft Academic Search

Based on the analysis of opening and closing control manner for ring gate of hydraulic turbine, the electro-hydraulic proportional control system for ring gate of hydraulic turbine was studied. A new control system, which combines mechanics, hydraulics and electrics, was presented. More particularly, the modules of speed control and multi-cylinder synchronous control for the movement of ring gate was designed.

Juliang Xiao; Guodong Wang; Weike Song

2009-01-01

234

Derivation of a complete transfer function for a wind turbine generator system by experiments  

Microsoft Academic Search

In this paper, an effort is made to derive a complete transfer function of a variable-speed wind turbine generator (WTG) system. This transfer function is important for designing a sensorless speed controller and performing its stability. The proposed WTG system includes a wind turbine, a permanent magnet synchronous generator (PMSG), and a switch mode rectifier (SMR) for implementing a maximum

A. J. Mahdi; W. H. Tang; Q. H. Wu

2011-01-01

235

UNSTEADY, COOLED TURBINE SIMULATION USING A PC-LINUX ANALYSIS SYSTEM  

E-print Network

1 UNSTEADY, COOLED TURBINE SIMULATION USING A PC-LINUX ANALYSIS SYSTEM Michael G. List1 , Mark G-processor, GUMBO, and a post- processing and visualization tool, Turbomachinery Visual3 (TV3) were run in a Linux for running unsteady, cooled turbine analysis on commodity PC's running the Linux operating system

Cincinnati, University of

236

Apparatus and method for gas turbine active combustion control system  

NASA Technical Reports Server (NTRS)

An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor); Fortin, Jeffrey B. (Inventor); Knobloch, Aaron (Inventor); Myers, William J. (Inventor); Mancini, Alfred Albert (Inventor)

2011-01-01

237

System for removing uncondensed products from a steam turbine condenser  

SciTech Connect

This patent describes improvement in a steam condenser system for a turbine, which system includes: a condenser having an outlet for conveying uncondensed products out of the condenser; an exhauster having a housing, an inlet connected between the housing and the condenser outlet, an exhaust outlet connected to the housing, and a rotatable member, disposed in the housing and rotatable about an axis for propelling uncondensed products from the exhauster inlet to the exhauster outlet and an electric motor having an output shaft connected for rotating the rotatable member. The improvement is disposed relative to the exhauster such that the motor shaft forms an angle with the horizontal and extends in a downward direction from the motor to the exhauster.

Viscovich, P.W.; Martin, J.A.

1991-06-04

238

Modeling Wind Turbines in the Simulation of Power System Dynamics  

NASA Astrophysics Data System (ADS)

This paper deals with the modeling of variable speed wind turbines for stability studies. Using the space-phasor representation and the fundamental relationships governing the operation of the machine quasi stationary model, suitable control algorithms for the simulation of the doubly-fed induction machine (DFIM) as well as the permanent magnet synchronous machine (PMSM) operating on an interconnected system are developed. The control schemes include the pitch-angle/speed control and the decoupled control of the real and reactive power outputs. As an additional modeling option, the generic model for variable speed machine has been introduced. The models were then implemented on a representative test network, and simulations have been carried out to observe the response of the control system to typical abnormal situations such as three phase grid faults to compare the accuracy of the generic models with the detailed quasi-stationary (QSS) models.

Erlich, Istvan; Shewarega, Fekadu; Scheufeld, Oliver

2010-01-01

239

Biomass-integrated gasifier/gas turbine system  

SciTech Connect

The National Wood Energy Association (NWEA) has been a strong proponent of the development of newer, more efficient combustion technologies and applications. One approach is the development of biomass gasifiers and turbine systems. The Environmental Protection Agency (EPA), the US Agency for International Development (USAID), and the US Department of Energy (DOE) have all been avid supporters of the development of this exciting technology. Biomass combustion technologies will evolve in many different ways in the marketplace. NWEA believes that we should update out Biologue readers on the technical advances in this area. This article summarizes the state of this system; topics include the following: research and development; is commercial deployment possible now; nature of the joint venture; site criteria and selection standards; private participation; unique risks of the initial project; working conference; biomass as a carbon dioxide stabilization tool.

Sterzinger, G.

1994-12-31

240

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

Unknown

1999-04-01

241

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

Unknown

1999-10-01

242

Torsional vibration analysis of turbine-generator-blade coupled system  

Microsoft Academic Search

Turbine-generator sets are major components of electricity generating power plants. Pretwisted turbine blades, fixed on a rotating shaft by means of mounting disks, vibrate in both tangential and axial directions. The tangential component of blade vibrations is coupled with torsional vibrations of the shaft. This problem of a coupled shaft-blade torsional vibration in turbine-generator sets requires an equivalent reduction modeling

O. Matsushita; Namura; T. K. Yoshida; R. Kaneko; A. Okabe

1989-01-01

243

Axially staged combustion system for a gas turbine engine  

SciTech Connect

An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

Bland, Robert J. (Oviedo, FL)

2009-12-15

244

Simulation Model of Hydraulic Turbine Speed Control System and Its Parameters Identification Based on Resilient Adaptive Particle Swarm Optimization Algorithm  

Microsoft Academic Search

A new simulation model of hydraulic turbine speed control system and mathematical models of microcomputer governor is proposed, and to investigate the first and second regulation characteristics of hydraulic turbine speed control system, after hydraulic turbine group connected to the major power systems. Simulation model established and parameters were identified intelligently by using resilient adaptive particle swarm optimization algorithm. The

Bai Ji-zhong; Xie Ai-guo; Yu Xin-hua; Zhou Li-kun

2010-01-01

245

Application of Flow Battery in Marine Current Turbine System for Daily Power Management  

E-print Network

modeling, grid power demand, energy storage. I. INTRODUCTION Highly predictable tidal resources and highApplication of Flow Battery in Marine Current Turbine System for Daily Power Management Zhibin Zhou.Benbouzid@univ-brest.fr, thtang@shmtu.edu.cn Abstract--Predictable tidal current resources make marine current turbine (MCT

Brest, Université de

246

Design of a robust adaptive controller for a water turbine governing system  

Microsoft Academic Search

The prospective of parameter space methods for robust control and an algorithm for a robust controller based on a pole-shifting adaptive control technique are presented in this paper for a hydroelectric turbine generator. Mathematical development of the robust adaptive controller algorithm, calculation procedure and results of simulation studies when applied to a water turbine governing system are described in this

O. P. Malik; Y. Zeng

1995-01-01

247

Identifying Faults in the Variable Geometry System of a Gas Turbine Compressor  

Microsoft Academic Search

The influence of faults in the variable geometry (variable stator vanes) system of a multistage axial compressor, on the performance of an industrial gas turbine is investigated. An experimental investigation has been conducted, by implanting such faults into an operating gas turbine. The faults examined are individual stator vane mistuning of different magnitude, and located at different stages.

A. Tsalavoutas; K. Mathioudakis; A. Stamatis; M. Smith

2001-01-01

248

Optimal Maintenance Strategies for Wind Turbine Systems Under Stochastic Weather Conditions  

Microsoft Academic Search

We examine optimal repair strategies for wind turbines operated under stochastic weather conditions. In-situ sensors installed at wind turbines produce useful information about the physical conditions of the system, allowing wind farm operators to make informed decisions. Based on the information from sensors, our research objective is to derive an optimal preventive maintenance policy that minimizes the expected average cost

Eunshin Byon; Lewis Ntaimo; Yu Ding

2010-01-01

249

Justified Fault-Ride-Through Requirements for Wind Turbines in Power Systems  

Microsoft Academic Search

In this paper, a novel adaptive strategy to obtain tech- nically justified fault-ride-through requirements for wind turbines (WTs) is proposed. The main objective is to promote an effective integration of wind turbines into power systems with still low pen- etration levels of wind power based on technical and economical considerations. The level of requirement imposed by the strategy is increased

C. Rahmann; H.-J. Haubrich; A. Moser; R. Palma-Behnke; L. Vargas; M. B. C. Salles

2011-01-01

250

Fault detection of large scale wind turbine systems: A mixed H?\\/H? index observer approach  

Microsoft Academic Search

This paper addresses the fault detection issue of large scale wind turbine systems. The underlying problem is very critical to enhance the reliability and reduce the cost of maintenance of wind turbines. In this work, mixed Hinfin\\/H- index observer is utilized to generate the residual for fault detection purpose. The employed observer is optimal in the sense that it is

Xiukun Wei; Michel Verhaegen

2008-01-01

251

Advanced Turbine Systems Program -- Conceptual design and product development. Quarterly report, August 1--October 31, 1995  

SciTech Connect

The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. This quarterly report, addresses only Task 4, conversion of a gas turbine to a coal-fired gas turbine, which was completed during the quarter and the nine subtasks included in Task 8, design and test of critical components. These nine subtasks address six ATS technologies as follows: catalytic combustion; recuperator; autothermal fuel reformer; high temperature turbine disc; advanced control system (MMI); and ceramic materials.

NONE

1995-12-31

252

[Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report  

SciTech Connect

Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the IRB: and two interested partners involved in ATS; AGTSR submitted information on its RFP's, workshops, and educational activities for the 1999 ASMWIGTI technology report for worldwide distribution; AGTSR coordinated university poster session titles and format with Conference Management Associates (CMA) for the 98 ATS Annual; and AGTSR submitted 2-page abstract to CMA for the 98 ATS Review titled: ''AGTSR: A Virtual National Lab''.

NONE

1998-09-30

253

Aspects concerning the quality of aeration for environmental friendly turbines  

NASA Astrophysics Data System (ADS)

The hydro renewable energy provides a reliable power source; it does not pollute the air or land but affects the aquatic habitat due to low dissolved oxygen (DO) level in the water discharged from turbines. Hydro-turbines intake generally withdraws water from the bottom layer of the reservoirs with low DO level. In the different methods used for improving DO downstream the hydropower plants the volume of air is considered to be the main parameter of the injection. The energetic consumption is affected, in terms of loss of turbine efficiency due to air injection. The authors propose a study to show the importance of the quality of air injection, meaning bubble size, pressure loss on the aeration device etc. Different types of fine bubble aeration systems have been tested and compared. The capacity to predict the aeration by numerical simulation is analysed.

Bunea, F.; Houde, S.; Ciocan, G. D.; Oprina, G.; Baran, G.; Pincovschi, I.

2010-08-01

254

Development of gas turbine steam injection water recovery (SIWR) system  

Microsoft Academic Search

This paper describes and discusses a closed-loop'' steam injection water recovery (SIWR) cycle that was developed for steam-injected gas turbine applications. This process is needed to support gas turbine steam injection especially in areas where water cannot be wasted and complex water treatment is discouraged. The development of the SIWR was initiated by NOVA in an effort to reduce the

H. B. Nguyen; A. den Otter

1994-01-01

255

Steam turbine high pressure vent and seal system  

Microsoft Academic Search

A steam turbine is described comprising: an outer cylinder; an inner cylinder disposed within the outer cylinder; a blade ring disposed partially within the inner cylinder and partially within the outer cylinder; a nozzle chamber assembly disposed within the inner cylinder for introducing motive steam to the turbine and having nozzle chamber and nozzle block portions; a rotor having circular

J. C. Jr. Groenendaal; B. Brown

1987-01-01

256

A System for Connecting the Wind Turbines to Power Grid  

Microsoft Academic Search

Generating electrical energy by the alternative energy resources is getting popular as the cost of generating electricity using alternative energy sources is getting cheaper. One of the most popular alternative electrical energy generation method is the wind turbines. The asynchronous character of the wind turbines creates the problem of integrating the generated wind power to the main grid. Converters are

O. C. Ozerdem

2007-01-01

257

Turbine Engine Clearance Control Systems: Current Practices and Future Directions  

Microsoft Academic Search

Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed 1M. Engine removal from service is primarily due

Scott B. Lattime; Bruce M. Steinetz

2002-01-01

258

Advanced Gas Turbine (AGT) powertrain system development for automotive applications  

NASA Technical Reports Server (NTRS)

Topics covered include the AGT 101 engine test; compressor design modification; cold air turbine testing; Mod 1 alloy turbine rotor fabrication; combustion aspects; regenerator development; and thermal screening tests for ceramic materials. The foil gas bearings, rotor dynamics, and AGT controls and accessories are also considered.

1982-01-01

259

Chaos Optimization Strategy on Fuzzy-immune-PID Control of the Turbine Governing System  

Microsoft Academic Search

Aiming at the non-linear links such as time lag, inertia, dead time and saturation within the steam turbine governing system, we designed a fuzzy-immune-PID control system based on a mutative scale chaos optimization method, the principium of immune feedback system and the theory of fuzzy control. The proposed algorithm was used in tuning-parameter design of the steam turbine governing system

Shuangxin Wang; Yan Jiang; Hui Yang

2006-01-01

260

Abradable dual-density ceramic turbine seal system  

NASA Technical Reports Server (NTRS)

A plasma sprayed dual density ceramic abradable seal system for direct application to the HPT seal shroud of small gas turbine engines. The system concept is based on the thermal barrier coating and depends upon an additional layer of modified density ceramic material adjacent to the gas flow path to provide the desired abradability. This is achieved by codeposition of inert fillers with yttria stabilized zirconia (YSZ) to interrupt the continuity of the zirconia struture. The investigation of a variety of candidate fillers, with hardness values as low as 2 on Moh's scale, led to the conclusion that solid filler materials in combination with a YSZ matrix, regardless of their hardness values, have a propensity for compacting rather than shearing as originally expected. The observed compaction is accompanied by high energy dissipation in the rub interaction, usually resulting in the adhesive transfer of blade material to the stationary seal member. Two YSZ based coating systems which incorported hollow alumino silicate spheres as density reducing agents were surveyed over the entire range of compositions from 100 percent filler to 100 percent YSZ. Abradability and erosion characteristics were determined, hardness and permeability characterized, and engine experience acquired with several system configurations.

Clingman, D. L.; Schechter, B.; Cross, K. R.; Cavanagh, J. R.

1981-01-01

261

Design and implementation of a new autonomous sensor fish to support advanced hydropower development  

NASA Astrophysics Data System (ADS)

Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a broader range of turbine designs and operating environments. It provides in situ measurements of three-dimensional (3D) linear accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio-frequency transmitter for recovery. The relative errors of the pressure, acceleration, and rotational velocity were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2 °C. The new-generation Sensor Fish is becoming a major technology and being deployed for evaluating the conditions for fish passage of turbines or other hydraulic structures in both the United States and several other countries.

Deng, Z. D.; Lu, J.; Myjak, M. J.; Martinez, J. J.; Tian, C.; Morris, S. J.; Carlson, T. J.; Zhou, D.; Hou, H.

2014-11-01

262

Design of advanced automatic inspection system for turbine blade FPI analysis  

NASA Astrophysics Data System (ADS)

Aircraft engine turbine blade is the most susceptible part to discontinuities as it works in the extremely high pressure and temperature. Among various types of NDT method, Fluorescent Penetrant Inspection (FPI) is comparably cheap and efficient thus suitable for detecting turbine blade surface discontinuities. In this paper, we have developed an Advanced Automatic Inspection System (AAIS) with Image Processing and Pattern Recognition techniques to aid human inspector. The system can automatically detect, measure and classify the discontinuities from turbine blade FPI images. The tests on the sample images provided by industrial partner have been performed to evaluate the system.

Zheng, J.; Xie, W. F.; Viens, M.; Birglen, L.; Mantegh, I.

2013-01-01

263

Evaluation of lightning accommodation systems for wind-driven turbine rotors  

NASA Astrophysics Data System (ADS)

Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.

Bankaitis, H.

1982-03-01

264

Evaluation of lightning accommodation systems for wind-driven turbine rotors  

NASA Technical Reports Server (NTRS)

Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.

Bankaitis, H.

1982-01-01

265

Stabilization of Wind Turbine Generator System by STATCOM  

NASA Astrophysics Data System (ADS)

Recently voltage-source or current-source inverter based various FACTS devices have been used for flexible power flow control, secure loading, damping of power system oscillation and even for the stabilization of wind energy generation. In this paper, we propose the static synchronous compensator (STATCOM) based on voltage source converter (VSC) PWM technique to stabilize grid connected wind generator system. A simple control strategy of STATCOM is adopted where only measurement of rms voltage at the wind generator terminal is needed. Fuzzy logic controller rather than conventional PI controller is proposed as the control methodology of STATCOM. Multi-mass shaft model of wind turbine generator system (WTGS) is also considered as shaft modeling has a big influence on the transient performance of WTGS. Transient performance of STATCOM connected WTGS is compared also with that of pitch controlled WTGS. Both symmetrical and unsymmetrical faults are analyzed. Moreover, the steady state performance of STATCOM connected WTGS is analyzed. It is reported that STATCOM can reduce the voltage fluctuation significantly. Finally STATCOM is applied to a wind park model with multiple wind generators. Comprehensive results are presented to assess the performance of STATCOM connected WTGS, where the simulations have been done by PSCAD/EMTDC.

Muyeen, S. M.; Mannan, Mohammad Abdul; Ali, Mohd. Hasan; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji

266

Advanced turbine systems program conceptual design and product development. Task 3 -- System selection; Topical report  

SciTech Connect

Solar Turbines Incorporated has elected to pursue an intercooled and recuperated (ICR) gas turbine system to exceed the goals of the DOE Advanced Turbine Systems (ATS) program, which are to develop and commercialize an industrial gas turbine system that operates at thermal efficiencies at least 15% higher than 1991 products, and with emissions not exceeding eight ppmv NOx and 20 ppmv CO and UHC. Solar`s goal is to develop a commercially viable industrial system (3--20 MW) driven by a gas turbine engine with a thermal efficiency of 50% (ATS50), with the flexibility to meet the differing operational requirements of various markets. Dispersed power generation is currently considered to be the primary future target market for the ICR in the 5--15 MW size class. The ICR integrated system approach provides an ideal candidate for the assumed dispersed power market, with its small footprint, easy transportability, and environmental friendliness. In comparison with other systems that use water or toxic chemicals such as ammonia for NOx control, the ICR has no consumables other than fuel and air. The low pressure ratio of the gas turbine engine also is favorable in that less parasitic power is needed to pump the natural gas into the combustor than for simple-cycle machines. Solar has narrowed the ICR configuration to two basic approaches, a 1-spool, and a 2-spool version of the ATS50. The 1-spool engine will have a lower first-cost but lower part-power efficiencies. The 2-spool ATS may not only have better part-power efficiency, its efficiency will also be less sensitive to reduced turbine rotor inlet temperature levels. Thus hot-end parts life can be increased with only small sacrifices in efficiency. The flexibility of the 2-spool arrangement in meeting customer needs is its major advantage over the 1-spool. This Task 3 Topical Report is intended to present Solar`s preliminary system selection based upon the initial trade-off studies performed to date.

White, D.J.

1994-07-01

267

Twisted Savonius turbine based marine current energy conversion system  

NASA Astrophysics Data System (ADS)

The Ocean Network Seafloor Instrumentation (ONSFI) Project is a multidisciplinary research and development project that aims to design, fabricate and validate a proof-of-concept seafloor array of wireless marine sensors for use in monitoring seabed processes. The sensor pods, known as Seaformatics, will be powered by ocean bottom currents and will be able to communicate with each other and to the Internet through surface master units to facilitate observation of the ocean floor from the shore. This thesis explores the use of the twisted Savonius turbine as a means of converting the kinetic energy of the free flowing water into electrical energy for the pods. This will eliminate the need for battery replacement. A physical model of the turbine was constructed and tested in the Water Flume at the Marine Institute of Memorial University and in the Wind Tunnel in the Engineering Building at Memorial University. A mathematical model of the turbine was constructed in SolidWorks. This was tested in the Computational Fluid Dynamics or CFD software FLOW-3D. Experimental results were compared with CFD results and the agreement was reasonable. A twisted Savonius turbine emulator was developed to test a dc-dc boost converter. A low cost microcontroller based MPPT algorithm was developed to obtain maximum power from the turbine. Overall the thesis shows that the twisted Savonius turbine can provide the power needed by the sensor pods. It also shows that CFD is a viable way to study the performance of the Savonius type of turbine.

Hassan, Md. Imtiaj

268

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS  

SciTech Connect

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach 1425-1760ºC with pressures of 300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require durable thermal barrier coatings (TBCs), high temperature creep resistant metal substrates, and effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in TBCs and aerothermal cooling. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) at the Office of Research and Development (ORD) has initiated a research project effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers, to develop advanced materials, aerothermal configurations, as well as non-destructive evaluation techniques for use in advanced land-based gas turbine applications. This paper reviews technical accomplishments recently achieved in each of these areas.

M. A. Alvin

2009-06-12

269

Wind and turbine characteristics needed for integration of wind turbine arrays into a utility system  

NASA Technical Reports Server (NTRS)

Wind data and wind turbine generator (WTG) performance characteristics are often available in a form inconvenient for use by utility planners and engineers. The steps used by utility planners are summarized and the type of wind and WTG data needed for integration of WTG arrays suggested. These included long term yearly velocity averages for preliminary site feasibility, hourly velocities on a 'wind season' basis for more detailed economic analysis and for reliability studies, worst-case velocity profiles for gusts, and various minute-to-hourly velocity profiles for estimating the effect of longer-term wind fluctuations on utility operations. wind turbine data needed includes electrical properties of the generator, startup and shutdown characteristics, protection characteristics, pitch control response and control strategy, and electro-mechanical model for stability analysis.

Park, G. L.

1982-01-01

270

A boiler-turbine system control using a fuzzy auto-regressive moving average (FARMA) model  

Microsoft Academic Search

This paper presents an application of an online self-organizing fuzzy logic controller to a boiler-turbine system of a fossil power plant. The control rules and the membership functions of the proposed fuzzy logic controller are generated automatically without using a plant model. A boiler-turbine system is described as a multi-input multioutput (MIMO) nonlinear system in this paper. Then, three single-loop

Un-Chul Moon; Kwang Y. Lee

2003-01-01

271

Advanced turbine systems study system scoping and feasibility study. Final report  

SciTech Connect

United Technologies Research Center, Pratt & Whitney Commercial Engine Business, And Pratt & Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R&D programs is adapted to aero-derivative industrial engines.

Not Available

1993-04-01

272

California Small Hydropower and Ocean Wave Energy  

E-print Network

California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy................................................................. 21 #12;ii List of Tables Table 1 California Small Hydropower And Ocean Wave Energy Resources Table 2

273

Swirl nozzle for a cooling system in gas turbine engines  

SciTech Connect

This patent describes an improved gas turbine engine of the type comprising an outer casing, axially spaced apart turbine wheels rotatably mounted within the casing and having radially outwardly extending blades mounted thereon. A stationary annular member includes air foil vanes positioned between each of the turbine wheels. The bladed turbine wheels and the stationary annular members define a hot gas path. An annular plenum is defined between the hot gas path and an outer wall of the stationary member and a diaphragm is depending from an inner wall of the stationary member. Air passageways through at least some of the air foil vanes for conducting cooling air from the annular plenum to the diaphragm.

Hook, R.B. Jr.; Montanye, R.D.

1987-05-19

274

Ceramic regenerator systems development program. [for automobile gas turbine engines  

NASA Technical Reports Server (NTRS)

Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

1977-01-01

275

Composite turbine blade design options for Claude (open) cycle OTEC power systems  

SciTech Connect

Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.

Penney, T.R.

1985-11-01

276

Basic Integrative Models for Offshore Wind Turbine Systems  

E-print Network

.com) ................................................... 20 17 David Fisher?s Swirling Skyscraper (gizmag.com) ................................................... 20 viii FIGURE Page 18 Offshore Wind Turbine, the Aerogenerator X (gizmodo.com)................................... 22 19 Siemens Hywind... the three wind turbines with greater wind stream. An example from dynamic architecture is David Fisher?s rather unique design of a wind-powered, rotating skyscraper, which features 80 independently-rotating floors and is expected to be the world?s first...

Aljeeran, Fares

2012-07-16

277

SURFACE WATER PUMPS TO IMPROVE DISSOLVED OXYGEN CONTENT OF HYDROPOWER RELEASES  

Microsoft Academic Search

This paper describes the development, installation, and performance testing of a surface water pump system at TVA's Douglas Dam. Surface water pumps move a large volume of highly oxygenated surface water down to a level where it is withdrawn through the hydropower intakes to improve the water quality of hydropower releases. TVA has tested several different arrangements and types of

Mark Mobley; Willola Tyson; Joe Webb; Gary Brock

278

Watershed sediment balance and local denudation rate based on hydropower reservoir sedimentation data  

Microsoft Academic Search

Hydropower reservoirs built in the lateral valleys of Valais (Switzerland) trap the sediment flux, so that their catchment areas become a sedimentary almost closed system, depending on hydrological regime and storage capacity. The rate of sediment infilling supplies data of sediment balance on the watershed. In this study, data of sediment volumes accumulated behind 11 hydropower dams and 3 settling

A. Loye; R. Minoia; M. Jaboyedoff; J.-D. Rouiller; J.-L. Boillat

2009-01-01

279

Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995  

SciTech Connect

Research continued on the design of advanced turbine systems. This report describes the design and test of critical components such as blades, materials, cooling, combustion, and optical diagnostics probes.

NONE

1995-06-01

280

Advanced Turbine System (ATS): Task 1, System scoping and feasibility study  

SciTech Connect

Present GT(Gas Turbine) Systems are available to achieve 52% (LHV) thermal efficiencies, plants in construction will be capable of 54%, and the goal of this study is to identify incentives, technical issues, and resource requirements to develop natural gas-and coal-compatible ATS which would have a goal of 60% or greater based on LHV. The prime objective of this project task is to select a natural gas-fired ATS (Advanced Turbine System) that could be manufactured and marketed should development costs not be at issue with the goals of: (1) Coal of electricity 10% below 1991 vintage power plants in same market class and size. (2) Expected performance 60% efficiency and higher, (3) Emission levels, NO[sub x] < 10 ppM (0.15 lb/MW-h), CO < 20 ppM (0.30 lb/MW-h), and UHC < 20 ppM (0.30 lb/MW-h). ABB screening studies have identified the gas-fueled combined cycle as the most promising full scale solution to achieve the set goals for 1988--2002. This conclusion is based on ABB's experience level, as well as the multi-step potential of the combined cycle process to improve in many component without introducing radical changes that might increase costs and lower RAM. The technical approach to achieve 60% or better thermal efficiency will include increased turbine inlet temperatures, compressor intercooling, as well a improvements in material, turbine cooling technology and the steam turbine. Use of improved component efficiencies will achieve gas-fired cycle performance of 61.78%. Conversion to coal-firing will result in system performance of 52.17%.

van der Linden, S.

1993-02-01

281

Advanced Turbine System (ATS): Task 1, System scoping and feasibility study. Final report  

SciTech Connect

Present GT(Gas Turbine) Systems are available to achieve 52% (LHV) thermal efficiencies, plants in construction will be capable of 54%, and the goal of this study is to identify incentives, technical issues, and resource requirements to develop natural gas-and coal-compatible ATS which would have a goal of 60% or greater based on LHV. The prime objective of this project task is to select a natural gas-fired ATS (Advanced Turbine System) that could be manufactured and marketed should development costs not be at issue with the goals of: (1) Coal of electricity 10% below 1991 vintage power plants in same market class and size. (2) Expected performance 60% efficiency and higher, (3) Emission levels, NO{sub x} < 10 ppM (0.15 lb/MW-h), CO < 20 ppM (0.30 lb/MW-h), and UHC < 20 ppM (0.30 lb/MW-h). ABB screening studies have identified the gas-fueled combined cycle as the most promising full scale solution to achieve the set goals for 1988--2002. This conclusion is based on ABB`s experience level, as well as the multi-step potential of the combined cycle process to improve in many component without introducing radical changes that might increase costs and lower RAM. The technical approach to achieve 60% or better thermal efficiency will include increased turbine inlet temperatures, compressor intercooling, as well a improvements in material, turbine cooling technology and the steam turbine. Use of improved component efficiencies will achieve gas-fired cycle performance of 61.78%. Conversion to coal-firing will result in system performance of 52.17%.

van der Linden, S.

1993-02-01

282

Knowledge-based system for detailed blade design of turbines  

NASA Astrophysics Data System (ADS)

A design optimization methodology that couples optimization techniques to CFD analysis for design of airfoils is presented. This technique optimizes 2D airfoil sections of a blade by minimizing the deviation of the actual Mach number distribution on the blade surface from a smooth fit of the distribution. The airfoil is not reverse engineered by specification of a precise distribution of the desired Mach number plot, only general desired characteristics of the distribution are specified for the design. Since the Mach number distribution is very complex, and cannot be conveniently represented by a single polynomial, it is partitioned into segments, each of which is characterized by a different order polynomial. The sum of the deviation of all the segments is minimized during optimization. To make intelligent changes to the airfoil geometry, it needs to be associated with features observed in the Mach number distribution. Associating the geometry parameters with independent features of the distribution is a fairly complex task. Also, for different optimization techniques to work efficiently the airfoil geometry needs to be parameterized into independent parameters, with enough degrees of freedom for adequate geometry manipulation. A high-pressure, low reaction steam turbine blade section was optimized using this methodology. The Mach number distribution was partitioned into pressure and suction surfaces and the suction surface distribution was further subdivided into leading edge, mid section and trailing edge sections. Two different airfoil representation schemes were used for defining the design variables of the optimization problem. The optimization was performed by using a combination of heuristic search and numerical optimization. The optimization results for the two schemes are discussed in the paper. The results are also compared to a manual design improvement study conducted independently by an experienced airfoil designer. The turbine blade optimization system (TBOS) is developed using the described methodology of coupling knowledge engineering with multiple search techniques for blade shape optimization. TBOS removes a major bottleneck in the design cycle by performing multiple design optimizations in parallel, and improves design quality at the same time. TBOS not only improves the design but also the designers' quality of work by taking the mundane repetitive task of design iterations away and leaving them more time for innovative design.

Goel, Sanjay; Lamson, Scott

1994-03-01

283

Ris DTU 09-06-08 Energy Technology Systems Analysis Programme (ETSAP)  

E-print Network

Technologies Information Centres (EETIC) Energy End-Use (14) · Transportation (4) · Industry (5) · Buildings (5) Renewable Energy Technologies (9) · Bioenergy · Hydrogen · Hydropower, Ocean Energy Systems · Wind TurbinesRisø DTU 09-06-08 1 Energy Technology Systems Analysis Programme (ETSAP) ETSAPs modelarbejde under

284

Reservoir sedimentation at hydropower facilities  

SciTech Connect

The purpose of this paper is to provide a summary of the effects of reservoir sedimentation on hydropower facilities and remedies employed. The main focus is to provide a basic understanding of the causes and impacts of reservoir sedimentation with a perspective on hydropower facilities. After having established the scope of the sedimentation problem, alternatives used to rectify this problem are discussed. The alternatives include both preventative and remedial measures. Included in the discussion of alternatives are; a general description, advantages, and disadvantages of the different measures are presented. The paper is intended to present generalities and not explain the theory governing the processes discussed.

McCallan, R.M. [Univ. of Nebraska, Lincoln, NE (United States)

1995-12-31

285

Coordinated robust nonlinear boiler-turbine-generator control systems via approximate dynamic feedback linearization  

Microsoft Academic Search

A coordinated robust nonlinear control scheme for a boiler-turbine-generator system is usually difficult to build using nonlinear methods based on the exact static-state feedback linearization (EFL) due to the deficiency of accurate parameter information. This paper presents a novel coordinated robust nonlinear control scheme for a boiler-turbine-generator system, in which, the approximate dynamic feedback linearization is established by constructing a

T. Yu; K. W. Chan; J. P. Tong; B. Zhou; D. H. Li

2010-01-01

286

Network Analysis of Turbine and Feedwater Systems of the ‘Fugen’ Nuclear Power Plant  

Microsoft Academic Search

The present study describes the thermal-hydraulic network analysis of the turbine and feedwater systems of the ‘Fugen’ reactor. Turbines, feedwater heaters, and corresponding piping systems are modeled using the network calculation code NETFLOW++ and thermal-hydraulic conditions are calculated using the coupled numerical model. As a result of the calculation, distributions of important characteristics of the single-phase flow and two-phase flow

Hiroyasu MOCHIZUKI; Takateru TSUKAMOTO

2011-01-01

287

Steam Turbines  

NASA Astrophysics Data System (ADS)

Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

1981-01-01

288

Barging Effects on Sensory Systems of Chinook Salmon Smolts  

Microsoft Academic Search

To avoid mortality caused by passage through dam turbines and spillways, juvenile Chinook salmon Oncorhynchus tshawytscha are annually transported downstream by barge through the federal hydropower system on the Snake and Columbia rivers. Survival of transported fish is higher than that of in-river migrants; however, transported fish experience higher rates of postrelease mortality. Increased mortality could result from a decrease

Michele B. Halvorsen; Lidia E. Wysocki; Carla M. Stehr; David H. Baldwin; David R. Chicoine; Nathaniel L. Scholz; Arthur N. Popper

2009-01-01

289

Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995  

SciTech Connect

This report summarizes the tasks completed under this project during the period from August 1, 1994 through July 31, 1994. The objective of the study is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized by the year 2000. The tasks completed include a market study for the advanced turbine system; definition of an optimized recuperated gas turbine as the prime mover meeting the requirements of the market study and whose characteristics were, in turn, used for forecasting the total advanced turbine system (ATS) future demand; development of a program plan for bringing the ATS to a state of readiness for field test; and demonstration of the primary surface recuperator ability to provide the high thermal effectiveness and low pressure loss required to support the proposed ATS cycle.

NONE

1995-11-01

290

The fault diagnosis of large-scale wind turbine based on expert system  

NASA Astrophysics Data System (ADS)

The wind turbine is the critical equipment for wind power, due to the poor working environment and the long running, the wind turbine components will have a variety of failures. Planned maintenance which has long been used is unable to understand the operational status of equipment comprehensively and timely in a way, especially for large wind machine, the repair work took too long time and cause serious damage. Therefore, fault diagnosis and predictive maintenance becomes more imminent. In this paper, the fault symptoms and corresponding reason of the large-scale wind turbine parts are analyzed and summarized ,such as gear box, generator, yaw system, and so on . And on this basis, the large-scale wind turbine fault diagnosis expert system was constructed by using expert system tool CLIPS and Visual C + +.

Chen, Changzheng; Li, Yun

2011-10-01

291

Electromagnetic Calculation of Combined Earthing System with Ring Earth Electrode and Vertical Rods for Wind Turbine  

NASA Astrophysics Data System (ADS)

With the worldwide spread of wind turbine installations, various problems such as landscape issues, bird strikes and grid connections have arisen. Protection of wind turbines from lightning is cited as one of the main problems. Wind turbines are often struck by lightning because of their open-air locations, such as in mountainous areas, and their special configuration and very-high construction. Especially, low-voltage and control circuits can fail or suffer burnout while blades can incur serious damage if struck by lightning. Wind turbine failures caused by lightning strikes account for approximately 25% of all failures. The problem is regarded as a global one that needs immediate resolution. It is important to understand the impedance characteristics of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC TR61400-24 recommends a “ring earth electrode”. This was originally defined in IEC 61024 (currently revised and re-numbered as IEC 62305), where such an electrode is recommended to reduce touch and step voltages in households and buildings. IEC TR61400-24 also recommended additional electrodes of vertical or horizontal rods. However, these concepts have not been fully discussed from the viewpoint of its application to wind turbines. To confirm the effect of a combination of a ring earth electrode and additional vertical rods for protection of a wind turbine, this report uses the Finite Difference Time Domain (FDTD) method to present an electromagnetic transient analysis on such a wind turbine earthing system. The results show that an optimal combination can be arranged from viewpoints of lightning protection and construction cost. Thus, this report discusses how to establish a quantitative design methodology of the wind turbine earthing system to provide effective lightning protection.

Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki

292

Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system  

NASA Technical Reports Server (NTRS)

An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

Nainiger, J. J.

1978-01-01

293

DOE: Quantifying the Value of Hydropower in the Electric Grid  

SciTech Connect

The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

None

2012-12-31

294

An Investigation on Pruned NNARX Identification Model of Hydropower Plant  

Microsoft Academic Search

The aim of this paper is to determine an accurate nonlinear system model for identification of dynamics. A small hydropower plant connected as single machine infinite bus (SMIB) system is considered in the study. It is modeled by a neural network configured as a feedforward multilayer perceptron neural network (MLPNN). An investigation is conducted on various NN structures to determine

Nand Kishor; P. R. Sharma; A. S. Raghuvanshi

2006-01-01

295

Air cooled turbine component having an internal filtration system  

DOEpatents

A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

Beeck, Alexander R. (Orlando, FL)

2012-05-15

296

Materials for advanced turbine engines. Volume 1: Advanced blade tip seal system  

NASA Technical Reports Server (NTRS)

Project 3, the subject of this technical report, was structured toward the successful engine demonstration of an improved-efficiency, long-life, tip-seal system for turbine blades. The advanced tip-seal system was designed to maintain close operating clearances between turbine blade tips and turbine shrouds and, at the same time, be resistant to environmental effects including high-temperature oxidation, hot corrosion, and thermal cycling. The turbine blade tip comprised an environmentally resistant, activated-diffussion-bonded, monocrystal superalloy combined with a thin layer of aluminium oxide abrasive particles entrapped in an electroplated NiCr matrix. The project established the tip design and joint location, characterized the single-crystal tip alloy and abrasive tip treatment, and established the manufacturing and quality-control plans required to fully process the blades. A total of 171 blades were fully manufactured, and 100 were endurance and performance engine-tested.

Zelahy, J. W.; Fairbanks, N. P.

1982-01-01

297

Overview of Westinghouse`s Advanced Turbine Systems Program  

SciTech Connect

The proposed approach is to build on Westinghouse`s successful 501 series of gas turbines. The 501F offered a combined cycle efficiency of 54%; 501G increased this efficiency to 58%; the proposed single-shaft 400 MW class ATS combined cycle will have a plant cycle efficiency greater than 60%. Westinghous`s strategy is to build upon the next evolution of advances in combustion, aerodynamics, cooling, leakage control, materials, and mechanical design. Westinhouse will base its future gas turbine product line, both 50 and 60 Hz, on ATS technology; the 501G shows early influences of ATS.

Bannister, R.L.; Bevc, F.P.; Diakunchak, I.S.; Huber, D.J.

1995-12-31

298

Technical review of Westinghouse`s Advanced Turbine Systems Program  

SciTech Connect

US DOE`s ATS program has the goals of increased efficiency of natural gas-fired power generation plants, decreased cost of electricity, and a decrease in harmful emissions. The Westinghouse ATS plant is based on an advanced gas turbine design combined with an advanced steam turbine and a high efficiency generator. Objectives of the ATS Program Phase 2 are to select the ATS cycle and to develop technologies required to achieve ATS Program goals: combustion, cooling, aerodynamics, leakage control, coatings, materials. This paper describes progress on each.

Diakunchak, I.S.; Bannister, R.L.

1995-12-31

299

Advanced system identification techniques for wind turbine structures  

SciTech Connect

The new approach to modal parameter identification, presented in this paper, uses an asymptotically stable observed to form a discrete state-space model for a wind turbine structure. The identification is performed using input-output time-series. A special software package developed in this research has been tested using the data generated by the ADAMS{trademark} model of the Micon 65/13 wind turbine structure. Numerical and graphical presentation of some of the results, generated by the programs developed, illustrates the range of their applicability.

Bialasiewicz, J.T.; Osgood, R.M.

1995-03-01

300

Inlet Mode Transition Screening Test for a Turbine-Based Combined-Cycle Propulsion System  

Microsoft Academic Search

A combined computational and experimental study of inlet mode transition needed for Turbine-Based Combined-Cycle (TBCC) propulsion has been conducted. The Inlet Mode Transition Experiment (IMX) model used in this study is based on a careful design of an inlet system that supplies both a turbine engine and a ram\\/scramjet flowpath in an 'over\\/under' configuration. Traditional aerodynamic design techniques were used

J. D. Saunders; J. W. Slater; V. Dippold; J. Lee; B. W. Sanders; L. J. Weir

301

Design requirements for medium-sized wind turbines for remote and hybrid power systems  

Microsoft Academic Search

This paper provides an overview of the design requirements for medium-sized wind turbines intended for use in a remote hybrid power system. The recommendations are based on first-hand experience acquired at the University of Massachusetts through the installation, operation, and upgrade of a 250-kW turbine on a mountain top with difficult access in Western Massachusetts. Experience with the operation of

A. L Rogers; J. F Manwell; J. G McGowan; A. F Ellis

2002-01-01

302

Assessing residual hydropower potential of the La Plata Basin accounting for future user demands  

NASA Astrophysics Data System (ADS)

La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), which are having fast growing economies in South America. These countries need energy for their sustainable development; hence hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB) and makes an analysis of the maximum and residual hydropower potential of the basin for a horizon of 30 yr (i.e. year 2040). Current hydropower production is estimated based on historic available data while future energy production is deduced from the maximum available water in the catchment, whereas electricity demand is assessed by correlating existing electricity demand with the estimated population growth and economic development. The maximum and residual hydropower potential of the basin, were assessed for the mean annual flows of the present hydrological regime (1970-2000) and topographical characteristics of the area. Computations were performed using an integrated GIS environment called Vapidro-Aste released by the Research on Energy System (Italy). The residual hydropower potential of the basin is computed considering that first the water supply needs for population, industry and agriculture are served and than hydropower energy is produced. The calculated hydropower production is found to be approximately half of the estimated electricity demand, which shows that there is a need to look for other sources of energy in the future.

Popescu, I.; Brandimarte, L.; Perera, M. S. U.; Peviani, M.

2012-04-01

303

Assessing residual hydropower potential of the La Plata Basin accounting for future user demands  

NASA Astrophysics Data System (ADS)

La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), which have fast growing economies in South America. These countries need energy for their sustainable development; hence, hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB), and it analyses the maximum and residual hydropower potential of the basin for a horizon of 30 yr (i.e. year 2040). Current hydropower production is estimated based on historical available data, while future energy production is deduced from the available water in the catchment (estimated based on measured hydrographs of the past years), whereas electricity demand is assessed by correlating existing electricity demand with the estimated population growth and economic development. The maximum and residual hydropower potential of the basin were assessed for the mean annual flows of the present hydrological regime (1970-2000) and topographical characteristics of the area. Computations were performed using an integrated GIS environment called VAPIDRO-ASTE released by the Research on Energy System (Italy). The residual hydropower potential of the basin is computed considering first that the water supply needs for population, industry and agriculture are served, and then hydropower energy is produced. The calculated hydropower production is found to be approximately half of the estimated electricity demand, which shows that there is a need to look for other sources of energy in the future.

Popescu, I.; Brandimarte, L.; Perera, M. S. U.; Peviani, M.

2012-08-01

304

Structural health monitoring of wind turbines using fiber Bragg grating based sensing system  

NASA Astrophysics Data System (ADS)

As the size of wind turbines increases, the early detection of structural instability becomes increasingly important for safety. This paper introduces a fiber Bragg grating-based sensing system for use in multi-MW scale wind turbine health monitoring, and describes the results of preliminary field tests of dynamic strain monitoring of the tower structure of an onshore wind turbine. For this research, the Korea Institute of Energy Research (KIER) and the FiberPro, Inc. cooperated on the development of a wavelength division multiplexing (WDM) Bragg grating sensing system for high-speed strain sensing. The FBG interrogator thus developed can be used in the sensing of high-speed vibration as well as low-speed dynamic strain. In the case of high-speed sensing, the interrogator allows a sampling ratio of over 40 kHz for six linearly arrayed FBG sensors per channel. To monitor the dynamic strain behavior of the tower and substructure of onshore and offshore wind turbines, 41 FBGs were installed on the supporting structures of the wind turbines. As a result, the Bragg grating sensing system showed stable, accurate performance in the thermal chamber test and good dynamic strain sensing performances during the strain monitoring of the tower structure at the Woljeong test-bed wind turbine in Jeju Island.

Bang, Hyung-joon; Jang, Moonseok; Shin, Hyungki

2011-04-01

305

Impact of Wind Turbine Penetration on the Dynamic Performance of Interconnected Power Systems  

E-print Network

Impact of Wind Turbine Penetration on the Dynamic Performance of Interconnected Power Systems M. J, such as wind generators. This changing nature of power systems has considerable effect on its dynamic behaviour-scale integration of wind generation. I. INTRODUCTION Power systems are complex systems that evolve over years

Pota, Himanshu Roy

306

Fault diagnosis of the steam turbine condenser system based on SOM neural network  

Microsoft Academic Search

The condenser system is one of the most important and complicated steam turbine thermodynamic systems. The SOM (self-organizing map) neural network is applied to fault diagnosis of the system, which is implemented by the neural network toolbox in MATLAB. The method for fault diagnosis of the condenser system is effective and it has been verified by simulation results.

Nian-Su Hu; Na-Na He; Sheng Hu

2003-01-01

307

Advanced Turbine System (ATS) program conceptual design and product development. Quarterly report, March 1--May 31, 1995  

SciTech Connect

Achieving the goals of 60% efficiency, 8 ppmvd NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system: the turbine inlet temperature of the gas turbine must increase, leading also to increased NOx emission. However, improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. The program is focused on two specific products: a 70MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling technology, and a 200MW class utility gas turbine based on an advanced GE heavy duty machine utilizing advanced cooling and enhancement in component efficiency.

NONE

1995-12-31

308

Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit  

E-print Network

with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC assessing the feasibility of proton exchange membrane (PEM) fuel cells for its next-generation space launch compared to current aviation electrical power production methods. In addition, noise may be diminished

Mease, Kenneth D.

309

Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems  

SciTech Connect

Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

2007-01-30

310

Hydropower-related pulsed-flow impacts on stream fishes: a brief review, conceptual model, knowledge gaps, and research needs  

Microsoft Academic Search

The societal benefits of hydropower systems (e.g., relatively clean electrical power, water supply, flood control, and recreation)\\u000a come with a cost to native stream fishes. We reviewed and synthesized the literature on hydropower-related pulsed flows to\\u000a guide resource managers in addressing significant impacts while avoiding unnecessary curtailment of hydropower operations.\\u000a Dams may release pulsed flows in response to needs for

Paciencia S. YoungJoseph; Joseph J. Cech; Lisa C. Thompson

311

Modeling reservoir system with pumped storage. [Richard B. Russell Dam and Lake on Savannah River  

Microsoft Academic Search

The Richard B. Russell Dam and Lake Project is presently under construction and is being placed in tandem between Hartwell and Clark Hill, two existing multipurpose hydropower plants on the Savannah River in Georgia. System operational simulations were performed in support of a feasibility study for the installation of pump turbines at Russell, using a version of a Corps of

G. F. McMahon; V. R. Bonner; B. S. Eichert

1980-01-01

312

Operational simulation of a reservoir system with pumped storage. Technical paper  

Microsoft Academic Search

The Richard B. Russell Dam and Lake Project is presently under construction and is being placed in tandem between Hartwell and Clark Hill, two existing multipurpose hydropower plants on the Savannah River. System operational simulations were performed in support of a feasibility study for the installation of pump turbines at Russell, using a version of the Corps of Engineers HEC-5C

G. F. McMahon; V. R. Bonner; B. S. Eichert

1979-01-01

313

Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites  

PubMed Central

The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns. PMID:25114958

Fan, Qixiang; Qiang, Maoshan

2014-01-01

314

A Holistic Framework for Environmental Flows Determination in Hydropower Contexts  

SciTech Connect

Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.

McManamay, Ryan A [ORNL] [ORNL; Bevelhimer, Mark S [ORNL] [ORNL

2013-05-01

315

A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator  

NASA Technical Reports Server (NTRS)

This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.

Reed, John A.; Afjeh, Abdollah A.

1997-01-01

316

Advanced turbine systems program conceptual design and product development. Annual report, August 1993--July 1994  

SciTech Connect

This Yearly Technical Progress Report covers the period August 3, 1993 through July 31, 1994 for Phase 2 of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC421-93MC30246. As allowed by the Contract (Part 3, Section J, Attachment B) this report is also intended to fulfill the requirements for a fourth quarterly report. The objective of Phase 2 of the ATS Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized in the year 2000. During the period covered by this report, Solar has completed three of eight program tasks and has submitted topical reports. These three tasks included a Project Plan submission of information required by NEPA, and the selection of a Gas-Fueled Advanced Turbine System (GFATS). In the latest of the three tasks, Solar`s Engineering team identified an intercooled and recuperated (ICR) gas turbine as the eventual outcome of DOE`s ATS program coupled with Solar`s internal New Product Introduction (NPI) program. This machine, designated ``ATS50`` will operate at a thermal efficiency (turbine shaft power/fuel LHV) of 50 percent, will emit less than 10 parts per million of NOx and will reduce the cost of electricity by 10 percent. It will also demonstrate levels of reliability, availability, maintainability, and durability (RAMD) equal to or better than those of today`s gas turbine systems. Current activity is concentrated in three of the remaining five tasks a Market Study, GFATS System Definition and Analysis, and the Design and Test of Critical Components.

NONE

1994-11-01

317

An improved method for evaluating ecological suitability of hydropower development by considering water footprint and transportation connectivity in Tibet, China.  

PubMed

Ecological suitability evaluation for hydropower development is effective in locating the most suitable area for construction and emphasizes a clear direction for water resources governance. In this paper, water footprints and transportation connectivity were introduced to improve the existing ecological suitability evaluation application for hydropower development by revising the defects of the traditional indicator system. The following conclusions were reached. (1) Tibet was in a state of water use surplus; the prospect of further hydropower development is positive. (2) Chamdo, Lhasa and Nyingchi excelled in water use efficiency, and Ali was placed last. Nakchu was slightly superior to Ali, but it lagged behind the southern regions. Lhasa, Chamdo, Nyingchi, Xigaze and Shannan were suitable for hydropower development, which could further meet local needs and benefit other regions of China. (3) The evaluation results were in accordance with the actual eco-environmental conditions of the built hydropower projects, indicating that current hydropower development planning was basically reasonable. PMID:25259500

Cui, Guannan; Wang, Xuan; Xu, Linyu; Zhang, Jin; Yu, Bing

2014-01-01

318

Parameter Identification of Hydraulic Turbine Governing System based on Prony Method  

Microsoft Academic Search

A scheme for identifying hydraulic turbine governing system based on Prony method is proposed. Considering the application of Prony method in identifying system transfer function, parameters can be identified through the analysis of the system eigenvalues and residues. The proposed scheme was verified via simulation in Matlab and Simulink. Identification results show that such method has the advantage of fast

Shaokang Zhang; Xingyuan Li

2010-01-01

319

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-print Network

development of photovoltaic (PV), wind turbine and battery technologies, hybrid energy system has received model for our hybrid energy system and the representative weather and load data that form the basis fluctuations of renewable outputs. II. A SIMPLE SYSTEM MODEL In this section, we first describe a simple model

Low, Steven H.

320

Fuel cell-gas turbine hybrid system design part I: Steady state performance  

NASA Astrophysics Data System (ADS)

The hybridization of gas turbine technology with high temperature fuel cells represents an ultra-high efficiency, ultra-low emission, fuel flexible power generation platform. The performance of past prototypes has been limited by marginal compatibility of the two primary sub-systems. This paper addresses the challenge of selecting compatible hardware by presenting a simple and robust method for bespoke hybrid system design and off-the-shelf component integration. This is the first application of detailed, spatially resolved, physical models capable of resolving off-design performance to the integration analysis of FC-GT hybrids. Static maps are produced for both turbine and fuel cell sub-systems that readily evaluate the compatibility and hybrid performance. Molten carbonate and solid oxide fuel cells are considered for hybridization with recuperated micro-turbines and larger axial flow gas turbine systems. Current state-of-the-art molten carbonate technology is shown to pair well with present micro-turbine technology in an FC bottoming cycle design achieving 74.4% LHV efficiency. Solid oxide technology demonstrates remarkable potential for integration with larger scale axial turbo-machinery to achieve greater than 75% LHV efficiency. This performance map technique closely matches results from detailed integrated hybrid system analyses, and enables quick determination of performance requirements for balance of plant design and optimization.

McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

2014-07-01

321

Identification of spatial and topographical metrics for micro hydropower applications in irrigation infrastructure  

NASA Astrophysics Data System (ADS)

A recent agreement between the Federal Energy Regulatory Commission and the State of Colorado seeks to streamline regulatory review of small, low-head hydropower (micro hydropower) projects located in constrained waterways, (Governor's Energy Office, 2010). This regulatory change will likely encourage the development of micro hydropower projects, primarily as upgrades to existing infrastructure. Previous studies of low-head hydropower projects have estimated the combined capacity of micro hydro projects in Colorado between 664 MW to 5,003 MW (Connor, A.M., et al. 1998; Hall, D.G., et al. 2004, 2006). However, these studies did not include existing hydraulic structures in irrigation canals as possible hydropower sites. A Colorado Department of Agriculture study (Applegate Group, 2011) identified existing infrastructure categories for low head hydropower development in irrigation systems, which included diversion structures, line chutes, vertical drops, pipelines, check structures and reservoir outlets. However, an accurate assessment of hydropower capacity from existing infrastructures could not be determined due to low survey responses from irrigation water districts. The current study represents the first step in a comprehensive field study to quantify the type and quantity of irrigation infrastructure for potential upgrade to support micro hydropower production. Field surveys were conducted at approximately 230 sites in 6 of Colorado's 7 hydrographic divisions at existing hydraulic control structures. The United States Bureau of Reclamation contributed approximately 330 additional sample sites from the 17 western states. The work presented here describes a novel method of identifying geospatial metrics to support an estimation of total site count and resource availability of potential micro hydropower. The proposed technique is general in nature and could be utilized to assess micro hydropower resources in any region.

Campbell, Brian

322

A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture  

NASA Technical Reports Server (NTRS)

The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

Culley, Dennis E.

2011-01-01

323

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October, 1994  

SciTech Connect

The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. During this report period, the following tasks were completed: Market study; System definition and analysis; and Integrated program plans. Progress on Task 8, Design and Test of Critical Components, is also discussed. This particular task includes expanded materials and component research covering recuperators, combustion, autothermal fuel reformation, ceramics application and advanced gas turbine system controls.

NONE

1995-01-01

324

Advanced turbine systems program. Final report, August 3, 1993--August 31, 1996  

SciTech Connect

Six tasks were approved under the Advanced Turbine Systems (ATS) extension program. The six tasks include the following: Task 5.0 -- Market Study. The objective of the market study task is to focus on distributed generation prospects for an industrial ATS, using the Allison ATS family as the primary gas turbine systems. Task 6.0 -- Gas Fired Advanced Turbine System (GFATS) Definition and Analysis. Task 8.01 -- Castcool{reg_sign} Blades Fabrication Process Development. Task 8.04 -- ATS Low Emission Combustion System. Task 8.07 -- Ceramic Vane Design and Evaluation. Task 9.0 -- Program Management. Each of these tasks is described, progress is discussed, and results are given.

NONE

1996-12-31

325

Performance optimization of a gas turbine-based cogeneration system  

NASA Astrophysics Data System (ADS)

In this paper an exergy optimization has been carried out for a cogeneration plant consisting of a gas turbine, which is operated in a Brayton cycle, and a heat recovery steam generator (HRSG). In the analysis, objective functions of the total produced exergy and exergy efficiency have been defined as functions of the design parameters of the gas turbine and the HRSG. An equivalent temperature is defined as a new approach to model the exergy rate of heat transfer from the HRSG. The optimum design parameters of the cogeneration cycle at maximum exergy are determined and the effects of these parameters on exergetic performance are investigated. Some practical mathematical relations are also derived to find the optimum values of the adiabatic temperature ratio for given extreme temperatures and consumer temperature.

Yilmaz, Tamer

2006-06-01

326

Cooling system for a bearing of a turbine rotor  

DOEpatents

In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

Schmidt, Mark Christopher (Niskayuna, NY)

2002-01-01

327

Advanced Gas Turbine (AGT) power-train system development  

NASA Technical Reports Server (NTRS)

Technical work on the design and component testing of a 74.5 kW (100 hp) advanced automotive gas turbine is described. Selected component ceramic component design, and procurement were tested. Compressor tests of a modified rotor showed high speed performance improvement over previous rotor designs; efficiency improved by 2.5%, corrected flow by 4.6%, and pressure ratio by 11.6% at 100% speed. The aerodynamic design is completed for both the gasifier and power turbines. Ceramic (silicon carbide) gasifier rotors were spin tested to failure. Improving strengths is indicated by burst speeds and the group of five rotors failed at speeds between 104% and 116% of engine rated speed. The emission results from combustor testing showed NOx levels to be nearly one order of magnitude lower than with previous designs. A one piece ceramic exhaust duct/regenerator seal platform is designed with acceptable low stress levels.

Helms, H. E.; Johnson, R. A.; Gibson, R. K.

1982-01-01

328

Advanced turbine systems sensors and controls needs assessment study. Final report  

SciTech Connect

The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

Anderson, R.L.; Fry, D.N.; McEvers, J.A.

1997-02-01

329

Improvement of turbine blade systems to reduce cavitation erosion  

Microsoft Academic Search

Conclusions 1.When designing new runners it is necessary to combine theoretical, experimental, and on-site investigations.2.Various design modifications of runners were developed for reducing the rate of cavitation erosion of mixed-flow turbines and are being used successfully. The most prospective of them are:a rational form of the blade channel, which makes it possible to completely avoid or minimize cavitation erosion of

A. A. Sotnikov; V. N. Stepanov; A. M. Livshits; S. M. Bukchin

1994-01-01

330

Dynamic Data-Driven Fault Diagnosis of Wind Turbine Systems  

Microsoft Academic Search

In this multi-university collaborative research, we will develop a framework for the dynamic data-driven fault diagnosis of\\u000a wind turbines which aims at making the wind energy a competitive alternative in the energy market. This new methodology is\\u000a fundamentally different from the current practice whose performance is limited due to the non-dynamic and non-robust nature\\u000a in the modeling approaches and in

Yu Ding; Eunshin Byon; Jiong Tang; Yi Lu; Xin Wang

2007-01-01

331

Present and future hydropower scheduling in Statkraft  

NASA Astrophysics Data System (ADS)

Statkraft produces close to 40 TWH in an average year and is one of the largest hydropower producers in Europe. For hydropower producers the scheduling of electricity generation is the key to success and this depend on optimal use of the water resources. The hydrologist and his forecasts both on short and on long terms are crucial to this success. The hydrological forecasts in Statkraft and most hydropower companies in Scandinavia are based on lumped models and the HBV concept. But before the hydrological model there is a complex system for collecting, controlling and correcting data applied in the models and the production scheduling and, equally important, routines for surveillance of the processes and manual intervention. Prior to the forecasting the states in the hydrological models are updated based on observations. When snow is present in the catchments snow surveys are an important source for model updating. The meteorological forecast is another premise provider to the hydrological forecast and to get as precise meteorological forecast as possible Statkraft hires resources from the governmental forecasting center. Their task is to interpret the meteorological situation, describe the uncertainties and if necessary use their knowledge and experience to manually correct the forecast in the hydropower production regions. This is one of several forecast applied further in the scheduling process. Both to be able to compare and evaluate different forecast providers and to ensure that we get the best available forecast, forecasts from different sources are applied. Some of these forecasts have undergone statistical corrections to reduce biases. The uncertainties related to the meteorological forecast have for a long time been approached and described by ensemble forecasts. But also the observations used for updating the model have a related uncertainty. Both to the observations itself and to how well they represent the catchment. Though well known, these uncertainties have thus far been handled superficially. Statkraft has initiated a program called ENKI to approach these issues. A part of this program is to apply distributed models for hydrological forecasting. Developing methodologies to handle uncertainties in the observations, the meteorological forecasts, the model itself and how to update the model with this information are other parts of the program. Together with energy price expectations and information about the state of the energy production system the hydrological forecast is input to the next step in the production scheduling both on short and long term. The long term schedule for reservoir filling is premise provider to the short term optimizing of water. The long term schedule is based on the actual reservoir levels, snow storages and a long history of meteorological observations and gives an overall schedule at a regional level. Within the regions a more detailed tool is used for short term optimizing of the hydropower production Each reservoir is scheduled taking into account restrictions in the water courses and cost of start and stop of aggregates. The value of the water is calculated for each reservoir and reflects the risk of water spillage. This compared to the energy price determines whether an aggregate will run or not. In a gradually more complex energy system with relatively lower regulated capacity this is an increasingly more challenging task.

Bruland, O.

2012-12-01

332

Hydropower for sustainable water and energy development  

Microsoft Academic Search

Turkey has a total gross hydropower potential of 433GWh\\/year, but only 125GWh\\/year of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country would be tapped. Turkey presently has considerable renewable energy sources. The most important renewable sources are hydropower,

Ibrahim Yüksel

2010-01-01

333

Sustainable Development of Small Hydropower Plants (SHPs)  

Microsoft Academic Search

The aim of this article is to investigate the small hydropower plants (SHPs) in Turkey. Total hydropower potential of Turkey is annually 433,000 GWh. Almost 50% of the total potential is technically exploitable and 29% (122,322 GWh\\/year) is economically exploitable. The country is planning to make use of the exploitable hydropower potentials (HPPs) of 122,322 GWh\\/year by 2023. Since the

RECEP BAKIS; AYHAN DEMIRBAS

2004-01-01

334

Case study of selective catalytic reduction system start-up on digester gas fired combustion turbines  

SciTech Connect

In August 1989, the South Coast Air Quality Management District (SCAQMD) adopted Rule 1134 which imposed strict NO{sub x} emission limits on stationary, non-utility, combustion turbines. The rule was technology-forcing for the owners and operators of digester gas fired combustion turbines since it established a NO{sub x} emission limit of 9 parts per million by volume at 15 percent oxygen. The County Sanitation Districts of Los Angeles County (Districts), operators of three 6.5 MW digester gas fired turbines, elected to retrofit the turbines with selective catalytic reduction (SCR) systems to achieve compliance with the SCAQMD rule. After four years and costs in excess of four million dollars, the Districts continue to work on achieving system performance goals. This case study provides a brief history of the development of Rule 1134 and the motivation behind the strict NO{sub x} limits. The Districts` rationale in choosing SCR systems as a means of attaining compliance is presented along with a discussion of the physical site constraints which resulted in a less than optimum retrofit installation of the SCR systems. SCR system performance problems are examined including what was suspected to be poisoning of the catalyst by potassium in the turbine exhaust gas. The major actions undertaken by the Districts, its contractor and subcontractors to bring the turbines into compliance are also presented including optimizing exhaust flow distribution through the catalyst reactor, optimizing the ammonia mixing in the exhaust duct, optimizing water injection rates, installing intake combustion air evaporative cooling systems, reactivating the catalyst with resistant coatings, and undertaking structural retrofits to prevent distortion of the reactor house caused by thermal expansion. The case study concludes with a brief summary of the SCR systems` final physical configuration and performance and an update on the pending regulation changes.

Conway, V.O.; Min, S.W.; Adams, G.M. [County Sanitation Districts of Los Angeles County, Whittier, CA (United States)

1997-12-31

335

Blade-by-blade tip clearance measurement system for gas turbine applications  

Microsoft Academic Search

It is difficult to make a reliable measurement of running clearance in the hostile environment over the blading of a modern gas turbine. When engine manufacturers require the measurement to be made over every blade during live engine tests, system reliability, ruggedness, and ease of operation are of primary importance. This paper describes a tip clearance measurement system that can

A. G. Sheard; B. Killeen

1995-01-01

336

LQ Optimal Control of Wind Turbines in Hybrid Power Systems N.A. Cutululis1  

E-print Network

LQ Optimal Control of Wind Turbines in Hybrid Power Systems N.A. Cutululis1 , H. Bindner1 , I taken into account for the design of a wind ­ diesel power system is the wind power penetration, which electrical load. However, the penetration of wind power into small diesel-based grids is limited because

337

Speed sensorless control of a PMSG for small wind turbine systems  

Microsoft Academic Search

Wind turbine systems (WTS) based on permanent magnet synchronous generators (PMSG) have been gaining more and more importance over the last years. In fact, these generators are self-excited, allowing operation at high power factor and high efficiency. Additionally, the elimination of the gearbox allows a reduction in costs and maintenance. To further reduce the system complexity and the maintenance process,

N. A. Orlando; M. Liserre; V. G. Monopoli; A. Dell'Aquila

2009-01-01

338

Advanced Turbine Systems Program conceptual design and product development. Quarterly report, November 1994--January 1995  

SciTech Connect

Objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for anultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. Technical progress covered in this report is confined to Task 4 (conversion to coal) and the nine subtasks under Task 8 (design and test of critical components). These nine subtasks address six ATS technologies: catalytic combustion, recuperator, autothermal fuel reformer, high temperature turbine disc, advanced control system, and ceramic materials.

NONE

1995-02-01

339

Probabilistic Analysis of Solid Oxide Fuel Cell Based Hybrid Gas Turbine System  

NASA Technical Reports Server (NTRS)

The emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance. A gas turbine thermodynamic cycle integrated with a fuel cell was computationally simulated and probabilistically evaluated in view of the several uncertainties in the thermodynamic performance parameters. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the uncertainties in the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of criteria for gas turbine performance.

Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

2003-01-01

340

Advanced Turbine System (ATS) program conceptual design and product development. Quarterly report, September, 1--November 30, 1995  

SciTech Connect

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA-based in engineering and manufacturing and are marketed through GE Power Systems. Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both the efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emissions. Improved coatings and other materials technologies along with creative combustor design can result in solutions which will achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine.

NONE

1997-06-01

341

Advanced Turbine System (ATS) program conceptual design and product development. Quarterly report, March 1, 1994--May 31, 1994  

SciTech Connect

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus their close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NO{sub x} and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives requires the development of Advanced Gas Turbine Systems which encompasses two potential products: a new aeroderivative combined cycle system for the industrial market and a combined cycle system for the utility sector that is based on an advanced frame machine.

NONE

1998-12-31

342

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30

343

Development of the helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998  

SciTech Connect

The present report contains the final results obtained during July 1996--July 1998. This report should be considered in association with the Annual Progress Report submitted in July 1997 due to the fact that not all of the intermediate results reflected in the Progress Report have been included in the Final Report. The aim of the project was to build a helical hydraulic turbine prototype and demonstrate its suitability and advantages as a novel apparatus to harness hydropower from ultra low-head rivers and other free water streams such as ocean currents or rivers without dams. The research objectives of the project are: Design, optimization and selection of the hydro foil section for the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. The research conducted under this project has substantially exceeded the original goals including designing, constructing and testing of a scaled-up triple-helix turbine, as well as developing recommendations for application of the turbine for direct water pumping in irrigation systems and for future use in wind farms. Measurements collected during two years of turbine testing are kept in the PI files.

Gorlov, A.

1998-08-01

344

Robust H(infinity) tracking control of boiler-turbine systems.  

PubMed

In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach. PMID:20211466

Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

2010-07-01

345

Fusion of a FBG-based health monitoring system for wind turbines with a fiber-optic lightning detection system  

NASA Astrophysics Data System (ADS)

Wind turbine blades are made of composite materials and reach a length of more than 42 meters. Developments for modern offshore turbines are working on about 60 meters long blades. Hence, with the increasing height of the turbines and the remote locations of the structures, health monitoring systems are becoming more and more important. Therefore, fiber-optic sensor systems are well-suited, as they are lightweight, immune against electromagnetic interference (EMI), and as they can be multiplexed. Based on two separately existing concepts for strain measurements and lightning detection on wind turbines, a fused system is presented. The strain measurement system is based on a reflective fiber-Bragg-grating (FBG) network embedded in the composite structure of the blade. For lightning detection, transmissive &fiber-optic magnetic field sensors based on the Faraday effect are used to register the lightning parameters and estimate the impact point. Hence, an existing lightning detection system will be augmented, due to the fusion, by the capability to measure strain, temperature and vibration. Load, strain, temperature and impact detection information can be incorporated into the turbine's monitoring or SCADA system and remote controlled by operators. Data analysis techniques allow dynamic maintenance scheduling to become a reality, what is of special interest for the cost-effective maintenance of large offshore or badly attainable onshore wind parks. To prove the feasibility of this sensor fusion on one optical fiber, interferences between both sensor systems are investigated and evaluated.

Krämer, Sebastian G. M.; Wiesent, Benjamin; Müller, Mathias S.; Puente León, Fernando; Méndez Hernández, Yarú

2008-04-01

346

Development of a system for monitoring technical state of the equipment of a cogeneration steam turbine unit  

NASA Astrophysics Data System (ADS)

Generalized results from the work on developing elements of a comprehensive system for monitoring technical state of the equipment of cogeneration turbines are presented. The parameters of the electrohydraulic turbine control system are considered together with a number of problems concerned with assessing the state of condensers and delivery water heaters.

Aronson, K. E.; Brodov, Yu. M.; Novoselov, V. B.

2012-12-01

347

Advanced Gas Turbine (AGT): Power-train system development  

NASA Technical Reports Server (NTRS)

Technical work on the design and effort leading to the testing of a 74.5 kW (100 hp) automotive gas turbine is described. The general effort was concentrated on building an engine for test starting in July. The buildup progressed with only routine problems and the engine was delivered to the test stand 9 July. In addition to the engine build effort, work continued in selected component areas. Ceramic turbine parts were built and tested. Burst tests of ceramic rotors show strengths are approaching that achieved in test bars; proof testing is required for acceptable strength ceramic vanes. Over 25 hours was accumulated on the combustor rig in three test modes: pilot nozzle only, start nozzle, and main nozzle operation. Satisfactory ignition was achieved for a wide range of starting speeds and the lean blowout limit was as low as 0.06 kg/b (0.14 lb/hr). Lean blowout was more a function of nozzle atomization than fuel/air ratio. A variety of cycle points were tested. Transition from start nozzle flow to main nozzle flow was done manually without difficulty. Regenerator parts were qualification tested without incident and the parts were assembled on schedule. Rig based performance matched first build requirements. Repeated failures in the harmonic drive gearbox during rig testing resulted in that concept being abandoned for an alternate scheme.

Helms, H. E.; Johnson, R. A.; Gibson, R. K.; Smith, L. B.

1983-01-01

348

Optical system design and experimental evaluation of a coherent Doppler wind Lidar system for the predictive control of wind turbine  

NASA Astrophysics Data System (ADS)

The control of wind turbine blade pitch systems by Lidar assisted wind speed prediction has been proposed to increase the electric power generation and reduce the mechanical fatigue load on wind turbines. However, the sticking point of such Lidar systems is the price. Hence, our objective is to develop a more cost efficient Lidar system to support the pitch control of horizontal axis wind turbines and therefore to reduce the material requirement, lower the operation and maintenance costs and decrease the cost of wind energy in the long term. Compared to the state of the art Lidar systems, a laser with a shorter coherence length and a corresponding fiber delay line is introduced for reducing the costs. In this paper we present the experimental evaluation of different sending and receiving optics designs for such a system from a free space laboratory setup.

Shinohara, Leilei; Tauscher, Julian Asche; Beuth, Thorsten; Heussner, Nico; Fox, Maik; Babu, Harsha Umesh; Stork, Wilhelm

2014-09-01

349

Definitional mission report on U. S. hydropower sector international competitiveness. Export trade information  

SciTech Connect

The report assesses the U.S. hydropower sector's technological competitiveness in major equipment categories such as turbines/generators, switch gears, transformers, etc. for the full range of hydroelectric power plants, that is, from small plants of 50MW or less to large plants such as Guayabo-Siquirres. The subject has three interwoven threads, each affecting the others but subject to individual discussion. They are technological ability; productivity and the state of industrial plant; and management and sales methods.

Boyd, E.L.

1992-06-01

350

Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995  

SciTech Connect

This Quarterly Technical Progress Report covers the period February 1, 1995, through April 30, 1995, for Phase II of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE contract No. DE-AC21-93MC30246. The objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. Tasks 1, 2, 3, 5, 6 and 7 of Phase II have been completed in prior quarters. Their results have been discussed in the applicable quarterly reports and in their respective topical reports. With the exception of Task 7, final editions of these topical reports have been submitted to the DOE. This quarterly report, then, addresses only Task 4 and the nine subtasks included in Task 8, {open_quotes}Design and Test of Critical Components.{close_quotes} These nine subtasks address six ATS technologies as follows: (1) Catalytic Combustion - Subtasks 8.2 and 8.5, (2) Recuperator - Subtasks 8.1 and 8.7, (3) Autothermal Fuel Reformer - Subtask 8.3, (4) High Temperature Turbine Disc - Subtask 8.4, (5) Advanced Control System (MMI) - Subtask 8.6, and (6) Ceramic Materials - Subtasks 8.8 and 8.9. Major technological achievements from Task 8 efforts during the quarter are as follows: (1) The subscale catalytic combustion rig in Subtask 8.2 is operating consistently at 3 ppmv of NO{sub x} over a range of ATS operating conditions. (2) The spray cast process used to produce the rim section of the high temperature turbine disc of Subtask 8.4 offers additional and unplanned spin-off opportunities for low cost manufacture of certain gas turbine parts.

Karstensen, K.W.

1995-07-01

351

Development of a stereo-optical camera system for monitoring tidal turbines  

NASA Astrophysics Data System (ADS)

The development, implementation, and testing of a stereo-optical imaging system suitable for environmental monitoring of a tidal turbine is described. This monitoring system is intended to provide real-time stereographic imagery in the near-field (<10 m) of tidal turbines proposed for deployment in Admiralty Inlet, Puget Sound, Washington. Postdeployment observations will provide the necessary information about the frequency and type of interactions between marine animals and the turbine. A method for optimizing the stereo camera arrangement is given, along with a quantitative assessment of the system's ability to measure and track targets in three-dimensional space. Optical camera effectiveness is qualitatively evaluated under realistic field conditions to determine the range within which detection, discrimination, and classification of targets is possible. These field evaluations inform optimal system placement relative to the turbine rotor. Tests suggest that the stereographic cameras will likely be able to discriminate and classify targets at ranges up to 3.5 m and detect targets at ranges up to, and potentially beyond, 4.5 m. Future system testing will include the use of an imaging sonar ("acoustical camera") to evaluate behavioral disturbances associated with artificial lighting.

Joslin, James; Polagye, Brian; Parker-Stetter, Sandra

2014-01-01

352

Considering Climate Change in Hydropower Relicensing  

E-print Network

Considering Climate Change in Hydropower Relicensing ENVIRONMENTAL AREA RESEARCH PIER Environmental climate change when relicensing hydropower units, stating that there is a lack of scientific information this project, researchers are conducting an environmental study on climate change for the Yuba River

353

Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development  

SciTech Connect

Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

Stephenson, M.

1994-03-01

354

Cooling system for a gas turbine using a cylindrical insert having V-shaped notch weirs  

DOEpatents

An improved cooling system for a gas turbine is disclosed. A plurality of V-shaped notch weirs are utilized to meter a coolant liquid from a pool of coolant into a plurality of platform and airfoil coolant channels formed in the buckets of the turbine. The V-shaped notch weirs are formed in a separately machined cylindrical insert and serve to desensitize the flow of coolant into the individual platform and airfoil coolant channels to design tolerances and non-uniform flow distribution.

Grondahl, Clayton M. (Clifton Park, NY); Germain, Malcolm R. (Ballston Lake, NY)

1981-01-01

355

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995  

SciTech Connect

This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

NONE

1996-01-01

356

Proposal of the Atmospheric Pressure Turbine (APT) and High Temperature Fuel Cell Hybrid System  

NASA Astrophysics Data System (ADS)

Solid oxide fuel cell (SOFC) has been extensively developed in many countries as an ultra-high efficient energy converter. Such high temperature fuel cell can be operated as a hybrid system of integrating of turbo machinery. A major decision is whether to place the cell stack in pressurized or unpressurized section. This paper discusses the exhaust energy recovery from fuel cells by use of turbo machines under unpressurized conditions, working with inverted Brayton cycle in which turbine expansion, cooling by heat exchanger and draft by compressor are made in an open cycle mode. It is denoted as “atmospheric pressure turbine (APT)”.

Tsujikawa, Yoshiharu; Kaneko, Ken-Ichi; Suzuki, Jun

357

US hydropower resource assessment for Wisconsin  

SciTech Connect

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

Conner, A.M.; Francfort, J.E.

1996-05-01

358

US hydropower resource assessment for Montana  

SciTech Connect

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Montana.

Francfort, J.E.

1993-12-01

359

US hydropower resource assessment for Vermont  

SciTech Connect

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Vermont.

Conner, A.M.; Francfort, J.E.

1996-02-01

360

US hydropower resource assessment for Wyoming  

SciTech Connect

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Wyoming.

Francfort, J.E.

1993-12-01

361

US hydropower resource assessment for Indiana  

SciTech Connect

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Indiana.

Francfort, J.E.

1995-12-01

362

US Hydropower Resource Assessment for Massachusetts  

SciTech Connect

The Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the Commonwealth of Massachusetts.

Francfort, J.E.; Rinehart, B.N.

1995-07-01

363

U.S. Hydropower Resource Assessment - California  

SciTech Connect

The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

A. M. Conner; B. N. Rinehart; J. E. Francfort

1998-10-01

364

US hydropower resource assessment for Colorado  

SciTech Connect

The US Department of Energy is developing an estimate of the hydropower development potential in this country. Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE, menu-driven software application. HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Colorado.

Francfort, J.E.

1994-05-01

365

US hydropower resource assessment for Oklahoma  

SciTech Connect

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose, The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Oklahoma.

Francfort, J.E.

1993-12-01

366

US hydropower resource assessment for Utah  

SciTech Connect

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

Francfort, J.E.

1993-12-01

367

US hydropower resource assessment for New Jersey  

SciTech Connect

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Jersey.

Connor, A.M.; Francfort, J.E.

1996-03-01

368

US hydropower resource assessment for New Hampshire  

SciTech Connect

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Hampshire.

Francfort, J.E.

1995-07-01

369

Modeling Goals and Functions of Micro Gas Turbine System by Multilevel Flow Models  

Microsoft Academic Search

Semiotic analysis is often used for describing the inter-relationship of structure, function and behavior of any artifacts as the means for designing various computerized tools for machine diagnosis and operation procedure. In this study, a graphical method called Multilevel Flow Models (MFM) is applied for supporting machine maintenance work of commercially available Micro Gas Turbine System (MGTS), to describe and

Yangping Zhou; Hidekazu Yoshikawa; Wei Wu; Ming Yang; Hirotake Ishii

370

An investigation over the lightning location system in Portugal for wind turbine protection development  

Microsoft Academic Search

This paper presents a characterization of the wind energy in Portugal in what regards: the installed power capacity, the capacity under construction, and the geographical location of wind turbines. The Portuguese lightning location system (LLS) is described, and new experimental and analytical results are presented. Analysis about geographical and time distribution of cloud-to-ground (CG) strikes and accumulative probability of peak

R. B. Rodrigues; V. M. F. Mendes; J. P. S. Catalao; S. Correia; V. Prior; M. Aguado

2008-01-01

371

Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995  

SciTech Connect

Objective of the ATS program is to develop ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base-load application in utility, independent power producer, and industrial markets. This report discusses the major accomplishments achieved during the second year of the ATS Phase 2 program, particularly the design and test of critical components.

NONE

1994-10-01

372

Experimental and three-dimensional CFD investigation in a gas turbine exhaust system  

Microsoft Academic Search

Both experimental and three-dimensional CFD investigations are carried out in a scale model of an industrial gas turbine exhaust system to better understand its complex flow field and to validate CFD prediction capabilities for improved design applications. The model consists of an annular diffuser passage with struts, followed by turning vanes and a rectangular plenum with side exhaust. Precise measurements

B. K. Sultanian; S. Nagao; T. Sakamoto

1999-01-01

373

Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System  

Microsoft Academic Search

The simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell–Gas Turbine (SOFC–GT) power system are discussed in this paper. In the SOFC reactor model, it is assumed that only hydrogen participates in the electrochemical reaction and that the high temperature of the stack pushes the internal steam reforming reaction to completion; the unreacted gases are assumed to be

F. Calise; M. Dentice d’Accadia; A. Palombo; L. Vanoli

2006-01-01

374

The Effect of SFCL on Electric Power Grid With Wind-Turbine Generation System  

Microsoft Academic Search

This paper describes the study to analyse the effect of the superconducting fault current limiter (SFCL) on an electric power grid with the wind-turbine generation, which is a representative renewable energy source. Its connection to a power system might more easily increase the short-circuit current during a fault toward its maximum utilization level, which is closer to the rating of

Woo-Jae Park; Byung Chul Sung; Jung-Wook Park

2010-01-01

375

Reduced models of doubly fed induction generator system for wind turbine simulations  

NASA Astrophysics Data System (ADS)

This article compares three reduced models with a detailed model of a doubly fed induction generator system for wind turbine applications. The comparisons are based on simulations only. The main idea is to provide reduced generator models which are appropriate to simulate normal wind turbine operation in aeroelastic wind turbine models, e.g. for control system design or structural design of the wind turbine. The electrical behaviour such as grid influence will therefore not be considered. The work presented in this article shows that with an ideal, undisturbed grid the dynamics of the doubly fed induction generator system is very well represented by the dynamics due to the generator inertia and the generator control system, whereas the electromagnetic characteristics of the generator can be represented by the steady state relations. The parameters for the proposed models are derived from parameters typically available from the generator data sheet and from the controller settings. Thus the models are simple to apply in any case where the generator data sheet is available. Copyright

Sørensen, P.; Hansen, A. D.; Lund, T.; Bindner, H.

2006-07-01

376

Grid voltage support by means of a small Wind Turbine System  

Microsoft Academic Search

The paper presents a small Wind Turbine System (WTS) improved with voltage compensation functionality. In the WTS the Permanent Magnet Generator (PMG) control is designed to maximize the power output and achieve a smooth torque and power profile. The grid-side converter is controlled in order to maintain constant the voltage for local loads also in presence of grid voltage variations.

N. A. Orlando; R. A. Mastromauro; M. Liserre; A. Dell'Aquila

2008-01-01

377

Comparison of power converter topologies for permanent magnet small wind turbine system  

Microsoft Academic Search

Permanent magnet based wind generators are one of the more promising technology. This paper presents a comparison of power converter topologies for permanent magnet small wind turbine systems to improve the power quality and to extract the maximum power from wind. Two detailed models are presented and explained: the first configuration is made by a diode-bridge rectifier, a boost converter

N. A. Orlando; M. Liserre; V. G. Monopoli; R. A. Mastromauro; A. Dell'Aquila

2008-01-01

378

Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application  

SciTech Connect

This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

Ashok K. Anand

2005-12-16

379

Installation of a waste heat recovery system at a gas turbine-driven compressor station  

Microsoft Academic Search

A waste heat recovery system for generation of electricity has been added to a natural gas pipeline compressor station. The heat recovery system, utilizing a dual pressure Rankine cycle with water\\/steam as the working fluid, increases the overall thermal efficiency of the 12,500 hp simple cycle gas turbine from 25.3% to 36.1%. The system will generate power for the local

C. J. Tateosian; G. K. Roland

1983-01-01

380

A high-speed photographic system for flow visualization in a steam turbine  

NASA Technical Reports Server (NTRS)

A photographic system was designed to visualize the moisture flow in a steam turbine. Good performance of the system was verified using dry turbine mockups in which an aerosol spray simulated, in a rough way, the moisture flow in the turbine. Borescopes and fiber-optic light tubes were selected as the general instrumentation approach. High speed motion-picture photographs of the liquid flow over the stator blade surfaces were taken using stroboscopic lighting. Good visualization of the liquid flow was obtained. Still photographs of drops in flight were made using short duration flash sources. Drops with diameters as small as 30 micrometers (0.0012 in.) could be resolved. In addition, motion pictures of a spray of water simulating the spray off the rotor blades and shrouds were taken at normal framing rates. Specially constructed light tubes containing small tungsten-halogen lamps were used. Sixteen millimeter photography was used in all cases. Two potential problems resulting from the two-phase turbine flow (attenuation and scattering of light by the fog present and liquid accumulation on the borescope mirrors) were taken into account in the photographic system design but not evaluated experimentally.

Barna, G. J.

1973-01-01

381

A Stand-Alone Hybrid Generation System Combining Solar Photovoltaic and Wind Turbine with Simple Maximum Power Point Tracking Control  

Microsoft Academic Search

This paper proposes a hybrid energy system combing solar photovoltaic and wind turbine as a small-scale alternative source of electrical energy where conventional generation is not practical. A simple and cost effective control technique has been proposed for maximum power point tracking from the photovoltaic array and wind turbine under varying climatic conditions without measuring the irradiance of the photovoltaic

Nabil A. Ahmed; Masafumi Miyatake

2006-01-01

382

Smart Structures and Systems, Vol. 6, No. 3 (2010) 000-000 1 Structural monitoring of wind turbines using wireless  

E-print Network

generation turbines) and federal tax subsidies have increased investment in wind energy technologySmart Structures and Systems, Vol. 6, No. 3 (2010) 000-000 1 Structural monitoring of wind turbines 1 July 2009) Abstract. Monitoring and economical design of alternative energy generators

Sweetman, Bert

383

Impact of Increased Penetration of DFIG-Based Wind Turbine Generators on Transient and Small Signal Stability of Power Systems  

Microsoft Academic Search

The targeted and current development of wind energy in various countries around the world reveals that wind power is the fastest growing power generation technology. Among the several wind generation technologies, variable speed wind turbines utilizing doubly fed induction generators (DFIGs) are gaining momentum in the power industry. With the increase in penetration of these wind turbines, the power system

Durga Gautam; Vijay Vittal; Terry Harbour

2009-01-01

384

An infrared pyrometry system for monitoring gas turbine blades: Development of a computer model and experimental results  

Microsoft Academic Search

This work describes the development of a computer modeling system for infrared pyrometry measurement of gas turbine blade temperature. The model accurately evaluates apparent target emissivity and temperature on the basis of the radiation heat fluxes exchanged at steady-state conditions. Experimental testing conducted on gas turbine models in a controlled-temperature furnace has shown that the reliability of the target emissivity

M. de Lucia; C. Lanfranchi

1994-01-01

385

Hybrid Solar Photovoltaic\\/Wind Turbine Energy Generation System with Voltage-based Maximum Power Point Tracking  

Microsoft Academic Search

This article proposes a hybrid energy system combining solar photovoltaic and wind turbine as a small-scale alternative source of electrical energy where conventional generation is not practical. A simple and cost-effective control technique has been proposed for maximum power point tracking from the photovoltaic array and wind turbine under varying climatic conditions without measuring the irradiance of the photovoltaic or

Nabil A. Ahmed; Masafumi Miyatake; A. K. Al-Othman

2008-01-01

386

Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air Energy Storage System  

E-print Network

controller is developed for a Compressed Air Energy Storage (CAES) system integrated with a wind turbine availability of wind energy more reliable, predictable and less disruptive to the electric grid. MoreoverRevenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air

Li, Perry Y.

387

Multicriterion analysis of hydropower operation  

SciTech Connect

Two examples are presented to show how multicriterion decision-making (MCDM) techniques can help hydropower engineers mitigate the environmental and social effects of hydropower development and operation. A brief introduction and overview of MCDM is presented, consisting of an 11-step process that starts with problem definition and ends with implementation. A typology of MCDM is provided, dividing the techniques into three groups: outranking, distance-based, and value- or utility-based typed. The operation of the Upper Isar River project in Bavaria is analyzed by means of a value technique and an out-ranking technique called multicriterion Q-analysis. Fourteen criteria are considered in that study, including power production, habitat quality for four groups of species, aesthetics, several recreation indices, minimum flows, and phosphorus loadings. The case study of the Erlauf River Division in Austria is evaluated using a distance-based technique, called composite programming, combined with Monte Carlo simulation. An outcome of that study is that the facility's owners have increased the minimum instream flow in order to protect ecological values.

Duckstein, L.; Hobbs, B.F. (Case Western Reserve Univ., Cleveland, OH (US)); Tecle, A. (School of Forestry, Northern Arizona Univ., Flagstaff, AZ (US)); Nachnebel, H.P. (Institute of Water Resources, Univ. fur Bodenkulur, Gregormendelstr. 33, 1180 Wien (AT))

1989-12-01

388

Estimated impacts of climate warming on California’s high-elevation hydropower  

Microsoft Academic Search

California’s hydropower system is composed of high and low elevation power plants. There are more than 150 high-elevation\\u000a power plants, at elevations above 1,000 feet (300 m). Most have modest reservoir storage capacities, but supply roughly 74%\\u000a of California’s in-state hydropower. The expected shift of runoff peak from spring to winter due to climate warming, resulting\\u000a in snowpack reduction and increased

Kaveh Madani; Jay R. Lund

2010-01-01

389

Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded  

NASA Technical Reports Server (NTRS)

Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders

Culley, Dennis

2010-01-01

390

Water trap valve for fail safe operation of an air inleakage monitoring system in a steam turbine  

Microsoft Academic Search

A fail-safe bypass monitoring system is described for measuring the volumetric flow rate of normally low pressure air in leakage evacuated from a condenser in a steam turbine system and exhausted through a vent pipe segment.

Twedochib

1989-01-01

391

Water trap valve for fail safe operation of an air inleakage monitoring system in a steam turbine  

SciTech Connect

A fail-safe bypass monitoring system is described for measuring the volumetric flow rate of normally low pressure air in leakage evacuated from a condenser in a steam turbine system and exhausted through a vent pipe segment.

Twedochib, M

1989-05-23

392

Advanced turbine systems program -- Conceptual design and product development. Final report  

SciTech Connect

This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

NONE

1996-07-26

393

Strategies for Refining IEC 61400-2: Wind Turbine Generator Systems - Part 2: Safety of Small Wind Turbines: Preprint  

Microsoft Academic Search

This paper provides a status of the changes currently being made by IEC Maintenance Team 02 (MT02) to the existing IEC 61400-2 ''Safety of small wind turbines.'' In relation to the work done by IEC MT02, work has been done by NREL and Windward Engineering under the DOE\\/NREL Small Wind Turbine (SWT) Project. Aeroelastic models were built and measurements taken

J. J. D. van Dam; T. L. Forsyth; A. C. Hansen

2001-01-01

394

Utility Advanced Turbine Systems Program (ATS) Technical Readiness Testing and Pre-Commercial Demonstration  

SciTech Connect

The objective of the ATS program is to develop ultra-high efficiency, environmentally superior and cost competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Specific performance targets have been set using natural gas as the primary fuel: {lg_bullet} System efficiency that will exceed 60%(lower heating value basis) on natural gas for large scale utility turbine systems; for industrial applications, systems that will result in a 15% improvement in heat rate compared to currently available gas turbine systems. {lg_bullet} An environmentally superior system that will not require the use of post combustion emissions controls under full load operating conditions. {lg_bullet} Busbar energy costs that are 10% less than current state-of-the-art turbine systems, while meeting the same environmental requirements. {lg_bullet} Fuel-flexible designs that will operate on natural gas but are capable of being adapted to operate on coal-derived or biomass fuels. {lg_bullet} Reliability-Availability-Maintainability (RAM) that is equivalent to the current turbine systems. {lg_bullet} Water consumption minimized to levels consistent with cost and efficiency goals. {lg_bullet} Commercial systems that will enter the market in the year 2000. In Phase I of the ATS program, Siemens Westinghouse found that efficiency significantly increases when the traditional combined-cycle power plant is reconfigured with closed-loop steam cooling of the hot gas path. Phase II activities involved the development of a 318MW natural gas fired turbine conceptual design with the flexibility to burn coal-derived and biomass fuels. Phases I and II of the ATS program have been completed. Phase III, the current phase, completes the research and development activities and develops hardware specifications from the Phase II conceptual design. This report summarizes Phase III extension activities for a three month period. Additional details may be found in monthly technical progress reports covering the period stated on the cover of this report. Background information regarding the work to be completed in Phase III may be found in the revised proposal submitted in response to A Request for Extension of DE-FC21-95MC32267, dated May 29, 1998 and the Continuing Applications of DE-FC21-95MC32267, dated March 31, 1999 and November 19, 1999.

Siemens Westinghouse

2000-12-31

395

Utility Advanced Turbine Systems Program (ATS) Technical Readiness Testing and Pre-Commercial Demonstration  

SciTech Connect

The objective of the ATS program is to develop ultra-high efficiency, environmentally superior and cost competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Specific performance targets have been set using natural gas as the primary fuel: (1) System efficiency that will exceed 60% (lower heating value basis) on natural gas for large scale utility turbine systems; for industrial applications, systems that will result in a 15% improvement in heat rate compared to currently available gas turbine systems. (2) An environmentally superior system that will not require the use of post combustion emissions controls under full load operating conditions. (3) Busbar energy costs that are 10% less than current state-of-the-art turbine systems, while meeting the same environmental requirements. (4) Fuel-flexible designs that will operate on natural gas but are capable of being adapted to operate on coal-derived or biomass fuels. (5) Reliability-Availability-Maintainability (RAM) that is equivalent to the current turbine systems. (6) Water consumption minimized to levels consistent with cost and efficiency goals. (7) Commercial systems that will enter the market in the year 2000. In Phase I of the ATS program, Siemens Westinghouse found that efficiency significantly increases when the traditional combined-cycle power plant is reconfigured with closed-loop steam cooling of the hot gas path. Phase II activities involved the development of a 318MW natural gas fired turbine conceptual design with the flexibility to burn coal-derived and biomass fuels. Phases I and II of the ATS program have been completed. Phase III, the current phase, completes the research and development activities and develops hardware specifications from the Phase II conceptual design. This report summarizes Phase III Extension activities for a three month period. Additional details may be found in monthly technical progress reports covering the period stated on the cover of this report. Background information regarding the work to be completed in Phase III may be found in the revised proposal submitted in response to A Request for Extension of DE-FC21-95MC32267, dated May 29, 1998 and the Continuing Applications of DE-FC21-95MC32267, dated March 31, 1999 and November 19, 1999.

Siemens Westinghouse

2001-09-30

396

High temperature aircraft turbine engine bearing and lubrication system development  

SciTech Connect

Results are reported for a project sponsored by the US Air Force Wright Laboratories. The major emphasis of this project was the evaluation of bearing materials with improved corrosion resistance, high hot hardness, and high fracture toughness, intended to meet the requirements of the Integrated High Performance Turbine Engine Technologies (IHPTET) Phase 2 engine. The project included material property studies on candidate bearing materials and lubricants which formed the selection basis for subscale and full-scale bearing rig verification tests. The carburizing stainless steel alloy Pyrowear 675 demonstrated significant fatigue life, fracture toughness, and corrosion resistance improvements relative to the M50 NiL baseline bearing material. The new Skylube 2 (MCS-2482) lubricant provided significant thermal degradation improvements with respect to the Skylube 600 (PWA-524, MIL-L-87100) lubricant. Two 130 mm bore Pyrowear 675 hybrid ball bearings with silicon nitride balls were run successfully for 231 hours with Skylube 2 lubricant at temperatures consistent with IHPTET 2 requirements.

Grant, D.H.; Chin, H.A. [Pratt and Whitney, West Palm Beach, FL (United States). United Technologies; Klenke, C. [Air Force, Dayton, OH (United States). Wright Lab.; Galbato, A.T.; Ragen, M.A.; Spitzer, R.F. [MRC Bearings, Jamestown, NY (United States)

1998-12-31

397

Steam Turbine Cogeneration  

E-print Network

turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System....

Quach, K.; Robb, A. G.

2008-01-01

398

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1993--February 28, 1994  

SciTech Connect

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal.

NONE

1997-06-01

399

Implementation of hardware-in-the-loop system for drum-boiler-turbine decoupled multivariable control  

Microsoft Academic Search

This paper focuses on developing a hardware-in- the-loop (HIL) system for a boiler-turbine process, employing decoupled adaptive control based on gain scheduling technique. The used model is a 3x3 non-linear strongly coupled system adapted to fit a real thermal power plant of 16 MW. The main purpose of this work lies in implementing, comparing and validating the proposed HIL method

Mihai Iacob; Gheorghe-Daniel Andreescu

2011-01-01

400

A DFIG wind turbine ride-through system. Influence on the energy production  

Microsoft Academic Search

The influence of a voltage sag ride-through system on the energy production of a doubly-fed induction generator (DFIG) wind turbine is investigated. Using simulations, a candidate ride-through system based on insulated gate bipolar transistor (IGBT) modules with high current rating and with the option of having antiparallel thyristors, which can quickly disconnect the stator of the DFIG from the grid,

A. Petersson; S. Lundberg; T. Thiringer

2005-01-01

401

Gain-scheduling-based droop control for universal operation of small wind turbine systems  

Microsoft Academic Search

Universal operation of small-power wind turbine systems (grid-connected and island mode) may increase their penetration in the power systems. This paper proposes the use of gain scheduling to adapt the droop control gains to the different operation modes. It allows to achieve fast dynamic response in grid-connected mode and small voltage and frequency variations in island mode. An energy storage

A. Nagliero; R. A. Mastromauro; D. Ricchiuto; M. Liserre; M. Nitti

2011-01-01

402

Blade-by-blade tip clearance measurement system for gas turbine applications  

NASA Astrophysics Data System (ADS)

It is difficult to make a reliable measurement of running clearance in the hostile environment over the blading of a modern gas turbine. When engine manufacturers require the measurement to be made over every blade during live engine tests, system reliability, ruggedness, and ease of operation are of primary importance. This paper describes a tip clearance measurement system that can measure clearance over every blade around a rotor. The measurement system concept is presented, and the system design described in detail. Commissioning of the measurement system on a compressor test facility, and the results obtained are discussed. An analysis of system performance during the commissioning trials concludes the paper.

Sheard, A. G.; Killeen, B.

1995-04-01

403

A blade-by-blade tip clearance measurement system for gas turbine applications  

SciTech Connect

It is difficult to make a reliable measurement of running clearance in the hostile environment over the blading of a modern gas turbine. When engine manufacturers require the measurement to be made over every blade during live engine tests, system reliability, ruggedness, and ease of operation are of primary importance. This paper describes a tip clearance measurement system that can measure clearance over every blade around a rotor. The measurement system concept is presented, and the system design described in detail. Commissioning of the measurement system on a compressor test facility, and the results obtained are discussed. An analysis of system performance during the commissioning trials concludes the paper.

Sheard, A.G.; Killeen, B. [Rotadata Limited, Derby (United Kingdom)

1995-04-01

404

Fuel cell-gas turbine hybrid system design part II: Dynamics and control  

NASA Astrophysics Data System (ADS)

Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

2014-05-01

405

Analysis and numerical optimization of gas turbine space power systems with nuclear fission reactor heat sources  

NASA Astrophysics Data System (ADS)

A new three objective optimization technique is developed and applied to find the operating conditions for fission reactor heated Closed Cycle Gas Turbine (CCGT) space power systems at which maximum efficiency, minimum radiator area, and minimum total system mass is achieved. Such CCGT space power systems incorporate a nuclear reactor heat source with its radiation shield; the rotating turbo-alternator, consisting of the compressor, turbine and the electric generator (three phase AC alternator); and the heat rejection subsystem, principally the space radiator, which enables the hot gas working fluid, emanating from either the turbine or a regenerative heat exchanger, to be cooled to compressor inlet conditions. Numerical mass models for all major subsystems and components developed during the course of this work are included in this report. The power systems modeled are applicable to future interplanetary missions within the Solar System and planetary surface power plants at mission destinations, such as our Moon, Mars, the Galilean moons (Io, Europa, Ganymede, and Callisto), or Saturn's moon Titan. The detailed governing equations for the thermodynamic processes of the Brayton cycle have been derived and successfully programmed along with the heat transfer processes associated with cycle heat exchangers and the space radiator. System performance and mass results have been validated against a commercially available non-linear optimization code and also against data from existing ground based power plants.

Juhasz, Albert J.

406

Proceedings of the Department of Energy advanced gas turbine central power systems workshop  

SciTech Connect

The basic objective of the DOE Central Power Systems group is the development of technology for increasing the use of coal in central station electric power generation in an economical and environmentally acceptable manner. The two major research and development areas of this program are the Open Cycle Gas Turbine System and the Closed Cycle Gas Turbine System. Recognizing that the ultimate success of the DOE program is measured by end-user acceptance of the technology developed, the workshop was held to obtain utility industry comments and suggestions on the development of these systems and their potential use by electric power utilities. Representatives of equipment manufacturers, architect and engineering firms, and universities were also invited as participants to provide a comprehensive review of the technology development and implementation process. The 65 participants and observers examined the following topics: technical considerations of the Open Cycle and of the Closed Cycle Gas Turbine program; commercialization of both systems; and regulatory impacts on the development of both systems. Each group evaluated the existing program, indicating R and D objectives that they supported and cited recommendations for modifications and expansion of future R and D work.

D'Angelo, S. (ed.)

1980-04-01

407

Background and system description of the Mod 1 wind turbine generator  

NASA Technical Reports Server (NTRS)

The Mod-1 wind turbine considered is a large utility-class machine, operating in the high wind regime, which has the potential for generation of utility grade power at costs competitive with other alternative energy sources. A Mod-1 wind turbine generator (WTG) description is presented, taking into account the two variable-pitch steel blades of the rotor, the drive train, power generation/control, the Nacelle structure, and the yaw drive. The major surface elements of the WTG are the ground enclosure, the back-up battery system, the step-up transformer, elements of the data system, cabling, area lighting, and tower foundation. The final system weight (rotor, Nacelle, and tower) is expected to be about 650,000 pounds. The WTG will be capable of delivering 1800 kW to the utility grid in a wind-speed above 25 mph.

Ernst, E. H.

1978-01-01

408

Multivariable adaptive control with hardware-in-the-loop for a drum-type boiler-turbine system  

Microsoft Academic Search

This paper presents a centralized multivariable adaptive decoupling control using hardware-in-the-loop (HIL) for a boiler-turbine system. The boiler-turbine mathematical model is a 3x3 nonlinear strongly-coupled MIMO system with hard constraints. The proposed control strategy employs decoupling technique, gain scheduling with dynamic model linearization, and adaptive PID control with filtered updated gains and anti-windup to improve system response quality. The HIL

Mihai Iacob; Gheorghe-Daniel Andreescu; Robert Antal; Ana-Maria Dan

2011-01-01

409

Uniform criteria for US Hydropower Resource Assessment. Hydropower evaluation software status report  

SciTech Connect

The Department of Energy is estimating the hydropower development potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The Hydropower Evaluation Software estimates the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a DBASE, menu-driven software application. Hydropower Evaluation Software allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This status report details Hydropower Evaluation Software`s development, its data requirements, and its application to the 12 states assessed to date. This report does not discuss or present the various user-friendly menus of the Hydropower Evaluation Software. One is referred to the User`s Manual for specifics. This report focuses on data derivation, summarization of the 12 states (Arkansas, Colorado, Kansas, Louisiana, Missouri, Montana, North Dakota, Oklahoma, South Dakota, Texas, Utah, and Wyoming) extracted into the software to date, and plans for future assessments.

Francfort, J.E.; Rinehart, B.N. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Moore, K.M. [Morgantown Energy Technology Center, WV (United States)

1993-06-01

410

Uniform criteria for U.S. hydropower resource assessment: Hydropower Evaluation Software status report -- 2  

SciTech Connect

The US Department of Energy is estimating the undeveloped hydropower potential in the US. The Hydropower Evaluation software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The Hydropower Evaluation Software estimates the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software application. Hydropower Evaluation Software allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This status report describes Hydropower Evaluation Software`s development, its data requirements, and its application to the 20 states assessed to date. This report does not discuss or present the various user-friendly menus of the Hydropower Evaluation Software. The reader is referred to the User`s Manual for specifics. This report focuses on data derivation, summarization of the 20 states (Arkansas, Missouri, Montana, New Hampshire, North Dakota, Oklahoma, Rhode Island, South Dakota, Texas, Utah, Vermont, and Wyoming) assessed to date, and plans for future assessments.

Conner, A.M.; Francfort, J.E.; Rinehart, B.N.

1996-02-01

411

Steam generators, turbines, and condensers. Volume six  

SciTech Connect

Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

Not Available

1986-01-01

412

Parametric Studies of the Ejector Process within a Turbine-Based Combined-Cycle Propulsion System  

NASA Technical Reports Server (NTRS)

Performance characteristics of the ejector process within a turbine-based combined-cycle (TBCC) propulsion system are investigated using the NPARC Navier-Stokes code. The TBCC concept integrates a turbine engine with a ramjet into a single propulsion system that may efficiently operate from takeoff to high Mach number cruise. At the operating point considered, corresponding to a flight Mach number of 2.0, an ejector serves to mix flow from the ramjet duct with flow from the turbine engine. The combined flow then passes through a diffuser where it is mixed with hydrogen fuel and burned. Three sets of fully turbulent Navier-Stokes calculations are compared with predictions from a cycle code developed specifically for the TBCC propulsion system. A baseline ejector system is investigated first. The Navier-Stokes calculations indicate that the flow leaving the ejector is not completely mixed, which may adversely affect the overall system performance. Two additional sets of calculations are presented; one set that investigated a longer ejector region (to enhance mixing) and a second set which also utilized the longer ejector but replaced the no-slip surfaces of the ejector with slip (inviscid) walls in order to resolve discrepancies with the cycle code. The three sets of Navier-Stokes calculations and the TBCC cycle code predictions are compared to determine the validity of each of the modeling approaches.

Georgiadis, Nicholas J.; Walker, James F.; Trefny, Charles J.

1999-01-01

413

Optimizing Dam Operations for Power and for Fish: an Overview of the US Department of Energy and US Army Corps of Engineers ADvanced Turbine Development R&D. A Pre-Conference Workshop at HydroVision 2006, Oregon Convention Center, Portland, Oregon July 31, 2006  

SciTech Connect

This booklet contains abstracts of presentations made at a preconference workshop on the US Department of Energy and US Army Corps of Engineers hydroturbine programs. The workshop was held in conjunction with Hydrovision 2006 July 31, 2006 at the Oregon Convention Center in Portland Oregon. The workshop was organized by the Corps of Engineers, PNNL, and the DOE Wind and Hydropower Program. Presenters gave overviews of the Corps' Turbine Survival Program and the history of the DOE Advanced Turbine Development Program. They also spoke on physical hydraulic models, biocriteria for safe fish passage, pressure investigations using the Sensor Fish Device, blade strike models, optimization of power plant operations, bioindex testing of turbine performance, approaches to measuring fish survival, a systems view of turbine performance, and the Turbine Survival Program design approach.

Dauble, Dennis D.

2006-08-01

414

Advanced Turbine Systems (ATS). Phase 1: System scoping and feasibility studies  

NASA Astrophysics Data System (ADS)

As part of this involvement, Solar intends to design and commercialize a unique gas turbine system that promises high cycle efficiencies and low exhaust emissions. This engine of approximately 12-MW will be targeted for the dispersed power markets both urban and rural. Goals of 50% thermal efficiency and 8 parts-per-million by volume (ppmv) nitrogen oxide emissions were established. Reliability, availability, and maintainability (RAM) will continue to be the most important factors in the competitive marketplace. The other major goal adopted was one of reducing the cost of power produced by 10%. This reduction is based on the cost of power (COP) associated with today's engines that lie in the same horsepower range as that targeted in this study. An advanced cycle based on an approximation of the Ericsson Cycle was adopted after careful studies of a number of different cycles. This advanced intercooled, recuperated engine when fired at 2450 F will be capable of meeting the 50% efficiency goal if the cooling air requirements do not exceed 7% of the total air flow rate. This latter qualification will probably dictate the use of ceramic parts for both the nozzle guide vanes and the turbine blades. Cooling of these parts will probably be required and the 7% cooling flow allowance is thought to be adequate for such materials. Analyses of the cost of power and RAM goals show that the installed cost of this advanced engine can be approximately 50% above today's costs. This cost is based on $4.00 per million Btu fuel and a COP reduction of 10% while maintaining the same RAM as today's engines.

White, D. J.

1993-04-01

415

Rivers of energy: the hydropower potential. [Monograph  

SciTech Connect

Hydropower, aproven technology that provides 25% of the world's electricity, often has been overlooked by energy planners. Hydropower emits no health-threatening pollutants, produces no harmful wastes, and can be planned to cause minimal damage to the landscape. An overview of the long history of hydropower is followed by an analysis of the opportunities and problems associated with developing water resources. Small-scale hydro in developing countries and in remote areas opens new opportunities for investment and future development. The opportunities in developed countries are primarily in upgrading and rehabilitating existing facilities. New directions are needed to take advantage of the world's hydropower resources: (1) developing countries need to plan a balance of large and small sites, while developed countries should concentrate on small sites; (2) new pricing and allocation policies are needed to discourage waste and to reflect the transition to a new energy era. 87 references, 2 figures, 2 tables. (DCK)

Deudney, D.

1981-01-01

416

The 15 kW sub e (nominal) solar thermal electric power conversion concept definition study: Steam Rankine turbine system  

NASA Technical Reports Server (NTRS)

A study to define the performance and cost characteristics of a solar powered, steam Rankine turbine system located at the focal point of a solar concentrator is presented. A two stage re-entry turbine with reheat between stages, which has an efficiency of 27% at a turbine inlet temperature of 732 C was used. System efficiency was defined as 60 Hertz electrical output divided by absorbed thermal input in the working fluid. Mass production costs were found to be approximately 364 dollars/KW.

Bland, T. J.

1979-01-01

417

Dynamic modeling of gas turbines in integrated gasification fuel cell systems  

NASA Astrophysics Data System (ADS)

Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles employing cathode recycle using either an ejector or a blower indicate that the cycles with the blower provide better turbo-machinery stability and higher system efficiencies than the cycles with the ejector. A comparison of two models controlled to maintain constant fuel cell operating temperatures of 1,100 K and 1,373 K, show similar dynamic performance trends, indicating that the results are applicable to planar and tubular SOFC-GT systems and should apply to other operating temperatures.

Maclay, James Davenport

418

TOPICAL REVIEW: Structural health monitoring for a wind turbine system: a review of damage detection methods  

NASA Astrophysics Data System (ADS)

Renewable energy sources have gained much attention due to the recent energy crisis and the urge to get clean energy. Among the main options being studied, wind energy is a strong contender because of its reliability due to the maturity of the technology, good infrastructure and relative cost competitiveness. In order to harvest wind energy more efficiently, the size of wind turbines has become physically larger, making maintenance and repair works difficult. In order to improve safety considerations, to minimize down time, to lower the frequency of sudden breakdowns and associated huge maintenance and logistic costs and to provide reliable power generation, the wind turbines must be monitored from time to time to ensure that they are in good condition. Among all the monitoring systems, the structural health monitoring (SHM) system is of primary importance because it is the structure that provides the integrity of the system. SHM systems and the related non-destructive test and evaluation methods are discussed in this review. As many of the methods function on local damage, the types of damage that occur commonly in relation to wind turbines, as well as the damage hot spots, are also included in this review.

Ciang, Chia Chen; Lee, Jung-Ryul; Bang, Hyung-Joon

2008-12-01

419

Task 6 -- Advanced turbine systems program conceptual design and product development  

SciTech Connect

The Allison Engine Company has completed the Task 6 Conceptual Design and Analysis of Phase 2 of the Advanced Turbine System (ATS) contract. At the heart of Allison`s system is an advanced simple cycle gas turbine engine. This engine will incorporate components that ensure the program goals are met. Allison plans to commercialize the ATS demonstrator and market a family of engines incorporating this technology. This family of engines, ranging from 4.9 MW to 12 MW, will be suitable for use in all industrial engine applications, including electric power generation, mechanical drive, and marine propulsion. In the field of electric power generation, the engines will be used for base load, standby, cogeneration, and distributed generation applications.

NONE

1996-01-10

420

Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006  

SciTech Connect

This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

Schulz, M. J.; Sundaresan, M. J.

2006-08-01

421

Impact of small-scale hydropower on fish populations in the Upper Mississippi River and recommendations for mitigation. Technical report  

SciTech Connect

The project is part of the National Network for Environmental Management Studies (NNEMS) under the auspices of the Office of Cooperative Environmental Management of the U.S. Environmental Protection Agency. The report analyzes potential impacts on the fisheries resources in the Upper Mississippi resulting from the development of small-scale hydropower in the Mississippi River. The six objectives of the study are to review different types of hydropower, determine potential effects on fish, compile a representative list of potentially impacted species and their life history characteristics, quantitatively predict potential fluctuations of sport-fish populations, evaluate strategies for mitigating adverse effects on fish, and develop a list of criteria for evaluating prospective hydropower sites. The study concludes that mechanical damage, caused by the runner blades, wicket gates, and guide vanes of the turbines, is the greatest source of both lethal and sublethal injury to fish.

Baines, B.; Baker, J.; Biasetti, S.; Carson, H.; Clark, R.

1988-01-01

422

Turbine systems and methods for using internal leakage flow for cooling  

DOEpatents

A cooling system for a turbine with a first section and a second section. The first section may include a first line for diverting a first flow with a first temperature from the first section, a second line for diverting a second flow with a second temperature less than the first temperature from the first section, and a merged line for directing a merged flow of the first flow and the second flow to the second section.

Hernandez, Nestor (Schenectady, NY); Gazzillo, Clement (Schenectady, NY); Boss, Michael J. (Ballston Spa, NY); Parry, William (Rexford, NY); Tyler, Karen J. (Burnt Hills, NY)

2010-02-09

423

Optimal Set-Point Scheduling in a Boiler-Turbine System  

Microsoft Academic Search

A 32nd order boiler-turbine model is developed to solve the optimal set-point scheduling problem for main and hot reheat steam conditions in a 235 MW gas fired electric generating plant. The model has 7 states in the process and 25 in the control system. The optimization strategy uses control vector parameterization in which the boiler controller set-point function generators are

G. Dieck-Assad; G. Y. Masada; R. H. Flake

1987-01-01

424

Material removal considerations for metal-ceramic abradable turbine seal systems  

NASA Technical Reports Server (NTRS)

Possible interaction mechanisms between turbine blade tips and ceramic seal elements have been considered and preferred mechanism defined. The influence of porosity in the seal structure is qualitatively assessed and a preferred form determined. A dual-density plasma-sprayed ceramic seal system encompassing the desired characteristics is described and test results, including engine tests, are reported. Possible remedies to correct performance deficiencies are presented.

Clingman, D. L.; Schechter, B.; Cross, K. R.; Cavanagh, J. R.

1983-01-01

425

Modeling and control of variable-speed wind-turbine drive-system dynamics  

Microsoft Academic Search

When designing control for variable-speed wind turbines, one deals with highly resonant, nonlinear dynamic systems subject to random excitation, i.e., wind turbulence. This requires good knowledge of the dynamics to be controlled, particularly when combined with the increasingly common “soft” concept of lightweight, flexible constructional components; it creates cost advantages compared to more material-consuming rigid constructions, but also results in

P. Novak; T. Ekelund; I. Jovik; B. Schmidtbauer

1995-01-01

426

MOD-2 wind turbine system concept and preliminary design report. Volume 2: Detailed report  

NASA Technical Reports Server (NTRS)

The configuration development of the MOD-2 wind turbine system (WTS) is documented. The MOD-2 WTS project is a continuation of DOE programs to develop and achieve early commercialization of wind energy. The MOD-2 is design optimized for commercial production rates which, in multiunit installations, will be integrated into a utility power grid and achieve a cost of electricity at less than four cents per kilowatt hour.

1979-01-01

427

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1994--February 28, 1995  

SciTech Connect

Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved costing and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced GE heavy duty machines utilizing advanced cooling and enhancement in component efficiency. Both of these activities require the identification and resolution of technical issues critical to achieving Advanced Turbine System (ATS) goals. The emphasis for the industrial ATS will be placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS will be placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS will be placed on developing a technology base for advanced turbine cooling while utilizing demonstrated and planned improvements in low emissions combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE`s Industrial and Power Systems is solely responsible for offering Ge products for the industrial and utility markets. The GE ATS program will be managed fully by this organization with core engine technology being supplied by GE Aircraft Engines (GEAE) and fundamental studies supporting both product developments being conducted by GE Corporate Research and Development (CRD).

NONE

1995-12-31

428

Control Stabilisation of an Islanded System with DFIG Wind Turbine  

Microsoft Academic Search

Distributed generation (DG) is often used to export power to the utility system. Loss of main supply can cause a severe loading mismatch between DG generation and load consumption. Consequently, the voltage and frequency of the islanded system will cross the allowable limit. Due to this fact, it is essential to control the voltage and frequency in the islanding mode

M. Aktarujjaman; M. A. Kashem; M. Negnevitsky; G. Ledwich

2006-01-01

429

Selection of an industrial natural-gas-fired advanced turbine system - Task 3A  

SciTech Connect

TASK OBJECTIVES: Identify a gas-fueled turbine and steam system which will meet the program goals for efficiency - and emissions. TECHNICAL GOALS AND REQUIREMENTS: Goals for the Advanced Turbine System Program (ATS) where outlined in the statement of work for five basic categories: Cycle Efficiency - System heat rate to have a 15% improvement over 1991 vintage systems being offered to the market. Environmental No post-combustion devices while meeting the following parameter targets: (1) Nitrous Oxide (NO{sub x}) emissions to equal 8 parts per million dry (ppmd) with 15% oxygen. (2) Carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions to equal 20 parts per million(ppmd) each. Cost of electricity to be 10 percent less when compared to similar 1991 systems. Fuel Flexibility Have to ability to burn coal or coal derived fuels without extensive redesign. Reliability, Availability, Maintainability Reliability, availability and maintainability must be comparable to modern advanced power generation systems. For all cycle and system studies, analyses were done for the following engine system ambient conditions: Temperature - 59F; Altitude - Sea Level; Humidity - 60%. For the 1991 reference system, GE Aircraft Engines used its LM6OOO engine product offering for comparison of the Industrial System parameters developed under this program.

Holloway, G.M.

1997-05-01

430

River regulation for hydropower production and streamflow regimes  

NASA Astrophysics Data System (ADS)

Ecologists and hydrologists have long recognized that streamflow regimes are major drivers of river ecology, evidencing that the whole range of variations of streamflows concurs to shape form and functions of riverine systems. Hydropower production in Alpine engineered catchments has led to major alterations in the natural sequencing of the flows, due to persistent regulation operations chiefly guided by economic criteria. In this contribution we identify some common features that characterize the flow regime of non-impacted rivers (e.g., shape of the streamflow pdf and of the duration curve, coefficient of variation, correlation function), highlighting their dependence on climatic, morphologic and hydrologic attributes. We also discuss the typical distortions induced in the natural flow regime by water resources exploitation associated to hydropower production, as suggested by streamflow data collected in impacted rivers. A specific case study is presented, which refers to a highly regulated alpine catchment of north-eastern Italy (the Piave river basin, A=3900 km2), where the streamflows are impacted by 13 reservoirs and a number of weirs and diversions. The comparison of the streamflow regimes observed in various cross sections downstream of the regulation devices in the Piave catchment with the corresponding natural streamflow regimes (estimated by a stochastic analytical model) suggests that hydropower production increases the streamflow variability and the occurrence frequency of preferential states far from the mean. Meanwhile, a decrease in the short-term correlation and a significant increase of the long-term correlation of the flows is observed. Some environmental implications of the modifications induced by hydropower production on the flow regime are also discussed.

Basso, S.; Rinaldo, A.; Botter, G.

2011-12-01

431

Fully coupled dynamic analysis of a floating wind turbine system  

E-print Network

The use of wind power is in a period of rapid growth worldwide and wind energy systems have emerged as a promising technology for utilizing offshore wind resources for the large scale generation of electricity. Drawing ...

Withee, Jon E

2004-01-01

432

L-180 Poseidon: A system concept in vertical axis turbine technology, part 2  

NASA Astrophysics Data System (ADS)

An offshore 20MW L blade system with 180 m dia troposkien shaped blades was studied. The L-blade system uses two vertical, curved blades mounted on a cantilever tower at a 90 deg angle relative to each other (in plane of rotation), thus forming an L, looking from the top. Considerable reduction of the oscillating wind loads on the rotor-lower structure is realized in comparison with conventional two bladed Darrieus turbines resulting in reduced system weight and cost. Parking loads in extreme winds are also reduced favorably. Weight and cost estimates for farms of 10 or more offshore units are given.

Ljungstroem, O.

1980-10-01

433

A Portable Expert System for Gas Turbine Maintenance  

E-print Network

& Light Company Arne Loft, former designer of General Electric Speedtronic Control Systems In this manner, a uniform K-Base was assembled containing the symptomatic knowledge of a field trOUbleshooting expert, as well as the knowhow of the control... & Light Company Arne Loft, former designer of General Electric Speedtronic Control Systems In this manner, a uniform K-Base was assembled containing the symptomatic knowledge of a field trOUbleshooting expert, as well as the knowhow of the control...

Quentin, G. H.

434

Design and construction of a simple blade pitch measurement system for small wind turbines  

Microsoft Academic Search

For small wind turbines to be reliable they must have in place good mechanisms to protect themselves against very high winds or sudden removal of load. One common protection method in small wind turbines is that of blade feathering. It is important that the blade feathering mechanism of a small wind turbine is tested before the turbine is installed in

Jonathan Whale

2009-01-01

435

Aeroelastic stability of wind turbine blade/aileron systems  

NASA Technical Reports Server (NTRS)

Aeroelastic stability analyses have been performed for the MOD-5A blade/aileron system. Various configurations having different aileron torsional stiffness, mass unbalance, and control system damping have been investigated. The analysis was conducted using a code recently developed by the General Electric Company - AILSTAB. The code extracts eigenvalues for a three degree of freedom system, consisting of: (1) a blade flapwise mode; (2) a blade torsional mode; and (3) an aileron torsional mode. Mode shapes are supplied as input and the aileron can be specified over an arbitrary length of the blade span. Quasi-steady aerodynamic strip theory is used to compute aerodynamic derivatives of the wing-aileron combination as a function of spanwise position. Equations of motion are summarized h