Science.gov

Sample records for hydrothermal quartz veins

  1. Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz

    NASA Astrophysics Data System (ADS)

    Rink, W. J.; Rendell, H.; Marseglia, E. A.; Luff, B. J.; Townsend, P. D.

    1993-10-01

    Variations in thermoluminescence spectra are reported for four types of geological quartz examined with a new spectrometer featuring dual imaging photon detectors that separately and simultaneously detect (1) uv-blue (200 450 nm) and (2) blue to near infrared (400 800 nm) emission. Samples show striking differences which appear to be characteristic of their geological origin. Volcanic quartz phenocrysts from acid volcanics show red thermoluminescence (TL) emission bands centered at 620 630 nm that are 100 times more intense than similar bands in other quartz, while a violet emission at 420 435 nm was observed exclusively in igneous quartz (volcanic and granitic). A broad emission band centered at 560 580 nm was observed only in quartz formed hydrothermally. Massive quartz from Li-rich pegmatite bodies shows narrow, intense 470 nm emission bands at 230 C apparently related to Al and to Ge defects detected with electron paramagnetic resonance (EPR), and emission bands at 330 and 280 nm, possibly related to recombination at oxygen vacancies. The common 380 nm emission band of quartz was observed in both volcanic and granitic quartz, but was not detected in either the pegmatitic or the hydrothermal vein quartz. Observed spectral variation is identified as a potential source of error in luminescence dating.

  2. Pre-biotic organic molecules in hydrothermal quartz veins from the Archaean Yilgarn province, Australia

    NASA Astrophysics Data System (ADS)

    Mayer, Christian; Schreiber, Ulrich; Dyker, Gerald; Kirnbauer, Thomas; Mulder, Ines; Sattler, Tobias; Schöler, Heinfried; Tubbesing, Christoph

    2013-04-01

    According to a model recently published by Schreiber et al. (OLEB 2012), pre-biotic organic molecules as earliest markers for a chemical evolution have been formed in tectonic faults of the first Archaean cratons. These faults are often documented by quartz- and other hydrothermal vein mineralization. During the growth of these quartzes, small portions of hydrothermal fluids are enclosed which conserve the chemical composition of the given fluid medium. According to our model, the preconditions for the geochemical formation of organic molecules are a suitable carbon source (e.g. carbon dioxide), varying P/T conditions, and catalysts. This given, rising hydrothermal fluids such as mineral-rich water and supercritical carbon dioxide in deep faults with contacts to the upper earth mantle offer conditions which allow for reactions similar to the Fischer-Tropsch synthesis. So far, the inclusions which possibly have conserved the products of these reactions have not been analyzed for possible organic constituents. First analytical results of a Mesozoic hydrothermal quartz vein from central Germany (Taunus) reveal that several organic compounds are found in fluid inclusions. However, the true origin of these compounds is unclear due to possible contamination by adjacent Corg-rich metasediments. Therefore, we have extended the study to hydrothermal quartz veins from the Archaean Yilgarn craton, to impact-generated quartz veins of the Shoemaker-Crater as well as to hydrothermal quartz boulders from a 2.7 to 3 billion years old conglomerate near Murchison (Western Australia). In one of the samples from the conglomerate, a wide spectrum of organic compounds such as bromomethane, butane, isoprene, benzene, and toluene have been detected. The time interval between the quartz formation, its erosion and its sedimentation is unknown. Possibly, the analyzed quartz sample was formed in a hydrothermal vein long before any living cells have existed on earth. In this case, the given result would be the first indication for pre-biotic organic chemistry. In contrast, almost no organic compounds have been detected inside fluid inclusions from impact-generated quartz veins of the Shoemaker-Crater (its geological age is estimated between 1.6 and 1.0 Ga), even though they partially have formed in stromatolite-bearing sedimentary rocks. Some of them occur in Precambrian gneisses. We interpret the absence of organic compounds as a consequence of the different genesis of the quartzes near the Shoemaker-crater: the impact-induced hydrothermal system had no connection to the Earth's mantle and hence, no contact to rising volcanic fluids. Our analytical results prove the presence of complex organic molecules in fluid inclusions trapped in quartz veins from the Archaean Yilgarn craton in Australia. They allow a more detailed understanding of the synthetic processes which have occurred in rising hydrothermal fluids in the upper crust of the earth and which may have led to the formation of early pre-biotic organic molecules. Based on the findings, laboratory experiments will be designed to reproduce these processes and to yield further understanding on their mechanism. Furthermore, they should yield a collection of possible products which may have formed the basis for the first biomolecules in Earth's history.

  3. Shock effects and pre-shock microstructures in hydrothermal quartz veins from the Rochechouart impact structure, France

    NASA Astrophysics Data System (ADS)

    Trepmann, C. A.

    2009-11-01

    Microfabrics in hydrothermal quartz veins in gneisses of the Massif Central, France, from the Rochechouart impact structure and St. Paul la Roche, 40 km to the SE of the centre of the structure, have been investigated. In the quartz veins from the Rochechouart impact structure, planar deformation features in the basal plane and cataclastic zones indicate low shock pressures (< c. 8 GPa), and high shock-induced differential stresses. Recrystallized grains, subgrains and undulating deformation lamellae are interpreted as pre-shock features. In quartz veins from St. Paul la Roche outside the impact structure no shock effects occur. There, the microfabric is characterized by healed microcracks, undulating deformation lamellae, subgrains and recrystallized grains aligned along fractures. These microstructures are similar to the pre-shock features of quartz veins within the impact structure. They indicate initial high stress glide-controlled deformation accompanied by microcracking and subsequent modification by recovery and recrystallization at low stress. Such a microfabric development is characteristic for coseismic loading and postseismic stress relaxation in the middle crust below the seismogenic layer. The microfabric of the St. Paul la Roche quartz vein is considered as potential "starting material" for the deformation of quartz veins during the late Triassic meteorite impact at Rochechouart.

  4. Quartz Vein in the Gunsight Formation

    USGS Multimedia Gallery

    Quartz vein in biotite-rich rock in the Gunsight Formation of the Mesoproterozoic Lemhi Group. Bluish green copper-bearing minerals coat the quartz vein. Pale pinkish cobalt bloom and white caliche coat adjacent biotite-rich wallrock....

  5. Quantitative modeling of quartz vein sealing

    NASA Astrophysics Data System (ADS)

    Wendler, Frank; Okamoto, Atsushi; Schwarz, Jens-Oliver; Enzmann, Frieder; Blum, Philipp

    2014-05-01

    Mineral precipitation significantly effects many aspects of fluid-rock interaction across all length scales, as the dynamical change of permeability, of mechanical interaction and redistribution of dissolved material. The hydrothermal growth of quartz establishes one of the most important mineralization processes in fractures. Tectonically caused fracturing, deformation and fluid transport leaves clear detectable traces in the microstructure of the mineralized veins. As these patterns give hints on the deformation history and the fluid pathways through former fracture networks, accurate spatio-temporal modeling of vein mineralization is of special interest, and the objective of this study. Due to the intricate polycrystalline geometries involved, the underlying physical processes like diffusion, advection and crystal growth have to be captured at the grain scale. To this end, we adapt a thermodynamically consistent phase-field model (PFM), which combines a kinetic growth law and mass transport equations with irreversible thermodynamics of interfaces and bulk phases. Each grain in the simulation domain is captured by a phase field with individual orientation given by three Euler angles. The model evolves in discrete time steps using a finite difference algorithm on a regular grid, optimized for large grain assemblies. The underlying processes are highly nonlinear, and for geological samples, boundary conditions as well as many of the physical parameters are not precisely known. One motivation in this study is to validate the adequately parameterized model vs. hydrothermal experiments under defined (p,T,c) conditions. Different from former approaches in vein growth simulation, the PFM is configured using thermodynamic data from established geochemical models. Previously conducted batch flow experiments of hydrothermal quartz growth were analyzed with electron backscatter diffraction (EBSD) and used to calibrate the unknown kinetic anisotropy parameters. In the simulations, we study the sealing of syntaxial veins of 300 microns aperture by epitaxial overgrowth of preexisting grains from the rock surface. Results from 3D simulations conducted in the limit of low Damkhler numbers explain the observed transition regime in competitive crystal growth for blocky-elongate veins. The initial formation of quartz crystal bridges, especially pronounced in the regime of low supersaturation, is observed. The morphological evolution of micro-ensembles of grain neighbourhoods from the rock sample compares well to that of the simulations. To juxtapose larger polycrystal domains, the variation of grain number, texture and porosity as function of scaled distance from the initial wall is calculated. Velocity profiles from solutions of the isothermal incompressible Navier-Stokes equation are used to record permeability evolution and to evaluate deviations from the cubic law. Both, the geometry of the microstructure and the permeability of the flow pathway, are used as upscaling parameters for larger scale (fracture scale) simulations.

  6. VOC and VOX in fluid inclusions of quartz: New chemical insights into hydrothermal vein mineralization by GC-MS and GC-IRMS measurements

    NASA Astrophysics Data System (ADS)

    Sattler, Tobias; Kirnbauer, Thomas; Keppler, Frank; Greule, Markus; Fischer, Jan; Spiekermann, Patrik; Schreiber, Ulrich; Mulder, Ines; Schöler, Heinz Friedrich

    2015-04-01

    Fluid inclusions (FIs) in minerals are known to contain a variety of different liquids, gases, and solids. The fluids get trapped during mineral growth and can preserve the original mineral-forming fluid or fluids of later events. A new analytical technique developed by Mulder et al. (2013) [1] allows to measure trace gases in FIs. For the measurements, grains of 3-5 mm diameter are ground in an airtight grinding device, releasing the volatiles from FIs into the gas phase, where they can be measured by GC-MS, GC-FID and GC-IRMS. The Taunus covers the southeastern part of the thrust-and-fold-belt of the Rhenish Massif (Germany). The Variscan rock sequences comprise sedimentary and volcanic units ranging from Ordovician to Lower Carboniferous. Several types of hydrothermal mineralization can be distinguished, which are - in regard to the Variscan orogeny - pre-orogenic, orogenic, late-orogenic, post-orogenic and recent in age [2]. They include SEDEX, vein, Alpine fissure, disseminated and stockwerk mineralizations. Thus, the Taunus mineralizations enable investigations of different hydrothermal systems at different age in one region. For most of them extensive studies of stable and radiogenic isotopes exist. Quartz crystals of post-orogenic quartz veins and Pb-Zn-Cu bearing veins [3] were selected for our FI investigation. Sulphur containing compounds like COS and CS2 dominate the FIs but there are also volatile hydrocarbons (VOC) like different butenes, benzene, toluene and cyclopentene that were found very often. In some samples volatile halogenated organic carbons (VOX) like chloro- and bromomethane were found. Some FIs even contain iodomethane, chlorobenzene, vinyl chloride and -bromide. The non-fossil-fuel subsurface chemistry of VOC and VOX is not fully understood. There are a lot of unknown geogenic sources [4][5]. For a better understanding δ13C- and δ2H-values of CH4 were measured by GC-IRMS to examine if the detected organic compounds are formed biotic, thermogenic or abiotic, and to investigate the relationship between aquifer rocks and FIs. Our results add new information to the evolution of FIs in hydrothermal systems and the potential role of hydrothermal fluids to the origin of life [6]. [1] Mulder et al., 2013 Chem. Geol., 358: 148-155 [2] Kirnbauer, 1998, Geologie und hydro-thermale Mineralisationen im rechtsrheinischen Schiefergebirge. - 328 pp [3] Kirnbauer et al., 2012, Ore Geol. Reviews, 48: 239-257. [4] Jordan, 2003, Handbook of Environmental Chemistry, Vol. 3, Part P: 121-139 [5] Schöler & Keppler, 2003 Handbook of Environ-mental Chemistry, Vol. 3, Part P: 63-84; [6] Schreiber et al., 2012 Origins of Life and Evolution of Biosphere, 42: 47-54.

  7. Biogenic Iron-Rich Filaments in the Quartz Veins in the Uppermost Ediacaran Qigebulake Formation, Aksu Area, Northwestern Tarim Basin, China: Implications for Iron Oxidizers in Subseafloor Hydrothermal Systems.

    PubMed

    Zhou, Xiqiang; Chen, Daizhao; Tang, Dongjie; Dong, Shaofeng; Guo, Chuan; Guo, Zenghui; Zhang, Yanqiu

    2015-07-01

    Fe-(oxyhydr)oxide-encrusted filamentous microstructures produced by microorganisms have been widely reported in various modern and ancient extreme environments; however, the iron-dependent microorganisms preserved in hydrothermal quartz veins have not been explored in detail because of limited materials available. In this study, abundant well-preserved filamentous microstructures were observed in the hydrothermal quartz veins of the uppermost dolostones of the terminal-Ediacaran Qigebulake Formation in the Aksu area, northwestern Tarim Basin, China. These filamentous microstructures were permineralized by goethite and hematite as revealed by Raman spectroscopy and completely entombed in chalcedony and quartz cements. Microscopically, they are characterized by biogenic filamentous morphologies (commonly 20-200 μm in length and 1-5 μm in diameter) and structures (curved, tubular sheath-like, segmented, and mat-like filaments), similar to the Fe-oxidizing bacteria (FeOB) living in modern and ancient hydrothermal vent fields. A previous study revealed that quartz-barite vein swarms were subseafloor channels of low-temperature, silica-rich, diffusive hydrothermal vents in the earliest Cambrian, which contributed silica to the deposition of the overlying bedded chert of the Yurtus Formation. In this context, this study suggests that the putative filamentous FeOB preserved in the quartz veins might have thrived in the low-temperature, silica- and Fe(II)-rich hydrothermal vent channels in subseafloor mixing zones and were rapidly fossilized by subsequent higher-temperature, silica-rich hydrothermal fluids in response to waning and waxing fluctuations of diffuse hydrothermal venting. In view of the occurrence in a relatively stable passive continental margin shelf environment in Tarim Block, the silica-rich submarine hydrothermal vent system may represent a new and important geological niche favorable for FeOB colonization, which is different from their traditional habitats reported in hydrothermal vent systems at oceanic spreading centers or volcanic seamounts. Thus, these newly recognized microfossils offer a new clue to explore the biological signatures and habitat diversity of microorganisms on Earth and beyond. PMID:26168395

  8. Quartz-molybdenite veins in the Priestly Lake granodiorite, north-central Maine

    USGS Publications Warehouse

    Ayuso, Robert A.; Shank, Stephen G.

    1983-01-01

    Quartz-molybdenite veins up to 15 cm in width occur in fine to medium-grained porphyritic biotite-hornblende granodiorite at Priestly Lake north-central Maine. An area of about 150 m x 150 m contains quartz-molybdenite veins; a larger area is characterized by barren quartz veins. Quartz-molybdenite veins are concentrated within the most felsic variants of the intrusion as suggested by lower mafic mineral contents. The pluton has a narrow range in SiO2 (67-70 wt.%), major oxides, and in trace-element compositions. Molybdenite occurs as coarse grained clusters in pockets within the quartz veins, and fills fractures in the quartz veins and host rocks. Disseminated molybdenite in the granodiorite is relatively rare and occurs only in the area characterized by a high density of quartz veins (up to 50 veins per square meter). Alteration envelopes along the quartz veins are very thin or absent, although in some areas the granodiorite appears to be selectively and pervasively altered. Sericite, chlorite, epidote, calcite, pyrite, and quartz are concentrated near the quartz-molybdenite veins. Many of the field and geochemical characteristics of the Priestly Lake pluton are unlike those of major molybdenum-producing areas (Climax, Henderson, Urad). For example, the area of alteration seems to be of limited extent, the host rock is not intensely altered hydrothermally at the surface, the density of fractures is rather low in the mineralized area, and the amount of disseminated molybdenite appears to be small. However, the Priestly Lake pluton may be a small fraction of a concealed batholith as suggested by geophysical data. It is conceivable that the type of mineralization at the surface might be the expression of more extensive molybdenite mineralization at depth. The quartz-molybdenite veins in the Priestly Lake pluton are significant because they indicate that potential molybdenum sources for producing mineralized granites were available at depth. Future studies should be aimed at delineating the area of quartz-molybdenite mineralization, documenting hydrothermal alteration and zonation, determining fracture density, and evaluating the sulfide assemblage.

  9. Scanning electron microscope cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana

    NASA Astrophysics Data System (ADS)

    Rusk, Brian; Reed, Mark

    2002-08-01

    Scanning electron microscope cathodoluminescence (SEM-CL) analysis of quartz reveals textures that cannot be observed using optical microscopy or backscattered electrons. These cryptic textures yield insight into timing and physical conditions of quartz growth, especially in environments with multiple quartz-precipitation events. Hydrothermal quartz from quartz-sulfide veins in the porphyry copper deposit in Butte, Montana, was analyzed by SEM-CL, revealing the following textures: euhedral growth zones, wide nonluminescing bands that cut across multiple quartz grains, rounded luminescent quartz grain cores with euhedral overgrowths, nonluminescing “splatters” of quartz connected by networks of cobweb-like nonluminescing quartz in otherwise luminescent quartz, concentric growth zones, and wide nonluminescent grain boundaries. These textures indicate that many veins have undergone fracturing, dilation, growth of quartz into fluid-filled space, quartz dissolution, and recrystallization of quartz. Precipitation and dissolution textures indicate that early quartz-molybdenite veins formed as a result of pressure fluctuations between lithostatic and hydrostatic at high temperatures, and later pyrite-quartz veins formed near hydrostatic pressure in response to temperature decrease through and beyond the field of retrograde quartz solubility.

  10. Ion-microprobe dating of zircon from quartz-graphite veins at the Bristol, New Hampshire, metamorphic hot spot

    SciTech Connect

    Zeitler, P.K. ); Barreiro, B.; Chamberlain, C.P. ); Rumble, D. III )

    1990-07-01

    Detrital zircons entrained in hydrothermal quartz-graphite-rutile veins found near the Bristol, New Hampshire, metamorphic hot spot are overgrown by thin rims. Ion-microprobe analyses of these rims date their growth at 408 {plus minus} 6 Ma. These measurements quantitatively confirm textural evidence that the graphite veins were emplaced during peak metamorphism associated with the Acadian orogeny, and they provide a direct positive test of the hypothesis, based on petrological and stable-isotope evidence, that the hydrothermal systems responsible for the quartz-graphite veins were also responsible for the hot-spot metamorphism.

  11. A discussion of 'Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?'

    NASA Technical Reports Server (NTRS)

    Roedder, Edwin

    1990-01-01

    This paper presents arguments against the statement made by Koeberl et al. (1989) to the effect that various differences between the quartz of the three quartz pebbles from the Roter Kamm impact crater (Namibia) and the quartz of the pegmatites present in the basement rocks of this crater can be best interpreted as evidence that the pebbles were formed (or 'recrystallized') by a post-impact hydrothermal system. Arguments are presented that suggest that the three quartz pebbles are, most likely, fragments of a preimpact vein quartz of hydrothermal origin.

  12. Cathodoluminescence investigation and fluid inclusion analyses of hydrothermal quartz in the Erdenetiin Ovoo porphyry Cu-Mo deposit in Northern Mongolia

    NASA Astrophysics Data System (ADS)

    Cha, B.; Lee, I.; Seo, J.; Moon, I.

    2012-12-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) reveals textures in quartz that are not apparent with other methods such as optical microscopy or backscattered electron images. Hydrothermal quartz from quartz-sulfide veins in the Erdenetiin Ovoo porphyry Cu-Mo deposit, Mongolia was analyzed by SEM-CL. They reveal euhedral growth zones with CL-bright and gray, wide CL-dull bands that cut across multiple quartz grains, CL-dark splatters of quartz connected by networks of cobweb-shaped CL-dark quartz with decreasing in luminescence along splatters and grain boundaries, and recrystallization of CL-bright quartz to CL-gray quartz. These cryptic textures indicate that a single vein of molybdenite-quartz vein has undergone at least 4 events: (1) precipitation of CL-bright and CL-gray quartz with euhedral quartz, (2) fracturing and following growth of CL-dull quartz, (3) dissolution along microfractures and following CL-dark precipitation with decreasing in luminescence intensity along microfractures and grain boundaries, and (4) precipitation of pyrite-quartz vein cutting the molybdenite-quartz vein. Fluid inclusions in molybdenite-quartz veins are presented by liquid type, liquid-vapor type (vapor occupies 20 volume %), and liquid-vapor type bearing a solid phase. The liquid-vapor type inclusions within CL-gray quartz of the first event show their homogenization temperatures ranging from 204 to 312°C. Typical homogenization temperatures of porphyry deposits range from 250 to 800°C. Molybdenite-quartz vein in the Erdenetiin Ovoo porphyry system formed through the low temperature hydrothermal processes. Keywords: Erdenetiin Ovoo, hydrothermal, quartz, veins, cathodoluminescence, fluid inclusions

  13. Porosity structures in synthetic quartz veins examined by micro X-ray CT

    NASA Astrophysics Data System (ADS)

    Yamada, R.; Okamoto, A.; Saishu, H.; Nakamura, M.; Okumura, S.; Sasaki, O.; Tsuchiya, N.

    2013-12-01

    Ubiquitous occurrences of quartz veins suggest that dissolution/precipitation of silica provides significant effects on the hydrological and mechanical properties within the crust. For example, a model has been proposed that fracture sealing processes control the change of pore fluid pressure and thus earthquake cycle. Previous studies on natural quartz veins have focused on estimates of P-T conditions, stress and strain fields and fluid compositions; however, details of dynamics of fluid flow and how fractures are sealed during vein formation are still unclear. In this study, we synthesized quartz veins by the hydrothermal experiments, and observed the aperture structures by using X-ray CT. The purpose of this study is to clarify how aperture structures evolve during vein formation especially focusing on effect of the state of water (vapor and supercritical region). We conducted the hydrothermal flow-through experiments for quartz precipitation from Si-supersaturated solutions under supercritical (430C, 30MPa) and vapor condition (370C, 20MPa). The experimental apparatus consists of two vessels for preparation of the Si-supersaturated solution and for precipitation, respectively. The precipitation vessel has double-structure: the main flow path was the inner alumina tube (diameter=4mm), and the outer SUS tube was filled with static solutions. Two situations were examined as the inner tubes; one is porous media composed of closed packed alumina balls(1mm in size), and the other one is fracture. The advantage of this system is that we can take out the non-destructive sample for the analyses by X-ray CT. Significant porosity reduction by silica precipitation at porous media. Under supercritical condition, amorphous silica was predominantly formed with covering the surfaces of the alumina balls and alumina tube, and discrete quartz crystal (50?m) within the amorphous silica layers. The porosity (?) gradually decreases with minimal porosity (? = 0.4) at 38mm from the inlet. However, under vapor condition, fine-grained quartz grains (0.1-1 ?m) were directly nucleated in solutions using surface of vapor, and immediately settled on the bottom. The porosity rapidly decreases from 18 mm (? = 0.8) to 25 mm (? < 0.1) from the inlet. These results suggest that a depressurization of crustal fluids related to fault dilation by earthquakes would cause a formation of fine-grained silica particles, and their mineralogy and transport/deposition properties strongly depend on properties water. We also discuss precipitation mechanism varied from nucreation to epitaxial over growth within rock fracture. The mineralogy and aperture structures changes systematically along the fluid flow path. From the inlet to 35 mm of fracture, nucleation predominantly occurred, regardless of vein wall minerals. From 35mm to outlet of fracture, silica precipitates occurred as epitaxial overgrowth from quartz crystal. The wavelength of aperture structures is controlled by distribution and grain size of quartz of the host granite. Accordingly, fractures are not sealed homogeneously, but complex 3D flow pathways are evolved during vein formation.

  14. Titanium-in-quartz thermometry on synkinematic quartz veins in a retrograde crustal-scale normal fault zone

    NASA Astrophysics Data System (ADS)

    Haertel, Mike; Herwegh, Marco; Pettke, Thomas

    2013-11-01

    Previous studies have suggested that estimation of deformation temperatures in quartz mylonites by titanium-in-quartz geothermometry is only possible at temperatures > 500 C, above which efficient Ti-exchange is achieved via grain boundary migration recrystallization. Based on quartz mylonite samples collected across the Simplon Fault Zone (SFZ) we demonstrate that deformation temperatures of dynamic recrystallization can be obtained down to ~ 350 C. A prerequisite for such temperature estimates at the low temperature end of ductile deformation of quartz is the formation of synkinematic quartz veins and their immediate overprint either by subgrain rotation (SGR) or bulging recrystallization (BLG). It is the slow growth of the synkinematically precipitating vein quartz that allows for equilibration of Ti in the vein quartz. This Ti-concentration may only slightly be modified during SGR; hence, Ti-in-qtz thermometry provides a close approach to the vein formation temperature. Ti-concentrations are partially reset during BLG, and resulting temperatures are thus maximum temperatures of quartz recrystallization. Importantly, undeformed vein quartz always yield vein formation temperatures. Investigation of the dynamic recrystallization processes overprinting synkinematic quartz veins thus allows for a critical, independent evaluation of the Ti-in-quartz temperatures obtained. For the SFZ, there is a decrease in recrystallized grain sizes towards the fault plane and a change in the dominant recrystallization process associated with a narrowing of the shear zone. As indicated by the Ti-in-quartz temperature estimates, this strain localization correlates with cooling from ~ 560 C in the oldest microstructures at the periphery of the shear zone down to ~ 350 C in the youngest microstructures of the footwall near the hanging wall contact. A great benefit of the approach presented here is that intermediate to low temperature plastic deformation in quartz can now also be assessed. Such novel temperature constraints on quartz crystallization are essential for better constraining deformation and rheology in the upper Earth's crust.

  15. Formation of Quartz-Carbonate Veins: Evidence From Experimental Supercritical Carbon Dioxide-Brine-Rock System

    NASA Astrophysics Data System (ADS)

    Janecky, D. R.; Kaszuba, J. P.

    2003-12-01

    Quartz-carbonate veins are common in a variety of moderate temperature hydrothermal systems and ore deposits. Associated fluid inclusions have a wide range of compositions, including liquid carbon dioxide fillings. Examination of chemical and physical conditions which result precipitation of quartz and carbonate in veins raises several key questions about multiphase fluid processes and reaction rates. We have been experimentally investigating physical-chemical reaction processes of mixed brine-carbon dioxide fluids for the shallow crust. Synthetic arkose (microcline + oligoclase + quartz + biotite) plus argillaceous shale were reacted with 5.5 molal NaCl brine. The system was held at 200 C and 200 bars for 32 days to approach steady state, then injected with carbon dioxide and allowed to react for an additional 45 days. In a parallel experiment, the system was allowed to react for 77 days without injection of carbon dioxide. Trace ions initially absent from NaCl brine appeared in solution at mM (K, Ca, and silica) to uM (Mg, Al, Fe and Mn) quantities, reflecting reaction of brine with rock. Without carbon dioxide injection, the silica concentration (2.4 mM) was stable below calculated quartz solubility (3.9 mM). Injection of carbon dioxide resulted in decreased pH and increased silica concentration to a level near calculated chalcedony solubility (5.4 mM). Dissolution of silicate minerals is apparently coupled to the acidity, and concomitant inhibition of the precipitation of quartz (and other silicates). A significant increase in concentration of trace metals is consistent with in-situ pH decrease and increased carbon dioxide dissolved in brine. Multi-phase fluid reaction relationships between supercritical carbon dioxide and brine-rock systems allow formation of carbonate vein precipitates in substantial quantities. Brine and continued rock reactions provide a substantial reservoir for Ca, Mg and Fe components. A separate carbon dioxide liquid allows precipitation from relatively small volumes of total fluid, with coupled increases in pH and mineral stability. The doubling of silica concentration in the experimental system containing acidic brine and supercritical carbon dioxide indicates that precipitation of silica can occur in parallel to carbonate minerals when pH increases. Emplacement of silica super-saturated brine into a rock-dominated reaction system buffered to more neutral pH conditions may enhance precipitation of quartz, chalcedony, or amorphous silica as veins or cements, depending on the permeability structure of the host rock. Phase separation or loss of carbon dioxide with decreasing pressure can substantially shift pH upwards, with potential for creating massive vein or scale formation.

  16. Emerald mineralization and metasomatism of amphibolite, khaltaro granitic pegmatite - Hydrothermal vein system, Haramosh Mountains, Northern Pakistan

    USGS Publications Warehouse

    Laurs, B.M.; Dilles, J.H.; Snee, L.W.

    1996-01-01

    Emerald mineralization is found within 0.1- to 1-m-thick hydrothermal veins and granitic pegmatites cutting amphibolite within the Nanga Parbat - Haramosh massif, in northern Pakistan. The amphibolite forms a sill-like body within garnet-mica schist, and both are part of a regional layered gneiss unit of Proterozoic (?) age. The 40Ar/39Ar data for muscovite from a pegmatite yield a plateau age of 9.13 ?? 0.04 Ma. Muscovite from mica schist and hornblende from amphibolite yield disturbed spectra with interpreted ages of 9 to 10 Ma and more than 225 Ma, respectively, which indicate that peak Tertiary metamorphism reached 325 to 550??C prior to 10 Ma. Pegmatites were emplaced after peak metamorphism during this interval and are older than pegmatites farther south in the massif. At Khaltaro, simply zoned albite-rich miarolitic pegmatites and hydrothermal veins containing various proportions of quartz, albite, tourmaline, muscovite, and beryl are associated with a 1- to 3-m-thick heterogeneous leucogranite sill, that is locally albitized. The pegmatites likely crystallized at 650 to 600??C at pressures of less than 2 kbar. Crystals of emerald form within thin (0.20, 0.54-0.89 wt%), to pale blue beryl (<0.07, 0.10-0.63%), to colorless beryl (<0.07, 0.07-0.28%). The amphibolite is metasomatized in less than 20-cm-wide selvages that are symmetrically zoned around veins or pegmatites. A sporadic inner zone containing F-rich biotite, tourmaline, and fluorite, with local albite, muscovite, quartz, and rare beryl, gives way to an intermediate zone containing biotite and fluorite with local plagioclase and quartz, and to an outer zone of amphibolite containing sparse biotite and local quartz. The inner and intermediate zones experienced gains of K, H, F, B, Li, Rb, Cs, Be, Ta, Nb, As, Y and Sr, and losses of Si, Mg, Ca, Fe, Cr, V and Sc. The outer alteration zone has gained F, Li, Rb, Cs, and As. Oxygen isotope analyses of igneous and hydrothermal minerals indicate that a single fluid of magmatic origin with ??18OH2O = 8??? produced the pegmatite-vein system and hydrothermal alteration at temperatures between 550 and 400??C. The formation of emerald results from introduction of HF-rich magmatic-hydrothermal fluids into the amphibolite, which caused hydrogen ion metasomatism and released Cr and Fe into the pegmatite-vein system.

  17. SIMS Investigations on Growth and Sector Zoning in Natural Hydrothermal Quartz: Isotopic and Trace Element Analyses

    NASA Astrophysics Data System (ADS)

    May, E.; Vennemann, T. W.; Baumgartner, L. P.; Meisser, N.

    2014-12-01

    Quartz is the most abundant mineral in the Earth's crust and is found in virtually every geological context. Despite its ubiquity and the detailed studies on the conditions of quartz crystallization, some questions concerning its growth and sector zoning with regard to trace element incorporation and oxygen isotope fractionations and the implications thereof for interpretations on the conditions of formation remain (e.g., Jourdan et al., 2009). This study presents new in-situ measurements of trace element and oxygen isotope ratios on natural hydrothermal quartz from an extensional gold-bearing quartz vein in the western Swiss Alps. The temperature of formation of the veins is estimated by quartz-hematite oxygen isotope thermometry to be about 360°C. A detailed SEM-CL study of this sample shows cyclic lamellar growth, alternating with phases of dissolution that are directly followed by macro-mosaic growth of the quartz, before returning to a cyclic lamellar growth again. Trace element concentrations (measured for Na, K, Li, Al, and Ti) notably showed Al/Si variations of three orders of magnitude and coupled Al and Li variations, likely substituting for Si in different growth zones with lower values in macro-mosaic zones precipitating after the period of dissolution. The oxygen isotope composition of the crystal, in contrast, is homogeneous through all growth zones (δ18O values between 15.6‰ and 16.2‰) indicating that the fluid must have been buffered by the host-rock and/or the source of the fluid remained the same despite the period of quartz dissolution. Furthermore, the temperature during crystallization of the quartz crystal has likely also remained similar. The fact that no variations are measured in oxygen isotope compositions but some variations in trace element contents may suggest that changes in pressure were important during the formation of this quartz crystal. Give the pressure effects on the solubility of quartz (Fournier and Potter, 1982), both the cyclic character of quartz growth and perhaps also the changes in Al/Si may be related to pressure variations caused by seismic activity during retrograde Alpine metamorphism. A-L. Jourdan et al. (2009) Mineralogical Magazine, 73, 615-632. R.O. Fournier and R.W. Potter (1982) Geochimica et Cosmochimica Acta, 46, 1969-1973.

  18. Investigating Alpine fissure rutilated quartz to constrain timing and conditions of post-metamorphic hydrothermal fluid flow

    NASA Astrophysics Data System (ADS)

    Shulaker, D. Z.; Schmitt, A. K.; Zack, T.; Bindeman, I. N.

    2013-12-01

    Rutilated quartz, aka Venus' hair, is finely-acicular rutile intergrown with host quartz generated by fluid-mediated co-crystallization. It is commonly found in hydrothermal veins, including the renown cleft mineral locations of the Swiss Alps. Previous studies of Alpine cleft mineralizations used rare hydrothermal monazite [1] and titanite [2] to constrain vein formation to ~13.5-15.2 Ma, postdating peak metamorphism by ~2-4 Ma. Temperature (T) estimates of 150-450°C are based on fluid inclusions and bulk quartz-mineral oxygen isotope exchange equilibria, and formation pressures (P) are 0.5-2.5 kbar (for a geothermal gradient of 30°C/km) [2]. The potential of rutilated quartz as a thermochronometer, however, has not been harnessed previously. Here, we present the first results of age and P-T determinations for rutilated quartz from six locations in the Swiss Alps (San Gottardo; Feldbach, Binntal; Pi Aul, Vals; Faido, Leventina; Elm, Steinbach; Binntal). Samples were cut and mounted in epoxy discs to expose rutile (0.03 to 1 mm in diameter) and its host quartz which was also imaged in cathodoluminescence (CL). CL images for half of the samples' host quartz exhibited strong sector zoning, while others reveal only weak CL zonation. Isotopic and trace element analyses were carried out by SIMS using a CAMECA ims1270 for U-Pb, O-isotopes, and Ti-in-quartz, and a LA-ICP-MS system (213 nm New Wave laser coupled to an Agilent 7500a) for Zr-in-rutile. U-Pb rutile ages average 15.5×2.0 Ma (2σ). T estimates are 352-575°C (rutile-quartz oxygen isotopes in touching domains), 470-530°C (Zr-in-rutile assuming P = 0.5 and equilibrium with host-rock zircon), and 251-391°C (Ti-in-quartz at assumed P = 0.5 kbar and aTiO2 = 1). CL zones are isotopically unzoned. Rutile-quartz oxygen isotopes are pressure insensitive, whereas Zr-in-rutile and Ti-in-quartz are minimum temperatures. These results demonstrate that rutilated quartz can constrain timing and conditions of post-metamorphic hydrothermal fluid flow and mineralization. Discrepancies in thermometers are attributed to differences between experimental calibrations of isotopic and trace element thermometers, and the conditions of post-metamorphic hydrothermal fluid flow. Only rutile-quartz oxygen isotope exchange [3] has been calibrated close to natural T conditions for rutilated quartz (500°C). This may help to extend the applicability of the Ti-in-quartz and Zr-in-rutile to T below experimental calibrations (>600°C; [4] and >700°C; [5], resp.). [1] Janots et al., 2012, Chem. Geol., 326-327, 61-71 [2] Mullis, 1996, Schweiz. Mineral. Petrogr. Mitt., 76, 159-164 [3] Matthews, 1994, J. Met. Geol., 12, 211-219 [4] Thomas et al., 2010, Contrib. Mineral. Petrol., 160, 743-759 [5] Ferry and Watson, 2007, Contrib. Mineral. Petrol., 154, 429-437

  19. Brittle-viscous deformation of vein quartz under fluid-rich lower greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjll, H. J.; Viola, G.; Menegon, L.; Srensen, B. E.

    2015-06-01

    We studied by Electron BackScatter Diffraction (EBSD) and optical microscopy a coarse-grained (ca. 0.5-6 mm) quartz vein embedded in a phyllonitic matrix to gain insights into the recrystallization mechanisms and the processes of strain localization in quartz deformed under lower greenschist facies conditions, broadly coincident with the brittle-viscous transition. The vein deformed during faulting along a phyllonitic thrust of Caledonian age within the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The phyllonite hosting the vein formed at the expense of a metabasaltic protolith through feldspar breakdown to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the quartz vein acted as a relatively rigid body. Viscous deformation in the vein was initially accommodated by quartz basal slip. Under the prevailing deformation conditions, however, dislocation glide- and possibly creep-accommodated deformation of quartz was inefficient, and this resulted in localized strain hardening. In response to the (1) hardening, (2) progressive and cyclic increase of the fluid pressure, and (3) increasing competence contrast between the vein and the weakly foliated host phyllonite, vein quartz crystals began to deform by brittle processes along specific, suitably oriented lattice planes, creating microgouges along microfractures. Nucleated new grains rapidly sealed these fractures as fluids penetrated the actively deforming system. The grains grew initially by solution precipitation and later by grain boundary migration. We suggest that the different initial orientation of the vein crystals led to strain accommodation by different mechanisms in the individual crystals, generating remarkably different microstructures. Crystals suitably oriented for basal slip, for example, accommodated strain mainly viscously and experienced only minor fracturing. Instead, crystals misoriented for basal slip hardened and deformed predominantly by domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms may vary through time in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.

  20. Geometry and texture of quartz veins in Wadi Atalla area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Akawy, Ahmed

    2007-02-01

    Several quartz vein sets with varying orientation, geometry and internal structure were recognized in the Atalla area. The veins were associated with the deformation phases affecting the area. En echelon and extensional veins are the main geometrical types. Syn-kinematic veins associated with the major northeast-over-southwest thrust faults were later boudinaged, folded and re-folded. En echelon veins, fibrous veins, and extensional veins are associated with the NNW-SSE faults. Other veins are associated with the NW-SE, N-S, NE-SW and E-W faults. Veins are concentrated at the intersection zones between faults. The internal structure of the veins comprises syntaxial, antitaxial, and composite types and reflects a change from a compressive stress regime to an extensional one. Chocolate-tablet structures and synchronous and co-genetic vein networks indicate later multi-directional extension of the area. Interaction between cracking and sealing of fractures is a common feature in the study area indicating that it was easy for the pore pressure to open pre-existing fractures instead of creating new ones. The reopening of pre-existing fractures rather than creating new ones is also indicated by the scattering of vein data around ?3. There is an alteration and change in characteristics of the wall rock due to increase in fluid flow rate. Fault-valving probably is also a cause of the complex geometry of some veins.

  1. Quartz veining in slates and Variscan deformation: Insights from the Luarca sector (NW Spain)

    NASA Astrophysics Data System (ADS)

    Pérez-Alonso, J.; Fuertes-Fuente, M.; Bastida, F.

    2016-03-01

    A structural and geochemical analysis of quartz veins is made in order to determine their evolution and the physical-chemical conditions that enabled their development. In this sector of the Variscan belt (Westasturian-Leonese Zone), three phases of deformation have been described. However, only the first and third phases are represented in the study sections. The first phase (D1) resulted in tight or closed folds (F1) verging towards the foreland and associated slaty cleavage (S1). The third phase (D3) resulted in approximately upright asymmetric folds (F3) with associated crenulation cleavage (S3). The veins are hosted in slates and approximately follow the slaty cleavage (S1). The veins started their development at the beginning of the deformation phase D3 as a result of S1 near parallel shortening. Through a process of progressive deformation, this compression gave rise to the folding of the cleavage and, eventually, of the veins. The F3 folds have associated crenulation cleavage parallel to the axial planes. In some cases, the location of the veins was controlled by irregularities in the bedding due to sedimentary structures. The quartz of the veins underwent notable intracrystalline plastic deformation, and the contact zone between the veins and the host rock was affected by pressure solution. The microstructures produced by the latter mechanism indicate the greatest compressive stress forming a high angle with the vein walls at a time post-dating vein generation. Quartz precipitated from an aqueous-carbonic fluid at temperatures between 350 °C and 375 °C under fluid pressure fluctuations of up to 140 MPa at constant depth. Maximum values of fluid pressure of 220 MPa and minimum values of 75 MPa were recorded by fluid inclusion assemblages in quartz of the veins under study. Pressure fluctuation from lithostatic to infralithostatic at constant depth was caused by the opening and sealing of the dilatant fractures.

  2. Analysis of Rare Earth Elements (REE) in vein quartz and quartz-sandstone host rock in the Zhelannoe high purity quartz deposit, Russia

    NASA Astrophysics Data System (ADS)

    Zemskova, Marina; Prokofiev, Vsevolod; Bychkov, Andrey

    2015-04-01

    The Zhelannoe high purity quartz deposit is located on the western slope of the Polar Urals. It is one of the largest deposits of vein quartz and rock crystal in Russia. Most of the mineralization is hosted within a single horizon of very firm quartz-sandstone, where plastic deformation did not occur almost entirely. All tectonic stress was released by the development of numerous thrust faults of different scales. Cavities formed during this process were later filled with quartz and rock crystal. In order to obtain more details on conditions under which mineralization took place, analysis of trace element contents in vein quartz and host rocks, and the micro-thermometric study of fluid inclusions in quartz have been carried out. The trace element composition of vein quartz and of the host rock has been determined by ICP-MS. The results have shown that concentrations of most of the 46 studied elements in quartz are two orders of magnitude lower than in chondrite, and more than three orders of magnitude lower than in the upper crust. Even though Pb and Li have the highest concentrations in quartz samples, levels are only nearly comparable in chondrite, and substantially lower in the upper crust. At the same time, negative anomalies of Pb and Li concentrations in the host rock may indicate the removal of these elements during vein quartz formation. Contents of most REEs are two orders of magnitude lower than in chondrite, and three orders of magnitude lower than in the host rock. Generally, the patterns of REE distribution in vein quartz and the host rock express a clear correlation; confirming the genetic link between vein quartz and quartz-sandstone host rock. However, the process of quartz recrystallization led to an intense decrease of REEs content, and of all other impurities, which consequently influenced industrial value of the Zhelannoe deposit. As a result of the micro-thermometric study of fluid inclusions in quartz, the following physical-chemical parameters of mineral-forming fluids have been established: homogenization temperature 217 - 159 °C; concentration of salts 9.8 - 5.9 wt. percent NaCl equiv.; density of fluid 980-900 kg/m3; pressure estimates for associations of heterogeneous fluid inclusions vary from 80 - 50 bar. There are two principal types of inclusions: vapor, and two-phase liquid-gas inclusions. The state of mineral-forming fluid is heterogeneous. Carbon dioxide condenses in gaseous inclusions upon cooling. Data on salinity and density of mineral-forming fluids, the presence of the gas phase with carbon dioxide; and estimates of pressure during the formation of quartz of the Zhelannoe deposit have been obtained for the first time.

  3. Looking at Dauphiné twins in vein quartz as a potential paleostress indicator

    NASA Astrophysics Data System (ADS)

    Sintubin, Manuel; Wenk, Hans-Rudolf

    2013-04-01

    Paleostress studies commonly call upon (1) a fault slip data inversion technique, (2) a calcite twin stress inversion technique, (3) recrystallized grain size piezometry for quartz, or (4) direct measurements of residual lattice strain. Recent advances in orientation imaging microscopy (OIM) using electron backscatter diffraction (EBSD) on a scanning electron microscope (SEM) have revealed that Dauphiné twinning is very common in quartz in naturally deformed quartz-bearing rocks in a wide range of tectonometamorphic conditions. It has long been known that mechanical Dauphiné twinning in quartz can be stress-induced. Based on the results of an extensive EBSD-OIM analysis on vein quartz, taken from well-studied early to late-orogenic veins in the High-Ardenne slate belt (Germany, Belgium), we explore the potential use of mechanical Dauphiné twins as a paleostress indicator, possibly completing our toolbox for reconstructing paleostresses in the Earth's crust. The vein quartz studied precipitated in low-grade tectonometamorphic conditions (~200-400°C), typical for the brittle-plastic transition zone at the base of the seismogenic crust (~7-15km). Quartz has only been weakly affected by low to moderate temperature (200 to 400°C) crystal-plastic deformation. The samples show grains with a high concentration of Dauphiné twin boundaries and others free of twin boundaries, thus being untwinned or completely twinned. This pattern depends on the crystallographic orientation. Twin boundaries are arrested by grain or subgrain boundaries, suggesting that Dauphiné twinning occurred on a pre-existing fabric that resulted from crystal-plastic deformation. An analysis of the orientation distribution of the rhombs in the twinned variant domains of individual quartz (sub-)grains reveals a particular preferred orientation of the poles to rhombs. We will discuss the possible significance of these observations with respect to paleostresses that may have caused the mechanical Dauphiné twinning.

  4. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjll, H. J.; Viola, G.; Menegon, L.; Srensen, B. E.

    2015-01-01

    A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ?a? slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals oriented optimally for basal slip accommodated strain mainly viscously and experienced only minor fracturing. Instead, the crystals misoriented for basal slip hardened and deformed by pervasive domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms vary transiently in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.

  5. Hydrothermal quartz formation during fluctuations of brittle shear-zone activity and fluid flow: grain growth and deformation structures of the Pfahl shear zone (Germany)

    NASA Astrophysics Data System (ADS)

    Yilmaz, T.; Prosser, G.; Liotta, D.; Kruhl, J. H.

    2012-12-01

    The Bavarian Pfahl shear zone is a WNW-ESE trending dextral strike-slip shear zone at the SW margin of the Bohemian Massif (Central Europe). It was discontinuously active during decreasing PT-conditions, i.e. from ductile to brittle, from the late-Carboniferous to the late-Cretaceous - Paleocene times. Triassic hydrothermal activity produced a 150 km long and 30-100 m wide quartz dyke along the main fault, surrounded by sheared basement rocks. Within a zone of >10 m metasomatism transformed the wall rocks to mostly kaolinite, chlorite and phyllosilicates. The quartz dyke exhibits a layered to lenticular and partly symmetric structure with different types of quartz masses, transected by a complex quartz vein network. This already indicates pulses of fluid flux and fragmentation during the lifetime of the shear zone. Analyses by optical microscopy, cathodoluminescence (CL) and SEM-EDX reveal at least four subsequent stages of quartz crystallization and fragmentation. (i) The oldest generation of quartz is represented by a homogeneous dark grey to reddish quartz mass made up by ~10-20 ?m-sized crystals. It contains mm- to cm-sized angular wall-rock fragments, completely altered to kaolinite, indicating intense wall-rock alteration prior to the earliest event of silica precipitation. This rules out the possibility that the quartz mass developed from silicification of the wall rocks. This first type of quartz occurs as cm- to dm-large angular fragments in (ii) a light grey to pink quartz mass formed by ~10-50 ?m-sized crystals. The different colours result from variable types and amounts of inclusions. Quartz of both generations shows random crystallographic orientations and complex inclusion structures. It probably developed during two fragmentation events and possibly from a silica gel precursor that crystallized after precipitation. (iii) The third quartz generation formed as a set of mm- to dm-wide veins roughly parallel to the trend of the Pfahl zone, crosscutting the first generations of fine-grained quartz mass and the wall rocks, in connection to intense fracturing and brecciation. The complex geometry of the vein sets points to multiple fluid injections and brecciation, as additionally indicated by coarse quartz with different inclusion and CL intensity. Temporal changes of strain rate are indicated by crystal plastic deformation structures in quartz, which overprint brittle structures. (iv) The fourth quartz generation occurs in mm- to dm-thick quartz veins, partly open as geodes, filling N-S oriented cm- to dm-spaced fractures that crosscut the earlier quartz masses and veins and extend at least several meters into the wall rock. They indicate the last activity of the shear-zone in a constant kinematic framework. Summarizing, the Pfahl shear zone shows brittle-ductile deformation during the long-term activity of a large-scale hydrothermal system. Consequently, it represents an excellent example where different generations of quartz precipitation can be connected to fluctuations of fluid flow and strain rate.

  6. Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Fredriksson, Kurt; Goetzinger, Michael; Reimold, Wolf Uwe

    1989-01-01

    Quartz pebbles from the Roter Kamm impact crater (the Namib Desert, SWA/Namibia) were examined for evidence of impact-induced hydrothermal activity, using results from microprobe analyses, neutron activation analyses, transmission IR spectroscopy, and X-ray diffractometry. It was found that the pebbles consisted of pure quartz, which contains three different types of fluid inclusions. These were identified as primary inclusions (5-10 microns) that record the formation conditions of the quartz, very small (less than 1 micron) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. It is concluded that the quartz and the primary inclusions may provide evidence for a postimpact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  7. Genesis of Syntectonic Hydrothermal Veins in the Igneous Rock of Teschenite Association (Outer Western Carpathians, Czech Republic): Growth Mechanism and Origin of Fluids

    NASA Astrophysics Data System (ADS)

    Urubek, Tom; Doln?ek, Zden?k; Krop?, Kamil

    2015-01-01

    Hydrothermal mineralization hosted by the Lower Cretaceous igneous rock of the teschenite association at Jasenice (Silesian Unit, Flysch Belt, Outer Western Carpathians) occurs in two morphological types - irregular vein filled by granular calcite and regular composite vein formed by both fibrous and granular calcite and minor chlorite, quartz, and pyrite. Crosscutting evidence indicates that the granular veins are younger than the composite vein. The composite vein was formed by two mechanisms at different times. The arrangement of solid inclusions in the marginal fibrous zone suggests an episodic growth by the crack-seal mechanism during syntectonic deformation which was at least partially driven by tectonic suction pump during some stages of the Alpine Orogeny. Both the central part of the composite vein and monomineral veins developed in a brittle regime. In these cases, the textures of vein suggest the flow of fluids along an open fracture. The parent fluids of both types of vein are characterized by low temperatures (Th=66-163 C), low salinities (0.4 to 3.4 wt. % NaCl eq.), low content of strong REE-complexing ligands, and ?18O and ?13C ranges of + 0.2/+12.5 %. SMOW and -11.8/-14.1 %. PDB, respectively. The parent fluids are interpreted as the results of mixing of residual seawater and diagenetic waters produced by dewatering of clay minerals in the associ-ated flysch sediments. The flow of fluids was controlled by tectonic deformation of the host rock.

  8. Tectonic conditions of hydrothermal polymetallic vein-type mineralization, Sainte Marie-aux-Mines, France

    NASA Astrophysics Data System (ADS)

    Hafeznia, Y.; Bourlange, S.; Ohnenstetter, M.

    2012-04-01

    The Sainte-Marie-aux-Mines (SMM) mines host one of the most famous and oldest silver deposits in Europe. The SMM district is located in the central part of the Vosges mountains, France, within gneiss and granites of the Moldanubian zone. The SMM district includes the Neuenberg E-W vein-type Cu-Ag-As/Pb-Zn deposit and the Altenberg N-S vein-type Pb-Zn-Ag deposit. Deposition of the SMM hydrothermal mineralization occurred under a brittle tectonic regime that might be connected to neo-Variscan and/or post-Variscan tectonics, in a similar way as the polymetallic vein deposits of the Black Forest, Germany. A structural study was done in the Neuenberg area, in the vicinity of the Saint-Jacques vein, and within the Gabe Gottes mine, considering the orientation, extent, chronology and density of faults as well as the nature of the infilling minerals. In the Gabe-Gottes mine, the Saint-Jacques vein comprises multiple successive, sub-parallel subvertical veinlets with gangue minerals, mostly carbonates and quartz, and metal-bearing phases, sulfides and sulfosalts. The veinlets are 2 to 50 cm thick and strike N80° to N110°, the earlier veins slightly dipping towards the north, and the latest one, to the south. Seven systems of faults were identified, which may be classified into three major groups formed respectively before, during and after the main stage of ore deposition: a) Pre-mineralization faults - These consist of sinistral NE-SW strike-slip faults, and NW-SE and NE-SW steeply dipping normal faults. These could be related to Carboniferous events considering their relationships with the granitoid intrusives present in the mine area (Brézouard leucogranite ~329 Ma), and the extensional tectonics developed during exhumation processes. b) Faults associated with the main ore-deposition - These faults could be related to late-Hercynian processes from compressional to extensional tectonic regimes. Mineralization controlling faults consist of dextral and sinistral E-W strike-slip faults. Early strike-slip movements are assessed by the presence of striated iron oxides, the crystallization of which is considered to be early during the ore deposition process. Mineralizing fluids were probably fluorine-rich as F-bearing minerals, sericite, chlorite and apatite are present in the chlorite zone associated with early sulphide-rich ores. The E-W mineralized faults are only easily compatible with the tectonics known in Permian times. c) Late-stage faults - These could be related to the numerous changes in plate configuration which occur during the Mesozoic and Cenozoic times, in accordance with the creation of the Paris basin, the opening of Atlantic ocean and Rhine Graben, as well as with the Tethys closure. For example, the vertical lineation superposed on an horizontal lineation observed on mineralized rocks indicate reactivation of the former E-W mineralized veins under a normal movement. The latter may correspond to an extensive regime known during Oligocene times. On the other hand, one of the major late-stage faults strikes N-S and is related to a dextral strike-slip system, which could be considered as Miocene. It is expected that fluid remobilization occurred during fault reactivation, a process which could have led to successive ore deposition following the emplacement of the major E-W mineralized veins. A fluid inclusion study in the gangue minerals of the Gabe Gottes is now under investigation. This together with isotopic studies will help to determine the source of the mineralizing fluids, as well as the conditions of ore deposition. Keywords: Faults, polymetallic mineralization, variscan orogeny, Gabe-Gottes, Sainte-Marie-aux-Mines, Vosges, F-rich fluids.

  9. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Jørgen Kjøll, Hans; Viola, Giulio; Menegon, Luca; Sørensen, Bjørn

    2015-04-01

    A coarse grained, statically crystallized quartz vein with a random CPO, embedded in a phyllonitic matrix, was studied by optical microscopy, SEM imaging and EBSD to gain insights into the processes of strain localization in quartz deformed under low greenschist facies conditions at the frictional-viscous transition. The vein is located in a high strain zone at the front of an imbricate stack of Caledonian age along the northwesternmost edge of the Repparfjord Tectonic Window in northern Norway. The vein was deformed within the Nussirjavrri Fault Zone (NFZ), an out-of-sequence thrust with a phyllonitic core characterized by a ramp-flat-ramp geometry, NNW plunging stretching lineations and top-to-the SSE thrusting kinematics. Deformation conditions are typical of the frictional-viscous transition. The phyllonitic core formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation, related to the development of a mesoscopic pervasive extensional crenulation cleavage, was accommodated within the vein initially by basal slip of suitably oriented quartz crystals, which produced e.g. undulose extinction, extinction bands and bulging grain boundaries. In the case of misoriented quartz crystals, however, glide-accommodated dislocation creep resulted soon inefficient and led to localized dislocation tangling and strain hardening. In response to 1) hardening, 2) progressive increase of fluid pressure within the actively deforming vein and 3) increasing competence contrast between the vein and the surrounding weak, foliated phyllonitic fault core, quartz crystals began to deform frictionally along specific lattice planes oriented optimally with respect to the imposed stress field. Microfaulting generated small volumes of gouge along intracrystalline microfractures. These fractures were rapidly sealed by nucleation of new grains as transiently over-pressured fluids flushed the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. They are relatively strain free and show a scattered CPO in resemblance with the host grain, although there is a slight synthetic rotation of the crystallographic axes. Due to the random initial orientation of the vein crystals, strain was thus accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals oriented optimally for basal slip accommodated strain mainly in a viscous fashion and experienced only minor to no fracturing. Instead, crystals misoriented for basal slip hardened and deformed by pervasive fracturing promoted by the fluid over-pressure and controlled by the orientation of crystallographic planes. Viscous deformation continued after the microfractures sealed, again increasing the fluid pressure. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms vary transiently in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.

  10. Tectonic Evolution of Chingshui Geothermal Field Inferred from Evidence of Quartz and Calcite Veins

    NASA Astrophysics Data System (ADS)

    Lu, Y. C.; Song, S. R.; Wang, P. L.; Liu, C. M.; Yeh, E. C.

    2014-12-01

    The Chingshui geothermal field is located in the valley of Chingshui stream, where is about 27 km SW of Ilan, northeastern Taiwan. It is a tectonically complex area occurred by the Philippine Plate subducting beneath the Eurasian plate in the south with Okinawa Trough opening in the Ilan Plain. Owing to complicated geological structure, the heat source of Chingshui geothermal field is still controversial. For understanding hot fluid sources and tectonic evolution, this study focuses on field survey of veins and scaling in the Chingshui geothermal field, and the results inferred from the data of SEM, XRD, carbon and oxygen isotope, and Uranium-thorium dating. The Chingshui hot fluid contains both high concentrations of SiO2 and HCO3-, therefore, temperature and pressure both drop when the hot fluids inject into shallower fractures, and calcite and quartz both could be precipitated with competition or simultaneously. In Chilukeng River, many euhedral quartz crystals occurred in large damage zone of Xioananao fault that indicated the temperature drop played the dominated role when the hot fluids injected into the shallow. It inferred that the quartz crystal precipitated under compression stress, evidenced by the Xioananao thrust fault with no surface rupture. Whiles, there are gouges in normal fault with abundant calcite or calcite with quartz veins cropped out in the confluence of Chingshui River and Chilukeng River. The results indicate that those veins occurred in more recent period by U-Th dating data, because of degassing CO2 occurred in open fractures by normal faulting or the stress changing from compression to extension. The standard oxygen isotopes range from 1.29 to 20.73 permil of SMOW and the clumped isotope of ?47 outcrop is 0.385 in calcite veins, suggest that the highest temperature of thermal fulids with calcite precipitations is 222?9? by calibrated equation of Passey and Henkes 2012. Meanwhile, it also indicates that the oxygen isotope of initial water is 6.31 permil of SMOW which is totally different from the values of -5.36 and -6.5~-7.1 in the meteoric water of Chingshui area and the scaling of Well IC-13, respectively. This result infers that the compositions of hot fluids may be changed with different source in the Chingshui geothermal field.

  11. Mineralogy and Geochemistry of Dacitic domes and associated Cu- Fe-Au Veins occurences during hydrothermal processes, Yazd Province, Iran

    NASA Astrophysics Data System (ADS)

    Sharifi, R.

    2009-04-01

    The Panah-koh Cu-Fe-Au vein deposit, located 60 km south west of Yazd Province, between Central Iranian Zone and Orumieh-Dokhtar tectnomagmatic belt. The vains result from hydrothermal processes related to a Neogenes volcanism which produced a dacitic to rhyodacitic dome which responsible for most of the altration and mineralization in this area. mineralization occurs in a series of NW-SW trending fault planes and breccia zones in (Early Combrian) and sand stone (Percambrian) rocks. the main ore minerals are Chalcopyrite, Pyrite,Arsenopyrite,Hematite,Limonite,Malachite,Azurite, with Quartz,Calcite,Dolomite,Barite and minor Chlorite as the main qanque phases.The Panah- Koh volcanic domes crystallized from an I-Type magma formed in a volcanic arc setting.the volcanic rocks show geochemical evidence of fractionation of Biotite,Hornblande and Fledspars.altration of the minerals in the host rocks suggests pH<5.5 and oxidized conditions.On variation diagrams, MgO, MnO, TiO2, CaO, P2O5, Fe2O3, display negative correlations suggesting that these volcanic rocks experienced fractionation of early-crystallized Biotite, Magnetite, Apatite and Plagioclase. The concentration of Sr, Ni, Ba and V decrease with increasing SiO2 suggesting fractionation of early formed Biotite, K-Feldspar, Magnetite and Plagioclase. supergene effects, with penetration of surface waters along faults and fractures, has led to the oxidation and leaching of the host rocks and the enrichment of copper. Quartz crystals were deposited as layers in crustification banding and comb structures along the walls of veins or the composition of the mineralizing fluids. shallow level of emplacement and low temprature of magma, shows that the hydrothermal system was not able to form a skarn deposit in the Panah-Koh district.

  12. Anomalous quartz from the Roter Kamm impact crater, Namibia: Evidence for post-impact hydrothermal activity

    SciTech Connect

    Koeberl, C. Univ. of Vienna ); Fredriksson, K. ); Goetzinger, M. ); Reimold, W.U. )

    1989-08-01

    Centimeter-sized quartz pebbles have been found on the rim of the Roter Kamm impact crater. The Roter Kamm crater has a diameter of about 2.5 km and is situated in the Namib Desert, SWA/Namibia. Because of the sand coverage, impact products are exposed exclusively in the form of ejecta on the crater rim. The quartz pebbles were found close to the main deposits of the impact breccias and show signs of wind abrasion. Thin sections revealed that the pebbles consist of individual quartz domains that are up to 1 mm in size. Under crossed nicols (polarized light), all individual domains show extinction almost simultaneously within {plus minus}2{degree}, which is a rare phenomenon. Microprobe studies, neutron activation analyses, and X-ray diffractometry confirmed that the material consists of pure quartz. The quartz contains three different types of fluid inclusions: primary inclusions that record the formation conditions of the quartz, very small (<1 {mu}m) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. Freezing point depression measurements of the primary inclusions indicate fluid salinities between 18.3 and 19.6 wt% NaCl. Homogenization temperatures (T{sub h}) for the primary inclusions range from 165 to 250{degree}C. The quartz and the primary inclusions may provide evidence for a post-impact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  13. Alteration and fluid flow around a sulfide-carbonate-quartz vein, Lucky Friday mine, Northern Idaho

    SciTech Connect

    Gitlin, E.C.

    1985-01-01

    Wall rocks at the Lucky Friday mine, Coeur d'Alene district, Idaho, contain a >500m wide zone about a steeply dipping Pb-Zn-Ag vein. This zone has experienced local conditions distinct from the regional metamorphism of the quartzite + argillite host rock. Within the district, the host rock (Precambrian Revett Formation) has undergone low grade metamorphism and contains varying proportions of quartz, phengitic muscovite, detrital alkali feldspar, magnetite, hematite, ilmenite, rutile, zircon, tourmaline, +/- calcite, +/- ankeritic dolomite. In contrast, the Lucky Friday wall rocks lack feldspar and Fe-bearing oxides, and contain Fe-poor muscovite and up to 40% carbonate: siderite, ankerite, and/or calcite. A comparison of district-wide Revett rocks with Lucky Friday wall rocks suggests that the wall rocks have undergone localized dephengitization with concomitant Fe-enrichment in the carbonates and Fe-depletion of the oxides. Pertinent metamorphic reactions consume CO/sub 2/ and liberate H/sub 2/O. Fluid inclusions from the vein and wall rock stringers have homogenization temperatures from approx. =200/sup 0/ to <375/sup 0/C, but they define no temperature gradient. With few exceptions, compositions of the carbonates are identical throughout the altered wall rock. These observations suggest that the carbonate subzone contacts are not isograds but isofluxes: the loci of equivalent fluid/reactant mineral ratio. The disposition of isofluxes around a dominant fluid channelway, i.e. the vein, affords an opportunity to interpret fluid flow pathways during low temperatures metamorphism.

  14. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana

    USGS Publications Warehouse

    Rusk, B.G.; Reed, M.H.; Dilles, J.H.; Kent, A.J.R.

    2006-01-01

    Textures of hydrothermal quartz revealed by cathodoluminescence using a scanning electron microscope (SEM-CL) reflect the physical and chemical environment of quartz formation. Variations in intensity of SEM-CL can be used to distinguish among quartz from superimposed mineralization events in a single vein. In this study, we present a technique to quantify the cathodoluminescent intensity of quartz within individual and among multiple samples to relate luminescence intensity to specific mineralizing events. This technique has been applied to plutonic quartz and three generations of hydrothermal veins at the porphyry copper deposit in Butte, Montana. Analyzed veins include early quartz-molybdenite veins with potassic alteration, pyrite-quartz veins with sericitic alteration, and Main Stage veins with intense sericitic alteration. CL intensity of quartz is diagnostic of each mineralizing event and can be used to fingerprint quartz and its fluid inclusions, isotopes, trace elements, etc., from specific mineralizing episodes. Furthermore, CL intensity increases proportional to temperature of quartz formation, such that plutonic quartz from the Butte quartz monzonite (BQM) that crystallized at temperatures near 750 ??C luminesces with the highest intensity, whereas quartz that precipitated at ???250 ??C in Main Stage veins luminesces with the least intensity. Trace-element analyses via electron microprobe and laser ablation-ICP-MS indicate that plutonic quartz and each generation of hydrothermal quartz from Butte is dominated by characteristic trace amounts of Al, P, Ti, and Fe. Thus, in addition to CL intensity, each generation of quartz can be distinguished based on its unique trace-element content. Aluminum is generally the most abundant element in all generations of quartz, typically between 50 and 200 ppm, but low-temperature, Main Stage quartz containing 400 to 3600 ppm Al is enriched by an order of magnitude relative to all other quartz generations. Phosphorous is present in abundances between 25 and 75 ppm, and P concentrations in quartz show little variation among quartz generations. Iron is the least abundant of these elements in most quartz types and is slightly enriched in CL-dark quartz in pyrite-quartz veins with sericitic alteration. Titanium is directly correlated with both temperature of quartz precipitation, and intensity of quartz luminescence, such that BQM quartz contains hundreds of ppm Ti, whereas Main Stage quartz contains less than 10 ppm Ti. Our results suggest that Ti concentration in quartz is controlled by temperature of quartz precipitation and that increased Ti concentrations in quartz may be responsible for increased CL intensities.

  15. The formation of auriferous quartz-sulfide veins in the Pataz region, northern Peru: A synthesis of geological, mineralogical, and geochemical data

    NASA Astrophysics Data System (ADS)

    Schreiber, D. W.; Amstutz, G. C.; Fontboté, L.

    1990-12-01

    The Pataz region in the eastern part of the North Peruvian Department La Libertad hosts a number of important gold mining districts like La Lima, El Tingo, Pataz, Parcoy, and Buldibuyo. Economic gold mineralization occurs in quartz-sulfide veins at the margin of the calc-alkaline Pataz Batholith, that mainly consists of granites, granodiorites, and monzodiorites. The batholith is of Paleozoic age and cuts the Precambrian to Early Paleozoic low-grade metamorphic basement series. Its intrusion was controlled by a NNW-trending fault of regional importance. The gold-bearing veins are characterized by a two-stage sulfide mineralization. Bodies of massive pyrite and some arsenopyrite were formed in stage 1, and after subsequent fracturing they served as sites for deposition of gold, electrum, galena, sphalerite, and chalcopyrite. It is concluded that gold was transported as a AuCl{2/-}-complex by oxidizing chloride solutions and deposited near older pyrite by micro-scale redox changes and a slight temperature decrease. Mineralogical, textural, geochemical, and microthermometric features are interpreted as a consequence of mineralization at considerable depth produced by a hydrothermal system linked with the emplacement of the Pataz Batholith. acteristics in order to outline a general physicochemical model of the hydrothermal ore-forming processes.

  16. Colorado quartz: occurrence and discovery

    USGS Publications Warehouse

    Kile, D.E.; Modreski, P.J.; Kile, D.L.

    1991-01-01

    The many varieties and associations of quartz found throughout the state rank it as one of the premier worldwide localities for that species. This paper briefly outlines the historical importance of the mineral, the mining history and the geological setting before discussing the varieties of quartz present, its crystallography and the geological enviroments in which it is found. The latter include volcanic rocks and near surface igneous rocks; pegmatites; metamorphic and plutonic rocks; hydrothermal veins; skarns and sedimentary deposits. Details of the localities and mode of occurrence of smoky quartz, amethyst, milky quartz, rock crystal, rose quartz, citrine, agate and jasper are then given. -S.J.Stone

  17. Mass transfer during wall-rock alteration: An example from a quartz-graphite vein, Black Hills, South Dakota

    SciTech Connect

    Galbreath, K.C.; Duke, E.F.; Papike, J.J. ); Laul, J.C. )

    1988-07-01

    Mass transfer and fluid-rock interaction have been evaluated along two sample traverses in low-sillimanite grade quartz-mica schist adjacent to a synmetamorphic quartz-graphite vein in the southern Black Hills, South Dakota. In an {approximately}17 cm halo between apparently unaltered schist and the vein contact is an outer zone of cryptic alteration and three inner zones of visible alteration. The cryptic zone consists of the original prograde metamorphic mineral assemblage plus anomalously high amounts of tourmaline. The outermost visible zone contains abundant graphite. The second visible zone is defined by intensive bleaching of the schist. The innermost visible zone, immediately adjacent to the vein, is tourmaline + quartz + plagioclase + limonite + graphite. The vein is composed almost entirely of quartz, but also contains trace amounts of graphite. Mass balance calculations indicate that Al was essentially inert. The predominant chemical changes during wall-rock alteration were addition of B and C from the vein-forming fluid along with loss of K from the wall rocks, corresponding to precipitation of tourmaline and graphite, and the progressive destruction of microcline, biotite, and muscovite toward the vein. In addition, the elements V, Cr, Cu, Zn, Pb, As, Sb, W, and Au were introduced into the country rock, whereas Si, Rb, Ba, and Cs were removed. Fluid-rock interaction modeling suggests that between one and four equivalent masses of fluid interacted chemically with the most altered mineral assemblages. In addition, greater than one equivalent mass of reactive fluid penetrated to distances of at least 5 cm from the vein contact.

  18. A magmatic-hydrothermal transition in Arkaroola (northern Flinders Ranges, South Australia): from diopside-titanite pegmatites to hematite-quartz growth

    NASA Astrophysics Data System (ADS)

    Bakker, Ronald J.; Elburg, Marlina A.

    2006-11-01

    A set of Palaeozoic diopside-titanite veins are present in Mesoproterozoic metagranites and metasediments that constitute the basement (Mt Painter Inlier) of the Adelaide Fold Belt (South Australia). These massive veins (up to 1 m) of pegmatitic nature contain large crystals of diopside, LREE-Y-enriched titanite (up to 40 cm in length) and minor amounts of quartz. They can be used to trace the system’s development from a high-temperature magmatic stage through to a massive hydrothermal event. The pegmatitic origin of these veins is evident from a complex fluid-melt inclusion assemblage, consisting of a highly saline inhomogeneous fluid and relicts of melt. Immiscibility of melt and heterogeneous highly saline fluids (exceeding 61 eq. mass% NaCl) is preserved in primary inclusions in diopside and secondary inclusions in titanite, indicating relatively shallow conditions of formation (510 ± 20°C and 130 ± 10 MPa). Graphic intergrowth of diopside and albite occurs at the contact with granitic pegmatites. The system evolved into hydrothermal conditions, which can be deduced from a later population of only fluid inclusions (homogeneous and less saline, ≈ 40 eq. mass% NaCl), trapped around 350 ± 20°C and 80 ± 10 MPa. During quartz crystallization, the conditions moved across the halite liquidus resulting in a heterogeneous mixture of brine and halite crystals, which were trapped at 200 ± 20°C and 50 ± 10 MPa. Brecciation and a palaeo-geothermal system overprinted the pegmatitic veins with an epithermal hematite-quartz assemblage and lesser amounts of bladed calcite and fluorite, in an intermittently boiling hydrothermal system of fairly pure H2O at 100-140°C and 1-5 MPa. Remobilization of LREEs and Y from titanite and/or the granitic host rock is evidenced by precipitation of apatite, allanite and wakefieldite in an intermediate stage. Occasional incorporation of radioactive elements or minerals, presumably U-rich, in the fluorite is responsible for radiolysis of H2O to H2.

  19. Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda)

    NASA Astrophysics Data System (ADS)

    Hulsbosch, Niels; Boiron, Marie-Christine; Dewaele, Stijn; Muchez, Philippe

    2016-02-01

    The identification of a magmatic source for granite-associated rare metal (W, Nb, Ta and Sn) mineralisation in metasediment-hosted quartz veins is often obscured by intense fluid-rock interactions which metamorphically overprinted most source signatures in the vein system. In order to address this recurrent metal sourcing problem, we have studied the metasediment-hosted tungsten-bearing quartz veins of the Nyakabingo deposit of the Karagwe-Ankole belt in Central Rwanda. The vein system (992 ± 2 Ma) is spatiotemporal related to the well-characterised B-rich, F-poor G4 leucogranite-pegmatite suite (986 ± 10 Ma to 975 ± 8 Ma) of the Gatumba-Gitarama area which culminated in Nb-Ta-Sn mineralisation. Muscovite in the Nyakabingo veins is significantly enriched in granitophile elements (Rb, Cs, W and Sn) and show alkali metal signatures equivalent to muscovite of less-differentiated pegmatite zones of the Gatumba-Gitarama area. Pegmatitic muscovite records a decrease in W content with increasing differentiation proxies (Rb and Cs), in contrast to the continuous enrichment of other high field strength elements (Nb and Ta) and Sn. This is an indication of a selective redistribution for W by fluid exsolution and fluid fractionation. Primary fluid inclusions in tourmaline of these less-differentiated pegmatites demonstrate the presence of medium to low saline, H2O-NaCl-KCl-MgCl2-complex salt (e.g. Rb, Cs) fluids which started to exsolve at the G4 granite-pegmatite transition stage. Laser ablation inductively coupled plasma mass-spectrometry shows significant tungsten enrichment in these fluid phases (∼5-500 ppm). Fractional crystallisation has been identified previously as the driving mechanism for the transition from G4 granites, less-differentiated biotite, biotite-muscovite towards muscovite pegmatites and eventually columbite-tantalite mineralised pegmatites. The general absence of tungsten mineralisation in this magmatic suite, including the most differentiated columbite-tantalite mineralised pegmatites of the Gatumba-Gitarama area, emphasises the efficiency of fluid saturation to extract crystal-melt incompatible tungsten from the differentiating melt phase. Fluid-melt-crystal partitioning calculations support the concept of a magmatic-hydrothermal fluid source for tungsten and constrain the range of permissible crystal-melt and fluid-melt partition coefficients together with realistic values for water solubility in the parental G4 granitic melt. Consequently, we propose that for highly-differentiated B-rich, F-poor granite systems fluid saturation started prior to or at the granite-pegmatite transition stage resulting in apical to peribatholitic tungsten veins systems that are paragenetically older than the final pegmatite stage.

  20. Geology, Ore-microscopy and Fluid inclusion study on Auriferous Quartz Veins at the Gidami Gold Mine, Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Abd El Monsef, Mohamed; Salem, Ibrahim; Slobodnik, Marek

    2013-04-01

    The gold deposits are represented by auriferous quartz veins and aplitic dykes that are cutting through granitic rocks. The main lode of gold is confined to two principal veins occupying fracture zones and fissures. The main auriferous vein is striking mainly NNW-SSE with dipping 85° NE, it extends up to 450 m with an average thickness 120 cm. The second vein is striking NW-SE and dipping 60° E, it extends for 150 m with an average thickness 35 cm. The gold bearing veins are made up of fine grained quartz that is always massive, milky-white with reddish or greenish tint. They commonly include vugs, some of them are occasionally filled with iron oxides, carbonate and clay minerals. Sometimes the quartz veins enclose remnants of altered wall rock materials as an indication for the metamorphic or syntectonic nature of the veins. Brecciation, comb layering, swelling and nodules manganese dendrites are usually detected. The microscopic examination for thin and polished sections of auriferous quartz veins revealed that quartz and calcite are the predominant minerals commonly associated with accessory minerals (fluorite, apatite, zircon, muscovite and sericite). Ore mineral assemblage is found as disseminated sulfide minerals (pyrite, sphalerite, chalcopyrite, molybdenite, pyrrhotite covellite, galena and pentlandite). Ilmenite and goethite are the main iron oxide mineral phases. Gold most commonly occurs as small inclusions within pyrite or goethite. Gold also occurs as tiny grains scattered within quartz vein (in close proximity to the sulfides) or as disseminated grains in the altered wall rocks. Hydrothermal alteration includes silicification, kaolinitization, sericitisation, carbonatisation confined to a delicate set of veins. Petrography and microthermometry of fluid inclusions revealed that the majority of inclusions are of primary/pseudosecondary nature that occur in clusters and along growth zones or along intra-granular planar trails (pseudosecondary inclusions). Two types of samples were taken from the auriferous quartz vein; samples from the outer zone (Rim) and samples from the inner zone (Core). With respect to number of phases present at the room temperature (20 °C) there are two main groups of fluid inclusions can be recognized in both zones: A) two-phase - aqueous inclusions (Type I) and B) three-phase - carbonic-rich inclusions (Type II). Type I inclusions could be further subdivided into two sub-types (H2O-NaCl±KCl) and (H2O-NaCl±MgCl2) systems, based mainly on the eutectic temperature (Teu). For (H2O-NaCl±KCl) system, eutectic temperatures range from -22.1 °C to -23.9 °C at the rim and from -22.7 °C to -23.5 °C at the core. Values of homogenization temperatures (Th) are between (190.4 °C - 273.1 °C) at the rim and between (217 °C - 281.1 °C) at the core. Salinity has a range of (0.73 to 4.7 mass% of NaCl) at the rim and (0 to 1.65 mass% of NaCl) at the core. For (H2O-NaCl± MgCl2) system, eutectic temperatures range from -32.7 °C to -35 °C at the rim and from -33.9 °C to -34.2 °C at the core. Values of homogenization temperatures are up to 376.1 °C at the rim and between (310.6 °C - 480.2 °C) at the core. Salinity has a range of (2.15 to 3.8 mass% of NaCl) at the rim and (2.15 to 3.65 mass% of NaCl) at the core. Type II inclusions of (H2O-NaCl-CO2±CH4) system, most of them were homogenized to liquid state and the other were homogenized to vapour or rarely to critical state. The total homogenization temperature ranges between (260 °C - 340 °C) at the rim with low salinity (0 - 4.2 mass% NaCl equiv.) and density of range (0.49 - 0.86 g/cc). Within core samples, the total homogenization temperature ranges between (299.9 °C - 408.8 °C) with salinity (3.73 - 4.78 mass% of NaCl equiv.) and density of range (0.61 - 0.87 g/cc). These data are consistent with transportation of gold as a bisulphide complex, likely due to decreases in sulphur activity accompanying fluid unmixing.

  1. Metamorphic origin of ore-forming fluids for orogenic gold-bearing quartz vein systems in the North American Cordillera: constraints from a reconnaissance study of δ15N, δD, and δ18O

    USGS Publications Warehouse

    Jia, Y.; Kerrich, R.; Goldfarb, R.

    2003-01-01

    The western North American Cordillera hosts a large number of gold-bearing quartz vein systems from the Mother Lode of southern California, through counterparts in British Columbia and southeastern Alaska, to the Klondike district in central Yukon. These vein systems are structurally controlled by major fault zones, which are often reactivated terrane-bounding sutures that formed in orogens built during accretion and subduction of terranes along the continental margin of North America. Mineralization ages span mid-Jurassic to early Tertiary and encompass much of the evolution ofthe Cordilleran orogen. Nitrogen contents and ??15N values of hydrothermal micas from veins are between 130 and 3,500 ppm and 1.7 to 5.5 per mil, respectively. These values are consistent with fluids derived from metamorphic dehydration reactions within the Phanerozoic accretion-subduction complexes, which have ??15N values of 1 to 6 per mil. The ??18O values of gold-bearing vein quartz from different locations in the Cordillera are between 14.6 and 22.2 per mil but are uniform for individual vein systems. The ??D values of hydrothermal micas are between -110 and -60 per mil. Ore fluids have calculated ??18O values of 8 to 16 per mil and ??D values of -65 to -10 per mil at an estimated temperature of 300??C; ??D values of ore fluids do not show any latitudinal control. These results indicate a deep crustal source for the ore-forming fluids, most likely of metamorphic origin. Low ??DH2O values of -120 to -130 per mil for a hydrous muscovite from the Sheba vein in the Klondike district reflect secondary exchange between recrystallizing mica and meteoric waters. Collectively, the N, H, and O isotope compositions of ore-related hydrothermal minerals indicate that the formation of these gold-bearing veins involved dilute, aqueous carbonic, and nitrogen-bearing fluids that were generated from metamorphic dehydration reactions at deep crustal levels. These data are not consistent with either mantle-derived fluids or granitoid-related magmatic fluids, nor do they support a model involving deeply circulated meteoric water.

  2. The role of fluid phase immiscibility in quartz dissolution and precipitation in sub-seafloor hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Steele-MacInnis, Matthew; Han, Liang; Lowell, Robert P.; Rimstidt, J. Donald; Bodnar, Robert J.

    2012-03-01

    A numerical model describing quartz dissolution and precipitation in sub-seafloor hydrothermal systems has been developed that documents the effects of retrograde quartz solubility and fluid phase immiscibility on the transport and deposition of silica in this environment. Rates of dissolution and precipitation increase with increasing permeability and with increasing maximum temperature at the base of the system. At the most optimal conditions considered in this study (425 C, permeability of 10- 13 m2), quartz is precipitated at rates up to 10- 6 mol/m3s (equivalent to 700 cm3 of quartz per cubic meter of rock per year). Immiscibility at the base of the system creates a zone in which large amounts of quartz precipitate as a result of phase separation. The high rate of quartz precipitation at the one-fluid-phase/two-fluid phase boundary is consistent with the location of highly silicified zones found beneath volcanogenic massive sulfide deposits. Rapid quartz deposition at this boundary may affect the heat transfer efficiency at the base of the upflow zone and may contribute to immobilizing the brine layer so that it does not rise towards the surface. The process of rapid quartz precipitation at the base of the upflow zone, and its effects on the dynamics of these systems, is only observed under conditions of liquid-vapor immiscibility.

  3. Epidote-Bearing Veins in the State 2-14 Drill Hole: Implications for Hydrothermal Fluid Composition

    NASA Astrophysics Data System (ADS)

    Caruso, L. J.; Bird, D. K.; Cho, M.; Liou, J. G.

    1988-11-01

    Epidote-bearing veins in State 2-14 drill core from 900 to 2960 m depth were examined using backscattered electron microscopy and electron probe microanalysis to characterize the mineralogy, parageneses, texture, and composition of vein minerals. In order of decreasing abundance, minerals in epidote-bearing veins are pyrite, calcite, K-feldspar, quartz, anhydrite, hematite, chlorite, Fe-Cu-Zn sulfides, actinolite, titanite, and allanite. The downhole distribution of minerals in epidote-bearing veins (+ pyrite and quartz) varies as a function of depth and includes: (1) calcite above ˜2000 m, (2) K-feldspar between 1700 and 2745 m, (3) anhydrite between 2195 and 2745 m, (4) hematite ± sulfides above 2773 m, and (5) actinolite below ˜2890 m. Where present, K-feldspar was the first mineral to precipitate in veins followed by epidote. In all other veins, epidote was the earliest vein mineral to form. Calcite, quartz, anhydrite, hematite, and sulfides were paragenetically later. Compositional zoning, common in most vein epidotes, is typically symmetric with Al-rich cores and Fe3+ -rich rims. The minimum mole fraction of Ca2Fe3Si3O12(OH) (XPs) in vein epidotes decreases systematically with increasing depth from ˜0.33 at 906 m to ˜0.21 at 2900 m, and the maximum XPs at any given depth is greater than 0.33. Thermodynamic analyses of phase relations among vein-filling minerals and aqueous solutions at depths near 1867 m and 300°C indicate that the modern reservoir fluid in the Salton Sea geothermal system is in equilibrium with calcite + hematite + quartz + epidote (XPs = 0.33) ± anhydrite. The predicted fugacity of CO2 (˜14 bars) for the modern Salton Sea brine is in close agreement with the calculated value of fCO2 for the 1867 m production fluid. Theoretical phase diagrams in the system CaO-K2O-Fe2O3-Al2O3-SiO2-H2O-O2-S2-CO2 demonstrate that the mineralogies and mineral parageneses recorded hi epidote-bearing veins and the observed variations in Al-Fe3+ content of vein epidotes may result from only minor changes in the fugacity of CO2, O2, and S2 of the geothermal fluid.

  4. Microfabric memory of vein quartz for strain localization in detachment faults: A case study on the Simplon fault zone

    NASA Astrophysics Data System (ADS)

    Haertel, Mike; Herwegh, Marco

    2014-11-01

    This manuscript deals with the adaptation of quartz-microfabrics to changing physical deformation conditions, and discusses their preservation potential during subsequent retrograde deformation. Using microstructural analysis, a sequence of recrystallization processes in quartz, ranging from Grain-Boundary Migration Recrystallization (GBM) over Subgrain-Rotation Recrystallization (SGR) to Bulging Nucleation (BLG) is detected for the Simplon fault zone (SFZ) from the low strain rim towards the internal high strain part of the large-scale shear zone. Based on: (i) the retrograde cooling path; (ii) estimates of deformation temperatures; and (iii) spatial variation of dynamic recrystallization processes and different microstructural characteristics, continuous strain localization with decreasing temperature is inferred. In contrast to the recrystallization microstructures, crystallographic preferred orientations (CPO) have a longer memory. CPO patterns indicative of prism and rhomb glide systems in mylonitic quartz veins, overprinted at low temperatures (≤400 °C), suggest inheritance of a high-temperature deformation. In this way, microstructural, textural and geochemical analyses provide information for several million years of the deformation history. The reasons for such incomplete resetting of the rock texture is that strain localization is caused by change in effective viscosity contrasts related to temporal large- and small-scale temperature changes during the evolution of such a long-lived shear zone. The spatially resolved, quantitative investigation of quartz microfabrics and associated recrystallization processes therefore provide great potential for an improved understanding of the geodynamics of large-scale shear zones.

  5. Age and genesis of precious metals deposits, Buffalo Hump district, central Idaho: implications for depth of emplacement of quartz veins.

    USGS Publications Warehouse

    Lund, K.; Snee, L.W.; Evans, K.V.

    1986-01-01

    Three samples (metamorphic country rock, Idaho batholith granite, and auriferous quartz vein) were dated by the 40Ar/39Ar age spectrum technique. The lode deposits are Cretaceous (71 m.y.); their cooling histories and depths of emplacement, inferred from the age spectra, are evidence for the granite plutons and the lode deposits having been emplaced at the same 40-9 km depth and being genetically related. Thus, the Idaho batholith is not barren, and at least two precious-metal mineralizing events, Cretaceous and Eocene in age, occur in central Idaho. Class differences between the two ages of deposits, of style, alteration and mineralogy, are suggested. -G.J.N.

  6. The gold content of some Archaean rocks and their possible relationship to epigenetic gold-quartz vein deposits

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Saager, R.

    1985-10-01

    Gold mineralization in Archaean granite-greenstone environments, especially gold-quartz veins, contributes considerably to the world's gold production. The formation of epigenetic gold mineralization in greenstone belts is generally explained by the metamorphic secretion theory. This theory is based on the assumption that the source of the gold may be komatiitic or tholeiitic lavas, pyritic chemical or clastic sediments and even granitic rocks from which, as a result of regional metamorphic overprinting, gold was extracted and concentrated in suitable structures. It has been shown that in proposed potential source rocks, gold is predominantly associated with sulfide minerals and thus relatively easily accessible to secretion and reconstitution processes. A large number of various rock types originating from granite-greenstone terranes of the Kaapvaal and the Rhodesian cratons were geochemically investigated, and the following ranges for gold determined: volcanic rocks (komatiitic and tholeiitic): 0.1 372 ppb granitic rocks of the basement: 0.3 7.8 ppb iron-rich chemical sediments: 1.0 667 ppb Statistical treatment of the data reveals that volcanic rocks as well as iron-rich chemical sediments are favorable sources for epigenetic gold mineralization formed by metamorphic secretion, while the granitic rocks make less suitable primary gold sources. This finding explains the close spatial relationship which is common between gold-quartz veins and greenstone belts. The conspicuous abundance of epigenetic gold mineralization in the Archaean, however, is attributed to the unique geologic and metamorphic history of the granite-greenstone terranes.

  7. Structure, alteration, and geochemistry of the Charlotte quartz vein stockwork, Mt Charlotte gold mine, Kalgoorlie, Australia: time constraints, down-plunge zonation, and fluid source

    NASA Astrophysics Data System (ADS)

    Mueller, Andreas G.

    2015-02-01

    The Kalgoorlie district in the Archean Yilgarn Craton, Western Australia, comprises two world-class gold deposits: Mt Charlotte (144 t Au produced to 2013) in the northwest and the Golden Mile (1,670 t Au) in the southeast. Both occur in a folded greenschist-facies gabbro sill adjacent to the Golden Mile Fault (D2) in propylitic alteration associated with porphyry dikes. At Mt Charlotte, a shear array of fault-fill veins within the Golden Mile Fault indicates sinistral strike-slip during Golden Mile-type pyrite-telluride mineralization. The pipe-shaped Charlotte quartz vein stockwork, mined in bulk more than 1 km down plunge, is separated in time by barren D3 thrusts from Golden Mile mineralization and alteration, and occurs between two dextral strike-slip faults (D4). Movement on these faults generated an organized network of extension and shear fractures opened during the subsequent infiltration of high-pressure H2S-rich fluid at 2,655 ± 13 Ma (U-Pb xenotime). Gold was deposited during wall rock sulphidation in overlapping vein selvages zoned from deep albite-pyrrhotite (3 g/t Au) to upper muscovite-pyrite assemblages (5 g/t Au bulk grade). Chlorite and fluid inclusion thermometry indicate that this kilometre-scale zonation is due to fluid cooling from 410-440 °C at the base to 350-360 °C at the top of the orebody, while the greenstone terrane remained at 250 °C ambient temperature and at 300 MPa lithostatic pressure. The opened fractures filled with barren quartz and scheelite during the retrograde stage (300 °C) of the hydrothermal event. During fracture sealing, fluid flux was periodically restricted at the lower D3 thrust. Cycles of high and low up-flow, represented by juvenile H2O-CO2 and evolved H2O-CO2-CH4 fluid, respectively, are recorded by the REE and Sr isotope compositions of scheelite oscillatory zones. The temperature gradient measured in the vein stockwork points to a hot (>600 °C) fluid source 2-4 km below the mine workings, and several kilometres above the base of the greenstone belt. Mass balance calculations involving bulk ore indicate enrichment of both felsic (K, Rb, Cs, Li, Ba, W) and mafic elements (Ca, Sr, Mg, Ni, V, Cr, Te), a source signature compatible with the local high-Mg porphyry suite but not with the meta-gabbro host rock. The initial 87Sr/86Sr ratios of the vein scheelites (0.7014-0.7016) are higher than the mantle ratio of the meta-gabbro (0.7009-0.7011) and overlap those of high-Mg monzodiorite intrusions (0.7016-0.7018) emplaced along the Golden Mile Fault at 2,662 ± 6 Ma to 2,658 ± 3 Ma.

  8. Nitrogen Partial Pressure in the Archean Atmosphere From Analysis of Hydrothermal Quartz

    NASA Astrophysics Data System (ADS)

    Marty, B.; Zimmermann, L.; Burgess, R.; Pujol, M.; Philippot, P.

    2012-12-01

    Atmospheric nitrogen constitutes the main pool of one of the major biogenic elements, it may provide a record of the terrestrial magnetic field, and it might have been instrumental to maintain clement temperatures despite a lower energy provided by the ancient Sun. We have investigated the partial pressure of di-nitrogen in the Archean atmosphere by analyzing the ratio between N2 and argon-36 (a primordial, chemically inert noble gas for which there is no reason to suspect abundance variation in the atmosphere through time) in fluid inclusions (FI) trapped in two hydrothermal quartz from the 3.5 Ga-old Dresser formation, North Pole, Pilbara (NE Australia). These samples have different histories of fluid trapping and deposition, and their ages are constrained within 3.0-3.5 Ga from U-Xe, and Ar-Ar dating. FI nitrogen is a mixture between hydrothermal and air-saturated water (ASW) end-members, that can be identified through geochemical correlations between Cl/36Ar, 40Ar/36Ar and N2/36Ar ratios. The ASW component has a N2/36Ar ratio within 30 % of the modern value, implying a N2 partial pressure during the Archean was within 0.6-1 bar. The nitrogen isotopic composition of the ASW end-member is also found similar to the present-day one within 3 permil. Combined with the recent proposal from ancient raindrop imprints that the total atmospheric pressure was 0.5-1.14 bar, this leaves less than 0.7 bar for the pressure of other atmospheric gases including CO2. Thus nitrogen did not play a significant role in the thermal budget of the ancient Earth, and the terrestrial magnetic field was already strong enough at that time to shield the upper atmosphere from interaction with the solar wind, and therefore to prevent atmospheric escape that would have been recorded otherwise in the nitrogen composition. These results also imply that exchanges of nitrogen between the Earth's mantle and the surface were limited, or proceeded at similar rates in both ways from the Archean to Present.

  9. U-Pb-Th geochronology of monazite and zircon in albitite metasomatites of the Rožňava-Nadabula ore field (Western Carpathians, Slovakia): implications for the origin of hydrothermal polymetallic siderite veins

    NASA Astrophysics Data System (ADS)

    Hurai, V.; Paquette, J.-L.; Lexa, O.; Konečný, P.; Dianiška, I.

    2015-10-01

    Sodic metasomatites (albitites) occur around and within siderite veins in the southern part of the Gemeric tectonic unit of the Western Carpathians. Accessory minerals of the metasomatites represented by monazite, zircon, apatite, rutile, tourmaline and siderite are basically identical with the quartz-tourmaline stage of other siderite and stibnite veins of the tectonic unit. Statistical analysis of chemical Th-U(total)-Pb isochron method (CHIME) of monazite dating yielded Jurassic-Cretaceous ages subdivided into 3-4 modes, spreading over time interval between 78 and 185 Ma. In contrast, LA-ICPMS 206Pb/238U dating carried out on the same monazite grains revealed a narrow crystallization interval, showing ages of Th-poor cores with phengite inclusions identical within the error limit with Th-rich rims with cauliflower-like structure. The determined lower intercept at 139 ± 1 Ma overlapped the Vallanginian-Berriasian boundary, thus corroborating the model of formation of hydrothermal vein structures within an arcuate deformation front built up in the Variscan basement as a response to Early Cretaceous compression, folding and thrusting. In contrast, associated zircons are considerably older than the surrounding Early-Palaeozoic volcano-sedimentary rocks, showing Neoproterozoic ages. The zircon grains in albitite metasomatites are thus interpreted as fragments of Pan-African magmatic detritus incorporated in the vein structures by buoyant hydrothermal fluids.

  10. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    USGS Publications Warehouse

    Beeler, Nicholas M.; Hickman, Stephen H.

    2015-01-01

    Earthquake recurrence requires interseismic fault restrengthening which results from solid state deformation in room-temperature friction and indentation experiments. In contrast exhumed fault zones show solution-transport processes such as pressure solution and contact overgrowths influence fault zone properties . In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected-light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530{degree sign}C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425{degree sign}C and one bi-material (sapphire) at 425{degree sign}C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room-temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.

  11. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Hickman, Stephen H.

    2015-05-01

    Earthquake recurrence requires interseismic fault restrengthening which results from solid-state deformation in room temperature friction and indentation experiments. In contrast, exhumed fault zones show solution-transport processes such as pressure solution, and contact overgrowths influence fault zone properties. In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single-contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425C and one bimaterial (sapphire) at 425C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.

  12. Towards the question of the movement of hydrothermal solutions: The case of the Schlema-Alberoda vein deposit

    NASA Astrophysics Data System (ADS)

    Naumov, G. B.; Vlasov, B. P.; Mironova, O. F.

    2014-09-01

    The paths of the movements of hydrothermal solutions are considered in the case of one of the world's largest uranium vein deposits, the Schlema-Alberoda, which was mined by the Soviet-German corporation Wismut JSC in the second half of the 20th century. Detailed geological exploration to a depth of 2 km was accompanied by specialized research, the results of which have remained practically unpublished due to confidentiality. The data obtained show that the region adjoining the largest fault was draining rather than ore-conducting. This circumstance specifies and supplements the current concept concerning the movement of hydrothermal fluids.

  13. Epidote-group mineral+quartz veins in metatuff: Petrography, chemistry, timing, style and redox implications of fluid-derived minerals in altered arc crust

    NASA Astrophysics Data System (ADS)

    Sorensen, S. S.

    2012-12-01

    In volcanoplutonic arc crust, alteration is fluid-controlled during long histories, yet little understood compared to other fluid-rock settings. The Ritter Range pendant, Sierra Nevada, CA, contains subarial to submarine tuffs erupted and altered in the Jurassic, then metamorphosed and altered by Cretaceous plutonism. Some metatuffs display veining systems dominated by epidote-group minerals [EGM: clinozoisite (Ca2Al3Si3O11(OH2)), pistacite (Ca2Fe3+Al2Si3O11(OH2)), piemontite (Ca2(Mn3+ Fe3+ Al2)AlSi3O11(OH2)) and Mn-rich epidote (pale pink-to-pale green pleochroic); a solid solution of the other end-members). Field relations and petrography track the effects of syn- to slightly post-eruption fluids, and later, pluton-related veining and alteration. Many EGM grains show micro-scale disequilibrium features, for example, oscillatory zoning, resorption, overgrowths, composition changes along former cracks and patchy zoning. Many quartz veins contain EGM in margins, cores, selvages and host rocks, EGM compositions in any of these settings may differ within a few 10s of meters. Early, highly transposed braunite (Mn7SiO12)+/-quartz veins and late, crosscutting, quartz-dominant, EGM-bearing veins reflect distinct fluid-rock processes. A likely protolith for braunite+/-piemontite veins is Mn-nodules (or crusts) inherited from a syn-depositional, low-T submarine alteration system. In contrast, fluid influx during late-stage veining produced both "watermelon" (piemontite cores, pistacite rims) and "reverse watermelon" EGM grains. Other outcrops show disequilibrium between EGM in veins versus host rocks, yielding "green" host rocks with "pink" veins. Additional small-scale veins include: 1) quartz+piemontite fibre veins in piemontite-bearing host rocks; and 2) pistacite-rich, pervasively epidotized or pink- and green-zoned, "brown epidote"-bearing host rocks, cut by quartz veins that contain pink-green epidote +/- piemontite-rich cores or rims. At larger scales, some outcrops show quartz+piemontite veins in piemontite-bearing host rocks, overlain within meters by quartz+pistacite veins in pistacite-bearing host rocks; some EGM alteration is layer-bound. Both SEM and LA-ICP-MS data show that fluids transported minor and trace elements on m-scales: this scale and style of major element mobility yielded assemblages with brilliant colors and complex microstructures within several units of Ritter Range metatuff. Experiments show that at 600oC (a plausible metamorphic T), pistacite forms at fO2 conditions between the HM and NNO buffers, whereas piemontite requires the extreme fO2 conditions of the CuCuO buffer (Liou, 1973; Keskinen and Liou, 1987). Veining of these metatuffs testifies to: 1) unusual protoliths; 2) short-length scale excursions from "fluid-" to "rock-buffered" alteration styles; 3) seafloor-based, syn- to slightly post-eruptive alteration, followed much later by pluton-related, fluid-buffered alteration; and 4) a possible influence of fluid-mediated redox excursions upon mineral stabilities.

  14. Looking at Dauphiné twins in vein quartz from the High-Ardenne slate belt as a potential paleostress indicator

    NASA Astrophysics Data System (ADS)

    Sintubin, M.; Wenk, H.

    2012-12-01

    Paleostress studies commonly call upon (1) a fault slip data inversion technique, (2) a calcite twin stress inversion technique, (3) recrystallized grain size piezometry for quartz, or (4) direct measurements of residual lattice strain. Recent advances in orientation imaging microscopy (OIM) using electron backscatter diffraction (EBSD) on a scanning electron microscope (SEM) have revealed that Dauphiné twinning is very common in quartz in naturally deformed quartz-bearing rocks, in particular in low-grade tectonometamorphic conditions (~250-450°C) typical for the brittle-plastic transition zone at the base of the seismogenic crust (~7-15km). It has long been known that mechanical Dauphiné twinning in quartz can be stress-induced and thus potentially could be used as a (paleo-)stress indicator. To address this question, we performed an extensive EBSD-OIM analysis on well-studied quartz veins in the High-Ardenne slate belt (Belgium, Germany), which precipitated and deformed in low-grade metamorphic conditions during different stages of the orogeny. The vein quartz studied has only been weakly affected by low to moderate temperature (200 to 400°C) crystal-plastic deformation. The samples show grains with a high concentration of Dauphiné twin boundaries and others free of twin boundaries, thus being untwinned or completely twinned. This pattern depends on the crystallographic orientation. Twin boundaries are arrested by grain or subgrain boundaries, suggesting that Dauphiné twinning occurred on a pre-existing fabric that resulted from crystal-plastic deformation. An analysis of the orientation distribution of the rhombs in the twinned variant domains of individual quartz (sub-)grains reveals a particular preferred orientation of the poles to rhombs. Based on these results we will discuss the potential use of Dauphiné twins in vein quartz as a paleostress indicator, possibly completing our toolbox for reconstructing paleostresses in the deep crust.

  15. Deformation assisted by fluids in quartz veins of shear zones: an example from Iron Formations of Quadrilátero Ferrífero, Brazil.

    NASA Astrophysics Data System (ADS)

    Barbosa, Paola; Lagoeiro, Leonardo

    2013-04-01

    The evidences of fluid activity in rocks are well recognized. In many cases, the fluid is responsible to remobilize many elements (e.g. Au, Mn, Si) that may be transported over a long distance and precipitated as new minerals in regions of low stress of the rock. In many deformed rocks, the origin of a large number of structures (veins, pressure shadows, dissolved grain boundaries, etc) may be correlated to the fluid activity. However, the fluids are important not only during the crack-and-seal process but also after the sealing ceases. As an example of how the fluids are responsible to rearrange the structure of the rock, we studied many quartz veins of one iron-formation from Brazil. The rocks were collected in Quadrilátero Ferrífero (QF), Brazil, that is one of the most important metalogenetic provinces in the world. It is assumed the existence of a deformational and metamorphic gradient in the rocks of QF, increasing the occurrence of penetrative structures from southwest to northeast. However, the effects of the local shear zones in the deformation pattern of QF may not be neglected. Shear zones are generally recognized as structures that accommodate deformation, eventually with intense fluid percolation. It is indubitable that there is a relationship between the fluid activity and the deformation accommodation in shear zones. So, to investigate how the fluid activity can affect the mechanisms of accommodation of deformation in rocks of shear zones from QF, we characterized the crystallographic preferred orientation (CPO) of some quartz vein by EBSD (electron backscattering diffraction). All the samples came from the same outcrop and from the same dextral shear zone, localized in the low-deformation region of QF, under greenschist metamorphic conditions. The samples were oriented according to the XYZ reference system, with X parallel to the foliation and Z normal to the XY plane. The veins are quartz-rich layers parallel to the rock foliation. They do not exhibit any kind of fibrous structures that can indicate a sense of growth of the quartz crystals inside the vein. The less deformed veins are composed of tabular crystals of quartz, with the optical axes oriented sub-parallel to the foliation. Mechanical Dauphiné twinning of quartz may also be observed in the single crystals. On the other hand, the deformed veins are represented by polycrystalline layers of quartz, with two distinct CPOs of c-axes: 1) oblique to the foliation and 2) parallel to the Y axis. We suppose that the veins are the result of a concurrence between transformation, recrystallization and recovery of quartz assisted by fluid activity at low temperature and confining pressure. In the related deformation conditions, slip on basal planes and mechanical twinning are consistent with a strong c-axis CPO of quartz sub-parallel to the foliation, but it is not acceptable to the c-axis CPO around Y. To achieve this distinct crystallographic orientation, it is necessary a slip system on prismatic planes followed by grain boundary migration. At low temperatures, one possible situation to explain the CPO under theses conditions is the progressive deformation assisted by fluid activity. A posterior static recrystallization by discontinuous grain growth of quartz may be responsible for the concentration of the c-axis around the Y, intensifying the CPO.

  16. Orthogonal fracture formation in the South Wales coalfield: implications from a field study and fluid overpressure of quartz veins

    NASA Astrophysics Data System (ADS)

    Fukunari, Tetsuzo; Gudmundsson, Agust

    2014-05-01

    Orthogonal fractures can easily make networks in geological formations and are of great importance for permeability and fluid transport in subsurface reservoirs. Despite many studies focusing on the formation of orthogonal fractures, no clear and generally accepted model has been established as yet although their formation is widely believed to occur during crustal uplift or exhumation. Here we provide new insights into their mechanism of formation based on the results of a fieldwork and analytical study of orthogonal fractures and quartz veins in alternating sand-shale layers in the South Wales coalfield, which is one of foreland basins developed in relation with north-south compression of the Variscan Orogeny. More than 3,000 fractures were measured at various localities extending from southern end to northern end of the basin. Most of the fractures in the sandstone layers, are extension fractures (mode I cracks), and become arrested at contacts with shale layers. The fractures strike north-south and east-west. Some fractures are filled with shale, probably supplied from adjacent shale layers, suggesting the shale behaved as semi-ductile material at the time of fracture formation. A remarkable observation is that most of the fractures are perpendicular to bedding planes throughout the basin. This is despite the fact that the beds are strongly folded as a result of the Variscan Orogeny. The perpendicular attitude suggests that the fracture formation somewhat predates or coincides with that of folding. This implies that the orthogonal fractures in this area did not form during crustal uplift/exhumation but rather during basin growth at the time of regional north-south convergence and associated compression of the Variscan Orogeny. By using aspect (length/thickness) ratios of quartz veins of the same geometry as the orthogonal fractures, fluid overpressure (driving pressure) at the time of fracture formation is estimated at around 33 MPa for fractures striking north-south and 18 MPa for those striking east-west. Although the thick Dinantian Carbonates immediately underlie the sandstones of the Coal Measure Group, carbonate minerals are absent in the veins, suggesting that the main driving stress for fracture formation may not have been buoyancy related to a deeper fluid source in the underlying carbonates but rather local stress concentrations, resulting in differential stresses, in the sandstones. These conditions imply that both north-south and east-west extensional stress fields were induced in the sandstones during the basin growth under the regional north-south compression. The process responsible for the north-south extension within the sandstones is, at this stage, not entirely clear. One possibility is that cyclic stress and strain concentration in thrust zones could induce tensile stresses during stress relaxation of syn- and post-slip period of major thrusts. Viscous behaviour of the shale in the study area may have generated the north-south tensile stress fields in the sandstones that resulted in fracture formation.

  17. Combined gas and ion chromatographic analysis of fluid inclusions: Applications to Archean granite pegmatite and gold-quartz vein fluids

    NASA Astrophysics Data System (ADS)

    DeR Channer, D. M.; Spooner, E. T. C.

    1994-02-01

    The first stage in the interpretation of bulk fluid inclusion analytical data involves consideration of the relative amounts and types of fluid inclusions in a sample, in order to determine which inclusion type dominates the volatile and/or ion bulk analytical data. This then permits discussion of processes affecting fluid chemistry such as fluid-mineral equilibria, metasomatism, and phase separation, and leads to constraints on primary source region fluid composition. This interpretive procedure has been applied to data obtained by combined gas and ion Chromatographic analysis of well characterized samples from the Archean Tanco granitic pegmatite, southeastern Manitoba and the Hollinger-McIntyre and Kerr Addison Archean Au-quartz vein systems, northern Ontario. The bulk composition of an homogeneous late stage magmatic fluid in Lower Intermediate Zone vug quartz from the Tanco pegmatite is 90.6 mol% H 2O, 3.35 mol% CO 2, 2.45 mol% Li + , 2.40 mol% Cl -, 1.01 mol% Na +, and other trace species < 1 mol%. The Li +/(Li + + Na +) ratio of 0.69 0.008 for this fluid is greater than a published experimental determination of 0.45 0.02 for a comparable system, probably owing to the CO 2-rich nature of the vug quartz fluids. The halogen (Cl -, Br -, I -) and alkali metal enriched nature of this fluid is consistent with the advanced degree of igneous fractionation of the pegmatite. Compared to estimated bulk earth values, the Br -/Cl - ratio of 12.9 10 -3 (molar) is high and may be the result of igneous fractionation while the I -/Cl - ratio (140 10 -6molar) is low, suggesting that another process governs I - behaviour. Tanco quartz zone samples show trace gas depletion trends comparable to those obtained from samples trapping phase separated fluids in low pressure geothermal systems. Trends in the Tanco cation/anion data reflect both fluid-mineral equilibria and phase separation effects. Li + and Cl - show a closely correlated decrease with increasing CO 2/CH 4 ratio while Na + shows no change, consistent with partitioning of Li + and Cl - in favour of the CO 2-rich phase, which could have contributed to the calcite and holmquistite-bearing propylitic alteration zone around the pegmatite. Average bulk compositions for Hollinger-McIntyre and Kerr Addison fluids are similar and consist of 80-90 mol% H 2, 2-15 mol% CO 2, 1-3 mol% Cl -, 2-4 mol% Na +, and trace species < 1 mol%. Hollinger-McIntyre volatiles show clear wall rock reaction effects while Kerr Addison fluids show strong phase separation trends. Br -/Cl - ratios of 5.5 to 10 10 -3 for Hollinger-McIntyre and Kerr Addison fluids are greater than bulk earth while I -/Cl - 10 6 ratios are low, with a range from 20-105. Hollinger-McIntyre and Tanco samples dominated by secondary brine inclusions have Br -/Cl - 10 3 ratios of 13 and 15, respectively, showing that these secondary fluids are distinct from shield brines ( Br -/Cl - 3 to 5.5 10 -3). Both of these samples have distinctive trace hydrocarbon signatures.

  18. Orientation of tectonic stresses in central Kentucky during U. Devonian/L. Mississippian times: Evidence from quartz veins (after gypsum) in NE-trending, systematic joints in shales

    SciTech Connect

    Grover, J.; Dupuis-Nouille, E.M. . Dept. of Geology)

    1992-01-01

    Quartz replacing fibrous gypsum and anhydrite pseudomorphically (QAS; quartz after sulfate''), and preserving characteristic crack-seal'' and chickenwire'' textures, occurs in extensional veins at four locations in central KY. The veins occupy a systematic set of NE-SW-trending, vertical joints within the essentially flat-lying shales of the Renfro Member of the Mississippian Borden Formation and the Late Devonian New Albany Shale. The four QAS occurrences discovered to date are located northeast of the Borden Front. At one site in the New Albany Shale, QAS veins show clear evidence of penecontemporaneous deformation. It is proposed that at all QAS locations, gypsum precipitated in incipient joints before complete lithification of the sediment, and grew perpendicular to the fractures to form extensional veins in the soft but firm muds. The orientations of the joints now marked by QAS veins are broadly consistent with regional patterns of NE-SW-trending systematic joints and lineaments in southern IN and in central and eastern KY. These systematic fracture patterns do not correspond directly to known basement faults or rift systems, although they are consistent with modern stress directions in eastern and western KY, measured in situ in wells and by earthquake fault-plane solutions. It is proposed that this systematic trend marks the regional tectonic stress pattern characteristic of southern IN and central and eastern KY at, and since the Late Devonian. The evidence of penecontemporaneous sedimentary deformation in joints of U. Devonian age, marked and preserved by quartz replacement of early gypsum, is sufficient to show that while the systematic NE-trending joint set in KY may also be modern it is not uniquely so.

  19. A new LA-ICP-MS method for Ti-in-Quartz: Implications and application to HP rutile-quartz veins from the Czech Erzgebirge

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Mertz-Kraus, R.; Zack, T.; Feineman, M. D.; Woods, G.

    2014-12-01

    Experimental determination of the pressure and temperature controls on Ti solubility in quartz provide a calibration of the Ti-in-quartz (TitaniQ) geothermometer applicable to geologic conditions up to ~20 kbar (Thomas et al. (2010) Contrib Mineral Petrol 160, 743-759). One of the greatest limitations to analyzing Ti in metamorphic quartz by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is the lack of a suitable matrix-matched reference material. Typically LA-ICP-MS analyses of Ti in minerals use 49Ti as a normalizing mass because of an isobaric interference from 48Ca, which is present in most well characterized reference glasses, on 48Ti. The benefit of using a matrix-matched reference material to analyze Ti in quartz is the opportunity to use 48Ti (73.8 % abundance) as a normalizing mass, which results in an order of magnitude increase in signal strength compared to the less abundant isotope 49Ti (5.5 % abundance), thereby increasing the analytical precision. Here we characterize Ti-bearing SiO2 glasses from Heraeus Quarzglas and natural quartz grains from the Bishop Tuff by cathodoluminescence (CL) imaging, electron probe microanalysis (EPMA), and LA-ICP-MS, in order to determine their viability as reference materials for Ti in quartz. Titanium contents in low-CL rims in the Bishop Tuff quartz grains were determined to be homogenous by EPMA (41 ± 2 µg/g Ti, 2σ), and are a potential natural reference material. We present a new method for determining 48Ti concentrations in quartz by LA-ICP-MS at the 1 µg/g level, relevant to quartz in HP-LT terranes. We suggest that natural quartz such as the homogeneous low-CL rims of the Bishop Tuff quartz are more suitable than NIST reference glasses as an in-house reference material for low Ti concentrations because matrix effects are limited and Ca isobaric interferences are avoided, thus allowing for the use of 48Ti as a normalizing mass. Titanium concentration from 33 analyses of low-temperature quartz from the Czech Erzgebirge is 0.9 ± 0.2 µg/g (2σ) using 48Ti as a normalizing mass and the Bishop Tuff quartz rims as a reference material. The 2σ average analytical uncertainty for analyses of 48Ti is 8 % for 50 µm spots and 7 % for 100 µm spots, which offers much greater precision than the 35 % uncertainty (2σ) incurred from using 49Ti as a normalizing mass.

  20. Multistage deformation of Au-quartz veins (Laurieras, French Massif Central): evidence for late gold introduction from microstructural, isotopic and fluid inclusion studies

    NASA Astrophysics Data System (ADS)

    Essarraj, S.; Boiron, M.-C.; Cathelineau, M.; Fourcade, S.

    2001-07-01

    The relative chronology of fluid migration, quartz and Au-deposition in a silicified fault from the main Au-district (Laurieras, St Yrieix district) from northern French Massif Central has been determined from microstructural, fluid inclusion, isotopic and ore mineral evidences. Three main stages of fluid circulation, microfracturing and quartz crystallization, and ore deposition were distinguished on the basis of textural relationships and the pressure, temperature and composition of the palaeo-fluids: (1) a series of early fluid events was responsible for the localized drainage of retrograde metamorphic fluids along the main fault and the subsequent sealing by milky and microcrystalline quartz preceeded the main Au-ore stages. Early fluids were aqueous-carbonic, trapped under lithostatic to sublithostatic pressures at temperatures in the range 350-500C. Subsequently, several types of microstructures were developed in the early quartz matrix. (2) NS microfractures filled by clear quartz, arsenopyrite and boulangerite (I) contain significant refractory gold concentrations. Clear quartz formed from aqueous-carbonic fluids of lower densities than those of the earlier fluids. Significant pressure drops, down to pressures around 55 MPa were responsible for a local immiscibility of the aqueous-carbonic fluids at temperatures of 34020C. (3) The main ore stage is characterized by the formation of dense sets of sub-vertical (EW) microfractures, healed fluid inclusion planes in quartz, and filled by ore minerals (native gold, galena and boulangerite II) when they crosscut earlier sulfides. The fluids are aqueous with low and decreasing salinity, and probable trapping temperatures around 230C. Isotopic data, obtained on microfissured quartz, indicate these dilute aqueous fluids may be considered as meteoric waters that deeply infiltrated the crust. Late microfissuring of a mesothermal quartz vein, originally barren (only with pyrite and arsenopyrite), appears to be the main factor controlling gold enrichment. It can be related to late Hercynian deformational stages, disconnected from the early fault formation and silicification. These late stages which affected the Hercynian basement during its uplift, are of critical importance for the formation of Au-ores. We concluded that this type of Au-ore formed under rather shallow conditions, is distinct from those generally described in most mesothermal Au-veins.

  1. Huebnerite veins near Round Mountain, Nye County, Nevada

    SciTech Connect

    Shawe, D.R.; Foord, E.E.; Conklin, N.M.

    1984-01-01

    Small huebnerite-bearing quartz veins occur in and near Cretaceous (about 95 m.y. old) granite east and south of Round Mountain. The veins are short, lenticular, and strike mostly northeast and northwest in several narrow east-trending belts. The quartz veins were formed about 80 m.y. ago near the end of an episode of doming and metamorphism of the granite and emplacement of aplite and pegmatite dikes in and near the granite. An initial hydrothermal stage involved deposition of muscovite, quartz, huebnerite, fluorite, and barite in the veins. Veins were then sheared, broken, and recrystallized. A second hydrothermal stage, possibly associated with emplacement of a rhyolite dike swarm and granodiorite stock about 35 m.y. ago, saw deposition of more muscovite, quartz, fluorite, and barite, and addition of scheelite, tetrahedrite-tennantite, several sulfide minerals, and chalcedony. Finally, as a result of near-surface weathering, secondary sulfide and numerous oxide, tungstate, carbonate, sulfate, phosphate, and silicate minerals formed in the veins. Depth of burial at the time of formation of the veins, based on geologic reconstruction, was about 3-3.5 km. The initial hydrothermal stage ended with deposition of quartz at a temperature of about 210/sup 0/C and pressures of about 240 to 280 bars from fluids with salinity of about 5 wt % sodium chloride. Fluorite then was deposited at about 250/sup 0/ to 280/sup 0/C from solutions of similar salinity and containing a small amount of carbon dioxide. During shearing that followed initial mineralization, quartz was recrystallized at a temperature of 270/sup 0/ to 290/sup 0/C and in association with fluids of about 5 wt % sodium chloride equivalent and containing carbon dioxide. Late-stage fluorite was deposited from fluids with similar salinity but devoid of carbon dioxide at a temperature of about 210/sup 0/C. 76 refs., 38 figs., 8 tabs.

  2. From evaporated seawater to uranium-mineralizing brines: Isotopic and trace element study of quartz-dolomite veins in the Athabasca system

    NASA Astrophysics Data System (ADS)

    Richard, Antonin; Boulvais, Philippe; Mercadier, Julien; Boiron, Marie-Christine; Cathelineau, Michel; Cuney, Michel; France-Lanord, Christian

    2013-07-01

    Stable isotope (O, H, C), radiogenic isotope (Sr, Nd) and trace element analyses have been applied to quartz-dolomite veins and their uranium(U)-bearing fluid inclusions associated with Proterozoic unconformity-related UO2 (uraninite) ores in the Athabasca Basin (Canada) in order to trace the evolution of pristine evaporated seawater towards U-mineralizing brines during their migration through sediments and basement rocks. Fluid inclusion data show that quartz and dolomite have precipitated from brines of comparable chemistry (excepted for relatively small amounts of CO2 found in dolomite-hosted fluid inclusions). However, ?18O values of quartz veins (?18O = 11 to 18) and dolomite veins (?18O = 13 to 24) clearly indicate isotopic disequilibrium between quartz and dolomite. Hence, it is inferred that this isotopic disequilibrium primarily reflects a decrease in temperature between the quartz stage (180 C) and the dolomite stage (120 C). The ?13C values of CO2 dissolved in dolomite-hosted fluid inclusions (?13C = -30 to -4) and the ?13C values of dolomite (?13C = -23.5 to -3.5) indicate that the CO2 dissolved in the mineralizing brines originated from brine-graphite interactions in the basement. The resulting slight increase in the fluid partial pressure of CO2 (pCO2) may have triggered dolomite precipitation instead of quartz. ?18O values of quartz veins and previously published ?18O values of the main alteration minerals around the U-ores (illite, chlorite and tourmaline) show that quartz and alteration minerals were isotopically equilibrated with the same fluid at 180 C. The REE concentrations in dolomite produce PAAS-normalized patterns that show some similarities with that of UO2 and are clearly distinct from that of the other main REE-bearing minerals in these environments (monazite, zircon and aluminum phosphate-sulfate (APS) minerals). The radiogenic isotope compositions of dolomite (87Sr/86Sri = 0.7053 to 0.7161 and ?Nd(t) = -8.8 to -20.3) differ from one deposit to another, reflecting both heterogeneity in the basement geology and variable preservation of the original composition of brines. The previously published 87Sr/86Sri and ?Nd(t) values of UO2 compare with the most evolved dolomites, i.e. dolomites precipitated from brines that exchanged the most with the basement. This reinforces a close genetic link between dolomites and UO2 deposition and implies that UO2 deposition occurred in a cooling system during the transition from quartz to dolomite formation. The ?18O and ?D values of the mineralizing brines (?18O = -1 to 8 and ?D = -150 to -50) are considerably shifted from that of their theoretical original values acquired during evaporation of seawater (?18O = -3 and ?D = -40). The positive ?18O shift is explained by protracted fluid-rock interaction within the basin and basement rocks. The negative ?D shift is attributed to incomplete mixing between the U-mineralizing brines and low ?D water. This low ?D water was likely produced during the abiogenic synthesis of bitumen by Fisher-Tropsch-like reactions involving CO2 derived from brine-graphite interaction in the basement, and radiolytic H2. The resulting low ?D brines have been equilibrated with alteration minerals. This may explain why some alteration minerals yield anomalously low ?D values whose significance has long been debated.

  3. Partitioning and Leaching Behavior of Actinides and Rare Earth Elements in a Zirconolite- Bearing Hydrothermal Vein System

    SciTech Connect

    Payne, Timothy E.; Hart, Kaye P.; Lumpkin, Gregory R.; McGlinn, Peter J.; Giere, Reto

    2007-07-01

    Chemical extraction techniques and scanning electron microscopy were used to study the distribution and behavior of actinides and rare earth elements (REE) in hydrothermal veins at Adamello (Italy). The six samples discussed in this paper were from the phlogopite zone, which is one of the major vein zones. The samples were similar in their bulk chemical composition, mineralogy, and leaching behavior of major elements (determined by extraction with 9 M HCl). However, there were major differences in the extractability of REE and actinides. The most significant influence on the leaching characteristics appears to be the amounts of U, Th and REE incorporated in resistant host phases (zirconolite and titanite) rather than readily leached phases (such as apatite). Uranium and Th are very highly enriched in zirconolite grains. Actinides were more readily leached from samples with a higher content of U and Th, relative to the amount of zirconium. The results show that REE and actinides present in chemically resistant host minerals can be retained under aggressive leaching conditions. (authors)

  4. An X-ray excited optical luminescence study of a zoned quartz crystal from an emerald-bearing quartz vein, Hiddenite, North Carolina, USA

    NASA Astrophysics Data System (ADS)

    Jrgensen, Astrid; Anderson, Alan J.; Sham, Tsun-Kong

    2009-04-01

    The optical luminescence excited with synchrotron radiation along a preferential orientation of a quartz crystal has been investigated. It is found that the crystal is composed of two distinct regions, only one of which luminesces upon X-ray excitation. This luminescence is generally uniform and exhibits emission bands in the blue (470 nm with a shoulder at 522 nm) and in the UV (340 nm) regions of the spectrum. The branching ratio for the intensity of these bands is sensitive to the excitation energy across the Si K-edge. XANES spectra collected by partial luminescence yield (PLY) suggest that both emission bands originate from the de-excitation of Si atoms in the quartz. The possible defect sites within the crystal structure that could account for the observed luminescence are investigated and discussed. Additional experiments are proposed to verify this assignment of the optical emission bands.

  5. Formation of parting in quartz

    NASA Astrophysics Data System (ADS)

    Jrgen Kjll, Hans; Eske Srensen, Bjrn

    2014-05-01

    This paper presents hydrothermal quartz with macroscopic planar parting from the Mesoproterozoic Modum complex in southern Norway. Similar macroscopic parting in hydrothermal quartz with macroscopic planar structures has only been described from two localities in the world; Madagascar (Flrke et al., 1981) and Southern California (Murdoch et al., 1938). The study area consists of well foliated and banded sillimanite- garnet- amphibolite- mica gneiss that is cut at high angle by hydrothermal veins containing albite, chlinoclore, hornblende, hydroxyl apatite and quartz. The rim of the veins is generally made up of almost pure end-member euhedral albite. Then there is vugs with euhedral hornblende (10-25cm long) and euhedral hydroxyl apatite with size ranging from mm scale to several cm. Some places the quartz encloses apatite and hornblende. The quartz is anhedral, inequigranular with undulose extinction bordering sub grain rotation. It has large planar penetrative parting faces with pearly luster; however this is not consistent throughout the outcrop and some places the penetrative faces disappears and the quartz has a conchoidal fracture. The planar faces continue throughout the specimens with a few mm spacing. Thin sections oriented perpendicular to the most pronounced planar structure show lamellas that extinguishes at small angles (2 degrees) to each other. EBSD mapping of the planar faces shows two orientations {0-111} and {1-101}, corresponding to the r- and z-faces respectively, separated by irregular boundaries. The misorientation between these two crystallographic orientations on the parting is a 60 degree rotation on [0 0 1] in correspondence to the dauphin twin law. Investigations conducted on thin sections cut orthogonal to the parting shows that the parting cuts and offsets the dauphin twins, indicating a late genesis of the parting. However some internal stress induced movement of the twins are visible. SEM-CL documents three generations of quartz and two, possibly three, planar structures; two evident, one more obscure. The most prominent of the three appears to cut across the recrystallization, offsetting the recrystallization textures with varying distances. We propose a very late formation of the parting due to its crosscutting relationship with all features, such as recrystallized quartz, secondary fluid inclusion trails and twins. The parting develops in crystals that are optimally oriented with respect to ?1 in a fast, low temperature deformation event.

  6. The age of Au-Cu-Pb-bearing veins in the poly-orogenic Ubendian Belt (Tanzania): U-Th-total Pb dating of hydrothermally altered monazite

    NASA Astrophysics Data System (ADS)

    Kazimoto, Emmanuel Owden; Schenk, Volker; Appel, Peter

    2015-01-01

    The age of gold-copper-lead mineralization in the Katuma Block of the Ubendian Belt remains controversial because of the lack of radiometric ages that correlate with the age of tectonothermal events of this poly-orogenic belt. Previous studies reported whole rock and mineral Pb-Pb ages ranging between 1,660 and 720 Ma. In this study, we report U-Th-total Pb ages of monazite from hydrothermally altered metapelites that host the Au-Cu-Pb-bearing veins. Three types of chemically and texturally distinct types of monazite grains or zones of grains were identified: monazite cores, which yielded a metamorphic age of 1,938 11 Ma ( n = 40), corresponding to known ages of a regional metamorphic event, deformation and granitic plutonism in the belt; metamorphic overgrowths that date a subsequent metamorphic event at 1,827 10 Ma ( n = 44) that postdates known eclogite metamorphism (at ca. 1,880 Ma) in the belt; hydrothermally altered poikilitic monazite, formed by dissolution-precipitation processes, representing the third type of monazite, constrain the age of a hydrothermal alteration event at 1,171 17 Ma ( n = 19). This Mesoproterozoic age of the hydrothermal alteration coincides with the first amphibolite grade metamorphism of metasediments in the Wakole Block, which adjoins with a tectonic contact the vein-bearing Katuma Block to the southwest. The obtained distinct monazite ages not only constrain the ages of metamorphic events in the Ubendian Belt, but also provide a link between the metamorphism of the Wakole metasediments and the generation of the hydrothermal fluids responsible for the formation of the gold-copper-lead veins in the Katuma Block.

  7. Zonation of primary haloes of Atud auriferous quartz vein deposit, Central Eastern Desert of Egypt: A potential exploration model targeting for hidden mesothermal gold deposits

    NASA Astrophysics Data System (ADS)

    Harraz, Hassan Z.; Hamdy, Mohamed M.

    2015-01-01

    The Atud gold mine located in the Neoproterozoic diorite and metagabbro of the Central Eastern Desert of Egypt has been initially excavated during Pharaonic times. Between 1953 and 1969, the Egyptian Geological Survey and Mining Authority performed underground prospection in the auriferous quartz vein and metasomatic alteration zones in the main Atud area, estimating a principal gold lode of 19,000 tones (16.28 g/ton), and 1600 tons of damp (1.24 g/ton). Yet the potentiality of the deposit has not been exhausted. However, for exploration of hidden ore, quantitative characterization using trace elements zoning of mineralization haloes with 280 samples from surface and three underground mining levels is applied. This was through multivariate statistical analysis (Factor analysis) of 11 selected trace elements. Axial (vertical) extents of primary haloes above and beneath gently dipping orebody are also visualized to interpret the level of erosion, determine the direction of mineralizing solutions as well as to examine whether the hidden orebody is promising at the Atud mine. Axial zones of primary dispersion aureoles of trace elements are: Ag, As, S and U around the auriferous quartz veins; Cu, and Pb in the surface horizons; and Zn, Ni, Co, and U along the lower margin of mineralization zone. Gold contents in bedrock and quartz vein samples from level-42M are the highest (5.7 and 40.3 ppm, respectively). In the transverse (lateral) direction, the maximum relative accumulation of Au and Zn occurs at the Northern Shaft; Pb, Cu, As, and U at the Main Shaft; and Ag, S, Co, and Ni at the Southern Shaft. The estimated axial zonation sequence of indicator elements using the variability index is Pb → Cu → Ag → Au → As → S → Ni → Co → U → Zn. According to this zonation, an index such as (Pb × Cu)D/(U × Zn)D can be a significant for predicting the Au potentiality at a particular depth. In addition, the Pb/U zonality index is an appropriate indicator for the degree of erosion at the Atud gold mine. The degree of surficial zonality of the mineralization as deduced from geochemical maps and the level of erosion of the geochemical anomalies as well as the decreasing of gold content with depth recorded throughout the different underground mine workings make it necessary for the prospection model to evaluate the drainage patterns dissecting the mineralized zone. The application of R-mode factor analysis estimated seven statistical factors, and factor score maps are portrayed. Factors 1 (Ag, Au, As, Co, S, U and Zn) and 2 (Zn, U, Co and S) significantly reflect the Au-mineralization (ore-controlled), and their score maps enable a more precise delineation of auriferous quartz veins and the area which may contain primary gold mineralization. The other factors reveal the distribution of Cu- and Pb-bearing minerals (supergene alteration factors), and Ba and Ni in the host diorite (lithologically-controlled). These are consistent with the calculated maximum relative accumulation of trace elements, proposing a potential model of exploration based on integrating underground geochemical data from old gold mine workings with spatial information from R-mode factor score maps.

  8. Features of ore formation in the gold-quartz Sovinoye deposit (Northern Chukotka)

    NASA Astrophysics Data System (ADS)

    Kolova, E. E.; Volkov, A. V.; Prokof'ev, V. Yu.; Sidorov, A. A.

    2014-12-01

    The results of studying fluid inclusions in the quartz of ore body no. 6 from the Sovinoye deposit developed by the underground mine workings at a depth of 80 m from the surface are considered. The investigations showed that the ore in the Sovinoye deposit was formed at average temperatures during several stages from weakly concentrated hydrotherms saturated with Na, Cl, Mg, and Fe ions. Such ore-forming conditions are typical of mezothermal gold-quartz veined deposits in the terrigeneous quartz-carbonate strata. The results of FI study by modern methods do not contradict the previously offered metamorphogenic-magmatogenic model of ore formation for the Sovinoye deposit.

  9. The Laramide Caborca orogenic gold belt of northwestern Sonora, Mexico; white mica 40Ar/39Ar geochronology from gold-rich quartz veins

    USGS Publications Warehouse

    Izaguirre, Aldo; Kunk, Michael J.; Iriondo, Alexander; McAleer, Ryan; Caballero-Martinez, Juan Antonio; Espinosa-Armburu, Enrique

    2016-01-01

    The COGB is approximately 600 kilometers long and 60 to 80 km wide, trends northwest, and extends from west-central Sonora to southern Arizona and California. The COGB contains mineralized gold-rich quartz veins that contain free gold associated with white mica (sericite), carbonate minerals (calcite and ankerite), and sulfides such as pyrite and galena. Limited geochronologic studies exist for parts of the COGB, and previous work was concentrated in mining districts. These previous studies recorded mineralization ages of approximately 70 to 40 Ma. Therefore, some workers proposed that the orogenic gold mineralization in the region occurred during a single pulse that was associated with the Laramide Orogeny that took place during the Cretaceous to early Eocene in the western margin of North America. However, the geochronologic dataset was quite limited, making any regional interpretations tenuous. Accordingly, one of the objectives of this geochronology study was to get a better representative sampling of the COGB in order to obtain a more complete record of the mineralization history. The 63 samples presented in this work are broadly distributed throughout the area of the COGB and allow us to better test the hypothesis that mineralization occurred in a single pulse.

  10. Genesis of the hydrothermal gold deposits in the Canan area, Lepaguare District, Honduras

    NASA Astrophysics Data System (ADS)

    Mattioli, Michele; Menichetti, Marco; Renzulli, Alberto; Toscani, Lorenzo; Salvioli-Mariani, Emma; Suarez, Pedro; Murroni, Alessandro

    2014-04-01

    The Canan area (Honduras) is characterized by a gold-bearing ore deposit that is associated with quartz-veined shear zones. Gold mineralization occurs in low-to medium-grade metamorphic host-rocks (graphitic and sericitic schists). Hydrothermal fluids, which are associated with the emplacement of Cretaceous-Tertiary granodioritic intrusions, are responsible for the formation of quartz veins and the hydrothermal alteration of wall-rocks. Three main altered zones have been detected in the wall-rocks as far as 150 cm from the quartz veins. The distal zone (up to 50-cm thick) contains quartz, chlorite and illite. The intermediate zone is the thickest (up to 80 cm) and is marked by quartz, muscovite, sulphides, kaolinite and native elements such as Au and Ag. The proximal zone, which is close to the quartz veins, is rather thin (up to 25 cm) and contains clay minerals, Al-oxides-hydroxides and sulphides. The transition from the distal to the proximal zone is accompanied by the enrichment of SiO2 and the depletion of all other major elements, except for Fe2O3(tot). Precious metals occur in the highest concentrations in the intermediate zone (Au up to 7.6 ppm and Ag up to 11 ppm). We suggest that gold was transported as a reduced sulphur complex and was precipitated from the hydrothermal solution by the reaction of the sulphur complexes with Fe2+ from the alteration of the mafic minerals of the host-rock. Fluid-wall-rock interactions seem to be the main cause of gold mineralization. Genetic relationships with a strike-slip fault system, hydrothermal alteration zones within the metamorphic wall-rocks, and an entire set of geochemical anomalies are consistent with orogenic-type gold deposits of the epizonal class.

  11. Portovelo: a volcanic-hosted epithermal vein-system in Ecuador, South America

    NASA Astrophysics Data System (ADS)

    van Thournout, F.; Salemink, J.; Valenzuela, G.; Merlyn, M.; Boven, A.; Muchez, P.

    1996-05-01

    The Portovelo epithermal vein-system in southwestern Ecuador has produced more than 120 tons of gold and about 250 tons of silver. The veins result from hydrothermal processes close to a Miocene volcano which produced an andesitic to dacitic sequence followed by collapse and post-collapse rhyolitec activity which generated most of the alteration and mineralization. Three main structural segments are defined by NW-trending strike-slip faults, which show later stages of vertical movement. These faults are responsible for development of an extensive N-S dilatational jog within andesitic rocks, which acted as the main host to ore-deposition. A large-scale propylitic aureole surrounds a quartz-chloritesericite-adularia core, centered on the rhyolites, within a system of collapse-related ring-structures. A quartz-chlorite-sericite-adularia-calcite assemblage is the most common wall-rock alteration close to the veins. The size (4 15 km) and vertical range (1400 m) of the vein-system is exceptional. Alteration, textures and mineral assemblage, including a quartz-calcite gangue, sulfides, abundant sulfosalts and free gold (electrum), are quite typical of an adularia-sericite epithermal deposit. Spatially, the mineralization is arranged in three zones. In addition, three successive stages can be distinguished. The bulk of economic mineralization was deposited during the second stage, in association with a clear quartz and calcite gangue. Tm-ice and Tm-clath data of fluid inclusions in the clear quartz indicate a high salinity ( 10.5 eq. wt% NaCI). The homogenization temperatures of fluid inclusions in the gangue minerals and in the altered host-rocks vary between 180 and 310C. Quartz ? 18O-values from hydrothermally altered wall-rocks reflect the original isotopic values of the latter. These values show a narrower range in vein quartz ( ?O18 between +7.7 and +11.57 SMOW). In addition, the ?O18 values of the vein quartz increase systematically with decreasing homogenization temperature. This suggests that quartz was in equilibrium with a large reservoir of water of constant18O/16O composition at decreasing equilibrium temperatures. The estimated isotopic composition of the fluids from which milky quartz and calcite of the main mineralization stage precipitated, lies around -1 % SMOW. This value indicates a meteoric rather than a magmatic origin of the ambient fluid. Clear quartz of the second stage seems to have formed from a fluid with a ? 18O of +3 SMOW. This higher value can be due to a more intense water-rock interaction or to mixing of meteoric with magmatic water.

  12. Lazulite and Ba, Sr, Ca, K-rich phosphates-sulphates in quartz veins from metaquartzites of Tribeč Mountains, Western Carpathians, Slovakia: Compositional variations and evolution

    NASA Astrophysics Data System (ADS)

    Uher, Pavel; Mikuš, Tomáš; Milovský, Rastislav; Biroň, Adrian; Spišiak, Ján; Lipka, Jozef; Jahn, Ján

    2009-10-01

    The phosphate-sulphate mineralization occurs in quartz veins in Lower Triassic metaquartzites of the Tribeč Mts., Central Western Carpathians, Slovakia. The mineralization comprises of lazulite, Ba, Sr, Ca, K-rich phosphates-sulphates and barite in an association with muscovite, hematite, locally rutile, zircon, chlorite and tourmaline. The most widespread lazulite forms up to 10 cm large pale to deep blue aggregates in massive quartz. Electron-microprobe analyses show a relatively uniform composition with Mg/(Mg + Fe) =0.85 to 0.93. The Mössbauer spectroscopy reveals 11-30% Fe 3+/Fe total. Possible primary goedkenite-bearthite binary s.s. shows the highest known Sr contents worldwide: Sr/(Sr + Ca) = 0.67-0.71; Mg, Ba and REE contents are negligible. The lazulite is replaced by a secondary association of Ba, Sr, Ca, K-rich phosphates-sulphates: gorceixite, rarely goyazite, crandallite, svanbergite, jarosite and a rare phase, close to (Ba,K,Sr)(Fe 3+,Al) 3[(OH,H 2O) 6(PO 4)(SO 4)] composition (Ba,Fe,S,P-phase). Gorceixite exhibits more restricted compositional variations between gorceixite-goyazite and gorceixite-crandallite s.s.: Ba/(Ba + Sr) = 0.73-0.99, Ba/(Ba + Ca) = 0.78-0.99 and (P - 1)/[(P - 1) + S] = 0.84-0.99. On the contrary, the secondary Sr, Ca-dominant phosphates-sulphates of the crandallite and beudantite groups show wide compositional variations and complex quarternary solid-solution series between goyazite-crandallite and svanbergite-woodhouseite with Sr/(Sr + Ca) = 0.16 to 0.99 and (P - 1)/[(P - 1) + S] = 0.07 to 0.97. The K, Ba-dominant phosphates-sulphates of the alunite and beudantite groups occur along jarosite-Ba,Fe,S,P-phase s.s. line with Ba/(Ba + K) = 0.07 to 0.56, Fe/(Fe + Al) = 0.55 to 0.99, P/(P + S) = 0.14 to 0.57 and elevated Sr and Ca (up to 0.24 and 0.12 apfu, respectively). The compositions indicate a close relationship and mutual substitutions between the crandallite, beudantite and alunite groups. Unlike to analogous phosphate-bearing assemblages in the Alps, investigated phosphate-sulphate association doesn't contains REE, Y and Sc minerals but it is rich in Ba-phases (barite, gorceixite). The peak metamorphic conditions of the host rocks estimated using the Kübler index of phyllosilicates point to anchizone/epizone boundary, i.e. ca. 270-350 °C. Fluid inclusions study constrained the minimum formation temperatures of the lazulite to 144-257 °C and of the superimposed sulphate-phosphate mineralization to 175-289 °C. Lazulite crystallized from brines of the system H 2O-Na-Mg-Cl-CO 2 with a salinity of 17.2 to 19.8 wt.% NaCl eq. We propose, that the studied mineralization originated from fluids enriched in elements from breakdown of feldspars, biotite, apatite and other phosphates in underlying Hercynian granites. The fluids passed upwards into the metaquartzites and precipitated discrete minerals, due to absence of any suitable sink for the elements among rock-forming minerals.

  13. Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz

    USGS Publications Warehouse

    Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.

    2015-01-01

    Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.

  14. Changes in the Circum-Alpine Climate as a Function of the Alpine Upliftment: Constraints from Isotopic Compositions of Fossils, Sediments, and Vein Quartz

    NASA Astrophysics Data System (ADS)

    Vennemann, T. W.; Tutken, T.; Kocsis, L.; Mullis, J.

    2005-12-01

    The Tertiary circum-Alpine Molasse sediments were deposited during major periods of Alpine tectonism but also at a time of large global climatic change. They are well suited to study the effects of tectonic forcing on climate, because the sediments were deposited in marginal basins, partly to completely isolated from other major oceanic basins. Hence, a comparison of the past climatic and oceanographic evolution indicated by the sediments to those on a global scale, does allow for a qualitative evaluation of the relationship between tectonism and regional climate. Much is known about the geological-geochronological framework of alpine tectonism, including associated erosional rates and sediment volumes. Estimates of changes in paleoelevation and its direct influence on climate have, however, been less well constrained. Three independent lines of evidence indicate significant altitudes of the Alps during the Miocene: 1) H isotope compositions of clay minerals, formed as weathering products and subsequently deposited as part of the Alpine Molasse, have ?D reaching values as low as -97. 2) O isotope compositions of retrograde metamorphic vein and fissure quartz and H isotope composition of its included fluids have ?18O values as low as -3.5 and ?D values of -140, respectively. 3) ``Exotic" shark teeth from Swiss Upper Marine Molasse sediments that have ?18O values (VSMOW) around 11 (n=2), values unlike those from other teeth of the same locality (20.7 to 21.8; n=6), but for which the REE patterns support the same diagenetic history, hence supporting a freshwater formation of the low ?18O teeth (also supported by distinct Sr isotope compositions). Using these three approaches as a basis for estimating the isotopic composition of past precipitation and applying the present-day altitude effects on the compositions, it can be concluded that the Miocene Alps had mean altitudes of about 1500 to 2000 m, that is elevations similar to those of today. Paleoclimatic reconstructions from North Alpine Molasse sediments are based on oxygen isotope compositions of fossil mammalian tooth enamel for freshwater molasse deposits, and shark teeth, marine ostracoda, foraminifera, and mammalian phosphatic fossils for the Upper Marine Molasse deposits. The ?18O values (VPDB) of carbonate in phosphate from Oligocene and Miocene large mammal teeth (n=270), for example, vary over a large range from -11.9 to -0.5, but these variations parallel the composite O isotope curve of Tertiary benthic foraminifera, thus reflecting major global climatic changes such as the Late Oligocene warming, Mid-Miocene climate optimum, and Middle to Late Miocene cooling trends. The ?18O values (VSMOW) of phosphate in shark teeth (19.8 to 23.3; n=130) from Miocene marine molasse sediments as well as those of ostracods and foraminifera from these sediments all have variations that parallel those of composite curves for global changes. Collectively, the data support a Neogene paleogeography with a high mountain belt adjacent to marginal marine or freshwater depositional basins but with a regional climate, at least for the northern Molasse realm, that was strongly coupled to the global climate. The Alps thus appear not have influenced the local climate and/or atmospheric circulation patterns significantly.

  15. Competitive hydration and dehydration at olivine-quartz boundary revealed by hydrothermal experiments: Implications for silica metasomatism at the crust-mantle boundary

    NASA Astrophysics Data System (ADS)

    Oyanagi, Ryosuke; Okamoto, Atsushi; Hirano, Nobuo; Tsuchiya, Noriyoshi

    2015-09-01

    Serpentinization occurs via interactions between mantle peridotite and water that commonly passes through the crust. Given that such a fluid has a high silica activity compared with mantle peridotite, it is thought that serpentinization and silica metasomatism occur simultaneously at the crust-mantle boundary. In this study, we conducted hydrothermal experiments in the olivine (Ol)-quartz (Qtz)-H2O system at 250 C and vapor-saturated pressure under highly alkaline conditions (NaOHaq, pH = 13.8 at 25 C) to clarify the mechanism of silica metasomatism at the crust-mantle boundary. Composite powders consisting of a Qtz layer and an Ol layer were set in tube-in-tube vessels. After the experiments, the extents of serpentinization and metasomatic reactions were evaluated as a function of distance from the Ol-Qtz boundary. The mineralogy of the reaction products in the Ol-hosted region changed with increasing distance from the Ol-Qtz boundary, from smectite + serpentine (Smc zone) to serpentine + brucite + magnetite (Brc zone). Olivine hydration proceeded in both zones, but the total H2O content in the products was greater in the Brc zone than in the Smc zone. Mass balance calculations revealed that olivine hydration occurred without any supply of silica in the brucite zone. In contrast, the Smc zone was formed by silica metasomatism via competitive hydration and dehydration reactions. In the Smc zone, smectite formed via the simultaneous progress of olivine hydration and serpentine dehydration, and around the boundary of the Smc and Brc zones, serpentine formation occurred by olivine hydration and brucite dehydration. The relative extent of hydration and dehydration reactions controlled the along-tube variation in the rate of H2O production/consumption and the rate of volume increase. Our findings suggest that the competitive progress of serpentinization and silica metasomatic reactions would cause fluctuations in pore fluid pressure, possibly affecting the mechanical behavior of the crust-mantle boundary.

  16. Field occurrence and lithology of Archean hydrothermal systems in the 3.2Ga Dixon Island Formation, Western Australia

    NASA Astrophysics Data System (ADS)

    Aihara, Y.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Horie, K.; Sakamoto, R.; Miki, T.

    2013-12-01

    Stratigraphic transition of black chert to iron-rich sedimentary rocks above volcanic sequences with hydrothermal systems is common and characteristic feature of Archean greenstone belts. The 3.2 Ga Dixon Island Formation, exposed along the northern coast of Dixon Island located in the coastal Pilbara terrane, Western Australia, is one of such units and the focus of our study. We introduce field occurrence and lithology of the Dixon Island Formation that preserves features of paleohydrohermal environment in the Mesoarchean ocean. The Dixon Island Formation is composed of the following three members (in ascending order): Komatiite-Rhyolite Tuff, Black Chert, and Varicolored Chert members (Kiyokawa and Taira, 1998). Here we focus on the Komatiite-Rholite Tuff member. It preserves two cycles of highly altered komatiite lavas and well-stratified rhyolite tuff. Komatiite lavas include dendritic crystals of chrome spinel and ghosts of spinifex, euhedral and sheet-like olivines and pyroxenes. These rocks are now composed of granular microcrystalline quartz with chromian muscovite, chrome spinel and chrorite that formed by intense silicification. Its upper part contains hydrothermal veining and alteration (i.e., many vein swarms composed of veins of quartz and organic carbon-rich black chert). Most black chert veins intrude vertically into overlying layers, and contain barite, pyrite, monazite and clay minerals which were least affected by silicificatio. Based on the cross-cutting relationship seen in the outcrops, we recognized two generations of black chert veins (type 1 and type 2 veins; Kiyokawa et al., 2006). Type 1 veins are mainly composed of carbonaceous peloids in a microcrystalline quartz matrix. Euhedral and xenocrystic tourmaline are found only in Type1 veins. Type 2 veins are organic carbon-poor and contain fragments of black chert and siliceous volcanic breccia (Kiyokawa et al., 2006). Intense silicification of komatiitic volcaniclastics and lava, enriched in Si and K and depleted in Mg, occurred earlier than the formation of black chert veins and probably during sedimentation of the overlying Black Chert member. Petrographycally, tourmaline in Type1 veins formed by hydrothermal processes and can be used to infer physicochemical conditions of the hydrothermal activity. Fragmentation of black chert and volcanic rocks within Type 2 veins was probably due to high pressure caused by hydrothermal activity.

  17. Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe-Ankole belt, Central Africa

    NASA Astrophysics Data System (ADS)

    Dewaele, S.; De Clercq, F.; Hulsbosch, N.; Piessens, K.; Boyce, A.; Burgess, R.; Muchez, Ph.

    2016-02-01

    The vein-type tungsten deposit at Nyakabingo in the central Tungsten belt of Rwanda is located in the eastern flank of the complex Bumbogo anticlinal structure. The host rock is composed of alternating sequences of sandstones, quartzites, and black pyritiferous metapelitic rocks. Two types of W-mineralized quartz veins have been observed: bedding-parallel and quartz veins that are at high angle to the bedding, which are termed crosscutting veins. Both vein types have been interpreted to have been formed in a late stage of a compressional deformation event. Both vein types are associated with small alteration zones, comprising silicification, tourmalinization, and muscovitization. Dating of muscovite crystals at the border of the veins resulted in a maximum age of 992.4 ± 1.5 Ma. This age is within error similar to the ages obtained for the specialized G4 granites (i.e., 986 ± 10 Ma). The W-bearing minerals formed during two different phases. The first phase is characterized by scheelite and massive wolframite, while the second phase is formed by ferberite pseudomorphs after scheelite. These minerals occur late in the evolution of the massive quartz veins, sometimes even in fractures that crosscut the veins. The ore minerals precipitated from a H2O-CO2-CH4-N2-NaCl-(KCl) fluid with low to moderate salinity (0.6-13.8 eq. wt% NaCl), and minimal trapping temperatures between 247 and 344 °C. The quartz veins have been crosscut by sulfide-rich veins. Based on the similar setting, mineralogy, stable isotope, and fluid composition, it is considered that both types of W-mineralized quartz veins formed during the same mineralizing event. Given the overlap in age between the G4 granites and the mineralized quartz veins, and the typical association of the W deposits in Rwanda, but also worldwide, with granite intrusions, W originated from the geochemically specialized G4 granites. Intense water-rock interaction and mixing with metamorphic fluids largely overprinted the original magmatic-hydrothermal signature.

  18. Varicose Veins

    MedlinePLUS

    ... Previous Section Next Section How Do Varicose Veins Impact My Health? Varicose veins can be cosmetically distressing ... What Causes Varicose Veins? How Do Varicose Veins Impact My Health? How Are Varicose Veins Diagnosed? How ...

  19. Organic inclusions within hydrothermal minerals from S.W. Africa and elsewhere.

    NASA Technical Reports Server (NTRS)

    Mueller, G.

    1972-01-01

    It was observed that quartz crystals from veins within a diabase dike of precambrian age from S.W. Africa contain organic particles which closely resemble, in detailed morphology, coacervates, proteinoid microspheres or fossil and recent microorganisms. The microphotospectrographs in visible and near-ultraviolet light of these minute particles revealed a strong absorption peak at the vicinity of 4000 A, which is indicative of lipids. Hydrothermal mineral from veins from a number of other localities proved to contain the biomorphic organic particles. The theoretical significance of these organic particles is discussed with reference to problems of origin of life.

  20. Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali-Silica Reaction Potential.

    PubMed

    Kuchařová, Aneta; Götze, Jens; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2016-02-01

    Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali-silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm). PMID:26790877

  1. Unravelling the deep fluid composition in the Taupo Volcanic Zone: insight into the magmatic-hydrothermal transition

    NASA Astrophysics Data System (ADS)

    Chambefort, I. S.; Lewis, B.; Boseley, C.; Begue, F.; Rae, A.

    2012-12-01

    The Ngatamariki Geothermal Field represents the only location in the Taupo Volcanic Zone where geothermal well drilling has intercepted intrusive rocks with a high temperature alteration halo. Thus it presents the perfect opportunity to study the magmatic-hydrothermal transition in the TVZ by characterising the nature of the deep magmatic fluids inferred to be linked to the geothermal heat source. In addition to the calc-alkaline Ngatamariki diorite (encountered in a 1985 drillhole; Wood, 1986), recent (2012) geothermal drilling encountered a quartz-phyric tonalite. After emplacement, these intrusions cooled, degassed, and produced a high temperature alteration halo, associated with intense quartz-illite/muscovite-pyrite alteration and pervasive quartz replacement of the overlying tuff-breccia. This alteration zone contains abundant high temperature quartz veins, similar to quartz veining stockwork characteristic of Porphyry Cu (Au-Mo) systems. The recently encountered quartz-phyric tonalite contains common phenocrysts of quartz and pseudomorphs of plagioclase and minor ferromagnesian minerals (predominantly amphiboles) in a medium-grained, magnetite-bearing felsic groundmass. Quartz phenocrysts are generally rounded and embayed quartz eyes (?1 cm diam.), or skeletal crystals. SEM-CL imaging was used to map the crystallisation history of the phenocrystic quartz in the tonalite and the quartz veins cross-cutting the diorite and overlying pyroclastic rocks. The quartz eyes show a complex growth history with zones of dissolution and recrystallisation. Skeletal quartz crystals also have complex zoning and are outlined by myrmekitic textures and/or dendritic overgrowths with the groundmass (granophyric textures). These features form in granites due to undercooling during shallow magmatic emplacement and are often associated with the exsolution of a volatile phase. Cathodoluminescence indicates that the edges of the quartz veins are lined by euhedral crystals, perpendicular to the vein wall that crystallised early in the vein history. A second generation of mosaic anhedral quartz fills the vein centres. Intermediate density (defined by a salinity of 12 wt% NaCl) pseudo-secondary fluid inclusions trapped in quartz phenocrysts and silicification zone, homogenised at temperatures >500C, and ~400C, respectively. They are inferred to represent subsolvus fluid conditions. Vapour-rich inclusions (containing liquid with ~1 wt% NaCl) and high density (48 wt% NaCl) fluid inclusions with homogenisation temperatures >500C are present in the quartz phenocrysts and veins, and are inferred to represent the transition across the solvus into the two-phase field. The presence of intermediate density, brines and vapour-rich fluids inclusions in vein quartz and phenocrysts is consistent with the intrusion becoming volatile-saturated and exsolving a rising supercritical fluid. This subsequently cooled, boiled, and formed a vein stockwork system at >500C and ~ 500bars. These trapped fluids can perhaps be used as analogues of the deep fluids sustaining TVZ geothermal systems.

  2. Fate of trace elements during alteration of uraninite in a hydrothermal vein-type U-deposit from Marshall Pass, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Utsunomiya, Satoshi; Ewing, Rodney C.

    2007-10-01

    Alteration of uraninite from a hydrothermal vein-type U-deposit in Marshall Pass, Colorado, has been examined by electron microprobe analysis in order to investigate the release and migration of trace elements W, As, Mo, Zr, Pb, Ba, Ce, Y, Ca, Ti, P, Th, Fe, Si, Al, during alteration, under both reducing and oxidizing conditions. The release of trace elements from uraninite is used to establish constraints on the release of fission product elements from the UO 2 in spent nuclear fuels. Uraninite occurs with two different textures: (1) colloform uraninite and (2) fine-grained uraninite. The colloform uraninite contains 1.04-1.75 wt% of WO 3, 0.16-1.70 wt% of As 2O 3, 0.06-0.88 wt% of MoO 3; whereas, the fine-grained uraninite retains 2.25-4.93 wt% of WO 3, up to 5.76 wt% of MoO 3, and 0.26-0.60 wt% of As 2O 3. The near constant concentration of incompatible W in the colloform uraninite suggests W-incorporation into the uraninite structure or homogeneous distribution of W-rich nano-domains. Incorporation of W and Mo into the uraninite and subsequent precipitation of uranyl phases bearing these elements are critically important to understanding the release and migration of Cs during the corrosion of spent nuclear fuel, as there is a strong affinity of Cs with W and Mo. Zoning in the colloform texture is attributed to variation in the amount of impurities in uraninite. For unaltered zones, the calculated amount of oxygen ranges from 2.08 to 2.32 [apfu, (atom per formula unit)] and defines the stoichiometry as UO 2+ x and U 4O 9; whereas, for the altered zones of the colloform texture, the oxygen content is 2.37-2.48 [apfu], which is probably due to the inclusion of secondary uranyl phases, mainly schoepite. The supergene alteration resulted in precipitation of secondary uranyl minerals at the expense of uraninite. Four stages of colloform uraninite alteration are proposed: (i) formation of an oxidized layer at the rim, (ii) corrosion of the oxidized layer, (iii) precipitation of U 6+-phases with well-defined cleavage, and (iv) fracture of the uraninite surface along the cleavage planes of the U 6+-phases.

  3. Fluid chemistry and evolution of hydrothermal fluids in an Archaean transcrustal fault zone network: The case of the Cadillac Tectonic Zone, Abitibi greenstone belt, Canada

    USGS Publications Warehouse

    Neumayr, P.; Hagemann, S.G.; Banks, D.A.; Yardley, B.W.D.; Couture, J.-F.; Landis, G.P.; Rye, R.

    2007-01-01

    Detailed fluid geochemistry studies on hydrothermal quartz veins from the Rouyn-Noranda and Val-d'Or areas along the transcrustal Cadillac Tectonic Zone (CTZ) indicate that unmineralized (with respect to gold) sections of the CTZ contained a distinct CO2-dominated, H2S-poor hydrothermal fluid. In contrast, both gold mineralized sections of the CTZ (e.g., at Orenada #2) and associated higher order shear zones have a H2O-CO2 ?? CH4-NaCl hydrothermal fluid. Their CO2/H2S ratios indicate H2S-rich compositions. The Br/Cl compositions in fluid inclusions trapped in these veins indicate that hydrothermal fluids have been equilibrated with the crust. Oxygen isotope ratios from hydrothermal quartz veins in the CTZ are consistently 2??? more enriched than those of associated higher order shear zones, which are interpreted to be a function of greater fluid/rock ratios in the CTZ and lower fluid/rock ratios, and more efficient equilibration of the hydrothermal fluid with the wall rock, in higher order shear zones. An implication from this study is that the lower metal endowment of the transcrustal CTZ, when compared with the higher metal endowment in higher order shear zones (ratio of about 1 : 1000), may be the result of the lack of significant amounts of H2O-H2S rich fluids in most of the CTZ. In contrast, gold mineralization in the higher order shear zones appear to be controlled by the high H2S activity of the aqueous fluids, because gold was likely transported in a bisulfide complex and was deposited during sulfidation reactions in the wall rock and phase separation in the quartz veins. ?? 2007 NRC Canada.

  4. A structural analysis of the Minas da Panasqueira vein network and related fracture generations

    NASA Astrophysics Data System (ADS)

    Jacques, Dominique; Vieira, Romeu; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    The Minas da Panasqueira is a world-class W-Cu-Sn vein-type deposit, situated within the Central Iberian Zone of the Palaeozoic Iberian Massif (Portugal). The deposit consists of a network of subhorizontal, sill-like massive quartz veins situated above the southwestern extremity of a greisen cupola, within regionally metamorphosed, isoclinally folded, lower-greenschist slates and greywackes. The greisen cupola is part of a larger intrusive complex, emplaced during the late- to post-tectonic stage of the Variscan orogeny. The late-Variscan granitoid(s) underlying the Panasqueira deposit is considered to have served as a major metal source. The structure of the network of subhorizontal extension veins, consists of numerous planar vein lobes that are separated by host-rock bridges and merge at branch-points. A structural analysis demonstrates that not only within the Panasqueira mine, but also on a more regional scale, one or more generations of flat-lying fractures are present. The veins clearly exploited these pre-existing discontinuities, as confirmed by (1) the vein geometry being directly influenced by variations in the orientation of the initial fracture sets and (2) the geometry of the rock bridges and overlapping vein morphologies, consistently showing straight-line propagating crack tips. If veining is governed by a preferential, strongly developed anisotropy in the host rock, the hypothesis of vein lobes and rock bridges forming during propagation of the parent crack by tip-line bifurcation and confinement processes (Foxford et al., 2000) does not seem plausible. Instead, we propose that the rock bridges formed from several, initially separate and small veinlets that eventually overlapped in an en echelon arrangement during progressive propagation and inflation. Bending of the rock bridges and incipient vein rotation indicate that veining occurred near the brittle-ductile transition. Using a quantitative analysis of bridge orientations, vein aspect ratios and tip lines, we try to sort out if a dominant σ2 propagation direction, typical for hydrofractures, exists within the vein network. By doing so, we can evaluate whether the subhorizontal vein network formed under a compressive stress regime, or was mainly dictated by the strength anisotropy of the rocks under near-isotropic stress conditions of σhmax ≡ σhmin. The regional dominance of subhorizontal aplites, pegmatites and hydrothermal veins, exploiting subhorizontal fracture networks, occurs over a wide area of more than 100 km2 along the Serra de Estrela granitic massif (Derré et al., 1986). This orientation contrasts with the more common vertical attitude of granite-related hydrothermal veins, observed throughout the Iberian massif. A detailed orientation analysis of the fracture sets should allow to explore the possible causes of this particular late orogenic, flat-lying fracture network related to the granitic intrusion. References Derré, C., Lecolle, M., Roger, G., Tavares de Freitas Carvalho, J., 1986. Tectonics, magmatism, hydrothermalism and sets of flat joints locally filled by Sn-W, aplite-pegmatite and quartz veins, southeastern border of the Serra de Estrela granitic massif (Beira Baixa, Portugal). Ore Geology Reviews 1, 43-56. Foxford, K. A., Nicholson, R., Polya, D. A., and Hebblethwaite, R. P. B., 2000. Extensional failure and hydraulic valving at Minas da Panasqueira, Portugal; evidence from vein spatial distributions, displacements and geometries. Journal of Structural Geology 22, 1065-1086.

  5. The Benedikt hydrothermal system (north-eastern Slovenia)

    NASA Astrophysics Data System (ADS)

    Kralj, Peter; Eichinger, Lorenz; Kralj, Polona

    2009-10-01

    Deep welling in the Benedikt area has proven the existence of recently active hydrothermal system in pre-Tertiary basement composed of banded gneiss, marble and schist originating from a regionally metamorphosed sequence of clastic sediments. Two aquifers with very high fracture porosity were tappedat depths between 1,485-1,530 and 1,848-1,857 m, where the welling stopped owing to a technical failure. The water temperature exceeds 90C, while the yield of 100 l/s is limited only by the well performances. The Na-HCO3 dominated water is classified as a CO2-rich healing mineral water suitable for drinking, bottling and balneology. The free degassing gas is almost pure CO2 (99.9 %) and its ?13C composition indicates volcanic origin. The tapped water is relatively old, probably of Pleistocene age at least, and the planned exploitation must consider reinjection in order to protect this valuable natural resource from overexploitation. This recent hydrothermal system is characterised by dominating vertical circulation of waters and is superimposed on older, already inactive hydrothermal system(s), recognised by veins of either metal sulphides and quartz, or calcite. These vein minerals precipitated from hydrothermal fluids migrating from a deeper source towards the ancient surface through a fracture system, which is now self-sealed already. The distribution of metal sulphides indicates that the source might have been a deep-seated Neogene pluton genetically related to the tonalites and quartz diorites that outcrop in the Pohorje Mountains, or a subvolcanic-level volcanic body related to the Neogene volcanic activity in the Graz Basin.

  6. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in precipitation of uranium minerals. At the deepest exposed levels, wall-rocks were altered to sericite; and uraninite, coffinite, jordisite, fluorite, molybdenite, quartz, and pyrite were deposited in the veins. The fluids were progressively oxidized and cooled at higher levels in the system by boiling and degassing; iron-bearing minerals in wall rocks were oxidized to hematite, and quartz, fluorite, minor siderite, and uraninite were deposited in the veins. Near the ground surface, the fluids were acidified by condensation of volatiles and oxidation of hydrogen sulfide in near-surface, steam-heated, ground waters; wall rocks were altered to kaolinite, and quartz fluorite, and uraninite were deposited in veins. Secondary uranium minerals, hematite, and gypsum formed during supergene alteration later in the Cenozoic when the upper part of the mineralized system was exposed by erosion.

  7. Hydrothermal factors in porosity evolution and caprock formation at the Geysers steam field, California--insight from the Geysers Coring Project

    SciTech Connect

    Hulen, Jeffrey B.; Nielson, Dennis L.

    1995-01-26

    The Department of Energy (DOE)/geothermal industry-sponsored Geysers Coring Project (GCP) has yielded 236.8 m of continuous core apparently spanning the transition between the uppermost Geysers steam reservoir and its caprock. Both zones in the corehole are developed in superficially similar, fractured, complexly veined and locally sericitized, Franciscan (late Mesozoic) graywacke-argillite sequences. However, whereas the reservoir rocks host two major fluid conduits (potential steam entries), the caprock is only sparingly permeable. This discrepancy appears to reflect principally vein texture and mineralogy. Two types of veins are common in the core--randomly-oriented, Franciscan metamorphic quartz-calcite veins; and high-angle, late Cenozoic veins deposited by The Geysers hydrothermal system. The older veins locally contain hydrothermal carbonate-dissolution vugs, which, although concentrated at the larger fluid conduit, are scattered throughout the core. The younger veins, commonly with intercrystalline vugs, consist dominantly of euhedral quartz, calcite, K-feldspar, wairakite, and pyrite--those in the reservoir rock also contain minor epidote and illite. The corresponding caprock veins are devoid of epidote but contain abundant, late-stage, mixed-layer illite/smecite (5-18% smectite interlayers) with minor chlorite/smectite (40-45% smectite interlayers). We suggest that clots of these two expandable clays in the caprock clog otherwise permeable veins and carbonate-dissolution networks at strategic sites to produce or enhance the seal on the underlying steam reservoir. Illite/smectite geothermometry indicates that the SB-15-D caprock clays were precipitated in the approximate temperature range 180-218 C, and those in the reservoir at about 218-238 C. These temperatures, along with occurrence of the clays on commonly etched calcite, K-feldspar, or wairakite, suggest that the clays were precipitated from mildly acidic steam condensate under conditions similar to those now prevailing.

  8. Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemite-komatiite contact at Tarmoola, Western Australia

    USGS Publications Warehouse

    Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A.

    2004-01-01

    Tarmoola is a structurally controlled Archean orogenic gold deposit hosted in greenschist facies metamorphosed komatiite and trondhjemite in the Leonora district of the Eastern Goldfields province, Yilgarn craton. High-grade (>1 g/t Au) orebodies are located in komatiite wall rock adjacent to the eastern and northeastern margins of the asymmetrical, north-south-striking, Tarmoola trondhjemite intrusion. Gold-bearing veins post-date trondhjemite emplacement (ca. 2700 Ma), quartz diorite dikes (ca. 2667 Ma), and regional greenschist facies metamorphism. Textures and crosscutting relationships in gold-bearing veins indicate two stages of hydrothermal fluid infiltration associated with a single gold-related hydrothermal event: a volumetrically dominant, but gold-poor, stage I fluid and a gold-rich stage II fluid. Gold-bearing veins contain stage I milky quartz and pyrite that are overprinted by stage II quartz-ankerite-muscovite-chalcopyrite-sphalerite-galena-gold-tellurides ?? albite ?? chlorite ?? fuchsite ?? epidote ?? scheelite. Stage I hydrothermal alteration assemblages are different in trondhjemite and komatiite due to contrasting reactions between a common ore fluid and disparate wall-rock chemistry. Stage II fluid-wall rock interaction was minor compared to stage I and is indicated by the overprinting of stage I mineral assemblages by stage II microveins. Wall-rock alteration proximal to veins in trondhjemite is characterized by replacement of igneous plagioclase, amphibole, biotite, and metamorphic chlorite by hydrothermal quartz, muscovite, ankerite, calcite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold, whereas in proximal alteration in komatiite, metamorphic chlorite and talc are replaced by ankerite, quartz, muscovite, albite, chlorite, fuchsite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold. The stage II fluid was enriched in H2O, CO2, Si, Ca, K, Na, S, Au, Ag, Cu, Pb, W, Bi, As, Mo, Zn, and Te. Based on fluid inclusion studies and stage II mineral equilibria, gold deposited from a homogeneous, neutral to slightly alkaline (pH 5.1-5.5), reduced, low-salinity (<5.5 wt % NaCl equiv) fluid that had a bulk composition of 78 mole percent H2O and 21 mole percent CO2, and trace amounts of CH4, C2H6, H2, Ar, H2S, and He. Gold deposition occurred at 300?? ?? 50??C and 0.5 to 3.0 kbars. Assuming lithostatic fluid pressures, gold precipitated at a 2- to 10-km depth. Stage II gray quartz ??18Ofluid values range from 5.9 to 7.5 per mil, whereas ??Dfluid values calculated from the dehydration of muscovite grains and measured directly from bulk fluid inclusion analyses of stage II gray quartz have ranges of -9 to -35 and -27 to -28 per mil, respectively. Hydrothermal ore fluids were transported from greater crustal depths to the site of gold deposition during the district-scale D3 event by shallowly W dipping, reverse brittle-ductile shear zones in supracrustal rock and along the steeply east dipping trondhjemite contact. Associated subhorizontal east-west shortening caused the reactivation of the eastern trondhjemite margin and subparallel foliation, which facilitated the transport of hydrothermal fluids and the generation of gold-bearing veins and hydrothermal alteration zones in komatiite. East-west-striking fractures in trondhjemite aided the lateral migration of ore fluids away from trondhjemite margins and the formation of east-west-striking gold-bearing veins and broad alteration zones. Gold was most likely transported in the stage II fluid as bisulfide complexes. The sulfidation of trondhjemite and komatiite wall rock by the stage II fluid caused the destabilization of An bisulfide complexes and gold deposition. Potassium, Ca, and CO2 metasomatism of komatiite wall rock may have enhanced gold deposition via the acidification of the stage II fluid. The physicochemical characteristics of the Tarmoola ore fluid and relative timing of gold mineralization are consistent with the Yilgarn-wide,

  9. Mineralogy and geochemistry of Gabal El-Ineigi Granite and associated fluorite veins, Central Eastern Desert, Egypt: application of fluid inclusions to fluorite genesis

    NASA Astrophysics Data System (ADS)

    Salem, I. A.; Abdel-Moneum, A. A.; Shazly, A. G.; El-Shibiny, N. H.

    2001-01-01

    Geological, mineralogical, geochemical and fluid inclusion studies were carried out on both the granitic rocks at the Gabal El-Ineigi Pluton and associated fluorite veins in order to examine their genetic relations. Gabal El-Ineigi rocks range from adamellite to granite composition. They originated from metaluminus calc-alkaline magma having strong alkaline tendencies. They have similar characteristics to I-type granites and were probably generated within an extensional environment due to crustal relaxation during a post-collision episode (< 600 Ma). Studies of fluid inclusions from vein fluorite and quartz show that they are aqueous with phases (L + V) and that secondary inclusions predominate. The fluorite mineralisation probably took place at temperatures of > 250°C; the fluid salinites ranged up to 21.4 equiv. wt% NaCl. The quartz veins were formed at lower temperatures (˜ 120°C) and fluid salinites ranging up to 10.36 equiv. wt% NaCl. Rare earth element abundances in fluorite are variable and the relation between Tb/Ca versus Tb/La confirms a hydrothermal origin for fluorite. The negative Ce anamolies indicate high O fugacities at the source of the hydrothermal fluids. The negative Eu anomalies suggest equilibration of the hydrothermal fluids with the host granites.

  10. Geology, alteration, age, and origin of iron oxide-apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Ghaderi, Majid; Corfu, Fernando; Neubauer, Franz; Bernroider, Manfred; Prokofiev, Vsevolod; Honarmand, Maryam

    2014-02-01

    Iron oxide-apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U-Pb dating of monazite inclusions in the apatite indicates an age of 39.99 ± 0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide-apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic-hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.

  11. Age and origin of base and precious metal veins of the Coeur d'Alene mining district, Idaho

    USGS Publications Warehouse

    Fleck, R.J.; Criss, R.E.; Eaton, G.F.; Cleland, R.W.; Wavra, C.S.; Bond, W.D.

    2002-01-01

    Ore-bearing quartz-carbonate veins of the Coeur d'Alene mining district yield 87Sr/86Sr ratios of 0.74 to >1.60 for low Rb/Sr, carbonate gangue minerals, similar to current ranges measured in Middle Proterozoic, high Rb/Sr rocks of the Belt Supergroup. Stable isotope and fluid inclusion studies establish a genetic relationship between vein formation and metamorphic-hydrothermal systems of the region. These extraordinary 87Sr/86Sr ratios require accumulation of radiogenic 87Sr in a high Rb/Sr system over an extended period prior to incorporation of Sr into the hydrothermal veins. Evaluation of the age and composition of potential sources of highly radiogenic Sr indicates that the ore-bearing veins of the Coeur d'Alene district formed during the Cretaceous from components scavenged from rocks of the Belt Supergroup, the primary host rocks of the district. Proterozoic Pb isotope ratios observed in galena from many Coeur d'Alene veins were established when Pb separated from uranium during deposition or diagenesis of the Belt Supergroup at 1400 to 1500 Ma, possibly as disseminated syngenetic deposits. K-Ar and Rb-Sr apparent ages and ??18O values of Belt Supergroup rocks decrease from the Coeur d'Alene district toward the Idaho and Kaniksu batholiths, approximately normal to the trends of metamorphic isograds, fold axes, foliation, and the major reverse faults of the district. Isoclinal folding, thrust faulting, high-temperature metamorphism, granitic plutonism, and regional-scale metamorphic-hydrothermal activity is documented in the region between 140 and 45 Ma, representing the only such combination of events in the Coeur d'Alene region subsequent to about 1300 Ma. The Sr and oxygen results and geologic evidence favor formation of the ore-bearing carbonate veins by fluids related to a complex metamorphic-hydrothermal system during the Cretaceous. Pb with Proterozoic isotopic compositions was probably mobilized and incorporated like other metals into the hydrothermal veins during this event. The ore-bearing veins were sheared and displaced during early Tertiary northwest-trending dextral strike-slip faulting along the Osburn fault and related structures of the Lewis and Clark line.

  12. Varicose Veins

    MedlinePLUS

    ... the valves are weak or damaged, blood can back up and pool in your veins. This causes ... pregnancy. Doctors often diagnose varicose veins from a physical exam. ... to remove them. NIH: National Heart, Lung, and Blood Institute

  13. Lithogeochemistry and fluid inclusions of an Au-Ag vein deposit in a granodiorite intrusive

    SciTech Connect

    Hahn, R.; Ikramuddin, M.

    1985-01-01

    Forty-eight samples of altered and unaltered rocks and quartz veins from the Acme mine in northeast Washington, an Au-Ag vein deposit in a granodiorite intrusive, have been analyzed for SiO/sub 2/, Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, Feo, MgO, CaO, Na/sub 2/O, K/sub 2/O, TiO/sub 2/, MnO, P/sub 2/O/sub 5/, H/sub 2/O, CO/sub 2/, Ag, Au, Ba, Cu, Pb, Rb, Sr, Tl, and Zn. A comparison of major and trace elements shows that the altered granodiorite is enriched in SiO/sub 2/, Fe/sub 2/O/sub 3/, K/sub 2/O, Ag, Au, Ba, Cu, Pb, Rb, Tl, and Zn and depleted in Al/sub 2/O/sub 3/, FeO, MgO, CaO, Na/sub 2/O, TiO/sub 2/, MnO, P/sub 2/O/sub 5/, and Sr. The average contents of Au in unaltered and altered granodiorite and quartz veins are 9 ppb. 270 ppb and 1020 ppb respectively. The average Ba/Tl ratio in the altered samples decrease and average Rb/Sr and Tl/Sr ratios increase. K, Rb, and Tl are enriched in the altered granodiorite by factors of 1.5, 1.6, and 1.4 respectively. Tl is not enriched relative to Rb and K in the altered samples due to the high temperature of the deposit. The Ba/Tl, K/Tl and K/Rb ratios do not show complete separation of altered from unaltered samples. However, the Ba/Tl and K/Tl ratios in the quartz vein are significantly lower than the unaltered and altered granodiorite. This is due to the enrichment of Tl over K and Rb in the quartz veins. The Rb/Sr and Tl/Sr ratios are higher in the altered granodiorite and quartz veins compared to unaltered samples. The enrichment of Tl and presence of low Ba/Tl and high Rb/Sr and Tl/Sr ratios in a granodiorite indicate that the rocks are hydrothermally altered and represent a possible Au-Ag target.

  14. Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks

    USGS Publications Warehouse

    Stakes, D.S.; O'Neil, J.R.

    1982-01-01

    Mineralogical and isotopic variations observed in altered glassy and crystalline rocks from the East Pacific Rise and the Mid-Atlantic Ridge provide information about the temperatures of alteration and seawater/rock ratios for various hydrothermal regimes within the oceanic crust. A systematic increase in alteration temperature is evident for the glassy rocks in the sequence: (1) nontronite and celadonite vesicle fillings (35??C), (2) saponite-rich pillow breccias (130-170??C), (3) calcite-rich greenstone breccias and epidote-rich greenstone (200-350??C). These results include the highest temperatures thus far reported for saponite formation. The "seawater-dominated" hydrothermal alteration process that formed the saponite-rich pillow breccias is characterized by high water/rock ratios (>50:1), low to moderate temperatures, a seawater origin of most of the carbon in vein calcites (??13 C ??? 0) and the predominance of Fe-rich saponite and calcite as secondary phases. Greenstones (chlorite-quartz-epidote) and greenstone breccias (chlorite-quartz-albite-calcite) are altered in a "rock-dominated" system with lower water/rock ratios (50:1 to < 1:1), higher temperatures, and vein calcites with carbon that is principally of magmatic origin (??13 C ??? -4). The crystalline rocks (diabase, gabrro, and metagabbro) are affected to varying degrees by pervasive high-temperature seawater interactions that commence soon after solidification, producing varying proportions of fine-grained secondary minerals including talc, smectite, chlorite, vermiculite, actinolite, and sodic plagioclase. Hydrothermal solutions, derived from alteration of the crystalline rocks, are of the appropriate temperature and isotopic composition to alter the overlying glassy rocks to the observed mineralogies as well as being the source of metal-rich deposits associated with the oceanic spreading centers. ?? 1982.

  15. Geology and hydrothermal alteration at the Madh adh Dhahab epithermal precious-metal deposit, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Doebrich, J.L.; LeAnderson, J.P.

    1984-01-01

    Vein-related alteration consisting of quartz-sericite-pyrite, chloritic, argillic, and silicic halos was superimposed on broad zones of pervasive silicic, potassic, and argillic alteration that surrounds the rhyolite intrusive body. Quartz-sericite-pyrite alteration associated with the earliest stage of mineralization was followed by broad, pervasive, stratigraphically controlled potassic alteration. Subsequent mineralization was accompanied by quartz-sericitepyrite alteration and was followed by the main stage of mineralization that formed strong chloritic alteration halos. Development of broad zones and halos of argillic alteration also may have been related to the main stage of mineralization. Development of silicic halos was characteristic of the late stages of mineralization. Broad, pervasive propylitic alteration was then superimposed on all alteration types and represents cooling and inward encroachment of the hydrothermal system. All alteration, except the early silicic alteration is interpreted to have been related to circulating meteoric fluids heated by the rhyolite.

  16. Shock metamorphism of deformed quartz

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  17. Chabazite in spodumene-bearing Alpine-type fissure veins from Hiddenite, North Carolina, USA

    NASA Astrophysics Data System (ADS)

    Wise, Michael A.

    2009-07-01

    Alpine-type fissure vein mineralization in the Hiddenite area of western North Carolina, USA consists mostly of quartz, but locally contains Cr-bearing beryl (emerald) or Cr-bearing spodumene (hiddenite). These gem minerals occur in mineral-lined cavities and may be accompanied by euhedral crystals of quartz, calcite, muscovite, rutile, albite, pyrite, siderite and dolomite. Chabazite-Ca occurs as a late stage phase in spodumene-bearing veins, but is absent in emerald-bearing veins. Chabazite-Ca occurs as simple penetrating twins of pseudocubic rhombohedra and as the lens-shaped variety, phacolite. Chabazite-Ca from Hiddenite contains minor amounts of Na, Mg, Fe and K. Phacolitic chabazite-Ca shows Fe-enriched but Mg-depleted cores relative to the rims. Chemical zoning is absent in rhombohedral chabazite. The Hiddenite chabazite apparently precipitated under low temperature (< 250C) and low pressure (< 2 kbar) conditions during the waning stages of crystallization of an alkaline hydrothermal fluid.

  18. AGE AND ORIGIN OF BASE- AND PRECIOUS-METAL VEINS OF THE COEUR D'ALENE MINING DISTRICT, IDAHO

    SciTech Connect

    Fleck, R J; Criss, R E; Eaton, G F; Cleland, R W; Wavra, C S; Bond, W D

    2000-11-07

    Ore-bearing quartz-carbonate veins of the Coeur d'Alene mining district yield {sup 87}Sr/{sup 86}Sr ratios of 0.74 to >1.60 for low-Rb/Sr, carbonate gangue minerals, similar to current ranges measured in Middle Proterozoic, high-Rb/Sr rocks of the Belt Supergroup. Stable-isotope and fluid-inclusion studies establish a genetic relationship between vein formation and metamorphic-hydrothermal systems of the region. These extraordinary {sup 87}Sr/{sup 86}Sr ratios require accumulation of radiogenic {sup 87}Sr in a high Rb/Sr system over an extended period prior to incorporation of Sr into the veins by hydrothermal processes. Evaluation of the age and composition of potential sources of highly radiogenic Sr indicates that the ore-bearing veins of the Coeur d'Alene district formed within the last 200 Ma from components scavenged from sedimentary and metasedimentary rocks of the Belt Supergroup, the primary host-rocks of the district. These results are consistent with a Cretaceous or Early Tertiary age for these veins. Pb-Zn deposits that yield Pb isotope, K-Ar, and Ar-Ar results indicative of a Proterozoic age probably formed during deposition or diagenesis of the Belt Supergroup at 1350-1500 Ma, possibly as Sullivan-type syngenetic deposits. K-Ar and Rb-Sr apparent ages and {delta}{sup 18}O values of Belt Supergroup rocks decrease southward from the Coeur d'Alene district toward the Idaho batholith, normal to the trends of metamorphic isograds, fold axes, foliation, and the major reverse faults of the district. Isoclinal folding, thrust faulting, high-temperature metamorphism, granitic plutonism, and regional-scale metamorphic-hydrothermal activity is documented in the region between 140 Ma and 45 Ma, but no similar combination of events is recognized for Late Proterozoic time. Combined with Sr results from the veins, the evidence strongly favors formation of the ore-bearing carbonate veins of the district by fluids related to a complex metamorphic-hydrothermal system during Cretaceous and/or early Tertiary time. Proterozoic Pb-Zn deposits were probably deformed, remobilized along younger structures, and incorporated into the younger hydrothermal deposits during this event.

  19. Hydrothermal alteration and evolution of the Ohakuri hydrothermal system, Taupo volcanic zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Henneberger, R. C.; Browne, P. R. L.

    1988-05-01

    Erosion and excavations at Ohakuri in the Taupo Volcanic zone have exposed the upper portion (100-150 m) of a hydrothermal system that was active sometime between 700,000 and 160,000 years ago. Extensive hydrothermal alteration occurred within a host sequence of young, relatively undeformed, chemically and lithologically similar unwelded rhyolitic ignimbrite and air-fall tuffs. Mapping and petrologic work have identified six distinct alteration types. An early event formed a concentrically zoned suite of alteration through the pervasive movement of alkaline chloride type water. In the innermost zone, primary rock components were almost entirely converted to quartz + adularia illite hematite leucoxene. Mineralized veins and breccias of quartz pyrite adularia chlorite formed here in response to episodic hydraulic fracturing. This zone grades outward and upward into a zone of less intense, lower rank alteration with a mordenite + clinoptilolite + smectite + opal hematite assemblage, then a zone of weak clay alteration and into fresh rock. Calcite is conspicuously absent from the entire suite. Acid-sulphate type water, formed from steam-condensate, dominated the shallow activity in a second stage of alteration that followed local erosion. Widespread but discontinuous alteration converted the ignimbrite to kaolinite + opal hematite, with alunite occurring in the more intense zones. This alteration locally overprints the early alkali-chloride produced suite, but the focus of the second-stage activity was north of the focus of the older event. Scattered opaline sinters and silicified surficial deposits are products of either still later activity or the waning part of the second stage. Chemical analysis shows that the various alteration types have characteristic patterns of major element addition and removal; these reflect the key hydrothermal mineral reactions that formed the new assemblages. Quartz-adularia alteration involved mainly silicification, dehydration and cation exchange (K + for Na 2+, H +, Ca 2+, Mg 2+), whereas alteration in the mordenite zone was mostly a moderate hydration process. Kaolinite alteration involved strong hydration, hydrolysis and redistribution of silica. Trace elements show varying degrees of mobility and correlation with major elements. Alteration features identify the important upflow zones, zones of mixing between hydrothermal and shallow groundwater, and changes in alkali chloride water level. They also reflect a transition from diffuse to channel flow as sealing eliminated original rock porosity, and led to hydraulic fracturing which maintained fracture permeability in the system. Mineralogy and fluid inclusion studies indicate that the primary fluid at now-exposed levels was a high-pH (7-8), low-CO 2 and low-H 2S water cooler than 200C, probably modified by boiling at depth.

  20. Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America).

    PubMed

    Bersani, D; Salvioli-Mariani, E; Mattioli, M; Menichetti, M; Lottici, P P

    2009-08-01

    Fluid inclusions in the quartz crystals present in gold-rich veins from central Honduras have been studied by means of micro-thermometry and micro-Raman spectroscopy in order to provide information on the physico-chemical conditions and chemical composition of the mineralizing fluids. The use of a confocal micro-Raman apparatus allowed to obtain information on the fluid composition, in particular on the gas phase, minimizing the contributions of the host matrix to the Raman signal. The samples studied were collected from an area (Lepaguare mining district, Northern-Central Honduras) rich in ore deposits due to the Cenozoic magmatic activity, where the gold and sulphide mineralization is connected with a system of quartz veins (few decimetres thick) occurring in low-grade metamorphic rocks and produced by hydrothermal fluids. The quartz crystals present in the gold-rich veins often contain fluid inclusions. Four types of fluid inclusions have been observed, but their assemblage in the same clusters and fracture systems, as well as their comparable salinity and homogenization data, suggest that they have the same origin. Micro-thermometry and Raman spectroscopy provide a composition of the mineralizing fluids attributable to the system H(2)O-NaCl-KCl-CO(2)-CH(4), with temperature and pressure intervals of 210-413 degrees C and 1050-3850 bar, respectively. These data agree with an epigenetic origin of the gold deposit (depth < 6 km) related to granitoid or granodiorite intrusions associated to orogenic environments. PMID:19117796

  1. Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America)

    NASA Astrophysics Data System (ADS)

    Bersani, D.; Salvioli-Mariani, E.; Mattioli, M.; Menichetti, M.; Lottici, P. P.

    2009-08-01

    Fluid inclusions in the quartz crystals present in gold-rich veins from central Honduras have been studied by means of micro-thermometry and micro-Raman spectroscopy in order to provide information on the physico-chemical conditions and chemical composition of the mineralizing fluids. The use of a confocal micro-Raman apparatus allowed to obtain information on the fluid composition, in particular on the gas phase, minimizing the contributions of the host matrix to the Raman signal. The samples studied were collected from an area (Lepaguare mining district, Northern-Central Honduras) rich in ore deposits due to the Cenozoic magmatic activity, where the gold and sulphide mineralization is connected with a system of quartz veins (few decimetres thick) occurring in low-grade metamorphic rocks and produced by hydrothermal fluids. The quartz crystals present in the gold-rich veins often contain fluid inclusions. Four types of fluid inclusions have been observed, but their assemblage in the same clusters and fracture systems, as well as their comparable salinity and homogenization data, suggest that they have the same origin. Micro-thermometry and Raman spectroscopy provide a composition of the mineralizing fluids attributable to the system H 2O-NaCl-KCl-CO 2-CH 4, with temperature and pressure intervals of 210-413 C and 1050-3850 bar, respectively. These data agree with an epigenetic origin of the gold deposit (depth < 6 km) related to granitoid or granodiorite intrusions associated to orogenic environments.

  2. Experimental and spectroscopic constraints on the solubility of hydroxyl in quartz

    NASA Astrophysics Data System (ADS)

    Rovetta, Mark R.

    1989-06-01

    Treatment of natural quartz under hydrogen fugacities (H 2) buffered by iron-wstite-fluid (OH) or nickel-nickel oxide-fluid(OH) at 1.5 GPa and 900-1050C introduces two types of hydroxyl defects into the mineral lattice: (1) interstitial protons screening Al in Si sites, giving rise to sharp IR peaks near 3400 cm -1, and (2) hydroxyl defects characteristic of synthetic quartz and amethyst, giving rise to sharp IR peaks near 3600 cm -1 and broad-band absorbance. The latter type of IR absorbance has been assigned to SiOH and H 2O defects believed to be responsible for the hydrolytic weakening of quartz single crystals. Quartz treated in H 2-buffered experiments at 900C, 1.5 GPa, and H 2 ? 15 MPa incorporated 10 2-10 3 OH per 10 6 Si in uncracked regions of the sample after 20 h of treatment. Unbuffered experiments performed by other investigators at 900C, 1.5 GPa, and H 2 < 0.05 MPa incorporated < 100 per OH 10 6 Si after treatment for 43 days and showed no spectroscopic evidence for the presence of SiOH or H 2O defects. A thermodynamic model is proposed for the formation of hydroxyl defects in quartz that can account for H 2 dependence. Hydroxyl defects form by the diffusion of hydrogen into the quartz lattice and the subsequent reaction of hydrogen interstitials with lattice oxygen. No diffusion of oxygen is required; therefore, this mechanism can produce hydroxyl defects in quartz crystals without the additional assumption of H 2O transport through microfractures. Equilibrium concentrations of three model hydroxyl defects in quartz, [Si O?OH] t, [(Al)' SiO?OH] t, and [HOH] O, are calculated as functions of H 2 and temperature at a total pressure of 1.5 GPa. Calculated X OH = (T, H2) surfaces fit experimental data from three laboratories and it is possible to attribute much interlaboratory variation to differences in experimental H 2. Comparing the model with an empirical Al-quartz geothermometer shows that quartz from hydrothermal veins, contact metamorphic zones, and high-grade gneisses equilibrated under hydrogen fugacities near nickel-nickel oxide-fluid (OH). Therefore, mineral properties strongly influenced by the concentration of hydroxyl defects, such as plasticity and self-diffusion, need to be examined in experiments buffered to relatively high H 2 in order to reproduce crustal conditions.

  3. Stratigraphic development and hydrothermal activity in the central western Cascade Range, Oregon

    SciTech Connect

    Cummings, M.L.; Bull, M.K. ); Pollock, J.M. ); Thompson, G.D. )

    1990-11-10

    Two volcanic sequences bounded by erosional unconformities compose the stratigraphy of the North Santiam mining district, Western Cascade Range, Oregon. Diorite, grandodiorite, and leucocratic quartz porphyry dikes, stocks, and sills intrude the breccias, flows, and tuffs of a volcanic center in the older Sardine Formation. Tourmaline-bearing breccia pipes are associated with the porphyritic granodiorite intrusions. An erosional unconformity separates the Sardine Formation from the overlying Elk Lake formation. The alteration patterns in the two formations are consistent with the development of hydrothermal systems during the eruption of each formation. However, the development of the two hydrothermal systems is separated by a period of erosion of the older volcanic pile. Early formation of mineralization that resembles porphyry copper deposits occurred within the Sardine Formation, and later, after eruption of the Elk Lake formation, epithermal veins and alteration developed along faults, fractures, and the margins of dikes in the Sardine Formation.

  4. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal systemMorococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendez, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontbot, Llus

    2015-02-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 0.2 Ma and a molybdenite Re-Os age at 9.26 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho by more than 0.5 Ma. Polymetallic veins (5.78 0.10 and 5.72 0.18 Ma; 40Ar/39Ar ages) and the Manto Italia polymetallic replacement bodies (6.23 0.12 and 6.0 0.2 Ma; 40Ar/39Ar ages) are interpreted to have been formed by a single hydrothermal pulse. Hydrothermal activity ceased after the formation of the base metal vein and replacement bodies. Overlapping monazite U-Pb (8.26 0.18 Ma) and muscovite 40Ar/39Ar ages (8.1 0.5 Ma) from the early base metal stage of one Cordilleran vein sample in the Sulfurosa area provide evidence that a discrete hydrothermal pulse was responsible for polymetallic vein formation 2.6 Ma prior to the district-wide polymetallic veins. These ages pre-date those of Toromocho porphyry Cu-Mo formation and show that Zn-Pb-Ag-Cu mineralisation formed during several discrete magmatic-hydrothermal pulses in the same district.

  5. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho by more than 0.5 Ma. Polymetallic veins (5.78 ± 0.10 and 5.72 ± 0.18 Ma; 40Ar/39Ar ages) and the Manto Italia polymetallic replacement bodies (6.23 ± 0.12 and 6.0 ± 0.2 Ma; 40Ar/39Ar ages) are interpreted to have been formed by a single hydrothermal pulse. Hydrothermal activity ceased after the formation of the base metal vein and replacement bodies. Overlapping monazite U-Pb (8.26 ± 0.18 Ma) and muscovite 40Ar/39Ar ages (8.1 ± 0.5 Ma) from the early base metal stage of one Cordilleran vein sample in the Sulfurosa area provide evidence that a discrete hydrothermal pulse was responsible for polymetallic vein formation 2.6 Ma prior to the district-wide polymetallic veins. These ages pre-date those of Toromocho porphyry Cu-Mo formation and show that Zn-Pb-Ag-Cu mineralisation formed during several discrete magmatic-hydrothermal pulses in the same district.

  6. The origin of vein-type copper-lead-zinc deposits Host in Palaeozoic metamorphic rocks at the Southeast Anatolian Orogenic Belt (Kplce-Ad?yaman, Southeastern Turkey)

    NASA Astrophysics Data System (ADS)

    Aky?ld?z, Mustafa; Y?ld?r?m, Nail; Gren, Burcu; Y?ld?r?m, Esra; Ilhan, Semiha

    2015-02-01

    The study area is located around the town of Kplce between the elikhan and Sincik districts (Ad?yaman, Turkey). Mineralisations are located at the Southeast Anatolian Orogenic Belt. Despite many differential units, especially in age and lithology, that coexist in the region, mineralisation and alteration are only developed in partly concordant/partly disconcordant veins/veinlets of quartz within chlorite schists, sericite schists, mica schists/mica gneisses, quartz schists and metadiabases of the Palaeozoic Ptrge metamorphics. Pyrite, chalcopyrite and sphalerite are dominant minerals in mineral paragenesis. Chalcocite, covellite and carollite are also found in trace amounts. Quartz, calcite, sericite and chlorite are the gang minerals. Silicification, sericitisation, chloritisation, epidotisation and limonitisation are widespread in limited areas around ore veins. The estimated Co/Ni (1.8-4.3) ratio in pyrites belonging to mineralisation deposits indicates that mineralisation in the region is related to magmatic hydrothermal deposits. In addition, REE (rare earth element) contents of mineralisation deposits in chondrite-normalised diagrams are enriched and show a similar trend to that of chondritic values. This indicates that metals that form mineralisation deposits are related to magmatic rocks. Values of ?34S estimated in the Kplce region vary between 1.6 and 2.34. Values of ?34S close to 0 indicate that the sulphur forming the mineralisation is of magmatic origin. In addition, ?18O values vary between 8 and 10.8 and are consistent with magmatic water. Analyses of the fluid inclusions in quartz samples from mineralisation deposits were performed, and the homogenisation temperature was estimated to be between 90 and 150 C. These temperature values can be explained by the mixing of a solution with surface water. It was determined that mineralisation deposits were vein-type hydrothermal deposits that had developed due to Middle Eocene acidic-intermediate intrusions intersecting Palaeozoic-aged Ptrge metamorphics, and that they exhibited similar characteristics to other mineralisation deposits observed along the Southeastern Anatolian Orogenic Belt.

  7. Vein Problems Related to Varicose Veins

    MedlinePLUS

    ... lakes are varicose veins that appear on the face and neck. Reticular veins are flat blue veins often seen behind the knees. Hemorrhoids are varicose veins in and around the ... STATEMENT FOIA OIG CONTACT US National ...

  8. The interplay of evolved seawater and magmatic-hydrothermal fluids in the 3.24 Ga panorama volcanic-hosted massive sulfide hydrothermal system, North Pilbara Craton, Western Australia

    USGS Publications Warehouse

    Drieberg, Susan L.; Hagemann, Steffen G.; Huston, David L.; Landis, Gary; Ryan, Chris G.; Van Achterbergh, Esmé; Vennemann, Torsten

    2013-01-01

    The ~3240 Ma Panorama volcanic-hosted massive sulfide (VHMS) district is unusual for its high degree of exposure and low degree of postdepositional modification. In addition to typical seafloor VHMS deposits, this district contains greisen- and vein-hosted Mo-Cu-Zn-Sn mineral occurrences that are contemporaneous with VHMS orebodies and are hosted by the Strelley granite complex, which also drove VHMS circulation. Hence the Panorama district is a natural laboratory to investigate the role of magmatic-hydrothermal fluids in VHMS hydrothermal systems. Regional and proximal high-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by chlorite-quartz ± albite assemblages, with lesser low-temperature sericite-quartz ± K-feldspar assemblages. These assemblages are typical of VHMS hydrothermal systems. In contrast, the alteration assemblages associated with granite-hosted greisens and veins include quartz-topaz-muscovite-fluorite and quartz-muscovite (sericite)-chlorite-ankerite. These vein systems generally do not extend into the overlying volcanic pile. Fluid inclusion and stable isotope studies suggest that the greisens were produced by high-temperature (~590°C), high-salinity (38–56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high δ18O (9.3 ± 0.6‰). These fluids are compatible with the measured characteristics of magmatic fluids evolved from the Strelley granite complex. In contrast, fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90°–270°C), lower salinity (5.0–11.2 wt % NaCl equiv), with lower densities (0.88–1.01 g/cm3) and lower δ18O (−0.8 ± 2.6‰). These fluids are compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the granite complex near the contact with the volcanic pile, were intermediate in temperature and isotopic composition between the greisen and volcanic pile fluids (T = 240°–315°C; δ18O = 4.3 ± 1.5‰) and are interpreted to indicate mixing between the two end-member fluids. Evidence of mixing between evolved seawater and magmatic-hydrothermal fluid within the granite complex, together with the lack of evidence for a magmatic component in fluids from the volcanic pile, suggest partitioning of magmatic-hydrothermal from evolved seawater hydrothermal systems in the Panorama VHMS system. This separation is interpreted to result from either the swamping of a relatively small magmatic-hydro-thermal system by evolved seawater or density contrasts precluding movement of magmatic-hydrothermal fluids into the volcanic pile. Variability in the salinity of fluids in the volcanic pile, combined with evidence for mixing of low- and high-salinity fluids in the massive sulfide lens, is interpreted to indicate that phase separation occurred within the Panorama hydrothermal system. Although we consider this phase separation to have most likely occurred at depth within the system, as has been documented in modern VHMS systems, the data do not allow the location of the inferred phase separation to be determined.

  9. Characteristics of hydrothermal alteration mineralogy and geochemistry of igneous rocks from the epithermal Co-O mine and district, Eastern Mindanao (Philippines)

    NASA Astrophysics Data System (ADS)

    Sonntag, Iris; Hagemann, Steffen

    2010-05-01

    Detailed petrographic as well as hyperspectral analyses using PIMA (Portable Infrared Mineral Analyser) and geochemical (major, trace and rare earth elements) studies were conducted on samples of the epithermal, low sulfidation Co-O mine (47,869 ounces gold produced in 2009 with an average grade of 13.3 g/t gold) and district in Eastern Mindanao (Philippines). The aims of the study were to unravel the petrogenetic origin of the various volcanic (host rocks) and intrusive rocks (potential fluid driver) as well as their relationship and influence on the hydrothermal alteration zoning and fluid chemistry. The auriferous veins at the Co-O mine were formed during two hydrothermal stages associated with the district wide D1 and D2 deformation events. Gold in stage 1 quartz veins is in equilibrium with galena and sphalerite, whereas in stage 2 it is associated with pyrite. Auriferous quartz veins of stage 1 reflect temperatures below 250° C or strong variations in pH and fO2 at higher temperatures, due to potential involvement of acidic gas or meteoric water. Cathodoluminescense studies revealed strong zonation of quartz associated with Au, presumably related to changes in the Al content, which is influenced by the pH. Plumose textures indicate times of rapid deposition, whereas saccharoidal quartz grains are related to potential calcite replacement. The geology of the Co-O mine and district is dominated by Miocene volcanic rocks (basic to intermediate flows and pyroclastics units), which are partly covered by Pliocene volcanic rocks and late Oligocene to Miocene limestones. The Miocene units are intruded by diorite (presumably Miocene in age). The epithermal mineralization event may be related to diorite intrusions. The geochemistry of all igneous rocks in the district is defined by a sub-alkaline affinity and is low to medium K in composition. Most units are related to a Miocene subduction zone with westward subduction, whereas the younger Pliocene rocks are related to the currently active east dipping subduction zone. At the Co-O mine the proximal hydrothermal alteration zone is defined by phyllic to argillic alteration displayed in sericitized to carbonated feldspar, quartz and chloritized amphiboles surrounded by a distal alteration halo displaying propylitic alteration. The alteration geochemistry of these hydrothermal altered rocks is defined by an increase in K2O and Na2O and decrease in Al2O3. However, adularia usually associated with hydrothermal alteration in low epithermal Au quartz veins, has so far not been described, which points to a K-poor magma system. PIMA hydrothermal alteration studies indicate the dominant presence of smectite rather than white mica, which supports the involvement of a K-poor hydrothermal fluid. The epithermal Co-O mine and district displays low to medium potassic magma series and a hydrothermal alteration mineralogy that is K-poor. However, the Co-O mine hosts significant amounts of epithermal gold mineralization. The recognition of poor K melts and hydrothermal alteration mineralogy associated with distinct low-sulfidation epithermal gold mineralization has important implication for exploration in the Co-O district and, potentially, also in other areas in the Philippines and worldwide.

  10. A Hydrothermal System Associated with the Siljan Impact Structure, Sweden-Implications for the Search for Fossil Life on Mars

    NASA Astrophysics Data System (ADS)

    Hode, Tomas; von Dalwigk, Ilka; Broman, Curt

    2003-06-01

    The Siljan ring structure (368 +/- 1.1 Ma) is the largest known impact structure in Europe. It is a 65-km-wide, eroded, complex impact structure, displaying several structural units, including a central uplifted region surrounded by a ring-shaped depression. Associated with the impact crater are traces of a post-impact hydrothermal system indicated by precipitated and altered hydrothermal mineral assemblages. Precipitated hydrothermal minerals include quartz veins and breccia fillings associated with granitic rocks at the outer margin of the central uplift, and calcite, fluorite, galena, and sphalerite veins associated with Paleozoic carbonate rocks located outside the central uplift. Two-phase water/gas and oil/gas inclusions in calcite and fluorite display homogenization temperatures between 75C and 137C. With an estimated erosional unloading of ~1 km, the formation temperatures were probably not more than 10-15C higher. Fluid inclusion ice-melting temperatures indicate a very low salt content, reducing the probability that the mineralization was precipitated during the Caledonian Orogeny. Our findings suggest that large impacts induce low-temperature hydrothermal systems that may be habitats for thermophilic organisms. Large impact structures on Mars may therefore be suitable targets in the search for fossil thermophilic organisms.

  11. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation.

    PubMed

    Izawa, M R M; Banerjee, Neil R; Osinski, G R; Flemming, R L; Parnell, J; Cockell, C S

    2011-01-01

    Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of active hydrothermal circulation produced primary mineral assemblages, including Fe sulfides, and was succeeded by a period dominated by oxidation and low-temperature hydration of primary minerals by surface waters. Active hydrothermal circulation can enable the rapid delivery of nutrients to microbes. Nutrient availability following the cessation of hydrothermal circulation is likely more restricted; therefore, the biological importance of chemical energy from hydrothermal mineral deposits increases with time. Weathering of primary hydrothermal deposits and dissolution and reprecipitation of mobile weathering products also create many potential habitats for endolithic microbes. They also provide a mechanism that may preserve biological materials, potentially over geological timescales. PMID:21767151

  12. Hydrothermal alteration in basalts from Vargeo impact structure, south Brazil, and implications for recognition of impact-induced hydrothermalism on Mars

    NASA Astrophysics Data System (ADS)

    Yokoyama, Elder; Ndlec, Anne; Baratoux, David; Trindade, Ricardo I. F.; Fabre, Sbastien; Berger, Gilles

    2015-05-01

    The 12-km-wide Vargeo impact structure was formed 123 Myr ago in the Paran basaltic province (southern Brazil). At this time the province region had a dry climate, although a large brackish aquifer had been formed in the underlying sandstones. It is therefore one of the best terrestrial analogs for studying impact-related products on a dry martian surface environment with preserved ice-rich ground. The basalts within the impact structure display cm-sized breccia veins filled with lithic clasts, glassy remnants, newly formed Fe-oxyhydroxides and secondary phases, such as calcite, phyllosilicates and, subordinately quartz and zeolite. The textural and mineralogical study of these phases demonstrate their hydrothermal origin. Although the very center of the structure has experienced the highest pressures and temperatures, the most developed hydrothermal changes are recognized in an inner collar surrounding the central depression. This inner collar is also the location of major modifications of the rock magnetic properties. These magnetic signatures are related to the distribution of impact-related faults and to the formation of new iron oxides. Geochemical modeling indicate that hydrothermal phases formation required low water/rock ratios. Our observations therefore suggest that hydrothermal alteration took place following the perturbation of the aquifer by the impact, but evidence for hydrothermal circulation is limited in comparison with other impact-related hydrothermal systems. This situation may be explained by the presence of the aquifer below the heat source, such a setting being exceptional for the Earth, but common on Mars. However, the spectroscopic signatures in visible/near infrared images suggest that this kind of impact-related hydrothermal alteration may be still indentified in large impact craters on Mars by orbital instruments. These results does not exclude the possibility that more developed alteration took place in breccias that are today eroded.

  13. Varicose Veins

    MedlinePLUS

    ... heart pumps the blood to your lungs to pick up oxygen. The oxygen-rich blood then is pumped ... returns to your heart through your veins to pick up more oxygen. For more information about blood flow, ...

  14. Role of hydrothermal activity in uranium mineralisation in Palnad Sub-basin, Cuddapah Basin, India

    NASA Astrophysics Data System (ADS)

    Thomas, P. K.; Thomas, Tresa; Thomas, Jugina; Pandian, M. S.; Banerjee, Rahul; Ramesh Babu, P. V.; Gupta, Shekhar; Vimal, Rajiv

    2014-09-01

    Unconformity related uranium mineralisation occurs in Banganapalle Formation of Palnad Sub-basin, Cuddapah Basin. Several evidences of hydrothermal activity exist in both basement granite and the cover sediments in Koppunuru and Rallavagu Tanda (R.V. Tanda) uranium prospects of Palnad Sub-basin. Profuse development of fracture filled veins consisting of epidote-quartz, chlorite-quartz and quartz is observed at various depths above and below unconformity. Fluid-rock interaction during the formation of these veins has resulted in the alteration of feldspars and mafic minerals of granite and arkosic quartzite into a mineral assemblage consisting of various proportion of illite, chlorite, muscovite and pyrite, with the intensity of alterations being highest near to the unconformity. Pyrite is often associated with illite dominant alteration zone. We infer that circulation of basinal brine through basement granite and cover sediments was responsible for mobilising uranium from granite and its precipitation at favourable locations in cover sediments. Increase in pH of ore fluid due to illitisation and chloritisation of wallrock together with availability of carbonaceous matter and pyrite as reductant have controlled the localisation of uranium mineralisation in Banganapalle Formation.

  15. Progressive metamorphism of the Taitao ophiolite; evidence for axial and off-axis hydrothermal alterations

    NASA Astrophysics Data System (ADS)

    Shibuya, Takazo; Komiya, Tsuyoshi; Anma, Ryo; Ota, Tsutomu; Omori, Soichi; Kon, Yoshiaki; Yamamoto, Shinji; Maruyama, Shigenori

    2007-10-01

    We estimated metamorphic conditions for the 6 Ma Taitao ophiolite, associated with the Chile triple junction. The metamorphic grade of the ophiolite, estimated from secondary matrix minerals, changes stratigraphically downwards from the zeolite facies, through the prehnite-actinolite facies, greenschist facies and the greenschist-amphibolite transition, to the amphibolite facies. The metamorphic facies series corresponds to the low-pressure type. The metamorphic zone boundaries are subparallel to the internal lithological boundaries of the ophiolite, indicating that the metamorphism was due to axial hydrothermal alteration at a mid-ocean ridge. Mineral assemblages and the compositions of veins systematically change from quartz-dominated, through epidote-dominated, to prehnite-dominated with increasing depth. Temperatures estimated from the vein assemblages range from 230 C in the volcanic unit to 380 C at the bottom of the gabbro unit, systematically 200 C lower than estimates from the adjoining matrix minerals. The late development of veins and the systematically lower temperatures suggest that the vein-forming alteration was due to off-axis hydrothermal alteration. Comparison between the Taitao ophiolite with its mid-ocean ridge (MOR) affinity, and other ophiolites and MOR crusts, suggests that the Taitao ophiolite has many hydrothermal alteration features similar to those of MOR crusts. This is consistent with the tectonic history that the Taitao ophiolite was formed at the South Chile ridge system near the South American continent (Anma, R., Armstrong, R., Danhara, T., Orihashi, Y. and Iwano, H., 2006. Zircon sensitive high mass-resolution ion microprobe U-Pb and fission-track ages for gabbros and sheeted dykes of the Taitao ophiolite, Southern Chile, and their tectonic implications. The Island Arc, 15(1): 130-142).

  16. Reconstructing the oxygen isotope composition of late Cambrian and Cretaceous hydrothermal vent fluid

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; Alt, Jeffrey C.; Brown, Shaun T.; DePaolo, Donald J.; Coggon, Rosalind M.; Chi, Guoxiang; Bédard, Jean H.; Skulski, Thomas

    2013-12-01

    Oxygen isotope analyses (δ18O) of 16 quartz-epidote pairs from late Cambrian (Betts Cove and Mings Bight, Newfoundland), Ordovician (Thetford Mines, Québec, Canada) and Cretaceous (Troodos, Cyprus) ophiolites are used to calculate the δ18O of the hydrothermal fluids from which they crystallized. We combine these with 3 quartz-fluid inclusion measurements and 3 quartz-magnetite measurements from the Cambrian ophiolites to explore how the range in the δ18O of submarine hydrothermal vent fluid has varied between the late Cambrian, Cretaceous and today. The range of calculated δ18O values of vent fluid (-4 to +7.4) is larger than that of modern seafloor hydrothermal vent fluid (0 to +4). We employ two numerical models to ascertain whether this range is most consistent with changes in paleo-seawater δ18O or with changes in the reactive flow path in ancient hydrothermal systems. A static calculation of the vent fluid oxygen isotope composition as a function of the water-rock ratio suggests that in an ocean with a lower δ18O than today, the range of vent fluid δ18O should be larger. Our data, however, show little evidence that the δ18O of the ocean was much lower than the global ice-free value of -1.2. A dual porosity model for reactive flow through fractured and porous media is used to model the relative evolution of the 87Sr/86Sr and δ18O of vent fluid in contact with rock. Our 87Sr/86Sr and δ18O for Cretaceous epidotes suggest the strontium concentration of the Cretaceous oceans may have been much higher than at present. The 87Sr/86Sr and δ18O data from Cambrian epidotes are strikingly different from the younger samples, and are difficult to model unless fluid-rock interaction in the Cambrian hydrothermal systems was substantially different. It is also possible that some of the quartz-epidote veins have been reset by obduction-related metamorphism. Our data suggest that the high calcium-to-sulfate ratio in early (and Cretaceous) seawater may have affected the degree of strontium isotope exchange, causing hydrothermal fluids to have 87Sr/86Sr closer to that of seawater than in modern systems.

  17. Quartz ball value

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M.

    1979-01-01

    Quartz ball valve consisting of two quartz joints sealed back-to-back and seated in quartz sockets perform at temperatures of up to 1,250 C and in corrosive chemical environments without contamination or degradation.

  18. The Marianas-San Marcos vein system: characteristics of a shallow low sulfidation epithermal Au-Ag deposit in the Cerro Negro district, Deseado Massif, Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Vidal, Conrado Permuy; Guido, Diego M.; Jovic, Sebastián M.; Bodnar, Robert J.; Moncada, Daniel; Melgarejo, Joan Carles; Hames, Willis

    2016-01-01

    The Cerro Negro district, within the Argentinian Deseado Massif province, has become one of the most significant recent epithermal discoveries, with estimated reserves plus resources of ˜6.7 Moz Au equivalent. The Marianas-San Marcos vein system contains about 70 % of the Au-Ag resources in the district. Mineralization consists of Upper Jurassic (155 Ma) epithermal Au- and Ag-rich veins of low to intermediate sulfidation style, hosted in and genetically related to Jurassic intermediate composition volcanic rocks (159-156 Ma). Veins have a complex infill history, represented by ten stages with clear crosscutting relationships that can be summarized in four main episodes: a low volume, metal-rich initial episode (E1), an extended banded quartz episode with minor mineralization (E2), a barren waning stage episode (E3), and a silver-rich late tectonic-hydrothermal episode (E4). The first three episodes are interpreted to have formed at the same time and probably from fluids of similar composition: a 290-230 °C fluid dominated by meteoric and volcanic waters (-3‰ to -0‰ δ18Owater), with <3 % NaCl equivalent salinity and with a magmatic source of sulfur (-1 to -2 ‰ δ34Swater). Metal was mainly precipitated at the beginning of vein formation (episode 1) due to a combination of boiling at ˜600 to 800 m below the paleowater table, and associated mixing/cooling processes, as evidenced by sulfide-rich bands showing crustiform-colloform quartz, adularia, and chlorite-smectite banding. During episodes 2 and 3, metal contents progressively decrease during continuing boiling conditions, and veins were filled by quartz and calcite during waning stages of the hydrothermal system, and the influx of bicarbonate waters (-6 to -8.5 ‰ δ18Owater). Hydrothermal alteration is characterized by proximal illite, adularia, and silica zone with chlorite and minor epidote, intermediate interlayered illite-smectite and a distal chlorite halo. This assemblage is in agreement with measured fluid inclusion temperatures. A striking aspect of the Marianas-San Marcos vein system is that the high-grade/high-temperature veins are partially covered by breccia and volcaniclastic deposits of acidic composition, and are spatially associated with hot spring-related deposits and an advanced argillic alteration blanket. A telescoped model is therefore proposed for the Marianas-San Marcos area, where deeper veins were uplifted and eroded, and then partially covered by non-explosive, post-mineral rhyolitic domes and reworked volcaniclastic deposits, together with shallow geothermal features. The last tectonic-hydrothermal mineralization episode (E4), interpreted to have formed at lower temperatures, could be related to this late tectonic and hydrothermal activity.

  19. Characterization and modeling of illite crystal particles and growth mechanisms in a zoned hydrothermal deposit, Lake City, Colorado

    USGS Publications Warehouse

    Bove, D.J.; Eberl, D.D.; McCarty, D.K.; Meeker, G.P.

    2002-01-01

    Mean thickness measurements and crystal-thickness distributions (CTDs) of illite particles vary systematically with changes in hydrothermal alteration type, fracture density, and attendant mineralization in a large acid-sulfate/Mo-porphyry hydrothermal system at Red Mountain, near Lake City, Colorado. The hydrothermal illites characterize an extensive zone of quartz-sericite-pyrite alteration beneath two deeply rooted bodies of magmatic-related, quartz-alunite altered rock. Nineteen illites from a 3000 ft vertical drill hole were analyzed by XRD using the PVP-10 intercalation method and the computer program MudMaster (Bertaut-Warren-Averbach technique). Mean crystallite thicknesses, as determined from 001 reflections, range from 5-7 nanometers (nm) at depths from 0-1700 ft, then sharply increase to 10-16 nm at depths between 1800-2100 ft, and decrease again to 4-5 nm below this level. The interval of largest particle thickness correlates strongly with the zone of most intense quartz-sericite-pyrite alteration (QSP) and attendant high-density stockwork fracturing, and with the highest concentrations of Mo within the drill core. CTD shapes for the illite particles fall into two main categories: asymptotic and lognormal. The shapes of the CTDs are dependent on conditions of illite formation. The asymptotic CTDs correspond to a nucleation and growth mechanism, whereas surface-controlled growth was the dominant mechanism for the lognormal CTDs. Lognormal CTDs coincide with major through-going fractures or stockwork zones, whereas asymptotic CTDs are present in wallrock distal to these intense fracture zones. The increase in illite particle size and the associated zone of intense QSP alteration and stockwork veining was related by proximity to the dacitic magma(s), which supplied both reactants and heat to the hydrothermal system. However, no changes in illite polytype, which in other studies reflect temperature transitions, were observed within this interval.

  20. Hydrothermal Processing

    SciTech Connect

    Elliott, Douglas C.

    2011-03-11

    This chapter is a contribution to a book on Thermochemical Conversion of Biomass being edited by Prof. Robert Brown of Iowa State University. It describes both hydrothermal liquefaction and hydrothermal gasification of biomass to fuels.

  1. Deep Vein Thrombosis

    MedlinePLUS

    Deep vein thrombosis, or DVT, is a blood clot that forms in a vein deep in the body. Most deep vein clots occur in the lower leg or ... vein swells, the condition is called thrombophlebitis. A deep vein thrombosis can break loose and cause a ...

  2. Preliminary mineralogical data on epithermal ore veins associated with Rosia Poieni porphyry copper deposit, Apuseni Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Iatan, E. L.; Popescu, Gh. C.

    2012-04-01

    Rosia Poieni is the largest porphyry copper (±Au±Mo) deposits associated with Neogene magmatic rocks from the South Apuseni Mountains, being located approximately 8 km northeast of the town of Abrud. During a recent examination of some epithermal mineralized veins, crosscutting the porphyry mineralization from the Roşia Poieni deposit, two species of tellurides and one tellurosulfide minerals were identified. The studied samples were collected from the + 1045 m level, SW side of the open pit and are represented by epithermal veins, crosscutting the porphyry copper mineralized body. The thickness of the veins is almost 4 cm. Following reflected-polarized light microscopy to identify the ore-mineral assemblages, the polished sections were studied with a Scanning Electron Microscope (SEM) equipped with a back-scattered electron (BSE) detector to study fine-sized minerals. Quantitative compositional data were determined using a Cameca SX 50 electron microprobe (EMP). Based on optical microscopy, SEM and EMPA three mineral associations have been separated inside the epithermal vein, from the margins to the centre: 1. quartz+tennantite-tetrahedrite+goldfieldite+pyrite+sphalerite; 2. quartz+pyrite+tellurobismutite; 3. chalcopyrite+hessite+vivianite. Goldfieldite occurs in anhedral grains and it is associated with tennantite-tetrahedrite and quartz. The electron microprobe analysis gave a variable content in Te between 13.28-13.39 wt.%, 43.34 wt.% Cu, 0.1 wt. % Fe, 0.2 wt.% Zn, 14.68 wt.% As, 4.35 wt.% Sb and 24.84 wt.% S. The calculated formula for the goldfieldite is Cu11.8Te1.8(Sb,As)4S13.4. The EPM analyses on tetrahedrite-tennantite revealed a low content in Te (0.02-0.03 wt.%) and 42.23 wt.% Cu, 2.67 wt.% Fe, 7.34 wt.% Zn, 0.04 wt.% Sb, 19.28 wt.% As and 28.4 wt.% S. The calculated formula is Cu9.8(Fe,Zn)2.4(Sb,As,Te)3.8S13. The variable ratio of the Te content may reflect a variable content of Te in the hydrothermal fluids from which the tellurian tetrahedrite precipitated. Hessite lies close to the grain boundary between the calchopyrite grains, which is associated with vivianite. Electron microprobe analysis gave 57.73 wt.% Ag and 42.27 wt.% Te with calculated stoichiometric formula Ag1.9Te1.1 . Tellurobismuthite it forms irregular grains and it is associated with quartz and pyrite. Electron microprobe analysis gave 57.20 wt.% Bi and 42.80 wt.% Te with calculated stoichiometric formula Bi2.2Te2.8. Based on the mineral assemblages separated inside the ore vein and on the ratio of the Te content for the different identified tellurium bearing minerals, we can conclude that the Te content of the fluids from which they precipitated, increased from the margins to the centre of the vein. In summary, this study of specimens from Rosia Poieni porphyry copper deposit, has resulted in the recognition of some tellurium-bearing minerals, not reported by previous workers. These minerals are represented by tellurobismutite, hessite and goldfieldite and they are associated with epithermal vein mineralization (pyrite, chalcopyrite, sphalerite, tennantite-tetrahedrite, quartz, vivianite). The presence of tellurium indicates the transition between porphyry-style mineralization to epithermal vein mineralization. Acknowledgements: This work was supported by the strategic grant POSDRU/89/1.5/S58852, Project "Postdoctoral program for training scientific researches" co-financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007-2013".

  3. What Causes Varicose Veins?

    MedlinePLUS

    ... Weak vein walls may cause weak valves. Normally, the walls of the veins are elastic (stretchy). If these ... become like an overstretched rubber band. This makes the walls of the veins longer and wider, and it ...

  4. Deep Vein Thrombosis

    MedlinePLUS

    ... page from the NHLBI on Twitter. What Is Deep Vein Thrombosis? Espaol Deep vein thrombosis (throm-BO-sis), or DVT, is a blood clot that forms in a vein deep in the body. Blood clots occur when blood ...

  5. The anatomy of a hydrothermal (explosion ) breccia, Abbot Village, central Maine

    SciTech Connect

    Roy, D.C. . Dept. of Geology and Geophysics)

    1993-03-01

    An apparently intrusive hydrothermal breccia is exposed in a large outcrop along Kingsbury Stream downstream from the Route 6 bridge in Abbot Village. The breccia intrudes the Siluro-Devonian Madrid Formation which is comprised of thick-bedded metasandstone interbedded with less fine-grained schist and phyllite at regional biotite grade. In the vicinity of the breccia, the bedding attitude in the Madrid is N60E 70SE and the section faces SE. The breccia is a concordant body with respect to bedding and the exposure shows what appears to the SW terminus of the intrusion which extends an unknown distance NE. The main phase of the breccia consists of randomly oriented and angular clasts'' of Madrid metasandstone and schist that are cemented by a quartz-dominated matrix. The random orientation of the clasts is present this phase were it is in contact with the country rock. The matrix comprises about 15% of the volume of the breccia and, in addition to quartz, contains biotite, galena, chalcopyrite ( ), pyrite, and an iron-carbonate. In some interstitial matrix, apparently late iron-carbonate fills post-quartz vugs that contain quartz-crystal terminations. The wall phase contains a higher proportion of biotite schist clasts that in places are bent around each other and metasandstone clasts. Quartz veins extending into the country rock near the breccia follow prominent regional joint directions and suggest hydrofracturing of the Madrid was the principal mechanism for breccia formation. The breccia is interpreted to be of explosive origin with the main phase of the body representing clasts that fell down within the vent'' following upward transport. The wall phase is taken to have formed due to adhesion to the wall of breccia clasts during the eruptive stage.

  6. Thermodynamics of hydrothermal systems with oxalate ion

    NASA Astrophysics Data System (ADS)

    Khodakovsky, I. L.; Devina, O. A.

    2009-04-01

    The geochemical and industrial significance of oxalates have led to great interest in the behavior of oxalate ion in hydrothermal systems. On the basis of a study by G.B. Naumov et al (1971) of gaseous-liquid inclusions it is shown that whewellite (CaC2O4H2O) which was found in quartz-calcite-fluorite veins in the uranium ore deposit of the Eastern Transbaikal region was formed at temperatures about 150C and pressure CO2 of 600-860 atm. The isotopic composition of carbon for these hydrothermal whewellite samples was determined by Galimov et al (1975): Delta13C from -1.56 to -2.22%. In a continuation of the study of organic-acid-water-rock interactions the thermodynamics of hydrothermal equilibriums for the systems Ox-H, Ox-H-Ca, Ox-H-Mg (where Ox = C2O42-), are described up to 200C. The key network reactions and compounds related to the aqueous ion C2O42- are discussed and used to define the key values. The critical evaluation of thermodynamic properties for this ion is a part of the development of the new key values system for the joint thermodynamic database in the Internet. The evaluation involves the analysis of the enthalpy changes, Gibbs energy changes, and the entropy calculations for all key substances in the key network. A consistent set of thermodynamic property values is given for ?-H2C2O4(cr), ?-H2C2O4(cr), H2C2O4H2O(cr), CaC2O4(cr), CaC2O4H2O(cr,whewellite), NaC2O4(cr,natroxalate), MgC2O42H2O(cr,glushinskite) and aqueous species C2O42-, HC2O4-, H2C2O4, CaC2O4. This study was funded by Russian Foundation for Basic Research (project N 07-05-01108).

  7. Complex fragmentation and silicification structures in fault zones: quartz mineralization and repeated fragmentation along the Fountain Range Fault (Mt. Isa Inlier, Australia)

    NASA Astrophysics Data System (ADS)

    Seybold, Lina; Blenkinsop, Tom; Heuss, Soraya; Ord, Alison; Kruhl, Jörn H.

    2015-04-01

    In large-scale fault zones fracture networks are commonly generated by high volumes of pressurized fluids, followed by quartz precipitation. In this way large amounts of quartz are formed as microcrystalline masses and as complex vein systems, with partly highly different textures, as a result of different formation processes. Based on field and microstructural data and the quantification of vein patterns, the spatial and temporal connection between fragmentation, quartz crystallization and fluid and material flow along the Fountain Range Fault at Fountain Springs was investigated. Dextral strike-slip led to up to 25 km horizontal displacement along the fault. Due to various fragmentation and quartz formation processes, a ca. 100 m high, 80 - 100 m wide and km-long quartz ridge with numerous vein systems and variable microfabrics was formed. Locally, lenses of highly altered metamorphic wall-rocks occur in the quartz zone. Where exposed, the contact to wall rocks is sharp. Millimetre- to decimetre-thick quartz veins penetrate the wall-rocks only within metre distance from the contact. Several clearly distinguishable fine-grained reddish, brownish to dark and pigment-rich quartz masses form up to 50 m wide and up to several 100 m long steep lenses that build the major part of the silicified fault zone. A chronology can be established. Some of these lenses are oriented slightly oblique to the general trend of the quartz zone, in agreement with the supposed dextral strike slip along the fault. Numerous generations of typically µm-cm thick quartz veins transect the microcrystalline quartz masses and, locally, form anisotropic networks. In the quartz masses, angular fragments often composed of quartz with, again, internal fragmentation structures, indicate earlier fracturing and silicification events. Within the veins, quartz forms geodes, locally filled with fine-grained reddish quartz and palisade structures with feathery textures and fluid-inclusion zoning. Millimetre- to rarely up to 10 cm-thick late veins transect the earlier quartz phases. The fine-grained vein filling is dark-reddish. It contains µm-sized quartz and, again, angular quartz fragments. All these features indicate a multiphase fragmentation and quartz precipitation history of the Fountain Range Fault. Intense fragmentation, together with fluid infiltration and quartz crystallization in pore space, led to fine-grained cataclastic and silicified masses, followed by numerous events of quartz-vein formation and, again, cataclasis probably leading to flow of particle-fluid suspensions. In general, macro- and microstructures reflect the interaction of repeated processes of fragmentation, fluid flux, quartz precipitation and cataclastic flow during the long-lasting history of the fault zone, with probably non-linear behaviour of mechanical and chemical processes.

  8. Tectonic record, magmatic history and hydrothermal alteration in the Hercynian Guérande leucogranite, Armorican Massif, France

    NASA Astrophysics Data System (ADS)

    Ballouard, C.; Boulvais, P.; Poujol, M.; Gapais, D.; Yamato, P.; Tartèse, R.; Cuney, M.

    2015-04-01

    The Guérande peraluminous leucogranite was emplaced at the end of the Carboniferous in the southern part of the Armorican Massif. At the scale of the intrusion, this granite displays structural heterogeneities with a weak deformation in the southwestern part, whereas the northwestern part is marked by the occurrence of S/C and mylonitic extensional fabrics. Quartz veins and pegmatite dykes orientations as well as lineations directions in the granite and its country rocks demonstrate both E-W and N-S stretching. Therefore, during its emplacement in an extensional tectonic regime, the syntectonic Guérande granite has probably experienced some partitioning of the deformation. The southwestern part is characterized by a muscovite-biotite assemblage, the presence of restites and migmatitic enclaves, and a low abundance of quartz veins compared to pegmatite dykes. In contrast, the northwestern part is characterized by a muscovite-tourmaline assemblage, evidence of albitization and gresenization and a larger amount of quartz veins. The southwestern part is thus interpreted as the feeding zone of the intrusion whereas the northwestern part corresponds to its apical zone. The granite samples display continuous compositional evolutions in the range of 69.8-75.3 wt.% SiO2. High initial 87Sr/86Sr ratios and low εNd(T) values suggest that the peraluminous Guérande granite (A/CNK > 1.1) was formed by partial melting of metasedimentary formations. Magmatic evolution was controlled primarily by fractional crystallization of K-feldspar, biotite and plagioclase (An20). The samples from the apical zone show evidence of secondary muscovitization. They are also characterized by a high content in incompatible elements such as Cs and Sn, as well as low Nb/Ta and K/Rb ratios. The apical zone of the Guérande granite underwent a pervasive hydrothermal alteration during or soon after its emplacement. U-Th-Pb dating on zircon and monazite revealed that the Guérande granite was emplaced 309.7 ± 1.3 Ma ago and that a late magmatic activity synchronous with hydrothermal circulation occurred at ca. 303 Ma. These new structural, petrological and geochronological data presented for the Guérande leucogranite highlight the interplay between the emplacement in an extensional tectonic regime, magmatic differentiation and hydrothermal alteration, and provide a general background for the understanding of the processes controlling some mineralization in the western European Hercynian belt.

  9. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  10. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat, III; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  11. Towards a quantitative description of fracture sealing: Phase-field modeling of mineral precipitation in veins

    NASA Astrophysics Data System (ADS)

    Wendler, F.; Blum, P.; Thaler, H.; Nestler, B.; Okamoto, A.

    2013-12-01

    Alongside with calcite the growth of quartz establishes the most important mineralization processes in fractures and determines the fluid-rock interaction in the earth's crust. Tectonically caused deformation, fracturing and fluid transport leaves clear detectable traces in the microstructure of the mineralized veins. The underlying physical processes such as diffusion, advection, heat transport and crystal growth have to be captured at the mesoscale (or pore/grain scale). Any analysis is complicated by the facts that these processes are highly nonlinear, and geological boundary conditions as well as many of the kinetic growth parameters are not precisely known. As the microstructures and compositional inhomogeneity of veins could be used to enravel the history of the rock deformation process and the fluid pathways through former fracture networks, spatio-temporal models of vein mineral growth are of special interest. Different from previous approaches to simulate vein growth, we adapt a thermodynamically consistent phase-field model (PFM) which combines irreversible thermodynamics of interfaces and bulk phases with a kinetic growth law and mass transport equations (Wendler et al. 2011). Here, we study the simplest case where preexisting grains of a fracture surface are the seeds for epitaxial overgrowth. Each grain in a 3D domain is captured by a phase field with individual orientation. The model evolves in discrete time steps using a finite difference algorithm on a regular grid, optimized for large grain assemblies. In the present study we provide a brief overview, how the PFM is configured using thermodynamic data from established models for growth and dissolution, kinetic information from in and ex situ microstructural observations and dihedral angles from equilibration experiments. In the case of quartz, previously conducted hydrothermal batch flow growth experiments were analysed to calibrate the model (Okamoto & Sekine 2011). Results from 3D simulations conducted in the limit of low Damkhler numbers explain the observed transition regime in competitive crystal growth for blocky-elongate veins. A mechanism for the initial formation of quartz needles is proposed. For virtual fractured rock samples we study the influence of fracture shape and opening aperture in the evolution of syntaxial (blocky-elongated vs. stretched) veins. In the case of calcite, the chemical variability of the growth process in real systems strongly influences the crystal growth kinetics and limits the significance of quantitative predictions. On the basis of the numerical studies and known parameter uncertainties, we give an assessment of the variabilities of sealing times and vein microstructures. References: F. Wendler, C. Mennerich and B. Nestler, J. Cryst. Growth 327 (2011), 189-201. A. Okamoto and K. Sekine, J. Struct. Geol. 33 (2011) 1764-1775. Three time steps in the sealing of a flat fracture with calcite, only liquid phase evolution is shown.

  12. Why calcite can be stronger than quartz

    NASA Astrophysics Data System (ADS)

    Mancktelow, N. S.; Pennacchioni, G.

    2009-04-01

    Calcite and quartz are two of the most common minerals in the continental crust and it is therefore not surprising that these minerals have been extensively studied since the very beginning of laboratory rock mechanics experiments. Extending such laboratory data to geological deformation rates around 10-14 s-1 requires an extrapolation of more than 7 orders of magnitude, with correspondingly large uncertainties. Extrapolation is based on the assumption that flow parameters are constant with changing conditions and that parameters not included in the flow law have a negligible influence on the creep properties. The validity of this extrapolation can only be tested, at least semi-quantitatively, by comparison with naturally deformed rocks. Observations generally indicate that quartz is significantly stronger than calcite in natural rocks, with quartz forming porphyroclasts in calcite marble mylonites, or with quartzite layers being folded or boudinaged within a weaker calcite marble matrix. However, in the Neves area (Tauern Window, Eastern Alps), shearing of Alpine coarse grained quartz-calcite veins under hydrous amphibolite facies conditions (ca. 550? C) produced quartz mylonites containing asymmetric cm-scale single crystal calcite porphyroclasts. Under these conditions, coarse calcite is clearly stronger than the surrounding polycrystalline, dynamically recrystallized, quartz matrix. The important parameter controlling this difference in observed natural behaviour is the grain size of the calcite. Although there is considerable variation, uncertainty and even contradiction in the published experimental results, we show that extrapolation of laboratory creep data on calcite single crystals and coarse marbles, together with the corresponding data for wet quartzites, is indeed consistent with these natural observations. Extrapolation indicates an inversion in the relative strength of coarse calcite and quartz at a strain rate around 10-11 s-1, corresponding to a differential flow stress of ca. 50 MPa. At lower strain rates and stresses, wet quartz should be weaker than coarse calcite crystals. Field evidence (flow of quartz-rich layers even for orientations with very low resolved shear stress) and the preserved microstructure (lack of recrystallized or bulged twins in the calcite porphyroclasts) in the Neves area are also consistent with flow stresses of less than ca. 50 MPa. These low values during deformation under water-rich amphibolite facies conditions are in marked contrast to the much higher differential stresses reported for the flow (and fracture) of quartz-rich rocks under dry conditions in the middle to lower crust.

  13. Fluid evolution in a volcanic-hosted epithermal carbonate-base metal-gold vein system: Alto de la Blenda, Farallón Negro, Argentina

    NASA Astrophysics Data System (ADS)

    Márquez-Zavalía, M. Florencia; Heinrich, Christoph A.

    2016-03-01

    Alto de la Blenda is a ˜6.6-Ma intermediate-sulphidation epithermal vein system in the Farallón Negro Volcanic Complex, which also hosts the 7.1-Ma porphyry-Cu-Au deposit of Bajo de la Alumbrera. The epithermal vein system is characterised by a large extent and continuity (2 km × 400 m open to depth × 6 m maximum width) and an average gold grade of ˜8 g/t. The vein is best developed within an intrusion of a fine-grained equigranular monzonite, interpreted as the central conduit of a stratovolcano whose extrusive activity ended prior to porphyry-Cu-Au emplacement at Bajo de la Alumbrera, which is in turn cut by minor epithermal veins. The Alto de la Blenda vein consists predominantly of variably Mn-rich carbonates and quartz, with a few percent of pyrite, sphalerite, galena and other sulphide and sulphosalt minerals. Four phases of vein opening, hydrothermal mineralisation and repeated brecciation can be correlated between different vein segments. Stages 2 and 3 contain the greatest fraction of sulphide and gold. They are separated by the emplacement of a polymictic breccia containing clasts of quartz feldspar porphyry as well as basement rocks. Fluid inclusions in quartz related to stages 2 to 4 are liquid rich with 2-4 wt% NaCl(eq). They homogenise between 160 and 300 °C, with very consistent values within each assemblage. Vapour inclusions are practically absent in the epithermal vein. Quartz fragments in the polymictic breccia contain inclusions of intermediate to vapour-like density and similar low salinity (˜3 wt% NaCl(eq)), besides rare brine inclusions containing halite. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of epithermal inclusions indicate high concentrations of K, Fe, As, Sb, Cs, and Pb that significantly vary within and through subsequent vein stages. Careful consideration of detection limits for individual inclusions shows high gold concentrations of ˜0.5 to 3 ppm dissolved in the ore fluid, which contains variably high sulphur concentrations in excess over Fe and other chalcophile metals. Compositional variations are interpreted to reflect cooling and contraction of lower-density magmatic fluids at depth, like those preserved in porphyry clasts that were mechanically transported up by the polymictic breccia. Ore mineral precipitation from the magmatic fluid occurred by further cooling and possibly minor mixing with surface-derived water, leading to sulphide saturation, de-sulphidation of the magmatic fluid and consequent gold precipitation. The absence of flash boiling and/or reduction by carbonaceous host rocks has led to relatively modest but constant gold grades in the carbonate-base metal-gold veins of Alto de la Blenda.

  14. Composite synvolcanic intrusions associated with Precambrian VMS-related hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Galley, Alan G.

    2003-06-01

    Large subvolcanic intrusions are recognized within most Precambrian VMS camps. Of these, 80% are quartz diorite-tonalite-trondhjemite composite intrusions. The VMS camps spatially associated with composite intrusions account for >90% of the aggregate sulfide tonnage of all the Precambrian, intrusion-related VMS camps. These low-alumina, low-K, and high-Na composite intrusions contain early phases of quartz diorite and tonalite, followed by more voluminous trondhjemite. They have a high proportion of high silica (>74% SiO2) trondhjemite which is compositionally similar to the VMS-hosting rhyolites within the volcanic host-rock successions. The quartz-diorite and possibly tonalite phases follow tholeiitic fractionation trends whereas the trondhjemites fall within the composition field for primitive crustal melts. These transitional M-I-type primitive intrusive suites are associated with extensional regimes within oceanic-arc environments. Subvolcanic composite intrusions related to the Archean Sturgeon Lake and Noranda, and Paleoproterozoic Snow Lake VMS camps range in volume from 300 to 1,000 km3. Three have a sill morphology with strike lengths between 15 and 22 km and an average thickness between 1,500 and 2,000 m. The fourth has a gross stock-like shape. The VMS deposits are principally restricted to the volcanic strata above the strike length of the intrusions, as are areally extensive, thin exhalite units. The composite intrusions contain numerous internal phases which are commonly clustered within certain parts of the composite intrusion. These clusters underlie eruptive centers surrounded by areas of hydrothermal alteration and which contain most of the VMS deposits. Early quartz-diorite and tonalite phases appear to have intruded in rapid succession. Evidence includes gradational contacts, magma mixing and disequilibrium textures. They appear to have been emplaced as sill-dike swarms. These early phases are present as pendants and xenoliths within later trondhjemite phases. The trondhjemite phases contain numerous internal contacts indicating emplacement as composite sills. Common structural features of the composite intrusions include early xenolith phases, abundant small comagmatic dikes, fractures and veins and, in places, columnar jointing. Internal phases may differ greatly in texture from fine- to coarse-grained, aphyric and granophyric through seriate to porphyritic. Mineralogical and isotopic evidence indicates that early phases of each composite intrusion are affected by pervasive to fracture-controlled high-temperature (350-450 C) alteration reflecting seawater-rock interaction. Trondhjemite phases contain hydrothermal-magmatic alteration assemblages within miarolitic cavities, hydrothermal breccias and veins. This hydrothermal-magmatic alteration may, in part, be inherited from previously altered wall rocks. Two of the four intrusions are host to Cu-Mo-rich intrusive breccias and porphyry-type mineralization which formed as much as 14 Ma after the main subvolcanic magmatic activity. The recognition of these Precambrian, subvolcanic composite intrusions is important for greenfields VMS exploration, as they define the location of thermal corridors within extensional oceanic-arc regimes which have the greatest potential for significant VMS mineralization. The VMS mineralization may occur for 2,000 m above the intrusions. In some cases, VMS mineralization has been truncated or enveloped by late trondhjemite phases of the composite intrusions. Evidence that much of the trondhjemitic magmatism postdates the principal VMS activity is a critical factor when developing heat and fluid flow models for these subseafloor magmatic-hydrothermal systems.

  15. Hydrothermal alteration in anthracite from eastern Pennsylvania: Implications for mechanisms of anthracite formation

    NASA Astrophysics Data System (ADS)

    Daniels, Eric J.; Altaner, Stephen P.; Marshak, Stephen; Eggleston, Jane R.

    1990-03-01

    Orthogonal joint sets (cleat) in anthracite-rank coal beds from eastern Pennsylvania contain two mineralogically and chemically different authigenic clay mineral assemblages. In localities from all four anthracite fields, the systematic cleat contains significant quantities (20 to 95 wt%) of authigenic rectorite, sudoite, or tosudite, which are clay minerals primarily associated with hydrothermal veins and ore deposits. The strike of systematic cleat in this region roughly parallels the inferred direction of lateral compressive stress during the Alleghany orogeny. The opposing nonsystematic cleat contains mostly authigenic NH4-illite, a clay that also occurs in the coal matrix. All of these authigenic clay minerals formed during anthracitization (T> 200 °C) by replacement of kaolinite and quartz, both of which formed during an earlier stage of coalification and are present in the joints and matrix of nearly all coal samples. These distinct mineralogical-structural relations are observed throughout the Anthracite region and suggest that (1) mineralogical variations in the coal joints are related primarily to permeability variations that were controlled by the orientation of Alleghanian stress fields, (2) hydrothermal fluids passed through the systematic cleat during anthracitization, and (3) hydrothermal alteration influenced diagenesis in this region. Hydrothermal alteration may be related to basin-wide fluid migrations that were driven by Alleghanian-age uplift. Basinal fluid flow, concentrated along permeable joints and detachment zones, could have efficiently transported heat from depth and thereby increased the rate of coalification and decreased the postulated minimum depths at which anthracitization occurred (perhaps ≤5km vs. 6-10 km).

  16. Silica Transport, Deposition and Porosity Evolution in a Fracture : Insights from Hydrothermal Flow-through Experiments

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Yamada, R.; Saishu, H.; Tsuchiya, N.

    2014-12-01

    Geofluids contain a large amount of silica, which solubility changes depending on temperature and pressure. Ubiquitous occurrences of various silica deposits (quartz veins, silica sinter, scales) suggest that silica precipitation plays an important role on temporal and spatial variation of hydrological properties of the Earth's crusts. A pressure drop, for example, induced by seismicity, is one of the driving forces for silica precipitation within the crusts. In spite of the importance of silica depositions in fractures, how porosity and permeability evolution during silica precipitation is still poorly understood. In this study, we conducted the hydrothermal experiments for silica precipitation from supersaturated solutions in vapor (370?C, 20 MPa) and supercritical (420 ?C, 30 MPa) conditions with flow rate of 1 g/min. After the experiments, we analyzed the 3-D porosity structures by X-ray CT, and then by making thin section. We developed a tube-in-tube vessel, which is composed of main vessel (made of SUS316), and inner alumina tube (6 mm inner diameter), to make a horizontal flow path. We did not used rock/mineral substrates, and alumina balls (1 mm diameter) are closely packed in the inner tube. In both situations, a significant amount of silica deposited within a week, showing contrasting porosity structures between vapor and supercritical conditions. In vapor conditions, the precipitates are fine-grained quartz aggregate, and the most deposited at around 38 mm from the inlet. The pores were filled from the bottom to the top in the tube. In contrast, in the supercritical conditions, the precipitates are composites of amorphous silica and quartz; which accumulated around the alumina balls uniformly. Quartz grains are formed in amorphous silica layers, and the most porosity reduction occurred at around 25 mm from the inlet. A simple model of cellular automaton involving particle flow, adsorption, settling and deposition reveals that the relative magnitude of gravitational settling and adsorption controls the contrasting porosity pattern. Amorphous silica could be transport in long distance and adsorbed uniformly on the wall, whereas quartz grains nucleated in vapor immediately settled on the bottom, which could generate the contrasting vein textures.

  17. Varicose vein - noninvasive treatment

    MedlinePLUS

    ... The vein will harden and then disappear. Laser treatment can be used on the surface of the skin. Small bursts of light make small varicose veins disappear. Phlebectomy treats surface ... guide treatment. This may be done along with other procedures, ...

  18. Portal vein thrombosis.

    PubMed

    Cohen, Ronny; Mallet, Thierry; Gale, Michael; Soltys, Remigiusz; Loarte, Pablo

    2015-01-01

    Portal vein thrombosis (PVT) is the blockage or narrowing of the portal vein by a thrombus. It is relatively rare and has been linked with the presence of an underlying liver disease or prothrombotic disorders. We present a case of a young male who presented with vague abdominal symptoms for approximately one week. Imaging revealed the presence of multiple nonocclusive thrombi involving the right portal vein, the splenic vein, and the left renal vein, as well as complete occlusion of the left portal vein and the superior mesenteric vein. We discuss pathogenesis, clinical presentation, and management of both acute and chronic thrombosis. The presence of PVT should be considered as a clue for prothrombotic disorders, liver disease, and other local and general factors that must be carefully investigated. It is hoped that this case report will help increase awareness of the complexity associated with portal vein thrombosis among the medical community. PMID:25802795

  19. Focus on Varicose Veins

    MedlinePLUS

    ... veins no longer work. Under the pressure of gravity these veins can continue to expand and, in ... flow from the legs toward the heart against gravity, while preventing reverse flow back down the legs. ...

  20. Impact-generated hydrothermal regimes within the Manicouagan crater: Terrestrial analog studies relevant to Mars

    NASA Astrophysics Data System (ADS)

    Paisarnsombat, S.; Thompson, L. M.; Spray, J. G.

    2011-12-01

    The 90 km diameter, 214 Ma Manicouagan impact structure, Canada, is one of the best preserved complex impact craters on Earth. Recent field-based observations (2010 and 2011 seasons), drill core investigations and laboratory studies reveal evidence for the existence of distinct impact-induced hydrothermal regimes at Manicouagan. Four main spatial regimes have been identified: (1) intra-melt sheet cooling cells, (2) sub-melt sheet cells, (3) a central uplift convection system, and (4) peripheral hot springs associated with the collapsed rim. An overlying supra-melt sheet system (i.e., within fallback breccias) may have existed, but no evidence of this remains due to removal by erosion of the uppermost levels of the crater stratigraphy. Epidote, prehnite, chlorite and titanite are also present in fracture systems at Manicouagan, but it is not yet clear whether these are associated with the 1 Ga Grenvillian tectonometamorphic event that predates the impact. Regimes 1 and 2 are generated directly during cooling of the superheated impact melt sheet, which has an average thickness of 300 m, but locally attains thicknesses of more than 1 km. Intra-melt sheet cooling cells include both clast-laden and clast-bearing impact melt variants. Typical hydrothermal minerals present in these regimes are zeolites (e.g., natrolite, analcime) and quartz. Quartz is common in vesicles, while zeolites primarily occur in vein/fracture systems pervading the impact melt. Amethyst is also found in vesicles associated with quartz in certain locations, especially near the base of the impact melt-sheet. These regimes indicate precipitation temperatures of 100-250 C and favor a pervasive (bulk) hydrothermal influence. Within the anorthositic central uplift, which is estimated to have been 250-300 C when elevated from depths of 8-10 km due to the impact, zeolites are present as the predominant hydrothermal phases. These typically occupy fractures (up to 1 cm wide). The peripheral hot springs are located at the collapsed rim and terrace zone of the crater, where stilbite-Ca and chabazite-Ca are locally developed, especially where hosted by brecciated gneisses. Good exposures of the breccia-hosted regime occur in the western sector of the crater where they are related to fault-fracture-breccia systems associated with rim collapse. Temperatures of 75-100 C are indicated by these assemblages. The relatively high (regimes 1-3) and low (regime 4) temperature hydrothermal regimes may have hosted hyperthermophile (80-122 C) and extreme thermophile (75-90 C) organisms, respectively. Future work aims to search for evidence of hydrothermal-associated biogenic activity within the Manicouagan impact regime. This has important implications for the potential for similar impact-hydrothermal systems facilitating biogenic activity on Mars, especially during the Noachian. In this respect, our aim is to use Manicouagan as a guide for targeting potential hydrothermal regimes within martian craters for evidence of life.

  1. Quartz Crystal Clocks

    NASA Technical Reports Server (NTRS)

    1976-01-01

    General Time Corporation, under contract to NASA, developed a quartz crystal for obtaining a stable time base from which all mission times could be derived. This later became basis of consumer clocks and watches with accuracy of one minute a year, watches useful in timing sports events as well as general use. When quartz is electrically stimulated it can vibrate millions of times a second. Since timepieces use a vibrating body to keep up time, incredibly fast vibration of a quartz crystal--up to 4,194,304 beats a second opened a new horizon in accuracy.

  2. Orogenesis, high-T thermal events, and gold vein formation within metamorphic rocks of the Alaskan Cordillera

    USGS Publications Warehouse

    Goldfarb, R.J.; Snee, L.W.; Pickthorn, W.J.

    1993-01-01

    Mesothermal, gold-bearing quartz veins are widespread within allochthonous terranes of Alaska that are composed dominantly of greenschist-facies metasedimentary rocks. The most productive lode deposits are concentrated in south-central and southeastern Alaska; small and generally nonproductive gold-bearing veins occur upstream from major placer deposits in interior and northern Alaska. Ore-forming fluids in all areas are consistent with derivation from metamorphic devolatilisation reactions, and a close temporal relationship exists between high-T tectonic deformation, igneous activity, and gold mineralization. Ore fluids were of consistently low salinity, CO2-rich, and had ??18O values of 7 ???-12??? and ??D values between -15??? and -35???. Upper-crustal temperatures within the metamorphosed terranes reached at least 450-500??C before onset of significant gold-forming hydrothermal activity. In southern Alaska, gold deposits formed during latter stages of Tertiary, subduction-related, collisional orogenesis and were often temporally coeval with calc-alkaline magmatism. -from Authors

  3. Metabasalts from the Mid-Atlantic Ridge: new insights into hydrothermal systems in slow-spreading crust

    NASA Astrophysics Data System (ADS)

    Gillis, Kathryn M.; Thompson, Geoffrey

    1993-12-01

    An extensive suite of hydrothermally altered rocks were recovered by Alvin and dredging along the MARK [Mid-Atlantic Ridge, south of the Kane Fracture Zone (23 24N)] where detachment faulting has provided a window into the crustal component of hydrothermal systems. Rocks of basaltic composition are altered to two assemblages with these characteristics: (i) type I: albitic plagioclase (An02 10)+mixed-layer smectite/chlorite or chloriteactinolitequartzsphene, <10% of the clinopyroxene is altered, and there is no trace metal mobility; (ii) type II: plagioclase (An10 30)+amphibole (actinolite-magnesio-hornblende) +chlorite+sphene, >20% of the clinopyroxene is altered, and Cu and Zn are leached. The geochemical signature of these alteration types reflects the relative proportion and composition of secondary minerals, and the degree of alteration of primary phases, and does not show simple predictive relationships. Element mobilities indicate that both alteration types formed at low water/rock ratios. The MARK assemblages are typical of the greenschist and transition to the amphibolite facies, and represent two distinct, albeit overlapping, temperature regimes: type I-180 to 300C and type II-250 to 450C. By analogy with DSDP/ODP Hole 504B and many ophiolites, the MARK metabasalts were altered within the downwelling limb of a hydrothermal cell and type I and II samples formed in the upper and lower portions of the sheeted like complex, respectively. Episodic magmatic and hydrothermal events at slow-spreading ridges suggest that these observed mineral assemblages represent the cumulative effects of more than one hydrothermal event. Groundmass and vein assemblages in the MARK metabasalts indicate either that alteration conditions did not change during successive hydrothermal events or that these assemblages record only the highest temperature event. Lack of retrograde reactions or overprinting of lower temperature assemblages (e.g., zeolites) suggests that there is a continuum in alteration conditions while crustal segments remain in the ridge axis environment. The type II samples may be representative of the reaction zone where compositions of hydrothermal fluids actively venting at the seafloor today become fixed. This prediction necessitates interaction between hydrothermal fluids and intersertal glass and/or mafic phases, in addition to plagioclase, in order to produce the observed range in vented fluid pH.

  4. Stibnite vein from D?bowina near Bardo (polish Sudetes)

    NASA Astrophysics Data System (ADS)

    Kotula, Piotr

    2013-09-01

    In the contact zone of the Bardo Structure and K?odzko-Z?oty Stok Intrusion and K?odzko Metamorphic, metasomatic orebearing quartz-carbonate veins rich in Sb, Zn, Cu, Ag, Au, Pb are present. In 1771 the mine ,,Reiche Silber Gluck within stibnite vein was founded in D?bowina near Bardo. Its entrance was discovered again in 2007. The stibnite vein is mainly build of stibnite and sphalerite and of quartz and dolomite rich in Mn. Stibnite crystallizes as columnar or forming radiate centres and aciculars. Its crystals reach size to 2 mm. Sphalerite appears as individual anhedral and polymineralic grained concentrations reaching size to 2,5 mm. Earlier pyrite and arsenopyrite crystallized - they occur locally in this deposit. There were found also in the deposit tetrahedrite rich in Ag, what wasn't reported earlier in studies from the mine in D?bowina.

  5. Gamma ray spectrometry for recognition of hydrothermal alteration zones related to a low sulfidation epithermal gold mineralization (eastern Pontides, NE Trkiye)

    NASA Astrophysics Data System (ADS)

    Maden, Nafiz; Akaryal?, Enver

    2015-11-01

    This study presents an interpretation of radiospectrometric and magnetic data of Arzular mineralization site, which is one of the best examples for epithermal gold deposits located in the southern zone of the Eastern Pontides (NE Trkiye). Potassium is generally the most useful pathfinder element for gold mineralization zones because of its high level in altered rock surrounding the deposits. Where gold is hosted within quartz veins, typically the vein is low in the radioelements, but the hydrothermally altered host rocks will usually have a distinct radioelement signature useful for exploration. In this study, magnetic, susceptibility and radiospectrometric survey data radiometric signatures associated with the host rocks favorable for the mineralization, enhancing techniques such as the ratio maps as well as potassium (%K), equivalent thorium (eTh ppm) and equivalent uranium (eU ppm) maps were utilized. Our analysis showed that the gold mineralization associated with the alteration is significantly related to increase in potassium, due to adularia, a low T K-feldspar, and decreases in uranium and thorium due to the hydrothermal alteration and magmatic intrusion processes during the regional tectonic activities.

  6. Comparison of metasomatic reactions between a common CO2-rich vein fluid and diverse wall rocks: intensive variables, mass transfers, and Au mineralization at Alleghany, California

    USGS Publications Warehouse

    Bhlke, J.K.

    1989-01-01

    The gold deposits at Alleghany, California, are typical of many epigenetic gold-bearing hydrothermal vein systems in metamorphic terranes worldwide. Detailed analyses of alteration halos in serpentinite, mafic amphibolite, and granite wall rocks at Alleghany indicate that widely contrasting deposit types, ranging from fuchsite-carbonate schists to pyrite-albitites, resulted when different wall rocks interacted with the same externally derived CO2-rich hydrothermal vein fluid. Patterns of element redistribution within halos and among lithologic units suggest a complex process involving fluid flow along vein fractures and diffusion (?? infiltration) normal to the veins. Wall rocks locally controlled both the directions and magnitudes of chemical fluxes across vein walls. -from Author

  7. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater (after C. A. Stein and S. Stein, 1994). The first geochemical evidence for the existence of hydrothermal vents on the ocean floor came in the mid-1960s when investigations in the Red Sea revealed deep basins filled with hot, salty water (40-60 °C) and underlain by thick layers of metal-rich sediment (Degens and Ross, 1969). Because the Red Sea represents a young, rifting, ocean basin it was speculated that the phenomena observed there might also prevail along other young MOR spreading centers. An analysis of core-top sediments from throughout the world's oceans ( Figure 2) revealed that such metalliferous sediments did, indeed, appear to be concentrated along the newly recognized global ridge crest (Boström et al., 1969). Another early indication of hydrothermal activity came from the detection of plumes of excess 3He in the Pacific Ocean Basin (Clarke et al., 1969) - notably the >2,000 km wide section in the South Pacific ( Lupton and Craig, 1981) - because 3He present in the deep ocean could only be sourced through some form of active degassing of the Earth's interior, at the seafloor. (62K)Figure 2. Global map of the (Al+Fe+Mn):Al ratio for surficial marine sediments. Highest ratios mimic the trend of the global MOR axis (after Boström et al., 1969). One area where early heat-flow studies suggested hydrothermal activity was likely to occur was along the Galapagos Spreading Center in the eastern equatorial Pacific Ocean (Anderson and Hobart, 1976). In 1977, scientists diving at this location found hydrothermal fluids discharging chemically altered seawater from young volcanic seafloor at elevated temperatures up to 17 °C ( Edmond et al., 1979). Two years later, the first high-temperature (380±30 °C) vent fluids were found at 21° N on the East Pacific Rise (EPR) (Spiess et al., 1980) - with fluid compositions remarkably close to those predicted from the lower-temperature Galapagos findings ( Edmond et al., 1979). Since that time, hydrothermal activity has been found at more than 40 locations throughout the Pacific, North Atlantic, and Indian Oceans (e.g., Van Dover et al., 2002) with further evidence - from characteristic chemical anomalies in the ocean water column - of its occurrence in even the most remote and slowly spreading ocean basins ( Figure 3), from the polar seas of the Southern Ocean (German et al., 2000; Klinkhammer et al., 2001) to the extremes of the ice-covered Arctic ( Edmonds et al., 2003). (61K)Figure 3. Schematic map of the global ridge crest showing the major ridge sections along which active hydrothermal vents have already been found (red circles) or are known to exist from the detection of characteristic chemical signals in the overlying water column (orange circles). Full details of all known hydrothermally active sites and plume signals are maintained at the InterRidge web-site: http://triton.ori.u-tokyo.ac.jp/~intridge/wg-gdha.htm The most spectacular manifestation of seafloor hydrothermal circulation is, without doubt, the high-temperature (>400 °C) "black smokers" that expel fluids from the seafloor along all parts of the global ocean ridge crest. In addition to being visually compelling, vent fluids also exhibit important enrichments and depletions when compared to ambient seawater. Many of the dissolved chemicals released from the Earth's interior during venting precipitate upon mixing with the cold, overlying seawater, generating thick columns of black metal-sulfide and oxide mineral-rich smoke - hence the colloquial name for these vents: "black smokers" (Figure 4). In spite of their common appearance, high-temperature hydrothermal vent fluids actually exhibit a wide range of temperatures and chemical compositions, which are determined by subsurface reaction conditions. Despite their spectacular appearance, however, high-temperature vents may only represent a small fraction - perhaps as little as 10% - of the total hydrothermal heat flux close to ridge axes. A range of studies - most notably along the Juan de Fuca Ridge (JdFR) in the NE Pacific Ocean (Rona and Trivett, 1992; Schultz et al., 1992; Ginster et al., 1994) have suggested that, instead, axial hydrothermal circulation may be dominated by much lower-temperature diffuse flow exiting the seafloor at temperatures comparable to those first observed at the Galapagos vent sites in 1977. The relative importance of high- and low-temperature hydrothermal circulation to overall ocean chemistry remains a topic of active debate. (141K)Figure 4. (a) Photograph of a "black smoker" hydrothermal vent emitting hot (>400 °C) fluid at a depth of 2,834 m into the base of the oceanic water column at the Brandon vent site, southern EPR. The vent is instrumented with a recording temperature probe. (b) Diffuse flow hydrothermal fluids have temperatures that are generally <35 °C and, therefore, may host animal communities. This diffuse flow site at a depth of 2,500 m on the EPR at 9°50' N is populated by Riftia tubeworms, mussels, crabs, and other organisms. While most studies of seafloor hydrothermal systems have focused on the currently active plate boundary (˜0-1 Ma crust), pooled heat-flow data from throughout the world's ocean basins (Figure 1) indicate that convective heat loss from the oceanic lithosphere actually continues in crust from 0-65 Ma in age ( Stein et al., 1995). Indeed, most recent estimates would indicate that hydrothermal circulation through this older (1-65 Ma) section, termed "flank fluxes," may be responsible for some 70% or more of the total hydrothermal heat loss associated with spreading-plate boundaries - either in the form of warm (20-65 °C) altered seawater, or as cooler water, which is only much more subtly chemically altered ( Mottl, 2003).When considering the impact of hydrothermal circulation upon the chemical composition of the oceans and their underlying sediments, however, attention returns - for many elements - to the high-temperature "black smoker" systems. Only here do many species escape from the seafloor in high abundance. When they do, the buoyancy of the high-temperature fluids carries them hundreds of meters up into the overlying water column as they mix and eventually form nonbuoyant plumes containing a wide variety of both dissolved chemicals and freshly precipitated mineral phases. The processes active within these dispersing hydrothermal plumes play a major role in determining the net impact of hydrothermal circulation upon the oceans and marine geochemistry.

  8. Fluid inclusion and isotopic systematics of an evolving magmatic-hydrothermal system

    SciTech Connect

    Moore, J.N.; Gunderson, R.P.

    1995-10-01

    The Geysers, California, is the site of a long-lived hydrothermal system that initially developed 1.5-2 m.y. ago in response to the intrusion of a hypabyssal granitic pluton. Although wells drilled into The Geysers produce only dry steam, fluid inclusion, isotopic, and mineralogic data demonstrate that the present vapor-dominated regime evolved from an earlier and more extensive, liquid-dominated hydrothermal system. Circulation of these early fluids produced veins characterized by tourmaline {+-} biotite {+-} actinolite {+-} clinopyroxene within the pluton and adjacent biotite-rich hornfels, actinolite {+-} ferroaxinite {+-} epidote and epidote {+-} chlorite within the intermediate parts of the thermal system and calcite in the outer parts. Potassium feldspar and quartz are present in all assemblages. Pressure-corrected homogenization temperatures and apparent salinities of fluid inclusions trapped in vein minerals range from 440{degrees}C and 44 wt% NaCl equivalent within the hornfels (<600 m from the pluton) to 325{degrees}C and 5 wt% NaCl equivalent at distances of approximately 1500 m from the intrusion. We suggest that the shallow, moderate salinity fluids are connate waters modified by water-rock interactions while the high-salinity fluids are interpreted as magmatic brines. Halite-dissolution temperatures of inclusions in the hornfels and pluton indicate that the magnetic fluids were trapped at lithostatic pressures (300-900 bars). In contrast, homogenization temperatures of the connate fluids suggest trapping under hydrostatic pressures of less than several hundred bars. Whole-rock {delta}{sup 18}O values of samples from The Geysers display systematic variations with respect to depth, location within the field, and grade of alteration. At depths below +610 m relative to mean sea level, the {delta}{sup 18}O values are strongly zoned around a northwest-southeast trending low located near the center of the steam reservoir. 77 refs., 15 figs., 2 tabs.

  9. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (Inventor)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  10. Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)—a mesothermal, vein-hosted gold-silver deposit

    NASA Astrophysics Data System (ADS)

    Yoo, Bong Chul; Lee, Hyun Koo; White, Noel C.

    2010-02-01

    The Samgwang mine is located in the Cheongyang gold district (Cheonan Metallogenic Province) of the Republic of Korea. It consists of eight massive, gold-bearing quartz veins that filled NE- and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. Their mineralogy and paragenesis allow two separate vein-forming episodes to be recognized, temporally separated by a major faulting event. The ore minerals occur in quartz and calcite of stage I, associated with fracturing and healing of veins. Hydrothermal wall-rock alteration minerals of stage I include Fe-rich chlorite (Fe/(Fe+Mg) ratios 0.74-0.81), muscovite, illite, K-feldspar, and minor arsenopyrite, pyrite, and carbonates. Sulfide minerals deposited along with electrum during this stage include arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, galena, argentite, pyrargyrite, and argentian tetrahedrite. Only calcite was deposited during stage II. Fluid inclusions in quartz contain three main types of C-O-H fluids: CO2-rich, CO2-H2O, and aqueous inclusions. Quartz veins related to early sulfides in stage I were deposited from H2O-NaCl-CO2 fluids (1,500-5,000 bar, average 3,200) with T htotal values of 200°C to 383°C and salinities less than about 7 wt.% NaCl equiv. Late sulfide deposition was related to H2O-NaCl fluids (140-1,300 bar, average 700) with T htotal values of 110°C to 385°C and salinities less than about 11 wt.% NaCl equiv. These fluids either evolved through immiscibility of H2O-NaCl-CO2 fluids as a result of a decrease in fluid pressure, or through mixing with deeply circulated meteoric waters as a result of uplift or unloading during mineralization, or both. Measured and calculated sulfur isotope compositions (δ34SH2S = 1.5 to 4.8‰) of hydrothermal fluids from the stage I quartz veins indicate that ore sulfur was derived mainly from a magmatic source. The calculated and measured oxygen and hydrogen isotope compositions (δ18OH2O = -5.9‰ to 10.9‰, δD = -102‰ to -87‰) of the ore-forming fluids indicate that the fluids were derived from magmatic sources and evolved by mixing with local meteoric water by limited water-rock exchange and by partly degassing in uplift zones during mineralization. While most features of the Samgwang mine are consistent with classification as an orogenic gold deposit, isotopic and fluid chemistry indicate that the veins were genetically related to intrusions emplaced during the Jurassic to Cretaceous Daebo orogeny.

  11. Fluid inclusions in quartz crystals from South-West Africa.

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.; Roedder, E.

    1971-01-01

    Quartz crystals from calcite veins of unknown age in Precambrian metasedimentary rocks at Geiaus No. 6 and Aukam farms in South-West Africa contain both primary and secondary inclusions filled with one substance or a combination of substances. These substances include organic liquid, moderately saline aqueous liquid, dark-colored solid, and a vapor. Analysis of these materials by microscopy and by gas chromatography and mass spectrometry shows the presence of constituents of both low and high molecular weights.

  12. Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico

    SciTech Connect

    WoldeGabriel, G.; Goff, F. )

    1989-11-01

    Two hydrothermal alteration events (8.07 Ma, one sample; 6.51-5.60 Ma, six samples) related to the waning stages of late Miocene volcanism ({ge} 13 to {le} 5.8 Ma) are recognized at the Cochiti district (southeast Jemez Mountains). Most of the K/Ar dates (0.83 {plus minus} 0.11-0.66 {plus minus} 0.21 Ma, four samples) in the hydrothermally altered, caldera-fill rocks of core hole VC-2A at Sulfur Springs, Valles caldera, indicate post-Valles caldera hydrothermal alteration. A sample from acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole was too young to be dated by the K/Ar method and is possibly associated with current hot-spring activity and the youngest pulses of volcanism. Oxygen-isotope data from illite/smectite clays in the Cochiti district are zonally distributed and range from {minus}2.15{per thousand} to {plus}7.97{per thousand} (SMOW), depending upon temperature, extent of rock-fluid interaction, and composition. The samples from VC-2A get lighter with depth ({minus}0.20{per thousand} to {plus}1.62{per thousand}). The K/Ar and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were deposited in the late Miocene (5.99-5.60 Ma) and mid-Quaternary ({approximately}0.66 Ma), respectively, by hydrothermal fluids composed primarily of meteoric water.

  13. Hydrothermal systems in two areas of the Jemez volcanic field: Sulphur Springs and the Cochiti mining district

    SciTech Connect

    WoldeGabriel, G.

    1989-03-01

    K/Ar dates and oxygen isotope data were obtained on 13 clay separates (<2 ..mu..m) of thermally altered mafic and silicic rocks from the Cochiti mining district (SE Jemez Mountains) and Continental Scientific Drilling Project (CSDP) core hole VC-2A (Sulphur Springs, Valles caldera). Illite with K/sub 2/O contents of 6.68%--10.04% is the dominant clay in the silicic rocks, whereas interstratified illite/smectites containing 1.4%--5.74% K/sub 2/O constitute the altered andesites. Two hydrothermal alteration events are recognized at the Cochiti area (8.07 m.y., n = 1, and 6.5--5.6 m.y., n = 6). The older event correlates with the waning stages of Paliza Canyon Formation andesite volcanism (greater than or equal to13 to less than or equal to8.5 m.y.), whereas the younger event correlates with intrusions and gold- and silver-bearing quartz veins associated with the Bearhead Rhyolite (7.54--5.8 m.y.). The majority of K/Ar dates in the hydrothermally altered, caldera-fill rocks of core hole VC-2A (0.83--0.66 m.y., n = 4) indicate that hydrothermal alteration developed contemporaneously with resurgence and ring fracture Valles Rhyolite domes (0.89--0.54 m.y.). One date of 0 +- 0.10 m.y. in acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole probably correlates with Holocene hydrothermal activity possibly associated with the final phases of the Valles Rhyolite (0.13 m.y.).

  14. Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming

    SciTech Connect

    Bargar, K.E.; Beeson, M.H.

    1981-05-01

    Y-2, a US Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, was drilled to a depth of 157.4 meters. The hole penetrated interbedded siliceous sinter and travertine to 10.2 m, glacial sediments of the Pinedale Glaciation interlayered with pumiceous tuff from 10.2 to 31.7 m, and rhyolitic lavas of the Elephant Back flow of the Central Plateau Member and the Mallard Lake Member of the Pleistocene Plateau Rhyolite from 31.7 to 157.4 m. Hydrothermal alteration is pervasive in most of the nearly continuous drill core. Rhyolitic glass has been extensively altered to clay and zeolite minerals (intermediate heulandite, clinoptilolite, mordenite, montmorillonite, mixed-layer illite-montmorillonite, and illite) in addition to quartz and adularia. Numerous veins, vugs, and fractures in the core contain these and other minerals: silica minerals (opal, ..beta..-cristobalite, ..cap alpha..-cristobalite, and chalcedony), zeolites (analcime, wairakite, dachiardite, laumontite, and yugawaralite), carbonates (calcite and siderite), clay (kaolinite and chlorite), oxides (hematite, goethite, manganite, cryptomelane, pyrolusite, and groutite), and sulfides (pyrhotite and pyrite) along with minor aegirine, fluorite, truscottite, and portlandite. Interbedded travertine and siliceous sinter in the upper part of the drill core indicate that two distinct types of thermal water are responsible for precipitation of the surficial deposits, and further that the water regime has alternated between the two thermal waters more than once since the end of the Pinedale Glaciation (approx. 10,000 years B.P.). Alternation of zones of calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the water chemistry in this drill hole varies with depth.

  15. Timing and duration of hydrothermal activity at the Los Bronces porphyry cluster: an update

    NASA Astrophysics Data System (ADS)

    Deckart, K.; Silva, W.; Sprhnle, C.; Vela, I.

    2014-06-01

    New geochronological data from the Los Bronces cluster of the Ro Blanco-Los Bronces mega-porphyry Cu-Mo district establish a wide range of magmatism, hydrothermal alteration, and mineralization ages, both in terms of areal extent and time. The northern El Plomo and southernmost Los Piches exploration areas contain the oldest barren porphyritic intrusions with U-Pb ages of 10.8 0.1 Ma and 13.4 0.1 Ma, respectively. A hypabyssal barren intrusion adjacent northwesterly to the main pit area yields a slightly younger age of 10.2 0.3 Ma (San Manuel sector, U-Pb), whereas in the Los Bronces (LB) open-pit area, the present day mineral extraction zone, porphyries range from 8.49 to 6.02 Ma (U-Pb). Hydrothermal biotite and sericite ages are up to 0.5 Ma younger but consistent with the cooling of the corresponding intrusion events of each area. Two quartz-molybdenite B-type veins from the LB open pit have Re-Os molybdenite ages of 5.65 0.03 Ma and 5.35 0.03 Ma consistent with published data for the contiguous Ro Blanco cluster. The San Manuel exploration area within the Los Bronces cluster, located about 1.5-2 km southeast of the open-pit extraction zone, shows both the oldest hydrothermal biotite (7.70 0.07 Ma; 40Ar/39Ar) and breccia cement molybdenite ages (8.36 0.06 Ma; Re-Os) registered in the entire Ro Blanco-Los Bronces district. These are also older than those reported from the El Teniente porphyry Cu(-Mo) deposit, suggesting that mineralization in the late Miocene to early Pliocene porphyry belt of Central Chile commenced 2 Ma before the previously accepted age of 6.3 Ma.

  16. Seafloor Hydrothermal Fluid Evolution: A Fluid Inclusion Study

    NASA Astrophysics Data System (ADS)

    Morgan, S.; McCaig, A.; Yardley, B.; Banks, D.; Cann, J.

    2006-12-01

    Fluid inclusions offer the only available samples of uncontaminated sub-seafloor fluids. To date, microthermometry of such fluid inclusions trapped in rocks of the ocean crust has revealed that there exist fluids of a wide range of salinities in fluids trapped in both modern and ancient hydrothermal systems. Here we report direct analyses of the chemistry of individual fluid inclusions using a Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). This method allows the assessment of multiple generations of fluids within the same sample, giving information on the full range of samples, rather than simply bulk compositional data obtained by crush-leach methods. Samples from different levels in the hydrothermal systems in both the Troodos ophiolite, Cyprus and ODP/IODP Hole 1256D are being studied. Hole 1256D offers the first opportunity to study a complete section of in situ ocean crust which penetrates both the extrusive-dike and dike-plutonic boundaries. By studying ophiolitic and in situ ocean crust hydrothermal systems in tandem it is hoped that a greater understanding of fluid evolution will be reached through all levels of individual systems as well as establishing any further oceanic-ophiolitic similarities or differences. Microthermometry of Troodos samples has so far revealed that there is a combination of fluids of black smoker vent salinity (1.5 to 7 NaCl wt percent eq.) and hyper-saline fluids (25 to 45 NaCl wt percent eq.) in the system, with some inclusions containing halite daughter crystals. Given the relatively good constraints on temperature and pressure in these systems it is evident that these fluids are not a simple phase separated pair, if assuming a purely seawater fluid source. Subsequent laser ablation of these fluid inclusions has provided a much more detailed insight into the nature of the fluids, indicating that the fluids take up metals very efficiently and it is apparent that Mg loss from the seawater is slow, with it still being present in reasonable quantities at the base of the system. Initial microthermometry on quartz-hosted fluid inclusions from a vein in the sheeted dike complex in Hole 1256D indicates very high temperature (>450degC) of some of the inclusions. This, combined with their hyper-salinity (as indicated by the presence of large daughter crystals at standard temperature and pressure) and the presence of hematite in some inclusions indicates that these fluids are possibly magmatic, being directly exsolved from the magma chamber. Data acquisition from both sample suites is in progress and will be presented at the meeting.

  17. Geochronology and Nd isotope geochemistry of the Gameleira Cu-Au deposit, Serra dos Carajs, Brazil: 1.8-1.7 Ga hydrothermal alteration and mineralization

    NASA Astrophysics Data System (ADS)

    Pimentel, Mrcio M.; Lindenmayer, Zara G.; Laux, Jorge H.; Armstrong, Richard; de Arajo, Janice Caldas

    2003-01-01

    The Gameleira deposit is one of several important Cu-Au deposits associated with the late Archean (ca. 2.7 Ga) volcanic rocks of the Itacainas supergroup in the Carajs mineral province, southeastern Par. It comprises mainly biotite- and sulphide-rich veins and quartz-grunerite-biotite-gold hydrothermal veins that cut andesitic rocks. It is interpreted as representative of the Fe oxide Cu-Au class of deposit. Sm-Nd isotopic data indicate an age of 271980 Ma (MSWD=3.0) and ?Nd( T) of -1.4 for the host meta-andesites. Metavolcanic rocks and cogenetic gabbros give an age of 275781 Ma (1 ?) with ?Nd( T) of -0.8. This is considered the best estimate for the crystallization age of the Gameleira volcanic and subvolcanic rocks. Negative ?Nd( T) and Archean TDM model ages (mostly between 2.8 and 3.1 Ga) suggest some contamination with older crustal material. The andesitic/gabbroic rocks are cut by two generations of granite dykes. The older has striking petrographic and geochemical similarities to the ca. 1.87 Ga alkali-rich Pojuca granite, which is exposed a few kilometers to the northwest of the deposit. The younger is a leucogranite with a U-Pb SHRIMP age of 1583+9/-7 Ma. Neodymium isotopic analyses of the two generations of granites indicate a strong crustal affinity and possible derivation from reworking of the Archean crust. The quartz-grunerite-gold hydrothermal vein yields a Sm-Nd isochron (MSWD=.83) age of 183915 Ma (1 ?) with ?Nd( T) of -9.2. Pervasive potassic alteration, represented by the widespread formation of biotite in the country rocks, is dated by Ar-Ar at 17348 Ma, and a similar age of 170031 Ma (1 ?) is indicated by the Sm-Nd isochron for the biotite-sulphide veins. Similar to that for the quartz-grunerite vein, the ?Nd( T) value for the sulphide-rich veins is strongly negative (-8.2), thereby suggesting that the original fluids percolated through, leached, or were derived from igneous rocks with an Archaean Nd isotopic signature. The geochronological data suggest that the Gameleira Cu-Au mineralization is related to a Paleoproterozoic (ca. 1.83 Ga) episode of hydrothermal activity and is not Archaean. The younger ages of ca. 1.70-1.73 might be interpreted as products of the lower blocking temperatures of biotite in relation to the Ar-Ar and Sm-Nd isotopic systems. Combined with previous geochemistry and stable isotope data, the Nd isotopic data suggest that the mineralizing fluids were derived from, or strongly interacted with, a Paleoproterozoic crustal granite, possibly similar in age and composition to the Pojuca granite.

  18. Vein graft failure.

    PubMed

    Owens, Christopher D; Gasper, Warren J; Rahman, Amreen S; Conte, Michael S

    2015-01-01

    After the creation of an autogenous lower extremity bypass graft, the vein must undergo a series of dynamic structural changes to stabilize the arterial hemodynamic forces. These changes, which are commonly referred to as remodeling, include an inflammatory response, the development of a neointima, matrix turnover, and cellular proliferation and apoptosis. The sum total of these processes results in dramatic alterations in the physical and biomechanical attributes of the arterialized vein. The most clinically obvious and easily measured of these is lumen remodeling of the graft. However, although somewhat less precise, wall thickness, matrix composition, and endothelial changes can be measured in vivo within the healing vein graft. Recent translational work has demonstrated the clinical relevance of remodeling as it relates to vein graft patency and the systemic factors influencing it. By correlating histologic and molecular changes in the vein, insights into potential therapeutic strategies to prevent bypass failure and areas for future investigation are explored. PMID:24095042

  19. Vein graft failure

    PubMed Central

    Owens, Christopher D.; Gasper, Warren J.; Rahman, Amreen S.; Conte, Michael S

    2013-01-01

    Following the creation of an autogenous lower extremity bypass graft, the vein must undergo a series of dynamic structural changes to stabilize the arterial hemodynamic forces. These changes, commonly referred to as remodeling, include an inflammatory response, the development of a neointima, matrix turnover, and cellular proliferation and apoptosis. The sum total of these processes results in dramatic alterations in the physical and biomechanical attributes of the arterialized vein. The most clinically obvious and easily measured of these is lumen remodeling of the graft. However, though somewhat less precise, wall thickness, matrix composition, and endothelial changes can be measured in vivo within the healing vein graft. Recent translational work has demonstrated the clinical relevance of remodeling as it relates to vein graft patency and the systemic factors influencing it. By correlating histologic and molecular changes in the vein, insights into potential therapeutic strategies to prevent bypass failure and areas for future investigation are explored. PMID:24095042

  20. From quartz hazard to quartz risk: the coal mines revisited.

    PubMed

    Borm, Paul J A; Tran, Lang

    2002-01-01

    Following the classification of quartz as a human carcinogen by the IARC, many standard-setting committees are currently trying to convert this hazard into their national or EU standards. Since human data to set a safe exposure limit for quartz are limited, we hypothesized that lung burden data on quartz in coal miners' lungs after lifetime exposure could be used to set a non-carcinogenic lung burden of quartz, and that this might be valid for other groups occupationally exposed to quartz. A review of data shows that lungs of coal miners with simple coal workers' pneumoconiosis (sCWP) typically contain up to 30 g of dust, and in one specific study lung burdens between 0.7 and 1.7 g of quartz were associated with macules only, and no sCWP. Assuming independent actions of coal and quartz and no clearance of quartz, and sCWP as a prerequisite for lung cancer due to quartz exposure in coal mine dust, a simple kinetic approach was applied. A no observed adverse effect level (NOAEL) for quartz of between 0.03 and 0.13 mg/m3 (40 yr exposure) is derived, but it is concluded that more refined physiologically based pharmacokinetic modelling is needed for a better estimate, also including interindividual differences in lung clearance. Considering the independent effects of, and the well-known interaction between coal and quartz, these data could be important to other workplaces with usual mixed-dust exposure. PMID:12005128

  1. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs. The morning of the trip will examine the White River altered area, which includes high-level alteration related to a large, early Miocene magmatic-hydrothermal system exposed about 10 km east of Enumclaw, Washington. Here, vuggy silica alteration is being quarried for silica and advanced argillic alteration has been prospected for alunite. Clay-filled fractures and sulfide-rich, fine-grained sedimentary rocks of hydrothermal origin locally are enriched in precious metals. Many hydrothermal features common in high-sulfidation gold-silver deposits and in advanced argillic alteration zones overlying porphyry copper deposits (for example, Gustafson and Hunt, 1975; Hedenquist and others, 2000; Sillitoe, 2000) are exposed, although no economic base or precious metal mineralized rock has been discovered to date. The afternoon will be spent examining two exposures of the Osceola Mudflow along the White River. The Osceola Mudflow contains abundant clasts of altered Quaternary rocks from Mount Rainier that show various types of hydrothermal alteration and hydrothermal features. The mudflow matrix contains abundant hydrothermal clay minerals that added cohesiveness to the debris flow and helped allow it to travel much farther down valley than other, noncohesive debris flows from Mount Rainier (Crandell, 1971; Vallance and Scott, 1997). The White River altered area is the subject of ongoing studies by geoscientists from Weyerhaeuser Company and the U.S. Geological Survey (USGS). The generalized descriptions of the geology, geophysics, alteration, and mineralization presented here represent the preliminary results of this study (Ashley and others, 2003). Additional field, geochemical, geochronologic, and geophysical studies are underway. The Osceola Mudflow and other Holocene debris flows from Mount Rainier also are the subject of ongoing studies by the USGS (for example, Breit and others, 2003; John and others, 2003; Plumlee and others, 2003, Sisson and others, 2003; Vallance and others, 2003). Studies of hydrothermal alteration in the Osceola Mudflow are being used to better understand fossil hydrothermal systems on Mount Rainier and potential hazards associated with this alteration.

  2. Hydrothermal mineralogy and fluid inclusions chemistry to understand the roots of active geothermal systems

    NASA Astrophysics Data System (ADS)

    Chambefort, I. S.; Dilles, J. H.; Heinrich, C.

    2013-12-01

    An integrated study to link magmatic textures, magmatic mineral compositions, hydrothermal alteration zoning, hydrothermal mineral chemistry, and fluid inclusion compositions has been undertaken to link an intrusive complex and its degassing alteration halo with their surface equivalent in an active geothermal system. Ngatamariki geothermal system, New Zealand, presents a unique feature in the Taupo Volcanic Zone (TVZ). Drilling intercepted an intrusive complex with a high temperature alteration halo similarly to what is observed in magmatic-derived ore deposits. Thus it presents the perfect opportunity to study the magmatic-hydrothermal transition of the TVZ by characterizing the nature of the deep magmatic fluids link to the heat source of the world known geothermal fields. The record of magmatic-hydrothermal fluid-rock interactions preserved at Ngatamariki may be analogous of processes presently occurring at depth beneath TVZ geothermal systems. The intrusive complex consists of over 5 km3 of tonalite, diorite, basalt and aplitic dykes. Evidence of undercooling subsolidus magmatic textures such as myrmekite and skeletal overgrowth are commonly observed and often linked to volatile loss. The fluids released during the crystallization of the intrusive complex are interpreted to be at the origin of the surrounding high temperature alteration halo. Advanced argillic to potassic alteration and high temperature acidic assemblage is associated with high-temperature quartz veining at depth and vuggy silica at the paleo-surface. Major element compositions of the white micas associated with the high temperature halo show a transition from, muscovite to phengite, muscovitic illite away from the intrusion, with a transition to pyrophyllite and/ or topaz, and andalusite characteristic of more acidic conditions. Abundant high-density (up to 59 wt% NaCl eq and homogenization temperatures of 550 degree Celsius and above) coexist with low-density vapor fluid inclusions. This inferred heterogeneous entrapment represents the phase separation condition at the magmatic-hydrothermal conditions. Microthermometry measurements revealed the common presence of CO2, NaCl, KCl and CaCl2 species. Chemical compositions of the trapped fluids represent the closest equivalent of the magmatic fluids exsolving at depth feeding the deep roots of the geothermal fields. This study brings new constraints on the chemical conditions to model deep fluid-rock interactions in active geothermal systems.

  3. Quartz crystal growth

    DOEpatents

    Baughman, Richard J. (Albuquerque, NM)

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  4. The timing of sub-solidus hydrothermal alteration in the Central Zone, Limpopo Belt (South Africa): Constraints from titanite U Pb geochronology and REE partitioning

    NASA Astrophysics Data System (ADS)

    Buick, Ian S.; Hermann, Jrg; Maas, Roland; Gibson, Roger L.

    2007-10-01

    In the Central Zone of the Limpopo Belt (South Africa), Palaeoproterozoic granulite-facies metamorphism was superimposed on an earlier Archaean orogenic history. Previously determined ages of 2030-2020 Ma obtained from high-temperature chronometers (zircon, garnet, monazite) are generally thought to provide the best estimate of the peak of Palaeoproterozoic granulite-facies metamorphism in the Central Zone, whereas ages as young as 2006 Ma from late melt patches suggest that temperatures remained above the wet solidus for an extended period. We present a new MC-ICP-MS 207Pb- 206Pb age of 2030.9 1.5 Ma for titanite found in amphibolite- to greenschist-facies alteration zones developed adjacent to quartz vein systems and related pegmatites that cut a strongly deformed Central Zone metabasite. This age could potentially date cooling of rocks at this locality to temperatures below the wet solidus. Alternatively, the titanite could be inherited from the metabasite host, and the age determined from it date the peak of metamorphism. Integration of the geochronology with LA-ICP-MS trace element data for minerals from the metabasite, the hydrothermal vein systems and comparable rocks elsewhere shows that the titanite formed during the amphibolite-facies hydrothermal alteration, not at the metamorphic peak or during the greenschist-facies phase of veining. This suggests that high-grade rocks in the Central Zone have cooled differentially through the wet solidus, and provides timing constraints on when Palaeoproterozoic reworking in the Central Zone began. This study illustrates the potential of combined geochronological and high-resolution geochemical studies to accurately match mineral ages to distinct crustal processes.

  5. Petrochemical Characteristics of the Felsic Veins within the Kaman Metamorphic Rocks: Central Anatolia, Turkiye

    NASA Astrophysics Data System (ADS)

    Kilic, C. O.; Kadioglu, Y. K.

    2012-04-01

    The basement metamorphic rocks which outcrops in the vicinity of Kaman-Kirsehir, in Central Anatolia are composed of gneiss, biotite schist, amphibole schist, quartzite intercalated with amphibolite lenses in the regin. This metamorphic rocks are cut by felsic veins. Felsic vein rocks are mainly composed of orthoclase, quartz, plagioclase, biotite and pyroxene minerals with accessory titanite and opaque minerals. Felsic vein rocks have holocrystalline texture in general and composed of mega crystalline orthoclase, quartz and mostly euhedral mafic minerals. The felsic veins are quartz syenite in composition. They are characterised by the lack of mafic magmatic enclaves. Clay formation, chloritization and opasitization with minor amount of uralitization are the main alteration part of the unit. The felsic veins which cut the Kaman Metamorphic rocks have SiO2 % concentration vary between 57.22-70.9 %, Na2O% concentration between 1.9-2.63% and K2O% concentration between 6.34 - 9.01%. Felsic veins are enriched in LIL (large ion lithophile) elements compared to HFS (high field strength) elements. Obtained geochemical and petrographical datas suggest that the felsic veins are genetically related with Central Anatolia alkalen magmatic rocks and they may belong to the alkalen magmatic rocks which have excess crustal contamination.

  6. Force chain forming quartz in an ultramylonite

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Morales, Luiz F. G.; Peters, Max

    2014-05-01

    Polymineralic ultramylonites often show microstructures indicative of grain size sensitive creep with dissolution precipitation or diffusion accommodated grain boundary sliding. Typically phases show an anticorrelated distribution, the grain size is small and a crystallographic preferred orientation is absent. The latter observation is usually thought to originate from rigid body rotation of grains because flow dominated by diffusion creep operates at differential stresses, which are too low to activate crystal-plastic mechanisms. Here, we present quartz texture measurements from a natural ultramylonite, deformed under upper amphibolite facies conditions from the Nordmannvik Nappe, Upper Allochton of the Norwegian Caledonides. The ultramylonite has a mean grain size < 10 μm (eq. diameter) and shows a very homogeneous microstructure with an anticorrelated phase distribution with quartz (50 vol%), separated by a matrix of biotite, white mica, plagioclase and titanite while garnet forms porphyroclasts. Quartz occurs either as isolated grains or in 'one grain' thick, small clusters. Two types of clusters can be distinguished: foliation parallel clusters and oblique clusters with a long axis at a small angle to the inferred shortening direction, the latter being prominent in the most homogeneous ultramylonite. Quartz shows a weak but non-random texture. In the foliation parallel clusters a [c]-axis maximum is elongated around the y-direction towards the normal of the foliation, -axes form point maxima at a small angle to the lineation, very similar to textures found in high temperature quartz mylonites (e.g. Pennacchioni et al., 2010). In the foliation oblique clusters, the [c]-axes form a very broad maximum around the y-direction and axes show three distinct, close to orthogonal maxima close to x,y,z-directions, rotated about 10-15° antithetically around the y-direction. Isolated quartz grains also show a weak texture of this type. Quartz grains contain low angle boundaries, some of which can be interpreted as subgrain boundaries, mainly related to prism-a and rhomb-a slip, suggesting the activation of crystal-plastic processes. Alternative texture forming processes (e.g. growth textures) are also discussed. The texture in the foliation parallel clusters is thought to be an inherited texture from lower strain stages in the ultramylonite, as it is mostly present in the least deformed parts of the ultramylonite. However, we suggest that the texture formed in the foliation oblique clusters is related to a dynamic formation of force chains between quartz grains, where differential stresses become high enough for plastic yielding. The presence of force chains questions whether ultramylonites necessarily need to possess a linear viscous rheology, even if microstructures would indicate a diffusion creep mechanism. Pennacchioni G., Menegon L., Leiss B., Nestola F., Bromiley G., 2010: Development of crystallographic preferred orientation and microstructure during plastic deformation of natural coarse?grained quartz veins. Journal of Geophysical Research, Vol. 115, B12405

  7. Plastic Deformation of Quartz: Unfinished business?

    NASA Astrophysics Data System (ADS)

    Paterson, M. S.

    2011-12-01

    Starting at Harvard in the mid-1930's, David Griggs built a series of high pressure machines for experimental rock deformation. One persistent aim was to achieve the plastic deformation of quartz. Each time he built a new machine for higher pressure and/or temperature, one of the first materials he tested would be quartz. This search went on through a 500 MPa liquid-medium machine at temperatures up to 300C, then with a gas-medium machine for temperatures up to 800C, and finally with a solid-medium machine for higher pressures and temperatures. Quartz proved stubbornly resistant to deformation except at extremely high stresses until, finally and somewhat serendipitously, it was found possible to deform quartz at relatively low stresses in the presence of water under special conditions. The breakthrough came in an experiment in a 1500 MPa solid-medium apparatus in which talc was used as pressure medium. At the temperature of the experiment, the talc dehydrated and so released water. Under these conditions, natural quartz proved to be very weak and to readily undergo plastic deformation, a phenomenon that became known as "hydrolytic weakening". Soon after this discovery, it was also found that certain synthetic single crystals could be easily deformed ab initio. These crystals were from a particular set that had been grown rapidly under hydrothermal conditions and had incorporated water during growth. Attempts in our laboratory to weaken crystals in a gas-medium apparatus at around 300 MPa by cooking dry quartz in the presence of added water were all unsuccessful, although we could deform wet synthetic crystals. There was considerable speculation about a role of high pressure in promoting hydrolytic weakening, but the dilemma was eventually clarified by electron microscope studies by Fitz Gerald and coworkers. These studies showed that crystals that had been subjected to high pressure and temperature in the solid-medium apparatus were extensively microcracked, presumably due to non-hydrostatic stresses generated from the solid medium during raising the pressure, thus evidently promoting the ingress of water. From our gas-medium experiments it would seem that both the solubility and the rate of diffusion of water-related species in dry quartz must be very low, such that at 300 MPa and around 500 - 1000 C the water penetrates less than a few micrometres in the course of a few hours. Thus the sluggishness of diffusion and the low equilibrium solubility of water-related species in quartz probably explain the failure to achieve hydrolytic weakening in the gas-medium apparatus. However, the documentation of these properties remains inadequate. The initial, and still current, Frank-Griggs hypothesis for the origin of hydrolytic weakening is that the water plays a role in the breaking of the covalent silicon-oxygen bonds as a dislocation is propagated. It is a corollary that the dislocation must be saturated with water or that the water must migrate with the dislocation as it moves. Heggie and Jones have done a number of ab initio calculations on the role of the water in the migration of dislocations in quartz which support the idea that the motion of dislocations is aided by the presence of water-related species in the dislocation core.

  8. Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256

    NASA Astrophysics Data System (ADS)

    Alt, Jeffrey C.; Laverne, Christine; Coggon, Rosalind M.; Teagle, Damon A. H.; Banerjee, Neil R.; Morgan, Sally; Smith-Duque, Christopher E.; Harris, Michelle; Galli, Laura

    2010-10-01

    ODP/IODP Hole 1256D penetrates an in situ section of ocean crust formed at the East Pacific Rise, through lavas and sheeted dikes and 100 m into plutonic rocks. We use mineralogy, oxygen isotopes, and fluid inclusions to understand hydrothermal processes. The lavas are slightly altered at low temperatures (<150C) to phyllosilicates and iron oxyhydroxides, with a stepwise increase in grade downward to greenschist minerals in the upper dikes. This resulted from generally upwelling hydrothermal fluids in the dikes mixing with cooler seawater solutions in the lavas, also producing minor metal sulfide mineralization in the upper dikes. Alteration grade increases downward in the dikes, with increasing recrystallization to amphibole and loss of metals at higher temperatures (>350C up to 600C). Intrusion of gabbro bodies into the lower dikes resulted in contact metamorphism to granoblastic hornfels at 850C-900C, representing a thermal boundary layer between the axial melt lens and the overlying hydrothermal system. Downward penetration of hydrothermal fluids led to rehydration of granoblastic dikes and plutonic rocks at 800C down to <300C. Fluid inclusion and oxygen isotope data show that vein quartz formed at 300C to >450C from hydrothermal fluids that were affected by supercritical phase separation. Fluids had variable salinities and were enriched in 18O (+0.4 to +3.5) relative to seawater, similar to seafloor vent fluids. Dike margins are brecciated and mineralized, suggesting hydrothermal activity coeval with magmatism. Anhydrite formed mainly in the upper dikes when partly reacted seawater fluids were heated as they penetrated deeper into the system. Low-temperature alteration of the volcanic section continued as cold seawater penetrated along fluid pathways, forming minor iron oxyhydroxides in the rocks. Hydrothermal processes at Site 1256 fit with current models whereby greenschist alteration of dikes at low water/rock ratios is overprinted by fracture-controlled alteration and mineralization by upwelling hydrothermal fluids, a conductive boundary layer above gabbroic intrusions, leaching of metals from dikes and gabbros in the deep "root zone," and stepped thermal and alteration gradients in the basement. The Site 1256 section, however, is intact and retains recharge effects (anhydrite), allowing an integrated view of processes in the subsurface.

  9. HYDROTHERMAL MINERALOGY OF RESEARCH DRILL HOLE Y-3, YELLOWSTONE NATIONAL PARK, WYOMING.

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1984-01-01

    The approximate paragenetic sequence of hydrothermal minerals in the Y-3 U. S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, is: hydrothermal chalcedony, hematite, pyrite, quartz, clay minerals (smectite and mixed-layer illite-smectite), calcite, chlorite, fluorite, pyrite, quartz, zeolite minerals (analcime, dachiardite, laumontite, stilbite, and yugawaralite), and clay minerals (smectite and mixed-layer illite-smectite). A few hydrothermal minerals that were identified in drill core Y-3 (lepidolite, aegirine, pectolite, and truscottite) are rarely found in modern geothermal areas. The alteration minerals occur primarily as vug and fracture fillings that were deposited from cooling thermal water. Refs.

  10. Mixing of fluids in hydrothermal ore-forming (Sn,W) systems: stable isotope and rare earth elements data

    NASA Astrophysics Data System (ADS)

    Sushchevskaya, T. M.; Popova, J. A.; Velivetskaya, T. A.; Ignatiev, A. V.; Matveeva, S. S.; Limantseva, O. A.

    2012-04-01

    Experimental and physico-chemical modeling data witness to important role of mixing of different type of fluids during tin and tungsten ore formation in hydrothermal systems. Mixing of magmatogeneous fluids, exsolved from granite melts, with exogenic, initially meteoric waters in hydrothermal ore-forming systems may change chemical composition of ore-forming fluid, causing cassiterite and/or wolframite precipitation (Heinrich, 1990; Sushchevskaya, Ryzhenko, 2002). We studied the process of genetically different fluids mixing for two economic Sn-W deposits, situated in the Iultin ore region (North-East of Russia, Chukotka Penninsula). The Iultin and Svetloe deposits are located in the apical parts of close situated leucogranite stocks, formed at the final stage of the Iultin complex emplacement. Both deposits are composed of a series of quartz veins among the flyschoid rocks (T 1-2), cut by the dikes (K1) of lamprophyre, granodiorite porphyre and alpite. The veins of the deposits are dominated by the productive quartz-wolframite-cassiterite-arsenopyrite-muscovite mineral assemblage. Topaz, beryl, fluorite, and albite occur sporadically. The later sulfide (loellingite-stannite-chalcopyrite) and quartz-fluorite-calcite assemblages show insignificant development. The preore quartz veinlets in host hornfels contain disseminated iron sulfides, chalcopyrite, muscovite. Isotopic (H, O, Ar) study of minerals, supplemented by oxygen isotope data of host granites and metamorphic rocks gave us possibility to conclude, that at the Iultin and the Svetloye deposits fluid mixing was fixed on the early stages of deposit formation and could be regarded as probable cause of metal (W, Sn) precipitation. During postore time the intensive involvement of isotopically light exogenic waters have changed: a) the initial character of oxygen isotope zonality; b) the initial hydrogen isotope composition of muscovites, up to meteoric calculated values for productive fluid (while the δ18O values of quartz from productive association remained rather high). The intense mixing of magmatic and meteoric waters was sponsored by the location of the hydrothermal systems in a permeable zone at the contact of the leucogranite cupolas with hornfels and sandstones, cut by dykes and subsequently developing ore-hosting fissures. REEs data, which also may describe the process of fluid mixing, have been obtained for the minerals and rocks with the help of ICP MS analysis. The REEs concentrations in mineral- forming fluids have been obtained: a) from total analysis of fluid inclusion solutions and b) from calculations of REEs values for such minerals, as fluorite, wolframite, sheelite with mineral-fluid partitioning coefficients (Raimbault et al., 1985). REEs distribution in host rocks was studied for the cross sections, previously analysed for oxygen isotopic zonality (Sushchevskaya et al., 2008). Interpretation of these results favours the view, that ore-forming fluids are of mixing genesis.

  11. Standard varicose vein surgery.

    PubMed

    Perkins, J M T

    2009-01-01

    This article examines the practice of standard varicose vein surgery including sapheno-femoral and sapheno-popliteal ligation, perforator surgery and surgery for recurrent varicose veins. The technique of exposure of the sapheno-femoral junction and the sapheno-popliteal junction is outlined and advice given on avoidance of complications for both. The evidence regarding methods of closure over the ligated sapheno-femoral junction is examined as is the requirement for stripping and the use of different types of stripper. The requirement to strip the small saphenous vein and the extent of dissection necessary in the popliteal fossa is also examined. Complications of standard varicose vein surgery are outlined. The frequency of wound infection, nerve injury, vascular injury and venous thromboembolism are listed and strategies to avoid these complications are examined. PMID:19307439

  12. What Are Varicose Veins?

    MedlinePLUS

    ... body in the veins is darker because your body parts have used up the oxygen in the blood. ... on the legs, ankles, and feet because those body parts are farthest from the heart. Gravity pulls blood ...

  13. Varicose vein stripping

    MedlinePLUS

    ... ankle. Your surgeon will then thread a thin, flexible plastic wire into the vein through your groin ... Your legs will be wrapped with bandages to control swelling and bleeding for 3 to 5 days ...

  14. Deep vein thrombosis - discharge

    MedlinePLUS

    You were treated for deep venous thrombosis (DVT). This is a condition in which a blood clot forms in a vein that is not on ... especially if it gets worse upon taking a deep breath in You cough up blood

  15. Hydrothermal alteration minerals in Aluto Langano geothermal wells, Ethiopia

    SciTech Connect

    Gebregzabher, Z.

    1986-01-01

    Aluto Langano geothermal field is characterized by alteration mineral assemblages of calcite, quartz, chlorite, undifferentiated clays, hematite, biotite and epidote. The presence of garnet and sphene is also reported for one of the wells. The measured temperature for the reservoir is above 300/sup 0/C. Permeability of the reservoir is highly influenced by the deposition of hydrothermal minerals.

  16. Spatial variability in hydrothermal systems in fast-spreading crust: evidence from tectonic windows exposed at Pito and Hess Deeps

    NASA Astrophysics Data System (ADS)

    Gillis, K. M.

    2008-12-01

    Tectonic windows of the oceanic crust provide views of the internal structure of mid-ocean ridge hydrothermal systems. Targeted exploration of escarpments that formed at the fast- to very fast-spreading East Pacific Rise exposed at Pito and Hess Deeps have allowed us to address questions that 1-D "pinpricks" afforded by ocean drilling cannot. Outcrop imaging along closely spaced submersible and ROV tracks document the geological context of hydrothermal alteration in 3-dimensions. These broad views reveal how and why the conditions and products of fluid-rock reaction were spatially and temporally variable. Alteration characteristics in the sheeted dike complexes at Pito and Hess Deeps are similar. The dikes are relatively fresh (average extent of alteration is 27%, ranging from 0 to >80%) and the background alteration is amphibole- dominated. At Hess Deep chlorite dominates within a few hundred metre wide zones, whereas at Pito Deep chlorite-rich dikes are sporadically distributed throughout. Mineral assemblages and compositions, and distributed Cu and Zn depletion, indicate that peak temperatures ranged from <300 to >400 C and did not vary systematically with depth. Vein systems are rare at Hess Deep, whereas amphibole and chlorite veins are ubiquitous and quartz-filled fractures are only locally present at Pito Deep. Regional variability in alteration characteristics is found on a scale of <1 to 2 km, illustrating the diversity of fluid-rock interaction that can be expected at fast-spreading ridges. Migration of circulating cells along ridges and local evolution of fluid compositions produce sections of the upper crust with a distinctive character of alteration, on time scales of <5-20 kyr. It is interesting to note that the time-integrated fluid fluxes, calculated from Sr-isotopic mass balance, are comparable between areas, despite the distinctive character of alteration.

  17. The N story of a hydrothermal Acheaen BIF-bearing chert

    NASA Astrophysics Data System (ADS)

    Wagner, C.; Orberger, B.; Pinti, D. L.; Gallien, J.; Fialin, M.; Daudin, L.; Hashizume, K.

    2004-05-01

    N isotopes in rocks can trace past biological activity, but it implies a deep knowledge of the N trapping sites and of the associated geo-biochemical N fractionation processes. The studied chert (PB 458) belongs to the 3.2 Ga Marble Bar complex, Pilbara, Western Australia. Isotopic analyses showed two N components with d15N of 6.71.6% and 10.01.6%, respectively. New mineralogical and REE analyses distinguished three microenvironments: 1) a silicified basalt having preserved its porphyric texture, with euhedral hydrothermal Fe-sulfides precipitated in the protomafic minerals; (2) Fe-Mn oxyhydroxide (BIFs) laminae and associated Ni-Cu-Mn-Au-Pd alloys and HREE-Y phosphates alternate with cryptocrystalline quartz, hosting magnetite inclusions. BIFs are initially composed of magnetite and carbonates, segregated from a Fe-Ca-Mg-enriched fluid, resulting from water-basalt interaction; (3) massive cryptocrystalline quartz with interstitial K-feldspar, Ba-K-mica and Fe-sulfides representing the residual fluids. K-Al-silicates incorporated 130 to 2540 ppm of N, probably NH4+ and 2990 to 6970 ppm of C from hydrothermal fluids. Oxidizing and slightly acid fluids later infiltrated the chert, and quartz veins were formed during diagenesis. Goethite and hydrous Mn-Fe minerals replaced carbonates, sulfides and magnetite, incorporating 500 to 4550 ppm of N and 3440 to 6000 ppm of C. N might occur as NH4+, replacing K+ in the Fe-Mn oxyhyroxide structure. The oxyhydroxide texture is vermicular and filamentous Their heterogeneous chemical composition is caused possibly by microbial activity. This is in agreement with measured N/C ratios of 0.06-0.6, similar to those known for marine bacteria. The d15N signatures of N are similar to those measured in marine sediments and derived from metabolic activity of bacteria (d15N=7.6%). The higher measured d15N values of 10% could be due to post-emplacement devolatilization of the sample or alternatively to different redox conditions during N fixation into sediments by organisms.

  18. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system.

    PubMed

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-01-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ(7)Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ(7)Liquartz-fluid = -8.9382 × (1000/T) + 22.22(R(2) = 0.98; 175 °C-340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ(7)Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ(7)Li range from -0.7‰ to +18.4‰ at temperatures of 175-340 °C. This δ(7)Li range, together with Li-O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process. PMID:26347051

  19. Mesenteric vein thrombosis: CT identification

    SciTech Connect

    Rosen, A.; Korobkin, M.; Silverman, P.M.; Dunnick, N.R.; Kelvin, F.M.

    1984-07-01

    Superior mesenteric vein thrombosis was identified on computed tomographic scans in six patients. In each case, contrast-enhanced scans showed a high-density superior mesenteric vein wall surrounding a central filling defect. Four fo the six patients had isolated superior mesenteric vein thrombosis. A fifth patient had associated portal vein and splenic vein thrombosis, and the sixth patient had associated portal vein and inferior vena cava thrombosis. One of the six patients had acute ischemic bowel disease. The other five patients did not have acute ischemic bowel symptoms associated with their venous occlusion. This study defines the computed tomographic appearance of mesenteric vein thrombosis.

  20. Origin of the color in cobalt-doped quartz

    NASA Astrophysics Data System (ADS)

    de Miranda Pinto, Luiz Carlos B.; Righi, Ariete; Lameiras, Fernando Soares; da Silva Araujo, Fernando Gabriel; Krambrock, Klaus

    2011-09-01

    Synthetic Co-doped quartz was grown hydrothermally in steel autoclaves at the Technological Center of Minas Gerais (CETEC), Brazil. The quartz samples, originally yellow in the as-grown state acquired blue coloration after prolonged heat treatment times at 500C near the alpha-beta transition temperature. UV-VIS-NIR absorption spectroscopy shows the characteristic spectra of Co3+ before heat treatment. After heat treatment, the optical absorption spectrum is dominated by two split-triplet bands the first in the near infrared region centered at about 6,700 cm-1 (1,490 nm) and the second in the visible spectral range at about 16,900 cm-1 (590 nm). Both split-triplet bands are typical for Co2+ ions in tetrahedral coordination environments. From the absence of electron paramagnetic resonance (EPR) spectra, we conclude that the Co2+ found in the optical absorption spectra of the blue quartz is not due to an isolated structural site in the quartz lattice. Instead, the blue color is associated with electronic transitions of Co2+ in small inclusions in which the Co site has tetrahedral symmetry. The non-observation of polarization-depend optical absorption spectra is also in agreement with this model. The results for Co2+ in quartz are different from Co-bearing spinel and staurolite and other silicates like orthopyroxene, olivine, and beryls. The formation process of the color center is discussed.

  1. ORIGIN OF QUARTZ IN COAL.

    USGS Publications Warehouse

    Ruppert, Leslie F.; Cecil, C. Blaine; Stanton, Ronald W.

    1984-01-01

    Both a scanning electron microscope and an electron microprobe (EMP) were used in this study to analyze the cathodoluminescence properties of quartz grains in samples of the Upper Freeport coal bed because quartz grains in coal are small (silt sized) and below the resolution capabilities of a standard luminoscope. Quartz grains were identified by the detection of silicon alone with energy dispersive X-ray units attached to both the SEM and the EMP.

  2. Trace Elements in the Si Furnace. Part I: Behavior of Impurities in Quartz During Reduction

    NASA Astrophysics Data System (ADS)

    Dal Martello, Elena; Tranell, Gabriella; Ostrovski, Oleg; Zhang, Guangqing; Raaness, Ola; Larsen, Rune Berg; Tang, Kai; Koshy, Pramod

    2013-04-01

    Quartz and carbonaceous materials, which are used in the production of silicon as well as electrodes and refractories in the silicon furnace, contain trace elements mostly in the form of oxides. These oxides can be reduced to gaseous compounds and leave the furnace or stay in the reaction products—metal and slag. This article examines the behavior of trace elements in hydrothermal quartz and quartzite in the reaction of SiO2 with Si or SiC. Mixtures of SiO2 (quartz or quartzite), SiC, and Si in forms of lumps or pellets were heated to 1923 K and 2123 K (1650°C and 1850°C) in high purity graphite crucibles under Argon gas flow. The gaseous compounds condensed in the inner lining of the tube attached to the crucible. The phases present in the reacted charge and the collected condensates were studied quantitatively by X-ray diffraction (XRD) and qualitatively by Electron Probe Micro Analyzer (EPMA). Contaminants in the charge materials, reacted charge and condensate were analyzed by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). Muscovite in the mineral phase of quartz melted and formed two immiscible liquid phases: an Al-rich melt at the core of the mineral, and a SiO2-rich melt at the mineral boundaries. B, Mn, and Pb in quartz were removed during heating in reducing atmosphere at temperature above 1923 K (1650°C). Mn, Fe, Al and B diffused from quartz into silicon. P concentration was under the detection limit. Quartzite and hydrothermal quartz had different initial impurity levels: quartzite remained more impure after reduction experiment but approached purity of hydrothermal quartz upon silica reduction.

  3. Xenopumice erupted on 15 October 2011 offshore of El Hierro (Canary Islands): a subvolcanic snapshot of magmatic, hydrothermal and pyrometamorphic processes

    NASA Astrophysics Data System (ADS)

    Del Moro, S.; Di Roberto, A.; Meletlidis, S.; Pompilio, M.; Bertagnini, A.; Agostini, S.; Ridolfi, F.; Renzulli, A.

    2015-06-01

    On 15 October 2011, a submarine eruption offshore of El Hierro Island gave rise to floating volcanic products, known as xenopumices, i.e., pumiceous xenoliths partly mingled and coated with the juvenile basanitic magma. Over the last few years, no consensus in the scientific community in explaining the origin of these products has been reached. In order to better understand the formation of xenopumice, we present a textural, mineralogical, and geochemical study of the possible magmatic, hydrothermal, and pyrometamorphic processes, which usually operate in the plumbing systems of active volcanoes. We carried out a comprehensive SEM investigation and Sr-Nd-Pb isotope analyses on some samples representative of three different xenopumice facies. All the data were compared with previous studies, new data for El Hierro extrusives and a literature dataset of Canary Islands igneous and sedimentary rocks. In the investigated xenopumices, we emphasize the presence of restitic magmatic phases as well as crystallization of minerals (mainly olivine + pyroxene + magnetite aggregates) as pseudomorphs after pre-existing mafic phenocrysts, providing evidence of pyrometamorphism induced by the high-T juvenile basanitic magma. In addition, we identify veins consisting of zircon + REE-oxides + mullite associated with Si-rich glass and hydrothermal quartz, which indicate the fundamental role played by hydrothermal fluid circulation in the xenopumice protolith. The petrological data agree with a pre-syneruptive formation of the xenopumice, when El Hierro basanite magma intruded hydrothermally altered trachyandesite to trachyte rocks and triggered local partial melting. Therefore, the El Hierro xenopumice represents a snapshot of the transient processes at the magma-wall rock interface, which normally occurs in the feeding system of active volcanoes.

  4. Geology, alteration, and magmatic-hydrothermal history of The Geysers felsite -- potential applications for exploration and development

    SciTech Connect

    Hulen, J.B.; Nielson, D.L. )

    1993-01-01

    The [open quotes]felsite[close quotes] is a shallow, young, granitic intrusive body centrally located within and beneath. The Geysers steam field. The field and the felsite are coaxial, and hydrothermal alteration effected by hot-water dominated geothermal systems antedating the modern steam reservoir shows systematic vertical zonation with respect to the pluton. The research summarized in this communication was undertaken both to clarify the role of the pluton in reservoir evolution, and to characterize critical felsite-specific controls on the fields's deep porosity and permeability. The felsite comprises at least three major intrusive phases. Two are high-silica granites probably older than 1.3 Ma. The third is granodiorite (1 Ma), temporally and chemically equivalent to overlying extrusive dacites of the Clear Lake volcanic field. All three intrusive phases are too old to be heat sources for the modern steam field, but probably were the heat engines for the prior liquid-dominant systems. Younger, deeper magmatic heat sources are strongly implied for the current vapor-dominated regime. Porosity in the felsite is provided by: (1) Extensively mineralized fractures and breccias, probably of both tectonic and high-temperature hydrothermal origin; and (2) miarolitic cavities in the upper levels of the pluton. The latter could be analogous to calcite-dissolution cavities in overlying metagraywacke -- they could serve as storage sites for the fields's liquid water reserves. Porosity in these fractures, breccias, and vugs in partially occluded by hydrothermal vein minerals deposited in prior hotwater-dominated systems --tourmaline, ferroaxinite, quartz, potassium feldspar, epidote, actinolite, prehnite, and many others. Such secondary mineralization conceptually could serve as an excellent exploration guide to potentially productive portions of the felsite beyond the field's present boundaries.

  5. Hydrothermal Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Shock, E.; Havig, J.; Windman, T.; Meyer-Dombard, D.; Michaud, A.; Hartnett, H.

    2006-12-01

    Life in hot spring ecosystems is confronted with diverse challenges, and the responses to those challenges have dynamic biogeochemical consequences over narrow spatial and temporal scales. Within meters along hot spring outflow channels at Yellowstone, temperatures drop from boiling, and the near-boiling conditions of hot chemolithotrophic communities, to those that permit photosynthesis and on down to conditions where nematodes and insects graze on the edges of photosynthetic mats. Many major and trace element concentrations change only mildly in the water that flows through the entire ecosystem, while concentrations of other dissolved constituents (oxygen, sulfide, ammonia, total organic carbon) increase or decrease dramatically. Concentrations of metals and micronutrients range from toxic to inadequate for enzyme synthesis depending on the choice of hot spring. Precipitation of minerals may provide continuous growth of microbial niches, while dissolution and turbulent flow sweeps them away. Consequently, microbial communities change at the meter scale, and even more abruptly at the photosynthetic fringe. Isotopic compositions of carbon and nitrogen in microbial biomass reflect dramatic and continuous changes in metabolic strategies throughout the system. Chemical energy sources that support chemolithotrophic communities can persist at abundant or useless levels, or change dramatically owing to microbial activity. The rate of temporal change depends on the selection of hot spring systems for study. Some have changed little since our studies began in 1999. Others have shifted by two or more units in pH over several years, with corresponding changes in other chemical constituents. Some go through daily or seasonal desiccation cycles, and still others exhibit pulses of changing temperature (up to 40C) within minutes. Taken together, hydrothermal ecosystems provide highly manageable opportunities for testing how biogeochemical processes respond to the scale of temporal, spatial, and compositional changes.

  6. Ovarian vein thrombosis

    PubMed Central

    Jenayah, Amel Achour; Saoudi, Sarra; Boudaya, Fethia; Bouriel, Ines; Sfar, Ezzeddine; Chelli, Dalenda

    2015-01-01

    Ovarian vein thrombosis (OVT) is a rare cause of abdominal pain that may mimic a surgical abdomen. It is most often diagnosed during the postpartum period. In this report, we present four cases of postoperative ovarian vein thrombosis. The complications of OVT can be significant, and the diagnosis relies on a careful examination of the radiographic findings. It can occur with lower quadrant abdominal pain, especially in the setting of recent pregnancy, abdominal surgery, pelvic inflammatory disease, or malignancy. Diagnosis can be made with confidence using ultrasound, computed tomography or magnetic resonance imaging. Treatment of ovarian vein thrombosis is particularly important in the post-partum patients, with anticoagulation therapy being the current recommendation. PMID:26526119

  7. Pelvic Vein Embolisation in the Management of Varicose Veins

    SciTech Connect

    Ratnam, Lakshmi A.; Marsh, Petra; Holdstock, Judy M.; Harrison, Charmaine S.; Hussain, Fuad F.; Whiteley, Mark S.; Lopez, Anthony

    2008-11-15

    Pelvic vein incompetence is common in patients with atypical varicose veins, contributing to their recurrence after surgery. Therefore, refluxing pelvic veins should be identified and treated. We present our experience with pelvic vein embolisation in patients presenting with varicose veins. Patients presenting with varicose veins with a duplex-proven contribution from perivulval veins undergo transvaginal duplex sonography (TVUS) to identify refluxing pelvic veins. Those with positive scans undergo embolisation before surgical treatment of their lower limb varicose veins. A total of 218 women (mean age of 46.3 years) were treated. Parity was documented in the first 60 patients, of whom 47 (78.3%) were multiparous, 11 (18.3%) had had one previous pregnancy, and 2 (3.3%) were nulliparous. The left ovarian vein was embolised in 78%, the right internal iliac in 64.7%, the left internal iliac in 56.4%, and the right ovarian vein in 42.2% of patients. At follow-up TVUS, mild reflux only was seen in 16, marked persistent reflux in 6, and new reflux in 3 patients. These 9 women underwent successful repeat embolisation. Two patients experienced pulmonary embolisation of the coils, of whom 1 was asymptomatic and 1 was successfully retrieved; 1 patient had a misplaced coil protruding into the common femoral vein; and 1 patient had perineal thrombophlebitis. The results of our study showed that pelvic venous embolisation by way of a transjugular approach is a safe and effective technique in the treatment of pelvic vein reflux.

  8. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    NASA Astrophysics Data System (ADS)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and geophysical data, as well as analog fossil hydrothermal systems in volcanoes elsewhere, constrain hydrothermal alteration geometry on the pre-Osceola-collapse edifice of Mount Rainier. Relatively narrow zones of acid magmatic-hydrothermal alteration in the central core of the volcano grade to more widely distributed smectite-pyrite alteration farther out on the upper flanks, capped by steam-heated alteration with a large component of alteration resulting from condensation of fumarolic vapor above the water table. Alteration was polygenetic in zones formed episodically, and was strongly controlled by fluxes of heat and magmatic fluid and by local permeability.

  9. Cryogenic quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Mckeown, D.; Sonnenschein, G.; Fox, M. G.

    1975-01-01

    A radiatively cooled Cryogenic Quartz Crystal Microbalance designed to monitor highly volatile contaminants on the shuttle is described. Measurements are made with two 15-MHz microbalances having removable, optically polished sensors mounted in a radiant cooler. One sensor operates below the freezing point of water and monitors contamination including that of water vapor. The second sensor is heated and monitors the contamination background. It provides a reference from which the density of the water vapor cloud enveloping the shuttle is determined. The design incorporates a low-power dissipation oscillator, heaters for ice removal, and a method for attaching second-surface mirrors to the radiator employing an indium type solder instead of a room temperature vulcanizer.

  10. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M. (Rustburg, VA)

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  11. Evidence of Nb-Ta mobility in high temperature F-rich fluids evidenced by the La Bosse quartz-Nb-ferberite stockwork (Echassières, French Massif Central).

    NASA Astrophysics Data System (ADS)

    Marignac, C.; Cuney, M.

    2012-04-01

    In the Echassières district (northern French Massif Central), the 310 Ma Beauvoir granite (a P-rich peraluminous RMG) overprints a quartz-ferberite stockwork. The 900 m-deep GPF1 scientific hole shows that the stockwork is split into two parts by the gently dipping Beauvoir intrusion: the upper section (~ 100m thick) occurs in the La Bosse quarry, , and the lower section (≥ 60 m thick) below the granite floor. The root of the stockwork (hypothetic La Bosse granite) has not been reached. The stockwork comprises flat-lying quartz veins (≤ 0.6 m thick) concordant to the regional schistosity of surrounding micaschists, and steep N10-N50°E quartz veins (≤ 0.2 m thick). The two sets result from hydraulic fracturing, and consistently display crack seal features. A family of aplites and aplo-pegmatites dikes follow the same set of fractures, being either later (with partial dissolution of pre-existing quartz veins) or earlier, than the quartz veins. There is no alteration, nor associated mineral other than ferberite, at the La Bosse quarry, whereas micaceous selvages are observed in the lower section. Ferberite display a trend of ferberite enrichment with increasing depth (0.71 to 0.95 Fb mole%). In the La Bosse quarry, three ferberite habitus are present: acicular, lanceolate and prismatic. Acicular crystals are typically nicely zoned, with alternating Nb-rich (4.95±0.94 % Nb2O5) and Nb-poor (1.57±0.38 % Nb2O5) growth bands. Ta (up to 0.30 Ta2O5), Ti and Sn are also enriched in the Nb-rich bands. Nb and Ta incorporation into the ferberite is in the form of columbite, as either true solid solution or nanoinclusions. Lanceolate crystals have a similarly zoned acicular core and a Nb-poor rim (1.08±0.66 % Nb2O5). Prismatic crystals are unzoned and Nb-poor (0.67±0.20 % Nb2O5). In the lower part of the stockwork, the Nb contents are lower (2.17 % Nb2O5 in the Nb-rich bands, 1.36 % in the Nb-poor bands, 0.08 % in the unzoned cortex, 0.15 % in the unzoned prisms). Thus the unusual Nb content of the La Bosse ferberites is correlated to the apparently very distal setting of this quartz system relatively to the parent granite, in contrast with most quartz-W systems in the French Massif Central (Aïssa et al. 1987). When invaded by aplites or aplopegmatites, the ferberite-bearing quartz veins are dissolved, but the ferberites remain apparently unaffected - they are not dissolved by the granite melt. Yet, the acicular and lanceolate crystals have lost their Nb-zoning and display uniform homogenised Nb content. The emplacement of the Beauvoir granite was associated with late magmatic exsolution of an Al- and F-rich, silica undersaturated, hydrothermal fluid that percolated upwards in the surrounding schists (Cuney et al. 1992). When interacting with the quartz veins of the La Bosse stockwork, this fluid precipitated topazites. Again, included ferberites remain apparently unaffected. However, they display microscopic vuggy cavities, successively filled by a Nb-rich ferberite (up to 8.91% Nb2O5) with significant Ta content (up to 0.35 % Ta2O5), a wolframo-ixiolite and a Ta-rich columbite. Later Li-phengite was precipitated from the same magmatic fluid, and was associated with hubnerite enrichment of pre-existing ferberites along Li-phengite-bearing microcracks (down to 0.20 mole % Fb). Ta and Nb are known for their poor solubility in hydrothermal fluids, but the Nb and Ta enrichments observed in the wolframite of La Bosse stockwork show that they can be transported to some extent by F-rich fluids. Aïssa, M., Marignac, C., Weisbrod, A. (1987). Le stockwerk à ferbérite d'Echassières : évolution spatiale et temporelle; cristallochimie des ferbérites. In : Cuney, M., Autran, A. (eds), Echassières : le forage scientifique d'Echassières (Allier). Une clé pour la compréhension des mécanismes magmatiques et hydrothermaux associés aux granites à métaux rares. Mém. GPF, tome 1, 311-334. M Cuney, C Marignac, A Weisbrod (1992). The Beauvoir topaz-lepidolite albitic granite (Massif Central, France). A highly specialized granite with disseminated Sn-Li-Ta-Nb-Be mineralization of magmatic origin. Economic Geology 87, 1776-1794.

  12. Uranium-series age determination of calcite veins, VC-1 drill core, Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Sturchio, Neil C.; Binz, Carl M.

    1988-06-01

    Uranium-series analysis (238U-234U-230Th) of 13 calcite veins from the hydrothermally altered Madera Limestone in the VC-1 drill core was performed to determine the ages of the veins and their relation to the Valles hydrothermal system. Thermal water from VC-1 and two hot springs in San Diego Canyon was analyzed for U and (234U/238U) to help evaluate the constancy of initial (234U/238U). The (230Th/234U) age of one of the veins is 95 kyr, and those of two other veins are 230 and 250 kyr. Five of the veins have near equilibrium (230Th/234U) and are probably older than 0.3 m.y. Uranium concentrations in the remaining veins are too low for analysis by the ?-spectrometry techniques employed in this study. Of the five veins near (230Th/234U) equilibrium, four are also near (234U/238U) equilibrium, suggesting ages greater than 1.0 m.y., but one has (234U/238U) = 1.15, suggesting an age between 0.3 and 1.0 m.y. Calculated initial (234U/238U) of the veins yielding relatively young ages are neither equal to each other nor to (234U/238U) in thermal water from VC-1, indicating inconstancy of initial (234U/238U) that may be related to variations in groundwater mixing proportions. Three of the four veins that yield relatively young ages consist of coarse, sparry, vuggy calcite, suggesting that this may be the type of calcite vein which forms under conditions resembling those encountered presently in VC-1. The analytical data are consistent with closed-system behavior of U and Th in the VC-1 calcite veins.

  13. Long-lived interaction between hydrothermal and magmatic fluids in the Soultz-sous-Forêts granitic system (Rhine Graben, France)

    NASA Astrophysics Data System (ADS)

    Gardien, Véronique; Rabinowicz, Michel; Vigneresse, Jean-Louis; Dubois, Michel; Boulvais, Philippe; Martini, Rossana

    2016-03-01

    The 5 km deep drilling at Soultz-sous-Forêts samples a granitic intrusion under its sedimentary cover. Core samples at different depths allow study of the evolving conditions of fluid-rock interaction, from the syn-tectonic emplacement of Hercynian granites at depth until post-cooling history and alteration close to the surface. Hydrogen, carbon and oxygen isotope compositions of CO2 and H2O have been measured in fluid inclusions trapped in magmatic quartz within samples collected along the drill core. Early Fluid Inclusions Assemblage (FIA) contains aqueous carbonic fluids whereas the latest FIA are H2O-rich. In the early FIA, the amount of CO2 and the δ13C value both decrease with depth, revealing two distinct sources of carbon, one likely derived from sedimentary carbonates (δ13C = - 2‰ V-PDB) and another from the continental crust (δ13C = - 9‰ V-PDB). The carbon isotope composition of bulk granites indicates a third carbon source of organic derivation (δ13C = - 20‰ V-PDB). Using a δD - δ18O plot, we argue that the water trapped in quartz grains is mainly of meteoric origin somewhat mixed with magmatic water. The emplacement of the Soultz-sous-Forêts granite pluton occurred in a North 030-040° wrench zone. After consolidation of the granite mush at ~ 600 °C, sinistral shear (γ ~ 1) concentrated the final leucocratic melt in vertical planes oriented along (σ1, σ2). Crystallization of this residual leucocratic melt occurred while shearing was still active. At a temperature of ~ 550 °C, crystallization ended with the formation of vertical quartz veins spaced about 5 mm, and exhibiting a width of several cm. The quartz veins form a connected network of a few kilometers in height, generated during hydrothermal contraction of the intrusion. Quartz crystallization led to the exsolution of 30% by volume of the aqueous fluid. As quartz grains were the latest solid phase still plastic, shearing localized inside the connected quartz network. Aqueous fluid was thus concentrated in these vertical channels. Eventually, when the channels intersected the top of the crack network, water boiling caused the formation of primary inclusions. At the same temperature, the saline magmatic waters, which were denser than the meteoric waters, initiated thermohaline convection with the buoyant "cold" hydrothermal water layer. This mechanism can explain the mixing of surface and deep-seated fluids in the same primary inclusions trapped during the crystallization of magmatic minerals. This study, which separately considers fluid-rock interactions at the level of successive mineral facies, brings new insights into how fluids may be different, their origin and composition, and depending on tectono-thermal conditions, bears implications for eventual ore forming processes.

  14. [Deep vein thrombosis prophylaxis.

    PubMed

    Sandoval-Chagoya, Gloria Alejandra; Laniado-Laborn, Rafael

    2013-01-01

    Background: despite the proven effectiveness of preventive therapy for deep vein thrombosis, a significant proportion of patients at risk for thromboembolism do not receive prophylaxis during hospitalization. Our objective was to determine the adherence to thrombosis prophylaxis guidelines in a general hospital as a quality control strategy. Methods: a random audit of clinical charts was conducted at the Tijuana General Hospital, Baja California, Mexico, to determine the degree of adherence to deep vein thrombosis prophylaxis guidelines. The instrument used was the Caprini's checklist for thrombosis risk assessment in adult patients. Results: the sample included 300 patient charts; 182 (60.7 %) were surgical patients and 118 were medical patients. Forty six patients (15.3 %) received deep vein thrombosis pharmacologic prophylaxis; 27.1 % of medical patients received deep vein thrombosis prophylaxis versus 8.3 % of surgical patients (p < 0.0001). Conclusions: our results show that adherence to DVT prophylaxis at our hospital is extremely low. Only 15.3 % of our patients at risk received treatment, and even patients with very high risk received treatment in less than 25 % of the cases. We have implemented strategies to increase compliance with clinical guidelines. PMID:24290023

  15. Living with Deep Vein Thrombosis

    MedlinePLUS

    ... page from the NHLBI on Twitter. Living With Deep Vein Thrombosis NHLBI Resources Pulmonary Embolism (Health Topics) Non-NHLBI Resources Deep Vein Thrombosis (MedlinePlus) Pulmonary Embolism (MedlinePlus) Clinical Trials ...

  16. Evolution of ore forming fluid in the orogenic type gold deposit in Tavt, Mongolia: trace element geochemistry and fluid inclusions in quartz

    NASA Astrophysics Data System (ADS)

    Lee, K.; Oyungerel, S.; Lee, I.

    2011-12-01

    The Tavt gold deposit of Dzhida-Selengisky metallogenic belt is located in the Dzhida terrane, northern Mongolia. This deposit commonly occurs with massive auriferous quartz veins that contain sulfides and less commonly occurs with disseminated- and stockwork-type quartz veins. Such gold-bearing quartz veins have an average grade of 6.3 g/t Au, 29.4 g/t Ag, and 1.3% Cu. This gold deposit is composed of three stages of quartz vein groups. The first stage quartz group is widely spread with medium to large grain size, showing white-grey and milky white colors. It underwent intensive cataclasis with strong cuts via fractures and includes a small amount of sulfides, secondary minerals and Au. The second stage quartz group is grey and includes an oxidation zone. The oxidation zone distributed on the outside of the vein is brown and green-grey; it is also enriched with sulfide minerals containing gold. This quartz group is located in a brittle and cataclastic zone with the first stage quartz group. The main mineralization process for gold is related to this second stage quartz group. The transition between the first and second groups is not clear, and their contact relationship is complex. The third stage quartz group is transparent to translucent, and has small euhedral crystals that were formed in the second stage quartz group. The third stage of quartz is partly associated with chlorite and montmorillonite that was formed in the latest stage. Each generation of quartz was analyzed by SEM-CL, EPMA, and ICP-MS. Fluid inclusion data were collected from the USGS gas-flow heating/freezing stage and Raman-spectroscopy. The electron microprobe data show the distribution of Al, Ca, K and Fe among distinguished CL intensities and textures of quartz from different stages. The prepared pure quartz samples were analyzed by ICP-MS. The analysis also shows different patterns of trace elements according to the quartz stages.

  17. Collateral veins in left renal vein stenosis demonstrated via CT.

    PubMed

    Lien, H H; Lund, G; Talle, K

    1983-02-01

    Twelve patients with left renal vein stenosis from tumor compression were studied with CT. All had distended collateral veins in the perirenal space which either formed a radiating or a cobweb pattern or appeared as marked longitudinal veins. Inferior phrenic vein branches were seen in seven patients and were considerably enlarged in two. Other major veins possibly taking part in collateral circulation could not be recognized due to obliteration of fat planes. The renal fascia was thickened in eleven patients, probably due to edema. A close study of the perirenal space with CT may give valuable information about collateral development. PMID:6840101

  18. Thermal Effects in the Hydrothermal Regime of Magmatic-Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Candela, P. A.

    2002-05-01

    Models of conductive and convective cooling of epizonal magma bodies commonly show temperatures in the country rock that are at or below 500 C. Indeed, simple conductive cooling models place the contact temperature below the midpoint of the intrusion and country rock temperatures, which for felsic magmas in cold country rock (cf. Furlong et al., 1991, Rev. in Min. v. 26), is approximately 500 C or lower. However, some vein systems record temperatures e.g. from fluid inclusions or phase equilibria that exceed 500 C. In some cases, as in some deep skarn deposits, high temperatures of ore deposition probably result from high country rock temperatures. Veins may also occur in the already cooled portions of an ore-generative pluton, which can be at any temperature below the solidus. In still other cases, high country rock temperatures may be heated by previous magmatic events (thermal ground preparation). However, high temperatures of mineral alteration or deposition may be produced in initially cold country rock by flux of high temperature magmatic volatile phase from the magma itself. This is a likely explanation when ore is associated with early stages of magmatism at shallow levels in the crust. The mass conservation equations of infiltration theory (cf. Ferry, 1991, Rev. in Min. v. 26), can be used to estimate time-integrated fluid fluxes, q, given changes in quartz solubility with temperature, geothermal and geobaric gradients in shallow magmatic environments, and order of magnitude vein quartz densities in porphyry copper deposits. The change in the silica content of the rock due to quartz veining is then given by: \\Delta cQZ =- \\int Jw dt \\times \

  19. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  20. Quartz crystal fabrication facility

    NASA Astrophysics Data System (ADS)

    Ney, R. J.

    1980-05-01

    The report describes the design and operation of a five chamber, interconnected vacuum system, which is capable of cleaning, plating, and sealing precision quartz crystal units in ceramic flatpack enclosures continuously in a high vacuum environment. The production rate design goal was 200 units per eight hour day. A unique nozzle beam gold deposition source was developed to operate for extended periods of time without reloading. The source puts out a narrow beam of gold typically in the order of 2 1/2 deg included cone angle. Maximum deposition rates are in the order of 400 a/min at 5.5 in. 'throw' distance used. Entrance and exit air lock chambers expedite the material throughput, so that the processing chambers are at high vacuum for extended periods of time. A stainless steel conveyor belt, in conjunction with three vacuum manipulators, transport the resonator components to the various work stations. Individual chambers are normally separated from each other by gate valves. The crystal resonators, mounted in flatpack frames but unplated, are loaded into transport trays in a lid-frame-lid sequency for insertion into the system and exit as completed crystal units. The system utilizes molybdenum coated ball bearings at essentially all friction surfaces. The gold sources and plating mask heads are equipped with elevators and gate valves, so that they can be removed from the system for maintenance without exposing the chambers to atmosphere.

  1. Electrochemical Quartz Crystal Nanobalance

    NASA Astrophysics Data System (ADS)

    Inzelt, Gyrgy

    The method of piezoelectric microgravimetry (nanogravimetry) using an electrochemical quartz crystal microbalance (EQCM) or nanobalance (EQCN) can be considered as a novel and much more sensitive version of electrogravimetry. The EQCN technique has become a widely used technique in several areas of electrochemistry, electroanalytical chemistry, bioelectrochemistry, etc. [1-10]. Obviously, mass changes occurring during adsorption, sorption, electrosorption, electrodeposition, or spontaneous deposition can be followed, which is very helpful for the elucidation of reaction mechanism via identification of the species accumulated on the surface. These investigations include metal and alloy deposition, underpotential deposition, electroplating, synthesis of conducting polymers by electropolymerization, adsorption of biologically active materials, and analytical determination of small ions and biomolecules. Of course, the opposite processes, i.e., spontaneous dissolution, electrodissolution, corrosion, can also be studied. Electrochemical oscillations, in which the formation and oxidation of chemisorbed molecular fragments play a determining role, have been studied, too. The majority of the investigations have been devoted to ion and solvent transport associated with the redox transformations of electrochemically active polymers. Similar studies have been carried out regarding polynuclear surface layers such as metal hexacyanometalates as well as inorganic and organic microcrystals of different compositions.

  2. Mixed-layer illite/smectite as a paleotemperature indicator in the Amethyst vein system, Creede district, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Horton, Duane G.

    1985-10-01

    Ordered illite/smectite is the most abundant and widespread product of argillic alteration associated with the Oligocene, epithermal, Ag-Pb-Zn-Cu-Au Amethyst vein system, southwest Colorado. Hydrothermal illite/smectites exhibit all Reichweite from 1 to ?3 and span the composition range from about 25% to about 3% illite. The composition and Reichweite of illite/smectite vary smoothly with distance from the Amethyst vein. With increasing distance from the vein, percent illite and the Reichweite decrease. When composition-temperature relationships of illite/smectite from modern geothermal systems are applied to the fossil Amethyst system, isotherms describing the thermal regime at the time of argillization can be estimated. Temperatures near 240 C appear to have existed near the Amethyst vein; these temperatures agree with homogenization temperatures obtained from fluid inclusions in vein minerals. The most distal illite/smectites, sampled about 260 m from the vein, indicate temperatures near 110 C. Estimated thermal gradients are on the order of 0.4 to 1 C per meter. Although illite/smectite composition and structure vary systematically with distance from the Amethyst vein, there are no systematic trends associated with the numerous, smaller veins and veinlets in the hanging wall of the system. This indicates that temperatures of both wallrock and the fluids in all but the major Amethyst vein were nearly the same during clay formation. Apparently, the hydrothermal system had reached a fairly steady, mature, thermal state at the time of argillization.

  3. Halogens and noble gases in Mathematician Ridge meta-gabbros, NE Pacific: implications for oceanic hydrothermal root zones and global volatile cycles

    NASA Astrophysics Data System (ADS)

    Kendrick, Mark A.; Honda, Masahiko; Vanko, David A.

    2015-12-01

    Six variably amphibolitised meta-gabbros cut by quartz-epidote veins containing high-salinity brine, and vapour fluid inclusions were investigated for halogen (Cl, Br, I) and noble gas (He, Ne, Ar, Kr, Xe) concentrations. The primary aims were to investigate fluid sources and interactions in hydrothermal root zones and determine the concentrations and behaviours of these elements in altered oceanic crust, which is poorly known, but has important implications for global volatile (re)cycling. Amphiboles in each sample have average concentrations of 0.1-0.5 wt% Cl, 0.5-3 ppm Br and 5-68 ppb I. Amphibole has Br/Cl of ~0.0004 that is about ten times lower than coexisting fluid inclusions and seawater, and I/Cl of 2-44 × 10-6 that is 3-5 times lower than coexisting fluid inclusions but higher than seawater. The amphibole and fluid compositions are attributed to mixing halogens introduced by seawater with a large halogen component remobilised from mafic lithologies in the crust and fractionation of halogens between fluids and metamorphic amphibole formed at low water-rock ratios. The metamorphic amphibole and hydrothermal quartz are dominated by seawater-derived atmospheric Ne, Ar, Kr and Xe and mantle-derived He, with 3He/4He of ~9 R/Ra (Ra = atmospheric ratio). The amphibole and quartz preserve high 4He concentrations that are similar to MORB glasses and have noble gas abundance ratios with high 4He/36Ar and 22Ne/36Ar that are greater than seawater and air. These characteristics result from the high solubility of light noble gases in amphibole and suggest that all the noble gases can behave similarly to `excess 40Ar' in metamorphic hydrothermal root zones. All noble gases are therefore trapped in hydrous minerals to some extent and can be inefficiently lost during metamorphism implying that even the lightest noble gases (He and Ne) can potentially be subducted into the Earth's mantle.

  4. Petrology, composition, and age of intrusive rocks associated with the Quartz Hill molybdenite deposit, southeastern Alaska.

    USGS Publications Warehouse

    Hudson, T.; Smith, James G.; Elliott, R.L.

    1979-01-01

    A large porphyry molybdenum deposit (Quartz Hill deposit) was recently discovered in the heart of the Coast Range batholithic complex about 70 km E of Ketchikan, SE Alaska. Intrusive rocks associated with the mineral deposit form two composite epizonal to hypabyssal stocks and many dikes in country rocks. All observed metallization and alteration is within the Quartz Hill stock. Molybdenite forms fracture coatings and occurs in veins with quartz. Alteration is widespread and includes development of secondary quartz, pyrite, K-feldspar, biotite, white mica, chlorite, and zeolite. Field relations indicate that the stocks were emplaced after regional uplift and erosion of the Coast Range batholithic complex, and K-Ar data show that intrusion and alteration took place in late Oligocene time, about 27 to 30 Ma ago. Data from the Ketchikan quadrangle indicate that porphyry molybdenum metallization in the Coast Range batholithic complex is associated with regionally extensive but spotty, middle Tertiary or younger, felsic magmatism. -from Authors

  5. Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching

    USGS Publications Warehouse

    Gratz, A.J.; Fisler, D.K.; Bohor, B.F.

    1996-01-01

    Multiple sets of crystallographically-oriented planar deformation features (PDFs) are generated by high-strain-rate shock waves at pressures of > 12 GPa in naturally shocked quartz samples. On surfaces, PDFs appear as narrow (50-500 nm) lamellae filled with amorphosed quartz (diaplectic glass) which can be etched with hydrofluoric acid or with hydrothermal alkaline solutions. In contrast, slow-strain-rate tectonic deformation pressure produces wider, semi-linear and widely spaced arrays of dislocation loops that are not glass filled. Etching samples with HF before examination in a scanning electron microscope (SEM) allows for unambiguous visual distinction between glass-filled PDFs and glass-free tectonic deformation arrays in quartz. This etching also reveals the internal 'pillaring' often characteristic of shock-induced PDFs. This technique is useful for easily distinguishing between shock and tectonic deformation in quartz, but does not replace optical techniques for characterizing the shock features.

  6. Deep vein thrombosis.

    PubMed

    Emanuele, Patricia

    2008-09-01

    This article reviews the incidence, causes, risk factors, diagnosis, treatment, complications, and prevention of deep vein thrombosis (DVT). Various employees, including long-distance drivers or travelers, sedentary office workers, females taking estrogen, those who are obese, those who have cancer, and those who are hospitalized, may be at risk for developing this condition. Genetic testing can determine some inherited factors predisposing workers to clotting. Low-molecular weight heparins can be used to manage DVT on an outpatient basis. PMID:18792613

  7. Thermoelectrically-cooled quartz microbalance

    NASA Technical Reports Server (NTRS)

    Mckeown, D.

    1975-01-01

    Temperature of microbalance can be maintained at ambient temperature or held at some other desired temperature. Microbalance has tow-stage thermoelectric device that controls temperature of quartz crystal. Heat can be pumped to or from balance by Peltier effect.

  8. The chemistry of hydrothermal magnetite: a review

    USGS Publications Warehouse

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) AgPbZn veins of the Coeur d'Alene district, United States, (3) porphyry Cu(Au)(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United States and Indonesia, and (5) plutonic igneous rocks from the Henderson Climax-type Mo deposit, United States, and the un-mineralized Inner Zone Batholith granodiorite, Japan. These five settings represent a diverse suite of geological settings and cover a wide range of formation conditions. The main discriminator elements for magnetite are Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn, and Ga. These elements are commonly present at detectable levels (10 to > 1000 ppm) and display systematic variations. We propose a combination of Ni/(Cr + Mn) vs. Ti + V, Al + Mn vs. Ti + V, Ti/V and Sn/Ga discriminant plots and upper threshold concentrations to discriminate hydrothermal from igneous magnetite and to fingerprint different hydrothermal ore deposits. The overall trends in upper threshold values for the different settings can be summarized as follows: (I) BIF (hydrothermal) low Al, Ti, V, Cr, Mn, Co, Ni, Zn, Ga and Sn; (II) AgPbZn veins (hydrothermal) high Mn and low Ga and Sn; (III) Mg-skarn (hydrothermal) high Mg and Mn and low Al, Ti, Cr, Co, Ni and Ga; (IV) skarn (hydrothermal) high Mg, Al, Cr, Mn, Co, Ni and Zn and low Sn; (V) porphyry (hydrothermal) high Ti and V and low Sn; (VI) porphyry (igneous) high Ti, V and Cr and low Mg; and (VII) Climax-Mo (igneous) high Al, Ga and Sn and low Mg and Cr.

  9. Hydrothermal alteration and Cu–Ni–PGE mobilization in the charnockitic rocks of the footwall of the South Kawishiwi intrusion, Duluth Complex, USA

    PubMed Central

    Benkó, Zsolt; Mogessie, Aberra; Molnár, Ferenc; Krenn, Kurt; Poulson, Simon R.; Hauck, Steven; Severson, Mark; Arehart, Greg B.

    2015-01-01

    In the Neoarchean (~ 2.7 Ga) contact metamorphosed charnockitic footwall of the Mesoproterosoic (1.1 Ga) South Kawishiwi intrusion of the Duluth Complex, the primary metamorphic mineral assemblage and Cu–Ni–PGE sulfide mineralization is overprinted by an actinolite + chlorite + cummingtonite + prehnite + pumpellyite + quartz + calcite hydrothermal mineral assemblage along 2–3 cm thick veins. In calcite, hosted by the hydrothermal alteration zones and in a single recrystallized quartz porphyroblast, four different fluid inclusion assemblages are documented; the composition of these fluid inclusions provide p–T conditions of the fluid flow, and helps to define the origin of the fluids and evaluate their role in the remobilization and reprecipitation of the primary metamorphic sulfide assemblage. Pure CO2 fluid inclusions were found as early inclusions in recrystallized quartz porphyroblast. These inclusions may have been trapped during the recrystallization of the quartz during the contact metamorphism of the footwall charnockite in the footwall of the SKI. The estimated trapping pressure (1.6–2.0 kbar) and temperature (810–920 °C) conditions correspond to estimates based on felsic veins in the basal zones of the South Kawishiwi intrusion. Fluid inclusion assemblages with CO2–H2O–NaCl and CH4–N2–H2O–NaCl compositions found in this study along healed microfractures in the recrystallized quartz porphyroblast establish the heterogeneous state of the fluids during entrapment. The estimated trapping pressure and temperature conditions (240–650 bar and 120–150 °C for CO2–H2O–NaCl inclusions and 315–360 bar and 145–165 °C for CH4–N2–H2O–NaCl inclusions) are significantly lower than the p–T conditions (> 700 °C and 1.6–2 kbar) during the contact metamorphism, indicating that this fluid flow might not be related to the cooling of the Duluth Complex and its contact aureole. The presence of chalcopyrite inclusions in these fluid inclusions and in the trails of these fluid inclusion assemblages confirms that at least on local scale these fluids played a role in base metal remobilization. No evidences have been observed for PGE remobilization and transport in the samples. The source of the carbonic phase in the carbonic assemblages (CO2; CH4) could be the graphite, present in the metasedimentary hornfelsed inclusions in the basal zones of the South Kawishiwi intrusion. The hydrothermal veins in the charnockite can be characterized by an actinolite + cummingtonite + chlorite + prehnite + pumpellyite + calcite (I–II) + quartz mineral assemblage. Chlorite thermometry yields temperatures around 276–308 °C during the earliest phase of the fluid flow. In the late calcite (II) phase, high salinity (21.6–28.8 NaCl + CaCl2 equiv. wt.%), low temperature (90–160 °C), primary aqueous inclusions were found. Chalcopyrite (± sphalerite ± millerite), replacing and intersecting the early hydrothermal phases, are associated to the late calcite (II) phase. The composition of the formational fluids in the Canadian Shield is comparable with the composition of the studied fluid inclusions. This suggests that the composition of the fluids did not change in the past 2 Ga and base metal remobilization by formational fluids could have taken place any time after the formation of the South Kawishiwi intrusion. Sulfur isotope studies carried out on the primary metamorphic (δ34S = 7.4–8.9‰) and the hydrothermal sulfide mineral assemblage (δ34S = 5.5–5.7‰) proves, that during the hydrothermal fluid flow the primary metamorphic ores were remobilized. PMID:26594080

  10. Cierco Pb-Zn-Ag vein deposits: Isotopic and fluid inclusion evidence for formation during the mesozoic extension in the pyrenees of Spain

    USGS Publications Warehouse

    Johnson, C.A.; Cardellach, E.; Tritlla, J.; Hanan, B.B.

    1996-01-01

    The Cierco Pb-Zn-Ag vein deposits, located in the central Pyrenees of Spain, crosscut Paleozoic metasedimentary rocks and are in close proximity to Hercynian granodiorite dikes and plutons. Galena and sphalerite in the deposits have average ??34S values of -4.3 and -0.8 per mil (CDT), respectively. Coexisting mineral pairs give an isotopic equilibration temperature range of 89?? to 163??C which overlaps with the 112?? to 198??C range obtained from primary fluid inclusions. Coexisting quartz has a ??18O value of 19 ?? 1 per mil (VSMOW). The fluid which deposited these minerals is inferred to have had ??18OH2o and ??34SH2s values of 5 ?? 1 and -1 ?? 1 per mil, respectively. Chemical and microthermometric analyses of fluid inclusions in quartz and sphalerite indicate salinities of 3 to 29 wt percent NaCl equiv with Na+ and Ca2+ as the dominant cations in solution. The Br/Cl and I/Cl ratios differ from those characteristic of magmatic waters and pristine seawater, but show some similarity to those observed in deep ground waters in crystalline terranes, basinal brines, and evaporated seawater, Barite, which postdates the sulfides, spans isotopic ranges of 13 to 21 per mil, 10 to 15 per mil, and 0.7109 to 0.7123 for ??34S, ??18O, and 87Sr/86Sr, respectively. The three parameters are correlated providing strong evidence that the barites are products of fluid mixing. We propose that the Cierco deposits formed along an extensional fault system at the margin of a marine basin during the breakup of Pangea at some time between the Early Triassic and Early Cretaceous. Sulfide deposition corresponded to an upwelling of hydrothermal fluid from the Paleozoic basement and was limited by the amount of metals carried by the fluid. Barite deposition corresponded to the waning of upward flow and the collapse of sulfate-rich surface waters onto the retreating hydrothermal plume. Calcite precipitated late in the paragenesis as meteoric or marine waters descended into the fault system, possibly during a regression in the overlying basin. There are other deposits resembling Cierco elsewhere in the Iberian peninsula. Taken as a group, they are evidence that hydrothermal circulation systems were widespread during Mesozoic extension. Differences among the deposits can be related to the fact that H2S and other solutes had local and variable sources.

  11. Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids

    NASA Astrophysics Data System (ADS)

    Webster, James D.; Thomas, Rainer; Rhede, Dieter; Frster, Hans-Jrgen; Seltmann, Reimar

    1997-07-01

    We have investigated the magmatic evolution of a late-stage, F- and P-rich, pegmatite-forming aluminosilicate liquid and the geochemical controls on magmatic mineralizing processes by remelting totally-crystallized melt inclusions in quartz and analyzing the quenched glass by EPMA and SIMS. The quartz phenocrysts were sampled from a pegmatite that occurs in a Variscan granite genetically associated with cassiterite- and wolframite-mineralized greisen veins at the Ehrenfriedersdorf Sn?W deposit, central Erzgebirge, SE Germany. The melt inclusion compositions imply that the pegmatite-forming liquid achieved extreme levels of chemical differentiation. It contained high abundances of Sn, F, P, Li, Rb, Cs, Nb, Ta, and Be and abnormally low concentrations of Ca, Y, Sr, and REE for a granite, and it was strongly peraluminous (the molar [Al 2O 3/CaO + Na 2O + K 2O] ranged from 1.3 to 2.0). Fractions of the pegmatite-forming liquid were extremely enriched in P 2O 5 + F + Al 2O 3, and the molar abundances of (F + P) in the glasses correlate strongly with moles of network-modifying Al ions implying that the bulk liquid included F-, P-, and Al-bearing complexes. Formation of these complexes reduced the activities of F, P, and Al in bulk liquid, suppressed the crystallization of magmatic topaz and P-rich minerals, and allowed the liquid to become enriched in these constituents. Some fractions of the Ehrenfriedersdorf aluminosilicate liquid contained 1000-2000 ppm Sn. These levels of Sn enrichment were up to 2 orders of magnitude greater than that ever reported for nonmineralized, metaluminous and peraluminous igneous materials and are consistent with some experimentally-derived Sn solubilities in cassiterite-saturated granitic liquids at geologically relevant pressures and temperatures. This concordance implies that cassiterite could have crystallized directly from this highly evolved, P- and F-rich peraluminous granitic liquid without the involvement of hydrothermal fluids.

  12. Rear polymineral zone of near-veined metasomatic aureole in mesothermal Zun-Holba gold deposit (Eastern Sayan)

    NASA Astrophysics Data System (ADS)

    Cherkasova, T.; Kucherenko, I.; Abramova, R.

    2015-11-01

    Unique data of the mineralogical and petrochemical zoning of near- veined metasomatic aureole of mesothermal Zun-Holba gold deposit are presented and discussed. It was established that mineralogical and petrochemical zoning order is based on Korzhinsky theory describing the differential component mobility. However, the internal polymineral zone structure of metasomatic column in Zun-Holba deposit does not comply with Korzhinsky concept describing the mono-mineral composition of axial (ore-bearing quartz veins) and binary-mineral rear (quartz-sericite) zones. Mineral zoning complication is governed by component diffusion (from fractured fluid to pores) and pulsation mode of metalliferous fluid input into the mineralization area.

  13. Role of Substrate on Quartz Cementation in Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Farver, J. R.; Winslow, D.; Onasch, C.

    2010-12-01

    Quartz cementation in quartz aggregates has been experimentally investigated. The starting material was disaggregated detrital quartz grains from the well-sorted, mature St. Peter Sandstone. The ‘as-is’ grains have patches of iron oxide coatings and some have euhedral overgrowths that contain iron oxide dust rims. In addition a set of experiments was run using grains that were cleaned by soaking in sodium hydrosulfite and sodium bisulfate solutions to remove exposed iron oxide coatings. Experimental charges consisted of amorphous silica powder (≈30 mg) to provide a source of silica for the quartz cement, AlCl3 powder (≈3 mg) to provide a tracer for Cathodoluminescence (CL) identification of cement formed during the experiment, 25 wt% NaCl brine solution (≈25 mg) to increase the silica solubility and to better mimic oil field brines, and the natural quartz grains (100-130 mg). The charges were weld-sealed in Au capsules and run in cold-seal pressure vessels at 250°C to 450°C at 150 MPa confining pressure for up to 8 weeks. After the experiments, the samples were vacuum impregnated with a low viscosity epoxy containing a blue dye. After curing, the sample charge was sawn in half along its long axis and one half was polished (to 1 micron diamond paste) for analysis. The nature and amount of quartz cement in the samples were determined by a combination of CL, light microscopy, and scanning electron microscopy. Photomosaics of the samples were created and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement formed during the experiment was easily recognized from the quartz grains (and previous overgrowths) by the difference in luminescence. The results indicate the amorphous silica powder provides a ready source for silica for quartz cementation due to its greater solubility than the quartz. The cementation rates are rapid (>14% cement formed in 2 weeks at 450°C and >7% in 8 weeks at 250°C). Compared to experiments using crushed fragments of synthetic quartz (Pepple, 2007), the amount of cement in these natural samples was greater. Cementation followed a common pattern in all samples. Microfractures, which formed during pressurization of the charges, healed very rapidly followed by overgrowths on the quartz grains. Cementation began closest to the amorphous silica, then progressed away. There was no measurable difference in the amount of quartz cement formed in samples of the as-is and cleaned St. Peter Sandstone indicating that iron played no role in the rate of cementation. Although the amount of cement formed increased with increasing temperature and duration of the experiments, the rate of cementation decreased dramatically in longer duration (8 weeks) experiments suggesting a change in the precipitation mechanism/rate. This apparent change in precipitation rate may reflect a decrease in available surfaces for nucleation and/or a decrease in growth rate as euhedral faces develop as proposed by Lander et al (2008).

  14. An experimental study of hydroxyl in quartz using infrared spectroscopy and ion microprobe techniques

    NASA Astrophysics Data System (ADS)

    Rovetta, M. R.; Blacic, J. D.; Hervig, R. L.; Holloway, J. R.

    1989-05-01

    We have measured the concentrations of hydroxyl, deuterium, Al, Fe, Li, Na, K, and Rb in a natural quartz crystal before and after hydrothermal treatment at 1.5 GPa and 800-1050C. We employed microbeam infrared spectroscopy and ion probe techniques to avoid impurities trapped in healed cracks and fluid inclusions that might bias a normal bulk analysis. The H2 of our experiments were buffered to the hematite-magnetite-(OH) fluid, nickel-nickel oxide-(OH) fluid, or iron-wustite-(OH) fluid phase assemblages. After hydrothermal treatment, the samples contained local concentrations of hydrogen or deuterium of several hundred atoms/106 Si (the starting crystal contained 45 H/106 Si). We did several experiments with Al2O3 or RbCl added to the sample charge and found local Al enrichment where the deuterium concentration was high but no Rb enrichment. Finally, we measured trace elements and hydroxyl in a quartz sample after plastic deformation in a talc furnace assembly; in regions of the sample containing basal and prismatic deformation lamellae (but no visible healed microcracks at 400 optical magnification) hydroxyl had increased to 200 OH/106 Si with no increase in Al or Fe. Samples enriched in hydroxyl but not Al (including the plastically strained sample) gave infrared spectra resembling natural amethyst crystals. We observed that the sharp pleochroic peaks near 3400 cm-1 and present in the starting crystal, were very intense only in samples showing Al enrichment, whereas the intensity of the sharp pleochroic peaks near 3600 cm-1 and broad isotropic absorption were independent of Al. Our analyses indicate that more hydrogen was introduced into the treated samples than Al or Fe. Because one proton or alkali cation is needed to screen each Al or Fe atom substituted into a Si lattice site, we conclude that the hydrothermal treatment had produced new hydroxyl defects in the quartz that did not contain Al or Fe. Although the speciation of this excess hydroxyl is unknown, it is present in all varieties of quartz that show hydrolytic weakening: synthetic quartz, amethyst, hydrothermally treated natural quartz crystals, and natural quartz deformed in talc assemblies. In the absence of microcracking or solution-precipitation mechanisms that may mechanically trap OH or H2O molecules, we suggest that hydrogen diffusion, and reaction with lattice oxygen, may introduce hydroxyl defects into quartz and contribute to hydrolytic weakening.

  15. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system

    PubMed Central

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-01-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ7Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ7Liquartz-fluid = –8.9382 × (1000/T) + 22.22(R2 = 0.98; 175 °C–340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ7Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ7Li range from −0.7‰ to +18.4‰ at temperatures of 175–340 °C. This δ7Li range, together with Li–O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process. PMID:26347051

  16. Low-temperature intracrystalline deformation microstructures in quartz

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2015-02-01

    A review of numerous genetic interpretations of the individual low-temperature intracrystalline deformation microstructures in quartz shows that there is no consensus concerning their formation mechanisms. Therefore, we introduce a new, purely descriptive terminology for the three categories of intracrystalline deformation microstructures formed in the low-quartz stability field: fine extinction bands (FEB), wide extinction bands (WEB) and localised extinction bands (LEB). The localised extinction bands are further subdivided into blocky (bLEB), straight (sLEB) and granular (gLEB) morphological types. A detailed polarised light microscopy study of vein-quartz from the low-grade metamorphic High-Ardenne slate belt (Belgium) further reveals a series of particular geometric relationships between these newly defined intracrystalline deformation microstructures. These geometric relationships are largely unrecognised or underemphasised in the literature and need to be taken into account in any future genetic interpretation. Based on our observations and a critical assessment of the current genetic models, we argue that the interpretation of the pertinent microstructures in terms of ambient conditions and deformation history should be made with care, as long as the genesis of these microstructures is not better confined.

  17. Subgrain boundaries and slip systems in quartz

    NASA Astrophysics Data System (ADS)

    Kilian, Rdiger

    2015-04-01

    At elevated temperatures, quartz usually deforms by dislocation glide and dislocation creep. Textures (crystallographic preferred orientations) and microstructures are commonly used to infer the kinematics and physical conditions of deformation. However, it is debatable whether a given texture, represented by a pole figure, is universally indicative of a specific deformation temperature or recrystallization mechanism or e.g. is rather related to strain. Quartz veins in synkinematic, felsic dikes from the footwall of the Mohave Wash detachment fault in the Chemehuevi Mountains are studied by EBSD, CIP and universal stage. Mm-sized quartz grains are homogeneously stretched with aspect ratios of up to 30. Minor recrystallization takes place by subgrain rotation. Three different groups of highly stretched quartz grains can be defined: Grains with peripheral c-axes at a high angle to the foliation (Z-grains), grains with central c-axes perpendicular to the lineation (Y-grains) and grains with c-axes intermediately between the former two (O-grains). The three types of grains do not show a significant difference in their aspect ratios. Bulk pole figures show a kinked single c-axes girdle with a central maximum and an a-axes maximum parallel to the lineation. Misorientation analysis and the orientation of subgrain boundaries are used to make inferences on slip systems. Z-grains are interpreted to be suitable for basal (c)-slip, Y-grains for prism {m}-slip, which is compatible with the bulk misorientation distribution function of entire grains. O-grains could be interpreted as suitably oriented for rhomb {r/z/pi/pi'} slip, however, this is not supported by the bulk misorientation distribution function. Individual subgrain boundaries in Y-grains and Z-grains expected for the 'easy' slip systems {m} and (c) with tilt character ({a} parallel boundaries with [c] or misorientation axes, respectively), are limited to small (< 2) misorientation angles. Subgrain boundaries with higher misorientation angles relate to variable slip systems, showing tilt, twist or mixed mode character. Many of those slip systems have a low Schmid factor. O-grains rarely show subgrain boundaries that can directly be related to rhomb or rhomb-slip. Most common subgrain boundaries are tilt {a}[c]-boundaries, tilt {a}-boundaries or mixed mode boundaries, hence deformation is interpreted to occur mostly by combined {m} and (c)-slip rather than rhomb slip. Based on the homogeneous microstructure without a low temperature overprint, it is inferred that deformation took place in a rather narrow temperature range. Grains deform homogeneously, independent on their orientation with different slip systems involved. A temperature effect on the activity of individual slip system is not recognizable. Suitably oriented (c) and {m} slip systems seem to result in lattice bending rather than abundant subgrain boundaries. Subgrain boundaries related to other slip systems contribute to subgrain rotation and subsequent recrystallization but not essentially to stretching of grains and rather ensure strain compatibility. The observations indicate that many prominent subgrain boundaries might not relate to the main strain producing slip system and grain orientation does not necessarily prescribe the involved slip systems.

  18. The economics of vein disease.

    PubMed

    Sales, Clifford M; Podnos, Joan; Levison, Jonathan

    2007-09-01

    The management of cosmetic vein problems requires a very different approach than that for the majority of most other vascular disorders that occur in a vascular surgery practice. This article focuses on the business aspects of a cosmetic vein practice, with particular attention to the uniqueness of these issues. Managing patient expectations is critical to the success of a cosmetic vein practice. Maneuvering within the insurance can be difficult and frustrating for both the patient and the practice. Practices should use cost accounting principles to evaluate the success of their vein work. Vein surgery--especially if performed within the office--can undergo an accurate break-even analysis to determine its profitability. PMID:17911565

  19. The Management of Varicose Veins

    PubMed Central

    Lin, Fan; Zhang, Shiyi; Sun, Yan; Ren, Shiyan; Liu, Peng

    2015-01-01

    This study aimed to review the current management modalities for varicose veins. There are a variety of management modalities for varicose veins. The outcomes of the treatment of varicose veins are different. The papers on the management of varicose veins were reviewed and the postoperative complications and efficacy were compared. Foam sclerotherapy and radiofrequency ablation were associated with less pain and faster recovery than endovenous laser ablation and surgical stripping. Patients undergoing endovenous laser ablation and radiofrequency ablation are most likely to have a faster recovery time and earlier return to work in comparison with those undergoing conventional high ligation and stripping. A randomized controlled study in multiple centers is warranted to verify which approach is better than others for the treatment of varicose veins. PMID:25594661

  20. Varicose veins - what to ask your doctor

    MedlinePLUS

    ... veins do you perform? Sclerotherapy? Heat ablation or laser ablation? Vein stripping? Questions to ask about different procedures for varicose veins are: How does this treatment work? When would it be a good choice for ...

  1. Laser welding of fused quartz

    DOEpatents

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  2. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  3. Coesite as stress indicator in experimentally deformed quartz gouge

    NASA Astrophysics Data System (ADS)

    Richter, Bettina; Stnitz, Holger; Heilbronner, Rene

    2015-04-01

    In shearing experiments conducted to study the behaviour of quartz gouge at the brittle - viscous transition, coesite was found in samples that were deformed at confining pressures of 1.0 GPa or 1.5 GPa, at temperatures between 600 C and 800 C, and at constant displacement rates of ~1.3 x 10-5 mms-1 or ~1.3 x 10-4 mms-1. The experiments were performed in a Griggs type deformation apparatus and the starting material was obtained from a hydrothermally grown single crystal. The crystal was crushed and sieved to a grain size < 100 ?m. 0.1 g of the powder, with 0.2 wt% water added, was introduced in a 45 pre-cut between alumina forcing blocks forming a ~1 mm thick shear zone. In all experiments, the confining pressures (?3)and the peak mean stresses (1/3 (?1 + ?2 + ?3) for the general case or 1/2 (?1 + ?3) for ?3 = ?2) remained below the quartz - coesite transition. Only the highest principal stresses (?1) reach the coesite stability field. With the exception of low-temperature experiments, the occurrence of coesite coincides with whether or not ?1 reached the coesite stability field. In samples deformed at 600oC coesite did not form despite the fact that ?1 reached the coesite field, indicating some temperature effect for the transformation kinetics. In two samples, ?1 crosses the quartz-coesite phase transition and stays in the coesite field at the beginning of the shearing deformation and - with ongoing weakening - crosses back into the quartz stability field at higher strains. As expected, the reverse phase transformation, from coesite to quartz, can be observed in these samples. Coesite forms as soon as ?1 comes very close to or enters the coesite stability field. Clusters of small idiomorphic tabular coesite crystals are distributed throughout the sample and are commonly aligned with the [010] direction parallel to the ?1 direction. With increasing deformation in the coesite stability field, coesite grains grow (forming up to 2 vol %) and the [010] directions rotate into parallelism with the foliation (rigid particle behaviour). Once ?1 drops below the phase transition, the coesite grains are corroded, indicating a back-transformation to quartz. A preferred growth direction of the new quartz grains with respect to the old coesite grains is not obvious but the replacing quartz grains show a constant crystallographic orientation (single crystal orientation). In conclusion, in deformation experiments, the coesite formation seems to only depend on the maximum compressive stress ?1 rather than on the confining pressure or the mean stress. ?1 controls the quartz-to-coesite transformation as well as the reverse transformation except where low temperatures slow down the transformation kinetics. Furthermore, the accuracy of ?1 values measured with solid medium deformation apparatus lies within the same error range as that of the quartz-coesite phase transitions determined with the piston cylinder apparatus.

  4. Quartz microfabrics in ultrahigh-pressure metamorphic rocks as indicators of low stress during uplift

    NASA Astrophysics Data System (ADS)

    Stb, C.; Kruhl, J. H.; Trepmann, C.; Wang, L.

    2012-12-01

    Ultrahigh-pressure (UHP) metamorphic rocks form in convergent tectonic settings at depths > 90 km. In general, UHP conditions are defined by the stability of coesite. Coesite inclusions in various host minerals are a common feature in UHP rocks. We present data of typical quartz microfabrics, which resulted from the transformation of coesite to quartz in inclusions and intergranular regions, and evidence of high temperature quartz microfabrics. Jadeite-quartzites and eclogites from the Dabie Shan - Sulu orogenic belt (central China) were investigated, both of which experienced peak UHP conditions of ~ 660C / > 2.6 GPa (Liou et al., 1997) and 700-800C / 3.1-4.1 GPa (Yoshida et al., 2004), respectively, at c. 220-230 Ma due to a N-subduction of the Yangtze craton beneath the Sino-Korean craton, followed by a nearly isothermal decompression to ~ 1 GPa. Both rocks contain coesite and/or quartz inclusions (up to 350 ?m in diameter) in clinopyroxene and garnet and in their symplectitic rims with various microstructures: (i) rims of palisade quartz commonly in contact to coesite, (ii) quartz aggregates with sutured grain boundaries and central remnants of coesite, (iii) larger central quartz grains with subgrains, (iv) foam quartz (c. 50 ?m sized), and (v) apparently strain-free single quartz crystals. The foam quartz shows a random c-axis distribution but preferred crystallographic orientations of grain boundaries. Intergranular foam quartz is found in quartz-eclogites from the Sulu region, most probably indicating quartz-coesite transformation and, therefore, former UHP conditions. The preservation of foam quartz in intergranular regions and inclusions (especially in symplectites) indicates low stress and nearly no deformation during uplift in the stability field of quartz. This points to strain localization in shear zones (Zhao et al., 2003). In veins in the jadeite-quartzites and quartz-eclogites quartz occurs in larger aggregates with sutured grain boundaries. Fractal analysis of the grain boundaries indicates deformation-T > 700C for jadeite-quartzite and quartz-eclogite. Furthermore, quartz grains of the Dabie Shan jadeite-quartzites show prism-, basal-, and rhombohedral-parallel subgrain boundaries, evidencing high temperature during formation and nearly no deformation after peak metamorphic conditions. The qualitative and quantitative analyses of quartz microfabrics of UHP rocks give insight into the grade of preservation of peak conditions, potential deformation and/or low-grade overprint, and help to understand uplift processes of deeply subducted crustal slices. Liou, J.G., Zhang, R.Y. and Jahn, B.-m., 1997. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, East-central China. Lithos 41, 59-78. Yoshida, D., Hirajima, T. and Ishiwatari, A., 2004. Pressure-temperature path recorded in the Yangkou garnet peridotite, in Su-Lu ultrahigh-pressure metamorphic belt, eastern China. J. Petrol. 45, 1125-1145. Zhao, Z.Y., Fang, A.M. and Yu, L.J., 2003. High- to ultrahigh-pressure (UHP) ductile shear zones in the Sulu UHP metamorphic belt, China: implications for continental subduction and exhumation. Terra Nova 15, 322-329.

  5. Hydrothermal solidification of municipal solid waste incineration bottom ash with slag addition.

    PubMed

    Jing, Zhenzi; Ran, Xianqiang; Jin, Fangming; Ishida, Emile H

    2010-01-01

    Hydrothermal solidification of municipal solid waste incineration (MSWI) bottom ash has been carried out under saturated steam pressure (1.56 MPa) at 200 degrees C for up to 24 h by mixing quartz, slaked lime and water-cooled blast furnace slag (WBFS). The strength enhancement for the WBFS addition was best. The strength development was shown to be due mainly to tobermorite formation, and the tobermorite formation densified matrix, thus promoting the strength development. WBFS seemed to have a higher reactivity than the quartz during the initial hydrothermal process, which provided more silica available to harden the solidified specimens. However, a longer curing time (24 h) was favorable to the quartz dissolution for tobermorite formation, which in turn, enhanced the strength for quartz addition. Curing time affected the crystal morphology evolution, and the stubby plate of tobermorite seemed to result in a high strength enhancement in this study. Laboratory leaching tests were conducted to determine the amount of heavy metals dissolved from the final solidified specimens, and the leaching results showed that after hydrothermal processing the heavy metals dissolved from the solidified specimens were reduced effectively. As such, the hydrothermal processing may have a high potential for recycling/reusing MSWI ash on a large scale. PMID:20385479

  6. Quartz Solubility and Thermodynamics Above the Upper Critical End Point

    NASA Astrophysics Data System (ADS)

    Hunt, J. D.; Manning, C. E.

    2010-12-01

    Silica is among the most abundant solutes in crustal and mantle fluids, especially at conditions nearing the upper critical end point of the SiO2-H2O system (~10 kbar, 1080 C). However, the solubility of silica is not well determined at higher pressures. In addition, the thermodynamic mixing relations of the supercritical SiO2-H2O system are poorly known. We made new measurements on quartz solubility in H2O at 15 and 20 kbar at 900-1100 C. At SiO2 mole fraction below 0.1, solubility was determined by weight loss of single crystals equilibrated with H2O. At higher SiO2 concentrations, solubility was determined by bracketing the presence of absence of quartz in charges with known bulk SiO2 concentration. The measured solubilities imply that there is a solubility minimum above 1050 C between 10 and 20 kbar. Quartz solubility measurements from Manning (1994), Newton and Manning (2003; 2008), Nakamura (1975) and this study were fitted to a modified sub-regular solution model. A term representing the Gibbs free energy (?Gr) of the reaction 1/2 H2O + 1/2 O2- = OH- (the depolymerization reaction that occurs when silica is dissolved in water) was added to the free energy of mixing parameterization. Thirteen independent parameters describe the T and P variation of the weak sub-regular interaction terms (Ws and Wh) and the strong interaction term (?Gr). Nine of the parameters are linear in T and P, and the other four are quadratic: Ws and ?Gr vary with P2, and ?Gr also varies with T2 and PT. The average error between the data and the model is 5%. Because the Gibbs free energy change of the depolymerization reaction is included in the fit, the model predicts an average state of aqueous silica polymerization of solutions in equilibrium with quartz at P between 10 and 20 kbar and T above 500 C. The results also highlight what can be inferred from the steep hydrothermal melting curve of quartz - that while pressure does determine whether the system is subcritical or supercritical, it has a comparatively minor effect on the transition from an H2O-rich fluid to an SiO2-rich fluid. Whether due to melting or complete miscibility, the composition of a fluid in equilibrium with quartz increases dramatically between 900 and 1100 C.

  7. The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault

    NASA Astrophysics Data System (ADS)

    Humphris, Susan E.; Tivey, Margaret K.; Tivey, Maurice A.

    2015-11-01

    Over the last ten years, geophysical studies have revealed that the Trans-Atlantic Geotraverse (TAG) hydrothermal field (2608?N on the Mid-Atlantic Ridge) is located on the hanging wall of an active detachment fault. This is particularly important in light of the recognition that detachment faulting accounts for crustal accretion/extension along a significant portion of the Mid-Atlantic Ridge, and that the majority of confirmed vent sites on this slow-spreading ridge are hosted on detachment faults. The TAG hydrothermal field is one of the largest sites of high-temperature hydrothermal activity and mineralization found to date on the seafloor, and is comprised of active and relict deposits in different stages of evolution. The episodic nature of hydrothermal activity over the last 140 ka provides strong evidence that the complex shape and geological structure of the active detachment fault system exerts first order, but poorly understood, influences on the hydrothermal circulation patterns, fluid chemistry, and mineral deposition. While hydrothermal circulation extracts heat from a deep source region, the location of the source region at TAG is unknown. Hydrothermal upflow is likely focused along the relatively permeable detachment fault interface at depth, and then the high temperature fluids leave the low-angle portion of the detachment fault and rise vertically through the highly fissured hanging wall to the seafloor. The presence of abundant anhydrite in the cone on the summit of the TAG active mound and in veins in the crust beneath provides evidence for a fluid circulation system that entrains significant amounts of seawater into the shallow parts of the mound and stockwork. Given the importance of detachment faulting for crustal extension at slow spreading ridges, the fundamental question that still needs to be addressed is: How do detachment fault systems, and the structure at depth associated with these systems (e.g., presence of plutons and/or high permeability zones) influence the pattern of hydrothermal circulation, mineral deposition, and fluid chemistry, both in space and time, within slowly accreted ocean crust?

  8. Vein matching using artificial neural network in vein authentication systems

    NASA Astrophysics Data System (ADS)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  9. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    SciTech Connect

    Ridley, W.I.; Perfit, M.R.; Smith, M.F.; Jonasson, I.R.

    1994-06-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85{degree}49 feet W and 85{degree} 55 feet W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens` equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (<10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. 50 refs., 10 figs., 4 tabs.

  10. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. ?? 1994.

  11. Retinal Vein Occlusion.

    PubMed

    Sawada, Osamu; Ohji, Masahito

    2016-01-01

    The primary treatment against macular edema with retinal vein occlusion (RVO) has changed from observation in central RVO (CRVO) and laser photocoagulation in branch RVO (BRVO) to administration of intravitreal agents based on anti-vascular endothelial growth factor (VEGF) or anti-inflammatory strategies. Anti-VEGF treatment such as ranibizumab, bevacizumab, or aflibercept improved vision by 13.9-16.2 letters (best-corrected visual acuity) after 12 months versus baseline in patients with macular edema secondary to CRVO. A long-term study showed that reduced follow-up and fewer retreatments resulted in worsening visual acuity. Intravitreal therapy with anti-inflammatory agents stabilized visual acuity in CRVO. However, increased intraocular pressure and cataract progression were frequently observed. Anti-VEGF agents such as ranibizumab or bevacizumab improved visual acuity by 15.5-18.3 letters in patients with macular edema secondary to BRVO after 12 months. The improved vision remained during the long-term follow-up. There was no significant difference between standard care and intravitreal triamcinolone groups in BRVO, and increased intraocular pressure and cataract progression occurred frequently in the triamcinolone group. Anti-VEGF intravitreal administration resulted in good vision in CRVO and BRVO patients and is employed as a primary therapy. Anti-VEGF therapy requires frequent observations and intravitreal injections to maintain good vision. PMID:26501219

  12. Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: Integration of geological, stable-isotope, and fluid-inclusion evidence

    USGS Publications Warehouse

    Bethke, P.M.; Rye, R.O.; Stoffregen, R.E.; Vikre, P.G.

    2005-01-01

    The Summitville Au-Ag-Cu deposit is a classic volcanic dome-hosted high-sulfidation deposit. It occurs in the Quartz Latite of South Mountain, a composite volcanic dome that was emplaced along the coincident margins of the Platoro and Summitville calderas at 22.5??0.5 Ma, penecontemporaneous with alteration and mineralization. A penecontemporaneous quartz monzonite porphyry intrusion underlies the district and is cut and overlain by pyrite-quartz stockwork veins with traces of chalcopyrite and molybdenite. Alteration and mineralization proceeded through three hypogene stages and a supergene stage, punctuated by at least three periods of hydrothermal brecciation. Intense acid leaching along fractures in the quartz latite produced irregular pipes and lenticular pods of vuggy silica enclosed sequentially by alteration zones of quartz-alunite, quartz-kaolinite, and clay. The acid-sulfate-altered rocks host subsequent covellite+enargite/luzonite+chalcopyrite mineralization accompanied by kaolinite, and later barite-base-metal veins, some containing high Au values and kaolinite. The presence of both liquid- and vapor-rich fluid inclusions indicates the episodic presence of a low-density fluid at all levels of the system. In the mineralized zone, liquid-rich fluid inclusions in healed fractures in quartz phenocrysts and in quartz associated with mineralization homogenize to temperatures between 160 and 390 ??C (90% between 190 and 310 ??C), consistent with the range (200-250 ??C) estimated from the fractionation of sulfur isotopes between coexisting alunite and pyrite. A deep alunite-pyrite pair yielded a sulfur-isotope temperature of 390 ??C, marking a transition from hydrostatic to lithostatic pressure at a depth of about 1.5 km. Two salinity populations dominate the liquid-rich fluid inclusions. One has salinities between 0 and 5 wt.% NaCl equivalent; the other has salinities of up to 43 wt.% NaCl equivalent. The occurrence of high-salinity fluid inclusions in vein quartz associated with mineralization, as well as in the deep stockwork veins, suggests that brines originating deep in the system transported the metals. The ??34S values of sulfides in magnetite (-2.3???) and of sulfate in apatite (5.4???) in unaltered quartz latite indicate that ??34S???S was near 0???. The ??34S values of coexisting alteration alunite and pyrite are 18.2??? to 24.5??? and -8.1??? to -2.2???, respectively. Deep in the system, most of the change in ??34S values occurs in the sulfates, indicating that the fluids were initially H2S-dominant, their redox state buffered at depth by equilibration with igneous rocks. However, in the main alteration zone, most of the change in ??34S values occurs in pyrite, indicating that the fluids moved off the rock buffer and became SO42- -dominant as pyrite precipitated and SO2 disproportionation produced the sulfuric acid requisite for acid leaching. The ??34S values of the late-stage barite and sulfides indicate that the system returned to high H2S/SO42- ratios typical of the original rock-buffered fluid. The ??DH2O of alunite parent fluids was near -45??? and their ??18O ranged from 7??? to -1???, depending on the degree of exchange in the alteration zone at low water-rock ratio, or mixing with unexchanged meteoric water. The low ??D values of some alunite samples are interpreted to result from postdepositional exchange with later ore fluids. Fluid exsolved fr om the magma at depth had ??DH2O and ??18OH2O values near -70??? and 10???, respectively. During and following migration to the top of the magma chamber, the fluid underwent isotopic exchange with the partially crystallized magma and its solid and cooler, but still plastic, carapace just below the transition from a lithostatic to hydrostatic pressure regime. These evolved magmatic fluids had ??DH2O and ??18OH2O values close to -40??? and 5???, respectively, prior to release into the superjacent hydrostatically pressured fracture zone, wherein the fluids separat

  13. Triboluminescence of glasses and quartz

    NASA Astrophysics Data System (ADS)

    Chapman, G. N.; Walton, Alan J.

    1983-10-01

    The triboluminescent spectra of a variety of glasses and of crystalline quartz were measured while specimens were cut with a rotating diamond-impregnated saw blade. The spectra, which resemble the emission of a blackbody radiator, were recorded using an image-intensifier spectrograph. The data were intensity-corrected before being fitted to blackbody emission curves. Emission temperatures of around 1850 K for armor plate glass, 2100 K for Pyrex glass, 2400 K for soda lime glass, 2300 K for high-density lead glass, and 2800 K for cut quartz were obtained. It was found that the blackbody temperatures could be accounted for by a model in which a rectangular-shaped high-temperature zone, uniformly heated by energy released by plastic deformation near the crack tip, is supposed to propagate with the crack velocity [R. Weichert and K. Schonert, Q. J. Mech. Appl. Math. 31, 363-379 (1978)]. The measured blackbody temperatures imply zone widths of around 110-9 m. The spectrum from impact-fractured quartz was also measured; it was found to have a photoluminescent origin.

  14. How Are Varicose Veins Diagnosed?

    MedlinePLUS

    ... of Intramural Research Research Resources Research Meeting Summaries Technology Transfer Clinical Trials What Are Clinical Trials? Children & ... a dermatologist. This type of doctor specializes in skin conditions. Physical Exam To check for varicose veins in ...

  15. Varicose veins and venous insufficiency

    MedlinePLUS

    ... Visible, swollen veins Mild swelling of feet or ankles Itching Severe symptoms include: Leg swelling Leg or ... periods Skin color changes of the legs or ankles Dry, irritated, scaly skin that can crack easily ...

  16. Varicose Veins and Venous Insufficiency

    MedlinePLUS

    ... About Us Patient Section Who Are Interventional Radiologists? Multimedia Insurance Coverage IR Treatments Abdominal aortic aneurysms Angiography ... radiology Interventional radiology case studies Developed by ACR Multimedia gallery Multimedia Archive Varicose Veins and Venous Insufficiency ...

  17. How Are Varicose Veins Treated?

    MedlinePLUS

    ... Intramural Research Research Resources Research Meeting Summaries Technology Transfer Clinical Trials What Are Clinical Trials? Children & Clinical ... shun) therapy uses lasers or radiowaves to create heat to close off a varicose vein. Your doctor ...

  18. Geometric Analysis of Vein Fracture Networks From the Awibengkok Core, Indonesia

    NASA Astrophysics Data System (ADS)

    Khatwa, A.; Bruhn, R. L.; Brown, S. R.

    2003-12-01

    Fracture network systems within rocks are important features for the transportation and remediation of hazardous waste, oil and gas production, geothermal energy extraction and the formation of vein fillings and ore deposits. A variety of methods, including computational and laboratory modeling have been employed to further understand the dynamic nature of fractures and fracture systems (e.g. Ebel and Brown, this session). To substantiate these studies, it is also necessary to analyze the characteristics and morphology of naturally occurring vein systems. The Awibengkok core from a geothermal system in West Java, Indonesia provided an excellent opportunity to study geometric and petrologic characteristics of vein systems in volcanic rock. Vein minerals included chlorite, calcite, quartz, zeolites and sulphides. To obtain geometric data on the veins, we employed a neural net image processing technique to analyze high-resolution digital photography of the veins. We trained a neural net processor to map the extent of the vein using RGB pixel training classes. The resulting classification image was then converted to a binary image file and processed through a MatLab program that we designed to calculate vein geometric statistics, including aperture and roughness. We also performed detailed petrographic and microscopic geometric analysis on the veins to determine the history of mineralization and fracturing. We found that multi-phase mineralization due to chemical dissolution and re-precipitation as well as mechanical fracturing was a common feature in many of the veins and that it had a significant role for interpreting vein tortuosity and history of permeability. We used our micro- and macro-scale observations to construct four hypothetical permeability models that compliment the numerical and laboratory modeled data reported by Ebel and Brown. In each model, permeability changes, and in most cases fluctuates, differently over time as the tortuosity and aperture of veins are affected by the precipitation, dissolution, and re-precipitation of minerals, and also by mechanical fracturing. In all of our cases we interpret a first-phase mineral dissolution stage where permeability gradually declines as the vein is blocked by inward growing minerals. Hereafter, permeability may briefly increase with the onset of internal fracturing within the vein or by a phase of mineral dissolution opening up new pathways for fluid flow. Eventually we infer that permeability will decline again as second stage minerals are deposited in the fluid flow pathways.

  19. Redistribution of Water During Deformation of Milky Quartz

    NASA Astrophysics Data System (ADS)

    Kronenberg, A. K.; Lamb, W. M.; Luo, Z.; Neal, L. A.

    2001-12-01

    Dislocation creep of quartz is facilitated by the presence of water, and many key observations regarding mechanisms of water weakening can be attributed to the elegant studies of Mervyn Paterson, his colleagues, and his students. In particular, Paterson and Kekulawala (1979) and Kekulawala et al. (1978, 1981) showed that creep strengths of quartz single crystals depend on the character and distribution of extended water defects and clusters. By comparing mechanical properties and infrared (IR) spectra of hydrothermally grown synthetic quartz, dry natural quartz, amethyst, heat-treated synthetic quartz, and natural milky quartz, they demonstrated a correspondence between the chemical weakening effect of water and the broad, non-freezable OH stretching band expressed most clearly by wet synthetic crystals. However, they also showed that natural milky quartz crystals with freezable fluid inclusions exhibit strengths that are intermediate to those of dry natural and wet synthetic crystals. Micro-IR studies of naturally deformed tectonites have since shown that water is incorporated as coarse, freezable fluid inclusions that may decorate dislocations, subgrain walls, and grain boundaries. Non-freezable OH bands have not been detected in natural quartzites. Following the lead of Paterson and colleagues, we have shortened single crystals of milky quartz at 45° to a and c at T = 800° C, ɛ = 10-5 s-1 and confining pressures ranging from 400 to 1820 MPa, and we report on the results of (1) micro-thermometry of fluid inclusions before and after deformation, (2) IR absorption measurements of water content, and (3) transmission electron microscopy (TEM) of fine-scale inclusions, subgrain boundaries, and dislocations. Flow strengths measured for Arkansas milky quartz crystals are highly variable (from 300 to 800 MPa at low strains, 5%) and exhibit variable strain softening, corresponding to the heterogeneous initial distribution of fluid inclusions and variations in bulk water content (300 to 7000 ppm). Fluid inclusions measured optically prior to deformation are highly variable in size from 1 to 300 μ m, but they consist of relatively uniform, low salinity brines (melting points of -2° C) with a restricted range of densities (homogenization temperatures of 140° to 170° C). Remarkably few of these optical-scale inclusions survive deformation. Instead, optical microstructures of deformed samples are dominated by heterogeneous deformation bands, undulatory extinction and basal deformation lamellae. IR absorption spectra of deformed samples indicate that little fluid has been lost, and TEM reveals fine-scale (20-500 nm) fluid inclusions that decorate finely spaced (1-3 μ m) low-angle subgrain boundaries. Dense, tangled dislocations, irregular subgrain boundary geometries, and relationships between these boundaries and inclusions suggest complex processes of fluid redistribution during deformation that we do not fully understand. Nevertheless, once redistribution has taken place, mean distances between fluid inclusions are sufficiently small that extrinsic water-related point defects may be introduced throughout the crystal by volume and pipe diffusion.

  20. Benefits of endoscopic vein harvesting.

    PubMed

    Marty, B; von Segesser, L K; Tozzi, P; Guzmann, J; Frascarolo, P; Muller, X; Hayoz, D

    2000-09-01

    The purpose of this study was to evaluate and compare the benefits of endoscopic saphenous vein harvesting (EVH) with the traditional incision technique (TIT) for coronary artery bypass grafting (CABG) in respect to the technical procedure and clinical outcome. In a prospective nonrandomized, case-matched study the greater saphenous vein was harvested for CABG in 22 patients using the endoscopic technique and in 18 patients with the traditional method. Comparisons were made for the operating time, length of incision and vein harvested, graft quality, postoperative complications, and pain assessment. Patient demographics were well matched. EVH required smaller incisions than did the TIT (10.5 +/- 6.6 vs. 31.2 +/- 7.8 cm, respectively; p < 0.0001). Harvest time and vein quality were comparable in the two groups. Total vein operating time was shorter following the endoscopic technique (60 +/- 24 vs. 100 +/- 35 minutes, respectively; p < 0.0001). EVH had fewer complications (NS), and postoperative pain was significantly less (p = 0.0034). The major advantages of endoscopic vein harvesting are a significant reduction of postoperative pain and strikingly better cosmetic results. Wound complications seem to be less frequent. PMID:11036289

  1. Peralkaline fluid composition in equilibrium with K-feldspar, muscovite and quartz at 10 kbar and 700C: Al transport in crustal fluids

    NASA Astrophysics Data System (ADS)

    Wohlers, A.; Manning, C. E.

    2012-04-01

    Aluminum is commonly regarded as one of the least soluble elements during metamorphic and metasomatic processes. However, abundant field evidence suggests that aluminum transport can occur in natural hydrothermal processes. For example, late formed aluminumsilicate-bearing and muscovite-bearing veins are widely observed in high-grade metamorphic rocks, and provide a persuasive argument for considerable mobility of aluminum in aqueous fluid. The present study explores the fluid composition coexisting with K-feldspar (K-fsp), muscovite (ms), corundum (co) and quartz (qz) at deep crustal metamorphic conditions, using a piston cylinder device at 10 kbar and 700C. Starting materials of natural microcline, quartz, synthetic corundum, reagent Al2O3 and KSi3O6.5 glass was used. Ms and K-fsp dissolve incongruently to co + fluid and ms + fluid, respectively. Fluid composition in equilibrium with co + ms and ms + K-fsp were located in experiments with and without qz. In quartz-absent experiments fluid composition with co+ms (I1) is mAl = 0.11, mK = 0.15, mSi = 0.44, and with K-fsp + ms (I2) mAl = 0.18, mK = 0.28 and mSi = 0.81, where mi is molality of the subscripted element. Fluid compositions with qz are: mAl = 0.08, mK = 0.11 and mSi = 1.18 (co + ms + qtz; II1) and mAl = 0.18, mK = 0.29 and mSi = 1.58 for (K-fsp + ms +qtz; II2). Measured fluid compositions are peralkaline (K/Al < 1.4). Bulk solubility of Al in pure H2O at this P and T is reported to be ~0.3 wt% [1], and increase to ~1.9 wt % Al in the presence of SiO2 [2]. This study shows that Al solubility is further enhanced by the presence of K and Si, increasing from ~4.07 wt% for (I1) to ~ 7.14 wt% at (I2). Presence of quartz enhances the bulk solubility from ~ 7.63 wt% (II1) to ~ 12.05 wt % at (II2). Results indicate that substantial aluminum transfer may occur at deep-crust metamorphic conditions in aqueous solutions equilibrated with common crustal bulk compositions such as metapelites and granites. Such high Al mobility is promoted by K and Si. Large-scale Al transfer may explain the formation of aluminumsilicate- and muscovite-bearing veins by replacement of K-feldspar in metamorphic rocks, without appealing to either strongly acid or basic solutions. [1] Tropper and Manning (2007) Chem. Geol. 240, 54-60. [2] Manning (2007) Geofluids 7, 258-269.

  2. Hydrothermal Alteration in Submarine Basaltic Rocks from the Reykjanes Geothermal Field, Iceland. (Invited)

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Schiffman, P.; Fowler, A. P.; Marks, N.; Fridleifsson, G.; Elders, W. A.

    2013-12-01

    The Iceland Deep Drilling Project (IDDP) is preparing to drill to 4-5 km in the Reykjanes Geothermal Field to sample geothermal fluids at supercritical temperature and pressure for power generation. The Reykjanes geothermal field is the on-land extension of the Reykjanes Ridge spreading center. The upper 1-2 kilometers drilled at Reykjanes are submarine basalts and basaltic sediments, hyalloclastites, and breccias, with an increasing proportion of basaltic intrusive rocks below 2 km depth. Geothermal fluids are evolved seawater with a composition similar to mid-ocean ridge hydrothermal systems. Zn- and Cu-rich sulfide scale, locally enriched in Au and Ag, are deposited in production pipes. The sulfide deposits are compositionally and isotopically similar to seafloor massive sulfides. In anticipation of deeper drilling, we have investigated the mineralogy and geochemistry of drill cuttings from a 3 km deep well (RN-17). The depth zoning of alteration minerals is similar to that described from other Icelandic geothermal fields, and is comparable to observed seafloor metamorphic gradients in ODP drill holes and ophiolites. Chlorite-epidote alteration occurs at depths >400 m and passes downhole through epidote-actinolite alteration and into amphibole facies (hornblende-calcic plagioclase) alteration below 2.5 km. Local zones of high temperature (>800C), granoblastic-textured, pyroxene hornfels, are interpreted to form by contact metamorphism during dike/sill emplacement. Similar granoblasically altered basalts were recovered from the base of the sheeted dikes in IODP Hole 1256D. Downhole compositional variations of drill cuttings, collected every 50 m, suggest that rocks below ~ 2 km are little altered. Whole-rock oxygen isotope profiles are consistent with low water/rock ratios, but suggest that early stages of hydrothermal alteration included meteoric water-derived fluids. Strontium isotope profiles indicate more extensive exchange with seawater-derived fluids. Drill core collected (100% recovery) at an in situ temperature of 320C from an inclined off-set hole drilled from RN-17 provides a sharp contrast to the drill cuttings. Original rock textures, including fine-scale banding and quenched crystals in hyalloclastite, are very well preserved, but the core is pervasively altered to amphibole-calcic plagioclase. Fluid inclusions in epidote veins record episodes of seawater boiling, and zonation of strontium isotopes across the veins indicates changing seawater-rock ratios, both of which may relate to dike emplacement. The compositional variation observed in 9 m of drill core far exceeds the compositional variation the lowermost km of drill cuttings. Different areas of the core show addition and depletion of silica, alkalies, and magnesium. The cuttings are highly biased due to selective recovery of relatively fresh igneous plagioclase and pyroxene crystals from intrusive bodies, and resistant alteration minerals such as vein quartz and epidote are more abundant in the cuttings relative to the core. Selective recovery of less altered rock during ocean drilling operations is a known problem, but the recovered core may be less representative of the degree of alteration than is generally appreciated.

  3. The origin of massive hydrothermal alterations: what drives fluid flow?

    NASA Astrophysics Data System (ADS)

    Gomez-Rivas, Enrique; Bons, Paul D.; Martn-Martn, Juan-Diego; Corbella, Merc; Stafford, Sherry L.; Griera, Albert; Teixell, Antonio; Salas, Ramn; Trav, Anna

    2014-05-01

    Hydrothermal alterations form when fluids warmer than the host rocks flow through them dissolving and precipitating minerals. These fluids typically flow upwards from deeper geologic units using faults as major conduits. In some cases, hydrothermal alterations affect large (km-scale) rock volumes. One example of such process is the massive high-temperature dolostones that crop out at the Benicssim outcrop analogue (Maestrat Basin, E Spain). In this area, seismic-scale fault-controlled stratabound dolostone bodies extend over several kilometres away from large-scale faults, replacing Lower Cretaceous limestones. The fluid responsible for such alteration is a seawater-derived brine that interacted with underlying Permian-Triassic and Paleozoic basement rocks. The estimated volume of fluid required to produce the Benicssim dolomitization is huge, with fluid-rock ratios in the order of several tens to a few hundreds, depending on composition and reaction temperature (Gomez-Rivas et al., 2014). An open key question is what brought this warm fluid (80 - 150 C) upwards to a depth of less than 1 km, where the dolomitization reaction took place. The driving forces should have been able not only to provide sufficient fluid volumes at shallow depths but also to heat up the whole host rock, including the non-replaced limestones. There are two hyphoteses for driving a warm fluid upwards in the Maestrat Basin: (a) rapid release through faults of overpressured solutions in recurrent pulses and (b) thermal convection. We present a series of heat and fluid flow numerical simulations to constrain the dolomitization conditions under these two end-member cases. The results indicate that in a pulsating model the fluid must flow upwards at velocities higher than cm/s to keep their elevated temperature. Otherwise they cool down quickly, and the host rocks cannot be heated. Such velocities can be reached if the fluid flow velocity equals that of fracture propagation, as in mobile hydrofractures (Bons, 2001). The main question is whether fast flow leaves recognizable signs, like hydrofractures of different scales and hydraulic breccias. We estimate fluid pressures reached at the reaction site, and discuss whether they are high enough to break the host rock, according to its petrophysical properties. Thermal convection could have driven pervasive fluid flow at lower flow rates, keeping the fluid warm and allowing time for the rock to react. But this mechanism would have required a shallow and very large intrusion or an anomalous geothermal gradient in order to activate flow by convection. This contribution presents a quantitative analysis of these hypotheses, and discusses their plausibility. Bons, P.D., 2001. The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics 336, 1-17. Gomez-Rivas, E., Corbella, M., Martn-Martn, J.D., Stafford, S.L., Teixell, A., Bons, P.D., Griera, A. and Cardellach, E. 2014. Reactivity of dolomitizing fluids and Mg source evaluation of fault-controlled dolomitization at the Benicssim outcrop analogue (Maestrat Basin, E Spain). Marine and Petroleum Geology, in press.

  4. Impact-generated hydrothermal systems on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Tornabene, Livio L.; Banerjee, Neil R.; Cockell, Charles S.; Flemming, Roberta; Izawa, Matthew R. M.; McCutcheon, Jenine; Parnell, John; Preston, Louisa J.; Pickersgill, Annemarie E.; Pontefract, Alexandra; Sapers, Haley M.; Southam, Gordon

    2013-06-01

    It has long been suggested that hydrothermal systems might have provided habitats for the origin and evolution of early life on Earth, and possibly other planets such as Mars. In this contribution we show that most impact events that result in the formation of complex impact craters (i.e., >2-4 and >5-10 km diameter on Earth and Mars, respectively) are potentially capable of generating a hydrothermal system. Consideration of the impact cratering record on Earth suggests that the presence of an impact crater lake is critical for determining the longevity and size of the hydrothermal system. We show that there are six main locations within and around impact craters on Earth where impact-generated hydrothermal deposits can form: (1) crater-fill impact melt rocks and melt-bearing breccias; (2) interior of central uplifts; (3) outer margin of central uplifts; (4) impact ejecta deposits; (5) crater rim region; and (6) post-impact crater lake sediments. We suggest that these six locations are applicable to Mars as well. Evidence for impact-generated hydrothermal alteration ranges from discrete vugs and veins to pervasive alteration depending on the setting and nature of the system. A variety of hydrothermal minerals have been documented in terrestrial impact structures and these can be grouped into three broad categories: (1) hydrothermally-altered target-rock assemblages; (2) primary hydrothermal minerals precipitated from solutions; and (3) secondary assemblages formed by the alteration of primary hydrothermal minerals. Target lithology and the origin of the hydrothermal fluids strongly influences the hydrothermal mineral assemblages formed in these post-impact hydrothermal systems. There is a growing body of evidence for impact-generated hydrothermal activity on Mars; although further detailed studies using high-resolution imagery and multispectral information are required. Such studies have only been done in detail for a handful of martian craters. The best example so far is from Toro Crater (Marzo, G.A., Davila, A.F., Tornabene, L.L., Dohm, J.M., Fairn, A.G., Gross, C., Kneissl, T., Bishop, J.L., Roush, T.L., Mckay, C.P. [2010]. Icarus 208, 667-683). We also present new evidence for impact-generated hydrothermal deposits within an unnamed 32-km diameter crater 350 km away from Toro and within the larger Holden Crater. Synthesizing observations of impact craters on Earth and Mars, we suggest that if there was life on Mars early in its history, then hydrothermal deposits associated with impact craters may provide the best, and most numerous, opportunities for finding preserved evidence for life on Mars. Moreover, hydrothermally altered and precipitated rocks can provide nutrients and habitats for life long after hydrothermal activity has ceased.

  5. Progressive hydrothermal alteration of feldspars from the Comstock Lode Region, Nevada: Submicron elemental imaging by Time of Flight-SIMS

    NASA Astrophysics Data System (ADS)

    Handler, M. R.; Vicenzi, E. P.; Sorensen, S. S.

    2002-05-01

    Time of Flight-Secondary Ionization Mass Spectrometry (ToF-SIMS) allows elemental mapping and depth profiling at lateral and depth resolutions of several hundred nanometers, with near-simultaneous acquisition of the entire elemental mass range and extending to larger hydrocarbon molecules. ToF-SIMS has been greatly utilized by surface scientists, but has rarely been used in terrestrial geosciences (e.g. [1]). Essentially a surface imaging technique, with shallow depth profiling abilities, it is ideal for investigating the distribution of elements and molecules (e.g. OH) on mineral surfaces, thin films [1], around fluid inclusions, and to trace chemical changes during weathering or hydrothermal alteration. To illustrate the potential of this analytical technique we highlight the progressive hydrothermal alteration of feldspars in the host andesites of the Comstock Lode paleohydrothermal system, Nevada. The Miocene Comstock Lode and related Ag-Au deposits are hosted mainly within Miocene Alta andesites, which were extensively sampled in the 1880s by G.F. Becker[2]. A sub-suite of these samples from the Sutro Tunnel document progressive hydrothermal alteration, with whole rock δ 18O values progressing from ~ +6 ‰ in distal andesites to -1.5 ‰ at the Coryell Lode [3]. The andesites are porphyritic with up to 50% feldspar phenocrysts, and minor mafic phases. Feldspar phenocrysts show systematic progression of alteration and replacement textures with decreasing whole rock δ 18O values and increasing proximity to the Coryell Lode. Relatively fresh igneous zoned phenocrysts (An35-55) grade into grains with fluid inclusions, crosscutting calcite +/- quartz veins, and increasingly complex reaction rims. Chemical alteration of feldspar progresses along cracks filled with fluid inclusions. Within 400 m of the Coryell Lode, feldspar phenocrysts have fully recrystallized, following crystallographic controls: Ab98-90 + An58-68, +/- sericite +/- calcite. A combination of BSE and cathodoluminescence imaging with ToF-SIMS can be used to trace the submicron-scale elemental distribution, and the chemical changes at the alteration and reaction interfaces at high spatial resolution. [1] Mathez, E.A. and D.M. Mogk, 1998, American Mineralogist 83: 918-924; Mogk D.M. and E.A. Mathez, 2000, G3 2000GC000081; [2] Becker, G.F., 1882, USGS Monograph 3; [3] Criss, R.E. and D.E. Champion, 1991, Geochem. Soc. Sp. Pub. 3: 437-447

  6. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  7. Genesis of jadeite-quartz rocks in the Yorii area of the Kanto Mountains, Japan

    NASA Astrophysics Data System (ADS)

    Fukuyama, Mayuko; Ogasawara, Masatsugu; Horie, Kenji; Lee, Der-Chuen

    2013-02-01

    This paper reports the results of U-Pb dating and REE (rare earth element) analysis of zircons separated from jadeite-quartz rocks within serpentinite mlanges in the Yorii area of the Kanto Mountains, Japan. These rocks contain jadeite, albite, and quartz, with minor aegirine-augite, zircon, monazite, thorite, allanite, and titanite. Mineral textures provide evidence of a jadeite + quartz = albite reaction during formation of these jadeite-quartz rocks. Zircon crystals separated from the jadeite-quartz rocks can be split into two distinct types, here named Types I and II, based on their morphology and REE concentrations. Type I zircons are prismatic and have fluid, jadeite, quartz, and albite inclusions. Those show positive Ce and negative Eu anomalies and HREE (heavy rare earth element) enriched chondrite normalized REE patterns and have higher REE concentrations than those generally found in magmatic zircons. Type I zircons would have precipitated from a fluid. Mineralogical observation provides that Type I zircon crystallized at the same timing of the formation of the jadeite-quartz rocks. Type II zircons are porous and have REE patterns indicative of a hydrothermal zircon. Both types of zircons are fluid-related. Type I zircons yield U-Pb ages of 162.2 0.6 Ma, with an MSWD (mean square weighted deviation) of 1.4. At this time, Japan was still a part of the eastern margin of the Asian continent, with the subduction of the oceanic paleo-Pacific Plate leading to the formation of the Jurassic Mino-Tanba-Chichibu accretionary complex in Japan. The age data indicate that the jadeite-quartz rocks formed in a deep subduction zone environment at the same time as the formation of the Jurassic accretionary complex in a shallower near-trench subduction zone environment. The jadeite-quartz rocks contain high concentrations of Zr and Nb, with low LILE (large ion lithophile elements) concentrations, suggesting that the HFSE (high field strength elements) can be concentrated into jadeite-quartz rocks prior to a fluid moving up into the mantle wedge. Typical arc volcanic rocks are depleted in the HFSE, suggesting that the high HFSE concentrations within jadeite-quartz rocks are consistent with fluids being stripped of their HFSE prior to interaction with mantle material during the formation of arc magmas. Although these jadeite-bearing rocks are rare occurrences on the surface exposure, they could be abundant in or above subducted slabs.

  8. Quartz resources in the Serra de Santa Helena formation, Brazil: A geochemical and technological study

    NASA Astrophysics Data System (ADS)

    Santos, Murilo Ferreira Marques dos; Fujiwara, Eric; Schenkel, Egont Alexandre; Enzweiler, Jacinta; Suzuki, Carlos Kenichi

    2014-12-01

    This study presents an evaluation of Brazilian quartz deposits of Corinto and Olhos D'gua, in Minas Gerais State, as potential high purity raw material for the production of silica glass. Both deposits are part of the Serra de Santa Helena formation, which holds other quartz deposits. Several quartz samples from these mines were analyzed to evaluate their chemical purity, by determination of the content of trace elements by ICP-MS after acid digestion. The technological characteristics of the ores after flame-fusion into silica glass were evaluated according to their bubble generation and UV transparency. The results indicate that silica glass with chemistry suitable for crucible applications can be obtained from materials of both mines, and even optical grade silica glass can be manufactured using transparent ore from one of the mines. In addition, this work explores the trace elements composition of each mine, as well as their fluid inclusions, and characterizes the mines as being of hydrothermal origin. Small differences in the physical and chemical characteristics of quartz that could affect the technological behavior of the ores are related to the geological history of the mines and provide interesting insights regarding the exploration of other quartz resources within the same geological formation.

  9. Color center in amethyst quartz.

    PubMed

    Lehmann, G; Moore, W J

    1966-05-20

    Treatment with x-rays increased the intensity of color of natural amethyst up to fivefold, and an electron paramagnetic resonance spectrum was detected. The intensity of the spectrum was proportional to the intensity of the optical absorption near 545 mmicro. The EPR spectrum of the color center corresponded to a positive hole trapped on a substitutional Fe(3+) ion in the quartz structure. We ascribe the color to a charge-transfer transition, Fe(4+) + O(2)- --> Fe(3+) + O(1-). PMID:17754816

  10. COMBUSTION OF HYDROTHERMALLY TREATED COALS

    EPA Science Inventory

    The report gives results of an evaluation of: (1) the relationship of the combustion characteristics of hydrothermally treated (HTT) coals to environmental emissions, boiler design, and interchangeability of solid fuels produced by the Hydrothermal Coal Process (HCP) with raw coa...

  11. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    NASA Astrophysics Data System (ADS)

    Vennemann, Torsten W.; Kesler, Stephen E.; O'Neil, James R.

    1992-09-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The δ18O values of quartz pebbles within any one sample typically vary by ˜4‰ or more, but occasionally by as much as 8‰, even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting δ18O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. The δ18O values of quartz pebbles from the uranium-bearing Huronian ores are normally distributed about a mean of 10.2‰; several outliers have δ18O values <6‰ and one has a δ18O of 14.6‰. In contrast, values of the pebbles from the gold- and uranium-bearing ores of the Witwatersrand define a platykurtic distribution skewed toward higher δ18O values (mean 11.4‰). Comparison with δ18O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., δ18O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low δ18O values of chert pebbles (9‰ to 11.5‰) relative to those expected for Archean and Proterozoic marine cherts (commonly ≥17‰) effectively exclude marine cherts, and, therefore, auriferous iron formations and exhalatives, as likely sources of gold.

  12. Geological setting and timing of the cassiterite vein type mineralization of the Kalima area (Maniema, Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Dewaele, S.; Muchez, Ph; Burgess, R.; Boyce, A.

    2015-12-01

    The Central African Mesoproterozoic Karagwe-Ankole belt in the Great Lakes area (DRCongo, Rwanda, Burundi, Uganda and Tanzania) forms a metallogenic province that hosts a variety of granite-related mineralization, which contains cassiterite, columbite-tantalite, wolframite/ferberite, spodumene and beryl. The Kalima area in the Maniema province of the DRCongo forms one of the most important areas for cassiterite mineralization in the eastern part of the DRCongo, even after many decades of exploitation. The mineralization dominantly consists of quartz veins that are hosted in Mesoproterozoic metasediments at the contact with granitic rocks of the Kalima granite (Avuanga and Yubuli) or directly crosscutting these granitic rocks (Atondo). Only limited - and mainly unmineralized pegmatites - have been described in the Lutshurukuru area. Mineralized quartz veins - and some granite bodies - intruded following the regional tectonic foliation or existing fracture zones, confirming the late-to post-tectonic origin of the fertile granite system. The emplacement of the quartz veins resulted in an alteration of the metasedimentary and granitic host-rocks, mainly resulting in muscovitization, tourmalinization and silicification. Cassiterite itself formed relatively late during vein formation and is associated with muscovite in fractures in or along the margins of the quartz veins. 40Ar-39Ar age dating of muscovite of an unmineralized pegmatite from the Lutshurukuru area gave an excellent plateau age of 1024 ± 5.5 Ma, while the muscovite associated with mineralization gave plateau ages of 986 ± 5.3 Ma for the Atondo deposit and 992.4 ± 5.4 Ma for the Yubuli deposit. The rather large spread in ages between the supposed parental granite/pegmatite and quartz veins is interpreted to reflect different magmatic events in the evolution of a composite granite system, starting at ∼1020 Ma and ending with mineralized quartz vein formation at ∼990 Ma. The latter age corresponds with the U-Pb age reported for columbite-tantalite in the area (993 ± 1 Ma at Kamisuku), which could be interpreted as the primary formation age of a new generation of mineralized pegmatites in the Kalima area, or as the resetting age of the U-Pb system during the ∼990 Ma mineralizing event. Muscovite of a mineralized greisen sample of Avuanga gave a plateau age with relaxed constraints of 1010.3 ± 5.9 Ma, which has been interpreted as a partially resetting of muscovite formed at ∼1020 Ma age, during the ∼990 Ma event.

  13. Geology and geochemistry of the Mammoth breccia pipe, Copper Creek mining district, southeastern Arizona: Evidence for a magmatic-hydrothermal origin

    USGS Publications Warehouse

    Anderson, E.D.; Atkinson, W.W., Jr.; Marsh, T.; Iriondo, A.

    2009-01-01

    The Copper Creek mining district, southeastern Arizona, contains more than 500 mineralized breccia pipes, buried porphyry-style, copper-bearing stockworks, and distal lead-silver veins. The breccia pipes are hosted by the Copper Creek Granodiorite and the Glory Hole volcanic rocks. The unexposed Mammoth breccia pipe, solely recognized by drilling, has a vertical extent of 800 m and a maximum width of 180 m. The pipe consists of angular clasts of granodiorite cemented by quartz, chalcopyrite, bornite, anhydrite, and calcite. Biotite 40Ar/ 39Ar dates suggest a minimum age of 61.5??0.7 Ma for the host Copper Creek Granodiorite and 40Ar/39Ar dates on hydrothermal sericite indicate an age of 61.0??0.5 Ma for copper mineralization. Fluid inclusion studies suggest that a supercritical fluid with a salinity of approximately 10 wt.% NaCl equiv. condensed to a dilute aqueous vapor (1-2.8 wt.% NaCl equiv.) and a hypersaline brine (33.4-35.1 wt.% NaCl equiv.). Minimum trapping temperatures are 375??C and trapping depths are estimated at 2 km. Sulfur isotope fractionation of cogenetic anhydrite and chalcopyrite yields a temperature of mineralization of 469??25??C. Calculated oxygen and hydrogen isotope values for fluids in equilibrium with quartz and sericite range from 10.2??? to 13.4??? and -60??? to -39???, respectively, suggesting that the mineralizing fluid was dominantly magmatic. Evidence from the stable isotope and fluid inclusion analyses suggests that the fluids responsible for Cu mineralization within the Mammoth breccia pipe exsolved from a gray porphyry phase found at the base of the breccia pipe. ?? Springer-Verlag 2008.

  14. The twinning microstructure and growth of amethyst quartz

    NASA Astrophysics Data System (ADS)

    McLaren, A. C.; Pitkethly, D. R.

    1982-07-01

    The characteristic lamellar-twinning of the right-handed ( R) and left-handed ( L) structures in the major rhombohedral growth sectors of amethyst quartz has been studied by optical techniques, X-ray topography and transmission electron microscopy (TEM). The TEM observations show that the region of each Brewster fringe consists of fine-scale Brazil twin lamellae parallel to one of the r, z{10overline {text{1}} 1} planes, and structural considerations suggest that it is one of the r-planes. The twin boundary corresponding to a Brewster fringe has the form of a zig-zag structure consisting of Brazil twin boundaries on two r{10overline {text{1}} 1} planes, with one predominating. The Brewster fringes appear black between crossed polarizers because light travelling along the optic axis [001] passes through almost equal distances of R and L quartz, giving essentially zero optical rotation. From the visibility of the Brazil twin boundaries in electron micrographs and the visibility of the Brewster fringes in X-ray topographs, the fault vector R and the corresponding composition plane of the major Brazil twin associated with each Brewster fringe has been determined. The streaking of the Brewster fringes observed optically and in the X-ray topographs appears to be due to the stair-rod dislocations at the intersections of the Brazil twin boundaries. Experiments in which synthetic quartz was grown hydrothermally on untwinned seeds and on twinned amethyst seeds showed that the initiation of Brazil twins and the development of Brewster fringes was dependent upon the presence of iron in the growth solution.

  15. Exsolved magmatic fluid and its role in the formation of comb-layered quartz at the Cretaceous Logtung W-Mo deposit, Yukon Territory, Canada

    USGS Publications Warehouse

    Lowenstern, J. B.; Sinclair, W.D.

    1996-01-01

    Comb-layered quartz is a type of unidirectional solidification texture found at the roofs of shallow silicic intrusions that are often associated spatially with Mo and W mineralisation. The texture consists of multiple layers of euhedral, prismatic quartz crystals (Type I) that have grown on subplanar aplite substrates. The layers are separated by porphyritic aplite containing equant phenocrysts of quartz (Type II), which resemble quartz typical of volcanic rocks and porphyry intrusions. At Logtung, Type I quartz within comb layers is zoned with respect to a number of trace elements, including Al and K. Concentrations of these elements as well as Mn, Ti, Ge, Rb and H are anomalous and much higher than found in Type II quartz from Logtung or in igneous quartz reported elsewhere. The two populations appear to have formed under different conditions. The Type II quartz phenocrysts almost certainly grew from a high-silica melt between 600 and 800??C (as ??-quartz); in contrast, the morphology of Type I quartz is consistent with precipitation from a hydrothermal solution, possibly as ??-quartz grown below 600??C. The bulk compositions of comb-layered rocks, as well as the aplite interlayers, are consistent with the hypothesis that these textures did not precipitate solely from a crystallising silicate melt. Instead, Type I quartz may have grown from pockets of exsolved magmatic fluid located between the magma and its crystallised border. The Type II quartz represents pre-existing phenocrysts in the underlying magma; this magma was quenched to aplite during fracturing/degassing events. Renewed and repeated formation and disruption of the pockets of exsolved aqueous fluid accounts for the rhythmic banding of the rocks.

  16. Quartz-tourmaline orbicules: Record of magmatic melt immiscibility in the Land's End granite, SW England

    NASA Astrophysics Data System (ADS)

    Drivenes, Kristian; Larsen, Rune; Müller, Axel; Sorensen, Bjorn; Wiedenbeck, Michael; Raanes, Morten

    2014-05-01

    Spherical quartz-tourmaline aggregations are a common sight throughout the Cornubian batholith in SW England. In the outer parts of the Land's End granite smaller rounded orbicules occur in a coarse-grained megacrystic biotite granite. The interior parts of the orbicules show poikilittic textures with fine-grained euhedral quartz chadacrysts enclosed by skeletal tourmaline oikocrysts, with outer zones showing typical replacement textures. Cathodoluminescence of quartz show at least two growth stages after the megacrystic stage. The quartz phenocrysts show an even, concentric zoning pattern, sometimes with a darker core indicating growth during stable physiochemical conditions. The orbicular quartz is strongly zoned with bright cores and darker rims, similar to the fine-grained quartz in the granite matrix. Ti content of quartz corresponds to the CL zoning, with 125 - 180 µg/g in the bright cores and 60 - 80 in the darker main stage orbicular quartz. Tourmaline in the orbicules is weakly zoned form dark to pale brown, but the zoning is more pronounced compared to tourmaline in the granite matrix. Chemically, both are well within the schorl field, and cannot be differentiated based on major elements. The B-isotope signature is also overlapping. Matrix tourmaline has higher Sc and V content, but lower Nb, Ta and Sn, and matrix and orbicule tourmaline can be distinguished using trace elements. The geometry and composition of the orbicules is difficult to explain by fractional crystallization alone, since the total FeO content of the granite is low, and Fe is bound primarily to magmatic phases such as ilmenite and biotite. A prolonged fractional crystallization sequence would have depleted the magma in respect to Fe, and Fe derived from breakdown of nearby biotite is not sufficient to stabilize orbicule tourmaline. Orbicular tourmaline is conspicuously different, both chemically and texturally, from the typical hydrothermal tourmaline in the area, and replacement by an extrinsic hydrothermal fluid is unlikely. We propose that the orbicules formed from an immiscible hydrous B-Fe rich melt that coalesced to the orbicules, and crystallized in a eutectic manner during the last stages of crystallization.

  17. Fault and vein relationships in a reverse fault system at the Centenary orebody (Darlot gold deposit), Western Australia: Implications for gold mineralisation

    NASA Astrophysics Data System (ADS)

    Kenworthy, Shane; Hagemann, Steffen G.

    2007-04-01

    The Centenary orebody within the Darlot gold deposit is located in the Yandal greenstone belt in the Yilgarn Craton, Western Australia. At Centenary, moderately (˜45°) west dipping reverse faults and steeply dipping (>70°) faults of variable strike failed during gold mineralisation in response to sub-horizontal east-west shortening and sub-vertical extension. Gently dipping veins are temporally, genetically and spatially related subsidiary structures to west dipping reverse and steeply dipping faults. Line analyses of subsidiary vein distributions in 23 drill cores around Centenary suggest that the gold-related subsidiary veins are localised within a 200-300 m wide tabular linking damage zone between three west dipping faults (Thompson, Lords and Walters). The damage zone is a laterally stepping relay zone between the Thompson and Lords-Walters faults and has a pull-apart geometry. Anomalous vein-related extensional strain (>0.005), vein density (>0.20) and power-law vein thickness population characteristics ( D t 0.58-1.84) distinguish this zone from the surrounding rock. Within the linking damage zone the highest number and volume of veins are observed at the tip of the Walters fault. At the fault tip, the exponent of the power-law distribution of vein thickness is highest ( D t 1.84) indicating that vein-related extensional strain is distributed on a high number of relatively small thickness veins. At approximately 300 m distance from the fault tip the densities of veins and the measured exponents of power-law vein thickness distributions are lower (<0.80 and D t <1.3, respectively). However, bulk vertical extensional strain remains high (>0.005), indicating that subsidiary vein material is concentrated on a greater number of anomalously thick veins. These systematic variations suggest that the fault tip imparted a strong control on vein localisation. Strain localisation within the linking damage zone is complex with coefficients of variation of vein spacing greater than one implying vein clustering. Gently dipping veins occur as wing crack arrays to the reverse faults and also in arrays comprising curviplanar, intersecting networks of subsidiary veins. The linking damage zone corresponds closely with the Centenary gold resource indicating that it has been an important locus for the focussed flux of gold-bearing hydrothermal fluids. However, within the damage zone, individual veins and vein arrays on the tens of metre scale do not always correlate with high gold grade indicating additional complexity within the system.

  18. Radiation-Hard Quartz Cerenkov Calorimeters

    SciTech Connect

    Akgun, U.; Onel, Y.

    2006-10-27

    New generation hadron colliders are going to reach unprecedented energies and radiation levels. Quartz has been identified as a radiation-hard material that can be used for Cerenkov calorimeters of the future experiments. We report from the radiation hardness tests performed on quartz fibers, as well as the characteristics of the quartz fiber and plate Cerenkov calorimeters that have been built, designed, and proposed for the CMS experiment.

  19. Experimental and theoretical investigation of the production of HCl and some metal chlorides in magmatic/hydrothermal systems

    SciTech Connect

    Not Available

    1992-01-01

    In the calculations we have assumed that all apatites are magmatic. The presence of chlorite and altered plagioclase within the granite and quartz-monzodiorite suggests that alteration may play a role in leading to erroneous estimates of initial melt Cl and F for 2 reasons: (1) the apatites may in fact not be magmatic in origin, but are hydrothermal, and (2) the halogen signature of magmatic apatite may be changed due to subsolidus exchange with a hydrothermal fluid. We are currently endeavoring to develop criteria for determining whether apatite composition represents earlier or later stages of magmatic-hydrothermal development.

  20. Mixing from below in hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Gomez-Rivas, Enrique; Markl, Gregor; Walter, Bejamin

    2014-05-01

    Unconformity-related hydrothermal ore deposits typically show indications of mixing of two end-member fluids: (a) hot, deep, rock-buffered basement brines and (b) colder fluids derived from the surface or overlying sediments. The hydromechanics of bringing these fluids together from above and below remain unclear. Classical percolative Darcy-flow models are inconsistent with (1) fluid overpressure indicated by fracturing and brecciation, (2) fast fluid flow indicated by thermal disequilibrium, and (3) strong fluid composition variations on the mm-scale, indicated by fluid inclusion analyses (Bons et al. 2012; Fusswinkel et al. 2013). We propose that fluids first descend, sucked down by desiccation reactions in exhumed basement. Oldest fluids reach greatest depths, where long residence times and elevated temperatures allow them the extensively equilibrate with their host rock, reach high salinity and scavenge metals, if present. Youngest fluids can only penetrate to shallower depths and can (partially) retain signatures from their origin, for example high Cl/Br ratios from the dissolution of evaporitic halite horizons. When fluids are released from all levels of the crustal column, these fluids mix during rapid ascent to form hydrothermal ore deposits. Mixing from below provides a viable hydromechanical mechanism to explain the common phenomenon of mixed shallow and deep fluids in hydrothermal ore deposits. Bons, P.D., Elburg, M.A., Gomez-Rivas, E. 2012. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. doi:10.1016/j.jsg.2012.07.005 Fusswinkel, T., Wagner, T., Wälle, M., Wenzel, T., Heinrich, C.A., Markl, M. 2013. Fluid mixing forms basement-hosted Pb-Zn deposits: Insight from metal and halogen geochemistry of individual fluid inclusions. Geology. doi:10.1130/G34092.1

  1. Management of superficial vein thrombosis.

    PubMed

    Cosmi, B

    2015-07-01

    Superficial vein thrombosis (SVT) is less well studied than deep vein thrombosis (DVT), because it has been considered to be a minor, self-limiting disease that is easily diagnosed on clinical grounds and that requires only symptomatic relief. The most frequently involved sites of the superficial vein system are the lower limbs, especially the saphenous veins, mostly in relation to varicosities. Lower-limb SVT shares the same risk factors as DVT; it can propagate into the deep veins, and have a complicated course with pulmonary embolism. Clinical diagnosis may not be accurate, and ultrasonography is currently indicated for both confirmation and evaluation of SVT extension. Treatment aims are symptom relief and prevention of venous thromboembolism (VTE) in relation to the thrombotic burden. SVT of the long saphenous vein within 3cm of the saphenofemoral junction (SFJ) is considered to be equivalent to a DVT, and thus deserving of therapeutic anticoagulation. Less severe forms of lower-limb SVT not involving the SFJ have been included in randomized clinical trials of surgery, compression hosiery, non-steroidal anti-inflammatory drugs, unfractionated heparin, and low molecular weight heparins, with inconclusive results. The largest randomized clinical trial available, on 3004 patients with lower-limb SVT not involving the SFJ, showed that fondaparinux 2.5mg once daily for 6weeks is more effective than placebo in reducing the risk of the composite of death from any cause and symptomatic VTE (0.9% versus 5.9%). Further studies are needed to define the optimal management strategies for SVT of the lower limbs and other sites, such as the upper limbs. PMID:25903684

  2. Portal vein thrombosis in cirrhosis.

    PubMed

    Raja, Kaiser; Jacob, Mathew; Asthana, Sonal

    2014-12-01

    Portal vein thrombosis (PVT) is being increasingly recognized in patients with advanced cirrhosis and in those undergoing liver transplantation. Reduced flow in the portal vein is probably responsible for clotting in the spleno-porto-mesenteric venous system. There is also increasing evidence that hypercoagulability occurs in advanced liver disease and contributes to the risk of PVT. Ultrasound based studies have reported a prevalence of PVT in 10-25% of cirrhotic patients without hepatocellular carcinoma. Partial thrombosis of the portal vein is more common and may not have pathophysiological consequences. However, there is high risk of progression of partial PVT to complete PVT that may cause exacerbation of portal hypertension and progression of liver insufficiency. It is thus, essential to accurately diagnose and stage PVT in patients waiting for transplantation and consider anticoagulation therapy. Therapy with low molecular weight heparin and vitamin K antagonists has been shown to achieve complete and partial recanalization in 33-45% and 15-35% of cases respectively. There are however, no guidelines to help determine the dose and therapeutic efficacy of anticoagulation in patients with cirrhosis. Anticoagulation therapy related bleeding is the most feared complication but it appears that the risk of variceal bleeding is more likely to be dependent on portal pressure rather than solely related to coagulation status. TIPS has also been reported to restore patency of the portal vein. Patients with complete PVT currently do not form an absolute contraindication for liver transplantation. Thrombectomy or thromboendovenectomy is possible in more than 75% of patients followed by anatomical end-to-end portal anastomosis. When patency of the portal vein and/or superior mesenteric vein is not achieved, only non-anatomical techniques (reno-portal anastomosis or cavo-portal hemitransposition) can be performed. These techniques, which do not fully reverse portal hypertension, are associated with higher morbidity and mortality risks in the short term. PMID:25755579

  3. Hydrothermal pretreatment of coal

    SciTech Connect

    Loo, Bock; Ross, D.S.

    1990-08-14

    We are examining the effects on composition and behavior of Argonne-supplied Wyodak coal under both thermal (no added water/N{sub 2}) and hydrothermal (liquid water/N{sub 2}) conditions at 350{degree}C for periods of 30 min and 5 hr, with emphasis during this period on the longer treatment. Field ionization mass spectrometry (FIMS) of the untreated, thermally treated, and hydrothermally treated coals is conducted at conditions where the samples are heated from ambient to 500{degree}C at 2.5{degree}/min. In the 5 hr work the volatilities of the coals are 24%, 16%, and 25% respectively. Solvent swelling studies with the recovered coals do not demonstrate the expected lower degree of crosslinking in the hydrothermal case. Both the thermal and hydrothermal treatments yield products with a decreased swelling ratio, but the ratio for the product from the aqueous treatment is slightly lower than that from thermal treatment. At present we cannot reconcile this result with our other data. 4 refs., 6 figs.

  4. Different carbon reservoirs of auriferous fluids in African Archean and Proterozoic gold deposits? Constraints from stable carbon isotopic compositions of quartz-hosted CO2-rich fluid inclusions

    NASA Astrophysics Data System (ADS)

    Lüders, Volker; Klemd, Reiner; Oberthür, Thomas; Plessen, Birgit

    2015-04-01

    Stable carbon (and when present, nitrogen) isotope ratios of fluid inclusions in quartz from selected gold deposits in Ghana and Zimbabwe have been analyzed using a crushing device interfaced to an isotopic ratio mass spectrometer (IRMS) in order to constrain possible sources of the auriferous fluids. The study revealed a striking difference in stable carbon isotopic compositions of CO2 in quartz-hosted fluid inclusions from Archean and Paleoproterozoic orogenic gold deposits and points to diverse sources of CO2 in the studied deposits. Whether this finding can be generalized for other Archean and Proterozoic orogenic gold deposits worldwide remains open. However, a significant CO2 contribution by mantle degassing can be ruled out for every deposit studied. Devolatilization of greenstone belt rocks is the most likely source for CO2 in some Archean Au deposits in Zimbabwe, whereas CO2 in Proterozoic vein-type Au deposits in the West African Craton is most likely derived from Corg-bearing metasedimentary rocks. The δ13CCO2 values of high-density CO2-rich, water-poor inclusions hosted in quartz pebbles from the world-class Au-bearing conglomerate deposits at Tarkwa (Ghana) differ considerably from the δ13CCO2 values of similar high-density CO2-rich inclusions in vein quartz from the giant Ashanti deposit (Ghana) and disprove the idea of derivation of the Tarkwaian quartz (and gold?) from an older equivalent to the Ashanti vein-type gold deposit.

  5. Quartz-sericite and argillic alterations at the Peschanka Cu-Mo-Au deposit, Chukchi Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Marushchenko, L. I.; Baksheev, I. A.; Nagornaya, E. V.; Chitalin, A. F.; Nikolaev, Yu. N.; Kal'ko, I. A.; Prokofiev, V. Yu.

    2015-05-01

    The porphyry Peschanka copper-molybdenum-gold deposit and the Nakhodka ore field located in the Baimka ore trend on the western Chukchi Peninsula are spatially related to monzonitic rocks of the Early Cretaceous Egdykgych Complex. Two types of quartz-sericite metasomatic rocks (QSR) have been identified at both the deposits and the ore field: (I) chlorite-quartz-muscovite rock with bornite and chalcopyrite (porphyry type) and (II) tourmaline-quartz-carbonate-muscovite ± phengite rock accompanied by veins with base-metal mineralization (subepithermal or transitional type), as well as carbonate-quartz-illite rock (argillic alteration) accompanied by veins with precious metal mineralization (epithermal type). The QSR I chlorite evolves from chamosite to clinochlore, which is caused by increasing H2S activity in mineralizing fluid and precipitation of sulfide minerals. The QSR I clinochlore is significantly depleted in silica as compared with that from the rocks affected by argillic alteration. The chemical composition of muscovite from both quartz-sericite alterations is similar. The QSR II carbonates evolve from calcite through dolomite to siderite, which results from the increasing activity of CO2 followed by the decreasing activity of H2S in mineralizing fluid. The Mn content in dolomite is similar to that in beresite (quartz-muscovite-carbonate-pyrite metasomatic rock) of the intrusion-related gold deposits. Illite from argillic alteration is depleted in Al as compared with that of postvolcanic epithermal Au-Ag deposits. However, carbonates from the discussed argillic alteration rhodochrosite and Mn-rich dolomite are similar to those from quartz-illite rock at postvolcanic epithermal Au-Ag deposits.

  6. Vein deposits hosted by plutonic rocks in the Croesus Stock and Hailey gold belt mineralized areas, Blaine County, Idaho

    USGS Publications Warehouse

    Worl, Ronald G.; Lewis, Reed S.

    2001-01-01

    Mineral deposits in the Croesus and Hailey gold belt mineralized areas in Blaine County, south-central Idaho, are preciousand base-metal quartz veins that are part of a family of vein deposits spatially and temporally associated with the Idaho batholith. Historic production from these veins has been mainly gold and silver. Host rocks are older border phase plutons of the Idaho batholith that are characterized by more potassium and less sodium as compared to rocks from the main body of the batholith to the west. Host structures are reverse faults that have moderate to shallow dips to the northeast and high-angle normal faults that also strike northwest. The veins are characterized by several generations of quartz and generally sparse sulfide minerals; gold is associated with late-stage comb quartz. The precious-metal ore bodies are in a series of shoots, each of which is as much as 8 ft in width, 400 ft in breadth, and 1,000 ft in pitch length.

  7. U-Pb isochron age and Pb isotope systematics of the Golden Fleece vein - implications for the relationship of mineralization to the Lake City caldera, western San Juan Mountains, Colorado.

    USGS Publications Warehouse

    Hon, K.; Ludwig, K. R.; Simmons, K.R.; Slack, J.F.; Grauch, R.I.

    1985-01-01

    A U/Pb isochron age of 27.5 + or - 0.5 m.y. is determined for the Golden Fleece vein, an age which is identical with the age of the quartz latite lavas that the vein cuts. Within the Lake City area, only the Golden Fleece vein contains pitchblende and Au-Ag tellurides and has Pb isotope ratios that together define it as unique within the area. The 27.5 m.y. age relates this vein to the waning stages of the Uncompahgre caldera (27-29) rather than to the Lake City caldera (23.1 m.y.). -G.J.N.

  8. Hydrothermal synthesis as a route to mineralogically-inspired structures.

    PubMed

    McMillen, Colin D; Kolis, Joseph W

    2016-02-21

    The use of high temperature hydrothermal reactions to prepare crystals having mineralogically-related structures is described. Complex naturally occurring minerals can have fascinating structures and exhibit important features like low dimensionality, noncentrosymmetry, or ion channels that can provide excellent guideposts for the designed synthesis of new materials. Actual minerals, even though they may have intriguing physical properties, are often unsuitable for study because of the persistent impurities inevitably present in natural samples. Hydrothermal fluids at relatively high temperatures provide access to large, high quality single crystals of structures with mineral-like structures. This enables the study of physical properties like ionic conduction, magnetic spin frustration and non-linear optical behavior. Some fundamental considerations of the hydrothermal technique are discussed in the context of synthesizing mineralogically-inspired materials. The metal vanadates provide a surprisingly rich and diversified range of compounds and are selected to illustrate many of the concepts described here. A series of low dimensional mineral analogs featuring isolated units, chains, and layers have been prepared in the laboratory as large single crystals using a high temperature hydrothermal synthetic methods, and their physical properties are under investigation. The metal silicates are also highlighted as another promising field of exploration, since their hydrothermal synthesis surprisingly lags behind the enormous literature of the natural silicate minerals. The introduction of heteroelements, such as boron to make borosilicates, appears to also open the door to additional new materials. Many of these new materials have direct equivalents in the mineral kingdom, while others have no known analogs but are reminiscent of minerals and can be classified in the same ways. From these initial results there appears to be a very rich vein of synthetic minerals waiting to be unearthed in the laboratory using the high temperature hydrothermal method. PMID:26781397

  9. K-feldspar-muscovite-andalusite-quartz-brine phase equilibria: An experimental study at 25 to 60 MPa and 400 to 550 C

    SciTech Connect

    Frank, M.R.; Candela, P.A.; Piccoli, P.M.

    1998-12-01

    Felsic magmas may evolve one or more water or chlorine-rich fluid phases which can transport heat and solutes into associated hydrothermal systems and can contribute to alteration and ore deposition. To understand the role of a high-salinity aqueous phase in the magmatic hydrothermal environment, the composition of a subcritical, vapor-undersaturated high-salinity liquid phase (brine) in equilibrium with K-feldspar-muscovite-quartz and muscovite-andalusite-quartz was determined for pressures and temperatures ranging from 25 MPa and 400 C to 60 MPa and 550 C, with total Cl (NaCl + KCl + HCl) concentrations ranging from 3.42 to 8.56 (moles of solute/kg solution). Comparison of results with previous studies conducted at higher pressures and lower-salinity aqueous phases show that the mineral stability fields in the K-feldspar-muscovite-andalusite-quartz system shift to lower KCl/KCl values with increasing salinity and decreasing pressure.

  10. Blackberry Yellow Vein Disease Complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new virus disease has emerged in the Midsouth and Southeastern United States and was named blackberry yellow vein disease (BYVD). Originally, it was thought the disease was caused by Tobacco ringspot virus (TRSV) as the virus was found in many diseased plants and symptoms were very similar to thos...

  11. OH-defects in detrital quartz grains: Potential for application as tool for provenance analysis and overview over crustal average

    NASA Astrophysics Data System (ADS)

    Stalder, Roland; Neuser, Rolf Dieter

    2013-08-01

    OH-defects of 95 detrital quartz grains from 4 localities in North-west Germany (2 North Sea beach sands, one Triassic sandstone, and one Carboniferous sandstone) were studied with infrared (IR) microscopy. By applying novel analytical strategies, the water contribution of fluid and mineral inclusions was minimised and the amount of water incorporated as OH-point defects was quantified. The defect water concentration in all studied quartz grains ranges between 0 and 50 wt. ppm H2O with a mean value around 10 wt. ppm. Interestingly, grains from the investigated sandstones exhibit in average nearly three times higher defect water concentrations (18 wt. ppm) than the grains from the North Sea (6.5 wt. ppm). Quartz grains with extreme undulose extinction always exhibit low defect water contents and water-rich grains usually show small undulosity, but also grains with low defect water and low undulosities are common. IR spectra of the detrital quartz grains were compared to reference spectra from samples of known localities and rock types in order to identify potential sources from which the quartz grains were sampled. Most detrital quartz grains exhibit IR signature typical for granites (showing an Al-specific band at 3378 cm- 1) and regional metamorphic rocks, but also absorption bands typical for pegmatites and hydrothermal quartz (showing a Li-specific band at 3480 cm- 1) are observed. In contrast, IR signatures typical for high-pressure origin (i.e., hydrogarnet substitution with an absorption band at 3585 cm- 1) and for tourmaline-bearing rocks (showing a B-specific band at 3595 cm- 1) are subordinate to insignificant. In view of the large scatter of defect water between individual quartz grains the strategy presented here offers an option to estimate the average defect water content of quartz in the Earth's crust.

  12. Carbon isotope evidence for a magmatic origin for Archaean gold-quartz vein ore deposits

    NASA Technical Reports Server (NTRS)

    Burrows, D. R.; Wood, P. C.; Spooner, E. T. C.

    1986-01-01

    Sediments from three sites in the Santa Barbara Basin were examined with a 160X power light microscope and TEM equipment to characterize the magnetostatic bacteria (MB) in the samples. Both the free magnetite and the crystals in the MB in the samples had lengths from 40-60 nm in length and increased in size from one end to the next. An intact magnetosome was also observed. Scanning the sediments with saturation isothermal remanent magnetization (SIRM) and altering field demagnetization techniques using a SQUID magnetometer yielded coercivity spectra which showed that the primary remanence carrier in the sediments was single domain magnetite. Although it is expected that the predominance of the bacterial magnetite component will decrease with depth in the open ocean basin, single-domain bacteria as old as 50 Myr have been observed in oceanic sediments.

  13. Who Is at Risk for Varicose Veins?

    MedlinePLUS

    ... fetus puts pressure on the veins in the mother's legs. Varicose veins that occur during pregnancy usually get better within 3 to 12 months of delivery. Overweight or Obesity Being overweight or obese can put extra pressure ...

  14. Electron irradiation damage in quartz, SiO2

    NASA Astrophysics Data System (ADS)

    Martin, B.; Flrke, O. W.; Kainka, E.; Wirth, R.

    1996-10-01

    Crystallographically orientated samples of synthetic optical-grade colourless quartz with high chemical purity and low dislocation density together with synthetic gem-grade amethyst with high Fe-concentration and ca. 250 H/106 Si (dry) or 600 H/106 Si (wet) and with very high dislocation densities were irradiated using TEM. Samples of cuts perpendicular (-cuts) and parallel (-cuts) to the c-axis, that were as-grown or pretreated for 5 days at 820 K on air or under p(H2O)=108 Pa were prepared. Characterization methods used include AAS, FTIR, Raman-spectroscopy, X-ray-topography, REM, TEM in SAED and bright-field mode and polarized light microscopy. Radiolysis was carried out in TEM from 10 to 300 K with 100 kV and from 70 850 K (low-high-transition temperature of quartz) with 200 kV. Irradiation damage was investigated by decay of Kikuchi-lines or of Bragg reflections in SAED and in bright-field mode by development of strain contrast centres and of noncrystalline volume areas. Special preparates where the irradiation damage was of microscopic dimensions were investigated using Raman-spectroscopy. Radiolysis of quartz is able to proceed at 10 K with measurable velocity. The required electron dose for a standardized irradiation damage decreases with increasing temperature. At ca. 500 K it goes through a minimum and then increases steadily up to ca. 700 K. From there the increase is steep until ca. 820 K where it culminates sharply, showing strong fluctuations until 850 K. The -cuts in the as-grown state show significantly higher irradiation damage sensitivity than -cuts. Dry or hydrothermal preheating increases the overall sensitivity of irradiation damage and levels out the orientation differences. The high Fe-concentrations in amethyst in comparison with very pure quartz have no detectable influence on the damage sensitivity. This is also true for different water concentrations independently from the ratio of silanole-group to molecular water. Sample thinning by ion etching with different gun currents produces differences in irradiation sensitivity. Thinning by crushing produces samples with sensitivities comparable with ion-etching at low gun current.

  15. The Quartz Analog Watch: A Wonder Machine.

    ERIC Educational Resources Information Center

    Crane, H. Richard, Ed.

    1993-01-01

    Summarizes how a quartz watch works. Discusses the quartz crystal, its form, and how its frequency is set to a standard; the integrated circuit chip that drives the crystal in vibration, scales its frequency down, and forms pulses that turn the motor; and the motor that drives the gear train that turns the hands. (ZWH)

  16. Geochemistry of hydrothermal fluids at the Hatoma Knoll in Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Toki, T.; Shinjo, R.; Ishibashi, J.; Tsunogai, U.; Sano, Y.; Takahata, N.; Yamanaka, T.; Kawagucci, S.; Ueno, Y.; Nunoura, T.; Takai, K.

    2012-12-01

    Hatoma knoll is a caldera volcano which exists in the southern part of Okinawa Trough, and the hydrothermal field was discovered in the caldera in 1999. A lava dome exists in the center part of the caldera, and clear smokers up to 324.5C, benthic organism colony and liquid CO2, and CO2 hydrate have been observed around the dome. Since 2000, the investigation cruise (NT00-06, YK07-04, NT07-12, NT08-13, and NT09-10) by "Shinkai2000", "Shinkai6500" and the "HYPER-DOLPHIN 3K" has been carried out. Hydrothermal fluid samples were taken from the hydrothermal system, and chemical and isotopic compositions of the hydrothermal fluid samples were investigated. The chemical composition of hydrothermal fluid has high pH compared with the hydrothermal fluid in the mid-ocean ridge, and ammonium concentration is high, suggesting that the sediments covered the Okinawa Trough contribute to the chemical composition of hydrothermal fluid. The end-members of hydrothermal fluid show a variation, but the ratios of the end-members are consistent with each other, suggesting that the hydrothermal system has a single source and subcritical phase separation occurs below the seafloor. The equilibrium temperature with the quartz based on Si concentration was 350-400C at 1-2 km below the seafloor. CO2 concentration in hydrothermal fluid showed the high-level value in the hydrothermal system in the world. The origin of the abundant CO2 is the carbonate on the subducting plate and the sediment in the Okinawa Trough based on the carbon isotope and the helium isotope. Methane is also the high-level concentration in the hydrothermal system in the world. Most of methane is generated through methanogenesis based on the carbon isotope ratio. Sr isotopic ratio in the hydrothermal fluid suggests the influence of sediment. However, the knoll surface was covered by rhyolite, the influence of sediment would occur in the recharge zone of the hydrothermal system. The methane would be microbially produced in the sediment of the recharge zone, and entrained by the hydrothermal fluid.

  17. Quartz gauge response in ion radiation

    SciTech Connect

    Taylor, P.E.; Gilbert, P.H.; Kernthaler, C.; Lee, L.M.; Smith, E.A.; Reeder, S.T.; Anderson, M.U.

    1995-12-31

    This paper describes recent work to make high quality quartz gauge (temporal and spatial) shock wave measurements in a pulsed ion beam environment. Intense ion beam radiation, nominally 1 MeV protons, was deposited into material samples instrumented with shunted quartz gauges adjacent to the ion deposition zone. Fluence levels were chosen to excite three fundamentally different material response modes (1) strong vapor, (2) combined vapor and melt phase and (3) thermoelastic material response. A unique quartz gauge design was utilized that employed printed circuit board (PCB) technology to facilitate electrical shielding, ruggedness, and fabrication @e meeting the essential one dimensional requirements of the characterized Sandia shunted quartz gauge. Shock loading and unloading experiments were conducted to evaluate the piezoelectric response of the coupled quartz gauge/PCB transducer. High fidelity shock wave profiles were recorded at the three ion fluence levels providing dynamic material response data for vapor, melt and solid material phases.

  18. A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting.

    PubMed

    Lindgren, Paula; Parnell, John; Holm, Nils G; Broman, Curt

    2011-01-01

    One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials. PMID:21299877

  19. A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting

    PubMed Central

    2011-01-01

    One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200°C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials. PMID:21299877

  20. Surgical Access to Jejunal Veins for Local Thrombolysis and Stent Placement in Portal Vein Thrombosis

    SciTech Connect

    Schellhammer, Frank; Esch, Jan Schulte am; Hammerschlag, Sascha; Knoefel, Wolfram Trudo; Fuerst, Guenter

    2008-07-15

    Portal vein thrombosis is an infrequent entity, which may cause high morbidity and mortality. We report a case of portal vein thrombosis due to benign stenosis following partial pancreatoduodenectomy with segmental replacement of the portal vein by a Gore-tex graft. Using a surgical access to jenunal veins, local thrombolysis, mechanical fragmentation of thrombus, and stent placement were successfully performed.

  1. phenoVein-A Tool for Leaf Vein Segmentation and Analysis.

    PubMed

    Bhler, Jonas; Rishmawi, Louai; Pflugfelder, Daniel; Huber, Gregor; Scharr, Hanno; Hlskamp, Martin; Koornneef, Maarten; Schurr, Ulrich; Jahnke, Siegfried

    2015-12-01

    Precise measurements of leaf vein traits are an important aspect of plant phenotyping for ecological and genetic research. Here, we present a powerful and user-friendly image analysis tool named phenoVein. It is dedicated to automated segmenting and analyzing of leaf veins in images acquired with different imaging modalities (microscope, macrophotography, etc.), including options for comfortable manual correction. Advanced image filtering emphasizes veins from the background and compensates for local brightness inhomogeneities. The most important traits being calculated are total vein length, vein density, piecewise vein lengths and widths, areole area, and skeleton graph statistics, like the number of branching or ending points. For the determination of vein widths, a model-based vein edge estimation approach has been implemented. Validation was performed for the measurement of vein length, vein width, and vein density of Arabidopsis (Arabidopsis thaliana), proving the reliability of phenoVein. We demonstrate the power of phenoVein on a set of previously described vein structure mutants of Arabidopsis (hemivenata, ondulata3, and asymmetric leaves2-101) compared with wild-type accessions Columbia-0 and Landsberg erecta-0. phenoVein is freely available as open-source software. PMID:26468519

  2. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides, carbonate and quartz to form veins and breccia but did not generate significant volumes of iron ore. Ore stage 4 involved Mesozoic(?) to recent supergene oxidation and hydration in a weathering environment reaching down to depths of 100 to maximum 200 m below surface. Supergene ore formation involved goethite replacement of dolomite and quartz as well as martitisation. Important `ground preparation' for supergene modification and upgrade were mainly the formation of steep D1 to D4 structures, steep BIF/basalt margins and particularly the syn-D1 to syn-D2 carbonate alteration of BIF that is most susceptible to supergene dissolution. The Windarling deposits are structurally controlled, supergene-modified hydrothermal iron ore systems that share comparable physical, chemical and ore-forming characteristics to other iron ore deposits in the Yilgarn Craton (e.g. Koolyanobbing, Beebyn in the Weld Range, Mt. Gibson). However, the remarkable variety in pre-, syn- and post-deformational ore textures (relative to D1 and D2) has not been described elsewhere in the Yilgarn and are similar to the ore deposits in high-strain zones, such as of Brazil (Quadriltero Ferrfero or Iron Quadrangle) and Nigeria. The overall similarity of alteration stages, i.e. the sequence of hydrothermal carbonate introduction and hypogene leaching, with other greenstone belt-hosted iron ore deposits supports the interpretation that syn-orogenic BIF alteration and upgrade was crucial in the formation of hypogene-supergene iron ore deposits in the Yilgarn Craton and possibly in other Archean/Paleoproterozoic greenstone belt settings worldwide.

  3. Hydrothermal alteration maps of the central and southern Basin and Range province of the United States compiled from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    USGS Publications Warehouse

    Mars, John L.

    2013-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map hydrothermally altered rocks in the central and southern parts of the Basin and Range province of the United States. The hydrothermally altered rocks mapped in this study include (1) hydrothermal silica-rich rocks (hydrous quartz, chalcedony, opal, and amorphous silica), (2) propylitic rocks (calcite-dolomite and epidote-chlorite mapped as separate mineral groups), (3) argillic rocks (alunite-pyrophyllite-kaolinite), and (4) phyllic rocks (sericite-muscovite). A series of hydrothermal alteration maps, which identify the potential locations of hydrothermal silica-rich, propylitic, argillic, and phyllic rocks on Landsat Thematic Mapper (TM) band 7 orthorectified images, and geographic information systems shape files of hydrothermal alteration units are provided in this study.

  4. Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Isobe, H.

    2011-12-01

    Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and granules with various surface structures. At the very initial stage of cristobalite crystallization within 2 days run duration, cristobalite shows lepispheres a few micron meters in diameter with irregular, submicron scale ridges and grooves on the surface. With the run duration up to 7 days, lepispheres change to granules with smooth surface remaining a few micron meters in diameter. Crystallinity of cristobalite lepispheres and granules corresponds to opal-CT. Euhedral quartz crystals grow with dissolution of cristobalite grains. Growth rate of cristobalite and quartz is controlled by crystallization kinetics with induction period strongly depending on temperature. Induction period of cristobalite crystallization from amorphous silica may exceed several million years at temperature below 100 °C. Crystallinity, morphology and growth rate of silica minerals occurred in various terrestrial and planetary processes are controlled by temperature and acidity of hydrothermal fluid and nucleation and growth kinetics of silica minerals.

  5. Environment of ore deposition in the creede mining district, San Juan Mountains, Colorado: Part V. Epithermal mineralization from fluid mixing in the OH vein

    USGS Publications Warehouse

    Hayba, D.O.

    1997-01-01

    Detailed fluid inclusion studies on coarse-grained sphalerite from the OH vein, Creede, Colorado, have shown that the abrupt color changes between growth zones correspond to abrupt changes in the nature of the ore fluids. Within each growth zone, however, the composition of the fluids remained constant. The base of a distinctive orange-brown growth zone marks a sharp increase in both temperature and salinity relative to the preceding yellow-white zone. The orange-brown growth zone can be correlated along much of the vein and is believed to represent a time-stratigraphic interval. Along the vein, temperatures and salinities of fluid inclusions within this interval show a systematic decrease from about 285??C and 11.5 wt percent NaCl equiv near the base of the vein to about 250??C and 8 wt percent NaCl equiv, respectively, near the top of the vein. The iron concentration of this sphalerite growth zone shows a similar pattern, decreasing from about 2.8 to 1.2 mole percent FeS. When plotted on an enthalpy-salinity diagram, the fluid inclusion data define a spatial trend indicating the progressive mixing of deeply circulating hydrothermal brines with overlying, dilute ground waters. The hydrothermal brines entered the OH vein from below at a temperature, salinity, and density of approximately 285??C, 11.5 wt percent NaCl equiv, and 860 kg/m3, respectively, whereas the overlying ground waters appear to have been preheated to roughly 150??C and had an assumed salinity of 0 wt percent and a density of 920 kg/m3. The greater density of the heated ground water promoted mixing with the hydrothermal brine within the open fractures, causing sphalerite deposition. Although there were also episodes of boiling during vein mineralization, boiling appears unimportant for this sphalerite. Isotopic evidence and geochemical modeling studies also indicate that mixing was the depositional mechanism for sphalerite. An important aspect of the mixing hydrology of the Creede system involves an aquitard overlying the OH vein. This low permeability zone restricted the flow of ground water into the vein from above and forced the upwelling hydrothermal fluids to flow laterally along the vein. The mixing environment thus occurred along the interface between a deeply circulating hydrothermal convection cell and a topographically driven shallow ground-water system.

  6. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    SciTech Connect

    Vennemann, T.W.; Kesler, S.E.; O'Neil, J.R. )

    1992-09-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The [delta][sup 18]O values of quartz pebbles within any one sample typically vary by [approximately] 4[per thousand] or more, but occasionally by as much as 8[per thousand], even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting [delta][sup 18]O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. Comparison of values found in this study with [delta][sup 18]O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., [delta][sup 18]O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low [delta][sup 18]O values of chert pebbles (9[per thousand] to 11.5[per thousand]) relative to those expected for Archean and Proterozoic marine cherts (commonly [ge] 17[per thousand]) effectively exclude marine cherts, and therefore, auriferous iron formations and exhalatives, as likely sources of gold.

  7. Hydrothermal mineralising systems as critical systems

    NASA Astrophysics Data System (ADS)

    Hobbs, Bruce

    2015-04-01

    Hydrothermal mineralising systems as critical systems. Bruce E Hobbs1,2, Alison Ord1 and Mark A. Munro1. 1. Centre for Exploration Targeting, The University of Western Australia, M006, 35 Stirling Highway, Crawley, WA 6009, Australia. 2. CSIRO Earth and Resource Engineering, Bentley, WA, Australia Hydrothermal mineralising systems are presented as large, open chemical reactors held far from equilibrium during their life-time by the influx of heat, fluid and dissolved chemical species. As such they are nonlinear dynamical systems and need to be analysed using the tools that have been developed for such systems. Hydrothermal systems undergo a number of transitions during their evolution and this paper focuses on methods for characterising these transitions in a quantitative manner and establishing whether they resemble first or second (critical) phase transitions or whether they have some other kind of nature. Critical phase transitions are characterised by long range correlations for some parameter characteristic of the system, power-law probability distributions so that there is no characteristic length scale and a high sensitivity to perturbations; as one approaches criticality, characteristic parameters for the system scale in a power law manner with distance from the critical point. The transitions undergone in mineralised hydrothermal systems are: (i) widespread, non-localised mineral alteration involving exothermic mineral reactions that produce hydrous silicate phases, carbonates and iron-oxides, (ii) strongly localised veining, brecciation and/or stock-work formation, (iii) a series of endothermic mineral reactions involving the formation of non-hydrous silicates, sulphides and metals such as gold, (iv) multiple repetitions of transitions (ii) and (iii). We have quantified aspects of these transitions in gold deposits from the Yilgarn craton of Western Australia using wavelet transforms. This technique is convenient and fast. It enables one to establish if the transition is multifractal (and if so, quantify the multifractal spectrum) and determine the scale dependence of long range correlations or anti-correlations. The availability of long drill holes with detailed chemical analyses and mineral abundances derived from hyperspectral data enables individual ore bodies to be characterised in a quantitative manner and constraints placed on whether the various transition are possibly critical or of some other form. We also present some simple nonlinear models that produce the multifractal character and correlation scaling relations observed in these data sets,

  8. Mesozoic hydrothermal alteration associated with gold mineralization in the Mercur district, Utah

    SciTech Connect

    Wilson, P.N.; Parry, W.T. )

    1990-09-01

    K/Ar dates and chemical data show that a Mesozoic gold-bearing hydrothermal system altered black shales of the Mississippian Great Blue Limestone throughout an area encompassing the Mercur gold district, Utah. K/Ar dates of illite veins and illite-rich, clay-sized separates of altered shales that are enriched in Au, As, Hg, Sc, and other heavy metals indicate that hydrothermal activity occurred from 193 to 122 Ma. Several ages from within the Mercur district cluster near 160 Ma and may date the minimum age of gold mineralization.

  9. Mesozoic hydrothermal alteration associated with gold, mineralization in the Mercur district, Utah

    NASA Astrophysics Data System (ADS)

    Wilson, Paula N.; Parry, W. T.

    1990-09-01

    K/Ar dates and chemical data show that a Mesozoic gold-bearing hydrothermal system altered black shales of the Mississippian Great Blue Limestone throughout an area encompassing the Mercur gold district, Utah. K/Ar dates of illite veins and illite-rich, clay-sized separates of altered shales that are enriched in Au, As, Hg, Sc, and other heavy metals indicate that hydrothermal activity occurred from 193 to 122 Ma. Several ages from within the Mercur district cluster near 160 Ma and may date the minimum age of gold mineralization.

  10. Immunohistochemistry comparing endoscopic vein harvesting vs. open vein harvesting on saphenous vein endothelium

    PubMed Central

    2014-01-01

    Objective The present study attempts to compare the immunohistochemistry (IHC) of von Willebrand factor (vWf) , endothelial cadherin, Caveolin and endothelial Nitric Oxide Synthase (eNOS) in VasoView Endoscopic Vein Harvesting (EVH) versus traditional Open Vein Harvesting (OVH) techniques for Coronary Artery Bypass Graft (CABG) Surgery performed in Javad al Aemeh Hospital of Mashhad, Iran in 2013,. Methods and materials Forty-seven patients were scheduled for CABG (30 EVH and 17 OVH) among whom patients with relatively same gender and similar age were selected. Three separate two cm vein samples were harvested from each patients saphenous vein. Each portion was collected from distal, middle and proximal zones of the saphenous vein. The tissues were deparaffinized, and antigen retrieval was done using EZ-retriever followed by an immunohistochemistry evaluation with vWf, e-cadherin, Caveolin and eNOS. In addition, demographic questioner as of Lipid profile, FBS, BMI, and cardiovascular risk factors were collected. Data analyses, including parametric and nonparametric tests were undertaken using the SPSS 16 software. A P value??0.05). Qualitative report of vWf, e-cadherin, Caveolin and eNOS reveals no significant difference between the EVH and OVH (P?>?0.05). Conclusion This study indicates that VasoView EVH technique causes no endothelial damage in comparison with OVH. This study could be a molecular confirmation for the innocuous of EVH technique. PMID:24938544

  11. Hydrothermal reactivity of saponite.

    USGS Publications Warehouse

    Whitney, G.

    1983-01-01

    The nature and extent of the reactions of synthetic Fe-free saponite have been investigated under experimental hydrothermal conditions as a first step towards understanding saponite reactivity under relatively simple conditions. Saponite crystallizes from amorphous gel of ideal saponite composition within 7 days at 300o-550oC under P = 1 kbar. Reactions subsequent to this initial crystallization depend on reaction T and interlayer cations. Saponite is found to react hydrothermally, over a period of 200 days, at T down to 400oC, at least 150oC lower than previously reported, but showed no signs of reaction below 400oC. At 450oC, a mixture of talc/saponite and saponite/phlogopite clays forms from K-saponite via intracrystalline layer transformations, while above 450oC the initial K-saponite dissolves, with talc and phlogopite forming as discrete phases. After 200 days reactions at 400-450oC were not complete, so that given sufficient time to reach equilibrium, a lower hydrothermal stability limit for saponite is possible. Further study of the Fe-bearing saponite system will be required before experimental results can be applied to natural systems.-D.F.B.

  12. Genesis and evolution of the upper oceanic crust (ODP-IODP site 1256, East Pacific Rise): inferences from structure and composition of late magmatic veins in a lava pond

    NASA Astrophysics Data System (ADS)

    Panseri, M.

    2009-04-01

    A complete intact "in situ" section of upper oceanic crust, from extrusive lavas, through dikes into gabbros has been recently drilled for the first time in a 15 Ma old crust that formed at the East Pacific Rise with a full spreading rate of >200 mm/yr. The study area is ODP-IODP Site 1256 (644.2N, 9156.1W, Pacific Ocean). Holes 1256C and 1256D have been drilled into the basaltic basement during ODP Leg 206, IODP Expeditions 309 and 312. Hole 1256D has been deepened to a depth of ca. 1500 meters below seafloor (mbsf). The upper section of the igneous basement consists of thin (<3m) basaltic sheet flows separated by chilled margins, and massive basaltic flows (>3m). The massive flows include a ponded lava flow, located near the top of both Hole 1256C and 1256D, where it has a thickness of 32m and 74m, respectively. The lava pond is interpreted as a thick lava flow delivered either on-axis or off-axis and accumulated in a topographic depression. Although very close (ca. 30m), the two holes record different structural patterns of the lava pond, probably related to different steps of the lava flow emplacement. In the lava pond, both igneous (magmatic foliation, flow-related folds, late-magmatic veins) and post-magmatic (joints, veins, shear veins, and microfaults) structures were recognized. Late magmatic veins (LMVs), which were identified as primary features typical of the lava pond, are the main goal of this work. Mm-thick LMVs are mainly clustered in the middle (290-300 mbsf in hole 1256C and 282-297 mbsf in hole 1256D) and bottom (312-313 mbsf in hole 1256C and 311-328 mbsf in hole 1256D) parts of the lava pond. Structural measurements on cores suggest that they are mostly gently dipping structures, but we also observed sub-vertical LMVs. At the bottom of the lava pond in hole 1256C, late magmatic veins are often arranged in en echelon arrays and sigmoidal pull aparts, suggesting a syn/post-magmatic shear component. Thin-section observations show that basalt including LMVs consists of plagioclase, clinopyroxene, ilmenite, and spinel. LMVs cutting basalt are filled with quartz, quartz + plagioclase intergrowth showing a granophyric texture, clinopyroxene, ilmenite, spinel, and apatite. Rarely we observed pyrite crystals at the LMV core that cut plagioclase + quartz intergrowth. Quartz + plagioclase intergrowth (with apatite) are also present in the basalt as mm-size interstitial domains or rimming plagioclase (IDs = intergrowth domains). Rare samples display IDs with interstitial K-feldspar growing around plagioclase. LMVs often show sharp contacts with basalt. Plagioclase or pyroxene crystals of the basalt may be fragmented at the contact with LMVs (brittle rheology of basalt). Differently, IDs commonly corrode plagioclase crystals, without fragmentation (ductile rheology). The composition of basalt plagioclase ranges from Ab37 to Ab62, with a main concentration around Ab50. On the contrary, plagioclase in the LMVs intergrowth as well as that in the mm-sized IDs are Na-rich (Ab64-Ab98). Mineral analyses also highlight homogeneous clinopyroxene, spinel and ilmenite, without variations in the LMVs and IDs. Clinopyroxene usually shows a Ca-poor core (mainly augite or pigeonite) and a diopsidic rim. Opaque minerals often exhibit ilmenite-ulvospinel lamellae intergrowths. EDS mapping of IDs and LMVs cutting basalt supports the previous observations. LMVs and IDs have higher Si, Na and lower Al, Ca values than basalt. This distribution is only due to albitic plagioclase concentration in LMVs and IDs. K has low and homogeneous concentrations: rarely IDs are characterized by interstitial K enrichment (K-feldspar). Incompatible (Zr, Rb, Sr, Ba), hydrothermal elements (Cu, Cl), and F are undetectable or absent. We infer that LMVs and IDs likely crystallized from a pure Si-Al-Na-(Ca) melt. K, rarely noticed in the IDs, may be related to late magmatic fluids differentiation or to subsequent hydrothermal fluids. Core description, microstructural observations, mineral compositions and EDS mapping of the studied samples suggest that: - the middle and bottom parts of the lava pond has been affected by Si-Na rich late magmatic melts, without chemical interactions between host rock and melt; - IDs may represent the diffused reservoir of late magmatic felsic material; - LMVs could be the migration channels for Si-Al-Na-(Ca) melt through the basalt mush during the late stages of crystallization; - late magmatic material rapidly cooled producing granophyric textures in veins and interstitial patches.

  13. Tectonophysics of hydrothermal ore formation: an example of the Antei Mo-U deposit, Transbaikalia

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Rebetsky, Yu. L.; Poluektov, V. V.; Burmistrov, A. A.

    2015-07-01

    The Antei deposit of the southeastern Transbaikalian region is one of the largest uranium mines in Russia. It is hosted by the Late Paleozoic granitic basement of the Streltsovskaya caldera and was formed as a result of Late Mesozoic tectonothermal activity. Vein and stockwork-disseminated molybdenum-uranium mineralization at this deposit is controlled by zones of intense hydrothermal alteration, cataclasis, brecciation, and intense fracturing along steeply dipping faults, which acted as conduits for mineralizing fluids and hosts to the ore bodies. The upper edge of the ore-bearing zone is located at a depth of 400 m, and its lower edge was intersected at a depth of 1300 m from the day surface. The conditions of ore localization were determined using structural-geological and petrophysical studies coupled with numerical modeling of the effects of gravitational body forces at purely elastic and postcritical elastoplastic deformational stages. The dynamics of the tectonic stress field in the rock massif was reconstructed using the results of mapping of morphogenetic and kinematic characteristics of fault and fracture systems, as well as data on petrography and mineralogy of rocks and vein-filling material. It was shown that the fault framework of the deposit was formed in four tectonic stages, three of which took place in the geologic past and one of which reflects recent geologic history. Each tectonic stage was characterized by different parameters of the tectonic stress-strain field, fault kinematics, and conditions of mineral formation. The following types of metasomatic rocks are recognized within the deposit: high-temperature K-feldspar rocks and albitites (formed during the Late Paleozoic as the primary structural elements of a granitic massif) and Late Mesozoic low-temperature preore (hydromicatized rocks), synore (hematite, albite, chlorite, and quartz) and postore (kaolinite-smectite) rocks. The following petrophysical parameters were determined for all rock types: density, effective porosity, wetand dry-rock shear (S-wave), and compressional (P-wave) velocity. Ultrasonic measurements were made to obtain the dynamic Young's modulus, shear modulus, bulk modulus, and Poisson's ratio. The results confirm that all studied lithologies (host granites, K-feldspathized rock with albitites and hydromicatized rocks) have drastically different petrophysical parameters. These values were used as the basis for tectonophysical modeling of Late Mesozoic synore deformation induced by gravitational forces. It was shown that the domains of most intense deformation are confined to the intersections of submeridional fluid-conducting faults with sublatitudinal K-feldspathized and albitized zones, which acted as concentrators of external induced stresses. The formation of enriched ore shoots at these structural nodes can be explained by the suction-pumping of oreforming fluids by pipe-like (tubular) conduits under oriented stress. The deformation of K-feldsparthic rocks and albitites under stresses exceeding the elastic limit raised their fracture permeability due to cataclasis and brecciation and created favorable conditions for circulation of mineralizing fluids and precipitation of minerals. The use of tectonophysical modeling for the reconstruction of paleotectonic and fluid flow conditions during formation of hydrothermal mineralization allows a more precise evaluation of ore potential in deep levels and flanks of ore deposits.

  14. Frictional strengths of talc-serpentine and talc-quartz mixtures

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.

    2011-01-01

    Talc is a constituent of faults in a variety of settings, and it may be an effective weakening agent depending on its abundance and distribution within a fault. We conducted frictional strength experiments under hydrothermal conditions to determine the effect of talc on the strengths of synthetic gouges of lizardite and antigorite serpentinites and of quartz. Small amounts of talc weaken serpentinite gouges substantially more than predicted by simple weight averaging. In comparison, mixtures of quartz and talc show a linear trend of strength reduction at talc concentrations 15 wt % and enhanced weakening at higher concentrations. All of the strength data are fit by a modified version of the Reuss mixing law that allows for the dominance of one mineral over the other. The difference in the behavior of serpentinite-talc and quartz-talc mixtures at low talc concentrations is a reflection of their different textures. Lizardite, antigorite, and talc all have platy habits, and displacement within gouges composed of these minerals is localized to narrow shears along which the platy grains have rotated into alignment with the shear surfaces. The shears in the mixed phyllosilicate gouges maximize the proportion of the weaker mineral within them. When mixed with a strong, rounded mineral such as quartz, some minimum concentration of talc is needed to form connected pathways that enhance strength reductions. The typical development of talc by the reaction of Si-rich fluids with serpentinite or dolomite would tend to localize its occurrence in a natural fault and result in enhanced weakening.

  15. Structural state and differusion of impurities in natural quartz of different genesis

    NASA Astrophysics Data System (ADS)

    Stenina, N. G.; Bazarov, L. Sh.; Shcherbakova, M. Ya.; Mashkovtsev, R. I.

    1984-03-01

    Impurity inhomogeneities and other structural defects have been studied by means of transmission electron microscopy (TEM), X-ray microanalysis and electron paramagnetic resonance (EPR) in untreated and heat-treated quartz samples of three genetic types: hydrothermal, pegmatitic and magmatic. The impurities present are Al, Na and H2O, which occupy tetrahedral (Al3+) or interstitial (Na+, H2O) positions in the quartz lattice. Impurities form imperfections of various degrees of segregation: from point defects to micropores with a gas-liquid content. Their size, form, density and distribution in the lattice depend on the formation conditions of the quartz, the presence of dislocations and plane defects serving as sinks for the impurity atoms, and the heat treatment regime. Experimental data indicate that gas-liquid inclusions of dimensions up to some microns are the result of impurity segregation during postcrystallizational cooling. Crystalline quartz amorphizes upon electron irradiation. A model of structural water explaining experimentally observed features of this phenomenon is proposed whereby the water molecule, represented as a dipole, enters microregions of the silica lattice with a high impurity content and there forms a bond between defective [SiO3]2- and [AlO4]5- tetrahedra. On irradiation, the Si---O donor-acceptor bonds trap nonelastically scattered electrons and are ruptured as a result. The water released by this lattice discontinuity forms microbubbles that diffuse along sinks into the larger micropores thus further increasing their volume.

  16. Nephrotic Syndrome Associated with Renal Vein Thrombosis

    PubMed Central

    Kang, Sung Kyew; Park, Sung Kwang

    1987-01-01

    The coexistence of nephrotic syndrome and renal vein thrombosis has been of medical interest since Rayers description in 1840. Renal vein thrombosis has been underdiagnosed because of its variable clinical and radiological findings but it becomes a more frequently recognizable clinical entity since diagnosis can be easily established by modern angiographic techniques. Generally it has been believed that renal vein thrombosis may cause nephrotic syndrome. But recent articles strongly suggest that renal vein thrombosis is a complication of the nephrotic syndrome rather than a cause. We report three cases of nephrotic syndrome associated with renal vein thrombosis. PMID:3154812

  17. Mass transfer and fluid evolution in late-metamorphic veins, Rhenish Massif (Germany): insight from alteration geochemistry and fluid-mineral equilibria modeling

    NASA Astrophysics Data System (ADS)

    Marsala, Achille; Wagner, Thomas

    2016-01-01

    Element mobility and fluid-rock interaction related to the formation of late-metamorphic quartz veins have been studied by combination of mineral chemistry, whole-rock geochemistry, mass balance analysis and fluid-mineral equilibria modeling. The quartz veins are hosted by very low-grade metasedimentary rocks of the fold-and-thrust belt of the Rhenish Massif (Germany). The veins record two stages of evolution, a massive vein filling assemblage with elongate-blocky quartz, chlorite, apatite and albite, and a later open space filling assemblage with euhedral crystals of quartz, ankerite-dolomite and minor calcite and sulfides. Detailed mass balance analysis of an alteration profile adjacent to a representative quartz vein demonstrates that element mobility is restricted to the proximal zone. The most important element changes are gain of Ca, Fe, Mg, Mn, P and CO2, and loss of Si, K and Na. The data demonstrate that wall-rock carbonation is one of the main alteration features, whereas mobility of Si, K and Na are related to dissolution of quartz and destruction of detrital feldspar and muscovite. The whole-rock geochemical data, in conjunction with fluid composition data and pressure-temperature estimates, were used as input for fluid-mineral equilibria modeling in the system Si-Al-Fe-Mg-Ca-Na-K-C-S-O-H-B-F-Cl. Modeling involved calculation of rock-buffered fluid compositions over the temperature interval 100-500 °C, and reaction-path simulations where a rock-buffered high-temperature fluid reacts with fresh host-rocks at temperatures of 400, 300 and 200 °C. Calculated rock-buffered fluid compositions demonstrate that retrograde silica solubility is a strong driving force for quartz leaching in the temperature-pressure window of 380-450 °C and 0.5 kbar. These conditions overlap with the estimated temperatures for the initial stage of vein formation. Reaction-path models show that high-temperature alteration can produce the observed silica leaching, suggesting that fast advection of external hot fluids from deeper crustal levels was essential for the early stage of vein formation. Fluid advection must have occurred as multiple pulses, which allowed for periods of influx of fluids that leached quartz, alternating with periods of cooling and quartz precipitation in the veins. Reaction-path models at high temperatures (300-400 °C) do not produce carbonate alteration, whereas fluid-rock reaction at 200 °C produces carbonate alteration, consistent with the temperature estimates for the late-stage vein carbonate assemblage. Comparison between modeling results and geochemical data suggests that the observed alteration features are the product of fluid-rock reaction under conditions where the external fluid gradually cooled down and evolved with time. The results of this study highlight the importance of late-orogenic fluid migration for the formation of quartz vein arrays in fold-and-thrust belts.

  18. Deep vein thrombosis risk stratification.

    PubMed

    Nitta, Daisuke; Mitani, Haruo; Ishimura, Rieko; Moriya, Manabu; Fujimoto, Yo; Ishiwata, Sugao; Yamaguchi, Tetsu; Ohno, Minoru

    2013-01-01

    Pulmonary thromboembolism (PTE) is a life-threatening disease which always presents in patients with deep vein thrombosis (DVT). There are few statements in guidelines regarding indications for anticoagulation based on the location of DVT. We investigated whether the relative risk of PTE depends on thrombus location and bleeding complications with anticoagulation therapy. Between January 1 and July 10, 2007, 461 patients underwent lower extremity venous ultrasound studies, and 129 patients were diagnosed as DVT (60 males, 66.9 13.3 years). We retrospectively studied the incidence of PTE and bleeding complications associated with anticoagulation therapy. Average follow-up period was 536 324 days. Above and below knee thrombosis was present in 60 and 69 patients, respectively. Warfarin was administered in 60 patients. Nine patients developed PTE. Multivariate analysis showed the absence of anticoagulation therapy and location of DVT (above knee) to be significantly correlated with onset of PTE (anticoagulation; P < 0.01, location; P = 0.02). However, the incidence of bleeding was not significantly different between above knee and below knee vein thrombosis (P = 0.72). In conclusion, below knee vein thrombosis carries a relatively low risk of PTE, but the incidence of bleeding complications does not depend on thrombosis location. This suggests that the indication of anticoagulation therapy should be based on DVT location. PMID:23774241

  19. Fluid circulations and quartz ductile deformation in the depths of accretionary prisms: An integrated cathodoluminescence and infrared study

    NASA Astrophysics Data System (ADS)

    Palazzin, Giulia; Raimbourg, Hugues; Famin, Vincent

    2014-05-01

    To study the processes of deformation in the depths of accretionary prism, we have carried out analysis on metasedimentary units from the Shimanto Belt (Japan) which is considered as a fossil accretionary prism. There, the deep metamorphic terranes of the Hyuga and Morotsuka Group were pervasively deformed for conditions of ~300 C and 3-5 Kbars. Quartz precipitated at depth was deformed by ductile shearing, enabling to unravel the micro-processes of deformation in presence of abundant fluid. Cathodoluminescence (CL) analysis revealed the presence of two distinct kinds of quartz, which we interpret as associated with two distinct fluids. One kind of quartz is blue in CL and precipitates in macroveins. The other one, brown in CL, is found in micro veins as well as plastically deformed quartz domains. The distribution and speciation of water was studied with FT-IR analysis and correlated to different microstructures. All samples show the broad absorption band centered at 3400 cm^-1 related to 'liquid-like' molecular water (H2O) in quartz but only the blue quartz register the signal of secondary peaks. These are observed at 3380 and 3480 cm^-1 and attributed to silanol substitution with Al+3 and Li+1 respectively (Kats, 1962). Inherited quartz grains, free from plastic deformation, contain larger water amount than the strongly stretched crystalswhich are in turn water-richer than small and equant recrystallized grains. In parallel, these latter are free from optically visible fluid inclusions. FT-IR and cathodoluminescence signals are in good agreement with each other and constitute consistent signatures of the two distinct kinds of fluids circulating at depth. Further study is required to determine the origin of these fluids. In addition, recrystallization seems to play a large role in redistributing water and impurities during plastic deformation. The effect of water on final quartz rheology is unclear because recrystallized grains are drier, hence potentially stronger, than inherited grains.

  20. 3-D Mohr circle construction using vein orientation data from Gadag (southern India) - Implications to recognize fluid pressure fluctuation

    NASA Astrophysics Data System (ADS)

    Mondal, Tridib Kumar; Mamtani, Manish A.

    2013-11-01

    In this paper orientations of quartz veins from the Archaean age lode-gold bearing region of Gadag (southern India) are used to determine the relative stress and fluid pressure (Pf) conditions by constructing 3-D Mohr circle. Anisotropy of magnetic susceptibility (AMS) analysis of the host massive metabasalt reveals that the magnetic foliation is NW-SE striking, which is related to early NE-SW compression (D1/D2 deformation) that affected the region. The quartz veins have a wide range of orientations, with NW-SE striking veins (steep northeasterly dips) being the most prominent. Vein emplacement is inferred to have taken place under NW-SE compression that is known to have caused late deformation (D3) in the region. It is argued that the NW-SE fabric defined the pre-existing anisotropy and channelized fluid flow during D3. The permeability was initially low, which resulted in high Pf (>?2). 3-D Mohr circle analysis indicates that the driving pressure ratio (R?) was 0.94, a condition that favoured fracturing and reactivation of fabric elements (foliations and fractures) having a wide range of orientations. This led to an increase in permeability and fluid flowed (burped) into the fractures. Resulting vein emplacement and sealing of fractures led to a reduction of Pf (vein emplacement, while fractures of all other orientations were inactive and remained sealed. As a consequence, the study area has a cluster of NW-SE oriented veins. R? is calculated to be 0.07 from 3-D Mohr circle analysis at low Pf, when fractures with NW-SE orientation only were susceptible to dilation. However, it is envisaged that any emplacement of veins in these fractures would have sealed them, thus reducing the permeability and initiating the next cycle of rise in Pf (>?2). Thus, it is concluded that the quartz veins in the Gadag region are a consequence of an interplay between conditions that fluctuated from Pf > ?2 to Pf < ?2.

  1. Hydrothermal Liquefaction of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil is more hydrophobic because of the lower oxygen content and resulting lower polarity and therefore has a lower amount of dissolved water. Without the light oxygenates acting as solvents along with the water, the bio-oil product is much more viscous. Related results are that the bio-oil is less dense and has a higher energy content. These differences in properties led to the earlier held belief that the HTL bio-oils could be upgraded by catalytic hydroprocessing in a manner more similar to simple petroleum hydrotreating. Some initial results from the HydroThermal Liquefaction of kelp are shown in Table 1. The experiments were performed with kelp slurries of 5-13 wt.% dry solids in water. Oil yields from kelp are low at 24% on ash-free basis but up to 41% calculated on a carbon basis. The bulk of the rest of the carbon ends up dissolved in the water stream.

  2. Fluid inclusions in quartz crystals from South-West Africa

    USGS Publications Warehouse

    Kvenvolden, K.A.; Roedder, E.

    1971-01-01

    Quartz crystals from calcite veins of unknown age in Precambrian metasedimentary rocks at Geiaus No. 6 and Aukam farms in South-West Africa contain both primary and secondary inclusions filled with one or a variable combination of: organic liquid, moderately saline aqueous liquid, dark-colored solid, and vapor. Analysis of these materials by microscopy and by gas chromatography and mass spectrometry shows the presence of constituents of both low and high molecular weights. The former include CH4, C2H6, C3H8 and possibly C4H10 as well as CO, CO2, H2O, N2 and H2. High molecular weight components are dominantly n-alkanes and isoprenoid hydrocarbons. The n-alkanes range from at least n-C10 to n-C33. Concentrations of n-alkanes larger than n-C17 decrease regularly with increasing carbon number. An homologous series of isoprenoid hydrocarbons ranging from at least C14 to C20 is present in unusually high concentrations. Pristane (C19) is most abundant, and C17 isoprenoid is least abundant. The molecular composition and distribution of hydrocarbons suggest biological precursors for these components. Consideration of data provided by freezing, crushing and heating experiments suggests that the pressures at the time these in part supercritical fluids were trapped probably exceeded 30-40 atm, and the minimum trapping temperature was about 120-160??C. Both primary and secondary inclusions apparently containing only organic materials were trapped by the growth of the host quartz from aqueous solution. The data obtained neither prove nor preclude Precambrian, Paleozoic or younger sources for the organic materials. ?? 1971.

  3. Different styles of metasomatic veining in ultramafic xenoliths from the TUBAF Seamount (Bismarck Microplate, Papua New Guinea)

    NASA Astrophysics Data System (ADS)

    Franz, Leander; Romer, Rolf L.

    2010-01-01

    Petrologic, geochemical and isotopic investigations on two ultramafic xenoliths with metasomatic veins from the TUBAF Seamount in the Bismarck Archipelago NE of Papua New Guinea reveal different styles of metasomatic overprinting. The first xenolith, a clinopyroxene-poor spinel lherzolite, was part of the depleted upper mantle. It contains an orthopyroxene-rich vein that formed by hydrous metasomatism at ~ 980 C and ~ 1.5 GPa. The second xenolith is a clinopyroxene-dominated spinel olivine websterite that formed as a magmatic cumulate at the transition of the upper mantle to the oceanic crust. The websterite contains a vein with orthopyroxenes and clinopyroxenes, which give evidence for high-temperature crystallization at ~ 1300 C and < 0.36 GPa. Both xenoliths were transported to the seafloor by a Quaternary trachybasalt in a fore-arc position. The vein minerals show a strong affinity to a supra-subduction zone or island arc setting. The REE pattern of the vein in the clinopyroxene-poor lherzolite strongly resembles the one from the host trachybasalt, with a high enrichment of the LREE and a strong to moderate enrichment of the MREE and HREE. Although broadly similar in shape, the REE pattern of the vein in the websterite shows a much weaker enrichment. The same applies to the trace-element patterns, although there are significant differences in the Eu, Zr, Hf and Nb concentrations. The isotope signatures of both veins suggest a derivation from a subducted slab that had been hydrothermally altered by seawater (high 87Sr/ 86Sr values). The contrasting crystallization temperatures of the vein minerals as well as their overall geochemical differences indicate that the metasomatic agents responsible for the vein in the websterite were mobilized from a previously depleted source at a much deeper mantle level than those forming the vein of the clinopyroxene-poor lherzolite. The metasomatic agents may also have been mobilized at different times and from different plates, i.e., the deeply subducted Solomon Sea Microplate (for the veins in the websterite) and the shallow dehydrating Pacific Plate (for the veins in the clinopyroxene-poor lherzolite). Metasomatic agents responsible for similar petrologic phenomena, i.e., modal or cryptic metasomatism, may have distinctly different origins and show contrasting histories. A strongly depleted lherzolite may totally lose its initial geochemical signature by the influence of an enriched metasomatic agent, whereas a primarily enriched ultramafic rock, e.g., a websterite, may strongly obscure the trace-element pattern of a less enriched metasomatic vein. Furthermore, the geochemistry of the ultramafic xenoliths may reflect polyphase cryptic and modal metasomatism related to veining and later transport by the hosting melt to the seafloor.

  4. SAW Temperature Sensor on Quartz.

    PubMed

    Zhgoon, Sergei; Shvetsov, Alexander; Ancev, Ivan; Bogoslovsky, Sergei; Sapozhnikov, Gennadiy; Trokhimets, Konstantin; Derkach, Mikhail

    2015-06-01

    For biomedical applications, narrow temperature range and high sensor accuracy requirements define the need for high temperature sensitivity. Wireless SAW sensors connected to antennas need a reference element to account for changes in electromagnetic coupling between the transmitter and receiver antennas. A pair of sensors with different temperature sensitivities may serve as a self-referenced sensor assembly. This justifies the need for materials with useful SAW resonator properties and with the largest difference between temperature coefficients of frequency (TCF) for a resonator pair on a single substrate. We have identified several cuts of quartz having useful properties with a TCF difference up to 140 ppm/C for a pair of resonators on a single substrate. As a rule, placing such resonators on a single substrate requires their rotation by up to 90 relative to each other. The limited range of cuts presents a unique opportunity to place both resonators along the X+90 direction with one resonator using Bleustein-Gulyaev-Shimizu (BGS) waves (with electrodes placed along the x-axis) and the other one (with electrodes inclined by about 10 to the x-axis) using quasi-Rayleigh waves. These cuts are close to the 70Y cut where a high TCF difference is reached together with acceptable characteristics of the resonators. Resonators were designed for all useful cuts (including the 70Y cut) and tested. The use of different periods in reflectors and interdigital transducer (IDT) together with individual choice of gaps between reflectors and IDT meant achieving low spurious content in resonator responses. The quality factors reached values up to 3500 at central frequencies around 915 MHz for both BGS and quasi-Rayleigh types of waves. The measured difference of the TCF is about 138 ppm/C on 70Y cut that is close to the calculated value. PMID:26067041

  5. Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland

    NASA Astrophysics Data System (ADS)

    Molnár, Ferenc; Oduro, Harry; Cook, Nick D. J.; Pohjolainen, Esa; Takács, Ágnes; O'Brien, Hugh; Pakkanen, Lassi; Johanson, Bo; Wirth, Richard

    2016-01-01

    The Peräpohja Schist Belt comprises a supracrustal sequence of quartzites, mafic volcanics and volcaniclastics, carbonate rocks, black shales, mica schists and greywackes which were deposited from ca. 2.44 to ~1.91 Ga, during the rifting of the Archaean basement in the eastern part of the Fennoscandian shield. Metamorphism and multiple folding of the basin fill took place during the Svecofennian orogeny (1.9-1.8 Ga) followed by intrusions of late-orogenic (1.84-1.80 Ga) and post-orogenic granitoids (1.79-1.76 Ga). The Rompas Au-U mineralisation is hosted by deformed calcsilicate veins in mafic volcanic rocks and locally contains very high grade (>10,000 g/t Au) gold pockets with strict spatial association of gold minerals to uraninite and pyrobitumen. Chemical ages from the unaltered domains in the structure of uraninite indicate a 1.95-1.90 Ga age for the deposition of the primary, high temperature (e.g. U/Th < 100 in uraninite) hydrothermal uranium mineralisation. These data are in agreement with the results of previous U-Pb dating of uraninite by SIMS. Textural evidence suggests that metamorphic recrystallisation of the uraninite-bearing quartz-dolomite veins into calcsilicate mineral assemblages during the Svecofennian orogeny (1.9-1.8 Ga) was followed by a hydrocarbon-bearing fluid flow event and radiolytic polymerisation of hydrocarbons around grains of uraninite. Gold precipitated during a subsequent hydrothermal process in the fractures of uraninite, as well as in the cracks and on the botryoidal surfaces of uraninite-pyrobitumen nodules. Remobilisation and redeposition of uranium by these hydrothermal events produced secondary uraninite grains with chemical ages between 1.85 and 1.65 Ga. Native gold is associated with galena, altaite, hunchunite, nickeline and rare cobaltite, Pb-bearing maldonite, pyrite, pyrrhotite, chalcopyrite, molybdenite and titanite. Raman spectra show disordered structure of undeformed pyrobitumen nodules in contrast with the well-ordered graphite in calcsilicate veins. Mean random reflectance data for pyrobitumen indicate 270-340 °C maximum temperature of thermal maturation—this temperature range is also considered as the temperature of gold deposition. Results of multiple sulphur isotope analyses of organic material-, pyrite- and acid-volatile-bound sulphur show distinct ranges of δ34S values for SORG and SCRS in uraninite-pyrobitumen (from -6.99 to -3.55‰ and from -10.02 to -4.41‰, respectively) and uraninite-pyrobitumen-native gold mineral associations (from +1.36 to +6.87‰ and from +0.42 to +9.7‰, respectively). Δ33S data indicate local occurrence of nonmass-dependent sulphur isotope fractionation owing to interaction of fluids with organic material. Concentration of lead in uraninite is depleted along the gold mineral filled fractures whereas the uranogenic lead isotope contents of galena, altaite and hunchuite deposited in the same fractures are extremely high, suggesting that the dominant source of lead for the crystallisation of these minerals was the radiogenic lead content of uraninite. Taking into account this source of radiogenic lead, the calculated Pb-Pb model ages for the lead minerals are between 1.75 and 1.70 Ga. Sulphur and tellurium removal from the fluid by reaction with radiogenic lead released by uraninite appears to be an important mechanism in the strongly localised deposition of gold minerals. Scavenging of sulphur by pyrobitumen nodules from gold transporting fluids was an additional process triggering precipitation of gold. Carbon particles and organic functional groups in pyrobitumen probably acted as nucleation and adsorption centres for gold minerals.

  6. Quartz crystal microbalance use in biological studies

    NASA Technical Reports Server (NTRS)

    Green, R. H.; Godfrey, J. F.; Laue, E. G.; Laue, T. M.; Paik, W. W.; Wardle, M. D.

    1972-01-01

    Design, development, and applications of quartz crystal microbalance are discussed. Two types of crystals are used. One serves as reference and other senses changes in mass. Specific application to study of bacterial spores is described.

  7. Quartz-Enhanced Photoacoustic Spectroscopy: A Review

    PubMed Central

    Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo

    2014-01-01

    A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis. PMID:24686729

  8. Vein harvesting and techniques for infrainguinal bypass.

    PubMed

    Albäck, Anders; Saarinen, Eva; Venermo, Maarit

    2016-04-01

    In order to achieve good long term results after bypass surgery, alongside with good inflow and outflow arteries, the bypass graft material also has an important role. The best patency and limb salvage rates are achieved with autologous vein. If great saphenous vein is not available, acceptable long-term results can be achieved with arm veins and lesser saphenous vein. The quality and size of the vein are important. A small-caliber vein, increased wall thickness, postphlebitic changes and varicosities are associated with a risk of early failure. Preoperative vein mapping with ultrasound reduces readmissions and postoperative surgical site infections. During the mapping, the vein to be used and its main tributaries are marked with a permanent marker pen. To reduce wound complication rates we recommend bridged incisions in vein harvesting. Endoscopic vein harvesting seems to have no benefit compared to open techniques in lower limb bypasses, and has been associated with higher risk of primary patency loss at one year. With deep tunneling of the graft the problems caused by wound infection can be avoided. PMID:26837257

  9. Significance of geometrical relationships between low-temperature intracrystalline deformation microstructures in naturally deformed quartz

    NASA Astrophysics Data System (ADS)

    Derez, T.; Pennock, G.; Drury, M. R.; Sintubin, M.

    2013-12-01

    Although quartz is one of the most studied minerals in the Earth's crust when it comes to its rheology, the interpretation of intracrystalline deformation microstructures with respect to deformation conditions and mechanisms, remains highly contentious. Moreover, inconsistent use of terminology for both deformation microstructures and mechanisms makes a correct assessment of observations and interpretations in published material very difficult. With respect to low-temperature intracrystalline deformation microstructures in quartz, different conflicting genetic models have been proposed. Most probably, the lack of consensus means that there is no unique interpretation for these microstructures, primarily because their initiation and development depend on many ambient conditions. We extensively studied these intracrystalline deformation microstructures by means of optical microscopy, Hot-Cathodoluminescence, SEM-Cathodoluminescence and Electron Backscatter Diffraction Orientation Imaging, in vein quartz of the High-Ardenne slate belt (Belgium, France, Luxemburg, Germany), (de)formed in a low-temperature regime. Firstly, we propose a new, purely descriptive terminology for the low-temperature intracrystalline deformation microstructures in naturally deformed quartz: fine extinction bands (FEB), wide extinction bands (WEB) and strings. The strings can be further subdivided into blocky (BS), straight (SS) and recrystallised (RS) morphological types. FEBs have consistently been called deformation lamellae in quartz and planar slip bands in metals. WEBs have been called deformation bands, prismatic kink bands or type II kink bands. Strings have formerly been called shear bands, deformation bands or type I kink bands. No distinction between blocky and straight morphological string types had ever been made. Secondly, a survey of the pre-recrystallisation stages in the history of the intracrystalline deformation microstructures reveals that the different types of low-temperature intracrystalline deformation microstructures in naturally deformed vein quartz show particular geometrical relationships, in our opinion a to date underexposed aspect of these microstructures. Several of these geometrical relationships will be presented and their potential implications with respect to deformation mechanisms and conditions will be discussed. The geometrical relationships observed may suggest a similar formation mechanism for the different microstructures, a weakening effect for successive microstructure formation and a strong dependency on the crystallographic orientation.

  10. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  11. Cody hydrothermal system

    SciTech Connect

    Heasler, H.P.

    1982-01-01

    The hot springs of Colter's Hell are the surface manifestations of a much larger hydothermal system. That system has been studied to define its extent, maximum temperature, and mechanism of operation. The study area covers 2700 km/sup 2/ (1040 mi/sup 2/) in northwest Wyoming. Research and field work included locating and sampling the hot springs, geologic mapping, thermal logging of available wells, measuring thermal conductivities, analyzing over 200 oil and gas well bottom-hole temperatures, and compiling and analyzing hydrologic data. These data were used to generate a model for the hydrothermal system.

  12. Method of making a quartz resonator

    DOEpatents

    Vig, John R. (Colts Neck, NJ); Filler, Raymond L. (Freehold, NJ); Peters, R. Donald (Pinnellas Park, FL); Frank, James M. (Seminole, FL)

    1981-01-01

    A quartz resonator is made from a chemically polished quartz plate. The plate is placed in an enclosure fitted with at least three mounting clips to receive the plate. The plate is secured to the clips with an electrically conductive adhesive capable of withstanding operation at 350 degrees C. The assembly is cleaned and a metallic electrode deposited onto the plate until the desired frequency is reached. The enclosure is then hermetically sealed. The resulting resonator can consistently withstand extremely high shocks.

  13. Crystal quartz optical whispering-gallery resonators.

    PubMed

    Ilchenko, Vladimir S; Savchenkov, Anatoliy A; Byrd, Jerry; Solomatine, Iouri; Matsko, Andrey B; Seidel, David; Maleki, Lute

    2008-07-15

    A quality factor exceeding 5x10(9) is obtained in whispering-gallery mode (WGM) resonators fabricated of crystalline quartz. We observe significant electrical tunability of WGMs in x-cut resonators and demonstrate an electro-optic modulator with a submegahertz passband at 12 GHz. We discuss other photonics applications of the crystal quartz WGM resonators in narrowband agile tunable filters, compact narrow linewidth lasers, and microwave and millimeter wave oscillators. PMID:18628800

  14. Quartz resonator fluid monitors for vehicle applications

    SciTech Connect

    Cernosek, R.W.; Martin, S.J.; Wessendorf, K.O.; Terry, M.D.; Rumpf, A.N.

    1994-09-01

    Thickness shear mode (TSM) quartz resonators operating in a new {open_quotes}Lever oscillator{close_quotes} circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.

  15. Fluid circulation and carbonate vein precipitation in the footwall of an oceanic core complex, Ocean Drilling Program Site 175, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Schroeder, Tim; Bach, Wolfgang; Jöns, Niels; Jöns, Svenja; Monien, Patrick; Klügel, Andreas

    2015-10-01

    Carbonate veins recovered from the mafic/ultramafic footwall of an oceanic detachment fault on the Mid-Atlantic Ridge record multiple episodes of fluid movement through the detachment and secondary faults. High-temperature (˜75-175°C) calcite veins with elevated REE contents and strong positive Eu-anomalies record the mixing of up-welling hydrothermal fluids with infiltrating seawater. Carbonate precipitation is most prominent in olivine-rich troctolite, which also display a much higher degree of greenschist and sub-greenschist alteration relative to gabbro and diabase. Low-temperature calcite and aragonite veins likely precipitated from oxidizing seawater that infiltrated the detachment fault and/or within secondary faults late or post footwall denudation. Oxygen and carbon isotopes lie on a mixing line between seawater and Logatchev-like hydrothermal fluids, but precipitation temperatures are cooler than would be expected for isenthalpic mixing, suggesting conductive cooling during upward flow. There is no depth dependence of vein precipitation temperature, indicating effective cooling of the footwall via seawater infiltration through fault zones. One sample contains textural evidence of low-temperature, seawater-signature veins being cut by high-temperature, hydrothermal-signature veins. This indicates temporal variability in the fluid mixing, possibly caused by deformation-induced porosity changes or dike intrusion. The strong correlation between carbonate precipitation and olivine-rich troctolites suggests that the presence of unaltered olivine is a key requirement for carbonate precipitation from seawater and hydrothermal fluids. Our results also suggest that calcite-talc alteration of troctolites may be a more efficient CO2 trap than serpentinized peridotite.

  16. Biocatalytic transformations of hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Jannasch, H. W.

    The occurrence of copious animal populations at deep-sea vents indicates an effective microbial chemosynthetic biocatalysis of hydrothermal fluids on their emission into oxygenated ambient seawater. The large metabolic and physiological diversity of microbes found at these sites, including anaerobic and aerobic hyperthermophiles, reflects an even higher variety of biocatalytic or enzymatic reactions that greatly influence deep-sea hydrothermal geochemistry.

  17. Hydrothermal REE and Zr mobilization in the Strange Lake peralkaline granitic system: a reaction path model linked to petrological and geochemical observations

    NASA Astrophysics Data System (ADS)

    Gysi, A. P.; Williams-Jones, A. E.

    2013-12-01

    Extreme enrichment and hydrothermal mobilization of rare earth elements (REE) and other high-field strength elements (HFSE; i.e., Zr, Nb, Ta and Ti) is a feature of anorogenic alkaline and peralkaline igneous systems. Strange Lake in Quebec, Canada, is a mid-Proterozoic peralkaline granitic intrusion that is host to a world-class REE and HFSE deposit with >50 Mt of ore (>1.5 wt.% REE and >3 wt.% Zr). We have used Strange Lake as a natural laboratory and linked petrographic observations of the deposit and geochemical data with numerical simulations to constraint physicochemical conditions of hydrothermal REE and Zr mobilization and mineralization. The B-zone, in the NW of Strange Lake, contains a lens-shaped pegmatite-rich zone hosted in subsolvus granite. Three alteration styles were distinguished: i) an acid alteration caused by HCl-HF-bearing fluids from the pegmatites, ii) Na-metasomatism related to aegirinization/hematization of arfvedsonite, and iii) Ca-F-metasomatism involving late interaction of the rocks with a mixture of acidic F-rich and Ca-rich fluids. The acid alteration accounts for most of the hydrothermal mobilization of Zr and REE within and from the pegmatites, whereas the Ca-F-metasomatism is evident as late stage pore space fillings and veins of hydrothermal fluorite and quartz and a fluorite breccia. These different alteration styles are reflected in the bulk rock chemistry by variable mobility of Na, Fe, Al, Ca, F, HFSE and REE distinguishable on isocon diagrams. Elemental X-ray maps of REE- and Zr-minerals show evidence for a decoupled mobilization of LREE, HREE and Zr at different stages of fluid-rock interaction. Numerical simulations of the reaction of pegmatite with saline HF- and HCl-HF-bearing fluids at 400 °C to 250 °C predict the observed trends reasonably well. Fluids with pH <2 led to the formation of quartz and fluorite in the core of the pegmatites, and fluids with pH >4 to the formation of phyllosilicates and continued stability of K-feldspar in the pegmatite borders. Low fluid-rock ratios in the pegmatite borders ensured rock-buffering of pH, whereas higher fluid-rock ratios in the cores caused fluid-buffering of pH. As a result, pathways for mobilization of REE and Zr were created in the pegmatites cores by acidic fluids, which produced considerable porosity upon cooling. This was accompanied by aegirinization/hematization in the surrounding granites, where fluid-rock ratios were low and pH was rock-buffered to values >6. Owing to this rock-buffering of pH, there was also a corresponding decrease in the mobility of the REE/HFSE.

  18. Clay veins: Their occurrence, characteristics, and support

    SciTech Connect

    Chase, F.E.; Ulery, J.P.

    1987-01-01

    These detrimental aspects have prompted the Bureau of Mines to investigate the physical characteristics of and roof instability problems associated with clay veins. The investigators found that clay veins normally occur in more stable, less rapidly subsiding coal basins. Clay veins result when tensile stresses develop fissures that are later infilled. These fissures can be propagated by compactional processes and/or tectonic stresses during and subsequent to coalification. The Bureau also found that associated faults, fractures, and slickenside planes commonly parallel clay veins and disrupt the lateral continuity of the immediate and, sometimes, main roof. When clay veins parallel or subparallel the direction of face advance, the roof is segmented into cantilever beams, causing unstable conditions. Consequently, the strate on either side of the clay veins should be bolted and strapped together to form a beam.

  19. Recanalized umbilical vein in portal hypertension.

    PubMed

    Aagaard, J; Jensen, L I; Sørensen, T I; Christensen, U; Burcharth, F

    1982-12-01

    Experience with splenoportography suggests that patency of the umbilical vein occurs in about 9% of the patients with portal hypertension. A widely patent umbilical vein might serve as a decompressive portosystemic shunt. Percutaneous transhepatic portography was performed in 107 patients with cirrhosis of the liver and portal hypertension. A patent umbilical vein was found in 28 patients (26%). This finding significantly paralleled the number and size of other collateral veins, apart from gastroesophageal varices. No significant relation was found between umbilical vein patency and portal pressure, extrahepatic shunting, variceal bleeding, or ascites. It is concluded that a large patent umbilical vein does not effectively relieve portal hypertension, prevent gastroesophageal varices, or protect against variceal bleeding or ascites. PMID:6983253

  20. Portal vein thrombosis during pregnancy

    PubMed Central

    Dasari, Papa; Balusamy, Sathyalakshmy

    2013-01-01

    A 22-year-old primigravida was diagnosed to have portal vein thrombosis during 20th week of gestation by ultrasound examination which was carried out to rule out congenital fetal anomalies. She had splenomegaly and thrombocytopenia. Investigations did not reveal any prothrombotic disorder. She was managed with anticoagulants which were started at 31?weeks of pregnancy. Labour was induced at 40?weeks of gestation and she delivered a healthy neonate without any complications. Anticoagulants were restarted after delivery and continued through the postpartum period and up to 6?months thereafter. PMID:23715832

  1. Assessing the origin of old apparent ages derived by Pb stepwise leaching of vein-hosted epidote from Mount Isa, northwest Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Duncan, Robert J.; Maas, Roland

    2014-12-01

    Epidote metasomatism affected large areas of tholeiitic metabasalts of the ~1,780 Ma Eastern Creek Volcanics in the Western Fold Belt of the Proterozoic Mount Isa inlier. Hydrothermal epidote generally occurs in quartz veins parallel to or boudinaged within the dominant S2 fabrics which formed during the regional metamorphic peak at ~1,570 Ma associated with the Isan orogeny. Previously published stable isotopic and halogen data suggest that the fluids responsible for epidote formation are metamorphic in origin (with an evaporitic component). Application of the Pb stepwise leaching technique to the epidote does not separate radiogenic Pb4+ and common Pb2+, generating little spread in 206Pb/204Pb (between 16.0 and 30.5). The causes for this relatively low range are twofold: There is little radiogenic Pb in the epidotes (the most radiogenic steps account for <1 % of Pb released) and both Pb2+ and uranogenic Pb4+ substitute into the same site in the epidote crystal lattice. Consequently, age regressions using the Pb stepwise leaching data give ages between 150 and 1,500 myrs older than the host rocks and over 450 myrs older than the thermal metamorphic peak. These old ages are attributed to chemical inheritance from the host metabasalts, via radiogenic Pb release by breakdown of phases such as zircon, monazite, titanomagnetite, and ilmenite during metamorphism. This idea is supported by trace element data and chrondrite-normalized rare earth element patterns that are similar to both the metabasalts and epidotes (except for a variable Eu anomaly in the latter). Relatively high fO2 during vein formation (Fe3+ dominates in the epidote crystal lattice) would allow the incorporation of Th4+ and exclusion of U6+ and would explain elevated Th/U ratios (up to 12) in epidote compared with the host metabasalts. Non-incorporation of U would explain the relatively low U/Pb ratios and non-radiogenic character of the epidote. This process may provide a source of metal for the small U deposits around Mount Isa and may also suggest a relationship between U mineralization and regional Cu mobilization during the Isan orogeny. Our work suggests that non-conventional geochronometers should be used only if additional geological information and geochemical data (e.g., mineral chemistry, trace elements) are available to evaluate any resulting age calculations.

  2. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    SciTech Connect

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  3. Experimental and theoretical investigation of the production of HCl and some metal chlorides in magmatic/hydrothermal systems. Annual report, 1991--1992

    SciTech Connect

    Not Available

    1992-12-31

    In the calculations we have assumed that all apatites are magmatic. The presence of chlorite and altered plagioclase within the granite and quartz-monzodiorite suggests that alteration may play a role in leading to erroneous estimates of initial melt Cl and F for 2 reasons: (1) the apatites may in fact not be magmatic in origin, but are hydrothermal, and (2) the halogen signature of magmatic apatite may be changed due to subsolidus exchange with a hydrothermal fluid. We are currently endeavoring to develop criteria for determining whether apatite composition represents earlier or later stages of magmatic-hydrothermal development.

  4. Mercury Isotope Variations in Hydrothermal Ore Deposits

    NASA Astrophysics Data System (ADS)

    Smith, C. N.; Klaue, B.; Kesler, S. E.; Rytuba, J. J.; Blum, J. D.

    2004-12-01

    The ability to make direct isotopic measurements of ore-forming metals using MC-ICPMS has introduced the possibility for their use as tracers of Hg source in ore deposits and the environment. The isotopic composition of Hg varies by over 5 \\permil \\delta202Hg/198Hg (relative to our Almaden Hg standard), more than 50 times the 0.1 \\permil (2\\sigma ) analytical uncertainty, in a wide variety of hydrothermal ore deposits. This variation could be caused by fractionation related to processes of redox, mineral precipitation, and boiling hydrothermal fluids, among others, that are known to cause large isotopic variations in other stable isotope systems. To test the possibility that Hg isotopes can be used as a tracer of source, we have compared isotopic compositions of ore and possible source rocks in three ore deposit types: epithermal Au-Ag veins and sinter where fluids boiled in the shallow crust; silica-carbonate-type Hg deposits in the California Coast Range, where reduced source fluids mixed with oxygenated groundwater and MVT Pb-Zn deposits, where sulfides are deposited in a basin without redox or boiling. Epithermal ores (-3.1 to +2.5 \\permil) and silica-carbonate-type ores (-1.1 to +1.3 \\permil) have Hg isotopic compositions that show much larger variations than MVT ores (-0.5 to +0.6 \\permil ). The large variations might reflect the effects of fractionation by boiling and oxidation in epithermal and silica-carbonate-type deposits. At the Buckskin National epithermal deposit, unaltered andesite, felsic dike and phyllite basement rock have identical isotopic compositions of -1.3 \\permil in the middle of the epithermal ore range, as might be expected if the light and heavy ends of the range were produced by fractionation related to boiling. At the Mayacmas silica-carbonate Hg district, rocks from the Franciscan Complex and Coast Range Ophiolite range from -2.4 to 0.0 \\permil compared to a range of -0.2 to +1.3 \\permil for ores, as might be expected if kinetic isotope effects related to oxidation concentrated heavy isotopes in the ore. In laboratory experiments, a 1.3 \\permil fractionation between vapor and liquid Hg at 20 \\deg C, and a 0.1 \\permil fractionation between dissolved Hg and HgS in precipitation experiments were measured and further experiments are being conducted to better understand the processes fractionating Hg. The above results suggest that Hg isotopic variability is widespread in hydrothermal systems and may be sufficient to trace Hg source given an understanding of the fractionation mechanisms operating in these systems.

  5. Cathodoluminescence investigations on quartz cement in the sandstones of Khabour Formation from Iraqi Kurdistan Region, Northern Iraq

    NASA Astrophysics Data System (ADS)

    Omer, Muhamed F.; Friis, Henrik

    2014-03-01

    The Ordovician deltaic to shallow marine Khabour Formation in Northern Iraq consists mainly of sandstone with minor siltstone and interbedded shale. The sandstones are pervasively cemented by quartz that resulted in very little preserved primary porosity. Cathodoluminescence and petrographic studies showed that the silica cementation occurred in five successive phases which can be distinguished by their luminescence pattern. The precipitations of two phases have predated the major compaction process while the other phases are younger. The successive phases represent a sequence of changes in silica supply which were classified as very early and early, derived from dissolved biogenic silica that precipitated as opal/microquartz, possibly pre-compactional and of non-luminescent quartz overgrowth type. This was followed by phases whose silica supply derived from pressure solution of quartz, dissolution of feldspar, and hydrothermal fluids related to major thrust fault event. These successive quartz cement phases showed an increase in luminescence and the development of complicated zonation pattern in late-stage quartz cementation.

  6. Hydrothermal sediment alteration at a seafloor vent field: Grimsey Graben, Tjrnes Fracture Zone, north of Iceland

    NASA Astrophysics Data System (ADS)

    Dekov, Vesselin; Scholten, Jan; Garbe-SchNberg, Carl-Dieter; Botz, Reiner; Cuadros, Javier; Schmidt, Mark; Stoffers, Peter

    2008-11-01

    An active seafloor hydrothermal system subjects the background sediments of the Grimsey Graben (Tjrnes Fracture Zone) to alteration that produces dissolution of the primary volcaniclastic matrix and replacement/precipitation of sulfides, sulfates, oxides, oxyhydroxides, carbonates and phyllosilicates. Three types of hydrothermal alteration of the sediment are defined on the basis of the dominant hydrothermal phyllosilicate formed: smectite, kaolinite, chlorite. The most common alteration is near-total conversion of the volcaniclastic material to smectite (95-116C). The dominant smectite in the deepest sediments sampled is beidellite, which is replaced by montmorillonite and an intimate mixture of di- and tri-octahedral smectite up core. This gradual vertical change in smectite composition suggests an increase in the Mg supply upward, the result of sediment alteration by the ascending hydrothermal fluids mixing with descending seawater. The vertical sequence kaolinite ? kaolinite-smectite mixed-layer ? smectite from bottom to top of a core, as well as the distinct zonation across the veins (kaolinite in the central zone ? kaolinite-smectite in the rim), suggests hydrothermal transformation of the initially formed smectite to kaolinite through kaolinite-smectite mixed-layer (150-160C). The cause of this transformation might have been an evolution of the fluids toward a slightly acidic pH or a relative increase in the Al concentration. Minor amounts of chamosite fill thin veins in the deepest sections of some cores. The gradual change from background clinochlore to chamosite across the veins suggests that chamosite replaces clinochlore as Fe is made available from hydrothermal dissolution of detrital Fe-containing minerals. The internal textures, REE distribution patterns and the mode of occurrence of another magnesian phyllosilicate, kerolite, suggest that this mineral is the primary precipitate in the hydrothermal chimneys rather than an alteration product in the sediment. Kerolite precipitated after and grew on anhydrite in the chimneys. Oxygen isotope ratios are interpreted to reflect precipitation of kerolite at temperatures of 302 to 336C. It accumulated in the hydrothermal mounds following the collapse of the chimneys and subsequent dissolution of anhydrite, thereby forming highly permeable aquifer layers underlying the vent field. Some kerolite was redeposited in the near vent field sediments by turbidity flows. The altered sediments are depleted in Mn, Rb and Sr, and enriched in U, Mo, Pb, Ba, As, Bi, Sb, Ag, Tl and Ga, as a result of leaching and precipitation, respectively. Conservative elements (Ti, Zr, Hf, Sc, Cr, Nb and Sn) are depleted or enriched in the altered sediments because of passive (precipitation or leaching of other phases) rather than active (because of their mobility) processes.

  7. Deep Vein Thrombosis (DVT) / Pulmonary Embolism (PE) - Blood Clot Forming in a Vein

    MedlinePLUS

    ... Espaol (Spanish) Recommend on Facebook Tweet Share Compartir Deep Vein Thrombosis and Pulmonary Embolism (DVT/PE) are often underdiagnosed and serious, but preventable medical conditions. Deep vein thrombosis (DVT) is a medical condition that ...

  8. Coronary vein graft disease: Pathogenesis and prevention

    PubMed Central

    Parang, Pirouz; Arora, Rohit

    2009-01-01

    Not long after coronary artery bypass grafting surgery was described, several reports presented follow-up angiographic data on large cohorts of patients, demonstrating that approximately one-half of saphenous vein grafts fail within 10 to 15 years of surgery and that graft failure is associated with worse clinical outcomes. Three processes are responsible for vein graft failure. Thrombosis, intimal hyperplasia and accelerated atherosclerosis contribute to graft failure in the acute, subacute and late postoperative periods, respectively. Studies have shown that perioperative antiplatelet therapy can reduce early thrombosis and graft failure. As in native coronaries, intensive lipid lowering can attenuate the process of atherosclerosis in vein grafts. Intimal hyperplasia in the vein graft is thought to be an adaptation of the vein to higher pressures in the arterial circulation. This process is further promoted by the loss of inhibition from the endothelial layer, which is injured during surgery. A new no-touch technique for harvesting grafts may be effective in preventing disruption to the endothelial layer, and subsequent intimal hyperplasia and graft loss. Off-pump surgery and endoscopic vein harvesting, which are known to reduce surgical morbidity, have been shown to be no worse than on-pump surgery and open vein harvesting, respectively, in terms of vein graft patency. Various gene therapies can prevent intimal hyperplasia in animal models, but human data obtained so far have been disappointing. Placing an external stent around a vein graft may reduce tangential wall stress and subsequent intimal hyperplasia. PMID:19214303

  9. Hydrothermal palygorskite and ferromanganese mineralization at a central California margin fracture zone

    USGS Publications Warehouse

    Gibbs, A.E.; Hein, J.R.; Lewis, S.D.; McCulloch, D.S.

    1993-01-01

    Ferromanganese oxyhydroxide crusts and nodules associated with palygorskite were recovered from the Santa Lucia Escarpment where the Morro Fracture Zone intersects the central California continental margin. Palygorskite was found in pure, high-Mg, low-Al, boxwork-textured veins, and disseminated in poorly consolidated palygorskite-rich mudstone. The purity of the palygorskite boxwork blades and the boxwork structure suggest formation by direct precipitation rather than by diagenetic or detrital processes. Interaction of hydrothermal fluids with oceanic basalt and/or deeper ultramafic rocks produced a Mg-Si enriched fluid supersaturated with respect to palygorskite that precipitated directly from the fluid at or near the seafloor. The close association of Fe-Mn crusts and nodules with both the palygorskite-rich mudstone and boxwork-vein palygorskite suggests a genetic link between the three types of mineralization. Mixed origin hydrothermal-hydrogenetic Fe-Mn crusts, with up to 50% hydrothermal input, formed contemporaneously with and subsequent to palygorskite formation. Fe-Mn nodules collected in the same dredge are of combined hydrogenetic and diagenetic origin and appear to be unrelated to hydrothermal mineralization that produced the crusts and palygorskite. The thickness of the Fe-Mn crusts and rare diatom fragments within the mudstone suggest an age of formation between 13 and 5 Ma. ?? 1993.

  10. Shear Veins Under High Pore Pressure Condition Along Subduction Interface: Yokonami Mlange, Cretaceous Shimanto Belt, Shikoku, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.; Eida, M.

    2013-12-01

    Fluid pressure along subdcution interface is a key parameter to understand the fault strength, wedge geometry and seismogenic behavior. In this study, we focused on shear veins pervasively observed in exhumed accretionary complex, Yokonami mlange, Cretaceous Shiamanto Belt, Southwest Japan to examine paleo-stress, effective friction coefficient, fluid pressure ratio and fluid pressure along subduction interface. Lithology of the Yokonami mlange is mainly sandstones surrounded by foliated black shales with minor components of basalts, cherts, tuffs, and limestones, representing tectonic mlange textures. Shear veins cutting mlange foliations are pervasively observed. Shear veins are composed of quartz and calcite. Slicken lines and slicken steps are always observed on the surfaces of shear veins. Pressure-temperature conditions for shear veins are about 180MPa and about 200 degree C on the basis of fluid inclusion analysis. Since the distribution of shear veins are related to packages of ocean floor stratigraphy, formation of shear vein can be before underplating and after mlange formation along subduction interface. We conducted multiple inversion method using slip data of shear veins to examine paleo-stress. In the result, we obtained maximum shear stress horizontal to foliations with 0.3 of stress ratio that is defined as (sigma2-sigma3)/(sigma1-sigma3). Effective friction coefficient was estimated as about 0.10-0.22 by the lowest value of ratio of normal and shear stresses in the normalized Mohr's circle on each plane of shear vein. If we put friction coefficient under dry condition as 0.7 because shear veins cut lithified mlange through out, fluid pressure ratio is equivalent to 0.68-0.86. This is very high fluid pressure ratio along subduction plate interface. On the basis of this fluid pressure ratio and P-T conditions of shear veins from fluid inclusion analysis, 7-12km of depth and 20-30 degree C of geothermal gradient were estimated. The age of subducting plate in the Yokonami mlange was about 50-60Ma from the difference of depositional ages between chert and black shale. The geothermal gradient estimated from the slab age is consistent with from fluid pressure ratio and fluid inclusion analysis. This suggests that the low effective frictional coefficient and high fluid pressure ratio estimated from geological evidences are reasonable values for the formation of shear veins. Kitajima and Saffer (2012) revealed that very low frequency earthquakes (VLFs) occur in the high pore pressure area. Saito et al. (2013) found the quartz cemented fault rocks represent velocity weakening behavior and suggested that the quartz-rich shear veins in shallow accretionary complex might be a geological evidence of VLFs. Our result in this study can support this idea as a shear veins with high fluid pressure at the time of their formation.

  11. Pyrite-illite veins in basin-margin facies: evidence for detrital mineral control on pore-fluid evolution

    SciTech Connect

    Bloch, J.D.; Bhattacharyya, D.P.

    1986-05-01

    Diagenesis of the Upper Cambrian Lamotte Sandstone includes the formation of euhedral, predominantly cubic pyrite, and 1M and 2M illite as veins in association with extensive quartz dissolution. The illite in these veins is well crystallized and distinct from pore-filling illite found in the same deposit. The veins occur only in shallow marine-deposited quartzarenites that overlie or are adjacent to basin-margin alluvial fan deposits composed primarily of lithic arenite. Detrital K-feldspar (in volcanic rock fragments) and iron-bearing minerals, particularly biotite, are abundant in the lithic arenites. No apparent source for the sulfur can be identified within the Lamotte Sandstone. Therefore, the authors propose that sulfur-bearing compactional or thermobaric fluids from adjacent basinal facies provided the necessary sulfur for pyrite formation. The migration of these fluids through the lithic arenite, from which iron, potassium, aluminum, and silica were derived, resulted in pyrite and illite deposition in the adjacent quartzarenites. The increased alkalinity and elevated temperature of these fluids resulted in the extensive quartz dissolution. The absence of these pyrite-illite veins in similar quartzarenites basinward of the fan deposits suggests a detrital mineral control on the evolution of these fluids as they migrated through the Lamotte Sandstone. Further, the formation of illite as opposed to kaolinite indicates that these fluids were finally alkaline.

  12. Remodelling of the Superior Caval Vein After Angioplasty in an Infant with Superior Caval Vein Syndrome

    SciTech Connect

    Mert, Murat Saltik, Levent; Gunay, Ilhan

    2004-08-15

    An 8-month old girl was presented with superior caval vein syndrome early after cardiac surgery. Angiography showed severe stenosis of the superior caval vein with 50 mmHg pressure gradient. Following balloon angioplasty, the pressure gradient was reduced to 7 mmHg with some residual stenosis of the superior caval vein. When the patient was reevaluated 5 months after the procedure, angiography revealed a normal diameter of the superior caval vein without a pressure gradient.

  13. Model of the porphyry copper and polymetallic vein family of deposits - Applications in Slovakia, Hungary, and Romania

    USGS Publications Warehouse

    Drew, L.J.

    2003-01-01

    A tectonic model useful in estimating the occurrence of undiscovered porphyry copper and polymetallic vein systems has been developed. This model is based on the manner in which magmatic and hydrothermal fluids flow and are trapped in fault systems as far-field stress is released in tectonic strain features above subducting plates (e.g. strike-slip fault systems). The structural traps include preferred locations for stock emplacement and tensional-shear fault meshes within the step-overs that localize porphyry- and vein-style deposits. The application of the model is illustrated for the porphyry copper and polymetallic vein deposits in the Central Slovakian Volcanic Field, Slovakia; the Ma??tra Mountains, Hungary; and the Apuseni Mountains, Romania.

  14. Frictional slip of granite at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    To measure the strength, sliding behavior, and friction constitutive properties of faults at hydrothermal conditions, laboratory granite faults containing a layer of granite powder (simulated gouge) were slid. The mechanical results define two regimes. The first regime includes dry granite up to at least 845?? and wet granite below 250??C. In this regime the coefficient of friction is high (?? = 0.7 to 0.8) and depends only modestly on temperature, slip rate, and PH2O. The second regime includes wet granite above ~350??C. In this regime friction decreases considerably with increasing temperature (temperature weakening) and with decreasing slip rate (velocity strengthening). These regimes correspond well to those identified in sliding tests on ultrafine quartz. The results highlight the importance of fluid-assisted deformation processes active in faults at depth and the need for laboratory studies on the roles of additional factors such as fluid chemistry, large displacements, higher concentrations of phyllosilicates, and time-dependent fault healing. -from Authors

  15. The fossil hydrothermal system of Saint Martin, Lesser Antilles: geology and lateral distribution of alterations

    NASA Astrophysics Data System (ADS)

    Beaufort, D.; Westercamp, D.; Legendre, O.; Meunier, A.

    1990-04-01

    The fossil geothermal system of Saint Martin, Lesser Antilles, was generated by an intrusion of quartz-diorite of Oligocene age into Eocene volcano-sedimentary host rocks. Adjacent to the pluton, the alteration pattern crops out continuously in the Fort Hill-Kool Bay area over a distance of 4 km. The lithology of the altered host rocks is the following: (1) alternating marls, limestones and minor hyaloclastite (Lower Eocene); (2) hyaloclastite and andesitic lava flows (Middle Eocene); (3) regularly bedded fine-grained hyaloclastite (Upper Eocene). On the basis of alteration petrography, chemistry and fluid-inclusion study, three alteration events have been distinguished: (1) High-temperature event (510 > T > 350C) accompanied by fluids with salinity higher than 35 wt.% NaCl-eq), mainly represented by tourmaline, quartz, magnetite, orthoclase, apatite and sulfide veins, occurring at the periphery of the pluton and along distal regional faults. (2) Moderate temperature event occurring as veins and pervasive alteration. Veins containing quartz, phengite, pyrite and minor dickite or chlorite ( T = 300C, very low salinity) are superimposed on the early high-temperature veins. Pervasive alteration affected large concentric zones: the inner zone (3 km width) shows an assemblage of epidote, quartz, actinolite magnetite at the periphery of the pluton and epidote, quartz and chlorite farther away. The outer zone (1 km width) shows calcite and mixed-layer illite/smectite (I/S) with ordering type R3 and chlorite/smectite (C/S). Fluid inclusions indicate that salinity and temperature decrease outward from the intrusion during the moderate-temperature pervasive alteration event (respectively from 320 to 140C and from 30 to 5 wt.% NaCl-eq). (3) Low-temperature event ( T < 50C) showing calcite, mixed-layer I/S (RO), chalcedonite or baryte in late disseminated veins. This lateral distribution of alteration is very similar to alteration zoning observed in porphyry ore environment or in active deep geothermal systems as Baca (Valles caldera). It shows contrast between zones of fracture permeability which controlled active flow in the system and large zones where pervasive alteration occurred in an inactive flow regime and can be included with metamorphic process. Phyllic alteration seems a good indicator of the active flow paths in the system of Saint Martin. The alteration pattern in Saint Martin is considered to represent the roots of a deep geothermal system (porphyry ore system?) of Oligocene age, actually eroded.

  16. The Black Pearl mine, Arizona - Wolframite veins and stockscheider pegmatite related to an albitic stock

    NASA Technical Reports Server (NTRS)

    Schmitz, Christopher; Burt, Donald M.

    1990-01-01

    Wolframite-bearing quartz veins flanked by greisen alteration occur at and near the Black Pearl mine, Yavapai County, Arizona. The veins are genetically related to a small albitite stock, and cut a series of Proterozoic metasedimentary and intrusive rocks. The largest vein, the only one mined, is located at the apex of the stock. Field relations imply that this stock is a late-stage differentiate of time 1.4-Ga anorogenic Lawler Peak batholith, which crops out about 3 km to the south. The albitites are of igneous origin and have suffered only minor deuteric alteration. A thin (1 to 2 m) pegmatite unit ('stockscheider') occurs at the contact of the Black Pearl Albitite stock with the country rocks. Directional indicators and other evidence suggest that the pegmatite was formed in the presence of a volatile-rich fluid phase close to the time of magma emplacement. The sudden change from coarse-grained microcline-rich pegmatite to fine-grained, albite-rich albitite suggests pressure quenching, possibly due to escape of fluids up the Black Pearl vein. Stockscheider-like textures typically occur near the apical contacts of productive plutons. The presence or absence of this texture is a useful guide in prospecting for lithophile metal deposits.

  17. Induction of biofilms on quartz surfaces as a means of reducingthe visual impact of quartz quarries.

    PubMed

    Prieto, B; Silva, B; Aira, N; Laiz, L

    2005-01-01

    In the present study the induction of biofilms on the open rock faces of quartz quarries is reported as a feasible method of correcting the visual impact generated by the industry. Experiments were carried out to colonize quartz samples with microorganisms isolated directly from aged quarry faces. The results demonstrated the viability of inducing colonisation on quartz, which is not the most favourable material for such treatment. Furthermore, biofilm development caused a significant change in the colour of the surface of the quartz samples to greenish- or reddish yellow, which may be quantified by a colorimeter for solids. The notable change in the colour is sufficient to attenuate the bright white aspect of the quartz faces and therefore to correct the visual impact generated. PMID:16522537

  18. Idiopathic Bilateral External Jugular Vein Thrombosis

    PubMed Central

    Hindi, Zakaria; Fadel, Ehab

    2015-01-01

    Patient: Male, 21 Final Diagnosis: Idiopathic bilateral external jugular vein thrombosis Symptoms: Face engorgement neck swelling Medication: Clinical Procedure: None Specialty: Hematology Objective: Unknown ethiology Background: Vein thrombosis is mainly determined by 3 factors, which constitute a triad called Virchows triad: hypercoagulability, stasis, and endothelial injury. Venous thrombosis commonly occurs in the lower extremities since most of the blood resides there and flows against gravity. The veins of the lower extremities are dependent on intact valves and fully functional leg muscles. However, in case of valvular incompetency or muscular weakness, thrombosis and blood stasis will occur as a result. In contrast, the veins of the neck, specially the jugulars, have distensible walls which allow flexibility during respiration. In addition, the blood directly flows downward towards the heart. Nevertheless, many case reports mentioned the thrombosis of internal jugular veins and external jugular veins with identified risk factors. Jugular vein thrombosis has previously been associated in the literature with a variety of medical conditions, including malignancy. Case Report: This report is of a case of idiopathic bilateral external jugular vein thrombosis in a 21 year-old male construction worker of Southeast Asian origin with no previous medical history who presented with bilateral facial puffiness of gradual onset over 1 month. Doppler ultrasound and computed tomography were used in the diagnosis. Further work-up showed no evidence of infection or neoplasia. The patient was eventually discharged on warfarin. The patient was assessed after 6 months and his symptoms had resolved completely. Conclusions: Bilateral idiopathic external jugular veins thrombosis is extremely rare and can be an indicator of early malignancy or hidden infection. While previous reports in the literature have associated jugular vein thrombosis with malignancy, the present case shows that external jugular vein thrombosis can also be found in persons without malignancy. PMID:26301793

  19. Hydrothermal processes at seafloor spreading centers,

    SciTech Connect

    Sleep, N.H.

    1983-01-01

    This chapter discusses the initial entry of hydrothermal seawater into deep levels of the oceanic crust, the effectiveness of hydrothermal circulation in cooling the crust, the geometry of hydrothermal circulation, the relationship between the hydrothermal circulation and the magma chamber, the reaction of the oceanic crust with the seawater, and the identification of the hydrothermal fluid which alters a rock sample. Topics considered include the crack front, observation relevant to the crack front, the limitations of the crack front hypothesis, the observed pattern of hydrothermal alteration, the nature of the hydrothermal fluid, the physics of large scale convection, and convection through crack zones. Knowledge of hydrothermal circulation at the ridge axis is based on sampling of the hydrothermal fluid, indirect geophysical measurements of the oceanic crust, and studies of rocks which are believed to have undergone hydrothermal alteration at the ridge axis. Includes 2 drawings.

  20. Long-term behaviour of continental hydrothermal systems: - U-series study of hydrothermal carbonates from the French Massif Central (Allier Valley)

    NASA Astrophysics Data System (ADS)

    Rihs, Sophie; Condomines, Michel; Poidevin, Jean-Louis

    2000-09-01

    U-series dating of hydrothermal carbonates, deposited by CO 2-rich thermo-mineral waters of the French Massif Central, provides new insights on the long-term behaviour of a continental hydrothermal system. Dating of aragonite veins and travertines impregnating old terrace levels of the Allier river allowed identification of the main episodes of surface deposition, and thus factors likely to influence these circulations. Fifteen layers from three veins and four travertines from two separate areas were analysed. Sr isotope compositions were also measured on vein samples. The results show that this region was subjected to at least 3 main episodes of surface or near surface hydrothermal deposition: 253 to 208 ky, 135 to 100 ky and less than 8 ky. Comparison of these ages with a global climatic curve indicates that preferential deposition of carbonates occurs during warm periods, suggesting a strong influence of climatic conditions on the hydrothermal system. It is suggested that this climatic influence does not necessarily imply the absence of carbonate deposition during cold and dry periods, but rather that carbonate precipitation might occur at depth before the geothermal fluids reach the surface. In addition, the isotope compositions of fluids recorded by the 87Sr/ 86Sr and ( 234U/ 238U) initial ratios in the aragonite veins from Coudes remained remarkably constant over 250 ky, ranging from 0.71360 to 0.71371 and from 3.10 to 3.39 respectively. The two samples coming from Saladis show a slightly higher ( 234U/ 238U) initial ratio around 3.95. The constancy of these ratios over such a long period suggests a hydrothermal system in a near steady state with respect to water-rock interaction. We thus propose a possible model allowing a conservative steady state despite variations in the water recharge rates, in response to the climatic variations. The difference between ( 234U/ 238U) initial ratios measured in the Coudes and Saladis systems suggests the existence of two separate reservoirs and constrains their lateral extension to a few km at most.

  1. Normal distal pulmonary vein anatomy

    PubMed Central

    Klimek-Piotrowska, Wies?awa; Pi?tek, Katarzyna; Koziej, Mateusz; Ho?da, Jakub

    2016-01-01

    Background. It is well known that the pulmonary veins (PVs), especially their myocardial sleeves play a critical role in the initiation and maintenance of atrial fibrillation. Understanding the PV anatomy is crucial for the safety and efficacy of all procedures performed on PVs. The aim of this study was to present normal distal PV anatomy and to create a juxtaposition of all PV ostium variants. Methods. A total of 130 randomly selected autopsied adult human hearts (Caucasian) were examined. The number of PVs ostia was evaluated and their diameter was measured. The ostium-to-last-tributary distance and macroscopic presence of myocardial sleeves were also evaluated. Results. Five hundred forty-one PV ostia were identified. Four classical PV ostia patterns (two left and two right PVs) were observed in 70.8% of all cases. The most common variant was the classical pattern with additional middle right PV (19.2%), followed by the common ostium for the left superior and the inferior PVs (4.44%). Mean diameters of PV ostia (for the classical pattern) were: left superior = 13.8 2.9 mm; left inferior = 13.3 3.4 mm; right superior = 14.3 2.9 mm; right inferior = 13.7 3.3 mm. When present, the additional middle right PV ostium had the smallest PV ostium diameter in the heart (8.2 4.1 mm). The mean ostium-to-last-tributary (closest to the atrium) distances were: left superior = 15.1 4.6 mm; left inferior = 13.5 4.0 mm; right superior = 11.8 4.0 mm; right inferior = 11.0 3.7 mm. There were no statistically significant differences between sexes in ostia diameters and ostium-to-last-tributary distances. Conclusion. Only 71% of the cases have four standard pulmonary veins. The middle right pulmonary vein is present in almost 20% of patients. Presented data can provide useful information for the clinicians during interventional procedures or radiologic examinations of PVs. PMID:26793429

  2. Normal distal pulmonary vein anatomy.

    PubMed

    Klimek-Piotrowska, Wies?awa; Ho?da, Mateusz K; Pi?tek, Katarzyna; Koziej, Mateusz; Ho?da, Jakub

    2016-01-01

    Background. It is well known that the pulmonary veins (PVs), especially their myocardial sleeves play a critical role in the initiation and maintenance of atrial fibrillation. Understanding the PV anatomy is crucial for the safety and efficacy of all procedures performed on PVs. The aim of this study was to present normal distal PV anatomy and to create a juxtaposition of all PV ostium variants. Methods. A total of 130 randomly selected autopsied adult human hearts (Caucasian) were examined. The number of PVs ostia was evaluated and their diameter was measured. The ostium-to-last-tributary distance and macroscopic presence of myocardial sleeves were also evaluated. Results. Five hundred forty-one PV ostia were identified. Four classical PV ostia patterns (two left and two right PVs) were observed in 70.8% of all cases. The most common variant was the classical pattern with additional middle right PV (19.2%), followed by the common ostium for the left superior and the inferior PVs (4.44%). Mean diameters of PV ostia (for the classical pattern) were: left superior = 13.8 2.9 mm; left inferior = 13.3 3.4 mm; right superior = 14.3 2.9 mm; right inferior = 13.7 3.3 mm. When present, the additional middle right PV ostium had the smallest PV ostium diameter in the heart (8.2 4.1 mm). The mean ostium-to-last-tributary (closest to the atrium) distances were: left superior = 15.1 4.6 mm; left inferior = 13.5 4.0 mm; right superior = 11.8 4.0 mm; right inferior = 11.0 3.7 mm. There were no statistically significant differences between sexes in ostia diameters and ostium-to-last-tributary distances. Conclusion. Only 71% of the cases have four standard pulmonary veins. The middle right pulmonary vein is present in almost 20% of patients. Presented data can provide useful information for the clinicians during interventional procedures or radiologic examinations of PVs. PMID:26793429

  3. Adsorption of goethite onto quartz and kaolinite

    USGS Publications Warehouse

    Goldberg, M.C.; Weiner, Eugene R.; Boymel, P.M.

    1984-01-01

    The adsorption of colloidal goethite onto quartz and kaolinite substrates has been studied as a function of pH and NaCl concentration. Goethite adsorption was measured quantitatively by Fourier-transform infrared spectroscopy. The results indicate that adsorption onto both substrates is due primarily to coulombic forces; however, the pH dependence of adsorption is very different for the two substrates. This is explained by the fact that the surface charge on quartz is entirely pH-dependent, while kaolinite has surface faces which carry a permanent negative charge. Adsorption of goethite on to kaolinite increases markedly with increasing NaCl concentration, while adsorption onto quartz is relatively independent of NaCl concentration. This can be explained by the influence of NaCl concentration upon the development of surface charge on the substrates. A method is described for separating surface-bound goethite from free goethite.

  4. Basic Material Quartz and Related Innovations

    NASA Astrophysics Data System (ADS)

    Ballato, A.

    Although material quartz is of scientific interest in its own right, its volume of usage and variety of applications dictate its technological importance.The technological prominence of α-quartz stems largely from the presence of piezoelectricity, combined with extremely low acoustic loss. It was one of the minerals with which the Brothers Curie first established the piezoelectric effect in 1880. In the early 1920s, the quartz resonator was first used for frequency stabilization. Temperature-compensated orientations (the AT and BT shear cuts) were introduced in the 1930s, and assured the technology's success. By the late 1950s, growth of cultured bars became commercially viable, and in the early 1970s, cultured quartz use for electronic applications first exceeded that of the natural variety. The discovery of cuts that addressed compensation of stress and temperature transient effects occurred in the 1970s, and led to the introduction of compound cuts such as the SC, which hasboth a zero temperature coefficient of frequency, and is simultaneously stress-compensated [1-5]. Between 109 and 1010 quartz units per year were produced by 2000 at frequencies from below 1 kHz to above 10 GHz. Categories of application include resonators, filters, delay lines, transducers, sensors, signal processors, and actuators. Particularly noteworthy are the bulk- and surface-wave resonators; their uses span the gamut from disposable timepieces to highest precision oscillators for position-location, and picosecond timing applications. Stringent high-shock and high-pressure sensor operations are also enabled. Table 2.1 shows the major applications of quartz crystals. These applications are discussed subsequently in greater detail. For general background and historical developments, see [1,6-11].

  5. Diversity of primary CL textures in quartz from porphyry environments: implication for origin of quartz eyes

    NASA Astrophysics Data System (ADS)

    Vasyukova, O. V.; Kamenetsky, V. S.; Goemann, K.; Davidson, P.

    2013-10-01

    Porphyry-style mineralization is related to the intrusion and crystallization of small stocks, which can be of different compositions (from intermediate to felsic) and can intrude into different host rocks (from magmatic to sedimentary). We used cathodoluminescence and electron probe microanalysis to study the internal textures of more than 300 quartz eyes from six porphyry deposits, Panguna (Papua New Guinea), Far Southeast porphyry (Philippines), Batu Hijau (Indonesia), Antapaccay (Peru), Rio Blanco (Chile) and Climax (USA). Significant diversity of the internal textures in quartz eyes was revealed, sometimes even within a single sample. Quartz grains with Ti-rich cores surrounded by Ti-poor mantles were found next to the grains showing the opposite Ti distribution or only slight Ti fluctuations.We propose that diversity of the internal patterns in quartz eyes can actually reflect in situ crystallization history, and that prolonged crystallization after magma emplacement under conditions of continuous cooling can account for the observed features of internal textures. Formation of quartz eyes begins at high temperatures with crystallization of high titanium Quartz 1, which as the melt becomes more and more evolved and cooler, is overgrown by low Ti Quartz 2. Subsequent fluid exsolution brings about dramatic change in the melt composition: OH - , alkalis and other Cl-complexed elements partition into the fluid phase, whereas Ti stays in the melt, contributing to a rapid increase in Ti activity. Separation of the fluid and its further cooling causes disequilibrium in the system, and the Quartz 2 becomes partially resorbed. Exsolution of the fluid gradually builds up the pressure until it exceeds the yield strength of the host rocks and they then fracture. This pressure release most likely triggers crystallization of Quartz 3, which is higher in Ti than Quartz 2 because Ti activity in the melt is higher and pressure of crystallization is lower. As a result of the reaction between the exsolved fluid and quartz a new phase, a so called `heavy fluid' forms. From this phase Quartz 4 crystallizes. This phase has extremely high metal-carrying capacity, and may give a rise to mineralizing fluids. Finally, on the brink of the subsolidus stage, groundmass quartz crystallizes. Prolonged crystallization under conditions of continuous cooling accounts better for the diversity of CL textures than crystallization in different parts of a deep magma chamber. It is also in a better agreement with the existing model for formation of porphyry-style deposits.

  6. Enhancing the contrast of subcutaneous veins

    NASA Astrophysics Data System (ADS)

    Zeman, Herbert D.; Lovhoiden, Gunnar

    1999-07-01

    A technique for enhancing the contrast of subcutaneous veins has been demonstrated. This technique uses a near infrared light source and one or more infrared sensitive CCD TV cameras to produce a contrast enhanced image of the subcutaneous veins. This video image of the veins is projected back onto the patient's skin using an LCD vein projector. The use of an infrared transmitting filter in front of the video cameras prevents any positive feedback from the visible light from the video projector from causing instabilities in the projected image. The demonstration contrast enhancing illuminator has been tested on adults, both Caucasian and African-American, and it enhances veins quite well in most cases. Preliminary studies on a 9 month old girl indicate promise for pediatric use.

  7. Ultraviolet laser contamination of quartz optics.

    PubMed

    Hills, M M; Coleman, D J

    1993-08-01

    Laboratory experiments were conducted to determine the cause of degradation of two quartz polarizers used in conjunction with a cw UV laser. UV transmission spectra and x-ray photoelectron spectroscopic measurements of the damaged optic and laser-induced photolysis of one of the adhesives used to hold the polarizer in position indicate that the degradation is most probably a result of UV photolysis of adhesive residue. It would therefore be prudent to avoid use of all organic adhesives in UV laser optics. An alternative method of holding a quartz beam splitter without adhesives is described and is currently being used. PMID:20830062

  8. Cathodoluminescence characterization of quartz grains from the Upper Cretaceous of dinosaur fossil localities in the Gobi desert, Mongolia

    NASA Astrophysics Data System (ADS)

    Saneyoshi, M.; Nishido, H.; Masuda, R.; Tsogtbaatar, K.; Chinzorig, T.

    2013-12-01

    The Upper Cretaceous eolian sediments in Mongolia's Gobi desert are one of the most important occurrences of the dinosaurs in the world. Large numbers of confiscated dinosaur fossils illegally worked out by poachers has been stored in the Mongolian Paleontological Center at Ulaanbaatar. In most cases, their localities are unknown. The purpose of this study is to identify their localities by cathodoluminescence (CL) features of quartz grains attached to the dinosaur specimens by comparing to the quartz samples collected from the sediments of circumjacent resources in this area. This study focuses on the confiscated specimen which makes up the nest with the babies' Protoceratops. Most of all Protoceratops in every growth process, have been discovered from the Djadokhta Formation in the Gobi desert. This formation crops out at Tugrikin Shireh and Bayn Dzak in the central part of the Gobi desert, and is derived from medium- to fine-grained sand mainly composed of quartz grains, of which sedimentary environments should be obvious to be eolian. The formation age of the sand beds at Tugrikin Shireh and Bayn Dzak has been estimated to be Middle Campanian. CL spectra of quartz have been demonstrated to show different features between the quartz from hydrothermal, plutonic, volcanic and metamorphic origins, suggesting the spectra reflect the condition of the quartz formation and the local environment. Therefore, we have applied the CL characterization of quartz grains to the evaluation of the provenance of the desert sediments. The quartz grains after sieving (#60-80 mesh size) were embedded in the brass holders with non-luminescent epoxy resin, and their surfaces were polished with 1 μm diamond abrasive. Color CL images obtained by the Luminoscope exhibit blue, violet and red emissions in the grains, suggesting various types of emission centers in the quartz. SEM-CL analysis was conducted using an SEM (JSM-5410) combined with a grating monochromator (Mono CL2) to measure CL spectra ranging from 300 to 800 nm in 1 nmsteps at accelerating voltage of 15 kV and beam current of 1.0 nA. Most of the quartz grains have double emission peaks at around 450nm in blue region and at around 620 nm in red region. The emission components of these spectral peaks have been assigned by deconvolution method using Gaussian curve fitting, and individual contributions were quantitatively evaluated by the integral intensities of the components.

  9. U-Pb and Ar-Ar geochronology of the Fujiawu porphyry Cu-Mo deposit, Dexing district, Southeast China: Implications for magmatism, hydrothermal alteration, and mineralization

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Hu, Ruizhong; Rusk, Brian; Xiao, Rong; Wang, Cuiyun; Yang, Feng

    2013-09-01

    The Fujiawu porphyry Cu-Mo deposit is one of several porphyry Cu-Mo deposits in the Dexing district, Jiangxi Province, Southeast China. New zircon SHRIMP U-Pb data yield a weighted mean 206Pb/238U age of 172.0 2.1 and 168.5 1.4 Ma from weakly altered granodiorite porphyry and quartz diorite porphyry, respectively. Two hydrothermal biotites from granodiorite porphyry give an Ar-Ar step-heating plateau age of 169.9 1.8 and 168.7 1.8 Ma. Hydrothermal apatite exsolved from altered biotite yields an isotope dilution thermal ionization mass spectrometry isochron age of 164.4 0.9 Ma. The apatite age is similar to the ages obtained from hydrothermal rutile (165.0 1.1 and 164.8 1.6 Ma) and indicates that the magmatism and hydrothermal activity in the Fujiawu deposit occurred in the Middle Jurassic. Hydrothermal fluid circulation related to multiple stages of magma emplacement resulted in Cu-Mo mineralization in the Fujiawu porphyry deposit. The zircon SHRIMP U-Pb ages and the published molybdenite Re-Os age (170.9 1.5 Ma) represent the timing of magma crystallization and Mo mineralization, whereas the rutile and apatite U-Pb ages reflect the timing of Cu mineralization following quartz diorite emplacement. The data suggest slow cooling after emplacement of the quartz diorite porphyry.

  10. The analysis of a hydrothermal breccia system, Mount Painter Inlier, South Australia

    NASA Astrophysics Data System (ADS)

    Weisheit, Anett; Bons, Paul D.; Elburg, Marlina A.

    2010-05-01

    A large hydrothermal breccia system is located in the Mt. Painter Inlier (South Australia), which is a small Mesoproterozoic basement block composed of metamorphics, as well as deformed and undeformed granitoids. The Mt. Painter Inlier and surrounding Adelaidean Sequence rocks underwent folding, faulting and associated metamorphism during the ~500 Ma Delamerian Orogeny. The first and major magmatic-hydrothermal event was dated at about 440 Ma (Elburg et al., 2003). It involved several stages of alteration and brecciation: 1) Intrusion of S- and I-type granite and associated pegmatites. 2) Extensive K-feldspar alteration of all lithologies, resulting in a granite-like feldspar-quartz rock. 3) Localisation of fluid flow to form extensive feldspar-rich and/or chlorite-alteration breccia zones. 4) Formation of uranium-bearing magnetite/haematite breccia bodies. Uranium precipitation is probably related to the oxidation of magnetite to haematite. The area cooled down to ca. 170C at about 310 Ma (U/Th-He age) and subsequently a second, near-surface hydrothermal event overprinted and reworked the older breccia and alteration zones. It involved remobilisation of haematite, extensive quartz precipitation and the partial removal of uranium. An age of about 220 Ma was obtained by Rb/Sr dating of associated quartz and fluorite. Detailed mapping and hyperspectral analyses show that fluids followed pre-existing structures, such as pre-Delamerian and Delamerian foliation, folds and faults, even though most of these faults appear not to have been active during hydrothermal activity. Elburg, M.A., Bons, P.D., Foden, J. and Brugger, J. (2003): A new defined Late Ordovician magmatic-thermal event in the Mt Painter Province, Northern Flinders Ranges, South Australia, Australian Journal of Earth Sciences, 50:611-631

  11. In vitro genotoxicity assessment of commercial quartz flours in comparison to standard DQ12 quartz.

    PubMed

    Cakmak, Gonca D; Schins, Roel P; Shi, Tingming; Fenoglio, Ivana; Fubini, Bice; Borm, Paul J

    2004-02-01

    Crystalline silica has been classified as a human carcinogen, but there is still considerable debate on its variable fibrogenic and carcinogenic potential. We investigated genotoxicity of a panel of four quartz flours in comparison to DQ12 standard quartz with similar size and surface area, using single cell gel electrophoresis (SCGE) or comet assay. A549 human lung epithelial cells were incubated for 4 hours with different concentrations of quartz ranging from 1.6 to 200 micrograms/cm2 and cytotoxicity was assessed using leakage of lactate dehydrogenase (LDH), trypan blue exclusion and conversion of a metabolic substrate (MTT). DNA strand breakages were seen with all quartzes at an in vitro concentration of 200 micrograms/cm2. At this concentration all tests and quartz samples showed significant cytotoxicity. The most toxic quartz flour (Qz 2/1-C) but not DQ12, showed an increase in strand breaks at 40 micrograms/cm2 in cell culture. At this concentration no cytotoxicity was seen with LDH and MTT, but a significant increase in cells with trypan blue uptake was noted. No differences in tail moment percentage were observed at equal concentrations of different quartz flours. Also no correlation between DNA damage and OH-radical generation or surface radicals as measured by electron spin resonance was observed. We conclude that quartzes do not cause strand breaks without concomitant cell toxicity and a sufficient in vitro concentration of > 40 micrograms/cm2 can only be reached in vivo with instillation of massive doses (> 100 mg). Therefore, in vitro genotoxicity found here is unlikely to explain the genotoxicity observed in in vivo studies with the same and other quartzes. PMID:15031953

  12. U/Th geochronology of hydrothermal activity in Long Valley caldera: Little Hot Creek and the Blue Chert

    SciTech Connect

    Sturchio, N.C.; Binz, C.M.; Sorey, M.L.

    1986-01-01

    To better define the evolution of the Long Valley hydrothermal system, we have embarked on a program of U/Th age determinations of hydrothermal products from outcrops and drill cores within the caldera. The U/Th system is appropriate for determining ages less than about 350 Ka in suitable materials. Results presented are from dense chalcedonic silica veins, collected from base to top of the outcrop beginning 40 m N of hot spring LHC-1 in Little Hot Creek canyon, and from samples of the Blue Chert.

  13. Mineral potential tracts for polymetallic Pb-Zn-Cu vein deposits (phase V, deliverable 71): Chapter I in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Beaudoin, Georges

    2015-01-01

    In Mauritania, mineral occurrences of the polymetallic Pb-Zn-Cu vein deposit type are found near the Florence-El Khdar shear zone in northeast Mauritania. The deposits visited were deemed representative of other similar occurrences and consist of quartz veins with trace sulfides. The low sulfide and Pb-Zn-Cu content in the quartz veins is unlike producing polymetallic Pb-Zn-Cu vein deposits, such that the veins are not considered to belong to this deposit type. Mineral potential tracts for polymetallic Pb-ZnCu veins are highly speculative considering the lack of known mineralization belonging to this deposit type. Mineral potential tracts for polymetallic Pb-Zn-Cu veins are associated with and surround major shear zones in the Rgueïbat Shield and zones of complex faulting in the southern Mauritanides, at the exclusion of the imbricated thrust faults that are not considered favorable for this deposit type. No skarn and replacement deposits have been documented in Mauritania and the low mineral potential is indicated by lack of causative Mesozoic and Cenozoic mafic to felsic stocks.

  14. Hydrothermal vents is Lake Tanganyika, East African Rift system

    SciTech Connect

    Tiercelin, J.J.; Pflumio, C.; Castrec, M.

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  15. Mapping argillic and advanced argillic alteration in volcanic rocks, quartzites, and quartz arenites in the western Richfield 1 x 2 quadrangle, southwestern Utah, using ASTER satellite data

    USGS Publications Warehouse

    Rockwell, Barnaby W.; Hofstra, Albert H.

    2012-01-01

    The Richfield quadrangle in southwestern Utah is known to contain a variety of porphyry Mo, skarn, polymetallic replacement and vein, alunite, and kaolin resources associated with 27-32 Ma calc-alkaline or 12-23 Ma bimodal volcano-plutonic centers in Neoproterozoic to Mesozoic carbonate and siliciclastic rocks. Four scenes of visible to shortwave-infrared image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor were analyzed to generate maps of exposed clay, sulfate, mica, and carbonate minerals, and ASTER thermal infrared data were analyzed to identify quartz and carbonate minerals. Argillic and advanced argillic alteration minerals including alunite, pyrophyllite, dickite, and kaolinite were identified in both undocumented (U) and known (K) areas, including in the southern Paradise Mtns. (U); in calc-alkaline volcanic rocks in the Wah Wah Mtns. between Broken Ridge and the NG area (U/K); at Wah Wah Summit in a small zone adjacent to 33.1 Ma diorite and marble (U); in fractures cutting quartzites surrounding the 20-22 Ma Pine Grove Mo deposit (U); in volcanic rocks in the Shauntie Hills (U/K); in quartzites in the west-central San Francisco Mtns. (U); in volcanic rocks in the Black Mtns. (K); and in mainly 12-13 Ma rhyolitic rocks along a 20 km E-W belt that includes the Bible Spring fault zone west of Broken Ridge, with several small centers in the Escalante Desert to the south (U/K). Argillized Navajo Sandstone with kaolinite and (or) dickite alunite was mapped adjacent to calc-alkaline intrusions in the Star Range (U). Intense quartz-sericite alteration (K) with local kaolinite was identified in andesite adjacent to calc-alkaline intrusions in the Beaver Lake Mountains. Mo-bearing phyllic alteration was identified in 22.2 Ma rhyolite plugs at the center of the NG alunite area. Limestones, dolomites, and marbles were differentiated, and quartz and sericite were identified in most unaltered quartzites. Halos of argillically-altered rock ?12 km in diameter surround the Pine Grove deposit, the central rhyolites at NG, and the North Peaks just south of the Bible Spring fault zone. A southward shift from 22-23 Ma alunite at NG in the northeast to the 12-13 Ma alunite near Broken Ridge in the southwest mirrors a shift in the locus of bimodal magmatism and is similar to the southward shift of activity from the Antelope Range to Alunite Ridge (porphyry Mo potential) in the Marysvale volcanic field farther east. The poster provided in this report compares mineral maps generated from analysis of combined visible-near infrared (VNIR) and shortwave-infrared (SWIR) data and thermal infrared (TIR) ASTER data to a previously published regional geologic map. Such comparisons are used to identify and differentiate rock-forming and hydrothermal alteration-related minerals, which aids in lithologic mapping and alteration characterization over an 11,245 square kilometer area.

  16. Fluorous-based carbohydrate quartz crystal microbalance.

    PubMed

    Chen, Lei; Sun, Pengfei; Chen, Guosong

    2015-03-20

    Fluorous chemistry has brought many applications from catalysis to separation science, from supramolecular materials to analytical chemistry. However, fluorous-based quartz crystal microbalance (QCM) has not been reported so far. In the current paper, fluorous interaction has been firstly utilized in QCM, and carbohydrate-protein interaction and carbohydrate-carbohydrate interaction have been detected afterward. PMID:25541017

  17. Silicon isotope composition of diagenetic quartz: A record of Precambrian weathering

    NASA Astrophysics Data System (ADS)

    Pollington, A. D.; Kozdon, R.; Valley, J. W.

    2013-12-01

    The genesis of quartz cements, which modify the porosity and permeability of many sedimentary rocks, is widely studied to determine the origin, flux, pathways and timing of water-rich fluids. Stable isotope ratios provide evidence of fluid/rock interactions. So called 'non-traditional stable isotope' ratios such as silicon may record processes such as chemical weathering, whereas aqueous fluid dominates the source of oxygen during precipitation. Silicon may be derived internally to a rock such as from pressure solution or recrystallization, or introduced by fluids. Silicon isotope ratios of diagenetic quartz reflect the source of dissolved chemical components; if ?30Si values of overgrowth quartz (OQ) and neighboring detrital quartz (DQ) are similar, the cations may be locally sourced from detrital grains. Alternatively, if the ?30Si of overgrowth quartz is significantly different than that of nearby detrital grains, then the silicon in those overgrowths is dominated by material derived from outside the formation. Here we present high-resolution in situ silicon isotope data, measured by secondary ion mass spectrometry from 10 ?m spots, for the Mt Simon Sandstone, the basal Cambrian unit in the Midcontinent of North America. Silicon and oxygen isotope ratios have been measured in detrital quartz grains and quartz overgrowths from outcrops and deeply buried samples from drill core. Overgrowths from drill cores and most outcrops studied have ?30Si values close to 0 NBS-28, which is the same as values measured for adjacent detrital grains and ?18O values between 18 and 33 VSMOW, reflecting different temperatures of precipitation. However, in multiple samples from an outcrop on the Wisconsin Dome, adjacent to the Precambrian-Cambrian unconformity, quartz overgrowths have a wide range of ?30Si, with values as low as -5.4 and paired ?18O values as low as 18.5. Using the high spatial resolution afforded by SIMS analyses, we have measured isotopic zonation of both silicon (?30Si) and oxygen (?18O) in overgrowths as small as 20 ?m in width. Within single overgrowths from this outcrop, the range of ?30Si is from -6 to +5. The range of ?18O in single overgrowths from this outcrop ranges from -4 to +10. This zonation is dominated by multiple generations of overgrowth, which have distinctly different cathodoluminescence textures and ?30Si & ?18O values. Terrestrial values of ?30Si below -3.7 have only been reported from one other location (?30Si(OQ)=+0.7 to -7.5, Basile-Doelsch et al., 2005, Nature) and are interpreted to form by weathering. The low ?30Si values of this study, paired with low ?18O in the same overgrowths, are interpreted to reflect silicon fractionated during chemical weathering of the Precambrian basement, which was mobilized by hydrothermal fluids flowing along the Precambrian-Cambrian unconformity. Thus, the paired low ?30Si and ?18O values preserve a record of Precambrian weathering that would otherwise be unresolved. The isotope zonation measured in overgrowths from these samples is interpreted to record variations of the hydrothermal system.

  18. Cyclic development of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit, Colorado

    USGS Publications Warehouse

    Carten, R.B.; Geraghty, E.P.; Walker, B.M.

    1988-01-01

    The Henderson porphyry molybdenum deposit was formed by the superposition of coupled alteration and mineralization events, of varying intensity and size, that were associated with each of at least 11 intrusions. Deposition of molybdenite was accompanied by time-equivalent silicic and potassic alteration. High-temperature alteration and mineralization are spatially and temporally linked to the crystallization of compositionally zoned magma in the apex of stocks. Differences in hydrothermal features associated with each intrusion (e.g., mass of ore, orientation and type of veins, density of veins, and intensity of alteration) correlate with differences in primary igneous features (e.g., composition, texture, morphology, and size). The systematic relations between hydrothermal and magmatic features suggest that primary magma compositions, including volatile contents, largely control the geometry, volume, level of emplacement, and mechanisms of crystallization of stocks. These elements in turn govern the orientations and densities of fractures, which ultimately determine the distribution patterns of hydrothermal alteration and mineralization. -from Authors

  19. Preduodenal portal vein in the adult.

    PubMed

    Papaziogas, T; Papaziogas, B; Paraskevas, G; Lazaridis, C; Patsas, A

    2000-09-01

    We present three cases of preduodenal portal vein in adult people, which were diagnosed in our department. All of them were identified during elective operation for cholelithiasis, caused some technical difficulties to the performance of the operation, but led to no major intraoperative or postoperative complications. None of them had any preoperative symptoms, which could be related to this anomaly. The preduodenal portal vein is a rare congenital anomaly, which is usually discovered in infants or children due to the obstruction of the duodenum. In adults, it is often asymptomatic, and is usually discovered as an accidental finding during laparotomy for other reason. The postcontrast CT can set the diagnosis, when this anomaly is suspected. Despite its rarity, this anomaly is of great surgical importance, because it can predispose to intraoperative complications including hemorrhage from the abnormal vein, or damage to the biliary tract or the distented duodenum. The anterior position of the portal vein results from the persistence of the ventral anastomosis between the two vitelline veins and the distal portion of the right vitelline vein, with subsequent atrophy of the cranial part of the left vitelline and dorsal anastomotic vein. PMID:11244931

  20. Hydrothermal fluids responsible for the formation of precious minerals in the Nigerian Younger Granite Province

    NASA Astrophysics Data System (ADS)

    Abaa, S. I.

    1991-04-01

    Preliminary investigations in the Younger Granite Province of Nigeria have revealed that precious and semi-precious minerals like rubies, sapphires, emeralds, aquamarine, zircon and fluorite can be found in the region. The gem minerals are shown to have been produced either by direct deposition along fissures, veins and greisens by hydrothermal fluids or as a result of hydrothermal fluids reacting with wall-rocks. These wall rocks are either biotite granites from which the hydrothermal fluids originated or basement rocks or any other rocks which the biotite granites intrude and their residual hydrothermal fluids have invaded. The hydrothermal fluids appear to have been rich in alkalis (Na+, K+, etc.), rare elements (Be, Zr, F, REE, etc.) and siliceous. As these fluids rose through fractures and channel ways through the rocks, they either deposited the gem minerals in the fractures at the appropriate stability conditions or reacted with the wall-rocks producing the gem minerals at the expense of elements like Ca and A1 in the minerals of these rocks.

  1. Conditions for veining in the Barrandian Basin (Lower Palaeozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysis

    NASA Astrophysics Data System (ADS)

    Suchy, V.; Dobes, P.; Filip, J.; Stejskal, M.; Zeman, A.

    2002-04-01

    The interplay between fracture propagation and fluid composition and circulation has been examined by deciphering vein sequences in Silurian and Devonian limestones and shales at Kosov quarry in the Barrandian Basin. Three successive vein generations were recognised that can be attributed to different stages of a basinal cycle. Almost all generations of fracture cements host abundant liquid hydrocarbon inclusions that indicate repeated episodes of petroleum migration through the strata during burial, tectonic compression and uplift. The earliest veins that propagated prior to folding were displacive fibrous "beef" calcite veins occurring parallel to the bedding of some shale beds. Hydrocarbon inclusions within calcite possess homogenisation temperatures between 58 and 68 C and show that the "beef" calcites originated in the deeper burial environment, during early petroleum migration from overpressured shales. E-W-striking extension veins that postdate "beef" calcite formed in response to Variscan orogenic deformations. Based on apatite fission track analysis (AFTA) data and other geological evidence, the veins probably formed 380-315 Ma ago, roughly coinciding with peak burial heating of the strata, folding and the intrusion of Variscan synorogenic granites. The veins that crosscut diagenetic cements and low-amplitude stylolites in host limestones are oriented semi-vertically to the bedding plane and are filled with cloudy, twinned calcite, idiomorphic smoky quartz and residues of hardened bitumen. Calcite and quartz cements contain abundant blue and blue-green-fluorescing primary inclusions of liquid hydrocarbons that homogenise between 50 and 110 C. Geochemical characteristics of the fluids as revealed by gas chromatography-mass spectrometry, particularly the presence of olefins and parent aromatic hydrocarbons (phenonthrene), suggest that the oil entrapped in the inclusions experienced intense but geologically fast heating that resulted in thermal pyrolysis of its hydrocarbons. This implies that the organic fluids in the fractures may have been partly influenced by heating associated with igneous intrusions that are hidden below the surface. Subvertical N-S-striking veins represent the most recent fracturing event(s). Some of these veins are only a few millimeters thick and sparsely mineralised with thin leaf-like quartz crystals that contain tiny blue and yellow-orange-fluorescing hydrocarbon inclusions. Most of the N-S veins, however, occur as thick calcite veins that generally crystallised at 70 C or less from H 2O-NaCl solutions of variable salinity with admixture of petroleum. The origin of these fluids is interpreted in terms of deeply circulating meteoric waters that partially mixed with deep basinal fluids. Wider structural considerations combined with fission-track analysis of adjacent host sediments suggest that N-S veins formed during post-Mesozoic uplift of the area, probably in response to major Tertiary Alpine deformations transmitted far into the Bohemian Massif.

  2. Probing Hydrothermal Organic Reaction Mechanisms with Hydrothermal Photochemistry

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Gould, I.; Shock, E.

    2013-12-01

    In most hydrothermal organic experiments the emphasis is on reaction product distributions and kinetic measurements, with mechanistic information or the direct evidence of proposed reaction intermediates rare or lacking. We believe that greater mechanistic insight will yield greater predictive power. Previously, we studied the reactions of a model ketone, dibenzylketone (DBK) in aqueous media at 300C and 700 bars for durations up to several days [1], and found that many of the reaction products arise from coupling of benzyl and related radicals generated through homolytic bond cleavage of DBK. In the present work, we find that in situ photochemical generation of the radicals can provide independent evidence for radical intermediates in the hydrothermal reaction of DBK, yielding valuable insights into the thermal reactions. Hydrothermal photochemical experiments of DBK were conducted in water in sealed fused silica glass tubes at 300C and 86 bars under UV irradiation for minutes. The short timescale of the experiments allows the primary radical coupling products of DBK to be generated and identified, and their follow-up reactions to be monitored directly. The primary hydrothermal photolysis products include toluene, bibenzyl, a three-benzene-ring product (with isomers), and two four-benzene-ring products (with isomers), which represent a much simpler version of the products obtained through thermal reactions under similar conversions. Most of the observed photolysis products were identical to the ones in the thermal reactions, and those not observed in thermal reactions were found to be the short-lived precursors of the thermal products. As an example, the transformation of one four-ring product to the other was attained and monitored by experiments in which hydrothermal photolysis of DBK was followed by thermolysis at 300C for a further few hours. The transformation steps included dehydration and isomerization, which were known to be thermodynamically favorable and rapid at hydrothermal conditions [1]. These results show that several relatively stable hydrothermal products from DBK are derived from the radical-coupled intermediates, and that these intermediates can be successfully captured using the tool of hydrothermal photolysis. Analysis of the product distributions and the quantum yields for the hydrothermal photolysis also provides convincing evidence for the previously proposed radical cleavage mechanism for the thermal reactions of DBK. [1] Yang et al. (2012) Geochim. Cosmochim. Acta 98, 48-65.

  3. Complex fragmentation and silicification structures in fault zones: quartz crystallization and repeated fragmentation in the Rusey fault zone (Cornwall/UK)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Tim I.; Blenkinsop, Tom; Duschl, Florian; Kruhl, Jrn H.

    2015-04-01

    Silicified fault rocks typically show structures resulting from various stages of fragmentation and quartz crystallization. Both processes interact episodically and result in complex structures on various scales, which require a wide spectrum of analysis tools. Based on field and microstructural data, the spatial-temporal connection between deformation, quartz crystallization and fluid and material flow along the Rusey fault zone was investigated. The fault can be examined in detail in three dimensions on the north Cornwall coast, UK. It occurs within Carboniferous sandstones, siltstones, mudstones and slates of the Culm basin, and is likely to have had a long history. The fault rocks described here formed during the younger events, possibly due to Tertiary strike-slip reactivation. Frequent fragmentation, flow and crystallization events and their interaction led to various generations of complex-structured quartz units, among them quartz-mantled and partly silicified wall-rock fragments, microcrystalline quartz masses of different compositions and structures, and quartz vein patterns of various ages. Lobate boundaries of quartz masses indicate viscous flow. Fragments are separated by quartz infill, which contains cm-sized open pores, in which quartz crystals have pyramidal terminations. Based on frequent occurrence of feathery textures and the infill geometry, quartz crystallization from chalcedony appears likely, and an origin from silica gel is discussed. Fragmentation structures are generally fractal. This allows differentiation between various processes, such as corrosive wear, wear abrasion and hydraulic brecciation. Material transport along the brittle shear zone, and displacement of the wall-rocks, were at least partly governed by flow of mobile fluid-quartz-particle suspensions. The complex meso- to microstructures were generated by repeated processes of fragmentation, quartz precipitation and grain growth. In general, the brittle Rusey fault zone represents a zone of multiple fragmentation, fluid flow, crystallization and quartz dissolution and precipitation, and is regarded as key example of large-scale cyclic interaction of these processes. The geological evidence of interactions between processes implies that feedbacks and highly non-linear mechanical behaviour generated the complex meso- and microstructures. The fault zone rheology may also therefore have been complex.

  4. [FEATURES LIVER TRANSPLANTATION IN PORTAL VEIN THROMBOSIS].

    PubMed

    Abbasov, P A

    2015-07-01

    In 2012 - 2013 years in 265 patients for liver transplantation was performed, including in 224 (84.5%)--from a living donor, in 41 (15.5%)--from the dead body. Using a Foley catheter to stop bleeding, and the imposition of vascular sutures during endovenectomy in portal vein thrombosis (PVT) and its possible damage under all conditions. In particular, PVT IV degree (Grade IV) in order to restore blood flow in the graft using the left gastric and renal vein is an alternative, if they are cryopreserved vein may be suitably used. PMID:26591211

  5. Cardiac vein angioplasty for biventricular pacing.

    PubMed

    Sandler, David A; Feigenblum, David Y; Bernstein, Neil E; Holmes, Douglas S; Chinitz, Larry A

    2002-12-01

    Biventricular pacing for the treatment of congestive heart failure has consistently demonstrated improvement in quality-of-life and reduction in heart failure symptoms. Though the over-the-wire systems will be helpful in overcoming many existing obstacles to optimal lead placement, anatomic variability will still limit overall success. Cardiac vein angioplasty may be required for deployment of leads into tortuous or obstructed cardiac veins. This case report describes the angioplasty of a focal cardiac vein stenosis allowing for successful implantation of a left ventricular pacing lead. The safety of this procedure is unknown, though the risks may be acceptable in certain patients. PMID:12520686

  6. Selecting a treatment for primary varicose veins.

    PubMed Central

    Tremblay, J; Lewis, E W; Allen, P T

    1985-01-01

    The treatment of varicose veins includes injection/compression sclerotherapy and surgical stripping or ligation or both. Surgery appears to be favoured when the saphenous system is involved or when the patient is 35 to 64 years old or presents with ankle edema or flare. On the other hand, sclerotherapy has been found to be more effective in patients with dilated superficial veins or incompetent perforating veins in the lower legs and to be more acceptable and less expensive than surgical treatment. PMID:3891060

  7. Hand vein recognition based on orientation of LBP

    NASA Astrophysics Data System (ADS)

    Bu, Wei; Wu, Xiangqian; Gao, Enying

    2012-06-01

    Vein recognition is becoming an effective method for personal recognition. Vein patterns lie under the skin surface of human body, and hence provide higher reliability than other biometric traits and hard to be damaged or faked. This paper proposes a novel vein feature representation method call orientation of local binary pattern (OLBP) which is an extension of local binary pattern (LBP). OLBP can represent the orientation information of the vein pixel which is an important characteristic of vein patterns. Moreover, the OLBP can also indicate on which side of the vein centerline the pixel locates. The OLBP feature maps are encoded by 4-bit binary values and an orientation distance is developed for efficient feature matching. Based on OLBP feature representation, we construct a hand vein recognition system employing multiple hand vein patterns include palm vein, dorsal vein, and three finger veins (index, middle, and ring finger). The experimental results on a large database demonstrate the effectiveness of the proposed approach.

  8. A tectonic model for the spatial occurrence of porphyry copper and polymetallic vein deposits - applications to Central Europe

    USGS Publications Warehouse

    Drew, Lawrence J.

    2006-01-01

    A structural-tectonic model, which was developed to assess the occurrence of undiscovered porphyry copper deposits and associated polymetallic vein systems for the Matra Mountains, Hungary, has been expanded here and applied to other parts of central Europe. The model explains how granitoid stocks are emplaced and hydrothermal fluids flow within local strain features (duplexes) within strike-slip fault systems that develop in continental crust above subducting plates. Areas of extension that lack shear at the corners and along the edges of the fault duplexes are structural traps for the granitoid stocks associated with porphyry copper deposits. By contrast, polymetallic vein deposits are emplaced where shear and extension are prevalent in the interior of the duplexes. This model was applied to the Late Cretaceous-age porphyry copper and polymetallic vein deposits in the Banat-Timok-Srednogorie region of Romania-Serbia-Bulgaria and the middle Miocene-age deposits in Romania and Slovakia. In the first area, porphyry copper deposits are most commonly located at the corners, and occasionally along the edges, of strike-slip fault duplexes, and the few polymetallic vein deposits identified are located at interior sites of the duplexes. In the second area, the model accounts for the preferred sites of porphyry copper and polymetallic vein deposits in the Apuseni Mountains (Romania) and central Slovakian volcanic field (Slovakia).

  9. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores

    USGS Publications Warehouse

    Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.

    1990-01-01

    Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition during transient boiling or rock-water exchange (fracturing) events. ?? 1990.

  10. Characterization of Quartz and Feldspar Deformation in the Mid-crust: Insights from the Cordillera Blanca Shear Zone, Peru

    NASA Astrophysics Data System (ADS)

    Hughes, C. A.; Jessup, M. J.; Shaw, C. A.

    2014-12-01

    Deformation mechanisms within shear zones from various crustal levels must be characterized to develop accurate models of lithospheric rheology. The Cordillera Blanca Shear Zone (CBSZ) in the central Peruvian Andes records changes in temperature, microstructures, and deformation mechanisms that occurred during exhumation through the brittle-ductile-transition during normal-sense slip over the last ~5 m.y. The 100-500-m-thick mylonitic shear zone occupies the footwall of a 200-km-long normal detachment fault, marking the western boundary of the 8 Ma, leucogranodiorite Cordillera Blanca Batholith. Though local variations do occur, including recrystallized quartz veins and local, decimeter- to meter- scale shear zones, the CBSZ follows a general trend of increasing strain towards the detachment. Structurally lowest positions are weakly deformed and transition to protomylonite, mylonite, and ultramylonite at higher positions, truncating at a cataclasite nearest the detachment. We characterize strain using EBSD analyses of quartz lattice preferred orientations and deformation temperatures using quartz and feldspar textures and two-feldspar thermometry of asymmetric strain-induced myrmekite. At the deepest structural positions, feldspar grains record a complex history characterized by bulging recrystallization, myrmekite formation, and brittle fracture, while quartz exhibits dominant grain-boundary migration recrystallization (T> 500 °C) and prism slip. Intermediate samples exhibit more prevalent strain-induced myrmekite, brittle fracture in feldspar, and reaction-associated recrystallization of K-feldspar to mica; quartz records mainly subgrain-rotation recrystallization (400-500 °C) and dominant prism slip with a rhomb component. Shallower positions preserve fewer, smaller, and more rounded feldspar porphyroclasts with no myrmekite, and dominant bulging recrystallization (280-400 °C) in quartz that records prism , rhomb , and some basal slip.

  11. Oxygen isotope disequilibrium between quartz and sanidine from the Bandelier Tuff, New Mexico, consistent with a short residence time of phenocrysts in rhyolitic magma

    NASA Astrophysics Data System (ADS)

    Wolff, John A.; Balsley, Steven D.; Gregory, Robert T.

    2002-07-01

    Oxygen isotope analyses are reported from co-existing quartz and feldspar from the Bandelier Tuff and Cerro Toledo high-silica rhyolitic pyroclastic deposits erupted from the Valles caldera, New Mexico. Quartz shows little variation outside analytical error, but δ 18O in feldspar varies over >1‰. In most samples, 18O/ 16O fractionation between quartz and feldspar is significantly less than is predicted for equilibrium at temperatures appropriate for rhyolitic magma. In the Tshirege (upper) Member of the Bandelier Tuff, isotopic fractionation between mineral pairs is close to equilibrium in the later erupted ignimbrite, but non-equilibrium in the initial Plinian deposit. These relationships are interpreted in terms of a model where most phenocrysts are derived from a highly porphyritic carapace around the magma chamber that was disrupted by eruption, thus scattering crystals throughout the magma. Carapace quartz and feldspar are initially isotopically lighter than the bulk aphyric magma, due to chemical communication with low-δ 18O country rock in the meteoric/hydrothermal system surrounding the chamber. We assume that quartz and feldspar were initially in isotopic equilibrium. Diffusive re-equilibration of crystals begins when the carapace disintegrates and the minerals are immersed in the bulk magma just prior to and during eruption. Feldspar is isotopically lighter than quartz at equilibrium, but responds more rapidly than quartz to an external change, due to a higher diffusion coefficient for oxygen. Hence, immersion in the isotopically heavier bulk magma causes feldspar and quartz δ 18O values to initially converge over ˜10 2 years, and then diverge over 10 3-10 4 years as first feldspar, and then quartz, re-equilibrate with the new magma. Higher δ 18O variability of feldspar than quartz indicates that the shorter timescale applies to the Bandelier and Cerro Toledo rhyolites. Two important implications of this interpretation are (1) that the Bandelier magmas developed in an aphyric condition, and their porphyritic character is an artifact of eruption; and (2) that a protective, mechanically rigid cognate carapace around a silicic magma chamber may limit interaction with low-δ 18O hydrothermally altered crust, thus hindering the development of significant volumes of low-δ 18O silicic magma.

  12. A General Survey of Quartz and Quartz-like Materials: Packing Distortions, Temperature, and Pressure Effects

    NASA Astrophysics Data System (ADS)

    Philippot, E.; Palmier, D.; Pintard, M.; Goiffon, A.

    1996-04-01

    A general survey of quartz and quartz-like structures (SiO2, GeO2, andMXO4withM= Al, Ga, Fe andX= P, As) has been undertaken to ascertain the effects of pressure and temperature on the quartz framework. All the quartz isotype crystal structures and their variations with respect to pressure and temperature can be expressed in terms ofM-X(the nonbonded radius sum) andM-O-X(the corresponding angle). Thus, crystal packing can be described by the geometrical characteristics ofMX4(orXM4) tetrahedral units, such asM-X-Mangle distortions,M-Xlengths, andc/aratios.MO4andXO4tetrahedral distortions can be closely related to theM-O-Xangle. Crystal structure distortions expressed by theM-O-Xangle lead to different physical properties. Density, piezoelectric coupling coefficient of AT cut, and dielectric constant anisotropy are linearly related to theM-O-Xvalue. Thus, the knowledge of theM-O-Xvalue allows prediction of the physical properties of quartz-like crystals that have not been synthesized. In conclusion, all the crystal structures and the physical properties of the quartz-like materials can be expressed in terms of only theM-O-Xangle.

  13. Hydrothermal pretreatment of coal

    SciTech Connect

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  14. An experimental investigation of the role of microfracture surfaces in controlling quartz precipitation rate: Applications to fault zone diagenesis

    NASA Astrophysics Data System (ADS)

    Williams, Randolph T.; Farver, John R.; Onasch, Charles M.; Winslow, Daniel F.

    2015-05-01

    We present the results of quartz growth experiments, which were designed to assess the role of microfracture surfaces in controlling quartz-precipitation rates during fault-zone diagenesis. Experiments were run in hydrothermal cold-seal vessels at 300-450C and 150MPa confining pressure for up to 1344h. Microfractures routinely form at grain contacts during these experiments. Microfracture kinematic-aperture distributions indicate that microfractures form within the first 48h of each experiment. Regardless of experimental temperature or duration, microfracture-sealing cements account for approximately the same amount of new quartz cement in each experiment. With increasing experimental duration, sealed microfractures were progressively overgrown by grain-boundary overgrowth cements. Spatial and temporal trends in the distribution of overgrowth- and microfracture-sealing cements indicate that precipitation rates on newly formed microfractures greatly exceed those on detrital-grain boundaries. This effect persists regardless of natural iron-oxide grain coatings present in a subset of our experiments. While our results agree with previous research that demonstrated increased growth rates on fracture surfaces in faults in fully lithified rock, fundamental differences in the nature of deformation in our experiments provide insight into quartz cementation in cataclastic deformation bands in faults offsetting high-porosity sandstones.

  15. Hydrothermal alteration in the core of the Yaxcopoil-1 borehole Chicxulub impact structure, Mexico

    NASA Astrophysics Data System (ADS)

    Zrcher, Lukas; Kring, David A.

    2004-07-01

    Petrographic, electron microprobe, and Raman spectrometric analyses of Yaxcopoil-1 core samples from the Chicxulub crater indicate that the impact generated a hydrothermal system. Relative textural and vein crosscutting relations and systematic distribution of alteration products reveal a progression of the hydrothermal event in space and time and provide constraints on the nature of the fluids. The earliest calcite, halite, and gaylussite suggest that the impactite sequence was initially permeated by a low temperature saline brine. Subsequent development of a higher temperature hydrothermal regime is indicated by thermal metamorphic diopside-hedenbergite (Aeg3Fs18-33 En32-11Wo47-53) after primary augite and widespread Na-K for Ca metasomatic alkali exchange in plagioclase. Hydrothermal sphene, apatite, magnetite (bornite), as well as early calcite (combined 3 to 8 vol%) were introduced with metasomatic feldspar. A lower temperature regime characterized by smectite after probable primary glass, secondary chlorite, and other pre-existing mafic minerals, as well as very abundant calcite veins and open-space fillings, extensively overprinted the early hydrothermal stage. The composition of early and late hydrothermal minerals show that the solution was chlorine-rich (Cl/F >10) and that its Fe/Mg ratio and oxidation state increased substantially (4 to 5 log?O2 units) as temperature decreased through time. The most altered zone in the impactite sequence occurs 30 m above the impact melt. The lack of mineralogical zoning about the impact melt and convective modeling constraints suggest that this unit was too thin at Yaxcopoil-1 to provide the necessary heat to drive fluids and implies that the hydrothermal system resulted from the combined effects of a pre-existing saline brine and heat that traveled to the Yaxcopoil-1 site from adjacent areas where the melt sheet was thicker. Limonite after iron oxides is more common toward the top of the sequence and suggests that the impactite section was subjected to weathering before deposition of the Tertiary marine cover. In addition, scarce latest anatase stringers, chalcopyrite, and barite in vugs, francolite after apatite, and recrystallized halite are the likely products of limited post-hydrothermal ambient-temperature diagenesis, or ocean and/or meteoric water circulation.

  16. Hydrothermal synthesis of amino acids

    NASA Astrophysics Data System (ADS)

    Marshall, William L.

    1994-05-01

    This study presents further evidence that amino acids can be synthesized rapidly in hydrothermal solutions from reactants that may have been present in primitive environments. Aqueous NH 4HCO 3 solutions were reacted with C 2H 2, H 2, and O 2 (formed in situ from CaC 2, Ca, and H 2O 2) at 200-275C over 0.2-2 h periods to synthesize several amino acids and abundant amines. These amino acid and amine producing reactions were not observed to occur below 150C. Amino acids and amines also were synthesized at 210C from solutions of NH 4OH, HCHO, NaCN, and H 2. When NH 4OH was replaced by NH 4HCO 3, the syntheses predominantly confirmed the recent results of RENNET et al. (1992). Additionally, amino acids and amines were observed to form by reactions among NH 4OH, HCHO, and H 2 at hydrothermal conditions, essentially confirming the results of FOX and WINDSOR (1970). Inclusion of both carbonate and O 2 in these latter solutions greatly enhanced the production rate of amino acids. The amines synthesized hydrothermally could be significant if they are precursors in the amino acid syntheses either at hydrothermal or later at lower temperatures. These observations provide additional input to the current questions of synthesis, stability, and decomposition of amino acids at hydrothermal conditions, and their possible relevance to the origin of life.

  17. Investigation of gold-bearing veins using magnetics and TEM

    NASA Astrophysics Data System (ADS)

    Davis, L.; Groom, R.

    2012-12-01

    Gold-bearing fractures have been mined at Charters Towers, Queensland for a century. The ore occurs in quartz-sulfide veins hosted in granitoids. The gold is found in lenses within the veins. The purpose of our work was to determine if geophysical methods could be used to identify and delineate known lode-bearing veins. The study site is around the Warrior Mine immediately south of the town. Two structures are being mined at 100-300 m depth: Warrior and Sons of Freedom. While IP is typically used to locate disseminated sulfides, we used a different approach: we integrated airborne magnetic data with ground TEM data to map the geometries of the gold-bearing fracture zones. TEM is advantageous because it does not involve injection of current into the ground with the uncertainty of current flow patterns in such resistive, fractured rocks. Fixed loop TEM surveying was utilized as this approach is much faster to perform than moving loop surveys. Although TEM is commonly used for mapping layered structures and strong conductors, it is much less used for detecting weak conductors, such as those found in gold exploration, contaminant plumes, or geotechnical applications. Here the fracture zones are highly weathered and wet thus producing weak conductors. Upon mapping the vertical derivative of the RTP magnetic data, many linear anomalies were noted, including over both mined structures. These anomalies all indicate negative susceptibility, as would be expected because the structures are depleted in magnetite with respect to the granitoids. Modeling of the RTP total field and derivatives confirms a negative susceptibility. The RTP data indicate the approximate dip, which agrees with known information. Depth resolution is limited in standard 3D inversions, which utilize orthogonal grids with the normal axis in the vertical direction. In this study, we use a dipping grid which strikes and dips according to known information, and have obtained good results. TEM surveying at the Warrior site presents challenges as there is an operating mine and many other man-made features. The TEM surveys were carefully planned to minimize their impact on the response. Modeling of the TEM data indicates that the structures which include the mineralized veins are weakly conductive and are actually composed of multiple structures in close proximity. There is a strong correlation between the TEM structural interpretation and the magnetic highs, not only at the mined structures, but also over the three new structures, which are to be studied in future exploration plans including borehole TEM. The EM models were converted to magnetic models with thicknesses of 5 m and susceptibilities between -0.1 and -0.05 (SI), and the simulated magnetic response was in good agreement with the measured data. Interestingly, the rather large negative susceptibilities indicate a greater volume than can be explained by the veins alone. It is expected that this approach will be used to find potential lode-bearing structures in the Charters Towers goldfield. Areas of interest can be first identified in the magnetic data based on the RTP vertical derivative, and then TEM will be performed at these sites. We have demonstrated that, through careful modeling, TEM can be used to understand the geometry of weak conductors.

  18. Pervasive, high temperature hydrothermal alteration in the RN-17B drill core, Reykjanes Geothermal System-Iceland Deep Drilling Project

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Schiffman, P.; Marks, N. E.; Reed, M. H.; Elders, W. A.; Fridleifsson, G. O.

    2010-12-01

    In November 2008, 9.5 m of core were recovered from Reykjanes production well RN-17B at a depth of 2800m. The core consists mainly of hyaloclastite breccias, hetrolithic breccias with clasts of crystalline basalt, and volcaniclastic sandstones/siltstones. Much of the material appears to have been transported and redeposited, but homolithic breccias and hyaloclastites, some with upright flow lobes of basalt with quenched rims, are interpreted to have erupted in situ. Fine-scale features (glass rims, quench crystals, vesicles, phenocrysts) are well preserved, but all lithologies are pervasively hydrothermally altered such that primary clinopyroxene is ubiquitously uralitized and primary plagioclase (An42-80) is replaced by albite and/or more calcic plagioclase. In contrast, cuttings of similar lithologies, recovered by rotary drilling in intervals immediately above and below the core, exhibit much lesser degrees of hydrothermal alteration and commonly contain igneous plagioclase and clinopyroxene. Vitric clasts in the core are recrystallized into aggregates of chlorite and actinolite. In some breccias, cm-scale metadomains are composed of patchy albite or actinolite/magnesiohornblende giving the core a green and white spotted appearance. Minor amounts (<1%) of disseminated pyrite occur throughout the core, but two intervals with more abundant sulfide contain chalcopyrite and sphalerite in addition to pyrite. Amygdales and vugs in the breccias, initially filled with chlorite, actinolite, epidote, and/or albite, have been partly overprinted with hornblende and anorthite. The core is cut in places by < 1 cm- wide veins composed of early epidote + actinolite + titanite and later anorthite + magnesiohornblende/pargasite. Quartz is not present in any alteration domains observed in the core, although it is reported from virtually all of the cutting intervals above and below the cored section. Seawater-basalt reaction calculations suggest that albite formed during early burial at T<300 is replaced by more calcic plagioclase at higher temperature. Texturally, hydrothermal anorthite (An90-98) and pargasite (up to 13.5 wt % Al2O3) appear to have grown at the expense of earlier formed epidote + chlorite + actinolite. Measured downhole temperature at 2800m in RN-17B following reequilibration was 320°C, although amphibole-plagioclase geothermometry imply that anorthite + pargasite, if in equilibrium, should have formed at much higher temperatures. The differences in extent and intensity of alteration inferred from examination of cuttings compared to drill core indicate that selective recovery and mixing of cuttings from multiple depths may be a larger problem than presently appreciated. Previous work has shown that the Reykjanes geothermal system has evolved from a meteoric water-dominated system to higher salinity system dominated by seawater-recharge. The paragenetic relationships that are discernible in the core hopefully will allow us to quantify the alteration processes related to the change in salinity.

  19. Ultrastructure of internal jugular vein defective valves

    PubMed Central

    Tisato, V; Menegatti, E; Mascoli, F; Gianesini, S; Salvi, F; Secchiero, P

    2015-01-01

    Objectives To study the ultrastructure of intraluminal defects found in the internal jugular vein by using a scanning electron microscopy. Methods Using a scanning electron microscopy, intraluminal septa and/or defective valves blocking the flow in the distal internal jugular vein of seven patients were studied together with the adjacent wall and compared with control specimen. Results The internal jugular veins wall showed a significant derangement of the endothelial layer as compared to controls. Surprisingly, no endothelial cells were found in the defective cusps, and the surface of the structure is covered by a fibro-reticular lamina. Conclusions Although the lack of endothelial cells in the internal jugular vein intraluminal obstacles is a further abnormality found in course of chronic cerebrospinal venous insufficiency, our investigation cannot clarify whether this finding is primary or caused by progressive loss of endothelium in relation to altered haemodynamic forces and/or to a past post-thrombotic/inflammatory remodelling. PMID:24972760

  20. Portal vein thrombosis in liver transplantation.

    PubMed

    Charco, R; Fuster, J; Fondevila, C; Ferrer, J; Mans, E; Garca-Valdecasas, J C

    2005-11-01

    In the initial experience of liver transplantation, complete thrombosis and portal vein occlusion were considered to be absolute contraindications for liver transplantation. The incidence of portal thrombosis in patients being prepared for transplantation varies between 5% and 15% according to published series. There are 2 surgical techniques to solve absent or low portal vein flow due to thrombosis. The most widely used technique is thrombectomy and the second technique is insertion of a shunt with a venous graft in the permeable portion of the superior mesenteric vein or in a vein in the splanchnic territory. Portal thrombosis recurrence rates vary among series, ranging from 0% to 25% or even 30%, depending on its extension and severity and also on time the transplantation was performed. Although overall survival is somewhat lower, there are no significant differences in most of the series when patients with portal thrombosis who underwent transplantation are compared with those without. PMID:16386579

  1. Subclavian vein catheterisation for parenteral nutrition.

    PubMed Central

    Fletcher, J. P.; Little, J. M.

    1988-01-01

    Two hundred and twenty-six central venous catheters were placed in 195 consecutive patients requiring central venous catheterisation for total parenteral nutrition (TPN). Of these 226 catheters, 198 were placed percutaneously into the subclavian vein by the infraclavicular route. In 99 consecutive subclavian catheter insertions, a 12G needle with introducing sheath was used to puncture the vein (Group 1). The Seldinger method of catheterisation was used in another 99 consecutive subclavian catheter insertions (Group 2), the vein being punctured with a 19G needle. Pneumothorax occurred on three occasions (3.0%) in Group 1 but did not occur in Group 2. However, there were two episodes of pleural extravasation in Group 2 (2.0%) which may have been due to guide wire perforation of a central vein; this complication did not occur in Group 1. Although the Seldinger technique of insertion should reduce the incidence of pneumothorax, care should be taken in passage of the guide wire. PMID:3136691

  2. Abdominal collateral vein as an unconventional vascular access for hemodialysis in patient with central vein occlusion.

    PubMed

    Str?ecki, Pawe?; Flisi?ski, Mariusz; Serafin, Zbigniew; Wiechecka-Korenkiewicz, Joanna; Manitius, Jacek

    2014-01-01

    A 65-year-old female patient with chronic kidney disease stage 5 and a history of spleen neoplasm with dissemination within peritoneum is presented. During 5years of hemodialysis therapy, bilateral occlusion of brachiocephalic and iliac vein developed as a consequence of vein catheterization. An attempt to cannulate inferior vena cava was unsuccessful. A cannulation of dilated collateral abdominal veins with dialysis needles allowed to perform several hemodialysis sessions in the patient. PMID:24796505

  3. Mineralogy, paragenesis and textures associated with metasomatic- hydrothermal processes, Qatruyeh area, Sanandaj- Sirjan zone, SW Iran

    NASA Astrophysics Data System (ADS)

    Asadi, S.; Rajabzadeh, M. A.

    2009-04-01

    The Qatruyeh area is located at about 40 Km northeastern of Neyriz region, in the eastern edge of the high P- Low T metamorphic Zagros orogenic belt. The studied area principally includes outcrops of green schist facies metamorphic rocks that are thrusted over the Neotethyan ophiolites. Hydrothermal activities occurred episodically in the Mesozoic era . The textural relationships, mineral assemblages and X- Ray diffractions have recognized two different stages of hydrothermal alteration during mineralization. The Mineralization was largely controlled by striking faults and host rock layers. Three different types of magnetite are distinguished in microscopic investigation. The First is euhedral to subhedral, partly replacement by martite with exsolved ilmenites. The Second reveals myrmekite like textures and the last type includes layered magnetite. All of the types are related to replacement textures such as psedomorphism, widening of a fracture filling, irregulare or vermicular intergrowths, islands of unreplaced host rock, cusp or caries, nonmatching walls or borders of a fracture and rims of one mineral penetrating another along its crystallographic direction. X- Ray analyses indicate oxide minerals (Magnetite, Hematite, Maghemite, Specularite, Goethite, Limonite and Ilmenite), Silicate minerals (Tourmaline-shorl and dravite-, Epidote, Chlorite, Actinolite, Titanite, Paragonite, Talc, Muscovite and Quartz), Carbonate minerals (Siderite and Malachite) and Sulfide minerals (Pyrite and Chalcopyrite-minor-) as major phases. The mineral paragenesis and textures show two different stages of metasomatic- hydrothermal alteration. The first stage alteration (Sodic- Calsic) accompanying with mineral paragenesis of Magnetite+ Tourmaline+ Titanite+ Paragonite and the second stage of alteration (Solfidation- Oxidation) follows with Magnetite+ Hematite+ Quartz

  4. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, Bhushan L. (Denver, CO)

    1996-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

  5. Quartz exposure in the slate industry in northern Norway.

    PubMed

    Bang, B E; Suhr, H

    1998-11-01

    In this study we have measured exposure levels to quartz in different parts of the slate industry in Alta, Northern Norway. Full shift personal samples were collected from the breathing zones of outdoor and indoor workers in the slate quarries and a slate factory. The quartz content of respirable dust was between 7 and 41%. The slate factory had the lower quartz levels although 41% of total and 73% of respirable samples were above the Norwegian TLV for quartz. The average concentration of total quartz in the slate factory was 0.27 mg/m3 and the average concentration of respirable quartz was 0.12 mg/m3. Outdoor in the quarries the average levels of quartz were 0.58 and 0.13 mg/m3 for total and respirable quartz, respectively. From the beginning of the last decade most of the quarry-workers have built quarry halls to protect themselves against a cold winter climate. Inside in these quarry halls the average levels were 1.74 mg/m3 total quartz and 0.46 mg/m3 respirable quartz. Assessment of historical exposure showed that 32 of totally 45 quarry workers with available exposure history had a lifetime inhaled quartz dose of more than 10 g. There is reason to fear that silicosis will be an increasing problem among quarry workers if efforts to reduce quartz exposure are not put into effect. PMID:9838869

  6. Variant anatomy of internal jugular vein branching

    PubMed Central

    Deepak, Chris A.; Sarvadnya, Jagadish J.; Sabitha, K. S.

    2015-01-01

    The knowledge of both normal and abnormal anatomy of the veins of the neck is important for clinicians performing catheterization and surgeons operating in the region of the neck. The presence of such anomalous communications may also be important for radiologists performing angiographic and sonographic studies. This study presents three cases of variant anatomy in posterior branching and abnormal branching of internal jugular vein found during our routine neck dissection.

  7. Primary leiomyosarcoma of the innominate vein.

    PubMed

    Illuminati, Giulio; Miraldi, Fabio; Mazzesi, Giuseppe; D'urso, Antonio; Ceccanei, Gianluca; Bezzi, Marcello

    2007-01-01

    Primary venous leiomyosarcoma is rare. We report the case of a primary leiomyosarcoma of the left innominate vein, with neoplastic thrombus extending into the left jugular and subclavian veins. The tumor was curatively resected en bloc with anterior mediastinal and laterocervical lymphatics, through a median sternotomy prolonged into left cervicotomy. Primary venous sarcomas may be associated with prolonged survival in individual cases, with curative resection recommended as the standard treatment, in the absence of distant spread. PMID:17349340

  8. Hydrothermally prepared inorganic siliceous wastes: Hydrothermal reaction of calcareous and steatite ceramic tile wastes

    SciTech Connect

    Maenami, Hiroki; Yamamoto, Takeyuki; Ishida, Hideki

    1996-12-31

    Possibility of solidification of various ceramic wastes by hydrothermal processing was investigated. The starting materials were feldspathic porcelain tile waste, steatite ceramic tile waste, and calcareous ceramic tile waste. These were mixed with CaO so as to obtain a Ca/Si molar ratio of 0.5. After forming, they were cured for 2 to 20 h under the saturated steam pressure at 200{degrees}C. Although the SiO{sub 2} content of these ceramic wastes was about 70 mass% and they contain various alkaline ions and alkaline earth ions, solidified specimens with flexural strength up to 35MPa were obtained. This is within the range of strengths when quartz or fused silica is used as pure SiO{sub 2} sources. Formation of tobermorite, which was detected in all systems after 2 h of curing, was considered to affect the increase of the strength. It was found that there is a possibility of aluminum and alkali ions being included in the structure of the formed tobermorite. In the case of using steatite ceramic tile waste containing Mg, magnesium silicate hydrates were also formed. The modal pore diameter shifted to 0.01 {mu} m with the formation of these hydrates and there was correlation between the flexural strength and the pore size distribution.

  9. Hydrothermal synthesis of ammonium illite

    USGS Publications Warehouse

    Sucha, V.; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.

    1998-01-01

    Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.

  10. Exploration strategies for hydrothermal deposits.

    PubMed

    Horn, R A

    1996-01-01

    With unlimited money the most certain strategy for finding most hydrothermal metal deposits would be by drilling to 5000 m at 50 m spacing. However, the cost would far outweigh the benefit of the discoveries. Geological knowledge and exploration techniques may be used to obtain the greatest benefit for minimum cost, and to concentrate human and material resources in the most economic way in areas with the highest probability of discovery. This paper reviews the economic theory of exploration based on expected value, and the application of geological concepts and exploration techniques to exploration for hydrothermal deposits. Exploration techniques for hydrothermal-systems on Mars would include geochemistry and particularly passive geophysical methods. PMID:9243019

  11. Subclavian vein thrombosis: A continuing challenge

    SciTech Connect

    Hill, S.L.; Berry, R.E. )

    1990-07-01

    Subclavian vein thrombosis is a relatively uncommon but potentially morbid disease entity. To determine the frequency, cause, and best mode of treatment of this problem, we performed a chart review of all patients with a diagnosis of subclavian vein thrombosis at two major metropolitan hospitals during a 6-year period. A total of 40 patients were identified with subclavian vein thrombosis, which represented 3.5% of all venous thromboses detected during the 6-year period. No side or sex predilection was noted and the majority of patients were outpatients. The cause was fairly evenly divided among intravenous catheters (32%), anatomic abnormalities (45%), and carcinoma with postoperative radiation (22.5%). Despite the increasing use of the subclavian veins for pacemaker leads, hyperalimentation, and permanent intravenous access for chemotherapy, there has not been an increase in diagnosed subclavian vein thrombosis. Anatomic abnormalities with compression of the vein respond well to either heparinization or lytic therapy but require surgery if the venous abnormality persists. Treatment consisted of lytic therapy in 20%, heparinization in 55%, and elevation with removal of the central line in 25% of patients. All patients responded well to treatment, with a decrease in swelling and symptoms; no patient progressed to venous gangrene and only one (2.5%) had a documented pulmonary embolus. Medical treatment provides excellent long-term benefit in most cases unless complicated by an anatomic abnormality.

  12. Veins Improve Fracture Toughness of Insect Wings

    PubMed Central

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  13. Quartz channel fabrication for electrokinetically driven separations

    NASA Astrophysics Data System (ADS)

    Matzke, Carolyn M.; Arnold, D. W.; Ashby, Carol I. H.; Kravitz, Stanley H.; Warren, Mial E.; Bailey, Christopher A.

    1998-09-01

    For well resolved electrokinetic separation, we utilize crystalline quartz to micromachine a uniformly packed separation channel. Packing features are posts 5 micrometers on a side with 3 micrometers spacing and etched 42 micrometers deep. In addition to anisotropic wet etch characteristics for micromachining, quartz properties are compatible with chemical solutions, electrokinetic high voltage operation, and stationary phase film deposition. To seal these channels, we employ a room temperature silicon-oxynitride deposition to form a membrane, that is subsequently coated for mechanical stability. Using this technique, particulate issues and global warp, that make large area wafer bonding methods difficult, are avoided, and a room temperature process, in contrast to high temperature bonding techniques, accommodate preprocessing of metal films for electrical interconnect. After sealing channels, a number of macro- assembly steps are required to attach a micro-optical detection system and fluid interconnects.

  14. Emission polarization study on quartz and calcite.

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.

    1972-01-01

    Calculation of the spectral emission polarization of quartz and calcite polished plates for observation angles of 20 and 70 deg by the substitution of complex index of refraction values for each mineral into Fresnel's equations. The emission polarization is shown to be quite wavelength-dependent, demonstrating that selected narrow or medium-width spectral bands exhibit a significantly higher percentage of polarization than a broad spectral band for these two minerals. Field measurements with a broadband infrared radiometer yield polarizations on the order of 2% for a coarse-grained granite rock and beach sand (both quartz-rich). This implies that a more sensitive detector with a selected medium-width filter may be capable of measuring emission polarization accurately enough to make this parameter useful as a remote sensing tool for discrimination among rocks on the basis of texture.

  15. Quartz Channel Fabrication for Electrokinetically Driven Separations

    SciTech Connect

    Arnold, D.W.; Ashby, C.I.H.; Bailey, C.G.; Kravitz, S.H., Warren, M.E.; Matzke, C.M.

    1998-12-01

    For well resolved electrokinetic separation, we L tilize crystalline quartz to micromachine a uniformly packe Q&iKLmnel. Packing features are posts 5 Vm on a side with:} pm spacing and etched 42 Vm deep. In addition to anisotropic wet etch characteristics for micromachining, quartz propmties are compatible with chemical soiutioits, ekctrokinetic high voltage operation, and stationary phase film depositions. To seal these channels, we employ a room temperature silicon-oxynhride deposition to forma membrane, that is subsequently coated for mechanical stability. Using this technique, particulate issues and global warp, that make large area wafer bon ding methods difficult, are avoided, and a room temperature process, in contrast to high temperature bonding techniques, accommodate preprocessing of metal films for electrical interconnect. After sealing channels, a number of macro-assembly steps are required to attach a micro-optical detection system and fluid interconnects. Keywords: microcharmel, integrated channel, micromachined channel, packed channel, electrokinetic channel, eleetrophoretic channel

  16. ATS-6 - Quartz-Crystal Microbalance

    NASA Technical Reports Server (NTRS)

    Rogers, J. F.

    1975-01-01

    The Quartz-Crystal Microbalance Experiment provided data on the possible return of contaminants to the exterior surfaces of the spacecraft. The experiment measures the change in resonant frequency of the crystal due to deposition of material on the surface. There has been no mass accretion corresponding to the firing of hydrazine thrusters to unload the spacecraft momentum wheels. There have been accretions corresponding to the firing of the cesium ion engines.

  17. Error analysis of quartz crystal resonator applications

    SciTech Connect

    Lucklum, R.; Behling, C.; Hauptmann, P.; Cernosek, R.W.; Martin, S.J.

    1996-12-31

    Quartz crystal resonators in chemical sensing applications are usually configured as the frequency determining element of an electrical oscillator. By contrast, the shear modulus determination of a polymer coating needs a complete impedance analysis. The first part of this contributi