Sample records for hydrothermal vent site

  1. Life at Hydrothermal Vents

    NSDL National Science Digital Library

    Sohmer, Rachel.

    2002-01-01

    The first Web site is a NOVA Online Adventure from PBS (1). Into the Abyss decribes the "pitch darkness, poison gas, heavy metals, extreme acidity, and enormous pressure" found at hydrothermal vents, and offers a look at bizarre and fascinating creatures found in this environment. The next Web site from Exploring Earth, an online earth sciences text book, contains video clips taken during research expeditions along the Juan de Fuca Ridge (2). Ocean AdVENTure, a ThinkQuest Web site, offers a comprehensive and well-designed introduction to hydothermal vents from research tools to fauna to unsolved mysteries and more (3). Visitors can choose their own scientific adVENTure to explore hydrothermal vents in this interactive feature from the University of Washington School of Oceonagraphy Exploraquarium (4). Dive and Discover is "an interactive distance learning Web site designed to immerse you in the excitement of discovery and exploration of the deep seafloor." This Web site (5) extends a virtual invitation to join scientists aboard research cruises to the depth of the Pacific and Indian Oceans, providing daily logs, video, and other features for each expedition. The next Web site from the University of California-Berkeley offer a closer look at the "strange tube-dwelling worm" phylum found only near hydrothermal vents (6). Creature Features, provided by the University of Delaware Graduate College of Marine Science, contains descriptions and video clips of tubeworms, vent crabs, Pompeii crabs, and ancient bacteria found at deep sea vents (7). The last Web site (8) is a transcript of a June 1997 PBS NewsHour interview with science writer William Broad. Broad discusses his book The Universe Below: Discovering the Secrets of the Deep Sea, and relates the exciting opportunities for scientific exploration of the sea floor made possible by the end of the Cold War.

  2. Dive and Discover's Deeper Discovery: Hydrothermal Vents

    NSDL National Science Digital Library

    Dive and Discover is an interactive distance learning web site designed to immerse you in the excitement of discovery and exploration of the deep seafloor. On this particular website, Dive and Discover takes you on a deeper discovery of hydrothermal vents. This site features an introduction to hydrothermal vent systems, including vent basics, vents around the world, chemistry, boiling points, interactive diagrams, videos, a quiz, and links to selected Dive and Discover hydrothermal vent-related seafloor expeditions. This web page also provides links to other Deeper Discovery topics, Dive and Discover seafloor expeditions, a teacher's page, and further Dive and Discover information.

  3. Expansion of the geographic distribution of a novel lineage of O-Proteobacteria to a hydrothermal vent site on

    E-print Network

    Reysenbach, Anna-Louise

    , sediments and animal surfaces [1]. The Bacteria and Archaea cultured from vent £uids and sul¢de chimneys. The similarity between phylotypes identified from Atlantic and Pacific deep-sea hydrothermal vent sites indicates communities that include Archaea and Q-, N-, and O-Proteobacteria [14,15]. The majority of the microorganisms

  4. Microbial Utilization of Naturally Occurring Hydrocarbons at the Guaymas Basin Hydrothermal Vent Site

    PubMed Central

    Bazylinski, Dennis A.; Wirsen, Carl O.; Jannasch, Holger W.

    1989-01-01

    The Guaymas Basin (Gulf of California; depth, 2,000 m) is a site of hydrothermal activity in which petroliferous material is formed by thermal alteration of deposited planktonic and terrestrial organic matter. We investigated certain components of these naturally occurring hydrocarbons as potential carbon sources for a specific microflora at these deep-sea vent sites. Respiratory conversion of [1-14C]hexadecane and [1(4,5,8)-14C]naphthalene to 14CO2 was observed at 4°C and 25°C, and some was observed at 55°C, but none was observed at 80°C. Bacterial isolates were capable of growing on both substrates as the sole carbon source. All isolates were aerobic and mesophilic with respect to growth on hydrocarbons but also grew at low temperatures (4 to 5°C). These results correlate well with previous geochemical analyses, indicating microbial hydrocarbon degradation, and show that at least some of the thermally produced hydrocarbons at Guaymas Basin are significant carbon sources to vent microbiota. PMID:16348045

  5. The Discovery of Marine Hydrothermal Vents

    NSDL National Science Digital Library

    OceanLink

    As part of OceanLink, a website dedicated to ocean education, this site gives an overview of the discovery, geology and ecology of marine hydrothermal vents. The site also provides a menu of links to access other OceanLink pages for further ocean-related information.

  6. Mystery of the Megaplume: Hydrothermal Vent Chemistry

    NSDL National Science Digital Library

    In this lesson, students will investigate hydrothermal vents to see how the chemistry of the water they emit provides clues to the location of the vents. They should be able to describe hydrothermal vents and characterize vent plumes in terms of physical and chemical properties; describe data gathering operations in which a towed instrument package ("tow-yo") measures conductivity, temperature, and depth; and interpret temperature anomaly data to recognize a plume emanating from a hydrothermal vent.

  7. Mantle to hydrothermal vent sites of the Southern Mariana Trough back-arc Basin: Results from the Taiga Project

    NASA Astrophysics Data System (ADS)

    Seama, N.; Okino, K.; Nogi, Y.; Sato, T.; Matsuno, T.; Yoshikawa, S.; Mochizuki, N.; Shinohara, M.

    2012-12-01

    The southern Mariana Trough back-arc basin shows an EPR type axial relief in morphology and constant low mantle Bouguer anomaly along the spreading axis (Kitada et al., 2006), suggesting abundance of magma supply, even though the full spreading rate of 40 km/Myr is categorized as slow spreading. Further, five hydrothermal vent sites exist within 5 km near the spreading axis at 13 N; two sites on the spreading axis, one site at the eastern foot of the axial high, and two sites on an off-axis knoll. We selected this area as one of three integrated target sites for the Taiga Project, and we conducted series of JAMSTEC research cruises for four different types of geophysical surveys, together with dive observation and samplings by the submersible Shinkai6500. The geophysical surveys consists of 1) a marine magnetotelluric (MT) survey of a 130 km length transect across the spreading axis using 10 ocean bottom electro-magnetometers, 2) a 15 km scale seismic reflection/refraction survey and seismicity observation using 9 ocean bottom seismometers (OBS), 3) near-bottom acoustic and magnetic mapping around all the hydrothermal sites using the AUV Urashima, and 4) a magnetometric resistivity (MMR) survey around the on-axis hydrothermal sites. Two-dimensional electrical resistivity structure of the upper mantle from the MT analysis shows highly asymmetry, which may be affected by hydration driven by water release from the subducting slab; that may result in abundant magma supply to support EPR type axial morphology. Three months OBS observation shows that the seismicity near the hydrothermal vent sites is very low, suggesting that hydrothermal activities are not related to tectonic stress. Moreover, the morphology of the mound and knoll near the three off-axis hydrothermal sites shows undeformed features without any faults, suggesting that their formation is closely related to an off-axis magma upwelling system rather than fault systems. The two on-axis hydrothermal sites (the Yamanaka and Snail sites) are located near the end of a 4th order spreading segment based on the observed offset of the neo-volcanic zone, suggesting that they are possibly locally developed in association with diking events in the segment. But the diking is probably an episodic event to provide heat source for each hydrothermal site, because of very low seismicity. Clear magnetization low at four hydrothermal vent sites except the Yamanaka site suggests that the hydrothermal activities have continued for long enough periods in wide enough areas to reduce the magnetic remanence of the crustal rocks. The different feature in the Yamanaka site suggests its activity has been short and/or small. The MMR results support this difference because low electrical resistivity region with 200 meter scale is located only at the Snail site but not at the Yamanaka site; the low resistivity region is probably due to the existence of hot crustal pore fluid.

  8. Three-Dimensional Slowness Images of the Upper Crust Beneath the Lucky Strike Hydrothermal Vent Sites

    NASA Astrophysics Data System (ADS)

    Seher, T.; Crawford, W.; Singh, S.; Canales, J. P.; Combier, V.; Cannat, M.; Carton, H.; Dusunur, D.; Escartin, J.; Miranda, M. J.; Pouillet-Erguy, A.

    2005-12-01

    In June-July 2005 we carried out the SISMOMAR cruise, as part of the MOMAR project (Monitoring the Mid-Atlantic Ridge). Within this cruise, we conducted a 3D seismic reflection survey over an 18 km km x 3.8 km area covering both the Lucky Strike volcano and hydrothermal vents field. In order to have a full coverage inside the 3D box, shots continued for 2.25 km on either side of the box and extended out to the median valley bounding faults. To complement the streamer measurements 25 Ocean Bottom Seismometers (OBS) were placed in an 18 km x 18 km area. 11 OBS positions lie inside the 3D box and can be used to determine a very detailed image of the 3D velocity structure beneath the Lucky Strike volcano and hydrothermal vents field. For the 3D box a tuned array of 14 air guns (2600 cubic inches) was fired at an interval of 37.5 m for a total of 39 lines. We will present the first results of the OBS measurements near the Lucky Strike volcano. As a first step towards a joint 3D travel time and slowness (the inverse of velocity at turning depth) tomography, we present the 3D slowness function (latitude, longitude, offset), which can be considered as a 3D brute stack velocity image of the sub-surface (c.f. Barton and Edwards, 1999). The presence of fluid in the upper crust due to hydrothermal circulation should appear as a low velocity anomaly beneath the hydrothermal vents. In the next step the OBS measurements will be used to corroborate the reflection images of layer 2A observed in the streamer data for the 3D box. The OBS inside the 3D box recorded turning ray arrivals from the upper crust at a very fine sampling interval (37.5 m x 100 m) over a large azimuth. This provides the unique opportunity for jointly inverting travel time and slowness. Hence the measurements contain information on local gradients and should provide a very detailed velocity model of the subsurface, including information on hydrothermal systems and a possilbe anisotropy (e.g. Cherret and Singh, 1999). References: P. Barton, R. Edwards: Velocity imaging by tau-p transformation, LITHOS Science Report, 1999, 1, 67-75. A. Cherrett, S. Singh: 3D anisotropic models from multi-component data, LITHOS Science Report, 1999, 1, 29-34.

  9. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Kawagucci, S.; Miyazaki, J.; Watsuji, T.; Ishibashi, J.; Yamamoto, H.; Nozaki, T.; Kashiwabara, T.; Shibuya, T.

    2012-12-01

    In 2010, IODP Expedition 331 was conducted in the Iheya North Field, the Okinawa Trough and drilled several sites in hydrothermally active subseafloor. In addition, during the IODP Expedition 331, four new hydrothermal vents were created. These post-drilling artificial hydrothermal vents provide excellent opportunities to investigate the physical, chemical and microbiological characteristics of the previously unexplored subseafloor hydrothermal fluid reservoirs, and to monitor and estimate how the anthropogenic drilling behaviors affect the deep-sea hydrothermal vent ecosystem. We were very much interested in the difference of hydrothermal fluid chemistry between the natural hydrothermal vents and the artificial hydrothermal vents. The IODP porewater chemistry of the cores pointed to the density-driven stratification of the phase-separated hydrothermal fluids and the natural vent fluids were likely derived only from the shallower vapor-enriched phases. However, the artificial hydrothermal vents had deeper fluid sources in the subseafloor hydrothermal fluid reservoirs composed of vapor-lost (Cl-enriched) phases. The fluids from the artificial hydrothermal vents were sampled by ROV at 5, 12 and 18 months after the IODP expedition. The artificial hydrothermal vent fluids were slightly enriched with Cl as compared to the natural hydrothermal vent fluids. Thus, the artificial hydrothermal vents successfully entrained the previously unexplored subseafloor hydrothermal fluids. The newly created hydrothermal vents also hosted the very quickly grown, enormous chimney structures, of which mineral compositions were highly variable among the vents. However, the quickly grown C0016B and C0016D vent chimneys were found to be typical Kuroko ore even though the chimney growth rates in the artificial vents were extremely faster than those in the natural vents. In addition, the IODP drilling operation not only created new hydrothermal vents by deep drilling but also induced the newly generated diffusing flows by many short drillings in the seafloor where no apparent hydrothermal fluid discharge was observed (e.g., C0013 and C0014). The new widespread diffusing flows altered the habitat condition, and provided post-drilling propagation and colonization of indigenous hydrothermal chemosynthetic animals. Interestingly, the first colonizers were shrimps and polychaeta, which were identified at C0013 and C0016 in 6 months after the IODP expedition, while the most drastic propagation and colonization were conducted by the most predominant chemosynthetic animal species in the Iheya North field, vent crab Shinkaia crosnieri. It appeared at C0014 site (500 m distant from their large colonies) in a year and dominated the new diffusing flow sites. It seems likely that IODP drilling operation and the post-drilling hydrothermal activities would have an impact on increasing biomass production and widespread propagation of hydrothermal vent ecosystem in the Iheya North field.

  10. Arsenic speciation in shrimp and mussel from the Mid-Atlantic hydrothermal vents

    Microsoft Academic Search

    Erik H. Larsen; Christophe R. Quétel; Riansares Munoz; Aline Fiala-Medioni; Olivier F. X. Donard

    1997-01-01

    Specimens of shrimp (Rimicaris exoculata) and mussel (Bathymodiolus puteoserpentis) were collected 3500 m below the ocean surface at the hydrothermal vents of the mid-Atlantic Ridge (TAG and Snake Pit sites, respectively). Arsenic, a potentially toxic element, is among the substances emitted by the hydrothermal vents. The hydrothermal vent shrimp, which are known to be a primary consumer of the primary

  11. Epsilon-Proteobacterial Dominance in Microbial Mats Located at the Champagne Hydrothermal Vent Site on NW Eifuku Volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Davis, R. E.; Moyer, C. L.

    2004-12-01

    By far the most extensive hydrothermal vent related microbial mats discovered during the 2004 Ring of Fire cruise were those found at NW Eifuku Volcano located along the Mariana Island Arc. The Champagne Hydrothermal Vent Site located near the summit of NW Eifuku Volcano (1,650 meters below sea level) consists of multiple white smoker chimneys venting highly gaseous fluids (Max temp ˜103° C). Large amounts of liquid carbon dioxide bubbles and clathrates were observed exuding from the seafloor contributing to an extremely low Eh (i.e., highly reducing conditions) and giving the location its name. Luxuriant white flocculent mats were discovered and collected in and around the Champagne Vent Site in April, 2004. Molecular analyses of small subunit ribosomal DNA (SSU rDNA) from these mats using both T-RFLP community fingerprinting and PCR-generated clone library analyses showed that the bacterial community is dominated by ? -Proteobacteria represented by the thiovulum-group along with lesser levels of Thermotogales represented by the thermotoga-group (as determined using the Ribosomal Database Project). Initial estimates of the relative abundance of phylotypes place the thiovulum-group at 50% and 67%, and the thermotoga-group at 18% and 9%, for T-RFLP and clone library methods, respectively. Phylogenetic analysis of SSU rDNA sequence data also suggests that these most dominant phylotypes are most likely chemoautotrophic and involved in sulfur-cycling. Due to the extreme nature of their habitat, many of these bacteria often grow where no macrofauna are present. However, on the edges of these areas, once sufficient mixing has taken place, abundant macrofauna can be seen vigorously feeding upon these microbial mats. This further demonstrates the transfer of chemosynthetically-derived energy up the food chain supporting large communities of macrofauna. Similar types of microbial mats have been observed at Axial Volcano on the Juan de Fuca Ridge, where they were dominated by a diverse community of ? -Proteobacteria known to both oxidize and reduce multiple sulfur compounds.

  12. The NeMO Explorer Web Site: Interactive Exploration of a Recent Submarine Eruption and Hydrothermal Vents, Axial Volcano, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.; Embley, R. W.

    2001-12-01

    To help visualize the submarine volcanic landscape at NOAA's New Millennium Observatory (NeMO), we have created the NeMO Explorer web site: http://www.pmel.noaa.gov/vents/nemo/explorer.html. This web site takes visitors a mile down beneath the ocean surface to explore Axial Seamount, an active submarine volcano 300 miles off the Oregon coast. We use virtual reality to put visitors in a photorealistic 3-D model of the seafloor that lets them view hydrothermal vents and fresh lava flows as if they were really on the seafloor. At each of six virtual sites there is an animated tour and a 360o panorama in which users can view the volcanic landscape and see biological communities within a spatially accurate context. From the six sites there are hyperlinks to 50 video clips taken by a remotely operated vehicle. Each virtual site concentrates on a different topic, including the dynamics of the 1998 eruption at Axial volcano (Rumbleometer), high-temperature hydrothermal vents (CASM and ASHES), diffuse hydrothermal venting (Marker33), subsurface microbial blooms (The Pit), and the boundary between old and new lavas (Castle vent). In addition to exploring the region geographically, visitors can also explore the web site via geological concepts. The concepts gallery lets you quickly find information about mid-ocean ridges, hydrothermal vents, vent fauna, lava morphology, and more. Of particular interest is an animation of the January 1998 eruption, which shows the rapid inflation (by over 3 m) and draining of the sheet flow. For more info see Fox et al., Nature, v.412, p.727, 2001. This project was funded by NOAA's High Performance Computing and Communication (HPCC) and Vents Programs. Our goal is to present a representative portion of the vast collection of NOAA's multimedia imagery to the public in a way that is easy to use and understand. These data are particularly challenging to present because of their high data rates and low contextual information. The 3-D models create effective context and new video technology allows us to present good quality video at lower data rates. Related curriculum materials for middle- and high-school students are also available from the NeMO web site at http://www.pmel.noaa.gov/vents/nemo/education.html. >http://www.pmel.noaa.gov/vents/nemo/explorer.html

  13. Volatile Chemistry at Lau Basin Hydrothermal Sites: Basin-Wide Trends of Slab Carbonate Influence and Suggestions of Abiotic Methane Oxidation at the Mariner Vent Site

    NASA Astrophysics Data System (ADS)

    Proskurowski, G.; Seewald, J. S.; Reeves, E.; McCollom, T. M.; Lupton, J.; Sylva, S.; Tivey, M. K.

    2007-12-01

    The Lau Basin is actively spreading along three major spreading centers: the Central Lau Spreading Center (CLSC) in the north, the Eastern Lau Spreading Center (ELSC), and the Valu Fa Ridge (VFR) to the south. A southward progression along these spreading centers reveals decreasing spreading rates, decreasing distance to the arc, and a corresponding increase in the influence of the subducted Pacific plate slab (1, 2). Analysis of the d13CO2 and He data from volatile samples collected during a 2005 expedition to six hydrothermal sites along the ELSC and VFR reveals a systematic and continuous relationship between latitude (distance from the arc) and the arc-derived component of the signal. This smooth and linear transition from arc-like hydrothermal volatiles in the south to more MORB-like hydrothermal volatiles in the north contrasts the interpretation from the dredged geologic record that suggests an extremely sharp andesite-basalt transition occurring along the southern portion of the ESLC (3). The Mariner vent site, the southernmost high-temperature site visited in 2005, exhibits an arc-influenced volatile chemistry that is different from the other Lau Basin sites. The ESLC and northern VFR vents are characterized by CO2 concentrations ranging from 1-12 mmol/kg while the Mariner site has higher CO2 values, up to 60 mmol/kg. The opposite trend is seen in the methane concentrations as the northern vents range from 25-55 ?mol/kg while Mariner methane values are much lower, at 5-7 ?mol/kg. Isotopic results also illustrate the unique chemistry of the Mariner site: d13CO2 values are in the typical MOR-hydrothermal range of -7 to -4 per mil at northern vents and near 0 per mil at Mariner, and d13CH4 values are in the typical MOR-hydrothermal range of - 25 to -20 per mil at northern vents, and highly enriched, -7 to +0.7 per mil at Mariner. The CO2/3He ratio and the d13CO2 values at Mariner suggest that 80 percent of the CO2 at Mariner is sourced from carbonates, presumably from authigenically formed carbonates in the downgoing slab. The low CH4 concentrations and uniquely enriched d13CH4 signatures at Mariner are hypothesized to be the result of abiotic methane oxidation at hydrothermal temperatures. 1. Jacobs, A.M., A. J. Harding, G. M. Kent, Earth and Planetary Science Letters 259, 239 (2007). 2. Martinez, F., B. Taylor, E. T. Baker, J. A. Resing, S. L. Walker, Earth and Planetary Science Letters 245, 655 (2006). 3. Bezos, A., et al., Eos, Transactions, American Geophysical Union 86, Abstract V41C (2005).

  14. Rapid Microbial Production of Filamentous Sulfur Mats at Hydrothermal Vents

    PubMed Central

    Taylor, Craig D.; Wirsen, Carl O.; Gaill, Françoise

    1999-01-01

    During recent oceanographic cruises to Pacific hydrothermal vent sites (9°N and the Guaymas Basin), the rapid microbial formation of filamentous sulfur mats by a new chemoautotrophic, hydrogen sulfide-oxidizing bacterium was documented in both in situ and shipboard experiments. Observations suggest that formation of these sulfur mats may be a factor in the initial colonization of hydrothermal surfaces by macrofaunal Alvinella worms. This novel metabolic capability, previously shown to be carried out by a coastal strain in H2S continuous-flow reactors, may be an important, heretofore unconsidered, source of microbial organic matter production at deep-sea hydrothermal vents. PMID:10224031

  15. Bacterial Diets of Primary Consumers at Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Govenar, B.; Shank, T. M.

    2008-12-01

    Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets of these four hydrothermal vent gastropods may reflect microhabitat conditions where these species typically occur or where they were located at the time of the collection. Results from this work provide insights to the "bottom-up" regulation of primary consumers and tracking chemical fluxes through biological communities at hydrothermal vents.

  16. Dispatch from the Deep: Hydrothermal Vent Formation

    NSDL National Science Digital Library

    This article discusses how hydrothermal vents are formed and why scientists monitor minute temperature changes around them. It details the writer's personal account of preparing temperature probes to be deployed for a year-long study, an explanation of deep sea vents and their hydrothermal nature, and why they seem to spew black smoke. The thermometers prepared by the writer help monitor the currents that pull the hot chimney water into the cold ocean to measure how fast it is cooled off and mixed. This information is used in the study of life at the vents and also to monitor changes in the effluent and to examine, over time, the chemistry of the mineral-rich waters that emerge from these vents.

  17. New Type of Hydrothermal Vents Found

    NSDL National Science Digital Library

    Walker, Alex

    This CNN news article discusses the discovery of a new class of hydrothermal vents in the mid-Atlantic Ocean, called the Lost City, formed by heat generated when seawater reacts with mantle rocks rather than by volcanic activity. The article also notes the importance of the discovery to microbiologists, as some of these new vents were inhabited by single-cell organisms called thermophiles. Links to other CNN.com articles and resources are provided as well.

  18. Hydrothermal vents in Lake Tanganyika, East African, Rift system

    NASA Astrophysics Data System (ADS)

    Tiercelin, Jean-Jacques; Pflumio, Catherine; Castrec, Maryse; Boulégue, Jacques; Gente, Pascal; Rolet, Joël; Coussement, Christophe; Stetter, Karl O.; Huber, Robert; Buku, Sony; Mifundu, Wafula

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 °C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza,active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO3-enriched fluid similar to the NaHCO3 thermal fluids from lakes Magadi and Bogoria in the eastern branch off the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction off 219 and 179 °C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130 °N normal-dextral faults that intersect the north- south major rift trend. The source of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza.

  19. Evidence for Hydrothermal Vents as "Biogeobatteries" (Invited)

    NASA Astrophysics Data System (ADS)

    Nielsen, M. E.; Girguis, P. R.

    2010-12-01

    Hydrothermal vents are unique systems that play an important role in oceanic biogeochemical cycles. As chemically reduced hydrothermal fluid mixes with cold oxic seawater, minerals precipitate out of solution resulting in chimney structures composed largely of metal sulfides and anhydrite. Pyrite, which is a natural semi-conductor, is the primary sulfide mineral, but other minerals within chimneys are also conductive (e.g. chalcopyrite, wurtzite, and some iron oxides). Sulfide chimneys are also known to host an extensive endolithic microbial community. Accordingly, submarine hydrothermal systems appear to be examples of biogeobatteries, wherein conductive mineral assemblages span naturally occuring redox gradients and enable anaerobic microbes to access oxygen as an oxidant via extracellular electron transfer (or EET). To test this hypothesis, we ran a series of electrochemical laboratory experiments in which pyrite was used as an anode (in a vessel flushed with hydrothermal-like fluid). When placed in continuity with a carbon fiber cathode, pyrite was found to accept and conduct electrons from both abiotic and biological processes (microbial EET). Specifically, electrical current increased 4-fold (5 nA/m2 to 20 nA/m2) in response to inoculation with a slurry prepared from a hydrothermal vent sample. Inspection of the pyrite anode with SEM revealed ubiquitous coverage by microbes. DNA was extracted from the anodes and the inoculum, and was subjected to pyrosequencing to examine prokaryotic diversity. These data suggest that key microbial phylotypes were enriched upon the pyrite, implicating them in EET. In addition, we deployed an in situ experiment based on microbial fuel cell architecture with a graphite anode inserted into a vent wall coupled to a carbon fiber cathode outside the vent. We observed current production over the course of one year, implying microbial EET in situ. Via pyrosequencing, we observed that the microbial community on the anode was significantly enriched in gammaproteobacteria (with respect to the community on an inert substrate deployed in the same vent, which was dominated by epsilonproteobacteria). The observation of electrical current and the enrichment of distinct microbial communities in both laboratory and in situ experiments provide evidence that hydrothermal vents enable microbes capable of EET to access molecular oxygen in the surrounding seawater as an oxidant. This geochemical and microbial phenomenon may influence the chemistry and mineralogy of vent systems, resulting in localized variations in pH that can influence metal mobilization on a global scale.

  20. Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Lane, A. L.; Bhartia, R.; Hug, W. H.

    2004-01-01

    We have developed a non-contact, optical life detection instrument that can detect organic chemical biosignatures in a number of different environments, including dry land, shallow aqueous, deep marine or in ice. Hence, the instrument is appropriate as a biosignature survey tool both for Mars exploration or in situ experiments in an ice-covered ocean such as one might wish to explore on Europa. Here, we report the results we obtained on an expedition aboard the Russian oceanographic vessel Akademik Mstislav Keldysh to hydrothermal vent sites in the Pacific Ocean using our life detection instrument MCDUVE, a multichannel, deep ultraviolet excitation fluorescence detector. MCDUVE detected organic material distribution on rocks near the vent, as well as direct detection of organisms, both microbial and microscopic. We also were able to detect organic material issuing directly from vent chimneys, measure the organic signature of the water column as we ascended, and passively observe the emission of light directly from some vents.

  1. High-Resolution Photo-Mosaicing of the Rosebud Hydrothermal Vent Site and Surrounding Lava Flows, Galapagos Rift 86W: Techniques and Interpretations

    NASA Astrophysics Data System (ADS)

    Rzhanov, Y.; Mayer, L.; Fornari, D.; Shank, T.; Humphris, S.; Scheirer, D.; Kinsey, J.; Whitcomb, L.

    2003-12-01

    The Rosebud hydrothermal vent field was discovered in May 2002 in the Galapagos Rift near 86W during a series of Alvin dives and ABE autonomous vehicle surveys. Vertical-incidence digital imaging using a 3.1 Mpixel digital camera and strobe illumination from altitudes of 3-5m was carried out during the Alvin dives. A complete survey of the Rosebud vent site was carried out on Alvin Dive 3790. Submersible position was determined by post-cruise integration of 1.2 MHz bottom-lock Doppler sonar velocity data logged at 5Hz, integrated with heading and attitude data from a north-seeking fiber-optic gyroscope logged at 10Hz, and initialized with a surveyed-in long-baseline transponder navigation system providing geodetic position fixes at 15s intervals. The photo-mosaicing process consisted of three main stages: pre-processing, pair-wise image co-registration, and global alignment. Excellent image quality allowed us to avoid lens distortion correction, so images only underwent histogram equalization. Pair-wise co-registration of sequential frames was done partially automatically (where overlap exceeded 70 percent we employed a frequency-domain based technique), and partially manually (when overlap did not exceed 15 percent and manual feature extraction was the only way to find transformations relating the frames). Partial mosaics allowed us to determine which non-sequential frames had substantial overlap, and the corresponding transformations were found via feature extraction. Global alignment of the images consisted of construction of a sparse, nonlinear over-constrained system of equations reflecting positions of the frames in real-world coordinates. This system was solved using least squares, and the solution provided globally optimal positions of the frames in the overall mosaic. Over 700 images were mosaiced resulting in resolution of ~3 mm per pixel. The mosaiced area covers approximately 50 m x 60 m and clearly shows several biological zonations and distribution of lava flow morphologies, including what is interpreted as the contact between older lobate lava and the young sheet flow that hosts Rosebud vent communities. Recruitment of tubeworms, mussels, and clams is actively occurring at more than five locations oriented on a NE-SW trend where vent emissions occur through small cracks in the sheet flow. Large-scale views of seafloor hydrothermal vent sites, such as the one produced for Rosebud, are critical to properly understanding spatial relationships between hydrothermal biological communities, sites of focused and diffuse fluid flow, and the complex array of volcanic and tectonic features at mid-ocean ridge crests. These high-resolution perspectives are also critical to time-series studies where quantitative documentation of changes can be related to variations in hydrothermal, magmatic and tectonic processes.

  2. Biogeography of Mariana Trough hydrothermal vent communities

    NASA Astrophysics Data System (ADS)

    Hessler, Robert R.; Lonsdale, Peter F.

    1991-02-01

    Although the Mariana Trough back-arc basin contains a spreading center geographically remote from the global mid-ocean ridge system, 59% of the 27 identified Mariana vent species (out of a total 30-31 species) show affinity at a generic level with the fauna of mid-ocean ridge vents and suggest a history of interchange between them. Other western Pacific back-arc spreading centers harbor vent communities, and preliminary evidence indicates the likelihood that there has been dispersal within this entire back-arc complex. The segments of the global mid-ocean ridge system that are closest to this western Pacific complex are the Juan de Fuca Ridge, 7600 km to the northeast, and the Southeast Indian Ridge, 3200 km to the south. However, two now-extinct portions of the mid-ocean ridge system were closer and could have allowed comparatively easy interchange 43 and 55 million years ago. Hydrothermal vents at isolated volcanoes, cold-water seeps and rotting whale carcasses are potential 'stepping stones' that might bridge larger gaps; however, there is little information to document their relative importance.

  3. Explore life at a hydrothermal vent

    NSDL National Science Digital Library

    TERC. Center for Earth and Space Science Education

    2003-01-01

    These video clips introduce Earth science students to a variety of creatures that inhabit hydrothermal vents on the ocean floor. The introduction describes how scientists captured the images using submarines and remote cameras. The first video is a three-dimensional animation that shows the landscape of the ocean floor. Five live-action clips show sulfide particles erupting from the vents, tube worms retreating from the camera, and plant-like sulfide worms that appear to be fighting. Students also see close-up views of an octopus eye and the tiny pandorae worms that live on the larger tube worms. A descriptive caption accompanies each video. Movie controls allow students to repeat, pause, or step through the animation, which can give students more time to analyze the images. Copyright 2005 Eisenhower National Clearinghouse

  4. Hydrothermal vents is Lake Tanganyika, East African Rift system

    SciTech Connect

    Tiercelin, J.J. [Universite de Bretagne Occidentale, Brest (France)] [Universite de Bretagne Occidentale, Brest (France); Pflumio, C.; Castrec, M. [Universite Paris VI, Paris (France)] [and others] [Universite Paris VI, Paris (France); and others

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  5. Hydrogen is an energy source for hydrothermal vent symbioses

    Microsoft Academic Search

    Jillian M. Petersen; Frank U. Zielinski; Thomas Pape; Richard Seifert; Cristina Moraru; Rudolf Amann; Stephane Hourdez; Peter R. Girguis; Scott D. Wankel; Valerie Barbe; Eric Pelletier; Dennis Fink; Christian Borowski; Wolfgang Bach; Nicole Dubilier

    2011-01-01

    The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ

  6. Dispersal at hydrothermal vents: a summary of recent progress

    Microsoft Academic Search

    Paul A. Tyler; Craig M. Young

    2003-01-01

    The discovery of hydrothermal vents along the Galapagos Rift in 1977 opened up one of the most dynamic and productive research themes in marine biology. In the intervening 25 years, hydrothermal vent faunas have been described from the eastern, northeastern and western Pacific, the mid-Atlantic Ridge and the Indian Ocean in the region of the Rodriguez Triple Junction. In addition,

  7. Hydrothermal vents in Lake Tanganyika, East African, Rift system

    Microsoft Academic Search

    Jean-Jacques Tiercelin; Catherine Pflumio; Maryse Castrec; Jacques Boulégue; Pascal Gente; Joël Rolet; Christophe Coussement; Karl O. Stetter; Robert Huber; Sony Buku; Wafula Mifundu

    1993-01-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth

  8. Hydrothermal vents is Lake Tanganyika, East African Rift system

    Microsoft Academic Search

    J. J. Tiercelin; C. Pflumio; M. Castrec

    1993-01-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth

  9. Population structure and reproductive biology of two sympatric hydrothermal vent polychaetes, Paralvinella pandorae and P. palmiformis

    Microsoft Academic Search

    D. McHugh

    1989-01-01

    The alvinellid polychaetes Paralvinella pandorae Desbruyères and Laubier and P. palmiformis Desbruyères and Laubier occur at deep-sea hydrothermal vents along the Juan de Fuca and Explorer Ridges in the northeast Pacific Ocean. The population structure and reproductive biology of both species were studied in samples taken from three vent sites during six cruises in 1983 and 1984. Size-frequency analyses of

  10. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean.

    PubMed

    Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W

    2003-01-16

    Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges. PMID:12529639

  11. Deep-Sea Hydrothermal-Vent Sampler

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Venkateswaran, Kasthur; Matthews, Jaret B.

    2008-01-01

    An apparatus is being developed for sampling water for signs of microbial life in an ocean hydrothermal vent at a depth of as much as 6.5 km. Heretofore, evidence of microbial life in deep-sea hydrothermal vents has been elusive and difficult to validate. Because of the extreme conditions in these environments (high pressures and temperatures often in excess of 300 C), deep-sea hydrothermal- vent samplers must be robust. Because of the presumed low density of biomass of these environments, samplers must be capable of collecting water samples of significant volume. It is also essential to prevent contamination of samples by microbes entrained from surrounding waters. Prior to the development of the present apparatus, no sampling device was capable of satisfying these requirements. The apparatus (see figure) includes an intake equipped with a temperature probe, plus several other temperature probes located away from the intake. The readings from the temperature probes are utilized in conjunction with readings from flowmeters to determine the position of the intake relative to the hydrothermal plume and, thereby, to position the intake to sample directly from the plume. Because it is necessary to collect large samples of water in order to obtain sufficient microbial biomass but it is not practical to retain all the water from the samples, four filter arrays are used to concentrate the microbial biomass (which is assumed to consist of particles larger than 0.2 m) into smaller volumes. The apparatus can collect multiple samples per dive and is designed to process a total volume of 10 L of vent fluid, of which most passes through the filters, leaving a total possibly-microbe-containing sample volume of 200 mL remaining in filters. A rigid titanium nose at the intake is used for cooling the sample water before it enters a flexible inlet hose connected to a pump. As the water passes through the titanium nose, it must be cooled to a temperature that is above a mineral-precipitation temperature of 100 C but below the upper working temperature (230 C) of switching valves and tubes in the apparatus. The sample water then passes into a manifold tube, from whence the switching valves can direct the water through either a bypass tube or any one of the filter arrays, without contamination from a previous sample. Each filter array consists of series of filters having pore sizes decreasing in the direction of flow: 90-, 60-, 15-, and 7-micron prefilters and a large-surface-area 0.2-micron collection filter. All the filter taps are located between the intake and the bypass tube so that each time the bypass tube is used, the entire manifold tube is flushed as well.

  12. Geomicrobiology of Hydrothermal Vents in Yellowstone Lake: Phylogenetic and Functional Analysis suggest Importance of Geochemistry (Invited)

    NASA Astrophysics Data System (ADS)

    Inskeep, W. P.; Macur, R.; Jay, Z.; Clingenpeel, S.; Tenney, A.; Lavalvo, D.; Shanks, W. C.; McDermott, T.; Kan, J.; Gorby, Y.; Morgan, L. A.; Yooseph, S.; Varley, J.; Nealson, K.

    2010-12-01

    Yellowstone Lake (Yellowstone National Park, WY, USA) is a large, high-altitude, fresh-water lake that straddles the most recent Yellowstone caldera, and is situated on top of significant hydrothermal activity. An interdisciplinary study is underway to evaluate the geochemical and geomicrobiological characteristics of several hydrothermal vent environments sampled using a remotely operated vehicle, and to determine the degree to which these vents may influence the biology of this young freshwater ecosystem. Approximately six different vent systems (locations) were sampled during 2007 and 2008, and included water obtained directly from the hydrothermal vents as well as biomass and sediment associated with these high-temperature environments. Thorough geochemical analysis of these hydrothermal environments reveals variation in pH, sulfide, hydrogen and other potential electron donors that may drive primary productivity. The concentrations of dissolved hydrogen and sulfide were extremely high in numerous vents sampled, especially the deeper (30-50 m) vents located in the Inflated Plain, West Thumb, and Mary Bay. Significant dilution of hydrothermal fluids occurs due to mixing with surrounding lake water. Despite this, the temperatures observed in many of these hydrothermal vents range from 50-90 C, and elevated concentrations of constituents typically associated with geothermal activity in Yellowstone are observed in waters sampled directly from vent discharge. Microorganisms associated with elemental sulfur mats and filamentous ‘streamer’ communities of Inflated Plain and West Thumb (pH range 5-6) were dominated by members of the deeply-rooted bacterial Order Aquificales, but also contain thermophilic members of the domain Archaea. Assembly of metagenome sequence from the Inflated Plain vent biomass and to a lesser extent, West Thumb vent biomass reveal the importance of Sulfurihydrogenibium-like organisms, also important in numerous terrestrial geothermal outflow channels of YNP. Analysis of functional genes present in the consensus metagenome sequence representing these populations indicate metabolic potential for oxidation of reduced sulfur and hydrogen, both of which are present at high concentrations in these vent ecosystems. Metagenome sequence of biomass associated with sediments from hydrothermal vents at Mary Bay (50 m depth) suggest greater archaeal and bacterial diversity in this environment, which may be due to higher concentrations of hydrogen, iron, and manganese measured in these environments. Results from metagenome sequence and modest 16S rRNA gene surveys from hydrothermal vent biomass indicate that several groups of novel thermophilic archaea inhabit these sites, and in many cases, are represented by organisms not found in YNP terrestrial geothermal environments that have been characterized to date. The hydrothermal vents from Inflated Plain and West Thumb indicate a linkage between various geochemical attributes (sulfide, hydrogen) and the metabolic potential associated with dominant Aquificales populations present in these communities.

  13. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre.

    PubMed

    Connelly, Douglas P; Copley, Jonathan T; Murton, Bramley J; Stansfield, Kate; Tyler, Paul A; German, Christopher R; Van Dover, Cindy L; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-Ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B; Plouviez, Sophie; Sands, Carla; Searle, Roger C; Stevenson, Peter; Taws, Sarah; Wilcox, Sally

    2012-01-01

    The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300?m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960?m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100?m, consistent with >400?°C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents. PMID:22233630

  14. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre

    PubMed Central

    Connelly, Douglas P.; Copley, Jonathan T.; Murton, Bramley J.; Stansfield, Kate; Tyler, Paul A.; German, Christopher R.; Van Dover, Cindy L.; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B.; Plouviez, Sophie; Sands, Carla; Searle, Roger C.; Stevenson, Peter; Taws, Sarah; Wilcox, Sally

    2012-01-01

    The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300?m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960?m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100?m, consistent with >400?°C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents. PMID:22233630

  15. Hydrothermal vents of Yellowstone Lake, Yellowstone National Park, Wyoming

    SciTech Connect

    Kaplinski, M.A.; Morgan, P. (Northern Arizona Univ., Flagstaff, AZ (United States). Geology Dept.)

    1993-04-01

    Hydrothermal vent systems within Yellowstone Lake are located within the Yellowstone caldera in the northeastern and West Thumb sections of the lake. The vent systems lie within areas of extremely high geothermal gradients (< 1,000 C/km) in the lake sediments and occur as clusters of individual vents that expel both hydrothermal fluids and gas. Regions surrounding the vents are colonized by unique, chemotropic biologic communities and suggest that hydrothermal input plays an important role in the nutrient dynamics of the lake's ecosystem. The main concentration of hydrothermal activity occurs in the northeast region of the main lake body in a number of locations including: (1) along the shoreline from the southern edge of Sedge Bay to the inlet of Pelican Creek; (2) the central portion of the partially submerged Mary Bay phreatic explosion crater, within deep (30--50 m) fissures; (3) along the top of a 3 km long, steep-sided ridge that extends from the southern border of Mary Bay, south-southeast into the main lake basin; and (4) east of Stevenson Island along the lower portion of the slope (50--107 m) into the lake basin, within an anastomosing series of north to northwest trending, narrow troughs or fissures. Hydrothermal vents were also located within, and surrounding the West Thumb of Yellowstone Lake, with the main concentration occurring the offshore of the West Thumb and Potts Geyser Basin. Hydrothermal vents in Yellowstone Lake occur along fractures that have penetrated the lake sediments or along the tops of ridges and near shore areas. Underneath the lake, rising hydrothermal fluids encounter a semi-permeable cap of lake sediments. Upwardly convecting hydrothermal fluid flow may be diverted by the impermeable lake sediments along the buried, pre-existing topography. These fluids may continue to rise along topography until fractures are encountered, or the lake sediment cover is thinned sufficiently to allow egress of the fluids.

  16. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems.

    PubMed

    Burcar, Bradley T; Barge, Laura M; Trail, Dustin; Watson, E Bruce; Russell, Michael J; McGown, Linda B

    2015-07-01

    Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys. Key Words: RNA world-Hydrothermal systems-Prebiotic chemistry-Nucleic acids-Mass spectrometry. Astrobiology 15, 509-522. PMID:26154881

  17. We're in Hot Water Now: Hydrothermal Vents

    NSDL National Science Digital Library

    National Geographic Xpeditions

    In this National Geographic lesson, students will use National Geographic's Yellowstone internet module to learn about the processes that drive geysers. The activity involves learning about hydrothermal vents and uniquely adapted animals that live near the vents with the aid of pictures and maps. The activity concludes with an opportunity to create an aquarium exhibit which showcases some of these animals and their special adaptations. The website also includes related links and extensions for the project.

  18. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents

    USGS Publications Warehouse

    Reysenbach, A.-L.; Liu, Y.; Banta, A.B.; Beveridge, T.J.; Kirshtein, J.D.; Schouten, S.; Tivey, M.K.; Von Damm, K. L.; Voytek, M.A.

    2006-01-01

    Deep-sea hydrothermal vents are important in global biogeochemical cycles, providing biological oases at the sea floor that are supported by the thermal and chemical flux from the Earth's interior. As hot, acidic and reduced hydrothermal fluids mix with cold, alkaline and oxygenated sea water, minerals precipitate to form porous sulphide-sulphate deposits. These structures provide microhabitats for a diversity of prokaryotes that exploit the geochemical and physical gradients in this dynamic ecosystem. It has been proposed that fluid pH in the actively venting sulphide structures is generally low (pH < 4.5), yet no extreme thermoacidophile has been isolated from vent deposits. Culture-independent surveys based on ribosomal RNA genes from deep-sea hydrothermal deposits have identified a widespread euryarchaeotal lineage, DHVE2 (deep-sea hydrothermal vent euryarchaeotic 2). Despite the ubiquity and apparent deep-sea endemism of DHVE2, cultivation of this group has been unsuccessful and thus its metabolism remains a mystery. Here we report the isolation and cultivation of a member of the DHVE2 group, which is an obligate thermoacidophilic sulphur- or iron-reducing heterotroph capable of growing from pH 3.3 to 5.8 and between 55 and 75??C. In addition, we demonstrate that this isolate constitutes up to 15% of the archaeal population, providing evidence that thermoacidophiles may be key players in the sulphur and iron cycling at deep-sea vents. ?? 2006 Nature Publishing Group.

  19. A deep sea Hydrothermal Vent Bio-sampler for large volume in-situ filtration of hydrothermal vent fluids

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Matthews, Jaret; Venkateswaran, Kasthuri; Bruckner, James; Basic, Goran; So, Edmond; Rivadeneyra, Cesar

    2005-01-01

    This paper provides a physical description of the current system, as well as a summary of the preliminary tests conducted in 2005: a pressure chamber test, a dive test in a 30 foot dive pool, and a dive operation at a hydrothermal vent off the northern coast of Iceland.

  20. Investigations of a novel fauna from hydrothermal vents along the Arctic Mid-Ocean Ridge (AMOR) (Invited)

    NASA Astrophysics Data System (ADS)

    Rapp, H.; Schander, C.; Halanych, K. M.; Levin, L. A.; Sweetman, A.; Tverberg, J.; Hoem, S.; Steen, I.; Thorseth, I. H.; Pedersen, R.

    2010-12-01

    The Arctic deep ocean hosts a variety of habitats ranging from fairly uniform sedimentary abyssal plains to highly variable hard bottoms on mid ocean ridges, including biodiversity hotspots like seamounts and hydrothermal vents. Deep-sea hydrothermal vents are usually associated with a highly specialized fauna, and since their discovery in 1977 more than 400 species of animals have been described. This fauna includes various animal groups of which the most conspicuous and well known are annelids, mollusks and crustaceans. The newly discovered deep sea hydrothermal vents on the Mohns-Knipovich ridge north of Iceland harbour unique biodiversity. The Jan Mayen field consists of two main areas with high-temperature white smoker venting and wide areas with low-temperature seepage, located at 5-700 m, while the deeper Loki Castle vent field at 2400 m depth consists of a large area with high temperature black smokers surrounded by a sedimentary area with more diffuse low-temperature venting and barite chimneys. The Jan Mayen sites show low abundance of specialized hydrothermal vent fauna. Single groups have a few specialized representatives but groups otherwise common in hydrothermal vent areas are absent. Slightly more than 200 macrofaunal species have been identified from this vent area, comprising mainly an assortment of bathyal species known from the surrounding area. Analysis of stable isotope data also indicates that the majority of the species present are feeding on phytodetritus and/or phytoplankton. However, the deeper Loki Castle vent field contains a much more diverse vent endemic fauna with high abundances of specialized polychaetes, gastropods and amphipods. These specializations also include symbioses with a range of chemosynthetic microorganisms. Our data show that the fauna composition is a result of high degree of local specialization with some similarities to the fauna of cold seeps along the Norwegian margin and wood-falls in the abyssal Norwegian Sea. Few species are common to both the deep and the shallow vents, but some gastropod species show a structured population difference between the sites. Our data indicate that there has been a migration of vent fauna into the Arctic Ocean from the Pacific Ocean rather than from the known vent sites further south in the Atlantic Ocean. The discovery and sampling of these new arctic vent fields provide unique data to further understand the migration of vent organisms and interactions between different deep sea chemosynthetic environments. Based on the high degree of local adaptation and specialization of fauna from the studied sites we propose the AMOR to be a new zoogeographical province for vent fauna.

  1. The isotopic composition of dissolved inorganic nitrogen in hydrothermal vent fluids

    NASA Astrophysics Data System (ADS)

    Lehmann, M. F.; Bourbonnais, A.; Butterfield, D. A.

    2006-12-01

    Hydrothermal vent systems at mid-ocean ridges are sites with rapid rates of biomass production, sustained by chemolithoautotrophic bacteria at the base of the vent community food chains. The exact metabolic pathways, in particular those that involve nitrogen (N), and the rates at which the metabolic reactions take place are poorly constrained. In previous studies, very low 15N/14N ratios have been attributed to strong N isotope fractionation during chemosynthetic assimilation of ammonium. However, actual data on the N isotopic composition of dissolved inorganic N in vent systems, which could provide coherent information on the sources of N during chemolithoautotrophic biosynthesis, do not exist. Furthermore, the fate of hydrothermally discharged ammonium as well as that of nitrate that is mixed in from the ocean water column have not been the focus of much attention. As a consequence, little is known about N-cycle reactions within hydrothermal vent systems. We will present nitrate isotope (15N/14N and 18O/16O) data from various sites at Axial Volcano on the Juan de Fuca ridge. Their integration with nitrate concentration data suggests non-conservative behavior of nitrate along temperature gradients. Highest N and O isotope ratios (7.6 permil and 21.0 permil, respectively) are found in average diffuse fluids (17°C). Elevated N and O isotope ratios were associated with decreased nitrate concentrations and indicate a nitrate consuming process that fractionates both N and O isotopes. The ratio of 15N versus 18O enrichment in residual nitrate is, however, not consistent with previous reports on nitrate N versus O isotope fractionation during denitrification in the suboxic ocean water column, implying anomalous N and O isotope fractionation during denitrification in hydrothermal vent fluids and/or the presence of additional microbially mediated N transformations that affect the N and O isotope composition of the nitrate pool in the Axial hydrothermal vent system in a fundamentally different way. More nitrate isotope measurements from other hydrothermal vent systems will be conducted in order to investigate the possible mechanisms behind the observed N-to-O nitrate isotope anomaly. In addition, we plan to present data on the N isotopic composition of ammonium from ammonium-rich vent fluids from the Endeavour segment of the Juan de Fuca ridge (upcoming cruise Aug. 13 to Sep. 8). We anticipate that the assessment of principal patterns of ammonium N-isotope dynamics at Endeavour sites will help to study the activity of ammonium oxidizing organisms, as well as to gain constraints on the source of N during bacterial N assimilation in this particular geomicrobial ecosystem.

  2. Manganese scavenging and oxidation at hydrothermal vents and in vent plumes

    NASA Astrophysics Data System (ADS)

    Mandernack, Kevin W.; Tebo, Bradley M.

    1993-08-01

    Hydrothermal vents provide a major source of dissolved Mn(II) to the oceans, where concentrations range from 5 mM within the 350°C hot smokers to just above ambient seawater concentration in far field vent plumes. The Mn(II)-rich environments within warm vents and vent plumes provide a suitable habitat for Mn(II) oxidizing bacteria. In order to compare rates of scavenging and oxidation of Mn(II) proximally within vent fields (<30 m from venting water and temperatures <16°C) and distally within vent plumes, and to determine the relative contribution of microbes, incubation experiments using 54Mn as a radiotracer were conducted in situ and on collected water samples from three hydrothermal vent locations: the Guaymas basin (GB), the Galapagos spreading center (GA), and the Endeavor Ridge of the Juan de Fuca spreading center (JDF). Both the adsorbed and oxidized fractions of the total 54Mn scavenged were determined and found to often be significant (as high as 65 and 74%, respectively). Manganese scavenging rates were generally higher in in situ incubations than in incubations conducted on board ship. Inhibition of 54Mn scavenging by sodium azide provided evidence for microbially mediated Mn(II) uptake and oxidation in waters both proximal (GA and GB) and distal to the vents (GA and JDF), even at distances as great as 17 km from the ridge axis at JDF. The highest manganese scavenging rates were observed within the vent fields (up to 2.5 nM/day). The residence times of dissolved Mn(II) were shorter in the GB and GA vent fields (26 and 28 days) than in the JDF vent field (1.4 years). This difference may be due to different mechanisms of Mn(II) precipitation in operation. At the GA vent field Mn(II) precipitation was often strongly inhibited by sodium azide and therefore apparently due to microbial activity. In contrast, Mn(II) scavenging within the JDF vent field was not significantly affected by sodium azide. Because 54Mn scavenging in the JDF vent field was dependent on the presence of oxygen and a much larger fraction of the total 54Mn scavenged was adsorbed than oxidized, manganese scavenging appears to occur primarily by an abiological mechanism, perhaps coprecipitation with iron oxyhydroxides. In comparison to the vent fields, Mn(II) scavenging rates were lower within the vent plumes (<0.6 nM/ day for GA and <0.2 nM/day for JDF), whereas residence times were not significantly different (as low as 34 days for GA and 1.0 years for JDF). The short residence times (90 and 118 days) and high microbial activity measured in bottom waters beneath the vent plumes at GA and JDF probably resulted from enhanced scavenging by manganate-coated bacteria that settled out from the vent plume and accumulated near the bottom. Therefore, bacteria not only enhance the scavenging of Mn within vent waters, but also facilitate Mn deposition to the sediments.

  3. Sulfide Oxidation across Diffuse Flow Zones of Hydrothermal Vents

    Microsoft Academic Search

    Amy Gartman; Mustafa Yücel; Andrew S. Madison; David W. Chu; Shufen Ma; Christopher P. Janzen; Erin L. Becker; Roxanne A. Beinart; Peter R. Girguis; George W. Luther

    2010-01-01

    The sulfide (H2S\\/HS?) that is emitted from hydrothermal vents begins to oxidize abiotically with oxygen upon contact with ambient bottom water,\\u000a but the reaction kinetics are slow. Here, using in situ voltammetry, we report detection of the intermediate sulfur oxidation\\u000a products polysulfides [$$ {\\\\text{S}}_{\\\\text{x}}^{2 - } $$] and thiosulfate [$$ {\\\\text{S}}_{ 2} {\\\\text{O}}_{ 3}^{ 2- } $$], along with contextual

  4. Comparison of thermophilic methanogens from submarine hydrothermal vents

    Microsoft Academic Search

    W. J. Jones; C. E. Stugard; H. W. Jannasch

    1989-01-01

    An extremely thermophilic methanogen was isolated from hydrothermal vent sediment (80°–120° C) collected from the Guaymas Basin, Gulf of California, at a depth of approximately 2000 m. The isolate was a characteristic member of the genus Methanococcus based on its coccoid morphology, ability to produce methane from CO2 and H2, and DNA base composition (31.4 mol% G+C); it is distinguished

  5. Geochemistry of deep-sea hydrothermal vent fluids from the Mid-Cayman Rise, Caribbean Sea

    E-print Network

    McDermott, Jill Marie

    2015-01-01

    This thesis examines the controls on organic, inorganic, and volatile species distributions in hydrothermal fluids venting at Von Damm and Piccard, two recently discovered vent fields at the ultra slow spreading Mid-Cayman ...

  6. Evolutionary and biogeographical patterns of barnacles from deep-sea hydrothermal vents.

    PubMed

    Herrera, Santiago; Watanabe, Hiromi; Shank, Timothy M

    2015-02-01

    The characterization of evolutionary and biogeographical patterns is of fundamental importance to identify factors driving biodiversity. Due to their widespread but discontinuous distribution, deep-sea hydrothermal vent barnacles represent an excellent model for testing biogeographical hypotheses regarding the origin, dispersal and diversity of modern vent fauna. Here, we characterize the global genetic diversity of vent barnacles to infer their time of radiation, place of origin, mode of dispersal and diversification. Our approach was to target a suite of multiple loci in samples representing seven of the eight described genera. We also performed restriction-site associated DNA sequencing on individuals from each species. Phylogenetic inferences and topology hypothesis tests indicate that vent barnacles have colonized deep-sea hydrothermal vents at least twice in history. Consistent with preliminary estimates, we find a likely radiation of barnacles in vent ecosystems during the Cenozoic. Our analyses suggest that the western Pacific was the place of origin of the major vent barnacle lineage, followed by circumglobal colonization eastwards through the Southern Hemisphere during the Neogene. The inferred time of radiation rejects the classic hypotheses of antiquity of vent taxa. The timing and the mode of origin, radiation and dispersal are consistent with recent inferences made for other deep-sea taxa, including nonvent species, and are correlated with the occurrence of major geological events and mass extinctions. Thus, we suggest that the geological processes and dispersal mechanisms discussed here can explain the current distribution patterns of many other marine taxa and have played an important role shaping deep-sea faunal diversity. These results also constitute the critical baseline data with which to assess potential effects of anthropogenic disturbances on deep-sea ecosystems. PMID:25602032

  7. Subseafloor Microbial Life in Venting Fluids from the Mid Cayman Rise Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Reveillaud, J.; Reddington, E.; McDermott, J. M.; Sylva, S. P.; Breier, J. A.; German, C. R.; Seewald, J.

    2012-12-01

    In hard rock seafloor environments, fluids emanating from hydrothermal vents are one of the best windows into the subseafloor and its resident microbial community. The functional consequences of an extensive population of microbes living in the subseafloor remains unknown, as does our understanding of how these organisms interact with one another and influence the biogeochemistry of the oceans. Here we report the abundance, activity, and diversity of microbes in venting fluids collected from two newly discovered deep-sea hydrothermal vents along the ultra-slow spreading Mid-Cayman Rise (MCR). Fluids for geochemical and microbial analysis were collected from the Von Damm and Piccard vent fields, which are located within 20 km of one another, yet have extremely different thermal, geological, and depth regimes. Geochemical data indicates that both fields are highly enriched in volatiles, in particular hydrogen and methane, important energy sources for and by-products of microbial metabolism. At both sites, total microbial cell counts in the fluids ranged in concentration from 5 x 10 4 to 3 x 10 5 cells ml-1 , with background seawater concentrations of 1-2 x 10 4 cells ml-1 . In addition, distinct cell morphologies and clusters of cells not visible in background seawater were seen, including large filaments and mineral particles colonized by microbial cells. These results indicate local enrichments of microbial communities in the venting fluids, distinct from background populations, and are consistent with previous enumerations of microbial cells in venting fluids. Stable isotope tracing experiments were used to detect utilization of acetate, formate, and dissolve inorganic carbon and generation of methane at 70 °C under anaerobic conditions. At Von Damm, a putatively ultra-mafic hosted site located at ~2200 m with a maximum temperature of 226 °C, stable isotope tracing experiments indicate methanogenesis is occurring in most fluid samples. No activity was detected in Piccard vent fluids, a basalt-hosted black smoker site located at ~4950 m with a maximum temperature of 403 °C. However, hyperthermophilic and thermophilic heterotrophs of the genus Thermococcus were isolated from Piccard vent fluids, but not Von Damm. These obligate anaerobes, growing optimally at 55-90 °C, are ubiquitous at hydrothermal systems and serve as a readily cultivable indicator organism of subseafloor populations. Finally, molecular analysis of vent fluids is on-going and will define the microbial population structure in this novel ecosystem and allow for direct comparisons with other deep-sea and subsurface habitats as part of our continuing efforts to explore the deep microbial biosphere on Earth.

  8. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts

    E-print Network

    Sanders, J. G.

    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking ...

  9. Hydrothermal vent meiobenthos associated with mytilid mussel aggregations from the Mid-Atlantic Ridge and the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Zekely, J.; Van Dover, C. L.; Nemeschkal, H. L.; Bright, M.

    2006-08-01

    Deep-sea hydrothermal vents occur along the mid-ocean ridges and back-arc basins around the globe. There are very few community analyses of vent meiobenthos. The central objectives of this study were to identify and quantify for the first time the entire metazoan meiobenthic community associated with mussel aggregations of Bathymodiolus thermophilus Kenk and Wilson, 1985 from the EPR, 11°N and of Bathymodiolus puteoserpentis Cosel et al., 1994 from the Mid-Atlantic Ridge (MAR), 23°N. Using a quantitative sampling method, abundance, biomass, sex ratio, species richness, diversity, evenness, and trophic structure were studied based on three samples from each site. Meiobenthic abundance in each sample was unexpectedly low, but similar between sites. The community was composed of nematodes, copepods, ostracods, and mites, with a total of 24 species at EPR vents, and 15 species at MAR vents. While most copepod species were vent endemics within the family Dirivultidae, nematodes and harpacticoid copepods belonged to generalist genera, which occur at a variety of habitats and are not restricted to hydrothermal vents or the deep sea. The meiobenthos of hydrothermal-vent mussel beds constitutes a unique community unlike those of other sulfidic habitats, including the thiobios of shallow-water sediments and the meiobenthos of deep-sea, cold-seep sediments. The trophic structure was dominated by primary consumers, mainly deposit feeders, followed by parasites. Predatory meiofaunal species were absent.

  10. First survey of sessile communities on subtidal rocks in an area with hydrothermal vents: Milos Island, Aegean Sea

    Microsoft Academic Search

    Silvia Cocito; C. Nike Bianchi; Carla Morri; Andrea Peirano

    2000-01-01

    The major epibenthic communities on subtidal rocks of Palaeochori Bay and the marine tract on the southern coast of Milos Island (Greece) were described down to 44 m depth. Six sites were investigated by snorkelling and SCUBA diving. Samples, photographs and video images were also taken to integrate information. Three out of the six sites were close to hydrothermal vents,

  11. Video Observations by Telepresence Reveal Two Types of Hydrothermal Venting on Kawio Barat Seamount

    NASA Astrophysics Data System (ADS)

    Butterfield, D. A.; Holden, J. F.; Shank, T. M.; Tunnicliffe, V.; Sherrin, J.; Herrera, S.; Baker, E. T.; Lovalvo, D.; Makarim, S.; Malik, M. A.; Wirasantosa, S.; Hammond, S. R.

    2010-12-01

    The INDEX-SATAL 2010 expedition began an international exploration of the seafloor in Indonesian waters using the methodology of telepresence, conducting EM302 multibeam mapping, water column CTD, and ROV high-definition video operations and sending data back to Exploration Command Centers in Indonesia and Seattle. Science observers in other locations in the US and Canada were engaged in real-time observations and interpretation of results. One mission goal was to locate hydrothermal or volcanic activity. Intense light scattering and redox potential measurements in the water column over Kawio Barat (KB)indicated a high level of hydrothermal activity, and direct video observations confirmed venting near the summit. None of the other volcanic features west of the Sangihe arc that were investigated during the mission had confirmed hydrothermal activity. ROV capabilities did not include physical sampling or temperature measurement, so our interpretation is based on visual comparison to other known sites. The steep western flank of KB from 2000 m depth to the summit (1850 m) has many areas of white and orange staining on exposed rocks, with some elemental sulfur, and broad areas covered with dark volcaniclastic sand, but no active venting was seen. KB has a summit ridge running WNW-ESE, with a major cross-cutting ridge on the western portion of the summit. Hydrothermal activity is concentrated near the eastern side of this intersection, on both the northern and southern sides of the summit ridge. Venting on the northern side of the summit ridge is characterized by intense white particle-rich fluids emanating directly from the rocky substrate with frozen flows of elemental sulfur down slope. This type of venting is visually very similar to the venting seen on NW Rota-1, an actively erupting volcano in the Mariana arc, and suggests that KB is actively releasing magmatic gases rich in sulfur dioxide to produce the elemental sulfur flows, inferred fine particulate sulfur particles, and apparent acidic alteration. These hydrothermal features along with the widespread occurrence of volcaniclastic deposits near the summit suggest that Kawio Barat has experienced recent eruptive activity. In contrast, however, the south side of the summit has active metal sulfide chimneys venting clear to gray/black fluids. The vents seen on the south slope appear identical to vents detected by camera tow and reported by McConnachy et al. 2004. The visually dominant vent fauna is a stalked barnacle that covers much of the chimney surfaces. The apparently stable hot vents on the south flank require a reaction zone with low water/rock ratio at depth within the volcano. Some aspect of the volcanic/hydrothermal plumbing at KB produces a separation of magmatic gases (north summit slope) from circulating hydrothermal fluids (south summit slope).

  12. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides

    USGS Publications Warehouse

    Ono, Shuhei; Shanks, Wayne C., III; Rouxel, O.J.; Rumble, D.

    2007-01-01

    Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different ??33S (?????33S-0.515 ??34S) values of up to 0.04??? even if ??34S values are identical. Detection of such small ??33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006??? (2??). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10??N, 13??N, and 21??S and Mid-Atlantic Ridge (MAR) 37??N yield ??33S values ranging from -0.002 to 0.033 and ??34S from -0.5??? to 5.3???. The combined ??34S and ??33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13??N and marcasite from MAR 37??N are in isotope disequilibrium not only in ??34S but also in ??33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low ??33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles. ?? 2006 Elsevier Inc. All rights reserved.

  13. Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale

    Microsoft Academic Search

    C. Bachraty; P. Legendre; D. Desbruyères

    2009-01-01

    The discovery of deep-sea hydrothermal vent fauna, kilometres deep in the oceans, is a great achievement of 20th-century marine biology. The deep-sea hydrothermal food web does not directly depend on the sun's energy. Vent communities rely primarily on trophic associations between chemoautotrophic bacteria and consumers. A small number of endemic taxa are adapted to the inhospitable vent environments that are

  14. The influence of vent fluid chemistry on trophic structure at two deep-sea hydrothermal vent fields on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Bennett, Sarah; Van Dover, Cindy; Coleman, Max

    2014-05-01

    The two known deep-sea hydrothermal vent fields along the Mid-Cayman Rise are separated by a distance of only 21 km, yet their chemistry and faunal diversity are distinct. The deeper of the two vent fields, Piccard (with active venting from Beebe Vents, Beebe Woods and Beebe Sea), at 4980 m is basalt hosted. The shallower vent field, Von Damm, at 2300 m appears to have an ultramafic influence. The Von Damm vent field can be separated into two sites: The Spire and The Tubeworm Field. The dominant vent fluids at the Tubeworm Field are distinct from those at the Spire, as a result of fluid modification in the sub-surface. Von Damm and Piccard vent fields support abundant invertebrates, sharing the same biomass-dominant shrimp species, Rimicaris hybisae. Although there are some other shared species (squat lobsters (Munidopsis sp.) and gastropods (Provanna sp. and Iheyaspira sp.)) between the vent fields, they are much more abundant at one site than the other. In this study we have examined the bulk carbon, nitrogen and sulfur isotope composition of microbes and fauna at each vent field. With these data we have deduced the trophic structure of the communities and the influence of vent fluid chemistry. From stable isotope data and end-member vent fluid chemistry, we infer that the basis of the trophic structure at Piccard is dominated by sulfur, iron, and hydrogen-oxidizing microbial communities. In comparison, the basis of the Von Damm trophic structure is dominated by microbial communities of sulfur and hydrogen oxidizers, sulfate reducers and methanotrophs. This microbial diversity at the base of the trophic structure is a result of chemical variations in vent fluids and processes in the sub-surface that alter the vent fluid chemistry. These differences influence higher trophic levels and can be used to explain some of the variability as well as similarity in fauna at the vent sites. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with National Aeronautics and Space Administration (NASA).

  15. Magnetic Structure of Backarc Spreading Axis with Hydrothermal Vents; the Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Mochizuki, N.; Honsho, C.; Szitkar, F.; Dyment, J.; Nakamura, K.

    2012-12-01

    Seafloor hydrothermal systems are important in relation to global heat and chemical fluxes as well as habitat of microbial communities. The substantial variation of hydrothermal systems in various tectonic settings has important implications for the magnetic structure of oceanic crust. It has been very difficult to detect the geophysical signature of hydrothermal systems from sea-surface data because the small scale of hydrothermal systems is below the limit of resolution. The advance of near-bottom survey methods using a submersible, deep-tow, ROV and AUV has made possible high-resolution geophysical mapping around hydrothermal areas. Near-bottom magnetic surveys can provide direct information on the magnetization of the shallower oceanic crust, implying hydrothermal alteration both in active and fossil vent sites. Near-bottom three component magnetic measurements on submersible Shinkai 6500 were carried out at hydrothermal fields in the Southern Mariana Trough, a slow spreading backarc basin. Fourteen dive surveys were conducted during cruises YK11-10 and YK10-11. We investigated the magnetic structure of four hydrothermal systems located at on- and off-axis to clarify how the geophysical and geological setting controls the fluid circulation at small scale. Recent researches at slow spreading ridges showed a relationship between crustal magnetic structure and host rock around hydrothermal vents (e.g. Tivey and Dyment, 2010), but no observation at backarc spreading axis has been reported so far. We carefully corrected the effects of induced and permanent magnetizations of the submersible by applying the method of Isezaki [1986] with dumped least-square method (Honsho et al., 2009). After subtracting the IGRF from the corrected observed data, we obtained geomagnetic vector anomalies in geographical coordinate. For three transects of the axis, we applied three methods; 2D inversion technique (Parker and Huestis, 1972), 2D forward modeling technique (Honsho et al, 2009) and 2D direct inversion technique (Hussenoeder et al., 1995). Transect 1 (T1) and transect 2 (T2) are parallel and very closely located, crossing the neo-volcanic zone near an on-axis hydrothermal site (Snail Site) at different altitude, 2m and 30m. Transect 3 (T3) also crosses a large on-axis volcanic mound on which another hydrothermal site (Yamanaka Site) is located. The equivalent magnetization calculated on T1 and T2 are similar although their resolutions are different. The one along T3 shows high values around the large volcanic mound and an area of low magnetization near a hydrothermal field recognized from high-resolution bathymetry (Yoshikawa et al., 2012). A similar reduction of magnetization above hydrothermal fields was also reported in basalt-hosted sites along the Mid Atlantic Ridge. The detailed bathymetry (2m grid) collected by AUV Urashima in the study area allows us to investigate the effect of three dimensional structure. We estimate magnetization using a new technique based on 3D forward modeling (Szitkar et al, this meeting). A preliminary result shows a similar but more detailed magnetic structure around the Yamanaka Site compared to results of the 2D methods.

  16. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    SciTech Connect

    Flores, Gilberto E [Portland State University; Campbell, James H [ORNL; Kirshtein, Julie D [United States Geological Survey, Reston, VA; Meneghin, Jennifer [Portland State University; Podar, Mircea [ORNL; Steinberg, Joshua [Oregon Episcopal School, Portland, OR; Seewald, Jeffrey S [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Tivey, Margaret Kingston [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Voytek, Mary A [United States Geological Survey & National Aeronautics and Space Administration; Reysenbach, Anna-Louise [Portland State University; Yang, Zamin Koo [ORNL

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37 17'N, 32 16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36 13'N, 33 54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  17. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Flores, Gilberto E.; Campbell, James H.; Kirshtein, Julie D.; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua I.; Seewald, Jeffrey S.; Tivey, Margaret Kingston; Voytek, Mary A.; Yang, Zamin K.; Reysenbach, Anna-Louise

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  18. Sulfide Oxidation across Diffuse Flow Zones of Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Gartman, A.; Yucel, M.; Madison, A.; Janzen, C.; Ma, S.; Luther, G. W.

    2010-12-01

    Both diffuse flow and high temperature hydrothermal vents emit large quantities of reduced sulfur, largely in the form of H2S. Sulfide oxidation may begin upon contact with ambient bottom water. Here, using in situ voltammetry, we report detection of intermediate sulfur oxidation products including polysulfides [Sx2-], which can decompose to elemental sulfur [S8], and thiosulfate [S2O32-]. Nearly four percent of the 11,000 individual voltammetric scans taken at four vent areas at Lau Basin in May 2009 contained either thiosulfate or polysulfides. Previous work at the East Pacific Rise (EPR) has identified these species, but in a statistically insignificant number of scans. At Lau Basin in 2006, thiosulfate was identified in less than one percent of scans, and no polysulfides were conclusively detected. Here we review sulfide, temperature and sulfur oxidation intermediate data from Lau Basin, obtained in 2006 and 2009. We also review the thermodynamics of the first electron transfer steps for sulfide and oxygen and the possible need for iron and/or manganese in a catalytic cycle during sulfide oxidation in these systems.

  19. GALREX 2011: Extensive hydrothermal venting discovered along the eastern Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Walker, S. L.; White, S. M.; Embley, R. W.; Resing, J. A.; Lobecker, M.

    2011-12-01

    Leg 1 of the Galápagos Rift Expedition (GALREX) on the NOAA Ship Okeanos Explorer, July 2011, conducted a 400-km-long continuous CTD transect to map active hydrothermal areas between 89.33° and 87.75°W. Light backscattering (?NTU) and oxidation-reduction potential (ORP) sensors measured the relative concentration of suspended particles and reduced hydrothermal chemicals, respectively. GALREX was designed to complement a similar survey in 2005/2006 that surveyed the central Galápagos Rift from 94.9° to 89.6°W. That survey found only two active high-temperature vent fields, plus robust plume evidence for at least six smaller fields. The spatial density of hydrothermal plumes (ph) along the rift was only 0.11 (based on ?NTU anomalies), significantly less than expected for intermediate-rate (50-60 mm/yr) spreading but similar to other hotspot-affected ridges (e.g., near the Iceland, Ascension, and St. Paul-Amsterdam hotspots). This low ph value was hypothesized to be an expression of (1) reduced hydrothermal discharge on ridge sections with hotspot-thickened crust, (2), widespread low-temperature discharge undetectable by large-scale surveys, or (3) episodic venting. GALREX found a distinctly different hydrothermal environment on the eastern third of the rift. Overall, ph = 0.19, about twice that of the central Galápagos Rift. Strong venting was concentrated in two areas. Most remarkable was a 50-km-long section (88.56°-88.09°W) where continuous plumes with high (>0.2) ?NTU values rose as high as 250 m above the seafloor. This area is low amplitude valley and ridge topography, centered on a relatively recent lava flow at 88.33°W. The second area included the historical vent fields Rose Garden and Rosebud, and ranged from 86.25° to 85.87°W. In this area ?NTU was lower (~0.1) and plumes were patchy. ORP anomalies occasionally occurred in the absence of ?NTU anomalies, suggesting low-temperature, particle-poor vent sources. No anomalies were detected over the Rose Garden/Rosebud sites. The entire GALREX survey detected ~20 discrete ORP anomalies, with along-axis separations ranging from 2 to 110 km (median=14 km). Because ORP anomalies are very short lived, and thus do not advect far from their seafloor source, at least ~20 distinct vent "fields" must be active, a higher spatial frequency than found along the central Galápagos Rift. The eastern rift section is also notable for supporting two areas of extensive venting, each >40 km along axis, and each paved by apparently young (~10 yr) lavas. Each of these areas is ~3x longer than the longest hydrothermal area on the central rift section.

  20. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents.

    PubMed

    Byrne, Nathalie; Strous, Marc; Crépeau, Valentin; Kartal, Boran; Birrien, Jean-Louis; Schmid, Markus; Lesongeur, Françoise; Schouten, Stefan; Jaeschke, Andrea; Jetten, Mike; Prieur, Daniel; Godfroy, Anne

    2009-01-01

    Recent studies indicate that ammonia is an important electron donor for the oxidation of fixed nitrogen, both in the marine water column and sediments. This process, known as anammox, has so far only been observed in a large range of temperature habitats. The present study investigated the role of anammox in hydrothermal settings. During three oceanographic expeditions to the Mid-Atlantic Ridge, hydrothermal samples were collected from five vent sites, at depths ranging from 750 to 3650 m from cold to hot habitats. Evidence for the occurrence of anammox in these particular habitats was demonstrated by concurrent surveys, including the amplification of 16S rRNA gene sequences related to known anammox bacteria, ladderanes lipids analysis and measurement of a (14)N(15)N dinitrogen production in isotope-pairing experiments at 60 and 85 degrees C. Together these results indicate that new deep-branching anammox bacteria may be active in these hot habitats. PMID:18670398

  1. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.

    PubMed

    Perner, M; Hansen, M; Seifert, R; Strauss, H; Koschinsky, A; Petersen, S

    2013-07-01

    Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes. PMID:23647923

  2. Spatial Differences in East Scotia Ridge Hydrothermal Vent Food Webs: Influences of Chemistry, Microbiology and Predation on Trophodynamics

    PubMed Central

    Reid, William D. K.; Sweeting, Christopher J.; Wigham, Ben D.; Zwirglmaier, Katrin; Hawkes, Jeffrey A.; McGill, Rona A. R.; Linse, Katrin; Polunin, Nicholas V. C.

    2013-01-01

    The hydrothermal vents on the East Scotia Ridge are the first to be explored in the Antarctic and are dominated by large peltospiroid gastropods, stalked barnacles (Vulcanolepas sp.) and anomuran crabs (Kiwa sp.) but their food webs are unknown. Vent fluid and macroconsumer samples were collected at three vent sites (E2, E9N and E9S) at distances of tens of metres to hundreds of kilometres apart with contrasting vent fluid chemistries to describe trophic interactions and identify potential carbon fixation pathways using stable isotopes. ?13C of dissolved inorganic carbon from vent fluids ranged from ?4.6‰ to 0.8‰ at E2 and from ?4.4‰ to 1.5‰ at E9. The lowest macroconsumer ?13C was observed in peltospiroid gastropods (?30.0‰ to ?31.1‰) and indicated carbon fixation via the Calvin-Benson-Bassham (CBB) cycle by endosymbiotic gamma-Proteobacteria. Highest ?13C occurred in Kiwa sp. (?19.0‰ to ?10.5‰), similar to that of the epibionts sampled from their ventral setae. Kiwa sp. ?13C differed among sites, which were attributed to spatial differences in the epibiont community and the relative contribution of carbon fixed via the reductive tricarboxylic acid (rTCA) and CBB cycles assimilated by Kiwa sp. Site differences in carbon fixation pathways were traced into higher trophic levels e.g. a stichasterid asteroid that predates on Kiwa sp. Sponges and anemones at the periphery of E2 assimilated a proportion of epipelagic photosynthetic primary production but this was not observed at E9N. Differences in the ?13C and ?34S values of vent macroconsumers between E2 and E9 sites suggest the relative contributions of photosynthetic and chemoautotrophic carbon fixation (rTCA v CBB) entering the hydrothermal vent food webs vary between the sites. PMID:23762393

  3. Spatial differences in East scotia ridge hydrothermal vent food webs: influences of chemistry, microbiology and predation on trophodynamics.

    PubMed

    Reid, William D K; Sweeting, Christopher J; Wigham, Ben D; Zwirglmaier, Katrin; Hawkes, Jeffrey A; McGill, Rona A R; Linse, Katrin; Polunin, Nicholas V C

    2013-01-01

    The hydrothermal vents on the East Scotia Ridge are the first to be explored in the Antarctic and are dominated by large peltospiroid gastropods, stalked barnacles (Vulcanolepas sp.) and anomuran crabs (Kiwa sp.) but their food webs are unknown. Vent fluid and macroconsumer samples were collected at three vent sites (E2, E9N and E9S) at distances of tens of metres to hundreds of kilometres apart with contrasting vent fluid chemistries to describe trophic interactions and identify potential carbon fixation pathways using stable isotopes. ?(13)C of dissolved inorganic carbon from vent fluids ranged from -4.6‰ to 0.8‰ at E2 and from -4.4‰ to 1.5‰ at E9. The lowest macroconsumer ?(13)C was observed in peltospiroid gastropods (-30.0‰ to -31.1‰) and indicated carbon fixation via the Calvin-Benson-Bassham (CBB) cycle by endosymbiotic gamma-Proteobacteria. Highest ?(13)C occurred in Kiwa sp. (-19.0‰ to -10.5‰), similar to that of the epibionts sampled from their ventral setae. Kiwa sp. ?(13)C differed among sites, which were attributed to spatial differences in the epibiont community and the relative contribution of carbon fixed via the reductive tricarboxylic acid (rTCA) and CBB cycles assimilated by Kiwa sp. Site differences in carbon fixation pathways were traced into higher trophic levels e.g. a stichasterid asteroid that predates on Kiwa sp. Sponges and anemones at the periphery of E2 assimilated a proportion of epipelagic photosynthetic primary production but this was not observed at E9N. Differences in the ?(13)C and ?(34)S values of vent macroconsumers between E2 and E9 sites suggest the relative contributions of photosynthetic and chemoautotrophic carbon fixation (rTCA v CBB) entering the hydrothermal vent food webs vary between the sites. PMID:23762393

  4. Bacterial Group II Introns in a Deep-Sea Hydrothermal Vent Environment

    NSDL National Science Digital Library

    This Applied and Environmental Microbiology journal article (PDF) reports the discovery of group II introns in a bacterial mat sample collected from a deep-sea hydrothermal vent near 9°N on the East Pacific Rise. One of the introns was shown to self-splice in vitro. This is the first example of marine bacterial introns from molecular population structure studies of microorganisms that live in the proximity of hydrothermal vents.

  5. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N

    Microsoft Academic Search

    Deborah S. Kelley; Jeffrey A. Karson; Donna K. Blackman; Gretchen L. Früh-Green; David A. Butterfield; Marvin D. Lilley; Eric J. Olson; Matthew O. Schrenk; Kevin K. Roe; Geoff T. Lebon; Pete Rivizzigno

    2001-01-01

    Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30°N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field-named `Lost City'-is distinctly different from all other

  6. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N

    Microsoft Academic Search

    Jeffrey A. Karson; Donna K. Blackman; Gretchen L. Früh-Green; David A. Butterfield; Marvin D. Lilley; Eric J. Olson; Matthew O. Schrenk; Kevin K. Roe; Geoff T. Lebon; Pete Rivizzigno; Deborah S. Kelley

    2001-01-01

    Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30° N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field—named ‘Lost City’—is distinctly different from all

  7. Eptatretus strickrotti n. sp. (Myxinidae): first hagfish captured from a hydrothermal vent.

    PubMed

    Møller, Peter R; Jones, W Joe

    2007-02-01

    A single hagfish (Myxinidae, Eptatretus) specimen was recently captured at a hydrothermal vent site on the East Pacific Rise (38 degrees S). This is the first capture of a member of the jawless fishes (agnathans) from a hydrothermal vent site. The specimen differs from all congeners by the very slender body (depth 2.9% of total length), the paired and median ventral nasal sinus papillae, and the presence of 10 afferent branchial arteries on the medial ventral aorta. It is further unique because of a combination of the following features: slime pore counts; paired dorsal nasal sinus papillae; 12 gill pouches and gill apertures; posterior left side of body widely separated from pharyngocutaneous duct; 3/2 multicusp configuration; ventral aorta bifurcated anteriorly between 2nd and 3rd gill pouches (counted from the snout toward the heart); and pink coloration. The specimen is here described as a new species named Eptatretus strickrotti. Molecular 16S rRNA data places this new species as the basal-most species of Eptatretus, providing important new insight to the evolution of hagfishes as a whole. PMID:17301331

  8. Heat and Volume Fluxes at the Turtle Pits Vent Site, southern Mid Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Köhler, Janna; Walter, Maren; Mertens, Christian; Sültenfuß, Jürgen; Rhein, Monika

    2010-05-01

    The Turtle Pits vent site consists of eight known high temperature vents and several diffuse vent sites which are distributed over three hydrothermal fields: Turtle Pits, Comfortless Cove, and Red Lion. These vent fields are located in a north-south orientated rift valley at the Mid-Atlantic Ridge (MAR) near 5°S. The total volume and heat emissions of the entire Turtle Pits site have been calculated with three different approaches using data collected during a Meteor cruise in May 2006 and a L'Atalante cruise in January 2008. The data sets consist of vertical profiles and towed transects of temperature, salinity, and turbidity, as well as direct velocity measurements with a lowered acoustic Doppler current profiler (LADCP) and water samples for Helium isotope analysis. Vent fluid samples for noble gas analysis where taken with ROVs. Since the vent fluid is highly enriched in primordial 3He this noble gas can be used as a conservative tracer for vent fluid. The geographical setting of the vent site confines the particle plume to the rift valley since the depth of the valley exceeds the rise height of the plume. Therefore the fluxes of heat and volume can be estimated from the horizontal helium transport in the valley in combination with a mean 3He endmember concentration determined from the water samples taken with the ROVs. The comparison of the 3He concentrations measured south of the hydrothermal vents with the 3He signal north of the hydrothermal vents suggests a rather strong northward flow. This is confirmed by the tide corrected velocities observed with the LADCP during the Meteor cruise. The northward volume transport has been calculated using the local bathymetry and tide corrected velocities from the Meteor cruise. In combination with the 3He concentrations and the average 3He endmember concentration a flux of 1000 l/s is estimated, which corresponds to a heat flux of 1400 MW. The measured temperature anomalies within the plume combined with the known background stratification and the mean flow velocity within the valley yield an estimate of the total flux of the hydrothermal vents which is significantly lower. Similar results have been calculated using the rise height of the particle plume estimated from the measured temperature anomalies in combination with the background stratification. In contrast to the flux calculated from the 3He concentrations the fluxes calculated from the temperature anomaly and the plume rise height only take the emissions from hot vents into account and exclude emissions from diffuse vent sites.

  9. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge

    Microsoft Academic Search

    Sebastien Duperron; Claudia Bergin; Frank Zielinski; Anna Blazejak; Annelie Pernthaler; Zoe P. McKiness; Eric DeChaine; Colleen M. Cavanaugh; Nicole Dubilier

    2006-01-01

    Bathymodiolus azoricus and Bathymodiolus puteoserpentis are symbiont-bearing mussels that dominate hydrothermal vent sites along the northern Mid-Atlantic Ridge (MAR). Both species live in symbiosis with two physiologically and phylogenetically distinct Gammaproteobacteria: a sulfur- oxidizing chemoautotroph and a methane-oxidizer. A detailed analysis of mussels collected from four MAR vent sites (Menez Gwen, Lucky Strike, Rainbow, and Logatchev) using comparative 16S rRNA

  10. Vent fluid chemistry in Bahía Concepción coastal submarine hydrothermal system, Baja California Sur, Mexico

    Microsoft Academic Search

    R. M. Prol-Ledesma; C. Canet; M. A. Torres-Vera; M. J. Forrest; M. A. Armienta

    2004-01-01

    Shallow submarine hydrothermal activity has been observed in the Bahía Concepción bay, located at the Gulf coast of the Baja California Peninsula, along faults probably related to the extensional tectonics of the Gulf of California region. Diffuse and focused venting of hydrothermal water and gas occurs in the intertidal and shallow subtidal areas down to 15 m along a NW–SE-trending

  11. Lipid Biomarkers and Molecular Carbon Isotopes for Elucidating Carbon Cycling Pathways in Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, C. L.; Dai, J.; Campbell, B.; Cary, C.; Sun, M.

    2003-12-01

    Increasing molecular evidence suggests that hydrothermal vents in mid-ocean ridges harbor large populations of free-living bacteria, particularly the epsilon Proteobacteria. However, pathways for carbon metabolism by these bacteria are poorly known. We are addressing this question by analyzing the lipid biomarkers and their isotope signatures in environments where the epsilon Proteobacteria are likely predominant. Solid materials were collected from hydrothermal vents in the East Pacific Rise and at the Guaymas Basin in the Gulf of California. Fatty acids extracted from these samples are dominated by 16:0 (27-41%), 18:0 (16-48%), 18:1 (11-42%), 16:1 (7-12%), and 14:0 (5-28%). In addition, 15:0 and anteiso-15:0 are significantly present (2-3%) in samples from the Guaymas Basin. The isotopic compositions of these fatty acids range from -15.0\\permil to -33.1\\permil with the most positive values occurring only in monounsaturated fatty acids (16:1 and 18:1). We are currently unable to assign these biomarkers to any of the epsilon Proteobacteria because biomarkers are poorly known for these organisms isolated from the vents. However, no polyunsaturated fatty acids were detected in these samples, which are consistent with the absence of vent animals at the sampling sites. Signature biomarkers of 20:1 and cy21:0, which are characteristic of the thermophilic chemolithoautotrophs such as Aquificales, are also absent in these samples. These results imply that the deeply branched Aquificales species do not constitute the major microbial community in these vent environments. The large range of molecular isotopic compositions suggests that these lipids are synthesized from various carbon sources with different isotopic compositions or through different biosynthetic pathways, or both. We are currently measuring the isotopic compositions of the total organic carbon in the bulk samples and will determine the fractionations between lipid biomarkers and the total organic carbon. Molecular DNA data from these vent environments indicate that the reversed TCA cycle may be used for CO2 fixation by the epsilon Proteobacteria for chemolithoautotrophic growth. Isotopic fractionation patterns between lipid biomarkers and the bulk organic carbon can provide independent information on this unique biosynthetic pathway.

  12. Genetic and morphometric characterization of mussels (Bivalvia: Mytilidae) from mid-atlantic hydrothermal vents.

    PubMed

    Maas, P A; O'Mullan, G D; Lutz, R A; Vrijenhoek, R C

    1999-06-01

    Mussels were collected from deep-sea hydrothermal vents along the Mid-Atlantic Ridge. Specimens from the Snake Pit site were previously identified genetically and anatomically as Bathymodiolus puteoserpentis, but the relationships of mussels from other sites (Logatchev and Lucky Strike) were unclear. Molecular genetic and morphological techniques were used to assess differences among these mussel populations. The results indicate that the range for B. puteoserpentis extends from Snake Pit to Logatchev, and that an unnamed second species, B. n. sp., occurs at Lucky Strike. Analysis of mitochondrial NADH dehydrogenase subunit 4 (ND4) revealed 13% sequence divergence between the two species. Nei's genetic distance (D) based on 14 allozyme loci was 0.112. A multivariate morphometric analysis yielded a canonical discriminant function that correctly identified individuals from these sites to species 95% of the time. PMID:10390825

  13. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats

    PubMed Central

    Dick, Gregory J.; Anantharaman, Karthik; Baker, Brett J.; Li, Meng; Reed, Daniel C.; Sheik, Cody S.

    2013-01-01

    Hydrothermal plumes are an important yet understudied component of deep-sea vent microbial ecosystems. The significance of plume microbial processes can be appreciated from three perspectives: (1) mediation of plume biogeochemistry, (2) dispersal of seafloor hydrothermal vent microbes between vents sites, (3) as natural laboratories for understanding the ecology, physiology, and function of microbial groups that are distributed throughout the pelagic deep sea. Plume microbiology has been largely neglected in recent years, especially relative to the extensive research conducted on seafloor and subseafloor systems. Rapidly advancing technologies for investigating microbial communities provide new motivation and opportunities to characterize this important microbial habitat. Here we briefly highlight microbial contributions to plume and broader ocean (bio)geochemistry and review recent work to illustrate the ecological and biogeographic linkages between plumes, seafloor vent habitats, and other marine habitats such as oxygen minimum zones (OMZs), cold seeps, and oil spills. 16S rRNA gene surveys and metagenomic/-transcriptomic data from plumes point to dominant microbial populations, genes, and functions that are also operative in OMZs (SUP05, ammonia-oxidizing Archaea, and SAR324 Deltaproteobacteria) and hydrocarbon-rich environments (methanotrophs). Plume microbial communities are distinct from those on the seafloor or in the subsurface but contain some signatures of these habitats, consistent with the notion that plumes are potential vectors for dispersal of microorganisms between seafloor vent sites. Finally, we put forward three pressing questions for the future of deep-sea hydrothermal plume research and consider interactions between vents and oceans on global scales. PMID:23720658

  14. Life in the extreme environment at a hydrothermal vent: haemoglobin in a deep-sea copepod.

    PubMed Central

    Sell, A F

    2000-01-01

    This is the first study, to my knowledge, quantifying the respiratory pigment haemoglobin discovered in a deep-sea copepod. Haemoglobin in copepods has previously been documented in only one other species from the deep water of an Italian lake. Specimens of the siphonostomatoid Scotoecetes introrsus Humes were collected during submersible dives at 2500 m depth near a hydrothermal vent at the East Pacific Rise (9 degrees N). The haemoglobin content in the copepods' haemolymph was 4.3 +/- 0.6 micrograms per individual female (n = 6) and 1.8 +/- 0.1 micrograms per individual male (n = 6). Weight-specific concentrations of haemoglobin were identical for females and males (0.25 +/- 0.04 and 0.26 +/- 0.02 microgram per microgram dry weight, respectively). These haemoglobin concentrations are higher than those found in other small crustaceans. Activity of the electron transport system indicated that the respiration rates in S. introrsus (13.7 +/- 7.7 microliters O2 per milligram dry weight per hour) were similar to those in the shallow-water copepod Acartia tonsa (9.1 +/- 1.3 microliters O2 per milligram dry weight per hour). It was concluded that the possession of highly concentrated haemoglobin allows S. introrsus to colonize a geologically young, thermally active site such as the vicinity of a hydrothermal vent, despite the prevailing oxygen depletion. PMID:11413650

  15. Abundant Hydrothermal Venting in the Southern Ocean Near 62°S/159°E on the Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Hahm, D.; Rhee, T. S.; Park, S. H.; Lupton, J. E.; Walker, S. L.; Choi, H.

    2014-12-01

    Circum-Antarctic Ridges (CARs) comprise almost one-third of the global Mid-Ocean Ridge, yet remain terra incognita for hydrothermal activity and chemosynthetic ecosystems. The InterRidge Vents Database lists only 3 confirmed (visualized) and 35 inferred (plume evidence) active sites along the ~21,000 km of CARs. Here, we report on a multi-year effort to locate and characterize hydrothermal activity on two 1st-order segments of the Australian-Antarctic Ridge that are perhaps more isolated from other known vent fields than any other vent site on the Mid-Ocean Ridge. KR1 is a 300-km-long segment near 62°S/159°E, and KR2 a 90-km-long segment near 60°S/152.5°E. We used profiles collected by Miniature Autonomous Plume Recorders (MAPRs) on rock corers in March and December of 2011 to survey each segment, and an intensive CTD survey in Jan/Feb 2013 to pinpoint sites and sample plumes on KR1. Optical and oxidation-reduction potential (ORP, aka Eh) anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ~25 km. Forty profiles on KR1 identified 13 sites, some within a few km of each other. The densest site concentration on KR1 occurred along a relatively inflated, 90-km-long section near the segment center. CTD tows covered 20 km of the eastern, most inflated portion of this area, finding two 6-km-long zones centered near 158.6°E and 158.8°E with multiple plume anomalies. Three ORP anomalies within 50 m of the seafloor indicate precise venting locations. We call this area the Mujin "Misty Harbor" vent field. Vent frequency sharply decreases away from Mujin. 3He/heat ratios determined from 20 plume samples in the Mujin field were mostly <0.015 fM/J, indicative of chronic venting, but 3 samples, 0.021-0.034 fM/J, are ratios typical of a recent eruption. The spatial density of hydrothermal activity along KR1 and KR2 is similar to other intermediate-rate spreading ridges. We calculate the plume incidence (ph) along KR1 and KR2 as the mean of the fraction of MAPR casts detecting a plume in each 2nd-order segment. For all 6 segments, ph=0.37±0.25, consistent with the prediction of 0.33 from the global trend of ph for a spreading rate of 68 mm/yr.

  16. Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean.

    PubMed

    Marsh, Leigh; Copley, Jonathan T; Huvenne, Veerle A I; Linse, Katrin; Reid, William D K; Rogers, Alex D; Sweeting, Christopher J; Tyler, Paul A

    2012-01-01

    Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m(2) of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m(-2)), followed by a peltospiroid gastropod (>1,500 individuals m(-2)), eolepadid barnacle (>1,500 individuals m(-2)), and carnivorous actinostolid anemone (>30 individuals m(-2)). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in ?(34)S values of primary consumers with distance from vent sources, and variation in their ?(13)C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies, these results provide a baseline for determining temporal change and investigations of processes structuring faunal assemblages at Southern Ocean vents. PMID:23144754

  17. Laser-induced Native Fluorescence Detection of Organic Molecules in Hydrothermal Vent Rocks

    NASA Astrophysics Data System (ADS)

    Harju, E.; Kidd, R. D.; Bhartia, R.; Conrad, P. G.

    2004-12-01

    We have developed a Multi-channel Deep Ultraviolet Excitation (McDuve) fluorescence detector that has been deployed at several Pacific hydrothermal vent sites [1]. The in situ McDuve detector was able to detect organic molecules at the vent site on rock surfaces and in the water, the signatures being distinguishable one from the other. The McDuve fluorescence detector uses a 224.3 nm helium-silver hollow cathode laser to induce native fluorescence from a sample. Spectral separation is achieved with optical band-pass filters which are coupled to photomultiplier tubes (PMTs) for detection. Samples were recovered at the vent sites and returned from the expedition for bench-top analysis for correlation of the McDuve observations with standard analytical tools-GCMS and X-ray diffraction (for mineralogical ID), as well as with a bench-top version of the McDuve fluorescence detector. Here we report the corroborative results of the laboratory studies. Several preserved samples were subjected to 224.3 nm ultraviolet excitation under wet and dry conditions. Organic molecules were detected on the wet samples analyzed in the lab, corroborating the in situ McDuve data. The fluorescence emission wavelengths associated with the detected organic molecules suggest they are 3-5 ring polycyclic aromatic hydrocarbons [2,3]. The samples were also pyrolized at 500 ºC to decompose any organic molecules present and subsequently reanalyzed. This McDuve analysis revealed a significant decrease in laser induced native fluorescence, a result consistent with the pyrolytic decomposition of the organic content of the rock samples. [1] Conrad, P.G., A.L. Lane, R. Bhartia, W. Hug, (March 2004) Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents 35th Lunar Plan. Sci. XXXV, 2055. [2] Karcher, W. (1985), Spectral Atlas of Polycyclic Aromatic Compounds, vol. I, Kluwer Academic Publishing Company, Dordrecht, Holland. [3] Bhartia, R., McDonald, G.D., Salas, E.C., Hug, W., Reid, R., Conrad, P.G., (2004) A Model to Differentiate Organic Compounds Based on UV Fluorescence Spectroscopy, Intl. J. Astrobiology, Suppl. 1, 115-116

  18. Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption

    PubMed Central

    Mullineaux, Lauren S.; Adams, Diane K.; Mills, Susan W.; Beaulieu, Stace E.

    2010-01-01

    The planktonic larval stage is a critical component of life history in marine benthic species because it confers the ability to disperse, potentially connecting remote populations and leading to colonization of new sites. Larval-mediated connectivity is particularly intriguing in deep-sea hydrothermal vent communities, where the habitat is patchy, transient, and often separated by tens or hundreds of kilometers. A recent catastrophic eruption at vents near 9°50?N on the East Pacific Rise created a natural clearance experiment and provided an opportunity to study larval supply in the absence of local source populations. Previous field observations have suggested that established vent populations may retain larvae and be largely self-sustaining. If this hypothesis is correct, the removal of local populations should result in a dramatic change in the flux, and possibly species composition, of settling larvae. Fortuitously, monitoring of larval supply and colonization at the site had been established before the eruption and resumed shortly afterward. We detected a striking change in species composition of larvae and colonists after the eruption, most notably the appearance of the gastropod Ctenopelta porifera, an immigrant from possibly more than 300 km away, and the disappearance of a suite of species that formerly had been prominent. This switch demonstrates that larval supply can change markedly after removal of local source populations, enabling recolonization via immigrants from distant sites with different species composition. Population connectivity at this site appears to be temporally variable, depending not only on stochasticity in larval supply, but also on the presence of resident populations. PMID:20385811

  19. Moytirra: Discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores

    NASA Astrophysics Data System (ADS)

    Wheeler, A. J.; Murton, B.; Copley, J.; Lim, A.; Carlsson, J.; Collins, P.; Dorschel, B.; Green, D.; Judge, M.; Nye, V.; Benzie, J.; Antoniacomi, A.; Coughlan, M.; Morris, K.

    2013-10-01

    Geological, biological, morphological, and hydrochemical data are presented for the newly discovered Moytirra vent field at 45oN. This is the only high temperature hydrothermal vent known between the Azores and Iceland, in the North Atlantic and is located on a slow to ultraslow-spreading mid-ocean ridge uniquely situated on the 300 m high fault scarp of the eastern axial wall, 3.5 km from the axial volcanic ridge crest. Furthermore, the Moytirra vent field is, unusually for tectonically controlled hydrothermal vents systems, basalt hosted and perched midway up on the median valley wall and presumably heated by an off-axis magma chamber. The Moytirra vent field consists of an alignment of four sites of venting, three actively emitting "black smoke," producing a complex of chimneys and beehive diffusers. The largest chimney is 18 m tall and vigorously venting. The vent fauna described here are the only ones documented for the North Atlantic (Azores to Reykjanes Ridge) and significantly expands our knowledge of North Atlantic biodiversity. The surfaces of the vent chimneys are occupied by aggregations of gastropods (Peltospira sp.) and populations of alvinocaridid shrimp (Mirocaris sp. with Rimicaris sp. also present). Other fauna present include bythograeid crabs (Segonzacia sp.) and zoarcid fish (Pachycara sp.), but bathymodiolin mussels and actinostolid anemones were not observed in the vent field. The discovery of the Moytirra vent field therefore expands the known latitudinal distributions of several vent-endemic genera in the north Atlantic, and reveals faunal affinities with vents south of the Azores rather than north of Iceland.

  20. NOAA VENTS Program

    NSDL National Science Digital Library

    Research program investigating impacts of submarine volcanoes and hydrothermal venting on the global ocean. Research focuses on acoustic monitoring of earthquake and volcano activity, vent chemistry, and vent fluid transport. Research sites located in northeastern Pacific, western Pacific, eastern Pacific and northern Atlantic and include Mariana Arc, Axial Volcano, Gorda Ridge, and East Pacific Rise.

  1. A New Species of Demospongiae from the Calyfield Vent Site on the Gal pagos Rift

    NASA Astrophysics Data System (ADS)

    Waller, R. G.; Shank, T. M.; Pomponi, S. A.

    2002-12-01

    The Calyfield vent was discovered in June 2002 along the Gal pagos Rift. This vent site is a 60m x 60m field dominate by the Vescomyid clam Calyptogena magnifica and large patches (~1m2) of grey biological material, thinly covering the basalts. Numerous pieces of lobate lava, with this grey covering, were collected by Alvin from this site. Taxonomic analysis has thus far shown this organism to be a Demospongiae, with further taxonomic and genetic analyses proceeding to determine it's genus and species. Photomosaics generated of this field from downlooking images aquired by Alvin, show the sponge coverage to increase in density towards the centre of the vent field and its absence outside the vent area. The distribution of this encrusting sponge is limited to the actively venting area. Though sponges have been found at vent sites previously, there are no known vent endemic species. This species has not yet been seen on any of the known hydrothermal vents from either the Pacific, Atlantic or Indian Oceans. This poster discusses the distribution and biological data that has been gathered thus far on this Gal pagos Rift sponge.

  2. Spatial organization of food webs along habitat gradients at deep-sea hydrothermal vents on Axial Volcano, Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Levesque, Christian; Kim Juniper, S.; Limén, Helene

    2006-04-01

    Deep-sea hydrothermal vents are characterized by steep spatial gradients and high temporal variability in habitat conditions. This leads to the organization of species distribution along spatial habitat gradients, which may constrain food resource utilization and food web structure. We conducted a stable-isotope-based study to test the hypothesis that food resource utilization is constrained by spatial habitat variability at diffuse hydrothermal vents on Axial Volcano, Northeast Pacific. Our study included the ten most biomass-prominent species and considered the temporal change in food web structure at recently created vent sites during three consecutive years. We related species average stable isotopic composition to their position between the center and the periphery of vent sites, using previously published data. Species spread widely along the ?13C axis, and showed a small variability in ?15N. This indicates that most species partition food resources between isotopically different carbon sources, and that they are not organized along predator-prey trophic chains. Particulate organic matter (POM) stable isotopic composition from a concomitant study corresponds to the signature of the expected diet for most organisms. Species average ?13C was significantly correlated to their relative position between the center and the periphery of vent sites. We relate this spatial variability in species isotopic composition to variability in the isotopic signature of both dissolved inorganic carbon (DIC) and POM. This spatial isotopic signal of consumers reveals the spatial structuring of food (POM) production and its consumption by the fauna. Accrual of species during the development of diffuse sites increased the inter-specific spread in ?13C, but did not increase the range in ?15N. Our results show that the spatial organization of species distribution results in a fragmented food web where species partition POM food resources according to their position in space. Shaping of species distribution by habitat gradients therefore constrains food web structure and the occurrence of predator-prey and competitive interactions.

  3. A new bathymodioline mussel symbiosis at the Juan de Fuca hydrothermal vents

    Microsoft Academic Search

    Z. P. McKiness; E. R. McMullin; C. R. Fisher; C. M. Cavanaugh

    2005-01-01

    Until recently, the only major hydrothermal vent biogeographic province not known to include bathymodioline mussels was the spreading centers of the northeast Pacific, but deep-sea dives using DSV Alvin on the Endeavor segment of the Juan de Fuca Ridge (47°56N 129°06W; ?2,200 m depth) in August 1999 yielded the only recorded bathymodioline mytilids from these northeastern Pacific vents. One specimen in

  4. Ammonificins C and D, Hydroxyethylamine Chromene Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans

    PubMed Central

    Andrianasolo, Eric H.; Haramaty, Liti; Rosario-Passapera, Richard; Vetriani, Costantino; Falkowski, Paul; White, Eileen; Lutz, Richard

    2012-01-01

    Chemical and biological investigation of the cultured marine hydrothermal vent bacterium, Thermovibrio ammonifican led to the isolation of two hydroxyethylamine chromene derivatives, ammonificins C and D. Their structures were elucidated using combination of NMR and mass spectrometry. Absolute stereochemistry was ascertained by comparison of experimental and calculated CD spectra. Biological evaluation and assessment were determined using the patented ApopScreen cell-based screen for apoptosis-induction. Ammonificins C and D induce apoptosis in micromolar concentrations. To our knowledge, this finding is the first report of chemical compounds that induce apoptosis from the cultured deep-sea marine organism, hydrothermal vent bacterium, Thermovibrio ammonificans. PMID:23170085

  5. Complete mitochondrial genome of the hydrothermal vent ghost shrimp Paraglypturus tonganus (Crustacea, Axiidea, Callianassidae).

    PubMed

    Kim, Se-Joo; Kim, Jonguk; Ahn, Dong-Ha; Ju, Se-Jong; Min, Gi-Sik; Kim, Sanghee

    2014-06-25

    Abstract Ghost shrimps are burrowing decapods that serve as bioturbators and habitat providers in seafloor environments. The hydrothermal vent ghost shrimp, Paraglypturus tonganus, was collected from a hydrothermal vent in the Tonga Arc. This species has a mitochondrial genome (mitogenome) of 15,924?bp in length with an AT content of 66.1%. The mitogenome was identical to the typical gene arrangement and transcriptional polarity of the infraorder Axiidea. Paraglypturus tonganus showed 65.3-70.1% nucleotide similarity with the known mitogenomes of other axiid shrimps. These results are useful for understanding the phylogenetic relationships among the members of Axiidea within the decapods. PMID:24963774

  6. Metal concentrations and metallothionein-like protein levels in deep-sea fishes captured near hydrothermal vents in the Mid-Atlantic Ridge off Azores

    NASA Astrophysics Data System (ADS)

    Company, R.; Felícia, H.; Serafim, A.; Almeida, A. J.; Biscoito, M.; Bebianno, M. J.

    2010-07-01

    The knowledge of metal contamination in deep-sea fishes living in the surroundings of hydrothermal vents is very scarce, along with the detoxification mechanisms that allow them to live near one of the most metal contaminated marine environments. Six deep-sea fish species, although not vent endemic were collected near three Mid-Atlantic Ridge (MAR) hydrothermal vents (Menez Gwen, Lucky Strike and Rainbow) and the gills, muscle and liver were selected for this study due to their importance in metal metabolism and storage. The concentrations of seven metals (Ag, Cd, Cr, Cu, Fe, Mn, and Ni) and a metal-related biomarker (metallothionein-like proteins-MTL) were assessed. Major differences in metal accumulation among fish species are related to their feeding habits and vent site of their capture. The liver and gills are in general the most important tissues for metal accumulation compared to the muscle, but tissue partitioning is very dependent on the fish species considered. Compared to other deep-sea fishes, fish capture in the vicinity of hydrothermal vents accumulates higher amounts of metals in general. However, MTL levels are not considerably different from what is found in commercial coastal fishes, and is poorly correlated with metal concentrations in the tissues. Therefore, MTL may not constitute one major detoxification system for deep-sea species living in the vicinity of three important MAR vent sites.

  7. Effects of a Shallow-Water Hydrothermal Vent Gradient on Benthic Calcifiers, Tutum Bay, Ambitle Island, Papua New Guinea

    Microsoft Academic Search

    Brienne E. Engel

    2010-01-01

    Ocean acidification is occurring in response to rapidly increasing concentrations of atmospheric CO2. Shallow-water hydrothermal vent systems have been proposed as natural laboratories for studying the effects of elevated pCO2 on benthic communities. Hydrothermal vents occur at depths of approximately 10m in Tutum Bay, Ambitle Island, Papua New Guinea; these vents are surrounded by a typical-appearing fringing coral-reef community. Groups

  8. Review of the hydrothermal vent shrimp genus Mirocaris, redescription of M. fortunata and reassessment of the taxonomic status of the family Alvinocarididae (Crustacea: Decapoda: Caridea)

    Microsoft Academic Search

    Tomoyuki KOMAI; Michel SEGONZAC

    2003-01-01

    The hydrothermal vent shrimp genus Mirocaris is reviewed. Morphological comparison between the two nominal species in the genus, M. fortunata and M. keldyshi, was made based on the re-examination of the holotype and paratypes of Mirocaris fortunata and the paratypes of M. keldyshi. Samples newly collected from various sites on the Mid-Atlantic Ridge were also examined. The validity of the

  9. Environmental differences in hemoglobin gene expression in the hydrothermal vent tubeworm, Ridgeia piscesae.

    PubMed

    Carney, Susan L; Flores, Jason F; Orobona, Kathryn M; Butterfield, David A; Fisher, Charles R; Schaeffer, Stephen W

    2007-03-01

    Ridgeia piscesae, the siboglinid tubeworm inhabiting the hydrothermal vents of the northeast Pacific Juan de Fuca Ridge, displays a wide range of microhabitat-specific, genetically indistinguishable phenotypes. Local microhabitat conditions are hypothesized to play a role in the differentiation of R. piscesae phenotypes. Extracellular hemoglobins serve to connect the tubeworm and the surrounding vent fluid, binding environmental sulfide and oxygen for transport to endosymbionts that use the chemical energy for carbon fixation. Because hemoglobin is essential for this symbiosis, we examined its expression in two of the most extreme R. piscesae phenotypes at two levels: the mRNA encoding the globin subunits and the whole molecules in coelomic and vascular fluids. Levels of gene expression were up to 12 times greater in short-fat R. piscesae from higher temperature, sulfide chimney environments compared to long-skinny animals from a low temperature, diffuse flow basalt habitat. Gene expression levels were consistent with the relative concentrations of hemoglobin molecules in the vascular and coelomic fluids. Up to a 20-fold variation in globin gene expression was detected between the same phenotype from different sites. These data demonstrate that local environmental factors influence not only phenotype but gene expression and its resulting physiological outcome within this unique species. PMID:17240180

  10. Significance of polysaccharides in microbial physiology and the ecology of hydrothermal vent environments

    NASA Astrophysics Data System (ADS)

    Pysz, Marybeth A.; Montero, Clemente I.; Chhabra, Swapnil R.; Kelly, Robert M.; Rinker, Kristina D.

    Hyperthermophilic microorganisms (those with maximum growth temperatures of 90°C and above) are known to inhabit deep-sea hydrothermal vent environments and are suspected of being present in the associated subsurface biosphere. One characteristic of the growth physiology of many heterotrophic hyperthermophiles is the capacity to use complex polysaccharides (e.g., ?- and ?-linked glucans as well as non-glucan hemicellulases) as carbon and energy sources. Polysaccharides may also play an important ecological role in the deep-sea subsurface biosphere as the structural elements of biofilms harboring both heterotrophic and chemolithotrophic microorganisms, representing a range of growth temperatures. Genome sequence analysis of several hyperthermophiles indicates that the enzymatic machinery to synthesize and hydrolyze polysaccharides is present in this group of microorganisms. This is supported by the biochemical characteristics of glycosidases from hyperthermophiles in addition to the observation that several hyperthermophiles form biofilms in pure and co-culture. It remains to be seen if biofilms form the basis for a subsurface biosphere but this possibility seems likely given the physiological characteristics of several hyperthermophiles and mesophiles, representative of microorganisms previously isolated from vent sites.

  11. Host-Symbiont Relationships in Hydrothermal Vent Gastropods of the Genus Alviniconcha from the Southwest Pacific

    PubMed Central

    Suzuki, Yohey; Kojima, Shigeaki; Sasaki, Takenori; Suzuki, Masae; Utsumi, Takashi; Watanabe, Hiromi; Urakawa, Hidetoshi; Tsuchida, Shinji; Nunoura, Takuro; Hirayama, Hisako; Takai, Ken; Nealson, Kenneth H.; Horikoshi, Koki

    2006-01-01

    Hydrothermal vent gastropods of the genus Alviniconcha are unique among metazoans in their ability to derive their nutrition from chemoautotrophic ?- and ?-proteobacterial endosymbionts. Although host-symbiont relationships in Alviniconcha gastropods from the Central Indian Ridge in the Indian Ocean and the Mariana Trough in the Western Pacific have been studied extensively, host-symbiont relationships in Alviniconcha gastropods from the Southwest Pacific remain largely unknown. Phylogenetic analysis using mitochondrial cytochrome c oxidase subunit I gene sequences of host gastropods from the Manus, North Fiji, and Lau Back-Arc Basins in the Southwest Pacific has revealed a new host lineage in a Alviniconcha gastropod from the Lau Basin and the occurrence of the host lineage Alviniconcha sp. type 2 in the Manus Basin. Based on 16S rRNA gene sequences of bacterial endosymbionts, two ?-proteobacterial lineages and one ?-proteobacterial lineage were identified in the present study. The carbon isotopic compositions of the biomass and fatty acids of the gastropod tissues suggest that the ?- and ?-proteobacterial endosymbionts mediate the Calvin-Benson cycle and the reductive tricarboxylic acid cycle, respectively, for their chemoautotrophic growth. Coupling of the host and symbiont lineages from the three Southwest Pacific basins revealed that each of the Alviniconcha lineages harbors different bacterial endosymbionts belonging to either the ?- or ?-Proteobacteria. The host specificity exhibited in symbiont selection provides support for the recognition of each of the host lineages as a distinct species. The results from the present study also suggest the possibility that Alviniconcha sp. types 1 and 2 separately inhabit hydrothermal vent sites approximately 120 m apart in the North Fiji Basin and 500 m apart in the Manus Basin. PMID:16461691

  12. New Frontiers in Arctic Exploration: Autonomous Location and Sampling of Hydrothermal Vents Under the Ice at Earth's Slowest Spreading Ridge (IPY Project 173)

    NASA Astrophysics Data System (ADS)

    Edmonds, H. N.; Reves-Sohn, R.; Singh, H.; Shank, T. M.; Humphris, S.; Seewald, J.; Akin, D.; Bach, W.; Nogi, Y.; Pedersen, R.

    2006-12-01

    As part of IPY project #173, we are planning an international expedition for 2007 to locate and study hydrothermal vents on the ultraslow-spreading Gakkel Ridge, at depths greater than 4000 m beneath the permanent ice cap. This effort necessitates the development of novel exploration technologies, because the Gakkel Ridge rift valley is inaccessible to traditional deep submergence tools. With funding from NASA, NSF, and the private sector we have developed two new autonomous underwater vehicles that will find and map hydrothermal plumes in the water column, trace the buoyant plume stem to the seafloor source, and then map, photograph, and collect samples from the vent sites. The Gakkel Ridge is a key target for hydrothermal exploration not only because of its spreading rate but also because its geographic and hydrographic isolation from other portions of the mid-ocean ridge system have important implications for novel endemic vent fauna. Our major scientific themes are the geological diversity and biogeography of hydrothermal vents on the Arctic mid-ocean ridge system. Our major technology theme is autonomous exploration and sample return with an explicit mandate to develop techniques and methods for eventual use in astrobiology missions to search for life under the ice covered oceans of Europa, a moon of Jupiter. In addition to the US-led Gakkel Ridge expedition, a Norway-led expedition will target sites in seasonally ice-free water over the Mohns Ridge. The results of these two expeditions will be combined to reveal systematic patterns regarding biogeography (through both community-level and genetic-level investigations) of vent-endemic fauna, to study the differences between basalt vs. peridotite hosted vent fields, and to improve our understanding of hydrothermal circulation at ultra- slow spreading plate boundaries where amagmatic extension and long-lived faulting predominate. The expeditions will provide educational and outreach activities through the award-winning Dive and Discover (www.divediscover.whoi.edu) web site.

  13. Evidence of off-axis volcanism and hydrothermal venting along the cleft segment of the southern Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Stakes, D.; Perfit, M.; Wheat, C.; Ramirez, T.; Koski, R.; Hein, J.

    2003-04-01

    High-resolution mapping and systematic ROV-based geological observation and sampling, of the Cleft Segment, Juan de Fuca Ridge, provide a unique perspective on crustal evolution and off-axis hydrothermal activity along this moderate spreading-rate ridge. Simrad EM300 multibeam bathymetric maps with a 30- m pixel size provide sufficiently high resolution to trace magmatic, tectonic, and hydrothermal events over geologically short time scales (50--100,000 years). During a series of 13 dives in 2000 and 2002 using the MBARI ROV Tiburon, we collected samples of basalt and hydrothermal precipitates along six transects across the ridge axis extending up to 5 km off-axis. The rift-valley walls consist of a series of inward-facing bounding faults, separated by blocks of oceanic crust that exhibit little or no deformation. Unlike the axial valley where sheetflows are predominant, these off-axis blocks are unfaulted constructional pillow ridges, mounds, and hornitos. Field observations provide evidence for off-axis volcanism along eruptive fissures and from point-sources related to rift-bounding faults. Other volcanic constructions in the first series of abyssal hills are interpreted to be syntectonic lava flows erupted along "volcanic growth faults". Thick ridge-flank flows of intact pillows originated from near-axis bounding faults. The contact between the massive pillowed units and the older sheet flows (approximately three kilometers to the east) is clearly delineated by both sediment cover and lava-flow morphology and is the site of diffusive low-temperature hydrothermal venting. Measured temperatures of shimmering fluids at this eastern site were 3--20^oC above ambient. A large Fe-Mn mound with dramatic chemical gradients was discovered 4 km west of the spreading axis on the flank of a ridge-parallel horst capped with syntectonic pillowed flows. The hydrothermal mounds are characterized by layered flocculent masses of microbial filaments encrusted with amorphous and poorly crystalline Fe oxyhydroxides and silicates intermixed with pelagic debris. The greenish Fe-, Si-, and microbial-rich layers are capped by successive cm-thick layers of colloform hydrothermal Mn oxide. SEM images of microbial sheaths and stalks from precipitates at off-axis hydrothermal sites are similar in morphology to known Fe-oxidizing bacteria. The low-temperature vents may represent secondary hydrothermal systems associated with off-axis volcanic episodes. Alternatively, they may represent the distal outflow of high-temperature hydrothermal fluids channeled laterally for several kilometers beneath off-axis volcanic units.

  14. Adaptations to Hydrothermal Vent Life in Kiwa tyleri, a New Species of Yeti Crab from the East Scotia Ridge, Antarctica

    PubMed Central

    Thatje, Sven; Marsh, Leigh; Roterman, Christopher Nicolai; Mavrogordato, Mark N.; Linse, Katrin

    2015-01-01

    Hydrothermal vents in the Southern Ocean are the physiologically most isolated chemosynthetic environments known. Here, we describe Kiwa tyleri sp. nov., the first species of yeti crab known from the Southern Ocean. Kiwa tyleri belongs to the family Kiwaidae and is the visually dominant macrofauna of two known vent sites situated on the northern and southern segments of the East Scotia Ridge (ESR). The species is known to depend on primary productivity by chemosynthetic bacteria and resides at the warm-eurythermal vent environment for most of its life; its short-range distribution away from vents (few metres) is physiologically constrained by the stable, cold waters of the surrounding Southern Ocean. Kiwa tylerihas been shown to present differential life history adaptations in response to this contrasting thermal environment. Morphological adaptations specific to life in warm-eurythermal waters, as found on – or in close proximity of – vent chimneys, are discussed in comparison with adaptations seen in the other two known members of the family (K. hirsuta, K. puravida), which show a preference for low temperature chemosynthetic environments. PMID:26107940

  15. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent

    Microsoft Academic Search

    W. J. Jones; J. A. Leigh; F. Mayer; C. R. Woese; R. S. Wolfe

    1983-01-01

    A new extremely thermophilic methane-producing bacterium was isolated from a submarine hydrothermal vent sample collected by a research team from the Woods Hole Oceanographic Institution using the manned submersible ALVIN. The sample was obtained from the base of a “white smoker” chimney on the East Pacific Rise at 20° 50' N latitude and 109° 06' W longitude at a depth

  16. Genetic heterogeneity among New Zealand species of hydrothermal vent mussels (Mytilidae: Bathymodiolus )

    Microsoft Academic Search

    P. J. Smith; S. M. McVeagh; Y. Won; R. C. Vrijenhoek

    2004-01-01

    Molecular systematic studies provide evidence for three new species of Bathymodiolus-like hydrothermal vent mussels (Bivalvia: Mytilidae) from relatively shallow waters (depth less than 750 m) associated with the Kermadec Arc off northern New Zealand. Mitochondrial COI sequences from the three putative new species differed substantially from those of other known bathymodiolin species from the Pacific and Indian Oceans. Population genetic analysis

  17. Hydrothermal Vents Goal of the Lesson Introduce connection between ocean geology and biology,

    E-print Network

    Carrington, Emily

    with the challenges. · Show Blue Plant, The Deep (chapter 11) o Stop video at 40:00 and describe how cold ocean waterHydrothermal Vents Goal of the Lesson ­ Introduce connection between ocean geology and biology that lives by a divergent boundary, redesign of animal based on video & discussion. Materials · The Blue

  18. Diversity of Thiosulfate-Oxidizing Bacteria from Marine Sediments and Hydrothermal Vents

    Microsoft Academic Search

    A. Teske; T. Brinkhoff; G. Muyzer; D. P. Moser; J. Rethmeier; H. W. Jannasch

    2000-01-01

    Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 10 3 - and 10 4 -fold dilutions

  19. Mantle helium reveals Southern Ocean hydrothermal venting Gisela Winckler,1,2

    E-print Network

    Winckler, Gisela

    Click Here for Full Article Mantle helium reveals Southern Ocean hydrothermal venting Gisela the distribution of helium isotopes along an oceanic transect at 67°S to identify previously unobserved provided by the helium isotope anomaly with independent hydrographic information from the Southern Ocean

  20. Chemoautotrophic Potential of the Hydrothermal Vent Tube Worm, Riftia pachyptila Jones (Vestimentifera)

    Microsoft Academic Search

    Horst Felbeck

    1981-01-01

    Trophosome tissue of the hydrothermal vent tube worm, Riftia pachyptila (Vestimentifera), contains high activities of several enzymes associated with chemoautotrophic existence. Enzymes catalyzing synthesis of adenosine triphosphate using energy contained in sulfur compounds such as hydrogen sulfide, and two diagnostic enzymes of the Calvin-Benson cycle of carbon dioxide fixation, ribulosebisphosphate carboxylase and ribulose 5-phosphate kinase, are present at high levels

  1. Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod

    E-print Network

    Dao, Ming

    Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod Haimin-plated multilayered structure of the natural armor of Crysomallon squamiferum, a recently discovered gastropod mollusc engineered armor. We have determined through nanoscale experiments and computational simulations

  2. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions

    Microsoft Academic Search

    Kathleen A. Campbell

    2006-01-01

    Hydrocarbon seeps and hydrothermal vents are now known to be common at continental margins and oceanic spreading centers worldwide, exuding fluids rich in CH4 and H2S, and teeming with life based on chemosynthesis. These settings have been implicated as the crucibles for life's origin, and as locales for methane release to the atmosphere from hydrate destabilization during past climate change.

  3. On the global distribution of hydrothermal vent fields: One decade later

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with < 60 mm/yr full spreading rate. Discoveries at ultra-slow MORs in the past decade included the deepest known vent (Beebe at Mid-Cayman Rise) and high-temperature black smoker vents (e.g., Dragon at SWIR and Loki's Castle at Mohns Ridge), and the highest temperature vent was measured at the slow-spreading S MAR (Turtle Pits). Using a previously published equation for the linear relationship between the number of active vent fields per 100 km strike length (F_s) vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (< 40 mm/yr) and about 1/3 at intermediate rates (40-80 mm/yr). MOR regions that are little explored tend to be at high latitudes, such as the ultra-slow to slow spreading Arctic MORs (e.g., Kolbeinsey and Mohns Ridges), the ultra-slow American-Antarctic Ridge, and the intermediate spreading Pacific-Antarctic Ridge. Although a greater percentage of the ~11,000 km of BASCs has been surveyed for hydrothermal activity, the discoveries at BASCs in the past decade were mainly at segments with intermediate to fast spreading rates. Using the same equation for F_s vs. u_s, we predicted 71 vent fields remaining to be discovered at BASCs, and most are likely to be found at ultra-slow and slow spreading segments (e.g., Andaman Basin, and central to northern Mariana Trough). With 2/3 of our overall predicted total vent fields at spreading ridges remaining to be discovered, we expect that the next decade of exploration will continue to yield new discoveries, leading to new insights into biogeography of vent fauna and the global impacts of fluxes of heat and materials from vents into our oceans.

  4. Bottom sediments and pore waters near a hydrothermal vent in Lake Baikal (Frolikha Bay)

    USGS Publications Warehouse

    Granina, L.Z.; Klerkx, J.; Callender, E.; Leermakers, M.; Golobokova, L.P.

    2007-01-01

    We discuss the redox environments and the compositions of bottom sediments and sedimentary pore waters in the region of a hydrothermal vent in Frolikha Bay, Lake Baikal. According to our results, the submarine vent and its companion nearby spring on land originate from a common source. The most convincing evidence for their relation comes from the proximity of stable oxygen and hydrogen isotope compositions in pore waters and in the spring water. The isotope composition indicates a meteoric origin of pore waters, but their major- and minor-element chemistry bears imprint of deep water which may seep through permeable faulted crust. Although pore waters near the submarine vent have a specific enrichment in major and minor constituents, hydrothermal discharge at the Baikal bottom causes a minor impact on the lake water chemistry, unlike the case of freshwater geothermal lakes in the East-African Rift and North America. ?? 2007.

  5. Comparative Population Structure of Two Deep-Sea Hydrothermal-Vent-Associated Decapods (Chorocaris sp. 2 and Munidopsis lauensis) from Southwestern Pacific Back-Arc Basins

    PubMed Central

    Thaler, Andrew David; Plouviez, Sophie; Saleu, William; Alei, Freddie; Jacobson, Alixandra; Boyle, Emily A.; Schultz, Thomas F.; Carlsson, Jens; Van Dover, Cindy Lee

    2014-01-01

    Studies of genetic connectivity and population structure in deep-sea chemosynthetic ecosystems often focus on endosymbiont-hosting species that are directly dependent on chemical energy extracted from vent effluent for survival. Relatively little attention has been paid to vent-associated species that are not exclusively dependent on chemosynthetic ecosystems. Here we assess connectivity and population structure of two vent-associated invertebrates—the shrimp Chorocaris sp. 2 and the squat lobster Munidopsis lauensis—that are common at deep-sea hydrothermal vents in the western Pacific. While Chorocaris sp. 2 has only been observed at hydrothermal vent sites, M. lauensis can be found throughout the deep sea but occurs in higher abundance around the periphery of active vents We sequenced mitochondrial COI genes and deployed nuclear microsatellite markers for both species at three sites in Manus Basin and either North Fiji Basin (Chorocaris sp. 2) or Lau Basin (Munidopsis lauensis). We assessed genetic differentiation across a range of spatial scales, from approximately 2.5 km to more than 3000 km. Population structure for Chorocaris sp. 2 was comparable to that of the vent-associated snail Ifremeria nautilei, with a single seemingly well-mixed population within Manus Basin that is genetically differentiated from conspecifics in North Fiji Basin. Population structure for Munidopsis lauensis was more complex, with two genetically differentiated populations in Manus Basin and a third well-differentiated population in Lau Basin. The unexpectedly high level of genetic differentiation between M. lauensis populations in Manus Basin deserves further study since it has implications for conservation and management of diversity in deep-sea hydrothermal vent ecosystems. PMID:24983244

  6. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-04-01

    Little is known about nitrogen (N) transformations in general, and the elimination of N in particular, at diffuse vents where anoxic hydrothermal fluids have mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N-loss pathways (denitrification, anammox) and dissimilative nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e. temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithotrophic nitrate-reducing, sulfur-oxidizing ?-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N-loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always <5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to 152 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that ?-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlation existed between fixed N-loss (i.e., denitrification, anammox) rates and in-situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N-loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence times, we estimated that, on average, ~10 Tg N yr-1 could globally be removed in the subsurface biosphere of hydrothermal vents systems, and could thus represent a small, but significant, fraction of the total marine N loss (240-400 Tg N yr-1).

  7. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-11-01

    Little is known about fixed nitrogen (N) transformation and elimination at diffuse hydrothermal vents where anoxic fluids are mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N loss pathways (denitrification, anammox) and dissimilatory nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e., temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithoautotrophic nitrate-reducing, sulfur-oxidizing ?-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always < 5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to ~150 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that ?-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlations were found between fixed N loss (i.e., denitrification, anammox) rates and in situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence times, we estimated that up to ~10 Tg N yr-1 could globally be removed in the subsurface biosphere of hydrothermal vents systems, thus, representing a small fraction of the total marine N loss (~275 to > 400 Tg N yr-1).

  8. Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis

    PubMed Central

    Wendeberg, Annelie; Zielinski, Frank U; Borowski, Christian; Dubilier, Nicole

    2012-01-01

    The hydrothermal vent mussel Bathymodiolus puteoserpentis (Mytilidae) from the Mid-Atlantic Ridge hosts symbiotic sulfur- and methane-oxidizing bacteria in its gills. In this study, we investigated the activity and distribution of these two symbionts in juvenile mussels from the Logatchev hydrothermal vent field (14°45?N Mid-Atlantic Ridge). Expression patterns of two key genes for chemosynthesis were examined: pmoA (encoding subunit A of the particulate methane monooxygenase) as an indicator for methanotrophy, and aprA (encoding the subunit A of the dissimilatory adenosine-5?-phosphosulfate reductase) as an indicator for thiotrophy. Using simultaneous fluorescence in situ hybridization (FISH) of rRNA and mRNA we observed highest mRNA FISH signals toward the ciliated epithelium where seawater enters the gills. The levels of mRNA expression differed between individual specimens collected in a single grab from the same sampling site, whereas no obvious differences in symbiont abundance or distribution were observed. We propose that the symbionts respond to the steep temporal and spatial gradients in methane, reduced sulfur compounds and oxygen by modifying gene transcription, whereas changes in symbiont abundance and distribution take much longer than regulation of mRNA expression and may only occur in response to long-term changes in vent fluid geochemistry. PMID:21734728

  9. Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis.

    PubMed

    Wendeberg, Annelie; Zielinski, Frank U; Borowski, Christian; Dubilier, Nicole

    2012-01-01

    The hydrothermal vent mussel Bathymodiolus puteoserpentis (Mytilidae) from the Mid-Atlantic Ridge hosts symbiotic sulfur- and methane-oxidizing bacteria in its gills. In this study, we investigated the activity and distribution of these two symbionts in juvenile mussels from the Logatchev hydrothermal vent field (14°45'N Mid-Atlantic Ridge). Expression patterns of two key genes for chemosynthesis were examined: pmoA (encoding subunit A of the particulate methane monooxygenase) as an indicator for methanotrophy, and aprA (encoding the subunit A of the dissimilatory adenosine-5'-phosphosulfate reductase) as an indicator for thiotrophy. Using simultaneous fluorescence in situ hybridization (FISH) of rRNA and mRNA we observed highest mRNA FISH signals toward the ciliated epithelium where seawater enters the gills. The levels of mRNA expression differed between individual specimens collected in a single grab from the same sampling site, whereas no obvious differences in symbiont abundance or distribution were observed. We propose that the symbionts respond to the steep temporal and spatial gradients in methane, reduced sulfur compounds and oxygen by modifying gene transcription, whereas changes in symbiont abundance and distribution take much longer than regulation of mRNA expression and may only occur in response to long-term changes in vent fluid geochemistry. PMID:21734728

  10. Trace Metal and Sulfur Dynamics in the First Meter of Buoyant Hydrothermal Vent Plumes

    NASA Astrophysics Data System (ADS)

    Findlay, A.; Gartman, A.; Shaw, T. J.; Luther, G. W., III

    2014-12-01

    The speciation and reactivity of metals and metal sulfides within the buoyant plume is critical to determining the ultimate fate of metals emitted from hydrothermal vents. The concentration, size fractionation, and partitioning of trace metals (Fe, Mn, Cu, Co, Zn, Cd, Pb) were determined within the first meter of the rising plume at three vent fields (TAG, Snakepit, and Rainbow) along the Mid-Atlantic Ridge. At Rainbow, total Fe concentrations exceed total sulfide concentrations by an order of magnitude, whereas at the other two sites, total Fe and total sulfide concentrations are nearly equal. At all three sites, Mn and Fe are primarily in the filtered (< 0.2 ?m) fraction and Cu, Co, Zn, Cd, and Pb are mainly in the unfiltered fraction. At TAG and Snakepit, unfiltered copper is correlated with unfiltered cobalt, and unfiltered zinc is correlated with unfiltered cadmium and lead. At Rainbow, unfiltered zinc, cadmium and lead are correlated, but unfiltered copper and cobalt are not, indicating precipitation dynamics at Rainbow are different than those at TAG and Snakepit due to bulk geochemical differences, including a higher iron to sulfide ratio. A sequential HCl/HNO3 leaching method was used to distinguish metals present in pyrite and chalcopyrite in both unfiltered and filtered samples. Significant portions of unfiltered Cu and Co were extracted in HNO3, whereas unfiltered Zn, Cd, and Pb were extracted in HCl. Up to 95 % of filtered Cu, Co, and Zn, up to 80% Cd, and up to 60 % Pb are only extractable in HNO3, indicating that a significant portion of metals < 0.2 ?m are incorporated into a recalcitrant fraction such as nanoparticulate pyrite or chalcopyrite.

  11. Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece

    PubMed Central

    2014-01-01

    Shallow-sea (5 m depth) hydrothermal venting off Milos Island provides an ideal opportunity to target transitions between igneous abiogenic sulfide inputs and biogenic sulfide production during microbial sulfate reduction. Seafloor vent features include large (>1 m2) white patches containing hydrothermal minerals (elemental sulfur and orange/yellow patches of arsenic-sulfides) and cells of sulfur oxidizing and reducing microorganisms. Sulfide-sensitive film deployed in the vent and non-vent sediments captured strong geochemical spatial patterns that varied from advective to diffusive sulfide transport from the subsurface. Despite clear visual evidence for the close association of vent organisms and hydrothermalism, the sulfur and oxygen isotope composition of pore fluids did not permit delineation of a biotic signal separate from an abiotic signal. Hydrogen sulfide (H2S) in the free gas had uniform ?34S values (2.5?±?0.28‰, n?=?4) that were nearly identical to pore water H2S (2.7?±?0.36‰, n?=?21). In pore water sulfate, there were no paired increases in ?34SSO4 and ?18OSO4 as expected of microbial sulfate reduction. Instead, pore water ?34SSO4 values decreased (from approximately 21‰ to 17‰) as temperature increased (up to 97.4°C) across each hydrothermal feature. We interpret the inverse relationship between temperature and ?34SSO4 as a mixing process between oxic seawater and 34S-depleted hydrothermal inputs that are oxidized during seawater entrainment. An isotope mass balance model suggests secondary sulfate from sulfide oxidation provides at least 15% of the bulk sulfate pool. Coincident with this trend in ?34SSO4, the oxygen isotope composition of sulfate tended to be 18O-enriched in low pH (<5), high temperature (>75°C) pore waters. The shift toward high ?18OSO4 is consistent with equilibrium isotope exchange under acidic and high temperature conditions. The source of H2S contained in hydrothermal fluids could not be determined with the present dataset; however, the end-member ?34S value of H2S discharged to the seafloor is consistent with equilibrium isotope exchange with subsurface anhydrite veins at a temperature of ~300°C. Any biological sulfur cycling within these hydrothermal systems is masked by abiotic chemical reactions driven by mixing between low-sulfate, H2S-rich hydrothermal fluids and oxic, sulfate-rich seawater. PMID:25183951

  12. Morphotypes of virus-like particles in two hydrothermal vent fields on the East Scotia Ridge, Antarctica

    PubMed Central

    Millard, Andrew D; Hands-Portman, Ian; Zwirglmaier, Katrin

    2014-01-01

    Viruses from extreme environments are still largely unexplored and may harbor unseen genetic potential. Here, we present a first glance at the morphological diversity of virus like particles (VLPs) from an environment that is extreme in more than one respect: two recently discovered hydrothermal vent fields on the East Scotia Ridge in the Southern Ocean near Antarctica. They are the southernmost hydrothermal sites found to date and have been shown to present a new biogeographic province, containing several new macrofaunal species and associated microbial organisms. Transmission electron microscopy revealed a range of tailed and untailed VLPs of various morphologies as well as an unusual long rod-shaped VLP with three long filaments. Based on its distant similarity with several known archaeal viruses, we hypothesize that this presents a new viral morphology that most likely infects an archaeon. Notably absent in the samples we analyzed were lemon- or spindle-shaped VLPs that have previously been described in other hydrothermal vent settings. PMID:25105058

  13. Repetitive Surface-Mounted Multibeam Water Column Imaging of Hydrothermal Vent Plumes over NW Rota 1

    NASA Astrophysics Data System (ADS)

    Hughes Clarke, J. E.; Martinolich, R.; Broadus, M.

    2009-12-01

    The active hydrothermal plume emanating from the NW Rota 1 seamount was imaged in August 2009 using simultaneously operating 0.5°x1.0° EM710 (70-80 kHz) and 1.0°x1.0° EM122 (11-13 kHz) multibeams. The vent site (Brimstone Pit) lies close to the summit at a depth of 550m. The plume was imaged using east-west passes every 20 minutes for a total period of 9.5 hours. Throughout that period the plume was continuously visible and notably altered in dimension, alignment and scattering strength. The highest scattering strengths and greatest plume widths (50+m) were observed within the lowest 200m above the vent. At 150-200m above the vent the character of the plume changed and split into two narrower (becoming <10m wide) plumes that were strongly sinuous with perturbations of more than 100m horizontally over a height of 100m. Occasionally one of the plumes could be traced to within 75m of the sea surface. The visibility of the upper fainter sections of the plume was notably improved after the deep scattering layer descended at dawn. Over the 9.5 hour period the tilt of the lower plume varied from nearly vertical to inclinations of more than 45°, with azimuths ranging from NW to SW, suggesting a tidal modulation of the over-summit regional currents. The upper plume often exhibited reversed tilt or differing azimuths, suggesting shear within the water column. For about 1 hour, the intensity and width of the lower 200m of the plume notably increased. At the same time a series of distinct high-intensity targets appeared in the lower plume spaced ~ 30m apart vertically. The layered character of the regional deep scattering layer on the upstream and downstream side of the summit was imaged simultaneously for evidence of eddy development in the lee of the seamount. No major turbulence was noted, but for a 1.5 hour period a notable decrease in scattering intensity of one layer at about 500m was seen immediately downstream of the vent. Both multibeams utilize multiple transmit sectors with offset frequencies to maximize stability of seafloor coverage. This complicates the water column imaging, as the scattering strength of both the plume and the deep scattering layer appears strongly frequency-dependent. The along track resolution of the system was limited by two-way travel time. At these depths the EM710 required long chirped pulses precluding dual swath capability, and therefore only achieved 12m along track spacing. The EM122 was using dual swath mode which improved the along track density. Due to sidelobe tracking limitations, only targets within a hemisphere of less than the minimum slant range to the seabed can be unambiguously detected. Surface-mounted water column imaging is still relatively new and appears to be able to fill a scale gap in hydrothermal venting studies between the shorter range ROV-based acoustic imaging used elsewhere (Rona et al. MGR, 2002) and regional “tow-yo” surveys (Walker et al. JGR, 2008) used to date on NW Rota 1. By using sequential imaging over time periods of 10’s of minutes, some aspects of the nature and scale of entrainment within the active plume may be inferred.

  14. Widespread Occurrence of Two Carbon Fixation Pathways in Tubeworm Endosymbionts: Lessons from Hydrothermal Vent Associated Tubeworms from the Mediterranean Sea

    PubMed Central

    Thiel, Vera; Hügler, Michael; Blümel, Martina; Baumann, Heike I.; Gärtner, Andrea; Schmaljohann, Rolf; Strauss, Harald; Garbe-Schönberg, Dieter; Petersen, Sven; Cowart, Dominique A.; Fisher, Charles R.; Imhoff, Johannes F.

    2012-01-01

    Vestimentiferan tubeworms (siboglinid polychetes) of the genus Lamellibrachia are common members of cold seep faunal communities and have also been found at sedimented hydrothermal vent sites in the Pacific. As they lack a digestive system, they are nourished by chemoautotrophic bacterial endosymbionts growing in a specialized tissue called the trophosome. Here we present the results of investigations of tubeworms and endosymbionts from a shallow hydrothermal vent field in the Western Mediterranean Sea. The tubeworms, which are the first reported vent-associated tubeworms outside the Pacific, are identified as Lamellibrachia anaximandri using mitochondrial ribosomal and cytochrome oxidase I (COI) gene sequences. They harbor a single gammaproteobacterial endosymbiont. Carbon isotopic data, as well as the analysis of genes involved in carbon and sulfur metabolism indicate a sulfide-oxidizing chemoautotrophic endosymbiont. The detection of a hydrogenase gene fragment suggests the potential for hydrogen oxidation as alternative energy source. Surprisingly, the endosymbiont harbors genes for two different carbon fixation pathways, the Calvin-Benson-Bassham (CBB) cycle as well as the reductive tricarboxylic acid (rTCA) cycle, as has been reported for the endosymbiont of the vent tubeworm Riftia pachyptila. In addition to RubisCO genes we detected ATP citrate lyase (ACL – the key enzyme of the rTCA cycle) type II gene sequences using newly designed primer sets. Comparative investigations with additional tubeworm species (Lamellibrachia luymesi, Lamellibrachia sp. 1, Lamellibrachia sp. 2, Escarpia laminata, Seepiophila jonesi) from multiple cold seep sites in the Gulf of Mexico revealed the presence of acl genes in these species as well. Thus, our study suggests that the presence of two different carbon fixation pathways, the CBB cycle and the rTCA cycle, is not restricted to the Riftia endosymbiont, but rather might be common in vestimentiferan tubeworm endosymbionts, regardless of the habitat. PMID:23248622

  15. Estimating the Heat and Mass Flux at the ASHES Hydrothermal Vent Field with the Sentry Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Kinsey, J. C.; Crone, T. J.; Mittelstaedt, E. L.; Medagoda, L.; Fourie, D.; Nakamura, K.

    2014-12-01

    Hydrothermal venting influences ocean chemistry, the thermal and chemical structure of the oceanic crust, the style of accretion at mid-ocean ridges, and the evolution of unique and diverse chemosynthetic ecosystems. Surprisingly, only a few studies have attempted to constrain the volume and heat flux of entire hydrothermal vent fields given that axially-hosted hydrothermal systems are estimated to be responsible for ~20-25% of the total heat flux out of the Earth's interior, as well as potentially playing a large role in global and local biogeochemical cycles. However, same-site estimates can vary greatly, such as at the Lucky Strike Field where estimates range from 100 MW to 3800 MW. We report a July 2014 field program with the Sentry AUV that obtains the water velocity and heat measurements necessary to estimate the total heat and mass flux emanating from the ASHES hydrothermal vent field. We equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV) with an inertial measurement unit attached, two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, to measure the temperature and water velocity. This sensing suite provided more accurate measurements than previous AUV based studies. A control volume approach was employed in which Sentry was pre-programmed to survey a 150m by 150m box centered over the vent field flying a "mowing the lawn" pattern at 5m trackline spacing followed by a survey of the perimeter. During a 40 hour survey, the pattern was repeated 9 times allowing us to obtain observations over multiple tidal cycles. Concurrent lowered ADCP (LADCP) measurements were also obtained. Water velocity data obtained with Sentry was corrected for platform motion and then combined with the temperature measurements to estimate heat flux. Analysis of this data is on-going, however these experiments permit us to quantify the heat and mass exiting the control volume, and potentially provide the most accurate and highest resolution heat and mass flux estimates at a hydrothermal field to date.

  16. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center

    NASA Astrophysics Data System (ADS)

    Johnson, Kenneth S.; Childress, James J.; Hessler, Robert R.; Sakamoto-Arnold, Carole M.; Beehler, Carl L.

    1988-10-01

    The concentrations of a suite of redox reactive chemicals were measured in the Rose Garden hydrothermal vent field of the Galapagos spreading center. Sulfide, silicate, oxygen and temperature distributions were measured in situ with a submersible chemical analyser. In addition, 15 chemical species were measured in discrete samples. Variability in the slope of the temperature-silicate plots indicates that heat is lost from these relatively low temperatures (<15°C) solutions by conduction to the solid phase. Consumption of oxygen, sulfide and nitrate from the hydrothermal solution as it flows past the vent animals is apparent from the distributions measured in situ and in the discrete samples. The fraction of sulfide and nitrate removed from the solution by consumption appears to have increased between 1979-1985. Sulfide and oxygen appear to be consumed under different conditions: sulfide is removed primarily from the warmest solutions, and oxygen is consumed only from the cold seawater. This separation may be driven primarily by the increased gradients of each chemical under these conditions. There is no evidence for the consumption of significant amounts of manganese(II) by the vent organisms. The analysis of other data sets from this vent field indicate no significant consumption of methane by the vent organisms, as well.

  17. Rare earth elements in seawater near hydrothermal vents

    Microsoft Academic Search

    G. Klinkhammer; H. Elderfield; A. Hudson

    1983-01-01

    Rare earth element (REE) patterns in the deep Pacific are strongly depleted in the lighter elements and have a large negative cerium anomaly. These REE patterns and associated concentration-depth profiles are maintained by regeneration in deep waters modified by preferential scavenging of the lighter elements. Scavenging by iron- and manganese-rich hydrothermal plumes might explain why vast areas of sediments far

  18. Geologic form and setting of a hydrothermal vent field at latitude 10/sup 0/56'N, East Pacific Rise: a detailed study using Angus and Alvin

    SciTech Connect

    McConachy, T.F.; Ballard, R.D.; Mottl, M.J.; Von Herzen, R.P.

    1986-04-01

    A hydrothermal vent field, here called the Feather Duster site, occurs on the eastern marginal high near the edge of a narrow (95-m) and shallow (15-20-m) axial graben, within an area dominated by sheet flows and collapse features. The sheet flows are intermediate in relative age between younger fluid-flow lavas on the floor of the axial graben and older pillow (constructional) lavas on the marginal highs. Hydrothermal activity occurs in two zones within a 65 by 45 m area. The main zone is located where a fissure system and sulfide-sulfate chimneys vent warm (9-47/sup 0/C) and hot (347/sup 0/C) hydrothermal fluids. Here, two mounds of massive sulfide totaling about 200 t are forming. One occurs at the base of a 3-m-high scarp which is the wall of a drained lava lake; the other is perched on top of the scarp. 19 references, 4 figures.

  19. Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis

    Microsoft Academic Search

    Annelie Wendeberg; Frank U Zielinski; Christian Borowski; Nicole Dubilier

    2012-01-01

    The hydrothermal vent mussel Bathymodiolus puteoserpentis (Mytilidae) from the Mid-Atlantic Ridge hosts symbiotic sulfur- and methane-oxidizing bacteria in its gills. In this study, we investigated the activity and distribution of these two symbionts in juvenile mussels from the Logatchev hydrothermal vent field (14°45?N Mid-Atlantic Ridge). Expression patterns of two key genes for chemosynthesis were examined: pmoA (encoding subunit A of

  20. The effect of cadmium on antioxidant responses and the susceptibility to oxidative stress in the hydrothermal vent mussel Bathymodiolus azoricus

    Microsoft Academic Search

    Angela Serafim; Richard Cosson; Lionel Camus; Bruce Shillito; Aline Fiala-Médioni; Maria João Bebianno

    2006-01-01

    Hydrothermal vents are a unique environment of extreme physical–chemical characteristics and biological species composition.\\u000a Cd is a toxic non-essential metal present in high concentrations in the hydrothermal vent environment, contrary to those found\\u000a in marine coastal areas. Cd toxicity has been related, among other things, with reactive oxygen species production, even though\\u000a this is a non-redox metal. Bathymodiolus azoricus is

  1. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa

    USGS Publications Warehouse

    Paull, C.K.; Hecker, Barbara; Commeau, R.; Freeman-Lynde, R. P.; Neumann, C.; Corso, W.P.; Golubic, S.; Hook, J.E.; Sikes, E.; Curray, J.

    1984-01-01

    Dense biological communities of large epifaunal taxa similar to those found along ridge crest vents at the East Pacific Rise were discovered in the abyssal Gulf of Mexico. These assemblages occur on a passive continental margin at the base of the Florida Escarpment, the interface between the relatively impermeable hemipelagic clays of the distal Mississippi Fan and the jointed Cretaceous limestone of the Florida Platform. The fauna apparently is nourished by sulfide rich hypersaline waters seeping out at near ambient temperatures onto the sea floor.

  2. Biogeography revisited with network theory: retracing the history of hydrothermal vent communities.

    PubMed

    Moalic, Yann; Desbruyères, Daniel; Duarte, Carlos M; Rozenfeld, Alejandro F; Bachraty, Charleyne; Arnaud-Haond, Sophie

    2012-01-01

    Defining biogeographic provinces to understand the history and evolution of communities associated with a given kind of ecosystem is challenging and usually requires a priori assumptions to be made. We applied network theory, a holistic and exploratory method, to the most complete database of faunal distribution available on oceanic hydrothermal vents, environments which support fragmented and unstable ecosystems, to infer the processes driving their worldwide biogeography. Besides the identification of robust provinces, the network topology allowed us to identify preferential pathways that had hitherto been overlooked. These pathways are consistent with the previously proposed hypothesis of a role of plate tectonics in the biogeographical history of hydrothermal vent communities. A possible ancestral position of the Western Pacific is also suggested for the first time. Finally, this work provides an innovative example of the potential of network tools to unravel the biogeographic history of faunal assemblages and to supply comprehensive information for the conservation and management of biodiversity. PMID:21856628

  3. Fe-oxidizing microbes are hydrothermal vent ecosystem engineers at the Loihi Seamount (Invited)

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; McAllister, S.; Leavitt, A.; Emerson, D.; Moyer, C. L.; Glazer, B. T.

    2013-12-01

    Microaerophilic Fe-oxidizing microorganisms (FeOM) colonize gradients of Fe(II) and oxygen, taking advantage of the available chemical energy. Vast communities of FeOM proliferate at deep sea hydrothermal vents, forming mineralized mats that range from centimeters to meters thick. Because these mats structure the environment for both FeOM and the entire microbial community, the Fe-oxidizers are acting as ecosystem engineers. What organisms are responsible for initiating these mats, and how does the physical structure and community composition develop as the mats mature? By connecting structure, function, and ecology, we can better interpret modern mat structures, as well as ancient fossilized mats. We have been studying Fe microbial mats at Loihi Seamount in Hawaii, a long-term study site that has become a model for Fe oxidation in marine hydrothermal systems. Recent improvements in ROV imaging systems allow us to see a great range of mat textures and colors, which may represent diverse habitats and/or different stages of mat development. With improved imaging and sampling techniques, we have been able to obtain discrete, intact samples of these delicate microbial mats. Previous bulk sampling methods showed that mats consist of a mixture of Fe-mineralized morphologies. Our analyses of intact mats show that mats are initiated by one type of structure-former (either a stalk-former like Mariprofundus ferrooxydans or a Zetaproteobacterial sheath-former). These microbes may be the vanguard organisms that stabilize chemical gradients in this dynamic environment, allowing colonization by other organisms (evidenced by branching tubes, fibrillar nests, and other morphologies). We will show evidence of the composition and development of these mats, and discuss parallels between these marine Fe mats and their freshwater counterparts, supporting the idea that FeOM engineer environments favorable for growth.

  4. Metaproteomic Analysis of a Chemosynthetic Hydrothermal Vent Community Reveals Insights into Key-Metabolic Processes

    NASA Astrophysics Data System (ADS)

    Steen, I.; Stokke, R.; Lanzen, A.; Pedersen, R.; Øvreås, L.; Urich, T.

    2010-12-01

    In 2005 researchers at the Centre for Geobiology, University of Bergen, Norway, discovered two active vent fields at the southwestern Mohns Ridge in the Norwegian-Greenland Sea. The fields harbours both low-temperature iron deposits and high-temperature white smoker vents. Distinct microbial mats were abundantly present and located in close vicinity to the hydrothermal vent sites. Characteristics of the mat environment were steep physical and chemical gradients with temperatures ranging from 10°C in the top layer to 90°C at 10 cm bsf and high concentrations of hydrogen sulfide and methane. The work presented here focus on the In situ community activities, and is part of an integrated strategy combining metagenomics, metatranscriptomics and metaproteomics to in-depth characterise these newly discovered hydrothermal vent communities. Extracted proteins were separated via SDS-PAGE. Peptides extracted after In-gel tryptic digest was injected into an Ultimate 3000 nanoLC system connected to a linear quadropole ion trap-orbitrap (LTQ-Orbitrap XL) mass spectrometer equipped with a nanoelectrospray ion source. A custom database of open reading frames (ORFs) from the combined metatranscriptome and metagenome datasets was implemented and searched against using Mascot 2.2; the IRMa tool box [1] was used in peptide validation. Validated ORFs were subjected to a Blastp search against Refseq with an E-value cut-off of 0.001. A total of 1097 proteins with ? 2 peptides were identified of which 921 gave a hit against Refseq, containing 519 unique proteins. Key enzymes of the sulfur oxidation pathway (sox) were found, which were taxonomically affiliated to Epsilonproteobacteria. In addition, this group actively expressed hydrogenases and membrane proteins involved in aerobic and anaerobic respiratory chains. Enzymes of dissimilatory sulfate-reduction (APS-reductase, AprAB and DsrA2) were found with closest hit to members of the Deltaproteobacteria. These findings indicate an internal sulfur cycle within the community. The community contained expressed enzymes of a variety of carbon metabolism pathways. Key enzymes of the reverse TCA cycle for fixation of CO2 and the Wood-Ljungdahl pathway for oxidation of acetyl-CoA and / or the fixation of CO2 were found. Key enzymes of aerobic and anaerobic methane-oxidation pathways were identified as well, namely particulate methane monooxygenase and methyl-Coenzyme M reductase. Various house-keeping gene-products, like cold- and heat shock proteins as well as ribosomal proteins and ATP synthases were identified. This approach has a future potential of broadening our understanding of environmental complexity and regulation in response to geochemical constraints. [1] Dupierris, V., Masselon, C., Court, M., Kieffer-Jaquinod, S., and Bruley, C. (2009) A toolbox for validation of mass spectrometry peptides identification and generation of database: IRMa. Bioinformatics 25, 1980-1981.

  5. Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge

    Microsoft Academic Search

    D. I. Foustoukos; R. H. James; M. E. Berndt; W SEYFRIEDJR

    2004-01-01

    Vent fluids issuing from the Main Endeavour Field (MEF), Juan de Fuca Ridge, were analyzed for ?7Li to help constrain subseafloor hydrothermal alteration and phase separation processes. Magmatic activity prior to sampling of the fluids in 1999 enhanced heat and mass transfer, as indicated by the large scale, but temporary, changes in vent fluid chemistry. In particular, dissolved chloride concentrations

  6. Deep-sea hydrothermal vents: A new source of innovative bacterial exopolysaccharides of biotechnological interest?

    Microsoft Academic Search

    J Guezennec

    2002-01-01

      Polysaccharides and, in particular, microbial polysaccharides represent a class of important products of growing interest\\u000a for many sectors of industry. Although many known marine bacteria produce exopolysaccharides (EPS), continuation in looking\\u000a for new polysaccharide-producing microorganisms is promising. Hydrothermal deep-sea vents could be a source of novel EPS as\\u000a indicated by the screening of a number of mesophilic heterotrophic bacteria recovered

  7. Microbial Habitats Associated with Deep-Sea Hydrothermal Vent Invertebrates: Insights from Microanalysis and Geochemical Modeling

    Microsoft Academic Search

    Nadine Le Bris; Françoise Gaill

    \\u000a Symbioses between hydrothermal vent invertebrates and chemosynthetic microbes have been recognized to form some of the most\\u000a productive marine communities (Lutz et al. 1994; Halbach et al. 2003). Endosymbiotic organisms, like the giant tubeworm Riftia pachyptila or the Bathymodiolus spp. mussels, flourish in diffuse flow areas of the seafloor. A key to their success is the ability to supply the

  8. The Sound Generated by Mid-Ocean Ridge Black Smoker Hydrothermal Vents

    PubMed Central

    Crone, Timothy J.; Wilcock, William S.D.; Barclay, Andrew H.; Parsons, Jeffrey D.

    2006-01-01

    Hydrothermal flow through seafloor black smoker vents is typically turbulent and vigorous, with speeds often exceeding 1 m/s. Although theory predicts that these flows will generate sound, the prevailing view has been that black smokers are essentially silent. Here we present the first unambiguous field recordings showing that these vents radiate significant acoustic energy. The sounds contain a broadband component and narrowband tones which are indicative of resonance. The amplitude of the broadband component shows tidal modulation which is indicative of discharge rate variations related to the mechanics of tidal loading. Vent sounds will provide researchers with new ways to study flow through sulfide structures, and may provide some local organisms with behavioral or navigational cues. PMID:17205137

  9. Conjugating effects of symbionts and environmental factors on gene expression in deep-sea hydrothermal vent mussels

    PubMed Central

    2011-01-01

    Background The deep-sea hydrothermal vent mussel Bathymodiolus azoricus harbors thiotrophic and methanotrophic symbiotic bacteria in its gills. While the symbiotic relationship between this hydrothermal mussel and these chemoautotrophic bacteria has been described, the molecular processes involved in the cross-talking between symbionts and host, in the maintenance of the symbiois, in the influence of environmental parameters on gene expression, and in transcriptome variation across individuals remain poorly understood. In an attempt to understand how, and to what extent, this double symbiosis affects host gene expression, we used a transcriptomic approach to identify genes potentially regulated by symbiont characteristics, environmental conditions or both. This study was done on mussels from two contrasting populations. Results Subtractive libraries allowed the identification of about 1000 genes putatively regulated by symbiosis and/or environmental factors. Microarray analysis showed that 120 genes (3.5% of all genes) were differentially expressed between the Menez Gwen (MG) and Rainbow (Rb) vent fields. The total number of regulated genes in mussels harboring a high versus a low symbiont content did not differ significantly. With regard to the impact of symbiont content, only 1% of all genes were regulated by thiotrophic (SOX) and methanotrophic (MOX) bacteria content in MG mussels whereas 5.6% were regulated in mussels collected at Rb. MOX symbionts also impacted a higher proportion of genes than SOX in both vent fields. When host transcriptome expression was analyzed with respect to symbiont gene expression, it was related to symbiont quantity in each field. Conclusions Our study has produced a preliminary description of a transcriptomic response in a hydrothermal vent mussel host of both thiotrophic and methanotrophic symbiotic bacteria. This model can help to identify genes involved in the maintenance of symbiosis or regulated by environmental parameters. Our results provide evidence of symbiont effect on transcriptome regulation, with differences related to type of symbiont, even though the relative percentage of genes involved remains limited. Differences observed between the vent site indicate that environment strongly influences transcriptome regulation and impacts both activity and relative abundance of each symbiont. Among all these genes, those participating in recognition, the immune system, oxidative stress, and energy metabolism constitute new promising targets for extended studies on symbiosis and the effect of environmental parameters on the symbiotic relationships in B. azoricus. PMID:22034982

  10. Tubeworm-associated communities at hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific

    NASA Astrophysics Data System (ADS)

    Tsurumi, Maia; Tunnicliffe, Verena

    2003-05-01

    Hydrothermal vent communities on a mid-ocean ridge crest can be separated by large distances on separate segments. Heat sources, vent character, fluid chemistry and current patterns may differ markedly. This study examines whether vent community characteristics on three of the four southern segments of the Juan de Fuca Ridge are significantly different. Taxonomic composition and relative abundance of the fauna over 1 mm in size associated with vestimentiferan tubeworm bushes are examined from fifty-one collections. Among nearly 350,000 specimens, 37 taxa are recognized, most to species level. Another 14 taxa are meiofaunal in size classification. Species richness and selected diversity indicators are highest on Axial Volcano while animal density within the bushes does not differ significantly. Cluster analysis does not group collections by location, year of collection or vent temperature; collection substratum—basalt or sulphide—may influence clustering. The architecture of the tubes of tubeworm bushes appears to affect the numbers of species present and the resultant clusters. The tightly interwoven, knotted Ridgeia piscesae tubes found on Axial host twice as many species as tubeworm bushes with a less complex structure. Four species dominate most of the collections: two gastropods ( Lepetodrilus fucensis and Depressigyra globulus) and two polychaetes ( Paralvinella pandorae and Amphisamytha galapagensis). Other vent species are low in abundance (<1% relative abundance) and patchy in distribution. Four collections with no visible flow had markedly different assemblages representing a transition state from vent assemblages to normal deep-sea fauna. There are differences in community structure among the segments, but the causes for these differences are unclear. Higher diversity on Axial Volcano may be supported by a greater time of sustained venting, a larger venting area, water circulation contained within the caldera, or flow conditions that sponsor growth of more complex habitat.

  11. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge.

    PubMed

    Duperron, Sébastien; Bergin, Claudia; Zielinski, Frank; Blazejak, Anna; Pernthaler, Annelie; McKiness, Zoe P; DeChaine, Eric; Cavanaugh, Colleen M; Dubilier, Nicole

    2006-08-01

    Bathymodiolus azoricus and Bathymodiolus puteoserpentis are symbiont-bearing mussels that dominate hydrothermal vent sites along the northern Mid-Atlantic Ridge (MAR). Both species live in symbiosis with two physiologically and phylogenetically distinct Gammaproteobacteria: a sulfur-oxidizing chemoautotroph and a methane-oxidizer. A detailed analysis of mussels collected from four MAR vent sites (Menez Gwen, Lucky Strike, Rainbow, and Logatchev) using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization (FISH) showed that the two mussel species share highly similar to identical symbiont phylotypes. FISH observations of symbiont distribution and relative abundances showed no obvious differences between the two host species. In contrast, distinct differences in relative symbiont abundances were observed between mussels from different sites, indicating that vent chemistry may influence the relative abundance of thiotrophs and methanotrophs in these dual symbioses. PMID:16872406

  12. Fluid chemistry of Archean seafloor hydrothermal vents: Implications for the composition of circa 3.2 Ga seawater

    Microsoft Academic Search

    Cornel E. J. de Ronde; Dominic M. der. Channer; Kevin Faure; Colin J. Bray; Edward T. C. Spooner

    1997-01-01

    Seafloor hydrothermal vents of mid-Archean age (ca. 3230 Ma) have been identified and mapped in the Barberton greenstone belt, South Africa and are known as the Ironstone Pods. Fluid inclusion homogenization temperature data, when combined with gas chromatographic data, provide a minimum calculated water depth for the pods of 982 m. Ironstone Pod hydrothermal fluid endmember concentrations (Mg = 0)

  13. Fluid chemistry of Archean seafloor hydrothermal vents: Implications for the composition of circa 3.2 Ga seawater

    Microsoft Academic Search

    Cornel E. J. De Ronde; Dominic M. de R. Channer; Kevin Faure; Colin J. Bray; Edward T. C. Spooner

    1997-01-01

    Seafloor hydrothermal vents of mid-Archean age (ca. 3230 Ma) have been identified and mapped in the Barberton greenstone belt, South Africa and are known as the Ironstone Pods. Fluid inclusion homogenization temperature data, when combined with gas chromatographic data, provide a minimum calculated water depth for the pods of 982 m.Ironstone Pod hydrothermal fluid endmember concentrations (Mg = 0) of

  14. Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts.

    PubMed

    Foustoukos, Dionysis I; Seyfried, William E

    2004-05-14

    Fischer-Tropsch type (FTT) synthesis has long been proposed to account for the existence of hydrocarbons in hydrothermal fluids. We show that iron- and chromium-bearing minerals catalyze the abiotic formation of hydrocarbons. In addition to production of methane (CH4aq), we report abiotic generation of ethane (C2H6aq) and propane (C3H8aq) by mineral-catalyzed hydrothermal reactions at 390 degrees C and 400 bars. Results suggest that the chromium component in ultramafic rocks could be an important factor for FTT synthesis during water-rock interaction in mid-ocean ridge hydrothermal systems. This in turn could help to support microbial communities now recognized in the subsurface at deep-sea vents. PMID:15060286

  15. Characterization of Dissolved Organic Matter from Deep-sea Floor Hydrothermal Vents in South Mariana Backarc Spreading Center

    NASA Astrophysics Data System (ADS)

    Kitajima, F.; Yamanaka, T.

    2004-12-01

    In South Mariana Backarc Spreading Center, a few active hydrothermal fields are located. We investigated a characterization of dissolved organic matter (DOM) from hydrothermal vents in this area, in order to clarify the biosphere beneath deep-sea floor. Hot water sample was collected from a drilled hole (APM01 located in Fryer site, 12o 55.22fN, 143o 37.16fE, depth 2850m) during the ROPOS/TN167A cruise in March 2004. The hole had been drilled during Hakurei-Maru 2 cruise in January 2004. Another hot water sample was collected from a natural black smoker located in Pika site (12o 55.15fN, 143o 36.96fE, depth 2773m) during YK03-09 cruise. In this investigation, we developed a standalone filtration system in order to collect and enrich dissolved organic matter of quite low concentration. This system was designed to be put near hydrothermal vents for at least 24h. This system has an ODS disk (EmporeTM High Performance Extraction Disk C18 90mm?) with a pre-filter (Whatman GMF 1 ?)m filter paper) to adsorb dilute organics. We collected DOM from the APM01 casing pipe for about 30h (Tmax = 25-30 o C, the estimated volume of filtrated water is max. 300L) using this filtration system. Adsorbed organics were eluted with methanol for 12h twice and toluene once using soxhlet extractor. Recovered amounts of methanol eluents are 72.8mg for APM01, and 89.7mg for the black smoker. Prior to GCMS analysis, we carried out high resolution 1 H-NMR measurement (400MHz), together with the DOM samples collected from the Suiyo Seamount in July-August 2001 and August 2002. Most of the samples show signals in the region of 3-4 ppm, and the samples from the vents of relatively low temperatures (APM01 and AP04: the natural vent at the Suiyo Seamount, temperature 8-48o C ) show signals also in the region of 0.8-1.6 ppm.

  16. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities.

    PubMed

    Campbell, Barbara J; Polson, Shawn W; Zeigler Allen, Lisa; Williamson, Shannon J; Lee, Charles K; Wommack, K Eric; Cary, S Craig

    2013-01-01

    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments. PMID:23898323

  17. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities

    PubMed Central

    Campbell, Barbara J.; Polson, Shawn W.; Zeigler Allen, Lisa; Williamson, Shannon J.; Lee, Charles K.; Wommack, K. Eric; Cary, S. Craig

    2013-01-01

    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments. PMID:23898323

  18. Arsenic speciation in food chains from mid-Atlantic hydrothermal vents

    PubMed Central

    Taylor, Vivien F.; Jackson, Brian P.; Siegfried, Matthew; Navratilova, Jana; Francesconi, Kevin A.; Kirshtein, Julie; Voytek, Mary

    2012-01-01

    Arsenic concentration and speciation were determined in benthic fauna collected from the Mid-Atlantic Ridge hydrothermal vents. The shrimp species, Rimicaris exoculata, the vent chimney-dwelling mussel, Bathymodiolus azoricus, Branchipolynoe seepensis, a commensal worm of B. azoricus, and the gastropod Peltospira smaragdina showed variations in As concentration and in stable isotope (?13C and ?15N) signature between species, suggesting different sources of As uptake. Arsenic speciation showed arsenobetaine to be the dominant species in R. exoculata, whereas in B. azoricus and B. seepensis arsenosugars were most abundant, although arsenobetaine, dimethylarsinate, and inorganic arsenic were also observed, along with several unidentified species. Scrape samples from outside the vent chimneys, covered with microbial mat, which is a presumed food source for many vent organisms, contained high levels of total As, but organic species were not detectable. The formation of arsenosugars in pelagic environments is typically attributed to marine algae, and the pathway to arsenobetaine is still unknown. The occurrence of arsenosugars and arsenobetaine in these deep sea organisms, where primary production is chemolithoautotrophic and stable isotope analyses indicate food sources are of vent origin, suggests that organic arsenicals can occur in a food web without algae or other photosynthetic life. PMID:23741175

  19. Arsenic speciation in food chains from mid-Atlantic hydrothermal vents

    USGS Publications Warehouse

    Taylor, Vivien F.; Jackson, Brian P.; Siegfried, Matthew R.; Navratilova, Jana; Francesconi, Kevin A.; Kirshtein, Julie; Voytek, Mary

    2012-01-01

    Arsenic concentration and speciation were determined in benthic fauna collected from the Mid-Atlantic Ridge hydrothermal vents. The shrimp species, Rimicaris exoculata, the vent chimney-dwelling mussel, Bathymodiolus azoricus, Branchipolynoe seepensis, a commensal worm of B. azoricus and the gastropod Peltospira smaragdina showed variations in As concentration and in stable isotope (?13C and ?15N) signature between species, suggesting different sources of As uptake. Arsenic speciation showed arsenobetaine to be the dominant species in R. exoculata, whereas in B. azoricus and B. seepensis arsenosugars were most abundant, although arsenobetaine, dimethylarsinate and inorganic arsenic were also observed, along with several unidentified species. Scrape samples from outside the vent chimneys covered with microbial mat, which is a presumed food source for many vent organisms, contained high levels of total As, but organic species were not detectable. The formation of arsenosugars in pelagic environments is typically attributed to marine algae, and the pathway to arsenobetaine is still unknown. The occurrence of arsenosugars and arsenobetaine in these deep sea organisms, where primary production is chemolithoautotrophic and stable isotope analyses indicate food sources are of vent origin, suggests that organic arsenicals can occur in a foodweb without algae or other photosynthetic life.

  20. The Acoustic Signature of High-Temperature Deep Sea Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Wilcock, W. S.; Parsons, J. D.; Barclay, A. H.

    2005-12-01

    Motivated by a desire to find new measurements that might be sensitive to flow rate variations within mid-ocean ridge hydrothermal systems, we have conducted field studies to collect passive acoustic measurements at black smoker hydrothermal vents using two versions of a simple dual-hydrophone recording device capable of collecting continuous acoustic data for about one week at sampling rates of 1000--2000 Hz. We deployed the first-generation instrument on the Sully sulfide structure in the Main Endeavour Field of the Juan de Fuca Ridge during September of 2004. We were able to collect approximately 48 hours of data before the instrument was partially destroyed by venting fluid. We are in the process of obtaining additional measurements in the same vent field with a second-generation instrument. For the 2004 deployment, the venting fluid produced an acoustic signal that was far above the background level at all measured frequencies. The acoustic spectrum contains a broadband signal that is weighted toward the low frequencies and extends to the Nyquist frequency at 500 Hz. The spectrum also contains several sharp peaks below 150 Hz. The signal is variable in time, with the broadband and peak amplitudes fluctuating by ~20 dB, and the frequencies of the sharp spectral peaks fluctuating by ~1--3 Hz. The complex nature of the acoustic signal suggests that more than one sound production mechanism is operating within the vent. The sharp peaks suggest the presence of a resonant mechanism such as pipe resonance excited by turbulent flow. The high level of the broadband signal is not predicted by theoretical investigations of low Mach number jet acoustics. It is likely that another broadband sound source is present, which could be related to phase separation or to the mixing of different density fluids. More observations will be required to fully understand the basic mechanisms of sound production within black smoker chimneys.

  1. Molecular Diversity and Activity of Methanogens in the Subseafloor at Deep-Sea Hydrothermal Vents of the Pacific Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Merkel, A.; Holden, J. F.; Lilley, M. D.; Butterfield, D. A.

    2009-12-01

    Methanogenesis is thought to represent one of the most ancient metabolic pathways on Earth, and methanogens may serve as important primary producers in warm crustal habitats at deep-sea hydrothermal vents. Many of these obligate chemolithoautotrophs depend solely on geochemically-derived energy and carbon sources and grow at high temperatures under strictly anaerobic conditions. A combined geochemical and microbiological approach was used to determine the distribution and molecular diversity of methanogens in low temperature diffuse vent fluids from the Endeavour Segment R2K ISS site, as well as Axial Seamount and volcanoes of the Mariana Arc. Geochemical data from hot and adjacent warm diffuse vent fluids provided chemical indicators to guide sample selection for detailed polymerase chain reaction (PCR)-based analysis of the key enzyme for methane formation, methyl-coenzyme M reductase (mcrA), as well as archaeal 16S rRNA genes. At most Endeavour vent sites, hydrogen concentrations were too low to support hydrogenotrophic methanogensis directly and only one diffuse site, Easter Island, had a positive signal for the mcrA gene. These sequences were most closely related to members of the order Methanococcales, as well as anaerobic methane oxidizers (ANME-1). The presence of ANME, which are rarely found in non-sedimented marine environments, is another line of evidence supporting the occurrence of buried sediments at Endeavour. At Axial, a number of diffuse vents have strong chemical indicators of methanogenesis. Methanogenic communities were detected at 3 sites on the southeast side of the caldera: the northern end of the 1998 lava flow, the International District, and on the pre-1987 lava flow. Time series work at Marker 113 showed that in 4 different years over the last 6 years methanogenic communities are active and abundant, suggesting a stable anaerobic, warm subseafloor habitat. Results show that members of the order Methanococcales dominate at this site, including mesophiles and hyper/thermophiles, but that some methanogens recovered from Marker 113 are surviving at low or sub-optimal hydrogen levels. Vent 9m had a community composition similar to Marker 113, dominated by Methanococcales, and Zen Gardens, also at Axial, had a population of methanogens very different from either site. The community there was composed of members of the order Methanomicrobiales, including mesophilic methanogens previously only found in terrestrial environments. Along the Mariana Arc, Shrimp City vent at NW Rota-1 had some of the highest levels of methane detected on the entire arc, and mcrA analysis indicates members of the Methanococcales were present, as well as Methanosarcinales and anaerobic methane oxidizers. An integrated comparison of organismal and geochemical diversity will be presented to link energy transfer in these diverse hydrothermal systems from mantle to microbes.

  2. Characterizing the plasticity of nitrogen metabolism by the host and symbionts of the hydrothermal vent chemoautotrophic symbioses Ridgeia piscesae.

    PubMed

    Liao, Li; Wankel, Scott D; Wu, Min; Cavanaugh, Colleen M; Girguis, Peter R

    2014-03-01

    Chemoautotrophic symbionts of deep sea hydrothermal vent tubeworms are known to provide their hosts with all their primary nutrition. While studies have examined how chemoautotrophic symbionts provide the association with nitrogen, fewer have examined if symbiont nitrogen metabolism varies as a function of environmental conditions. Ridgeia piscesae tubeworms flourish at Northeastern Pacific vents, occupy a range of microhabitats, and exhibit a high degree of morphological plasticity [e.g. long-skinny (LS) and short-fat (SF) phenotypes] that may relate to environmental conditions. This plasticity affords an opportunity to examine whether symbiont nitrogen metabolism varies among host phenotypes. LS and SF R. piscesae were recovered from the Axial and Main Endeavour Field hydrothermal vents. Nitrate and ammonium were quantified in Ridgeia blood, and the expression of key nitrogen metabolism genes, as well as stable nitrogen isotope ratios, was quantified in host branchial plume and symbiont-containing tissues. Nitrate and ammonium were abundant in the blood of both phenotypes though environmental ammonium concentrations were, paradoxically, lowest among individuals with the highest blood ammonium. Assimilatory nitrate reductase transcripts were always below detection, though in both LS and SF R. piscesae symbionts, we observed elevated expression of dissimilatory nitrate reductase genes, as well as symbiont and host ammonium assimilation genes. Site-specific differences in expression, along with tissue stable isotope analyses, suggest that LS and SF Ridgeia symbionts are engaged in both dissimilatory nitrate reduction and ammonia assimilation to varying degrees. As such, it appears that environmental conditions -not host phenotype-primarily dictates symbiont nitrogen metabolism. PMID:24237389

  3. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes.

    PubMed

    Jebbar, Mohamed; Franzetti, Bruno; Girard, Eric; Oger, Philippe

    2015-07-01

    Prokaryotes inhabiting in the deep sea vent ecosystem will thus experience harsh conditions of temperature, pH, salinity or high hydrostatic pressure (HHP) stress. Among the fifty-two piezophilic and piezotolerant prokaryotes isolated so far from different deep-sea environments, only fifteen (four Bacteria and eleven Archaea) that are true hyper/thermophiles and piezophiles have been isolated from deep-sea hydrothermal vents; these belong mainly to the Thermococcales order. Different strategies are used by microorganisms to thrive in deep-sea hydrothermal vents in which "extreme" physico-chemical conditions prevail and where non-adapted organisms cannot live, or even survive. HHP is known to impact the structure of several cellular components and functions, such as membrane fluidity, protein activity and structure. Physically the impact of pressure resembles a lowering of temperature, since it reinforces the structure of certain molecules, such as membrane lipids, and an increase in temperature, since it will also destabilize other structures, such as proteins. However, universal molecular signatures of HHP adaptation are not yet known and are still to be deciphered. PMID:26101015

  4. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean

    E-print Network

    Fitzsimmons, Jessica N.

    Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on ...

  5. Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents.

    PubMed

    Reed, Daniel C; Breier, John A; Jiang, Houshuo; Anantharaman, Karthik; Klausmeier, Christopher A; Toner, Brandy M; Hancock, Cathrine; Speer, Kevin; Thurnherr, Andreas M; Dick, Gregory J

    2015-08-01

    Submarine hydrothermal vents perturb the deep-ocean microbiome by injecting reduced chemical species into the water column that act as an energy source for chemosynthetic organisms. These systems thus provide excellent natural laboratories for studying the response of microbial communities to shifts in marine geochemistry. The present study explores the processes that regulate coupled microbial-geochemical dynamics in hydrothermal plumes by means of a novel mathematical model, which combines thermodynamics, growth and reaction kinetics, and transport processes derived from a fluid dynamics model. Simulations of a plume located in the ABE vent field of the Lau basin were able to reproduce metagenomic observations well and demonstrated that the magnitude of primary production and rate of autotrophic growth are largely regulated by the energetics of metabolisms and the availability of electron donors, as opposed to kinetic parameters. Ambient seawater was the dominant source of microbes to the plume and sulphur oxidisers constituted almost 90% of the modelled community in the neutrally-buoyant plume. Data from drifters deployed in the region allowed the different time scales of metabolisms to be cast in a spatial context, which demonstrated spatial succession in the microbial community. While growth was shown to occur over distances of tens of kilometers, microbes persisted over hundreds of kilometers. Given that high-temperature hydrothermal systems are found less than 100 km apart on average, plumes may act as important vectors between different vent fields and other environments that are hospitable to similar organisms, such as oil spills and oxygen minimum zones. PMID:25658053

  6. Using the VentCam and Optical Plume Velocimetry to Measure High-Temperature Hydrothermal Fluid Flow Rates in the ASHES Vent Field on Axial Volcano

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Mittelstaedt, E. L.; Fornari, D. J.

    2014-12-01

    Fluid flow rates through high-temperature mid-ocean ridge hydrothermal vents are likely quite sensitive to poroelastic forcing mechanisms such as tidal loading and tectonic activity. Because poroelastic deformation and flow perturbations are estimated to extend to considerable depths within young oceanic crust, observations of flow rate changes at seafloor vents have the potential to provide constraints on the flow geometry and permeability structure of the underlying hydrothermal systems, as well as the quantities of heat and chemicals they exchange with overlying ocean, and the potential biological productivity of ecosystems they host. To help provide flow rate measurements in these challenging environments, we have developed two new optical flow oriented technologies. The first is a new form of Optical Plume Velocimetry (OPV) which relies on single-frame temporal cross-correlation to obtain time-averaged image velocity fields from short video sequences. The second is the VentCam, a deep sea camera system that can collect high-frame-rate video sequences at focused hydrothermal vents suitable for analysis with OPV. During the July 2014 R/V Atlantis/Alvin expedition to Axial Seamount, we deployed the VentCam at the ~300C Phoenix vent within the ASHES vent field and positioned it with DSRV Alvin. We collected 24 seconds of video at 50 frames per second every half-hour for approximately 10 days beginning July 22nd. We are currently applying single-frame lag OPV to these videos to estimate relative and absolute fluid flow rates through this vent. To explore the relationship between focused and diffuse venting, we deployed a second optical flow camera, the Diffuse Effluent Measurement System (DEMS), adjacent to this vent at a fracture within the lava carapace where low-T (~30C) fluids were exiting. This system collected video sequences and diffuse flow measurements at overlapping time intervals. Here we present the preliminary results of our work with VentCam and OPV, and comparisons with results from the DEMS camera.

  7. Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samail ophiolite, Oman

    USGS Publications Warehouse

    Haymon, R.M.; Koski, R.A.; Sinclair, C.

    1984-01-01

    Fossil worm tubes of Cretaceous age preserved in the Bayda massive sulfide deposit of the Samail ophiolite, Oman, are apparently the first documented examples of fossils embedded in massive sulfide deposits from the geologic record. The geologic setting of the Bayda deposit and the distinctive mineralogic and textural features of the fossiliferous samples suggest that the Bayda sulfide deposit and fossil fauna are remnants of a Cretaceous sea-floor hydrothermal vent similar to modern hot springs on the East Pacific Rise and the Juan de Fuca Ridge.

  8. Fossils of hydrothermal vent worms from cretaceous sulfide ores of the samail ophiolite, oman.

    PubMed

    Haymon, R M; Koski, R A; Sinclair, C

    1984-03-30

    Fossil worm tubes of Cretaceous age preserved in the Bayda massive sulfide deposit of the Samail ophiolite, Oman, are apparently the first documented examples of fossils embedded in massive sulfide deposits from the geologic record. The geologic setting of the Bayda deposit and the distinctive mineralogic and textural features of the fossiliferous samples suggest that the Bayda sulfide deposit and fossil fauna are remnants of a Cretaceous sea-floor hydrothermal vent similar to modern hot springs on the East Pacific Rise and the Juan de Fuca Ridge. PMID:17746052

  9. Genetic and Morphometric Characterization of Mussels (Bivalvia: Mytilidae) From Mid-Atlantic Hydrothermal Vents

    Microsoft Academic Search

    PAULA A. Y. MAAS; GREGORY D. O'MULLAN; RICHARD A. LUTZ; ROBERT C. VRIJENHOEK

    Mussels were collected from deep-sea hydro- thermal vents along the Mid-Atlantic Ridge. Specimens from the Snake Pit site were previously identified geneti- cally and anatomically as Bathymodiolus puteoserpentis, but the relationships of mussels from other sites (Logatchev and Lucky Strike) were unclear. Molecular genetic and morphological techniques were used to assess differences among these mussel populations. The results indicate that

  10. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.

    2015-05-01

    The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including phenanthrenes and benzothiophene were the only compounds that could be identified as indigenous components of these fluids. Although hydrocarbons and fatty acids were observed in some samples, those compounds were likely derived from particulate matter or biomass entrained during fluid collection. In addition, extracts of some fluid samples from the Rainbow field were found to contain an unresolved complex mixture (UCM) of organic compounds. This UCM shared some characteristics with organic matter extracted from bottom seawater, suggesting that the organic matter observed in these samples might represent seawater-derived compounds that had persisted, albeit with partial alteration, during circulation through the hydrothermal system. While there is considerable evidence that Rainbow and Lost City vent fluids contain methane and other light hydrocarbons produced through abiotic reduction of inorganic carbon, we found no evidence for more complex organic compounds with an abiotic origin in the same fluids.

  11. Population ecology of the tonguefish Symphurus thermophilus (Pisces; Pleuronectiformes; Cynoglossidae) at sulphur-rich hydrothermal vents on volcanoes of the northern Mariana Arc

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, Verena; Tyler, Jennifer; Dower, John F.

    2013-08-01

    Flatfish are a major component of the hydrothermal vent community on three seamounts of the northern Mariana Volcanic Arc in the northwest Pacific. Nikko, Kasuga-2 and Daikoku seamounts host vent fields between 375 and 480 m depth where high temperature vents release molten sulphur. The small cynoglossid tonguefish, Symphurus thermophilus Munroe and Hashimoto, is ubiquitous in all vent habitats observed on these seamounts: among extensive fields of tubeworms and mussels and on solid sulphur surfaces on Nikko; on sulphur-rich sediments and barnacle-covered boulders on Kasuga-2; and on recent sulphur flows and on broad areas of loose and semi-consolidated sediments on Daikoku. We recorded repeated forays by individuals onto flows of molten sulphur as these surfaces cooled. Based on observations using ROVs, the mean density is 90 fish/m2 with maximum counts over 200 fish/m2 on Daikoku sediments. Compared to collected tonguefish from Daikoku and Kasuga-2, those from Nikko have significantly greater lengths and, on average, six times the mass. Otolith data indicate upper ages of 13 years with Nikko tonguefish growing significantly faster. Diets of tonguefish on the three seamounts reflect the different habitats and prey availability; in Daikoku specimens, small crustaceans and polychaetes are most common while on Nikko, gut contents are predominantly larger shrimp. We made the unusual observation of stunned midwater fish falling to the seafloor near the vents where S. thermophilus immediately attacked them. This tonguefish has a wide diet range and foraging behaviour that likely influence the differing growth rates and sizes of fish inhabiting the different vent sites. Limited genetic data suggest that larval exchange probably occurs among sites where the common habitat factor is high levels of elemental sulphur forming hard and partly unconsolidated substrata. Here, in the northern range of the Mariana Trench Marine National Monument, S. thermophilus, despite having an unusually broad habitat association, may be restricted in its overall range to this region of isolated volcanoes with active hydrothermalism.

  12. Isotopic Approaches to Allying Productivity and Sulfur Metabolism in Three Symbiotic Hydrothermal Vent Molluscs

    NASA Astrophysics Data System (ADS)

    Beinart, R.; Gartman, A.; Sanders, J. G.; Luther, G. W.; Girguis, P. R.

    2012-12-01

    Symbioses between animals and chemosynthetic bacteria predominate at hydrothermal vents. In these associations, the endosymbiotic bacteria utilize chemical reductants for the energy to support autotrophy, providing primary nutrition for the host. Despite their ubiquity at vents worldwide, little is known about the rates of productivity of these symbioses under different physico-chemical regimes or how their metabolism effects the local geochemical environment. To address this matter, we used high-pressure flow through incubations and stable isotopic tracers to maintain three genera of symbiotic mollusc - the gastropods Alviniconcha and Ifremeria, and the mussel Bathymodiolus - at vent-like conditions. Via the incorporation of isotopically labeled compounds, we assessed their productivity when using different reduced sulfur species as reductants. Using cyclic voltammetry, mass spectrometry and discrete geochemical analyses, we concurrently measured their effect on sulfur flux from the vessels. We found that the symbionts of all three genera can support autotrophy with hydrogen sulfide and thiosulfate, though at different rates. Additionally, by examining the rate of isotopic incorporation into biomass, we revealed intra-generic variability in productivity among the individuals in our experimental assemblages that are likely related to differences in the geochemical regime along the length of reactor. These geochemical gradients are due to the activity of other individuals within the vessel, since those organisms closest to the influent of the vent-like water had the highest measured carbon incorporation. Finally, we measured the uptake and excretion of sulfur species, which illustrate the degree to which these symbioses might impact local sulfur chemistry in situ. These experiments show that A) access to particular sulfur species differentially affects the productivity of vent symbioses, suggesting that competition for these substrates, both within and between host genera, could play a role in the structure of these communities, and B) that these symbioses could play a role in altering the local geochemical regime, influencing the activity and distribution of other associated microorganisms including free-living bacteria.

  13. Hydrothermal vent meiobenthos associated with mytilid mussel aggregations from the Mid-Atlantic Ridge and the East Pacific Rise

    Microsoft Academic Search

    J. Zekely; C. L. Van Dover; H. L. Nemeschkal; M. Bright

    2006-01-01

    Deep-sea hydrothermal vents occur along the mid-ocean ridges and back-arc basins around the globe. There are very few community analyses of vent meiobenthos. The central objectives of this study were to identify and quantify for the first time the entire metazoan meiobenthic community associated with mussel aggregations of Bathymodiolus thermophilus Kenk and Wilson, 1985 from the EPR, 11°N and of

  14. Phylogenetic Diversity of the Bacterial Community from a Microbial Mat at an Active, Hydrothermal Vent System, Loihi Seamount, Hawaii

    Microsoft Academic Search

    CRAIG L. MOYER; FRED C. DOBBS; ANDDAVID M. KARL

    1995-01-01

    The phylogenetic diversity of small-subunit rRNA genes associated with the domainBacteriawas examined (by using previously defined operational taxonomic units (C. L. Moyer, F. C. Dobbs, and D. M. Karl, Appl. Environ. Microbiol. 60:871-879, 1994); those for Pele's VentsBacteriaare hereafter abbreviated PVBOTUs) with samples from a microbial mat at an active, deep-sea hydrothermal vent system. A cluster of phylogeneti- cally related

  15. Dissolved Carbon Species in Diffuse and Focused Flow Hydrothermal Vents at the Main Endeavour Field, Northern Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Foustoukos, D. I.; Seyfried, W. E.; Ding, K.; Pester, N. J.

    2006-12-01

    The magmatic and tectonic event of 1999 had a significant impact on the chemical composition of vent fluids issuing from the Main Endeavour Field (MEF), Juan de Fuca Ridge. Here, we report dissolved concentrations of H2, CO2, CO and C1-C3 alkanes measured in low and high-temperature hydrothermal fluids collected in August 2005 during an RV Atlantis/DSV Alvin expedition at MEF. In comparison with time series data, temperatures of the 2005 vent fluids were slightly lower than those recorded in the aftermaths of the tectonic event of 1999. The possible cooling of the hydrothermal subseafloor reaction zone is consistent with the observed increase in dissolved Cl to pre-1999 values. Converging compositional trends to pre-1999 conditions are also suggested for dissolved CO2 concentrations (~20 mmol/kg) in Puffer, Sully, Bastille and S&M vent fluids. In these focused flow and high-temperature vent fluids, dissolved CO2 is in thermodynamic equilibrium with CO(aq). The systematics of organic species in diffuse flow fluids, however, appears to be closely related to processes occurring within the near-seafloor environment. For example, excess CO(aq) observed in the diffuse flow fluids at Easter Island is attributed to sluggish CO- CO2(aq) equilibria at low temperatures, suggesting hydrothermal circulation of short-residence times. Short-lived hydrothermal circulation is further supported by the nearly identical C1/(C2+C3) ratios between focused and diffuse flow fluids. Furthermore, alkane distribution in the MEF diffuse flow fluids suggests direct mixing between seawater and hydrothermal fluid with minimal biological inputs, in contrast with the greater effect of microbial methanogenesis proposed in other ridge-crest hydrothermal environments. Thus, the coupling of CO2(aq)-CO(aq) redox equilibrium with dissolved carbon species in low- temperature vent fluids could provide a better understanding of the effect of subsurface microbial communities upon the composition of mid-ocean ridge hydrothermal fluids.

  16. Hydrothermal Venting at Kick'Em Jenny Submarine Volcano (West Indies)

    NASA Astrophysics Data System (ADS)

    Carey, S.; Croff Bell, K. L.; Dondin, F. J. Y.; Roman, C.; Smart, C.; Lilley, M. D.; Lupton, J. E.; Ballard, R. D.

    2014-12-01

    Kick'em Jenny is a frequently-erupting, shallow submarine volcano located ~8 km off the northwest coast of Grenada in the West Indies. The last eruption took place in 2001 but did not breach the sea surface. Focused and diffuse hydrothermal venting is taking place mainly within a small (~100 x 100 m) depression within the 300 m diameter crater of the volcano at depths of about 265 meters. Near the center of the depression clear fluids are being discharged from a focused mound-like vent at a maximum temperature of 180o C with the simultaneous discharge of numerous bubble streams. The gas consists of 93-96% CO2 with trace amounts of methane and hydrogen. A sulfur component likely contributes 1-4% of the gas total. Gas flux measurements on individual bubble streams ranged from 10 to 100 kg of CO2 per day. Diffuse venting with temperatures 5 to 35o C above ambient occurs throughout the depression and over large areas of the main crater. These zones are extensively colonized by reddish-yellow bacterial mats with the production of loose Fe-oxyhydroxides largely as a surface coating and in some cases, as fragile spires up to several meters in height. A high-resolution photo mosaic of the crater depression was constructed using the remotely operated vehicle Hercules on cruise NA039 of the E/V Nautilus. The image revealed prominent fluid flow patterns descending the sides of the depression towards the base. We speculate that the negatively buoyant fluid flow may be the result of second boiling of hydrothermal fluids at Kick'em Jenny generating a dense saline component that does not rise despite its elevated temperature. Increased density may also be the result of high dissolved CO2 content of the fluids, although we were not able to measure this directly. The low amount of sulphide mineralization on the crater floor suggests that deposition may be occurring mostly subsurface, in accord with models of second boiling mineralization from other hydrothermal vent systems.

  17. Impact of the Colonization by Paralvinella sulfincola on the Microbial Diversity Associated with a Deep-Sea Hydrothermal Vent Sulfide Chimney (Axial Seamount, Juan de Fuca Ridge)

    NASA Astrophysics Data System (ADS)

    Page, A.; Juniper, K.; Olagnon, M.; Alain, K.; Desrosiers, G.; Querellou, J.; Cambon-Bonavita, M.

    2002-12-01

    In the early stages of high temperature deep-sea hydrothermal vent chimneys growth, the walls remain porous and allow the escape of hydrothermal fluids as well as an inflow of seawater. This gradual mixing creates sharp thermal and geochemical gradients and provides potential habitats for physiologically diverse microorganisms. The annelid polychaete Paralvinella sulfincola colonizes the external surfaces of these structures, covering them with layered mucous tubes that locally alter the mixing of discharged hydrothermal fluids and surrounding seawater. Modifications of the physical and chemical conditions combined with an accumulation of elemental sulfur (S0) in P. sulfincola mucous tube are thought to be responsible for the deposition of a thin marcassite (FeS2) crust on outer surfaces of anhydrite chimneys (Juniper et al. 1992). This marcassite deposition could partly be induced by a shift in the composition of microbial communities that would to be locally associated with the presence of P. sulfincola. To test this hypothesis, we evaluated the impact of the colonization by P. sulfincola on the microbial communities present at the surface of an active sulfide chimney. Bacterial and archaeal 16S rRNA genes were amplified from DNA extracted from a P. sulfincola tube and from a chimney mineral sample. Using the statistical analysis demonstrated by Singleton et al. (2001), both clone libraries from the chimney sample have been shown to be significantly different from those of the P. sulfincola tube sample, even though the major phylogenetic groups of these libraries were similar. As it has been observed at other deep-sea hydrothermal vent sites, the Epsilon-Proteobacteria and the Deep-sea Hydrothermal Vent Euryarchaeotic Group 1 were the dominant components of both bacterial and archaeal clone libraries. These results seem to indicate that P. sulfincola affect the microbial community composition on high temperature chimneys.

  18. Mn–Ba–Hg mineralization at shallow submarine hydrothermal vents in Bahía Concepción, Baja California Sur, Mexico

    Microsoft Academic Search

    Carles Canet; Rosa María Prol-Ledesma; Joaquín Antonio Proenza; Marco Antonio Rubio-Ramos; Matthew J. Forrest; Marco Antonio Torres-Vera; Augusto Antonio Rodríguez-Díaz

    2005-01-01

    Coastal submarine hydrothermal venting occurs on the west shore of the fault-bounded bay of Bahía Concepción, along a stretch of about 700 m of rocky shoreline. Diffuse hydrothermal seepage of water and continuous gas bubbling (mainly CO2 and N2) take place through the sediment-covered seafloor at shallow depth (5 to 15 m). In addition, at about 500 m SE, a

  19. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 °N)

    Microsoft Academic Search

    A. Michard; F. Albarède; G. Michard; J. F. Minster; J. L. Charlou

    1983-01-01

    The mobility of rare-earth elements (REE) and U during hydrothermal alteration of the basalts at spreading centres has long been a matter of concern because of its bearing on the evolution and recycling of the oceanic crust1-6. Previous approaches to this problem have been indirect, through studies on altered dredged basalts or ophiolites. We report here sampling of hydrothermal vent

  20. The chemistry of hydrothermal fluids from the Broken Spur site, 29°N Mid-Atlantic ridge

    NASA Astrophysics Data System (ADS)

    James, R. H.; Elderfield, H.; Palmer, M. R.

    1995-02-01

    Hydrothermal fluids have been collected from three high temperature (360-364°C) vents from Broken Spur (29°10.08'N, 43°10.46'W; water depth ˜ 3100 m). This is only the fourth site on a slow spreading ridge from which such fluids have been collected. Compared to other vent sites, the hydrothermal fluids are enriched in Li (1035 ?M) and have lower dissolved Mn (˜250 ?M) and Sr (43 ?M) concentrations. The boron isotope systematics indicate that substantial removal (>50%) of seawater B has occurred in the low-temperature portion of the hydrothermal convection cell. In addition, low temperature removal of seawater Sr is ˜10% greater at Broken Spur compared to similar vent sites in the Pacific where spreading rates are faster. A low Eu anomaly (11 ± 3) and a Cs/Rb ratio (10.8) intermediate between pristine and weathered basalt suggest that the vent fluids have interacted with a component of basalt that has previously undergone low-temperature weathering. the fluids are 14% depleted in Cl relative to seawater. Supercritical phase separation appears to be the only reasonable process that may account for the fluid depletion.

  1. Deposition of talc - kerolite-smectite - smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies

    USGS Publications Warehouse

    Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.

    2008-01-01

    Talc, kerolite-smectite, smectite, chlorite-smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite-smectite to smectite-rich kerolite-smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite-smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite-smectite with lower crystalline perfection as the proportion of smectite layers in kerolite-smectite increases. Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite-smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250????C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200-250????C) phase forming deep within the sediment (??? 0.8??m). Chlorite and chlorite-smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150-200????C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite-smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite-smectite are hydrothermal alteration products of the background turbiditic sediment. ?? 2007 Elsevier B.V. All rights reserved.

  2. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    USGS Publications Warehouse

    Coykendall, D.K.; Johnson, S.B.; Karl, S.A.; Lutz, R.A.; Vrijenhoek, R.C.

    2011-01-01

    Background: Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galpagos Rift. Results: Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions: Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. ?? 2011 Coykendall et al; licensee BioMed Central Ltd.

  3. Subsurface conditions in hydrothermal vents inferred from diffuse flow composition, and models of reaction and transport

    NASA Astrophysics Data System (ADS)

    Larson, B. I.; Houghton, J. L.; Lowell, R. P.; Farough, A.; Meile, C. D.

    2015-08-01

    Chemical gradients in the subsurface of mid-ocean ridge hydrothermal systems create an environment where minerals precipitate and dissolve and where chemosynthetic organisms thrive. However, owing to the lack of easy access to the subsurface, robust knowledge of the nature and extent of chemical transformations remains elusive. Here, we combine measurements of vent fluid chemistry with geochemical and transport modeling to give new insights into the under-sampled subsurface. Temperature-composition relationships from a geochemical mixing model are superimposed on the subsurface temperature distribution determined using a heat flow model to estimate the spatial distribution of fluid composition. We then estimate the distribution of Gibb's free energies of reaction beneath mid oceanic ridges and by combining flow simulations with speciation calculations estimate anhydrite deposition rates. Applied to vent endmembers observed at the fast spreading ridge at the East Pacific Rise, our results suggest that sealing times due to anhydrite formation are longer than the typical time between tectonic and magmatic events. The chemical composition of the neighboring low temperature flow indicates relatively uniform energetically favorable conditions for commonly inferred microbial processes such as methanogenesis, sulfate reduction and numerous oxidation reactions, suggesting that factors other than energy availability may control subsurface microbial biomass distribution. Thus, these model simulations complement fluid-sample datasets from surface venting and help infer the chemical distribution and transformations in subsurface flow.

  4. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    SciTech Connect

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study microbial and geochemical phenomena.

  5. Short-term temperature variability in the Rose Garden hydrothermal vent field: an unstable deep-sea environment

    NASA Astrophysics Data System (ADS)

    Johnson, Kenneth S.; Childress, James J.; Beehler, Carl L.

    1988-10-01

    Temperature was measured within the animal communities of the Rose Garden hydrothermal vent field with three thermistors that were left in place for a period of 72 h. The highest mean temperature (5.54°C) was measured at a thermistor placed in the central clump of vestimentiferan worms, while the lowest mean value (2.26°C) was recorded over the basaltic substrate. The temperature of the ambient water in the field was 2.07°C. The site with the highest temperature was characterized by extreme variability in the temperature, with minimum values of 2.16°C and maximum values of 14.81°C. The temperature fluctuated over all of the time scales studied from 1 s to 72 h. There was no clear periodicity to the temperature fluctuations, however. These temperature fluctuations must have significant impacts on adaptations, by the animals of the vent community. In fact, the variability in temperature may be more important to the community than the mean temperature value to which they are exposed.

  6. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field.

    PubMed

    Eickmann, B; Thorseth, I H; Peters, M; Strauss, H; Bröcker, M; Pedersen, R B

    2014-07-01

    Barite chimneys are known to form in hydrothermal systems where barium-enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (?34S, ?33S, ?36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (?18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low-temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow-spreading Arctic Mid-Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high-temperature black smoker fluid, which is corroborated by 87Sr/86 Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2- and CH4-rich high-temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low-temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on these systems. PMID:24725254

  7. Discovery of Nascent Vents and Recent Colonization Associated with(Re)activated Hydrothermal Vent Fields by the GALREX 2011 Expedition on the Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Holden, J. F.; Herrera, S.; Munro, C.; Muric, T.; Lin, J.; Stuart, L.

    2011-12-01

    GALREX 2011 was a NOAA OER telepresence cruise that explored the diverse habitats and geologic settings of the deep Galápagos region. The expedition made12 Little Hercules ROV dives in July 2011.Abundant corals and a strong depth zonation of species (including deepwater coral communities) were found near 500 m depth on Paramount Seamount, likely influenced by past low sea level states, wave-cut terrace processes, and the historical presence of shallow reef structures. At fresh lava flows with associated (flocculent) hydrothermal venting near 88° W, now known as Uka Pacha and Pegasus Vent Fields, rocks were coated with white microbial mat and lacked sessile fauna, with few mobile fauna (e.g., bythograeid crabs, alvinocarid shrimp, polynoid worms, zoarcid fish, and dirivultid copepods). This suggests a recent creation of hydrothermal habitats through volcanic eruptions and/or diking events, which may have taken place over a 15 km span separating the two vent fields. The Rosebud vent field at 86°W was not observed and may have been covered with lava since last visited in 2005. A hydrothermal vent field near 86°W was discovered that is one of the largest vent fields known on the Rift (120m by 40m). Low-temperature vent habitats were colonized by low numbers of tubeworms including Riftia, Oasisia, and a potential Tevnia species (the latter not previously observed on the Galapagos Rift). Patches of tubeworms were observed with individuals less than 2cm in length, and the relatively few large Riftia had tube lengths near 70cm long. Large numbers of small (< 3cm long) bathymodiolin mussels lined cracks and crevices throughout the active part of the field. Live clams, at least four species of gastropod limpets, three species of polynoid polychaetes, juvenile and adult alvinocarid shrimp, actinostolid anemones, and white microbial communities were observed on the underside and vertical surfaces of basalt rock surfaces. There were at least 13 species of vent-endemic fauna. The active colonization was observed on relatively older basalt pillows and lobate lavas ringed by and amidst a large dead bed of Calyptogena clams (most with broken and dissolving shells greater than 25 cm in length, with a few of the same size living amongst the dissolving shells). Scattered pockets of living adult mussels were observed among these dead clams. The margins of the field were ringed with large numbers of dandelion siphonophores. This field, named Tempus Fugit Vent Field, was once a massive clam bed (> 20 years old) and now, while hosting mature mussel communities and adult clams (> 2 years old), is being actively colonized by vent-endemic fauna that can be considered to be recent arrivals and colonizers (less than a few months) at Galapagos vent fields. These findings not only provide strong evidence of recent volcanic activity between 85° W and 88° W on the Galapagos Rift, but provide evidence that the rates of hydrothermal habitat turnover via eruption, dike injection, or venting cessation may be considerably higher than previously thought along the Galápagos Rift.

  8. Cytonuclear disequilibrium in a hybrid zone involving deep-sea hydrothermal vent mussels of the genus Bathymodiolus

    Microsoft Academic Search

    Y. WON; S. J. HALLAM; G. D. OÕMULLAN; R. C. VRIJENHOEK

    A hybrid zone involving the deep-sea mussels, Bathymodiolus azoricus and B. puteoserpen- tis , was recently discovered at Broken Spur hydrothermal vent field (29 ° ° ° ° 10 '''' N, 43 ° ° ° ° 10 '''' W) along an intermediate segment of the Mid-Atlantic Ridge axis. Examination of nuclear (allozymes) and cytoplasmic (mitochondrial DNA) gene markers in a

  9. *Maractis rimicarivora*, a new genus and species of sea anemone (Cnidaria: Anthozoa: Actiniaria: Actinostolidae) from an Atlantic hydrothermal vent

    E-print Network

    Fautin, Daphne G.; Barber, Brian R.

    1999-01-01

    *Maractis rimicarivora* is a new genus and new species of medium-sized sea anemone (Actiniaria) from the TAG (Trans-Atlantic Geotraverse) hydrothermal vent fields (26°08.3'N, 44°49.6'W; 3650 m). The genus, which belongs ...

  10. The Lost City hydrothermal system: Constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes

    NASA Astrophysics Data System (ADS)

    Seyfried, W. E.; Pester, Nicholas J.; Tutolo, Benjamin M.; Ding, Kang

    2015-08-01

    Since the first reported discovery of the Lost City hydrothermal system in 2001, it was recognized that seawater alteration of ultramafic rocks plays a key role in the composition of the coexisting vent fluids. The unusually high pH and high concentrations of H2 and CH4 provide compelling evidence for this. Here we report the chemistry of hydrothermal fluids sampled from two vent structures (Beehive: ?90-116 °C, and M6: ?75 °C) at Lost City in 2008 during cruise KNOX18RR using ROV Jason 2 and R/V Revelle assets. The vent fluid chemistry at both sites reveals considerable overlap in concentrations of dissolved gases (H2, CH4), trace elements (Cs, Rb, Li, B and Sr), and major elements (SO4, Ca, K, Na, Cl), including a surprising decrease in dissolved Cl, suggesting a common source fluid is feeding both sites. The absence of Mg and relatively high concentrations of Ca and sulfate suggest solubility control by serpentine-diopside-anhydrite, while trace alkali concentrations, especially Rb and Cs, are high, assuming a depleted mantle protolith. In both cases, but especially for Beehive vent fluid, the silica concentrations are well in excess of those expected for peridotite alteration and the coexistence of serpentine-brucite at all reasonable temperatures. However, both the measured pH and silica values are in better agreement with serpentine-diopside-tremolite-equilibria. Geochemical modeling demonstrates that reaction of plagioclase with serpentinized peridotite can shift the chemical system away from brucite and into the tremolite stability field. This is consistent with the complex intermingling of peridotite and gabbroic bodies commonly observed within the Atlantis Massif. We speculate the existence of such plagioclase bearing peridotite may also account for the highly enriched trace alkali (Cs, Rb) concentrations in the Lost City vent fluids. Additionally, reactive transport modeling taking explicit account of temperature dependent rates of mineral dissolution and precipitation clarifies the feedback between permeability, heat loss, and changes in the dissolved Si of the vent fluids. Assuming both the Beehive and M6 vent fluids were sourced at similar subseafloor conditions (tremolite buffered at 200 °C), model results indicate loss of approximately 30% Si upon cooling to ?150 °C during upflow. However, Si concentrations remained largely conservative with continued cooling to lower temperatures owing to unfavorable reaction kinetics. While consistent with the Beehive endmember composition, these results fail to explain the relative Si depletion in the lower temperature M6 fluids. Thus, it may be that more robust kinetic models for silicates are needed to accurately account for the mechanism and rate of silica removal in the unusually high pH of the Lost City vent fluids.

  11. The Oxygen Isotope Composition of PO4 Extracted From Lost City Hydrothermal Vents -- a Potential Biosignature for Vent Hosted Microbial Ecosystems

    NASA Astrophysics Data System (ADS)

    Robinson, K. L.; Kelley, D. S.; Fogel, M. L.; Colman, A. S.

    2008-12-01

    The oxygen isotope composition of phosphate is a useful indicator of biological P cycling in low to moderate temperature environments, such as those that characterize most of the habitable zone of Earth. In microbially active systems, phosphate oxygen isotope compositions are driven towards a temperature- dependent, thermodynamic equilibrium offset from water. Enzymatic reactions involving organophosphorus compounds, pyrophosphate, and polyphosphates promote the exchange of oxygen atoms between water and phosphate. These enzyme driven reactions are key to the attainment of isotopic equilibrium under conditions in which the rate of inorganic oxygen exchange is slow. We have examined the phosphate oxygen isotope systematics of the Lost City hydrothermal vent system, which is located on a gabbroic and peridotitic massif, 15km off-axis of the Mid Atlantic Ridge. The Lost City hydrothermal system's fluid chemistry and heat budget are controlled by serpentinization reactions. Fluids vent at temperatures up to around 80°C and with a pH around 9-10. Vent mineralogy is dominated by calcite, aragonite, and brucite, with mineral layers intercalated by biofilms. Phosphorus content ranges from 400 - 1000 ppm (by mass as P2O5) in the vent samples we have analyzed. The oxygen isotope composition of phosphate extracted from the vent solids is a few per mil lighter than that of phosphate dissolved in ambient sea water. This oxygen isotope composition reflects exchange of phosphate oxygen with water oxygen at elevated temperature. We show that under a wide range of conditions, abiological reaction rates are too slow to produce these isotopic compositions. This suggests that cycling of the phosphate by the vent system's microbial community has imprinted the phosphate with a stable isotope signature of biological activity. The oxygen isotope composition of lattice-bound phosphate preserves well in the geologic record, commending phosphate oxygen isotope measurements as a tool for the detection of life in ancient terrestrial and in extraterrestrial rocks.

  12. Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics.

    PubMed

    Urich, Tim; Lanzén, Anders; Stokke, Runar; Pedersen, Rolf B; Bayer, Christoph; Thorseth, Ingunn H; Schleper, Christa; Steen, Ida H; Ovreas, Lise

    2014-09-01

    Deep-sea hydrothermal vents are unique environments on Earth, as they host chemosynthetic ecosystems fuelled by geochemical energy with chemolithoautotrophic microorganisms at the basis of the food webs. Whereas discrete high-temperature venting systems have been studied extensively, the microbiotas associated with low-temperature diffuse venting are not well understood. We analysed the structure and functioning of microbial communities in two diffuse venting sediments from the Jan Mayen vent fields in the Norwegian-Greenland Sea, applying an integrated 'omics' approach combining metatranscriptomics, metaproteomics and metagenomics. Polymerase chain reaction-independent three-domain community profiling showed that the two sediments hosted highly similar communities dominated by Epsilonproteobacteria, Deltaproteobacteria and Gammaproteobacteria, besides ciliates, nematodes and various archaeal taxa. Active metabolic pathways were identified through transcripts and peptides, with genes of sulphur and methane oxidation, and carbon fixation pathways highly expressed, in addition to genes of aerobic and anaerobic (nitrate and sulphate) respiratory chains. High expression of chemotaxis and flagella genes reflected a lifestyle in a dynamic habitat rich in physico-chemical gradients. The major metabolic pathways could be assigned to distinct taxonomic groups, thus enabling hypotheses about the function of the different prokaryotic and eukaryotic taxa. This study advances our understanding of the functioning of microbial communities in diffuse hydrothermal venting sediments. PMID:24112684

  13. Phylogenetic diversity of methanogenic, sulfate-reducing and methanotrophic prokaryotes from deep-sea hydrothermal vents and cold seeps

    NASA Astrophysics Data System (ADS)

    Reed, Andrew J.; Dorn, Ruth; Van Dover, Cindy L.; Lutz, Richard A.; Vetriani, Costantino

    2009-09-01

    Microbial communities of methanogenic, sulfate-reducing and methanotrophic prokaryotes from deep-sea environments were investigated by molecular phylogenetic analysis of the deduced amino acid sequences of the genes encoding for the methyl coenzyme M reductase ( mcrA), dissimilatory sulfite reductase ( dsrAB) and particulate methane monoxygenase ( pmoA), respectively. Clone libraries of PCR amplified genes were constructed using DNA extracted from deep-sea vent chimneys (Rainbow and Logatchev hydrothermal vent fields, Mid-Atlantic Ridge, Atlantic Ocean; 9°N East Pacific Rise, Pacific Ocean) and from vertically subsampled sediment cores from cold-seep areas (Blake Ridge, western Atlantic Ocean; Florida Escarpment, Gulf of Mexico). Recombinant clones were screened by RFLP and representative dsrAB, mcrA and pmoA genes were sequenced. The dsrAB sequences grouped primarily within the orders Desulfobacterales, Syntrophobacterales and the Gram-positive order Clostridales. Cold-seep mcrA sequences were distributed among the ANME-2c, -2d and -2e groups, which were previously shown to be associated with the anaerobic oxidation of methane. This study also reports the first mcrA sequences from a high-temperature, black smoker chimney (Logatchev) to group within the ANME-2e subgroup. The majority of the remaining hydrothermal vent mcrA sequences were primarily related to thermophilic members of the anaerobic, methanogenic order Methanococcales. A shift in the dominant ANME-2 group with depth in the sediment for both Florida Escarpment and Blake Ridge mcrA libraries was detected. ANME-2d related clones were detected in the top zones of both cores, with the frequency of ANME-2e related clones increasing with depth. All pmoA sequences retrieved from the cold-seep sites were found to be related to Type I methanotrophic members of the ?-proteobacteria, and were primarily distributed among three major clusters of sequences. No Type II pmoA sequences related to methanotrophic members of the ?-proteobacteria were detected, suggesting that the methanotrophic communities in these cold-seep areas are dominated by Type I ?-proteobacteria.

  14. Size matters at deep-sea hydrothermal vents: different diversity and habitat fidelity patterns of meio- and macrofauna

    PubMed Central

    Gollner, Sabine; Govenar, Breea; Fisher, Charles R.; Bright, Monika

    2015-01-01

    Species with markedly different sizes interact when sharing the same habitat. Unravelling mechanisms that control diversity thus requires consideration of a range of size classes. We compared patterns of diversity and community structure for meio- and macrofaunal communities sampled along a gradient of environmental stress at deep-sea hydrothermal vents on the East Pacific Rise (9° 50? N) and neighboring basalt habitats. Both meio- and macrofaunal species richnesses were lowest in the high-stress vent habitat, but macrofaunal richness was highest among intermediate-stress vent habitats. Meiofaunal species richness was negatively correlated with stress, and highest on the basalt. In these deep-sea basalt habitats surrounding hydrothermal vents, meiofaunal species richness was consistently higher than that of macrofauna. Consideration of the physiological capabilities and life history traits of different-sized animals suggests that different patterns of diversity may be caused by different capabilities to deal with environmental stress in the 2 size classes. In contrast to meiofauna, adaptations of macrofauna may have evolved to allow them to maintain their physiological homeostasis in a variety of hydrothermal vent habitats and exploit this food-rich deep-sea environment in high abundances. The habitat fidelity patterns also differed: macrofaunal species occurred primarily at vents and were generally restricted to this habitat, but meiofaunal species were distributed more evenly across proximate and distant basalt habitats and were thus not restricted to vent habitats. Over evolutionary time scales these contrasting patterns are likely driven by distinct reproduction strategies and food demands inherent to fauna of different sizes.

  15. Borders of life: lessons from Microbiology of deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Prieur, D.

    Thirty years ago, the deep-sea was known as a low density biotope due to coldness, darkness and famine-like conditions. The discovery of deep-sea hydrothermal vents in the Eastern Pacific in 1977 and the associated black smokers in 1979 considerably changed our views about life on Earth. For the first time, an ecosystem almost independent (at least for tens of years) of solar nergy was discovered. Besides the spectacular and unexpected communities of invertebrates based on symbiotic associations with chemo-litho-autotrophic bacteria, prokaryotic communities associated with high temperature black smokers fascinated microbiologists of extreme environments. Within mineral structures where temperature gradients may fluctuate from ambient seawater temperatures (2°C) up to 350°C, thermophilic (optimal growth above 60°C) and hyperthermophilic (optimal growth above 80°C) microorganisms thrived under very severe conditions due to elevated hydrostatic pressure, toxic compounds or strong ionizing radiations. These organisms belong to both domains of Bacteria and Archaea and live aerobically but mostly anaerobically, using a variety of inorganic and organic carbon sources, and a variety of electron donnors and acceptors as well. The most thermophilic organism known on Earth was isolated from a mid-Atlantic-Ridge hydrotermal vent: Pyrolobus fumarii grows optimally at 110°c and its upper temperature limit for life is 113°C. Such an organism survived to autoclaving conditions currently used for sterilization procedures. Many other hyperthermophilic organisms were isolated and described, including fermenters, sulphate and sulphur reducers, hydrogen oxidizers, nitrate reducers, methanogens, etc. Although most of anaerobes are killed when exposed to oxygen, several deep-sea hyperthermophiles appeared to survive to both oxygen and starvation exposures, indicating that they probably can colonize rather distant environments Because of elevated hydrostatic pressure that exists at deep-sea vents, hydrothermal fluids remain liquid at temperatures above 100°C (boiling water temperature under atmospheric pressure). If strictly barophilic thermophiles or hyperthermophiles have not been reported yet (the deepest vents known are 3500 m in depth), barophilic Bacteria and Archaea have been reported that grow much more faster when exposed to in situ (pressurized) conditions. Morover, they grow preferentially at pressures above those existing at captures depth, that may indicate that their natural habitat is situated below the sea floor. Recently, several studies reported that hyperthermophiles and particularly deep-sea organisms may resist to elevated doses of gamma ionizing radiations, as strong as 20 kGy, similarly to the famous radioresistant bacterium Deinococcus radiodurans. From these reports, it can be concluded that exploration of Earth is not already finished: novel biotopes, novel organisms with novel metabolic and physiologic properties are waiting for their discovery. Also, severe physio-chemical conditions allow for florishing living forms that use efficiently chemical energy sources. If these data do not allow to claim that life arose at deep-sea hydrothermal vents, they clearly extend physio-chemical and spatial borders of life and stimulate to further exploration of Earth and the solar system.

  16. Calibration of an acoustic system for measuring 2-D temperature distribution around hydrothermal vents.

    PubMed

    Fan, Wei; Chen, Chen-Tung Arthur; Chen, Ying

    2013-04-01

    One of the fundamental purposes of quantitative acoustic surveys of seafloor hydrothermal vents is to measure their 2-D temperature distributions. Knowing the system latencies and the acoustic center-to-center distances between the underwater transducers in an acoustic tomography system is fundamental to the overall accuracy of the temperature reconstruction. However, commercial transducer sources typically do not supply the needed data. Here we present a novel calibration algorithm to automatically determine the system latencies and the acoustic center-to-center distances. The possible system latency error and the resulting temperature error are derived and analyzed. We have also developed the experimental setup for calibration. To validate the effectiveness of the proposed calibration method, an experimental study was performed on acoustic imaging of underwater temperature fields in Lake Qiezishan, located at Longling County, Yunnan Province, China. Using the calibrated data, the reconstructed temperature distributions closely resemble the actual distributions measured with thermocouples, thus confirming the effectiveness of our algorithm. PMID:23375572

  17. Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod

    PubMed Central

    Yao, Haimin; Dao, Ming; Imholt, Timothy; Huang, Jamie; Wheeler, Kevin; Bonilla, Alejandro; Suresh, Subra; Ortiz, Christine

    2010-01-01

    Biological exoskeletons, in particular those with unusually robust and multifunctional properties, hold enormous potential for the development of improved load-bearing and protective engineering materials. Here, we report new materials and mechanical design principles of the iron-plated multilayered structure of the natural armor of Crysomallon squamiferum, a recently discovered gastropod mollusc from the Kairei Indian hydrothermal vent field, which is unlike any other known natural or synthetic engineered armor. We have determined through nanoscale experiments and computational simulations of a predatory attack that the specific combination of different materials, microstructures, interfacial geometries, gradation, and layering are advantageous for penetration resistance, energy dissipation, mitigation of fracture and crack arrest, reduction of back deflections, and resistance to bending and tensile loads. The structure-property-performance relationships described are expected to be of technological interest for a variety of civilian and defense applications. PMID:20133823

  18. Stable carbon isotopic evidence for carbon limitation in hydrothermal vent vestimentiferans.

    PubMed

    Fisher, C R; Kennicutt, M C; Brooks, J M

    1990-03-01

    Stable carbon isotope composition (delta(13)C values) can be used to evaluate an animal's source of nutritional carbon. Most animals with chemoautotrophic endosymbionts have quite negative tissue delta(13)C values due to discrimination against (13)C associated with chemoautotrophic assimilation of inorganic carbon. However, the delta(13)C values of hydrothermal vent (HTV) vestimentiferans are significantly higher than the values reported for non-HTV vestimentiferans or other invertebrates with chemoautotrophic endosymbionts. Tissue delta(13)C values of two species of HTV vestimentiferans increase with increasing size of the animals. This relation supports the hypothesis that the relatively high delta(13)C values are the result of inorganic carbon limitation during carbon fixation. A more favorable relation between gas exchange and carbon fixation in the smaller individuals is expected, due to differences in the geometric scaling of gas-exchange surfaces and trophosome volume. PMID:17800067

  19. Mineralized iron oxidizing bacteria from hydrothermal vents: targeting biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Leveille, R. J.

    2010-12-01

    Putative hydrothermal systems have been identified on Mars based on orbital imagery and rover-based analyses. Based on Earth analogs, hydrothermal systems on Mars would be highly attractive for their potential for preserving organic and inorganic biosignatures. For example, iron oxidizing bacteria are ubiquitous in marine and terrestrial hydrothermal systems, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Microfossils of iron oxidizing bacteria have been found in ancient Si-Fe deposits and iron oxidation may be an ancient and widespread metabolic pathway. In order to investigate mineralized iron oxidizing bacteria as a biosignature, we have examined samples collected from extinct hydrothermal vents along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic iron oxidizing bacteria, isolated from active Pacific hydrothermal vents, were grown in a Fe-enriched seawater medium at constant pH (6.5) and O2 concentration (5%) in a controlled bioreactor system. Samples and experimental products were examined with a combination of variable-pressure and field-emission scanning electron microscopy (SEM), in some cases by preparing samples with a focused ion beam (FIB) milling system. Light-toned seafloor samples display abundant filamentous forms resembling, in both size and shape (1-5 microns in diameter and up to several microns in length), the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Some samples consist entirely of low-density masses of silica (>90% Si) encrusted filamentous forms. The presence of unmineralized filamentous matter rich in C and Fe suggests that these are the remains of iron oxidizing bacteria. Mineralized filaments sectioned by FIB show variable internal material within semi-hollow, tubular-like features. Silica encrustations also show pseudo-concentric growth bands. In the bioreactor runs, abundant microbial growth and formation of an iron oxyhydroxide precipitate, either in direct association with the cells or within the growth medium, were observed. Preliminary analyses suggest that these precipitates are different from abiotic precipitates. Continuing work includes high-resolution TEM observations of cultured organisms and biogenic iron minerals, Raman and reflectance spectroscopy of precipitates, examination of seafloor incubation experiments, and bioreactor silicification experiments in order to better understand the Fe-Si fossilization process. Microaerophilic iron oxidation could have existed on the early Earth in environments containing small amounts of oxygen produced either by locally-concentrated photosynthetic microorganisms (e.g., cyanobacteria) or by chemical reactions. By analogy, similar subsurface or near-surface microaerophilic environments could have existed on Mars in the past, including in low-temperature hydrothermal systems. The distinctive morphologies and Fe-Si mineralization patterns of iron oxidizing bacteria could be a useful biosignature to search for on Mars. Deposits and features similar to those described here could be identified on Mars with existing technologies, and thus hydrothermal systems represent an attractive target for future surface and sample return missions.

  20. Hydrothermal venting in magma deserts: The ultraslow-spreading Gakkel and Southwest Indian Ridges

    E-print Network

    Langmuir, Charles H.

    ) and the Southwest Indian Ridge (SWIR) to determine if hydrothermal activity is similarly distributed among.1­1.2. Plumes detected along the SWIR are G 3 G 3Geochemistry Geophysics Geosystems Published by AGU plume rise. Along a western SWIR section (10°­23°E) we identify 3­8 sites, so Fs = 0.3­0.8; along

  1. A hybrid zone between hydrothermal vent mussels (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge.

    PubMed

    O'Mullan, G D; Maas, P A; Lutz, R A; Vrijenhoek, R C

    2001-12-01

    This study provides the first example of a hybrid zone between animal taxa distributed along the mid-ocean ridge system. We examined the distribution and genetic structure of deep-sea hydrothermal vent mussels (Bivalvia: Mytilidae) along a 2888-km portion of the Mid-Atlantic Ridge between 37 degrees 50' N and 14 degrees 45' N latitude. Mitochondrial DNA (mtDNA), allozymes and multivariate-morphometric evidence discriminated between individuals of a northern species, Bathymodiolus azoricus, and a southern species, B. puteoserpentis, that were separated by an intermediate ridge segment almost devoid of mussels. A small sample of mussels from Broken Spur, a vent locality along this intermediate zone, revealed a mixed population with gene frequencies and morphology that were broadly intermediate to those of the northern and southern species. Multilocus clines in mtDNA and allozyme frequencies were centred over the intermediate zone. We consider intrinsic and extrinsic processes that might limit genetic exchange across this hybrid zone. PMID:11903895

  2. Photoprotective Bioactivity Present in a Unique Marine Bacteria Collection from Portuguese Deep Sea Hydrothermal Vents

    PubMed Central

    Martins, Ana; Tenreiro, Tania; Andrade, Gonçalo; Gadanho, Mário; Chaves, Sandra; Abrantes, Marta; Calado, Patrícia; Tenreiro, Rogério; Vieira, Helena

    2013-01-01

    Interesting biological activities have been found for numerous marine compounds. In fact, screening of phylogenetically diverse marine microorganisms from extreme environments revealed to be a rational approach for the discovery of novel molecules with relevant bioactivities for industries such as pharmaceutical and cosmeceutical. Nevertheless, marine sources deliverables are still far from the expectations and new extreme sources of microbes should be explored. In this work, a marine prokaryotic collection from four Mid-Atlantic Ridge (MAR) deep sea hydrothermal vents near the Azores Islands, Portugal, was created, characterized and tested for its photoprotective capacity. Within 246 isolates, a polyphasic approach, using chemotaxonomic and molecular typing methods, identified 23-related clusters of phenetically similar isolates with high indexes of diversity. Interestingly, 16S rRNA gene sequencing suggested the presence of 43% new prokaryotic species. A sub-set of 139 isolates of the prokaryotic collection was selected for biotechnological exploitation with 484 bacterial extracts prepared in a sustainable upscalling manner. 22% of the extracts showed an industrially relevant photoprotective activity, with two extracts, belonging to new strains of the species Shewanella algae and Vibrio fluvialis, uniquely showing UV-A, UV-B and UV-C protective capacity. This clearly demonstrates the high potential of the bacteria MAR vents collection in natural product synthesis with market applications. PMID:23665957

  3. High-Resolution Micro-Bathymetry Mapping in the Lau Basin: Examples From the Tui Malila and Mariner Vent Sites

    NASA Astrophysics Data System (ADS)

    Ferrini, V.; Sterling, A.; Martinez, F.; Tivey, M. K.; Mottl, M.; Kim, S.

    2005-12-01

    High-resolution SM2000 (200 kHz) multibeam sonar data were collected at six vent areas on the Lau Basin spreading center in April 2005. Data were acquired during near-bottom surveys conducted with the ROV Jason II at altitudes ranging from 5 to 20 m. High altitude (20 m) bathymetric surveys were complemented by near-bottom visual surveys, which provided ground-truth observations of the seafloor. Combined with Doppler and Long Baseline (LBL) Navigation, these bathymetry data provide sub-meter resolution of seafloor features, and reveal individual vent structures, faults and fissures. We present bathymetry data from two sites located 22 km apart, which are geologically and biologically distinct and exhibit contrasts in venting styles and biota. The Mariner vent field contains massive vent structures, many of which are taller than 25 m, with active venting from their bases and sides. Fluids exit as vigorous, high-temperature (< 363°C) black smoker fluids through chalcopyrite-lined conduits, and as less focused flow from porous beehive structures. Inactive structures are friable and are composed of iron- and copper-oxides. There was little evidence of faulting or fracture at the vent field, but we note the presence of collapsed volcanic dome structures. The vent fauna at Mariner is very limited; only Bythograeid and Galatheid crabs, and one Brisingid Seastar, were found. Tui Malila, by contrast, is characterized by shorter and wider branched vent structures with coalesced spires, the tops of which were actively venting. There is extensive faulting and fracture at this site, as well as a number of large flanges and areas of diffuse flow. At Tui Malila fluids exit tall structures through chalcopyrite- and zinc-lined conduits (at temperatures < 312°C), from beneath flanges, and directly from andesite. Hydrothermal breccias are also present. Tui Malila hosts a more typical vent community, with greater abundances of both Bythograeid and Galatheid crabs, mostly within 4 m of the vent field. Ifremeria Nautilei and Bathymodiolus Brevior were prolific within 2 m of the vent field, and sponges and anemones abundant from 4 to 32 m away.

  4. Gas Chemistry of Submarine Hydrothermal Venting at Maug Caldera, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Lupton, J. E.; Butterfield, D. A.; Lilley, M. D.; Evans, L. J.; Olson, E. J.; Resing, J. A.; Buck, N.; Larson, B. I.; Young, C.

    2014-12-01

    Maug volcano consists of 3 islands that define the perimeter of a submerged caldera that was formed by an explosive eruption. The caldera reaches a depth of ~225 meters, and has a prominent central cone or pinnacle that ascends within 20 meters of the sea surface. Our exploration of Maug began in 2003, when a single hydrocast in the caldera detected a strong suspended particle and helium plume reaching a maximum of ?3He = 250% at ~180 meters depth, clearly indicating hydrothermal activity within the caldera. In 2004 we returned armed with the ROPOS ROV, and two ROPOS dives discovered and sampled low temperature (~4 °C) diffuse venting associated with bacterial mats on the NE flank of the central pinnacle at 145 m depth. Samples collected with titanium gas tight bottles were badly diluted with ambient seawater but allowed an estimate of end-member 3He/4He of 7.3 Ra. Four vertical casts lowered into the caldera in 2004 all had a strong 3He signal (?3He = 190%) at 150-190 meters depth. A recent expedition in 2014 focused on the shallow (~10 m) gas venting along the caldera interior. Scuba divers were able to collect samples of the gas bubbles using evacuated SS bottles fitted with plastic funnels. The gas samples had a consistent ~170 ppm He, 8 ppmNe, 60% CO2, 40%N2, and 0.8% Ar, and an end-member 3He/4He ratio of 6.9 Ra. This 3He/4He ratio falls within the range for typical arc volcanoes. The rather high atmospheric component (N2, Ar, Ne) in these samples is not contamination but appears to be derived from subsurface exchange between the ascending CO2 bubbles and air saturated seawater. A single vertical cast in 2014 had a maximum ?3He = 55% at 140 m depth, much lower than in 2003 and 2004. This decrease is possibly due to recent flushing of the caldera by a storm event, or may reflect a decrease in the deep hydrothermal activity. This area of shallow CO2 venting in Maug caldera is of particular interest as a natural laboratory for studying the effects of ocean acidification on corals.

  5. Variable morphologic expression of volcanic, tectonic, and hydrothermal processes at six hydrothermal vent fields in the Lau back-arc basin

    NASA Astrophysics Data System (ADS)

    Ferrini, Vicki Lynn; Tivey, Margaret K.; Carbotte, Suzanne M.; Martinez, Fernando; Roman, Chris

    2008-07-01

    Ultrahigh-resolution bathymetric maps (25 cm grid) are used to quantify the physical dimensions of and spatial relationships between tectonic, volcanic, and hydrothermal features at six hydrothermal vent fields in the Lau back-arc basin. Supplemented with near-bottom photos, and nested within regional DSL-120A side-scan sonar data, these maps provide insight into the nature of hydrothermal systems along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR). Along-axis transitions evident in localized volcanic morphology and tectonic characteristics include a change from broad low-relief volcanic domes (hundreds of meters wide, <10 m tall) that are dominated by pillow and lobate lava morphologies and are cut by faults and fissures to higher aspect ratio volcanic domes (tens of meters wide, tens of meters tall) dominated by aa-type lava morphologies, with finger-like flows, and few tectonic structures. These along-axis differences in localized seafloor morphology suggest differences in hydrothermal circulation pathways within the shallow crust and correlate with regional transitions in a variety of ridge properties, including the large-scale morphology of the ridge axis (shallow axial valley to axial high), seafloor lava compositions, and seismic properties of the upper crust. Differences in morphologic characteristics of individual flows and lava types were also quantified, providing an important first step toward the remote characterization of complex terrains associated with hydrothermal vent fields.

  6. Parasitism in species of Bathymodiolus (Bivalvia: Mytilidae) mussels from deep-sea seep and hydrothermal vents.

    PubMed

    Ward, Megan E; Shields, Jeffrey D; Van Dover, Cindy L

    2004-11-23

    Bivalve species, especially mussels, are biomass dominants in many deep-sea chemosynthetic ecosystems. As in shallow-water environments, parasites are likely to be important factors in the population dynamics of bivalve communities in chemosynthetic ecosystems, but there has been little study of parasitism in deep-sea seep or vent molluscs. In this study, parasite types, diversity, prevalence, infection density and non-infectious indicators of stress or disease as related to host age, reproductive condition, and endosymbiont density were assessed in mussels (Bathymodiolus heckerae) from 2 seep sites and mussels (B. puteoserpentis) from 2 vent sites. We identified 10 microbial or parasitic agents in histological sections. Parasite types included 3 viral-like gut inclusions, 2 rickettsia-like gill inclusions, a rickettsia-like mantle inclusion, a bacterial gill-rosette, a chlamydia-like gut inclusion, gill-dwelling ciliates, and an unidentified inclusion in gut tissues. Parasite species richness was greater in seep mussels than in vent mussels, with the seep mussels possessing 9 types of parasites compared to 2 in the vent mussels. One of the viral-like inclusions infecting the seep mussel B. heckerae was pathogenic, causing lysis of the digestive tubules. The prevalence and intensity of infection by this pathogen were greater in hosts with shell lengths less than 100 mm. Mussels from all 4 sites also exhibited intense infiltration of tissues and blood spaces by enlarged hemocytes. Hemocytic infiltration (hemocytosis) showed variable degrees of severity that were not associated with other host factors examined. PMID:15648826

  7. Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction

    Microsoft Academic Search

    David A. Butterfield; Gary J. Massoth; Russell E. McDuff; John E. Lupton; Marvin D. Lilley

    1990-01-01

    Hydrothermal fluids collected from the ASHES vent field in 1986, 1987, and 1988 exhibit a very wide range of chemical composition over a small area (~60 m in diameter). Compositions range from a 300°C, gas-enriched (285 mmol\\/kg CO2), low-chlorinity (~33% of seawater) fluid to a 328°C, relatively gas-depleted (50 mmol\\/kg CO2), high-chlorinity (~116% of seawater) fluid. The entire range of

  8. Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction

    Microsoft Academic Search

    David A. Butterfield; R. E. McDuff; M. D. Lilley; G. J. Massoth; J. E. Lupton

    1990-01-01

    Hydrothermal fluids collected from the ASHES vent field in 1986, 1987, and 1988 exhibit a very wide range of chemical composition over a small area (â¼ 60 m in diameter). Compositions range from a 300C, gas-enriched (285 mmol\\/kg COâ), low-chlorinity (â¼ 33% of seawater) fluid to a 328C, relatively gas-depleted (50 mmol\\/kg COâ), high-chlorinity (â¼ 116% of seawater) fluid. The

  9. Influence of habitat on the reproductive biology of the deep-sea hydrothermal vent limpet Lepetodrilus fucensis (Vetigastropoda: Mollusca) from the Northeast Pacific

    Microsoft Academic Search

    Noreen E. Kelly; Anna Metaxas

    2007-01-01

    Habitat selection by the hydrothermal vent limpet, Lepetodrilus fucensis, in Northeast Pacific hydrothermal vent ecosystems, may influence its reproductive output, as it occupies habitats with varying\\u000a physico-chemical conditions that reflect the availability of nutritional resources. Histological techniques were used to determine\\u000a size at first reproduction, gametogenesis, reproductive output, and fecundity in relation to shell length (SL), through examination\\u000a of the

  10. Pathways of Carbon and Energy Metabolism of the Epibiotic Community Associated with the Deep-Sea Hydrothermal Vent Shrimp Rimicaris exoculata

    PubMed Central

    Hügler, Michael; Petersen, Jillian M.; Dubilier, Nicole; Imhoff, Johannes F.; Sievert, Stefan M.

    2011-01-01

    Background The shrimp Rimicaris exoculata dominates the faunal biomass at many deep-sea hydrothermal vent sites at the Mid-Atlantic Ridge. In its enlarged gill chamber it harbors a specialized epibiotic bacterial community for which a nutritional role has been proposed. Methodology/Principal Findings We analyzed specimens from the Snake Pit hydrothermal vent field on the Mid-Atlantic Ridge by complementing a 16S rRNA gene survey with the analysis of genes involved in carbon, sulfur and hydrogen metabolism. In addition to Epsilon- and Gammaproteobacteria, the epibiotic community unexpectedly also consists of Deltaproteobacteria of a single phylotype, closely related to the genus Desulfocapsa. The association of these phylogenetic groups with the shrimp was confirmed by fluorescence in situ hybridization. Based on functional gene analyses, we hypothesize that the Gamma- and Epsilonproteobacteria are capable of autotrophic growth by oxidizing reduced sulfur compounds, and that the Deltaproteobacteria are also involved in sulfur metabolism. In addition, the detection of proteobacterial hydrogenases indicates the potential for hydrogen oxidation in these communities. Interestingly, the frequency of these phylotypes in 16S rRNA gene clone libraries from the mouthparts differ from that of the inner lining of the gill chamber, indicating potential functional compartmentalization. Conclusions Our data show the specific association of autotrophic bacteria with Rimicaris exoculata from the Snake Pit hydrothermal vent field, and suggest that autotrophic carbon fixation is contributing to the productivity of the epibiotic community with the reductive tricarboxylic acid cycle as one important carbon fixation pathway. This has not been considered in previous studies of carbon fixation and stable carbon isotope composition of the shrimp and its epibionts. Furthermore, the co-occurrence of sulfur-oxidizing and sulfur-reducing epibionts raises the possibility that both may be involved in the syntrophic exchange of sulfur compounds, which could increase the overall efficiency of this epibiotic community. PMID:21249205

  11. Carbon-Isotope Fractionations of Autotrophic Bacteria: Relevance to Primary Production and Microbial Evolution in Hot Springs and Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, C. L.; Romanek, C. S.; Mills, G.

    2004-12-01

    Terrestrial hot springs and marine hydrothermal vents are often dominated by autotrophic microorganisms. Species of the Bacteria Domain in these environments are known to use different pathways for CO2 fixation. These may include the Calvin cycle, the Acetyl CoA pathway, the reverse TCA cycle, and the 3-HP pathway. Each cycle or pathway may be characterized by distinct patterns of carbon isotope fractionation. This presentation will summarize isotope fractionation patterns associated with known autotrophic bacteria and to use these patterns for interpreting natural isotopic variations. Examples will include hot springs from the Yellowstone National Park and Nevada desert, USA and Kamchatka, Russia, and hydrothermal vents from the East Pacific Rise. An attempt will be made to discuss isotopic variations within a particular pathway in the context of species evolution through horizontal gene transfer.

  12. Evaluation of enrichments of sulfate reducing bacteria from pristine hydrothermal vents sediments as potential inoculum for reducing trichloroethylene

    Microsoft Academic Search

    C. Guerrero-Barajas; E. I. García-Peña

    2010-01-01

    The evaluation of enrichments from pristine hydrothermal vents sediments on its capability of reducing trichloroethylene (TCE)\\u000a under sulfate reducing conditions with lactate and volatile fatty acids (VFAs) as substrates was performed. Effect of the\\u000a possible TCE biodegradation intermediates cis and trans 1,2 dichloroethenes on sulfate reduction (SR) was also evaluated. The influence of cyanocobalamin (CNB12) and riboflavin (RF) on the

  13. Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan

    Microsoft Academic Search

    Ken Takai; Koki Horikoshi

    2000-01-01

    A novel barophilic, extremely thermophilic bacterium was isolated from a deep-sea hydrothermal vent chimney at the Iheya\\u000a Basin, in the Okinawa area, Japan. The cells were found to be rod shaped and surrounded by a sheath-like outer structure;\\u000a the organism did not possess flagella and was not motile. Growth was observed between 45° and 80°C (optimum, 72°C, 45 min\\u000a doubling

  14. CHH family peptides from an ‘eyeless’ deep-sea hydrothermal vent shrimp, Rimicaris kairei: Characterization and sequence analysis

    Microsoft Academic Search

    Ye-Qing Qian; Li Dai; Jin-Shu Yang; Fan Yang; Dian-Fu Chen; Yoshihiro Fujiwara; Shinji Tsuchida; Hiromichi Nagasawa; Wei-Jun Yang

    2009-01-01

    The crustacean eyestalk synthesizes and secretes several structurally-related peptides belonging to the crustacean hyperglycemic hormone (CHH) family, which are considered major physiological regulators during the crustacean life cycle. However, it is intriguing that eyestalks of many hydrothermal vent crustaceans prove to have varying degrees of reduction. In the present study, we characterized full-length cDNAs encoding two important eyestalk hormones of

  15. Laboratory Investigation of the Role of Bacteria in the Weathering of Basalt Near Deep Sea Hydrothermal Vents

    Microsoft Academic Search

    Christopher J. Daughney; Jean-Philippe Rioux; Danielle Fortin; Thomas Pichler

    2004-01-01

    The principal goal of this study was to assess the potential role of bacteria on the weathering of basalts near deep-sea hydrothermal vents (DSHVs). Natural basalt samples were collected from the vicinity of Axial Seamount on the Juan de Fuca plate during the New Millennium Observatory (NeMO) 2000 cruise and characterized by scanning electron microscopy (SEM) and X-ray diffractometry. Bacteria

  16. Compositional, Physiological and Metabolic Variability in Microbial Communities Associated with Geochemically Diverse, Deep-Sea Hydrothermal Vent Fluids

    Microsoft Academic Search

    Ken Takai; Kentaro Nakamura

    \\u000a Deep-sea hydrothermal vent environments represent one of the most physically and chemically diverse biomes in Earth. The chemical\\u000a and thermal gradients (e.g., >350°C across distances as small as several centimeters in active chimneys) provide a wide range\\u000a of niches for microbial communities living there (Huber and Holden 2008; Nakagawa and Takai 2008; Reysenbach et al. 2000;\\u000a Takai et al. 2006a).

  17. The Production of Methane, Hydrogen, and Organic Compounds in Ultramafic-Hosted Hydrothermal Vents of the Mid-Atlantic Ridge

    PubMed Central

    Charlou, J.L.; Holm, N.G.; Mousis, O.

    2015-01-01

    Abstract Both hydrogen and methane are consistently discharged in large quantities in hydrothermal fluids issued from ultramafic-hosted hydrothermal fields discovered along the Mid-Atlantic Ridge. Considering the vast number of these fields discovered or inferred, hydrothermal fluxes represent a significant input of H2 and CH4 to the ocean. Although there are lines of evidence of their abiogenic formation from stable C and H isotope results, laboratory experiments, and thermodynamic data, neither their origin nor the reaction pathways generating these gases have been fully constrained yet. Organic compounds detected in the fluids may also be derived from abiotic reactions. Although thermodynamics are favorable and extensive experimental work has been done on Fischer-Tropsch-type reactions, for instance, nothing is clear yet about their origin and formation mechanism from actual data. Since chemolithotrophic microbial communities commonly colonize hydrothermal vents, biogenic and thermogenic processes are likely to contribute to the production of H2, CH4, and other organic compounds. There seems to be a consensus toward a mixed origin (both sources and processes) that is consistent with the ambiguous nature of the isotopic data. But the question that remains is, to what proportions? More systematic experiments as well as integrated geochemical approaches are needed to disentangle hydrothermal geochemistry. This understanding is of prime importance considering the implications of hydrothermal H2, CH4, and organic compounds for the ocean global budget, global cycles, and the origin of life. Key Words: Hydrogen—Methane—Organics—MAR—Abiotic synthesis—Serpentinization—Ultramafic-hosted hydrothermal vents. Astrobiology 15, 381–399. PMID:25984920

  18. Near-bottom magnetic surveys around hydrothermal sites in the southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Nogi, Y.; Mochizuki, N.; Okino, K.; Asada, M.

    2011-12-01

    Near-bottom magnetic survey is an effective method to reveal detailed magnetic anomaly features of seafloor. The measurements of three-components of the geomagnetic field by using AUV "URASHIMA" were conducted during the YK-09-08 cruise in the southern Mariana Trough in order to detect signals of hydrothermally altered rocks. During the cruise, vector geomagnetic field are successfully obtained along the all dive tracks with the information of the vehicle's attitude. Total intensities of geomagnetic field by the overhauser magnetometer were also conducted, but the data are only collected along almost E-W oriented observation lines due to the sensitivity of the sensor. The distribution of crustal magnetization are estimated using downward component of magnetic anomalies by the inversion method. The distribution of low crustal magnetization are almost coincide with the area around hydrothermal vent sites from on ridge to off ridge area, and most likely indicate signs of hydrothermally altered rocks. The distribution of low crustal magnetization on ridge are almost parallel to the the strike of ridge axis implying tectonic control of hydrothermal vent sites.

  19. Neutrophilic Fe-Oxidizing Bacteria Are Abundant at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition

    PubMed Central

    Emerson, David; Moyer, Craig L.

    2002-01-01

    A number of hydrothermal vent sites exist on the summit of the Loihi Seamount, a shield volcano that is part of the Hawaiian archipelago. The vents are 1,100 to 1,325 m below the surface and range in temperature from slightly above ambient (10°C) to high temperature (167°C). The vent fluid is characterized by high concentrations of CO2 (up to 17 mM) and Fe(II) (up to 268 ?M), but there is a general paucity of H2S. Most of the vents are surrounded by microbial mats that have a gelatinous texture and are heavily encrusted with rust-colored Fe oxides. Visually, the Fe oxides appeared homogeneous. However, light microscopy revealed that the oxides had different morphologies, which fell into three classes: (i) sheaths, (ii) twisted or irregular filaments, and (iii) amorphous oxides. A morphological analysis of eight different samples indicated that the amorphous oxides were overall the most abundant; however, five sites had >50% sheaths and filamentous oxides. These latter morphologies are most likely the direct result of microbial deposition. Direct cell counts revealed that all of the oxides had abundant microbial populations associated with them, from 6.9 × 107 to 5.3 × 108 cells per ml of mat material. At most sites, end point dilution series for lithotrophic Fe oxidizers were successful out to dilutions of 10?6 and 10?7. A pure culture was obtained from a 10?7 dilution tube; this strain, JV-1, was an obligate, microaerophilic Fe oxidizer that grew at 25 to 30°C. A non-cultivation-based molecular approach with terminal-restriction fragment length polymorphism also indicated the common presence of Fe-oxidizing bacteria at Loihi. Together, these results indicate that Fe-oxidizing bacteria are common at the Loihi Seamount and probably play a major role in Fe oxidation. A review of the literature suggests that microbially mediated Fe oxidation at hydrothermal vents may be important globally. PMID:12039770

  20. Modeling fluid flow in sedimentary basins with sill intrusions: Implications for hydrothermal venting and climate change

    NASA Astrophysics Data System (ADS)

    Iyer, Karthik; Rüpke, Lars; Galerne, Christophe Y.

    2013-12-01

    Large volumes of magma emplaced within sedimentary basins have been linked to multiple climate change events due to release of greenhouse gases such as CH4. Basin-scale estimates of thermogenic methane generation show that this process alone could generate enough greenhouse gases to trigger global incidents. However, the rates at which these gases are transported and released into the atmosphere are quantitatively unknown. We use a 2D, hybrid FEM/FVM model that solves for fully compressible fluid flow to quantify the thermogenic release and transport of methane and to evaluate flow patterns within these systems. Our results show that the methane generation potential in systems with fluid flow does not significantly differ from that estimated in diffusive systems. The values diverge when vigorous convection occurs with a maximum variation of about 50%. The fluid migration pattern around a cooling, impermeable sill alone generates hydrothermal plumes without the need for other processes such as boiling and/or explosive degassing. These fluid pathways are rooted at the edges of the outer sills consistent with seismic imaging. Methane venting at the surface occurs in three distinct stages and can last for hundreds of thousands of years. Our simulations suggest that although the quantity of methane potentially generated within the contact aureole can cause catastrophic climate change, the rate at which this methane is released into the atmosphere is too slow to trigger, by itself, some of the negative ?13C excursions observed in the fossil record over short time scales (<10,000 years).

  1. Phylogeny and New Classification of Hydrothermal Vent and Seep Shrimps of the Family Alvinocarididae (Decapoda)

    PubMed Central

    Vereshchaka, Alexander L.; Kulagin, Dmitry N.; Lunina, Anastasia A.

    2015-01-01

    The paper addresses the phylogeny and classification of the hydrothermal vent shrimp family Alvinocarididae. Two morphological cladistic analyses were carried out, which use all 31 recognized species of Alvinocarididae as terminal taxa. As outgroups, two species were included, both representing major caridean clades: Acanthephyra purpurea (Acanthephyridae) and Alpheus echiurophilus (Alpheidae). For additional support of the clades we utilised available data on mitochondrial Cytochrome c Oxidase I gene (CO1) and 16S ribosomal markers. Both morphological and molecular methods resulted in similar tree topologies and nearly identical clades. We consider these clades as evolutionary units and thus erect two new subfamilies: Rimicaridinae (Alvinocaridinides, Manuscaris, Opaepele, Shinkaicaris, Rimicaris), Alvinocaridinae (Alvinocaris), whilst recognising Mirocaridinae (with genera Mirocaris and Nautilocaris) at subfamily level. One genus, Keldyshicaris could not be assigned to any subfamily and is thus left as incertae sedis. The monophyly of Alvinocardinae was supported by morphological data, but not supported by molecular data (two analyses); the monophyly of all subfamilies was supported both by morphological and molecular data. Chorocaris is herein synonymized with Rimicaris, whilst Opaepele vavilovi is herein transferred to a new genus Keldyshicaris. Morphological trends within Alvinocarididae are discussed and short biogeographical remarks are given. We provide emended diagnoses for all subfamilies and genera along with keys to all recognized species. PMID:26161742

  2. Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species.

    PubMed

    Hasan, Nur A; Grim, Christopher J; Lipp, Erin K; Rivera, Irma N G; Chun, Jongsik; Haley, Bradd J; Taviani, Elisa; Choi, Seon Young; Hoq, Mozammel; Munk, A Christine; Brettin, Thomas S; Bruce, David; Challacombe, Jean F; Detter, J Chris; Han, Cliff S; Eisen, Jonathan A; Huq, Anwar; Colwell, Rita R

    2015-05-26

    Vibrio species are both ubiquitous and abundant in marine coastal waters, estuaries, ocean sediment, and aquaculture settings worldwide. We report here the isolation, characterization, and genome sequence of a novel Vibrio species, Vibrio antiquarius, isolated from a mesophilic bacterial community associated with hydrothermal vents located along the East Pacific Rise, near the southwest coast of Mexico. Genomic and phenotypic analysis revealed V. antiquarius is closely related to pathogenic Vibrio species, namely Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, and Vibrio vulnificus, but sufficiently divergent to warrant a separate species status. The V. antiquarius genome encodes genes and operons with ecological functions relevant to the environment conditions of the deep sea and also harbors factors known to be involved in human disease caused by freshwater, coastal, and brackish water vibrios. The presence of virulence factors in this deep-sea Vibrio species suggests a far more fundamental role of these factors for their bacterial host. Comparative genomics revealed a variety of genomic events that may have provided an important driving force in V. antiquarius evolution, facilitating response to environmental conditions of the deep sea. PMID:25964331

  3. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece

    PubMed Central

    Kilias, Stephanos P.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N.; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J.; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate. PMID:23939372

  4. Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38°N-34°N): ultramafic exposures and hosting of hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Gràcia, Eulàlia; Charlou, Jean Luc; Radford-Knoery, Joël; Parson, Lindsay M.

    2000-04-01

    Ten contiguous non-transform offsets (NTOs) along the Mid-Atlantic Ridge (MAR) south of the Azores (between 38°N and 35°40'N) have been studied in detail using swath bathymetric, acoustic backscatter and deep-tow high-resolution sidescan sonar (TOBI) data. In contrast with discontinuities studied elsewhere at slow-spreading ridges, these left-lateral NTOs are consistently broader and larger, with complex structural fabrics accommodating the offset. They are characterized by a range of elevated and faulted massifs detached from their segment flanks, with an irregular acoustic backscatter pattern. Some of these massifs have been explored and sampled recently during dive cruises revealing that they are composed of upper mantle peridotites and lower crustal rocks, and sometimes associated with high-temperature hydrothermal venting. Water column surveys adjacent to these massifs show high CH 4 and low TDM (total dissolvable manganese) concentrations, possibly resulting from the process of serpentinization of ultramafic rocks. The correlation between the shallow dome-like shaped massifs and the high concentrations of CH 4 (associated with low levels of Mn) is of particular interest to predict the outcrop of ultramafic rocks within the NTOs where no geological data are available. The exposure of the ultramafic massifs within the NTOs is favored by low magmatic supply and low-angle detachment faulting occurring at segment ends. The pervasive fracturing and faulting at these discontinuities favor circulation of hydrothermal fluids and occurrence of high-temperature vent sites.

  5. Hydrothermal fluids vented at shallow depths at the Aeolian islands: relationships with volcanic and geothermal systems.

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Caracausi, Antonio; Longo, Manfredi; Maugeri, Roberto; Paonita, Antonio

    2010-05-01

    Scuba diving investigations carried out over the last two decades at the Aeolian islands revealed the existence of submarine magmatic and late-magmatic hydrothermalism at all the islands, despite the absence of on-shore activity at some of the islands. The results gained by diving activities provided useful information to evaluate the volcanic and geothermal activity and to manage the volcanic crisis occurred on November 2002 off the island of Panarea. Scuba diving investigations carried out from middle 80's, had shown that despite the absence of on shore volcanic manifestations, submarine hydrothermal activity is recognizable at shallow depth around all the Aeolian islands related either to volcanic and geothermal activity. The sampled gases are CO2-dominated with low amounts of oxygen and reactive gases (H2, CO, CH4 and H2S) with concentrations ranging from a few ppm to some mole percent. Sometimes significant N2 amount are detectable together with high helium contents. Samples having low CO2 content, besides relevant N2 and He amounts, are the consequence of CO2 dissolution in sea-water due to gas-water interactions (GWI) occurred before the sample collection. The high CO2 solubility (878 ml/l, T=20°C, P=1bar) may, in fact, decrease the CO2 content in the venting gases thus increasing the concentrations of the less soluble species (e.g. He 8 ml/l, CO 23 ml/l and CH4 33.8 ml/l) in the gas mixture. Such a process might occur at any level, however, because of the slow water circulation in deep sediments, CO2 is able to saturate the circulating sea-water. The isotopic composition of carbon displays a small range of values while helium isotopes are in the range of 4.1venting gases from active volcanoes (e.g. Vulcano and Panarea). The explanation of such a difference is not related to the volcanic activity at all, but to the parent mantle that in the western side looks to be less contaminated compared to the eastern side. Crustal contamination has been invoked by several authors as the main factor that caused the dramatic 3He/4He decrease. Although the parent mantle produced magmas with different isotopic signature, the gas phase looks similar. To explain the results of the chemical analyses it is proposed that similar deep boundary conditions (pressure, temperature, oxidation level) act as buffers for the chemical composition of the venting gases. With the aim of investigating their origin, estimations of the deep equilibration conditions have been carried out. The reactive compounds detected in the sampled gases, largely used for geothermometric and geobarometric considerations of hydrothermal fluids were used in a system based on the CH4-CO-CO2 contents assuming the presence of a boiling aqueous solution. The equilibrium constants of the adopted reactions are a function of temperature and oxygen fugacity, being the latter buffered by the mineral assemblage of the host rocks. Due to the similarity in the chemical composition of the gases vented at all the islands, a theoretical model developed to interpret the chemical composition of the gases released at Panarea during the last volcanic crisis is here applied. The results have shown that geothermal boiling systems are detectable at all the islands with temperatures up to 350°C. The adopted geo-thermobarometric system is more sensitive to the contents of CO and CH4 than that of CO2, implying that although GWI induce modifications in the chemical composition, the estimated equilibrium temperatures do not change very much for variations of the CO2 content in the range of several volume percent, thus, whether or not the gaseous mixture underwent GWI. Moreover, the slow reaction kinetics of CO and CH4 allow them to keep the deep equilibrium c

  6. Silica-carbonate stromatolites related to coastal hydrothermal venting in Bahía Concepción, Baja California Sur, Mexico

    Microsoft Academic Search

    Carles Canet; Rosa María Prol-Ledesma; Ignacio Torres-Alvarado; H. Albert Gilg; Ruth Esther Villanueva; Rufino Lozano-Santa Cruz

    2005-01-01

    Submarine diffused seepage (from 5 to 15 m depth) and intertidal focused gasohydrothermal venting take place on the West shore of the Bahía Concepción Bay, on Baja California, Mexico. The intertidal venting consists of a cluster of hot springs that occur a few meters offshore, with vent temperatures up to 62 °C and a pH of 6.68. Two irregularly shaped

  7. A hybrid zone between Bathymodiolus mussel lineages from eastern Pacific hydrothermal vents

    PubMed Central

    2013-01-01

    Background The inhabitants of deep-sea hydrothermal vents occupy ephemeral island-like habitats distributed sporadically along tectonic spreading-centers, back-arc basins, and volcanically active seamounts. The majority of vent taxa undergo a pelagic larval phase, and thus varying degrees of geographical subdivision, ranging from no impedance of dispersal to complete isolation, often exist among taxa that span common geomorphological boundaries. Two lineages of Bathymodiolus mussels segregate on either side of the Easter Microplate, a boundary that separates the East Pacific Rise from spreading centers connected to the Pacific-Antarctic Ridge. Results A recent sample from the northwest flank of the Easter Microplate contained an admixture of northern and southern mitochondrial haplotypes and corresponding alleles at five nuclear gene loci. Genotypic frequencies in this sample did not fit random mating expectation. Significant heterozygote deficiencies at nuclear loci and gametic disequilibria between loci suggested that this transitional region might be a ‘Tension Zone’ maintained by immigration of parental types and possibly hybrid unfitness. An analysis of recombination history in the nuclear genes suggests a prolonged history of parapatric contact between the two mussel lineages. We hereby elevate the southern lineage to species status as Bathymodiolus antarcticus n. sp. and restrict the use of Bathymodiolus thermophilus to the northern lineage. Conclusions Because B. thermophilus s.s. exhibits no evidence for subdivision or isolation-by-distance across its 4000 km range along the EPR axis and Galápagos Rift, partial isolation of B. antarcticus n. sp. requires explanation. The time needed to produce the observed degree of mitochondrial differentiation is consistent with the age of the Easter Microplate (2.5 to 5.3 million years). The complex geomorphology of the Easter Microplate region forces strong cross-axis currents that might disrupt self-recruitment of mussels by removing planktotrophic larvae from the ridge axis. Furthermore, frequent local extinction events in this tectonically dynamic region might produce a demographic sink rather than a source for dispersing mussel larvae. Historical changes in tectonic rates and current patterns appear to permit intermittent contact and introgression between the two species. PMID:23347448

  8. Hydrothermal Vents and Organic Falls in the Heart of the Coral Triangle: Chemosynthetic Communities Discovered via Telepresence in the Sangihe-Talaud Region, Northern Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Herrera, S.; Bors, E.; Munro, C.; Sibert, E.; Nganro, N.; Makarim, S.; Wirasantosa, S.; Tunnicliffe, V.; Baker, E. T.; Butterfield, D. A.; Holden, J. F.; Hammond, S. R.

    2010-12-01

    From June to August 2010, an international partnership of scientists and engineers from the United States, Canada, and Indonesia utilized the NOAA Ship Okeanos Explorer and HD video from the ROV Little Herc to explore virtually unknown deep seafloor in the heart of the Coral Triangle. The INDEX-SATAL 2010 expedition bathymetrically mapped more than 39,000sq km of the Sangihe-Talaud region, including several discrete volcanic cones on the western flank of the Sangihe Arc. Twenty sites between 275m and 3650m were explored during 27 ROV dives, including the first (and only) known hydrothermally-active site (1850m) in the Indonesian region, Kawio Barat, a volcanically active seamount hosting chemosynthetic ecosystems. The dominant fauna inhabiting hydrothermally-active areas were: 1) three shrimp morpho-species resembling Opaepele sp. and Chorocaris sp., intermingling on the sides of active smokers, amongst stalked barnacles, and scraping mineral surfaces; 2) large (10cm-long) polynoid scale worms (aff Branchinotogluma sp.) meandering through diffuse venting and within barnacle assemblages; 3) discrete patches of tube-dwelling alvinellid polychaetes, and perhaps the most dominant, stalked Vulcanolepas barnacles, densely packed at the base of individual spires, as well as completely carpeting 3 to 4m-tall inactive chimneys on the summit crest of the seamount, particularly above the main group of active chimneys. Brachyuran and galatheid crabs were observed amongst stalked barnacles and in sulfide crevices. Vesicoymid-like clams (5 to 10cm long) were observed on the surface of volcanoclastic and pelagic sediment 50 to 125m down slope of the active venting. Other potentially chemosynthetic habitats were observed at several sites, including wooden logs and coconut shells. For example, the sedimented slopes of Seamount G (1926m) and flats of Memeridge (3600m) contained a notable lack of epibenthic fauna with the notable exception of frequent wood falls inhabited by a distinctive fauna: tubeworms, urchins, amphipods, galatheid crabs, serpulid worms and gastropod limpets, likely attracted by the organic enrichment. The fauna inhabiting Kawio Barat and these wood falls were markedly dissimilar. Recent molecular studies show that some of the fauna of hydrothermal vents and organic falls have disparate physiological adaptations yet shared evolutionary histories, changing our view of evolution in the deep sea. These relationships as well as the potential isolation of Indonesian fauna to those inhabiting other chemosynthetic seamounts and sites in the western Pacific will be discussed.

  9. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 ?m grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron-rich grains from the volcaniclastic components of the sediments and resulting in precipitation of pyrite; (b) the iron may also have been derived by the near-neutral reduced hydrothermal brines and precipitate metal sulfides as a result of cooling, mixing with seawaters; the necessary iron content to form sulfides is mostly derived from primary iron-rich components of the basement; (c) biological activity may have resulted in pyrite deposition (e.g. sulfur is provided by a biogenic reduction of marine sulphate). The mineralogy of hydrothermal precipitates considered in the present study resemble hydrothermal products from other shallow water venting areas elsewhere: Lihir and Ambitle Islands, Papua New Guinea, Kraternaya Bight, Kuriles, Russia, Punta Mita and Bahía Concepción, Mexico and Punta Banda at Baja California. The Paleochori vents contain the first documented occurrence of cinnabar on the sea floor in the Aegean area and provide an important link between offshore hydrothermal activity and the mercury-depositing mineralizing system on Milos Island. An interplay between bacterial activity, pH, Eh, temperature, precipitation rate and iron concentration resulted in precipitation of As-pyrite with interlayered cinnabar, hydrous ferric oxides enriched in thallium, alunite-jarosite solid solution and carbonates.

  10. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration.

    PubMed

    Wade, M L; Agresti, D G; Wdowiak, T J; Armendarez, L P; Farmer, J D

    1999-04-25

    Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mossbauer spectrometer. In the context of future Mars exploration we present results of Mossbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mossbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (alpha-Fe2O3), small-particle/nanophase goethite (alpha-FeOOH), and siderite (FeCO3). We find for iron minerals that Mossbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mossbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multi-billion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mossbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite-rich chert stromatolite. Our research demonstrates that in situ Mossbauer spectroscopy can help determine whether hydrothermal mineral deposits exist on Mars, which is significant for exobiology because of the issue of whether that world ever had conditions conductive to the origin of life. As a useful tool for selection of samples suitable for transport to Earth, Mossbauer spectroscopy will not only serve geological interests but will also have potential for exopaleontology. PMID:11542933

  11. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration

    NASA Technical Reports Server (NTRS)

    Wade, M. L.; Agresti, D. G.; Wdowiak, T. J.; Armendarez, L. P.; Farmer, J. D.

    1999-01-01

    Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mossbauer spectrometer. In the context of future Mars exploration we present results of Mossbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mossbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (alpha-Fe2O3), small-particle/nanophase goethite (alpha-FeOOH), and siderite (FeCO3). We find for iron minerals that Mossbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mossbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multi-billion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mossbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite-rich chert stromatolite. Our research demonstrates that in situ Mossbauer spectroscopy can help determine whether hydrothermal mineral deposits exist on Mars, which is significant for exobiology because of the issue of whether that world ever had conditions conductive to the origin of life. As a useful tool for selection of samples suitable for transport to Earth, Mossbauer spectroscopy will not only serve geological interests but will also have potential for exopaleontology.

  12. A Mössbauer investigation of iron-rich terrestrial hydrothermal vent systems: Lessons for Mars exploration

    NASA Astrophysics Data System (ADS)

    Wade, Manson L.; Agresti, David G.; Wdowiak, Thomas J.; Armendarez, Lawrence P.; Farmer, Jack D.

    1999-04-01

    Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mössbauer spectrometer. In the context of future Mars exploration we present results of Mössbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mössbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (?-Fe2O3), small-particle/nanophase goethite (?-FeOOH), and siderite (FeCO3). We find for iron minerals that Mössbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mössbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multibillion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mössbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite-rich chert stromatolite. Our research demonstrates that in situ Mössbauer spectroscopy can help determine whether hydrothermal mineral deposits exist on Mars, which is significant for exobiology because of the issue of whether that world ever had conditions conducive to the origin of life. As a useful tool for selection of samples suitable for transport to Earth, Mössbauer spectroscopy will not only serve geological interests but will also have potential for exopaleontology.

  13. Free energy generation and transfers from Archaean hydrothermal vents to the first metabolism

    NASA Astrophysics Data System (ADS)

    Simoncini, E.; Kleidon, A.

    2010-12-01

    Dissipative structures are far from equilibrium systems which self - organize, maintaining a certain internal material order and require free energy in order to be conserved. From a geological point of view, thermal gradients were the most abundant sources of free energy on the early Earth. Here we demonstrate how chemical free energy can be produced by a geological process, serpentinization, associated to the electrochemical potential generation in off - axis hydrothermal vents. The basis for chemical free energy generation is the thermal gradient between the crust and the Archean ocean, which is enhanced by the release of latent heat during serpentinization. Power can be extracted from this thermal gradient to generate motion. The convective motion of heated, chemically reduced fluid produces a redox front when in contact with the acidic Archaean ocean, generating electrical energy to be used in chemical reactions. Further, in the presence of porous inorganic, heterogeneous matrices acting as catalysts, self - sustained reaction chains raised. The free energy thus available could be used to allow the possibility for the establishment of first organic auto - catalytic chains. Molecular evolutionary steps from acetyl CoA to RNA-cleavage gave then rise to the first proto-metabolic processes. We use simple models to calculate the maximum rates of power transfer from the thermal gradient to electric energy to estimate the maximum possible rate of chemical free energy generation by this process. The model also takes into account the heterogeneity of the mineral matrix and its capability to catalyze reactions and to adsorb molecules selectively. In conclusion, non equilibrium thermodynamics in combination with maximum power assumptions help us to determine the fundamental limits of how much chemical free energy can be generated from a geothermal heat flux, providing conditions for the emergence of metabolism.

  14. Visual Observations and Geologic Settings of the Newly-Discovered Black Smoker Vent Sites Across the Galapagos Ridge-Hotspot Intersection

    NASA Astrophysics Data System (ADS)

    Anderson, P.; Haymon, R.; MacDonald, K.; White, S.

    2006-12-01

    Nearly one-fifth of the global mid-ocean ridge is hotspot-affected, yet very little is known about how hotspots affect quantity and distribution of high-temperature hydrothermal vents along the ridge. During the 2005-06 GalAPAGoS expedition, acoustic and plume sensor surveys were conducted across the Galapagos ridge- hotspot intersection, lon. 94.5ºW- lon. 89.5ºW, to map fine scale geologic features and locate hydrothermal plumes emanating from the ridge crest. Where significant plumes were detected, the Medea fiber-optic camera sled was used successfully to find and image high-temperature vents on the seafloor. With Medea we discovered and imaged the first active and recently extinct black smokers known along the entire Galapagos Spreading Center (GSC), and documented the geologic setting of these vents. The Medea survey imaged numerous inactive vents as well as 3 active high-temperature vent fields along the ridge at 94º 04.5'W (Navidad Site), 91º56.2'W (Iguanas Site) and 91º54.3'W (Pinguinos Site). Two recently extinct vent fields also were identified at 91º23.4'-23.7'W and 91º13.8'W. All of the high-temperature vent sites that we identified along the GSC are found above relatively shallow AMC reflectors and are located in the middle 20% of ridge segments. Without exception the vent sites are located along fissures atop constructional axial volcanic ridges (AVR's) composed of relatively young pillow basalts. In some cases, the vents were associated with collapses adjacent to the fissures. The fissures appear to be eruptive sources of the pillow lavas comprising the AVR's. Video images of the chimneys show mature, cylindrical structures, up to 14m high; little diffuse flow; few animals; and some worm casts and dead clam shells, suggesting prior habitation. We conclude that distribution of the vents is controlled by magmatic processes, (i.e., by locations of shallow AMC magma reservoirs and eruptive fissures above dike intrusions), and that there is surprising similarity in the settings of the vents and the apparent ages of the chimneys and lavas along ~400 n.m of the GSC spanning the Galapagos mantle plume.

  15. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent

    PubMed Central

    Wang, Fengping; Zhou, Huaiyang; Meng, Jun; Peng, Xiaotong; Jiang, Lijing; Sun, Ping; Zhang, Chuanlun; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; Wu, Liyou; Zhou, Jizhong; Xiao, Xiang

    2009-01-01

    Deep-sea hydrothermal vents are one of the most unique and fascinating ecosystems on Earth. Although phylogenetic diversity of vent communities has been extensively examined, their physiological diversity is poorly understood. In this study, a GeoChip-based, high-throughput metagenomics technology revealed dramatic differences in microbial metabolic functions in a newly grown protochimney (inner section, Proto-I; outer section, Proto-O) and the outer section of a mature chimney (4143-1) at the Juan de Fuca Ridge. Very limited numbers of functional genes were detected in Proto-I (113 genes), whereas much higher numbers of genes were detected in Proto-O (504 genes) and 4143-1 (5,414 genes). Microbial functional genes/populations in Proto-O and Proto-I were substantially different (around 1% common genes), suggesting a rapid change in the microbial community composition during the growth of the chimney. Previously retrieved cbbL and cbbM genes involved in the Calvin Benson Bassham (CBB) cycle from deep-sea hydrothermal vents were predominant in Proto-O and 4143-1, whereas photosynthetic green-like cbbL genes were the major components in Proto-I. In addition, genes involved in methanogenesis, aerobic and anaerobic methane oxidation (e.g., ANME1 and ANME2), nitrification, denitrification, sulfate reduction, degradation of complex carbon substrates, and metal resistance were also detected. Clone libraries supported the GeoChip results but were less effective than the microarray in delineating microbial populations of low biomass. Overall, these results suggest that the hydrothermal microbial communities are metabolically and physiologically highly diverse, and the communities appear to be undergoing rapid dynamic succession and adaptation in response to the steep temperature and chemical gradients across the chimney. PMID:19273854

  16. The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea Hydrothermal Vent Fields Under the Arctic Ice Cap

    NASA Astrophysics Data System (ADS)

    Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.

    2007-12-01

    Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries shed new light on the nature of volcanic and hydrothermal processes in the Arctic basin, and also demonstrate the importance of new technologies for advancing science beneath ice-covered oceans. Operationally, the AUV missions pushed the envelope of deep-sea technology. The recoveries were particularly difficult as it was necessary to have the vehicle find small pools of open water next to the ship, but in some cases the ice was in a state of regional compression such that no open water could be found or created. In these cases a well-calibrated, ship-based, short-baseline acoustic system was essential for successful vehicle recoveries. In all we were able to achieve a variety of operational and technological advances that provide stepping stones for future under-ice robotic missions, both on Earth and perhaps eventually on Europa.

  17. Thermococcus sulfurophilus sp. nov., a New Hyperthermophilic, Sulfur-Reducing Archaeon Isolated from Deep-Sea Hydrothermal Vent

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Whitman, William B.; Marsic, Damien; Garriott, Owen; Six, N. Frank (Technical Monitor)

    2002-01-01

    A new hyperthermophilic, anaerobic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P, was isolated from "black smoker" chimney material at the Rainbow hydrothermal vent site in the Atlantic Ocean (36.2 N; 33.9 W). The cells of strain OGL-20P have irregular coccoid shape and are motile with a single flagellum. Growth occurs within pH range of 5.5-8.2 (optimal at pH 7.0-7.2), salinity range of 1-5% NaCl (optimal concentration 3% NaCl wt/vol), and temperature range of +55 C to +94 C (optimal growth at +83 C to +85 C). Strain OGL-20P is resistant to freezing (at -20 C). New isolate is strictly anaerobic with sulfur-type of respiration. A limited number of compounds are utilized as electron donors, including peptone, becto-tryptone, casamino-acids, and yeast extract but does not grow with separate amino acids. Sulfur and Iron can be used as electron acceptors; but not sulfate, sulfite, thiosulfate or nitrate. Strain OGL-20P is resistant to chloramphenicol, kanamycin, and gentamycin. Growth of str. OGL20P is inhibited by tetracyclin but not by Na2MoO4. The G+C content of DNA is 57.2 mol%. The 16S ribosomal RNA sequence analysis allows one to classify strain OGL-20P as a representative of a now species of Thermococcus genus. The name Thermococcus sulfurophilus op. nov., was suggested for the new isolate, type strain OGL-20P (sup T) (= ATCC BAA_394 (sup T) = DSM...(supT)).

  18. Thermococcus thioreducens sp. nov., a Novel Hyperthermophilic, Obligately Sulfur-Reducing Archaeon from a Deep-Sea Hydrothermal Vent

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Itoh, Takashi; Bej, Asim K.; Tang, Jane; Whitman, William B.; Ng, Joseph D.; Garriott, Owen K.; Hoover, Richard B.

    2007-01-01

    A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P(sup T), was isolated from 'black smoker' chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2degN, 33.9degW). The cells of strain OGL-20P(T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within a pH range of 5.0-8.5 (optimum pH 7.0), an NaCl concentration range of 1-5%(w/v) (optimum 3%)and a temperature range of 55-94 C (optimum 83-85 C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, Fe(III) or nitrate. Proteolysis products (peptone, bacto-tryptone, Casamino acids and yeast extract) are utilized as substrates during sulfur reduction. Strain OGL-20P(sup T) is resistant to ampicillin, chloram phenicol, kanamycin and gentamicin, but sensitive to tetracycline and rifampicin. The G + C content of the DNA is 52.9 mol% The 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is closely related to Thermococcus coalescens and related species, but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P(sup T) represents a new separate species within the genus Thermococcus, for which we propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20P(sup T) (=JCM 12859(exp T) = DSM 14981(exp T)=ATCC BAA-394(exp T)).

  19. Geochemistry of Champagne Hot Springs shallow hydrothermal vent field and associated sediments, Dominica, Lesser Antilles

    Microsoft Academic Search

    Kevin T. McCarthy; Thomas Pichler; Roy E. Price

    2005-01-01

    The Champagne Hot Springs (CHS) shallow submarine hydrothermal system is located along the submerged flank of the Plat Pays volcanic system on the southwest section of the island of Dominica, Lesser Antilles. We have conducted a detailed geochemical study of the hydrothermal system, with the objectives to investigate the source of the hydrothermal fluids and gases, their effect on sediment

  20. Vent Fluid Chemistry From Six Hydrothermal Fields Along the Eastern Lau Spreading Center From 20°03'S to 22°13'S.

    NASA Astrophysics Data System (ADS)

    Sharkey, J.; Wheat, C. G.; Mottl, M. J.; Seewald, J.

    2005-12-01

    As part of a series of R2K and NSF funded explorations of the Eastern Lau Spreading Center, we participated in a cruise between April and May of 2005 aboard the R/V Melville. Eighty-one fluid samples were collected from six hydrothermal fields that span from 20°03'S to 22°13'S (from north to south: Kilo Moana, TowCam, Abe, Tui Malia, Mariner, and Vai Lili) using the ROV Jason 2. Fluids samples were collected using both isobaric gas-tight and major samplers from focused and diffuse vents to determine vent fluid composition and establish the hydrogeologic and geochemical processes occurring at depth. We report here on dissolved ion concentrations from vent fluids. The maximum vent temperature and magnesium concentration from individual orifices ranged from 11 to 363 ° C and from 51.7 to 0.65mmol/kg, respectively. The Mariner site had the lowest pH of 2.5 and the greatest H2S concentration of approximately 9mmol/kg. All samples had alkalinities less than seawater. Chlorinities were both depleted and enriched relative to seawater (around 538 mmol/kg), ranging from 530 to 650mmol/kg. Fe endmember concentration is about 12mmol/kg at Mariner and 3mmol/kg at Kilo Moana, but less than 0.3mmol/kg for the other sites. Fe/Mn molar ratios range from 4.7 at Kilo Moana to 0.1 at Vai Lili. Systematic along strike variations were observed in the endmember abundance of some aqueous species. For example, values for Si and Li are greater to the north whereas concentrations of K are greater to the south. Compilations of endmember compositions for individual orifices and fields are being compiled for all major, minor and certain trace ions in seawater. Trends will be incorporated with geological and biological data to elucidate hydrothermal processes along this geologically diverse transect. We are particularly interested in assessing the response of fluid chemistry to variations in the composition and structure of the crust resulting from the increase influence of subduction related processes to the south.

  1. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N

    USGS Publications Warehouse

    Rouxel, O.; Shanks, Wayne C., III; Bach, W.; Edwards, K.J.

    2008-01-01

    In this study, we report on coupled Fe- and S-isotope systematics of hydrothermal fluids and sulfide deposits from the East Pacific Rise at 9–10°N to better constrain processes affecting Fe-isotope fractionation in hydrothermal environments. We aim to address three fundamental questions: (1) Is there significant Fe-isotope fractionation during sulfide precipitation? (2) Is there significant variability of Fe-isotope composition of the hydrothermal fluids reflecting sulfide precipitation in subsurface environments? (3) Are there any systematics between Fe- and S-isotopes in sulfide minerals? The results show that chalcopyrite, precipitating in the interior wall of a hydrothermal chimney displays a limited range of ?56Fe values and ?34S values, between ? 0.11 to ? 0.33‰ and 2.2 to 2.6‰ respectively. The ?56Fe values are, on average, slightly higher by 0.14‰ relative to coeval vent fluid composition while ?34S values suggest significant S-isotope fractionation (? 0.6 ± 0.2‰) during chalcopyrite precipitation. In contrast, systematically lower ?56Fe and ?34S values relative to hydrothermal fluids, by up to 0.91‰ and 2.0‰ respectively, are observed in pyrite and marcasite precipitating in the interior of active chimneys. These results suggest isotope disequilibrium in both Fe- and S-isotopes due to S-isotopic exchange between hydrothermal H2S and seawater SO42? followed by rapid formation of pyrite from FeS precursors, thus preserving the effects of a strong kinetic Fe-isotope fractionation during FeS precipitation. In contrast, ?56Fe and ?34S values of pyrite from inactive massive sulfides, which show evidence of extensive late-stage reworking, are essentially similar to the hydrothermal fluids. Multiple stages of remineralization of ancient chimney deposits at the seafloor appear to produce minimal Fe-isotope fractionation. Similar affects are indicated during subsurface sulfide precipitation as demonstrated by the lack of systematic differences between ?56Fe values in both high-temperature, Fe-rich black smokers and lower-temperature, Fe-depleted vents.

  2. From Mantle to Microbe to Mollusc: How Animal-Microbial Symbioses Influence Carbon and Sulfur Cycling in Hydrothermal Vent Flows.

    NASA Astrophysics Data System (ADS)

    Girguis, P. R.; Beinart, R.

    2014-12-01

    Symbioses between animals and chemoautotrophic bacteria dominate many hydrothermal vents. In these associations, symbiotic bacteria harness energy and "fix" carbon from the oxidation of reduced chemicals such as sulfide, methane, and hydrogen that are found in venting fluids. At vents along the Eastern Lau Spreading Center (ELSC) in the South Pacific, snails and mussels with chemoautotrophic symbionts have been shown to harness energy via the oxidation of sulfide. However, partially oxidized sulfur species such as thiosulfate and polysulfides have also been detected in abundance in their habitats. No studies to date have established whether thiosulfate or other partially oxidized sulfur compounds are used by these symbiotic associations, nor have studies constrained the potential role that symbioses might play in sulfur biogeochemical cycles at diffuse vent flows. To address these questions, we used high-pressure, flow through incubations to study three symbiotic molluscs from the ELSC - the snails Alviniconcha and Ifremeria nautilei and the mussel Bathymodiolus brevior - at conditions mimicking those in situ. Via the use of isotopically labeled inorganic carbon, shipboard mass spectrometry and voltammetric microelectrodes, we quantified the production and consumption of different sulfur compounds by each of these symbioses. We established that the uptake and oxidation of either sulfide or thiosulfate could -to varying degrees- support carbon fixation in all three species. Notably, we also observed that some symbioses excreted thiosulfate and polysulfides under sulfidic conditions, suggesting that these symbioses are a source of partially oxidized sulfur species in the environment. We further observed spatial disparity in the carbon fixation rates among the individuals in our incubations that have implications for the variability of productivity in situ.Collectively, these data reveal that thiosulfate can support net autotrophy, and may be an ecologically important energy source for vent symbioses. Furthermore, symbioses-mediated sulfur transformations may influence the ecology of the free-living community by governing the production and consumption of reduced sulfur species in this habitat.

  3. Field distribution and sulphide tolerance of Capitella capitata (Annelida: Polychaeta) around shallow water hydrothermal vents off Milos (Aegean Sea). A new sibling species?

    Microsoft Academic Search

    I. Gamenick; M. Abbiati; O. Giere

    1998-01-01

    The cosmopolitan polychaete Capitella capitata, known as a complex of opportunistic sibling species, usually dominates the macrobenthos of polluted or unpredictable environments.\\u000a A population of C. capitata, termed Capitella sp. M, was found in a shallow water hydrothermal vent area south of Milos (Greece). Here, this population occurs close to\\u000a vent outlets (termed the “transition zone”), an environment with steep

  4. Dynamics of cell proliferation and apoptosis reflect different life strategies in hydrothermal vent and cold seep vestimentiferan tubeworms.

    PubMed

    Pflugfelder, Bettina; Cary, S Craig; Bright, Monika

    2009-07-01

    Deep-sea vestimentiferan tubeworms, which live in symbiosis with bacteria, exhibit different life strategies according to their habitat. At unstable and relatively short-lived hydrothermal vents, they grow extremely fast, whereas their close relatives at stable and long-persisting cold seeps grow slowly and live up to 300 years. Growth and age differences are thought to occur because of ecological and physiological adaptations. However, the underlying mechanisms of cell proliferation and death, which are closely linked to homeostasis, growth, and longevity, are unknown. Here, we show by immunohistochemical and ultrastructural cell cycle analyses that cell proliferation activities of the two species studied are higher than in any other characterized invertebrate, being only comparable with tumor and wound-healing processes. The slow growth in Lamellibrachia luymesi from cold seeps results from balanced activities of proliferation and apoptosis in the epidermis. In contrast, Riftia pachyptila from hydrothermal vents grows fast because apoptosis is down-regulated in this tissue. The symbiont-housing organ, the trophosome, exhibits a complex cell cycle and terminal differentiation pattern in both species, and growth is regulated by proliferation. These mechanisms have similarities to the up- and down-regulation of proliferation or apoptosis in various types of tumor, although they occur in healthy animals in this study, thus providing significant insights into the underlying mechanisms of growth and longevity. PMID:19444472

  5. Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent.

    PubMed

    Zimmermann, Judith; Lott, Christian; Weber, Miriam; Ramette, Alban; Bright, Monika; Dubilier, Nicole; Petersen, Jillian M

    2014-12-01

    Vestimentiferan Tws colonize hydrothermal vents and cold seeps worldwide. They lack a digestive system and gain nutrition from endosymbiotic sulfur-oxidizing bacteria. It is currently assumed that vestimentiferan Tws harbour only a single endosymbiont type. A few studies found indications for additional symbionts, but conclusive evidence for a multiple symbiosis is still missing. We investigated Tws from Marsili Seamount, a hydrothermal vent in the Mediterranean Sea. Molecular and morphological analyses identified the Tws as Lamellibrachia anaximandri. 16S ribosomal RNA clone libraries revealed two distinct gammaproteobacterial phylotypes that were closely related to sequences from other Lamellibrachia symbionts. Catalysed reporter deposition fluorescence in situ hybridization with specific probes showed that these sequences are from two distinct symbionts. We also found two variants of key genes for sulfur oxidation and carbon fixation, suggesting that both symbiont types are autotrophic sulfur oxidizers. Our results therefore show that vestimentiferans can host multiple co-occurring symbiont types. Statistical analyses of vestimentiferan symbiont diversity revealed that host genus, habitat type, water depth and geographic region together accounted for 27% of genetic diversity, but only water depth had a significant effect on its own. Phylogenetic analyses showed a clear grouping of sequences according to depth, thus confirming the important role water depth played in shaping vestimentiferan symbiont diversity. PMID:24552661

  6. Geologic Setting of the Lost City Vent Field, Off-Axis, Serpentinite-Hosted Vents on the Mid-Atlantic Ridge at 30 oN Latitude

    Microsoft Academic Search

    J. A. Karson; D. S. Kelley; E. A. Williams; D. K. Blackman

    2001-01-01

    The Lost City Vent Field (LCVF) is the first documented off-axis hydrothermal vent site in the oceanic crust. It is distinctly different from typical mid-ocean ridge black-smoker vents in terms of its vent composition, fluid chemistry, and biology. The geologic framework of this site is also very different in many respects. The LCVF is located 15km west of the MAR

  7. Development and field application of a 6-bottle serial gas-tight fluid sampler for collecting seafloor cold seep and hydrothermal vent fluids with autonomous operation capability

    NASA Astrophysics Data System (ADS)

    Wu, S.; Ding, K.; Yang, C.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.

    2014-12-01

    A 6-bottle serial gas-tight sampler (so-called "six-shooter") was developed for application with deep-sea vent fluids. The new device is composed of a custom-made 6-channel valve manifold and six sampling bottles which are circularly distributed around the valve manifold. Each valve channel consists of a high-pressure titanium cartridge valve and a motor-driven actuator. A sampling snorkel is connected to the inlet of the manifold that delivers the incoming fluid to different bottles. Each sampling bottle has a 160 ml-volume chamber and an accumulator chamber inside where compressed nitrogen is used to maintain the sample at near in-situ pressure. An electronics chamber that is located at the center of the sampler is used to carry out all sampling operations, autonomously, if desired. The sampler is of a compact circular configuration with a diameter of 26 cm and a length of 54 cm. During the SVC cruise AT 26-12, the sampler was deployed by DSV2 Alvin at a cold seep site MC036 with a depth of 1090 m in the Gulf of Mexico. The sampler collected fluid samples automatically following the tidal cycle to monitor the potential impact of the tide cycle on the fluid chemistry of cold seep in a period of two day. During the cruise AT 26-17, the sampler was used with newly upgraded DSV2 Alvin three times at the hydrothermal vent sites along Axial Seamount and Main Endeavor Field on Juan de Fuca Ridge. During a 4-day deployment at Anemone diffuse site (Axial Caldera), the sampler was set to work in an autonomous mode to collect fluid samples according to the preset interval. During other dives, the sampler was manually controlled via ICL (Inductively Coupled Link) communication through the hull. Gas-tight fluid samples were collected from different hydrothermal vents with temperatures between 267 ? and 335 ? at the depth up to 2200 m. The field results indicate unique advantages of the design. It can be deployed in extended time period with remote operation or working autonomously taking gas-tight fluid samples. If used with HOV or ROV, it will reduce basket space occupation and ICL communication cables compared to traditional single-bottle gas-tight samplers. This time serial gas-tight fluid sampler will be further developed into a 36 bottle system for remote operation with seafloor cabled observatory.

  8. Colonization of plant substrates at hydrothermal vents and cold seeps in the northeast Atlantic and Mediterranean and occurrence of symbiont-related bacteria

    PubMed Central

    Szafranski, Kamil M.; Deschamps, Philippe; Cunha, Marina R.; Gaudron, Sylvie M.; Duperron, Sébastien

    2015-01-01

    Reducing conditions with elevated sulfide and methane concentrations in ecosystems such as hydrothermal vents, cold seeps or organic falls, are suitable for chemosynthetic primary production. Understanding processes driving bacterial diversity, colonization and dispersal is of prime importance for deep-sea microbial ecology. This study provides a detailed characterization of bacterial assemblages colonizing plant-derived substrates using a standardized approach over a geographic area spanning the North-East Atlantic and Mediterranean. Wood and alfalfa substrates in colonization devices were deployed for different periods at 8 deep-sea chemosynthesis-based sites in four distinct geographic areas. Pyrosequencing of a fragment of the 16S rRNA-encoding gene was used to describe bacterial communities. Colonization occurred within the first 14 days. The diversity was higher in samples deployed for more than 289 days. After 289 days, no relation was observed between community richness and deployment duration, suggesting that diversity may have reached saturation sometime in between. Communities in long-term deployments were different, and their composition was mainly influenced by the geographical location where devices were deployed. Numerous sequences related to horizontally-transmitted chemosynthetic symbionts of metazoans were identified. Their potential status as free-living forms of these symbionts was evaluated based on sequence similarity with demonstrated symbionts. Results suggest that some free-living forms of metazoan symbionts or their close relatives, such as Epsilonproteobacteria associated with the shrimp Rimicaris exoculata, are efficient colonizers of plant substrates at vents and seeps. PMID:25774156

  9. Group-Specific 16S rRNA-Targeted Oligonucleotide Probes To Identify Thermophilic Bacteria in Marine Hydrothermal Vents

    PubMed Central

    Harmsen, H.; Prieur, D.; Jeanthon, C.

    1997-01-01

    Four 16S rRNA-targeted oligonucleotide probes were designed for the detection of thermophilic members of the domain Bacteria known to thrive in marine hydrothermal systems. We developed and characterized probes encompassing most of the thermophilic members of the genus Bacillus, most species of the genus Thermus, the genera Thermotoga and Thermosipho, and the Aquificales order. The temperature of dissociation of each probe was determined. Probe specificities to the target groups were demonstrated by whole-cell and dot blot hybridization against a collection of target and nontarget rRNAs. Whole-cell hybridizations with the specific probes were performed on cells extracted from hydrothermal vent chimneys. One of the samples contained cells that hybridized to the probe specific to genera Thermotoga and Thermosipho. No positive signals could be detected in the samples tested with the probes whose specificities encompassed either the genus Thermus or the thermophilic members of the genus Bacillus. However, when simultaneous hybridizations with the probe specific to the order Aquificales and a probe specific to the domain Bacteria (R. I. Amann, B. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl, Appl. Environ. Microbiol. 56:1919-1925, 1990) were performed on cells extracted from the top and exterior subsamples of chimneys, positive signals were obtained from morphologically diverse bacteria representing about 40% of the bacterial population. Since specificity studies also revealed that the bacterial probe did not hybridize with the members of the order Aquificales, the detected cells may therefore correspond to a new type of bacteria. One of the observed morphotypes was similar to that of a strictly anaerobic autotrophic sulfur-reducing strain that we isolated from the chimney samples. This work demonstrates that application of whole-cell hybridization with probes specific for different phylogenetic levels is a useful tool for detailed studies of hydrothermal vent microbial ecology. PMID:16535717

  10. Microbial life associated with low-temperature hydrothermal venting and formation of barite chimneys at Loki's Castle vent field

    NASA Astrophysics Data System (ADS)

    Thorseth, I. H.; Steen, I.; Roalkvam, I.; Dahle, H.; Stokke, R.; Rapp, H.; Pedersen, R.

    2010-12-01

    A low-temperature diffuse venting area with numbers of small barite chimneys is located on the flank of the large sulphide mound of the Loki’s Castle black smoker vent field at the Arctic Mid-Ocean Ridge (AMOR). White cotton-like microbial mats on top of the barite chimneys and associated siboglinid tubeworms were observed. The temperature was determined to 20°C for the surface sediment and 0°C for the white microbial mats, just above the ambient bottom seawater temperature of -0.8°C. The microbial mats were sampled using a remote operating vehicle (ROV) equipped with a hydraulic sampling cylinder (biosyringe) and the chimneys using an aluminum scuffle box. Black colored interior flow channels surrounded by white outer sections of nearly pure barite, were observed. Scanning electron microscopy (SEM) of mats showed numerous microbial cells and large amounts of extracellular thread-like material with attached barite crystals. Inside the chimneys microbial cells are partially embedded in barite, and individual crystals are also frequently covered by extracellular material. The microbial activity could thus have an important influence on the nucleation and growth of the barite crystals and thus on the formation of the chimneys. To reveal the microbial community structure, 16S rRNA gene sequence tag-encoded pyrosequencing (1.1 x 104 - 3.5 x 104 amplicons per library) followed by taxonomic classification of the reads using the MEGAN software, were performed. Organisms assigned to a genus of sulfide oxidizers (Sulfurimonas) within the e-Proteobacteria were abundant in each chimney structure; the white microbial mats (86-96% of the reads), the white barite (36% of total reads); the black flow channel (9.9%). The second most dominating taxon in the white chimney barite, including 26% of the reads, was anaerobic methanotrophs (ANME) of the ANME-1 clade, indicating anaerobic methane oxidation (AOM) as a major microbial process. Furthermore, the novel AOM associated clade, GOM-arc1 was apparently highly abundant (14.3% of total reads). These latter taxa were identified but clearly less abundant in the mats (ANME-1, 0.7%; GOM-arc1, 2.7%) as well as in black flow channel (ANME-1, 8%; GOM-arc1, 0.49%). Other dominating taxa in the flow channel were; Planctomycetales, 13.5%; Thiotrichales, Leucotrix, 8.8%; Thaumarchaeota, Marine Group 1, 9.35%; Pseudomonadales, Psychrobacter, 7.2%; Rhodobacterales, Rhodobacteraceae, 6.1%; Candidate division TM7, 5.9%; Flavobacteriales, 4.8% and Methylococcales, 3.5% altogether indicating a more diverse microbial community, performing methane, sulfur and ammonia oxidation as well as heterotrophic processes. To further clarify the relationship between crystallization, chimney growth and microbial activity, and the potential for preservation of biosignatures in barite formations, these data will be supplemented by geochemical characteristics, more detailed SEM observations and knowledge of In situ activities determine by analysis of community transcriptome and proteome.

  11. Chemical plumes from low-temperature hydrothermal venting on the eastern flank of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Wheat, C. Geoffrey; Mottl, Michael J.; Baker, Edward T.; Feely, Richard A.; Lupton, John E.; Sansone, Francis J.; Resing, Joseph A.; Lebon, Geoff T.; Becker, Nathan C.

    1997-07-01

    We report evidence for chemical anomalies in the water column from low-temperature ridge-flank hydrothermal venting. During cruises in 1992 and 1994, samples were taken from the water column for trace metals, nutrients, dissolved gases, and particles near each of three basaltic outcrops overlying 3.5 m. y. old crust on the eastern flank of the Juan de Fuca Ridge in Cascadia Basin. The water column above one of these outcrops, Baby Bare, which rises about 70 m above a flat turbidite plain, was the most thoroughly sampled. Thermal, chemical (Mn, Fe, ?(3He)%, CH4, and O2), and particulate anomalies in the water column confirm the existence of (1) early diagenesis of organic matter in seafloor sediment which produces a flux of dissolved metals and nutrients to bottom seawater, (2) hydrothermal emissions which are both focused (spring-like) and diffuse, and (3) resuspension of sediment by turbulent flow of tidal currents about a topographical high. On the basis of data from the water column and thermal and chemical pore water data from 46 piston and gravity sediment cores near and on Baby Bare (FlankFlux 90 and 92), we constrain the composition of seawater in basement and thus the composition of spring-like water. Given this composition, no measurable dissolved silica or phosphate hydrothermal anomalies are expected in the water column.

  12. Modeling the hydrothermal circulation and the hydrogen production at the Rainbow site with Cast3M

    NASA Astrophysics Data System (ADS)

    Perez, F.; Mügler, C.; Charlou, J.; Jean-baptiste, P.

    2012-12-01

    On the Mid-Atlantic Ridge, the Rainbow venting site is described as an ultramafic-hosted active hydrothermal site and releases high fluxes of methane and hydrogen [1, 2]. This behavior has first been interpreted as the result of serpentinization processes. But geochemical reactions involving olivine and plagioclase assemblages, and leading to chlorite, tremolite, talc and magnetite assemblages, could contribute to the observed characteristics of the exiting fluid [2]. The predominance of one of these geochemical reactions or their coexistence strongly depend on the hydrothermal fluid circulation. We developed and validated a 2D/3D numerical model using a Finite Volume method to simulate heat driven fluid flows in the framework of the Cast3M code [3, 4]. We also developed a numerical model for hydrogen production and transport that is based on experimental studies of the serpentinization processes [5-6]. This geochemical model takes into account the exothermic and water-consuming behavior of the serpentinization reaction and it can be coupled to our thermo-hydrogeological model. Our simulations provide temperatures, mass fluxes and venting surface areas very close to those estimated in-situ [7]. We showed that a single-path model [8] was necessary to simulate high values such as the in-situ measured temperatures and estimated water mass fluxes of the Rainbow site [7]. This single-path model will be used to model the production and transport of hydrogen at the Rainbow hydrothermal site. References [1]Charlou et al. (2010) AGU Monograph series. [2]Seyfried et al. (2011) Geochim. Cosmochim. Acta 75, 1574-1593. [3]http://www-cast3m.cea.fr. [4]Martin & Fyfe (1970) Chem. Geol. 6, 185-202. [5] Marcaillou et al. (2011) Earth and Planet. Sci. Lett. 303, 281-290. [6]Malvoisin et al. (2012) JGR, 117, B01104. [7]Perez et al. (2012) submited to Computational Geosciences. [8]Lowell & Germanovich (2004) AGU, Washington DC, USA.

  13. The geochemical signatures of variable gas venting at gas hydrate sites

    Microsoft Academic Search

    Duo Fu Chen; Lawrence M Cathles; Harry H Roberts

    2004-01-01

    Diverse evidence suggests that gas-venting rates at sites of hydrate crystallization are variable in space and time, but the magnitude of these variations has been difficult to quantify. The hydrate crystallization model of Chen and Cathles [J. Geophys. Res. (Solid Earth) 108 (2003)] is used here to analyze 10 years of vent gas chemistry measurements at the Bush Hill hydrate

  14. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. These systems are also characterized by sharp physicochemical gradients that have been shown to have a pronounced effect on microbial ecology and activity. Sediments were collected from a Middle Valley field with relatively high concentrations of short-chain alkanes and incubated in anaerobic batch reactors with each individual alkane (C1, C2, C3 and C4, respectively) at a range of temperatures (25, 55 and 75 °C) to mimic environmental physico-chemical conditions in a closed system. Stable carbon isotope ratios and radiotracer incubations provide clear evidence for C2-C4 alkane oxidation in the sediments over time. Upon identifying sediments with anaerobic alkane oxidation activity, microbial communities were screened via 16S rRNA pyrosequencing, and key phylotypes were then quantified using both molecular and microscopic methods. There were shifts in overall community composition and putative alkane-oxidizing phylotypes after the incubation period with the alkane substrates. These are the first evidence to date indicating that anaerobic C2-C4 alkane oxidation occurs across a broad range of temperatures in metalliferous sediments.

  15. Lipid biomarkers of deep-sea hydrothermal vent polychaetes— Alvinella pompejana, A. caudata, Paralvinella grasslei and Hesiolyra bergii

    NASA Astrophysics Data System (ADS)

    Phleger, Charles F.; Nelson, Matthew M.; Groce, Ami K.; Craig Cary, S.; Coyne, Kathryn; Gibson, John A. E.; Nichols, Peter D.

    2005-12-01

    The lipid composition was determined for 5 species of polychaete annelids collected by the Deep Submergence Vehicle ALVIN from high temperature chimneys at the 2500 m depth hydrothermal vent field of the East Pacific Rise. These are the first lipid biomarker analyses reported for these hydrothermal vent polychaetes. Lipid content was low in all samples (1.6-35.9 mg g -1 wet mass) and was dominated by polar lipid (78-90% of total lipid) with 8-19% sterol (ST), and very low storage lipid (triacylglycerol and wax ester). Total polyunsaturated fatty acids (PUFA) were moderately high (22-31% of total fatty acids (FA)) with extremely low or no docosahexaenoic acid (DHA, 22:6(n-3)). Eicosapentaenoic acid (EPA, 20:5(n-3)) levels were 5-6% in Alvinella pompejana and A. caudata and 10.3-13.7% in an errantiate polychaete (likely Hesionidae) and Hesiolyra bergii. There were greater PUFA and a greater EPA/AA (AA is arachidonic acid, 20:4(n-6)) ratio in the anterior versus the posterior half of A. pompejana, which may correlate to the strong temperature gradient reported in its tube. Total nonmethylene interrupted diunsaturated fatty acids (NMID) were 4-9% of total FA for most polychaete species and included several 20:2 and 22:2 components. The principal monounsaturated fatty acids (MUFA) included 18:1(n-7)c (14-19%), 16:1(n-7)c (2.6-10%) and 20:1(n-11)c (3-7% of total FA). These polychaete species may desaturate and elongate the bacterial-derived 18:1(n-7)c to obtain the essential FA EPA and AA. The major ST in the polychaetes is cholesterol (89-98% of total ST) with less cholesterol in the gut contents of A. pompejana. Other ST included 24-ethylcholesterol (1.5-5% of total ST) with lesser amounts of 24-methylenecholesterol, desmosterol, lathosterol, 24-methylcholesterol, 24-ethylcholesterol, and the stanols dehydrocholestanol and cholestanol. The high ST levels could play a role in thermal adaptation of membranes at the hydrothermal vent environment. Differences in the FA profiles separated the closely related species A. pompejana and A. caudata from Paralvinella grasslei, H. bergii, and the errantiate polychaete (likely Hesionidae).

  16. Morphology of cone-fields in SW Elysium Planitia - Traces of hydrothermal venting on Mars?

    NASA Astrophysics Data System (ADS)

    Lanz, J. K.; Saric, M. B.

    2008-09-01

    Introduction Small cone-shaped features with summit pits can be found in several regions on Mars; mainly in Isidis Planitia; Elysium Planitia; Amazonis Planitia; Acidalia Planitia; in the Cydonia Region; in Cerberus Planum; the Phlegra Montes and on several volcanic flanks. They vary greatly in size and morphology and have been compared to terrestrial features of various origins; namely (1) cinder cones (e.g. [1]), (2) tuff cones or tuff rings (e.g. [2]), (3) rootless cones (pseudocraters) (e.g. [3], [4]), (4) pingos (e.g. [5], [6]) and (5) mud volcanoes (e.g. [7]). They are often found near volcanic centers and large lava fields or cluster in regions where the volatile content of the Martian regolith was/is supposedly high. This has led to the assumption that (ground-) water or ground ice was a trigger or driving force of cone formation. They could therefore, be an important indicator of the history of water on the planet. We have studied an area in western Elysium Planitia, bordering the Aeolis Planum plateau, which exhibits a large number of pitted cones, ridges and dome-like structures. Their distribution and morphology differs strongly from pitted cones elsewhere in Elysium Planitia, which have mainly been interpreted as hydrovolcanic rootless cones, and from other regions on Mars. Based on our observations, we present an alternative model for cone formation in the study area that might hint towards hydrothermal processes in the Aeolis Planum region and possibly young igneous activity. Aeolis Planum Cones The Aeolis Planum pitted cones (referred to as APCs from now on) cluster along the southern edges of the broad shallow valley that borders the Aeolis Planum Formation (APF) to the north. Cones along the northern edges of the valley are rare and can only be found in association with APF remnants where they strongly resemble the cones in the south. Along the southern border the cone coverage is almost continuous, describing a narrow band approximately 2 to 3 km wide. There are distinct morphological changes both within the band from north to south and along the band from east to west (Fig. 2). The cones are mostly circular but elongated, irregular forms are common. They are of varying size with basal diameters ranging from 20 to 200 meters, though most (single) cones have basal diameters below 100 meters. The heights of the cones are difficult to determine as their sizes are far below the resolution limits of either MOLA or HRSC stereo data, yet photoclinometric calculations have given approximate heights between ~ 10 up to several dozens of meters. Often the cones show hardly any elevation above the surroundings (e.g. Fig. 2c, e or f). Most of the APCs have steep convex flanks and large summit pits with diameters at least half as wide as their bases. The overall morphology of the cones changes from S to N with distance from the APF and from E to W along the edges of the APF. Toward the south, close to the strongly eroded borders of the APF, broad ridges and elongated domes are dominant. They form a narrow band approximately 2 km wide. The ridges and domes are a few dozen to several hundred meters long and between 10 to 50 meters wide and show numerous cracks and fissures. They are often topped by small cones, elongated pits and remnants of APF sediments. Further north follows a rather abrupt transition from the ridged area to more cone-dominated regions. Here single cones are prevalent with a more random distribution. Their number decreases rapidly with increasing distance from the APF and approximately 3 km off the southern edge of the APF no further cones are found. Hydrothermal venting on Mars? Morphology and stratigraphic relationships indicate that the cones are young and that they have, at least in places, developed inside the APF complex. APF remnants can be found covering the central pits of cones and APF units have been tilted and eroded by coneforming processes. Furthermore, cones are mainly found inside a narrow band 2-3 km wide along the APF-lava contact. A connection between APF-lava interaction and con

  17. The Effect of Magmatic Activity on Hydrothermal Venting Along the Superfast-Spreading East Pacific Rise

    Microsoft Academic Search

    T. Urabe; E. T. Baker; J. Ishibashi; R. A. Feely; K. Marumo; G. J. Massoth; A. Maruyama; K. Shitashima; K. Okamura; J. E. Lupton; A. Sonoda; T. Yamazaki; M. Aoki; J. Gendron; R. Greene; Y. Kaiho; K. Kisimoto; G. Lebon; T. Matsumoto; K. Nakamura; A. Nishizawa; O. Okano; G. Paradis; K. Roe; T. Shibata; D. Tennant; T. Vance; S. L. Walker; T. Yabuki; N. Ytow

    1995-01-01

    A survey of hydrothermal activity along the superfast-spreading approximately 150 millimeters per year) East Pacific Rise shows that hydrothermal plumes overlay approximately 60 percent of the ridge crest between 13^circ50' and 18^circ40' S, a plume abundance nearly twice that known from any other ridge portion of comparable length. Plumes were most abundant where the axial cross section is inflated and

  18. Cytonuclear disequilibrium in a hybrid zone involving deep-sea hydrothermal vent mussels of the genus Bathymodiolus.

    PubMed

    Won, Y; Hallam, S J; O'Mullan, G D; Vrijenhoek, R C

    2003-11-01

    A hybrid zone involving the deep-sea mussels, Bathymodiolus azoricus and B. puteoserpentis, was recently discovered at Broken Spur hydrothermal vent field (29 degrees 10' N, 43 degrees 10' W) along an intermediate segment of the Mid-Atlantic Ridge axis. Examination of nuclear (allozymes) and cytoplasmic (mitochondrial DNA) gene markers in a new sample from Broken Spur revealed significant cytonuclear disequilibrium caused by an excess of the parental types (coupling phase) and a deficiency of recombinants (repulsion phase). An assignment test of individual multilocus genotypes also revealed an excess of parental genotypes in the admixed population. These results support the hypothesis that the Broken Spur mussel population comprises a nonequilibrium mixture of parental immigrants and hybrid individuals. PMID:14629398

  19. Isotopic signatures associated with growth and metabolic activities of chemosynthetic nitrate-reducing microbes from deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Perez-Rodriguez, I. M.; Foustoukos, D.; Fogel, M. L.; Sievert, S. M.

    2013-12-01

    Epsilonproteobacteria and Aquificaceae have been identified as dominant members of microbial communities at deep-sea hydrothermal vents. Cultured representatives from these two groups appear to be mostly genetically wired to perform chemosynthesis at moderate-to-high temperatures (45 - 80oC) under anaerobic and sulfidic conditions. In this study we used Caminibacter mediatlanticus and Thermovibrio ammonificans as model organisms to constrain physiological parameters associated with dissimilatory nitrate reduction to ammonium (DNRA) in deep-sea vent Epsilonproteobacteria and Aquificaceae. We postulate that nitrate-based metabolic processes are of relevance for understanding primary production as well as nitrate mobilization in deep-sea vents. By constraining growth and respiration rates during DNRA, we observed that C. mediatlanticus achieved higher cell densities than T. ammonificans while exhibiting similar growth rates. DNRA kinetic rate constants and cell-specific nitrate reduction rates (csNRR) obtained from our data showed that within similar time frames T. ammonificans used 2.5 to 3 times as much nitrate than C. mediatlanticus and it did so ~3 times faster. However, the increased consumption of nitrate in T. ammonificans did not translate into higher growth yield. This is suggestive of either differential efficiencies in energy generating pathways or differential organic matter production (cell biomass versus extracellular organic material) associated with DNRA in these microorganisms. Nitrogen isotope fractionation for nitrate was similar for both organisms, with discrimination factors of ~ -5 to -6‰ for C. mediatlanticus and ~ -7 to -8‰ for T. ammonificans. Similar experiments performed under high hydrostatic pressure conditions (50 and 200 bar) showed that changes in pressure greatly affected both growth rates and DNRA kinetic rate constants in both microorganisms, however, ?15N discrimination factors for nitrate were not affected. This study provides important data for constraining biomass production at deep-sea vents by chemosynthesis via DNRA in different microbes. Moreover, knowing DNRA isotope effects will help us evaluate the contribution of this form of nitrate respiration to the ?15N in deep ocean nitrate. Overall, our study provides important insights into nitrate reduction-based growth strategies of representative cultured members from two mayor taxonomical groups associated with vent-environments.

  20. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin

    PubMed Central

    Russ, Lina; Kartal, Boran; op den Camp, Huub J. M.; Sollai, Martina; Le Bruchec, Julie; Caprais, Jean-Claude; Godfroy, Anne; Sinninghe Damsté, Jaap S.; Jetten, Mike S. M.

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA). All clones retrieved were closely associated to the “Candidatus Scalindua” genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II). Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5?-phosphosulfate (APS) reductase (aprA). Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as sulfate-reducers. PMID:23935595

  1. Bioaccumulation of Hg, Cu, and Zn in the Azores Triple Junction hydrothermal vent field food chains

    E-print Network

    Paris-Sud XI, Université de

    biomagnifications in either of the vent food chains is clearly observed but an increase in Hg accumulation from prey to predator in the crustacean food chain. The same pattern was observed for Cu and Zn, even though these metals are not known to be generally biomagnified in food chains. Keywords: heavy metals; trace elements

  2. Linking Hydrothermal Geochemistry to Organismal Physiology: Physiological Versatility in Riftia pachyptila from Sedimented and Basalt-hosted Vents

    PubMed Central

    Robidart, Julie C.; Roque, Annelys; Song, Pengfei; Girguis, Peter R.

    2011-01-01

    Much of what is known regarding Riftia pachyptila physiology is based on the wealth of studies of tubeworms living at diffuse flows along the fast-spreading, basalt-hosted East Pacific Rise (EPR). These studies have collectively suggested that Riftia pachyptila and its chemoautotrophic symbionts are physiologically specialized, highly productive associations relying on hydrogen sulfide and oxygen to generate energy for carbon fixation, and the symbiont's nitrate reduction to ammonia for energy and biosynthesis. However, Riftia also flourish in sediment-hosted vents, which are markedly different in geochemistry than basalt-hosted systems. Here we present data from shipboard physiological studies and global quantitative proteomic analyses of Riftia pachyptila trophosome tissue recovered from tubeworms residing in the EPR and the Guaymas basin, a sedimented, hydrothermal vent field. We observed marked differences in symbiont nitrogen metabolism in both the respirometric and proteomic data. The proteomic data further suggest that Riftia associations in Guaymas may utilize different sulfur compounds for energy generation, may have an increased capacity for energy storage, and may play a role in degrading exogenous organic carbon. Together these data reveal that Riftia symbionts are far more physiologically plastic than previously considered, and that -contrary to previous assertions- Riftia do assimilate reduced nitrogen in some habitats. These observations raise new hypotheses regarding adaptations to the geochemical diversity of habitats occupied by Riftia, and the degree to which the environment influences symbiont physiology and evolution. PMID:21779334

  3. Quantitative PCR analysis of functional genes in iron-rich microbial mats at an active hydrothermal vent system (L?'ihi Seamount, Hawai'i).

    PubMed

    Jesser, Kelsey J; Fullerton, Heather; Hager, Kevin W; Moyer, Craig L

    2015-05-01

    The chemolithotrophic Zetaproteobacteria represent a novel class of Proteobacteria which oxidize Fe(II) to Fe(III) and are the dominant bacterial population in iron-rich microbial mats. Zetaproteobacteria were first discovered at L?'ihi Seamount, located 35 km southeast off the big island of Hawai'i, which is characterized by low-temperature diffuse hydrothermal venting. Novel nondegenerate quantitative PCR (qPCR) assays for genes associated with microbial nitrogen fixation, denitrification, arsenic detoxification, Calvin-Benson-Bassham (CBB), and reductive tricarboxylic acid (rTCA) cycles were developed using selected microbial mat community-derived metagenomes. Nitrogen fixation genes were not detected, but all other functional genes were present. This suggests that arsenic detoxification and denitrification processes are likely cooccurring in addition to two modes of carbon fixation. Two groups of microbial mat community types were identified by terminal restriction fragment length polymorphism (T-RFLP) and were further described based on qPCR data for zetaproteobacterial abundance and carbon fixation mode preference. qPCR variance was associated with mat morphology but not with temperature or sample site. Geochemistry data were significantly associated with sample site and mat morphology. Together, these qPCR assays constitute a functional gene signature for iron microbial mat communities across a broad array of temperatures, mat types, chemistries, and sampling sites at L?'ihi Seamount. PMID:25681182

  4. Stable carbon and nitrogen isotopic signatures of fauna associated with the deep-sea hydrothermal vent system of Guaymas Basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Soto, Luis A.

    2009-09-01

    Potential food sources and the trophic position of some of the most conspicuous faunal components (vent and non-vent) were examined in the deep-hydrothermal vent system of Guaymas Basin, in the Gulf of California using carbon and nitrogen stable isotope analyses. The isotopic signatures of 13 species collected by the DSRV Alvin and Nautile mostly from sulfide-influenced habitats were analyzed. The ? 13C of nine vent species had a wide range (-36.0‰ to -12.7‰), whereas the ? 15N values varied from -5.0‰ to+9.4‰. The dual isotopic approach allowed the recognition of two main groups containing vent-endemic fauna. One was represented by an assemblage of eight species associated with sulfide deposits, visually dominated by the siboglinid worm Riftia pachyptila and characterized by enriched ? 13C values (means -13.7‰ to -21.0‰). The second group included a single species, the bivalve Vesicomya gigas, an inhabitant of soft sediments, which had depleted ? 13C and ? 15N signatures (means -35.7‰ and -1.5‰). The galatheid Munidopsis alvisca is an exception among the species in the R. pachyptila aggregation, due to its depleted ? 13C (-26.4‰) and an intermediate ? 15N value (+5.5‰). Isotopic ? 13C and ? 15N signatures of four non-vent species exhibited mostly enriched ? 15N values (means ? 13C -27.8‰ to -13.6‰; ? 15N +14.5‰ to +17.9‰), expected for higher consumers and detritivores in a deep-sea food web. They may benefit from the vent production via microbial matter or decaying vent organisms. Vent and non-vent fauna were assigned to five feeding guilds: symbiont-containing fauna, bacterivores, detritivores, predator-scavengers, and suspension-feeders. Based on isotopic values of vent and non-vent fauna, as well as that of surficial sediments, it is inferred that the hydrothermal ecosystem in the Guaymas Basin is self-supported with high-energy efficiency and with low exporting capacity to the background deep-sea food web.

  5. Seismic structure at the Kairei Hydrothermal vent field near the Rodriguez Triple Junction in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Takata, H.; Sato, T.; Imai, Y.; Mori, T.; Noguchi, Y.; Kono, A.; Yamada, T.; Shinohara, M.

    2014-12-01

    Central Indian Ridge is located at the north of the Rodriguez Triple Junction and shows slow-intermediate spreading rate. The Kairei hydrothermal Field (KHF) was discovered in the first segment of Central Indian Ridge near the Rodriguez Triple Junction. The vent fluid which is extruding at the KHF has higher H2 content compared with other hydrothermal vent fluid in the world. Although The KHF itself exists above a basaltic rock massif, gabbro and mafic rocks were discovered on the seafloor around the KHF. These deep-seated rocks may contribute to the high H2concentration of the Kairei vent fluid .To understand how gabbro and mafic rocks are uplifted and exhumed on the seafloor, we conducted a seismic refraction/reflection survey using ocean bottom seismograms (OBSs). We conducted the seismic refraction/reflection survey from January 27 to March 19 in 2013 using S/V Yokosuka of Jamstec. In the experiment, we used 21 OBSs, an air gun (G.I.gun) and a single channel steamer cable. We obtained 5 survey lines NNW-SSE direction parallel to the ridge axis, 5 lines E-W direction and 5 lines NNE-SSW direction. In addition to these lines, we acquired other 5 lines passing through the point above the KHF or Yokoniwa Rise, which is the north of the KHF. In analysis of refraction data, firstly, we estimated 2D velocity model under survey lines, which are parallel to the ridge axis, using the progressive model development method developed by Sato and Kennett (2000). Then, we constructed a 3D initial model and run the 3D tomographic method developed by Zelt and Barton (1998). The 1D velocity profile of the KHF seems to be similar to that of mid ocean ridges such as Mid Atlantic Ridge, East Pacific Rise. Seismic velocities under the KHF and Yokoniwa Rise reach about 6km/s at depth of 1~2 km below seafloor, probably indicating uplift of deep-seated rocks. In this presentation we will show 3D seismic structure of this area.

  6. Submarine hydrothermal venting related to volcanism in the Lesser Antilles: Evidence from ferromanganese precipitates

    NASA Astrophysics Data System (ADS)

    Frank, M.; Marbler, H.; Koschinsky, A.; van de Flierdt, T.; Klemm, V.; Gutjahr, M.; Halliday, A. N.; Kubik, P. W.; Halbach, P.

    2006-04-01

    Radiogenic isotope compositions (Sr, Nd, Pb, Hf, and Os) of sediment-hosted seafloor ferromanganese crusts and sediments incrusted with ferromanganese oxyhydroxides from the Lesser Antilles island arc were measured to distinguish between hydrogenous (seawater-derived) and hydrothermal metal sources. The ages of the precipitates range between recent (last few thousand years) and a few 100 kyr as deduced from 10Be and Co concentrations. Evidence from the presence of bladed todorokite and nontronite, together with the major element and REE composition, suggests that a significant proportion of these sediment-hosted precipitates formed at relatively low temperatures from a mixture of seawater and hydrothermal fluids associated with island arc volcanism. The radiogenic isotope compositions of all metals mentioned above, except Pb, show large differences in hydrothermal versus hydrogenous contributions over space and time. In contrast to precipitates of high-temperature fluids which mainly scavenge their REE contents from seawater the crusts of this study show 143Nd/144Nd of up to 0.512817 (?Nd = +3.5). This is close to the signature of the nearby island arc rocks and far above the expected local seawater ratio of ˜0.51209 (?Nd = -10.7). These crusts also show high 176Hf/177Hf (up to 0.283102), low 87Sr/86Sr (up to 0.7069), and low 187Os/188Os (up to 0.16) compared with local seawater, as expected from hydrothermal, island-arc-derived metal contributions. In contrast, the Pb isotope signatures of the crusts cannot be explained by mixing between seawater and hydrothermal sources. It is suggested that Pb was either removed from the ascending fluids within the sediment column before they reached seawater or the temperatures were too low to leach significant amounts of Pb from the rocks or sediments. External sources such as Saharan dust, particulate inputs from the Orinoco River, or even incongruent release of Pb isotopes from the island arc rock-derived particles must have contributed to the observed Pb isotope variability. Our results suggest that submarine hydrothermalism originating from intraoceanic island arc volcanism creates distinct geochemical environments for the dispersion of hydrothermal fluids and may be an important mechanism to supply metals of hydrothermal origin to seawater.

  7. Comparison of pyrite (FeS2) synthesis mechanisms to reproduce natural FeS2 nanoparticles found at hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Gartman, Amy; Luther, George W.

    2013-11-01

    Here we report the synthesis of pyrite in micrometer and nanometer sizes and with varied morphology. The purpose of these syntheses was to mimic natural pyrite nanoparticles recently found at hydrothermal vents, and to better understand the formation processes of these nano and micrometer sized particles. The duration of synthesis, surfactant used, and chemical mechanism of pyrite formation were all found to have an effect on resultant size and morphology. Yields of pyrite were sometimes low as our goal was to stop growth quickly after nucleation, in order to mimic hot vent fluids (350 °C) emanating to cold ocean bottom waters (2 °C). Natural nanoparticles forming under these conditions have currently been identified at diverse hydrothermal vents including Lau Basin, the Mid Atlantic Ridge (MAR), and the East Pacific Rise (EPR). These natural nanoparticles were variable in size and morphology, with aggregates of 50-350 nm diameter being the most prevalent. Syntheses occurring via the H2S pathway mimicked natural nanoparticles more closely than syntheses via the polysulfide pathway. One synthesis reported is suggestive of a pyrite/pyrrhotite equilibrium, indicating that we have succeeded in mimicking redox conditions similar to those that occur at certain hydrothermal vents.

  8. Geochemistry of Champagne Hot Springs shallow hydrothermal vent field and associated sediments, Dominica, Lesser Antilles

    E-print Network

    Pichler, Thomas

    , Dominica, Lesser Antilles Kevin T. McCarthy, Thomas Pichler *, Roy E. Price University of South Florida of Dominica, Lesser Antilles. We have conducted a detailed geochemical study of the hydrothermal system and magmatic signatures. D 2005 Elsevier B.V. All rights reserved. Keywords: Dominica; Champagne Springs

  9. Using fine-scale high-resolution sampling to link Fe oxide-dominated hydrothermal vent-generated microbial mat morphology with community structure composition at Loihi Seamount, Hawaii

    NASA Astrophysics Data System (ADS)

    Hager, K. W.; Hilton, T. S.; Kimber, J.; Jesser, K. J.; Fullerton, H.; McAllister, S.; Chan, C. S.; Emerson, D.; Moyer, C. L.

    2013-12-01

    The scale at which sampling can be carried out in the deep ocean has largely been determined by the limits of robotic instrument manipulation at depth. Bulk sampling, via push cores, suction, or scoop samplers, collects mat material from heterogeneous microbial communities living in environments variable not only laterally with respect to an active vent (direct versus diffuse vent flow), but also with respect to depth across the steep redox gradient separating reduced hydrothermal fluid from oxygenated seawater. While initially unavoidable, these kinds of sampling strategies can only go so far in describing the intricate microbial ecology interactions occurring at hydrothermal vents. For this reason, a syringe sampler was developed for this study to sample targeted observable mat morphologies of surface mat material at small spatial scales. Multiple 'BioMat' samples (~ 20) were collected in 2013 from active, Fe oxide-dominated mats from several vent sites at Loihi Seamount, Hawaii, all experience temperatures ranging from 20 to 46°C. Quantitative-PCR (Q-PCR) primers were designed to detect the relative abundance of the marine iron-oxidizing Zetaproteobacteria. At Pohaku Vents, which is perched on the upper lip of the caldera, the average relative abundance of Zetaproteobacteria was significantly higher at 79.2% of the total microbial mat community. Two other sites within the caldera (Hiolo North and Hiolo South) had 26.8% and 36.9% Zetaproteobacteria, respectively. In addition, Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis of these samples showed that the Pohaku Vent microbial mat community fingerprints all grouped together into a single cluster much more closely and with much less variability than with those from either Hiolo North or South. Finally, it was also observed that there were site-specific gross morphological characteristics associated with these microbial mats including veils, curds, and amorphous particles. It is presently unknown what environmental forcing functions might be driving these morphological and compositional microbial mat patterns; though we hypothesize that dissolved oxygen availability may be an important factor.

  10. High connectivity of animal populations in deep-sea hydrothermal vent fields in the Central Indian Ridge relevant to its geological setting.

    PubMed

    Beedessee, Girish; Watanabe, Hiromi; Ogura, Tomomi; Nemoto, Suguru; Yahagi, Takuya; Nakagawa, Satoshi; Nakamura, Kentaro; Takai, Ken; Koonjul, Meera; Marie, Daniel E P

    2013-01-01

    Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province. PMID:24358117

  11. Mitochondrial genome of the hydrothermal vent shrimp Nautilocaris saintlaurentae (Crustacea: Caridea: Alvinocarididae).

    PubMed

    Kim, Se-Joo; Pak, Sang Joon; Ju, Se-Jong

    2015-02-01

    We determined the mitochondrial genome (mitogenome) of Nautilocaris saintlaurentae, sampled at vent fields of the Tofua Arc in the southwestern Pacific. The genome was 15,928 bp in length and had the typical mitogenome structure of the infraorder Caridea. Its protein-coding genes were very similar to other alvinocaridid species in respect to length, AT content, and start and stop codons. However, N. saintlaurentae showed a 17.4--19.2% divergence in the nucleotide sequence from other alvinocaridid species. This information will be helpful in understanding the genetic relationship among members of the alvinocaridid shrimps. PMID:23876191

  12. Modeling fluid flow in sedimentary basins with sill intrusions: Implications for hydrothermal venting and global climate change

    NASA Astrophysics Data System (ADS)

    Iyer, K. H.; Rupke, L.

    2013-12-01

    In recent years, the emplacement of Large Igneous Provinces (LIPs) has been closely linked with past climate variations and mass extinctions. The hypothesis is that organic matter present within contact aureole of the surrounding sedimentary rock such as shale undergoes thermal maturation and releases greenhouse gases such as methane and carbon dioxide due to the emplacement of hot igneous bodies. These gases are then vented into the atmosphere through hydrothermal pipe structures resulting in climate change. Although, basin-scale estimates of potential methane generation show that these processes alone could trigger global incidents, the rates at which these gases are released into the atmosphere and the transport mechanism are quantitatively unknown. We use a 2D, hybrid FEM/FVM model that solves for fully compressible fluid flow to quantify the thermogenic release of methane and to evaluate flow patterns within these systems. In addition, methane transport within the system is tracked enabling us to constrain the rate of release of methane from the basin surface. The important outcomes of this study are: (1) the location of hydrothermal vents is directly controlled by the flow pattern, even in systems with no vigorous convection, without the explicit need for explosive degassing and/or boiling effects. The merging of fluid flow from the bottom and top edges of the sill result in hydrothermal plumes positioned at the lateral edges of the sill and is consistent with geological observations. (2) Methane generation potential in systems with fluid flow does not significantly differ from that estimated in diffusive systems, e.g. 2200 to 3350 Gt CH4 can be potentially generated within the Vøring and Møre basins with a sediment TOC content of 5 wt% and varying permeability structure. On the other hand, methane venting at the surface occurs in three distinct stages and can last for hundreds of thousands of years. Also, not all of the methane reaches the surface as some may still be trapped beneath an impermeable sill. (3) The model results demonstrate that although the total quantity of methane that may be potentially generated within the contact aureole may have indeed influenced past climate variations, the rate at which this methane is released into the atmosphere is too slow to trigger, by itself, the negative ?13C excursions observed in the fossil record over short time scales (< 10,000 years). For e.g., the PETM is associated with the formation of the North Atlantic igneous province and is characterized by a ?13C incursion of -2 to -3‰ over 10,000 years. The model results demonstrate that with a TOC content of 5 wt%, ~2200 Gt of methane is released within 10,000 years from the Vøring and Møre basins and results in a ?13C excursion of only -1.2‰. It is, therefore, likely that methane from organic cracking in sediments during sill intrusion in conjunction with other processes such as volcanic degassing and the destabilization of sub-surface methane hydrate is responsible for such short term catastrophic climate change.

  13. Microbial Communities and Chemosynthesis in Yellowstone Lake Sublacustrine Hydrothermal Vent Waters

    PubMed Central

    Yang, Tingting; Lyons, Shawn; Aguilar, Carmen; Cuhel, Russell; Teske, Andreas

    2011-01-01

    Five sublacustrine thermal spring locations from 1 to 109?m water depth in Yellowstone Lake were surveyed by 16S ribosomal RNA gene sequencing in relation to their chemical composition and dark CO2 fixation rates. They harbor distinct chemosynthetic bacterial communities, depending on temperature (16–110°C) and electron donor supply (H2S <1 to >100??M; NH3 <0.5 to >10??M). Members of the Aquificales, most closely affiliated with the genus Sulfurihydrogenibium, are the most frequently recovered bacterial 16S rRNA gene phylotypes in the hottest samples; the detection of these thermophilic sulfur-oxidizing autotrophs coincided with maximal dark CO2 fixation rates reaching near 9??M?C?h?1 at temperatures of 50–60°C. Vents at lower temperatures yielded mostly phylotypes related to the mesophilic gammaproteobacterial sulfur oxidizer Thiovirga. In contrast, cool vent water with low chemosynthetic activity yielded predominantly phylotypes related to freshwater Actinobacterial clusters with a cosmopolitan distribution. PMID:21716640

  14. Extremophiles, Thermophily section, species description Thermococcus atlanticus sp. nov., a hyperthermophilic Archaeon isolated from a deep-sea hydrothermal vent in the Mid-Atlantic Ridge

    Microsoft Academic Search

    Marie-Anne Cambon-Bonavita; Françoise Lesongeur; Patricia Pignet; Nathalie Wery; Christophe Lambert; Anne Godfroy; Joël Querellou; Georges Barbier

    2003-01-01

    An extremely thermophilic archaeon, strain MA898, was isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. This strain is a strictly anaerobic coccus of approximately 0.7-1.2 µm in diameter. Optimal temperature, pH, and NaCl concentration for growth are around 85 °C, pH 7, and 3%, respectively. Strain MA898 grows preferentially in the presence of elemental sulfur, polysulfur, cystine, or

  15. Gas geochemistry of a shallow submarine hydrothermal vent associated with the El Requesón fault zone, Bahía Concepción, Baja California Sur, México

    Microsoft Academic Search

    Matthew J. Forrest; Jorge Ledesma-Vázquez; William Ussler; Justin T. Kulongoski; David R. Hilton; H. Gary Greene

    2005-01-01

    We investigated hydrothermal gas venting associated with a coastal fault zone along the western margin of Bahía Concepción, B.C.S., México. Copious discharge of geothermal liquid (?90 °C) and gas is occurring in the intertidal and shallow subtidal zones (to a depth of 13 m) through soft sediments and fractures in rocks along a ?750 m linear trend generally sub-parallel to

  16. Metabolic diversity in epibiotic microflora associated with the Pompeii worms Alvinella pompejana and A. caudata (Polychaetae: Annelida) from deep-sea hydrothermal vents

    Microsoft Academic Search

    D. Prieur; S. Chamroux; P. Durand; G. Erauso; Ph. Fera; C. Jeanthon; L. Le Borgne; G. Mével; P. Vincent

    1990-01-01

    Specimens of alvinellid polychaetes (Alvinella pompejana Desbruyères and Laubier, 1980 andA. caudata Desbruyères and Laubier, 1986) and their tubes were sampled from deep-sea hydrothermal vents at 13°N from the manned submersible “Nautile” during the “Hydronaut” cruise (October to November 1987) on the East Pacific Rise. Samples were subjected to bacterial analysis aboard the mother ship “Nadir” to detect bacteria involved

  17. Sources of organic carbon for Rimicaris hybisae: Tracing individual fatty acids at two hydrothermal vent fields in the Mid-Cayman rise

    NASA Astrophysics Data System (ADS)

    Streit, Kathrin; Bennett, Sarah A.; Van Dover, Cindy L.; Coleman, Max

    2015-06-01

    Hydrothermal vents harbor ecosystems mostly decoupled from organic carbon synthesized with the energy of sunlight (photosynthetic carbon source) but fueled instead by oxidation of reduced compounds to generate a chemosynthetic carbon source. Our study aimed to disentangle photosynthetic and chemosynthetic organic carbon sources for the shrimp species Rimicaris hybisae, a primary consumer presumed to obtain its organic carbon mainly from ectosymbiotic chemoautotrophic bacteria living on its gill cover membrane. To provide ectosymbionts with ideal conditions for chemosynthesis, these shrimp live in dense clusters around vent chimneys; they are, however, also found sparsely distributed adjacent to diffuse vent flows, where they might depend on alternative food sources. Densely and sparsely distributed shrimp were sampled and dissected into abdominal tissue and gill cover membrane, covered with ectosymbiotic bacteria, at two hydrothermal vent fields in the Mid-Cayman rise that differ in vent chemistry. Fatty acids (FA) were extracted from shrimp tissues and their carbon isotopic compositions assessed. The FA data indicate that adult R. hybisae predominantly rely on bacteria for their organic carbon needs. Their FA composition is dominated by common bacterial FA of the n7 family (~41%). Bacterial FA of the n4 FA family are also abundant and found to constitute good biomarkers for gill ectosymbionts. Sparsely distributed shrimp contain fractions of n4 FA in gill cover membranes ~4% lower than densely packed ones (~18%) and much higher fractions of photosynthetic FA in abdominal tissues, ~4% more (compared with 1.6%), suggesting replacement of ectosymbionts along with exoskeletons (molt), while they take up alternative diets of partly photosynthetic organic carbon. Abdominal tissues also contain photosynthetic FA from a second source taken up presumably during an early dispersal phase and still present to c. 3% in adult shrimp. The contribution of photosynthetic carbon to the FA pool of adult R. hybisae is, however, overall small (max. 8%). Significant differences in carbon isotopic values of chemosynthetically derived FA between vent fields suggest that different dominant C fixation pathways are being used.

  18. Relative abundances of methane- and sulfur-oxidizing symbionts in gills of the deep-sea hydrothermal vent mussel Bathymodiolus azoricus under pressure

    NASA Astrophysics Data System (ADS)

    Szafranski, Kamil M.; Piquet, Bérénice; Shillito, Bruce; Lallier, François H.; Duperron, Sébastien

    2015-07-01

    The deep-sea mussel Bathymodiolus azoricus dominates hydrothermal vent fauna in the Azores region. The gills of this species house methane- and sulfur-oxidizing bacteria that fulfill most of the mussel's nutritional requirements. Previous studies suggested that the ratio between methane- and sulfur-oxidizers could vary in response to the availability of electron donors in their environment, and this flexibility is considered a key factor in explaining the ecological success of the species. However, previous studies were based on non-isobaric recovery of specimens, with experiments at atmospheric pressure which may have induced artifacts. This study investigates the effect of pressure-related stress during recovery and experimentation on the relative abundances of bacterial symbionts. Mussel specimens were recovered for the first time using the pressure-maintaining device PERISCOP. Specimens were subsequently transferred into pressurized vessels and exposed to various chemical conditions. Using optimized fluorescence in situ hybridization-based approaches, relative abundance of symbionts were measured. Our results show that the recovery method (isobaric versus non-isobaric) does not influence the abundances of bacterial symbionts. Significant differences occur among specimens sampled from two contrasting sites. Exposure of mussels from the deeper site to sulfide and bicarbonate, and to bicarbonate alone, both resulted in a rapid and significant increase in the relative abundance of sulfur-oxidizers. Results reported herein are congruent with those from previous reports investigating mussels originating from shallow sites and kept at ambient pressure. Isobaric recovery and maintenance allowed us to perform in vivo experiments in specimens from a deeper site that could not be maintained alive at ambient pressure, and will greatly improve the chances of identifying the molecular mechanisms underlying the dialogue between bathymodioline hosts and symbionts.

  19. Vulcanibacillus modesticaldus gen. nov., sp. nov., a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents.

    PubMed

    L'Haridon, S; Miroshnichenko, M L; Kostrikina, N A; Tindall, B J; Spring, S; Schumann, P; Stackebrandt, E; Bonch-Osmolovskaya, E A; Jeanthon, C

    2006-05-01

    A novel anaerobic, moderately thermophilic, spore-forming bacterium, designated strain BRT, was isolated from deep-sea hydrothermal core samples collected at the Rainbow vent field on the Mid-Atlantic Ridge (36 degrees 14' N 33 degrees 54' W). The cells were found to be rod-shaped, non-motile, Gram-positive and spore-forming. The organism grew in the temperature range 37-60 degrees C, with an optimum at 55 degrees C, and at pH values in the range 6-8.5, with an optimum around pH 7. NaCl concentrations for growth were in the range 10-40 g l(-1), with an optimum at 20-30 g l(-1). Strain BRT grew chemo-organoheterotrophically with carbohydrates, proteinaceous substrates and organic acids with nitrate as electron acceptor. The novel isolate was not able to ferment. The G+C content of the genomic DNA was 34.5 mol%. Phylogenetic analysis of the 16S rRNA gene sequence placed strain BRT in the Bacillaceae within the class 'Bacilli'. On the basis of the phenotypic and phylogenetic data, this isolate should be described as a member of a novel genus, for which the name Vulcanibacillus gen. nov. is proposed. The type species is Vulcanibacillus modesticaldus sp. nov., with the type strain BRT (=DSM 14931T=JCM 12998T). PMID:16627653

  20. A discrete helicoid of collagenous fibrils: the cuticle of deep-sea hydrothermal vent worms (Riftia pachyptila).

    PubMed

    Gaill, F; Herbage, D; Lepescheux, L

    1991-06-01

    The fibrillar organization of the collagenous cuticle of the hydrothermal vent worm Riftia pachyptila is described. Fibrils in the posterior part of the cuticle are organized in a classical orthogonal plywood consisting of successive layers of fibrils: in this case, fibrils are oriented in only two directions which are orthogonal, as for pogonophoran. Our new data on the plume of Riftia pachyptila show a new type of fibrillar arrangement of the cuticle: 1) three sets of fibrils are arranged in an hexagonal pattern; 2) fibrils in successive plies are rotated by 60 degrees, and the organization of the fibrillar network is interpreted as a discrete helicoid when compared to continuously twisted plywoods; 3) a fourth set of fibrils crosses the hexagonally arranged plies and is oriented perpendicular to the surface of the body. X-ray diffraction studies of the cuticular fibrils reveal a triple helix which is characteristic of collagen molecules. Results obtained by differential scanning calorimetry (DSC) show that the denaturation temperature of the molecule is 54.7 degrees C for Riftia; whereas it is 58.9 degrees C for type I collagen measured under the same conditions. We discuss the origin of this plywood with respect to biomechanical constraints, self assembly processes, and compartmentation of the extracellular space. The involvement of the cell membrane in the fibrillogenesis of collagen is also discussed. PMID:1870451

  1. Diversity of Ultramafic Hosted Hydrothermal Deposits on the Mid Atlantic Ridge: First Submersible Studies on Ashadze, Logatchev 2 and Krasnov Vent Fields During the Serpentine Cruise.

    NASA Astrophysics Data System (ADS)

    Fouquet, Y.; Cherkashov, G.; Charlou, J.; Ondreas, H.; Cannat, M.; Bortnikov, N.; Silantiev, S.; Etoubleau, J.; Scientific Party Of The Serpentine Cruise

    2007-12-01

    During the Serpentine cruise (March 2007) we have explored and sampled, using the ROV Victor, new ultramafic hydrothermal fields between 13°N and 17°N on the Mid Atlantic Ridge (MAR). The Serpentine cruise was part of a 4 years cooperation agreement between France and Russia. Targets were Ashadze1 and 2 (12°58"N), Logatchev 1 (14°45"N) and 2 (14°43"N) and Krasnov (16°38"N) fields localized after several surface cruises of the R/V professor Logatchev. A significant portion of the dives was dedicated to detailed microbathymetry, 50 m and 20 m above the seafloor, and simultaneous physical and chemical plume studies and magnetic surveys. High resolution (30cm) maps were further used for geological, biological, microbiological and fluid sampling operations. The cruise identified three new very active black smoker fields (Ashadze 1 and 2, Logatchev 2) on serpentinized peridotites. One extensive low temperature inactive deposit (dominantly birnessite) was discovered 1 km east of the Logatchev 1 field. The basaltic hosted Krasnov field was inactive. The Ashadze 1 site at 4080m of water depth is the deepest active black smoker field so far known in the ocean. Inactive and basalt hosted sulfide chimneys (Ashadze 4) were found at the base of the rift valley at 4530 m. Extensive gravity sliding related to the emplacement of the ultramafic rocks is evident at all ultramafic sites (see abstract by Ondreas et al.). Fluids, enriched in H2 and hydrocarbon, confirm the originality of ultramafic environments (see abstract by Charlou et al.). Logatchev 2 is venting low salinity black smoker fluids indicating phase separation. In addition, its position 12 km off axis, moves from 8 (Logatchev 1) to 12 km the possibility to have off axis black smokers long the MAR. Basaltic hosted deposits are dominated by pyrite and silica at Krasnov (Fe:39%, Si:11%, Cu:2.2%, Zn:0.14%) and by sphalerite and pyrite at Ashadze 4 (Fe:24%, Si:1.5%, Cu:0.15%, isocubanite. Ashadze 1 (Fe:33%, Si:1.3%, Cu:14%, Zn:14%) and Logatchev 2 (Fe:20%, Si:3%, Cu:14%, Zn:23%) are enriched in sphalerite. New samples at Logatchev 1 confirm that copper is largely dominant at this site (Fe:29%, Si:3%, Cu:28%, Zn:4%). The Ashadze 2 field is unusual. A small active crater can be interpreted as a hydrothermal volcano built up with a mixture of carbonates and secondary copper sulfides and chlorides. Massive sulfide chimneys are associated with the active smokers at the center of the crater. Many inactive carbonates/sulfides mounds are also aligned along a N-S depression. Two types of hydrothermal deposits are observed: massive copper-rich sulfides associated with the black smokers and carbonate/sulfides chimneys. Average composition of hydrothermal deposits for the field is Fe:26%, Si:11%, Cu:11%, Zn:5%, Ca:8%. The dominant carbonate is aragonite, Mg-Calcite is rare, and talc is common. Comparisons with other ultramafic sites along the MAR will also bee presented.

  2. The complete mitochondrial genome sequence of the hydrothermal vent galatheid crab Shinkaia crosnieri (Crustacea: Decapoda: Anomura): A novel arrangement and incomplete tRNA suite

    PubMed Central

    Yang, Jin-Shu; Yang, Wei-Jun

    2008-01-01

    Background Metazoan mitochondrial genomes usually consist of the same 37 genes. Such genes contain useful information for phylogenetic analyses and evolution modelling. Although complete mitochondrial genomes have been determined for over 1,000 animals to date, hydrothermal vent species have, thus far, remained excluded due to the scarcity of collected specimens. Results The mitochondrial genome of the hydrothermal vent galatheid crab Shinkaia crosnieri is 15,182 bp in length, and is composed of 13 protein-coding genes, two ribosomal RNA genes and only 18 transfer RNA genes. The total AT content of the genome, as is typical for decapods, is 72.9%. We identified a non-coding control region of 327 bp according to its location and AT-richness. This is the smallest control region discovered in crustaceans so far. A mechanism of cytoplasmic tRNA import was addressed to compensate for the four missing tRNAs. The S. crosnieri mitogenome exhibits a novel arrangement of mitochondrial genes. We investigated the mitochondrial gene orders and found that at least six rearrangements from the ancestral pancrustacean (crustacean + hexapod) pattern have happened successively. The codon usage, nucleotide composition and bias show no substantial difference with other decapods. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of the 13 protein-coding genes prove consistent with the previous classification based upon their morphology. Conclusion The present study will supply considerable data of use for both genomic and evolutionary research on hydrothermal vent ecosystems. The mitochondrial genetic characteristics of decapods are sustained in this case of S. crosnieri despite the absence of several tRNAs and a number of dramatic rearrangements. Our results may provide evidence for the immigrating hypothesis about how vent species originate. PMID:18510775

  3. Insights into life-history traits of Munidopsis spp. (Anomura: Munidopsidae) from hydrothermal vent fields in the Okinawa Trough, in comparison with the existing data

    NASA Astrophysics Data System (ADS)

    Nakamura, Masako; Chen, Chong; Mitarai, Satoshi

    2015-06-01

    Squat lobsters in the genus Munidopsis are commonly found at, and near, hydrothermal vents. However, the reproductive traits of most Munidopsis spp. are unknown. This study examined the reproductive features of two Munidopsis species sampled from hydrothermal vent fields in the southern Okinawa Trough in February 2014. Three ovigerous females were collected: two Munidopsis ryukyuensis at Irabu Knoll (1661-1675 m depth) and one M. longispinosa at Hatoma Knoll (1482 m depth). Carapace sizes and egg volumes were measured and compared with those of other Munidopsis species. The ovigerous M. ryukyuensis specimens had postorbital carapace lengths of 10.3 and 11.8 mm, without the rostrum, and carapace widths of 8.6 and 9.7 mm. Mean egg volumes of M. ryukyuensis and M. longispinosa were ~4 mm3. These results are consistent with early sexual maturity in M. ryukyuensis and lecithotrophic development in both species, as described in other species of the genus. These life-history traits may enable these vent species to maximize their reproductive and dispersive potential.

  4. Expression and Putative Function of Innate Immunity Genes under in situ Conditions in the Symbiotic Hydrothermal Vent Tubeworm Ridgeia piscesae

    PubMed Central

    Nyholm, Spencer V.; Song, Pengfei; Dang, Jeanne; Bunce, Corey; Girguis, Peter R.

    2012-01-01

    The relationships between hydrothermal vent tubeworms and sulfide-oxidizing bacteria have served as model associations for understanding chemoautotrophy and endosymbiosis. Numerous studies have focused on the physiological and biochemical adaptations that enable these symbioses to sustain some of the highest recorded carbon fixation rates ever measured. However, far fewer studies have explored the molecular mechanisms underlying the regulation of host and symbiont interactions, specifically those mediated by the innate immune system of the host. To that end, we conducted a series of studies where we maintained the tubeworm, Ridgeia piscesae, in high-pressure aquaria and examined global and quantitative changes in gene expression via high-throughput transcriptomics and quantitative real-time PCR (qPCR). We analyzed over 32,000 full-length expressed sequence tags as well as 26 Mb of transcript sequences from the trophosome (the organ that houses the endosymbiotic bacteria) and the plume (the gas exchange organ in contact with the free-living microbial community). R. piscesae maintained under conditions that promote chemoautotrophy expressed a number of putative cell signaling and innate immunity genes, including pattern recognition receptors (PRRs), often associated with recognizing microbe-associated molecular patterns (MAMPs). Eighteen genes involved with innate immunity, cell signaling, cell stress and metabolite exchange were further analyzed using qPCR. PRRs, including five peptidoglycan recognition proteins and a Toll-like receptor, were expressed significantly higher in the trophosome compared to the plume. Although PRRs are often associated with mediating host responses to infection by pathogens, the differences in expression between the plume and trophosome also implicate similar mechanisms of microbial recognition in interactions between the host and symbiont. We posit that regulation of this association involves a molecular “dialogue” between the partners that includes interactions between the host’s innate immune system and the symbiont. PMID:22701617

  5. Inorganic carbon fixation by chemosynthetic ectosymbionts and nutritional transfers to the hydrothermal vent host-shrimp Rimicaris exoculata

    PubMed Central

    Ponsard, Julie; Cambon-Bonavita, Marie-Anne; Zbinden, Magali; Lepoint, Gilles; Joassin, André; Corbari, Laure; Shillito, Bruce; Durand, Lucile; Cueff-Gauchard, Valérie; Compère, Philippe

    2013-01-01

    The shrimp Rimicaris exoculata dominates several hydrothermal vent ecosystems of the Mid-Atlantic Ridge and is thought to be a primary consumer harbouring a chemoautotrophic bacterial community in its gill chamber. The aim of the present study was to test current hypotheses concerning the epibiont's chemoautotrophy, and the mutualistic character of this association. In-vivo experiments were carried out in a pressurised aquarium with isotope-labelled inorganic carbon (NaH13CO3 and NaH14CO3) in the presence of two different electron donors (Na2S2O3 and Fe2+) and with radiolabelled organic compounds (14C-acetate and 3H-lysine) chosen as potential bacterial substrates and/or metabolic by-products in experiments mimicking transfer of small biomolecules from epibionts to host. The bacterial epibionts were found to assimilate inorganic carbon by chemoautotrophy, but many of them (thick filaments of epsilonproteobacteria) appeared versatile and able to switch between electron donors, including organic compounds (heterotrophic acetate and lysine uptake). At least some of them (thin filamentous gammaproteobacteria) also seem capable of internal energy storage that could supply chemosynthetic metabolism for hours under conditions of electron donor deprivation. As direct nutritional transfer from bacteria to host was detected, the association appears as true mutualism. Import of soluble bacterial products occurs by permeation across the gill chamber integument, rather than via the digestive tract. This first demonstration of such capabilities in a decapod crustacean supports the previously discarded hypothesis of transtegumental absorption of dissolved organic matter or carbon as a common nutritional pathway. PMID:22914596

  6. Thermococcus paralvinellae sp. nov. and Thermococcus cleftensis sp. nov. of hyperthermophilic heterotrophs from deep-sea hydrothermal vents.

    PubMed

    Hensley, Sarah A; Jung, Jong-Hyun; Park, Cheon-Seok; Holden, James F

    2014-11-01

    Two heterotrophic hyperthermophilic strains, ES1(T) and CL1(T), were isolated from Paralvinella sp. polychaete worms collected from active hydrothermal vent chimneys in the north-eastern Pacific Ocean. Both were obligately anaerobic and produced H2S in the presence of elemental sulfur and H2. Complete genome sequences are available for both strains. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strains are more than 97% similar to most other species of the genus Thermococcus. Therefore, overall genome relatedness index analyses were performed to establish that these strains are novel species. For each analysis, strain ES1(T) was determined to be most similar to Thermococcus barophilus MP(T), while strain CL1(T) was determined to be most similar to Thermococcus sp. 4557. The average nucleotide identity scores for these strains were 84% for strain ES1(T) and 81% for strain CL1(T), genome-to-genome direct comparison scores were 23% for strain ES1(T) and 47% for strain CL1(T), and the species identification scores were 89% for strain ES1(T) and 88% for strain CL1(T). For each analysis, strains ES1(T) and CL1(T) were below the species delineation cut-off. Therefore, based on their whole genome sequences, strains ES1(T) and CL1(T) are suggested to represent novel species of the genus Thermococcus for which the names Thermococcus paralvinellae sp. nov. and Thermococcus cleftensis sp. nov. are proposed, respectively. The type strains are ES1(T) (?=DSM 27261(T)?=KACC 17923(T)) and CL1(T) (?=DSM 27260(T)?=KACC 17922(T)). PMID:25082851

  7. An Internally Modulated, Thermostable, pH-sensitive Cys Loop Receptor from the Hydrothermal Vent Worm Alvinella pompejana*

    PubMed Central

    Juneja, Puneet; Horlacher, Reinhold; Bertrand, Daniel; Krause, Ryoko; Marger, Fabrice; Welte, Wolfram

    2014-01-01

    Cys loop receptors (CLRs) are commonly known as ligand-gated channels that transiently open upon binding of neurotransmitters to modify the membrane potential. However, a class of cation-selective bacterial homologues of CLRs have been found to open upon a sudden pH drop, suggesting further ligands and more functions of the homologues in prokaryotes. Here we report an anion-selective CLR from the hydrothermal vent annelid worm Alvinella pompejana that opens at low pH. A. pompejana expressed sequence tag databases were explored by us, and two full-length CLR sequences were identified, synthesized, cloned, expressed in Xenopus oocytes, and studied by two-electrode voltage clamp. One channel, named Alv-a1-pHCl, yielded functional receptors and opened upon a sudden pH drop but not by other known agonists. Sequence comparison showed that both CLR proteins share conserved characteristics with eukaryotic CLRs, such as an N-terminal helix, a cysteine loop motif, and an intracellular loop intermediate in length between the long loops of other eukaryotic CLRs and those of prokaryotic CLRs. Both full-length Alv-a1-pHCl and a truncated form, termed tAlv-a1-pHCl, lacking 37 amino-terminal residues that precede the N-terminal helix, formed functional channels in oocytes. After pH activation, tAlv-a1-pHCl showed desensitization and was not modulated by ivermectin. In contrast, pH-activated, full-length Alv-a1-pHCl showed a marked rebound current and was modulated significantly by ivermectin. A thermostability assay indicated that purified tAlv-a1-pHCl expressed in Sf9 cells denatured at a higher temperature than the nicotinic acetylcholine receptor from Torpedo californica. PMID:24719323

  8. Zn-Driven Discovery of a Hydrothermal Vent Fungal Metabolite Clavatustide C, and an Experimental Study of the Anti-Cancer Mechanism of Clavatustide B

    PubMed Central

    Ye, Panpan; Shen, Ling; Jiang, Wei; Ye, Ying; Chen, Chen-Tung Arthur; Wu, Xiaodan; Wang, Kuiwu; Wu, Bin

    2014-01-01

    A naturally new cyclopeptide, clavatustide C, was produced as a stress metabolite in response to abiotic stress elicitation by one of the hydrothermal vent fluid components Zn in the cultured mycelia of Aspergillus clavatus C2WU, which were isolated from Xenograpsus testudinatus. X. testudinatus lives at extreme, toxic habitat around the sulphur-rich hydrothermal vents in Taiwan Kueishantao. The known compound clavatustide B was also isolated and purified. This is the first example of a new hydrothermal vent microbial secondary metabolite produced in response to abiotic Zn treatment. The structures were established by spectroscopic means. The regulation of G1-S transition in hepatocellular carcinoma cell lines by clavatustide B was observed in our previous study. The purpose of the present study was to verify these results in other types of cancer cell lines and elucidate the possible molecular mechanism for the anti-cancer activities of clavatustide B. In different human cancer cell lines, including pancreatic cancer (Panc-1), gastric cancer (MGC-803), colorectal cancer (SW-480), retinoblastoma (WERI-Rb-1) and prostate cancer (PC3), clavatustide B efficiently suppressed cell proliferations in a dose-dependent manner. Although different cancer cell lines presented variety in Max effect dose and IC50 dose, all cancer cell lines showed a lower Max effect dose and IC50 dose compared with human fibroblasts (hFB) (p < 0.05). Moreover, significant accumulations in G1 phases and a reduction in S phases (p < 0.05) were observed under clavatustide B treatment. The expression levels of 2622 genes including 39 cell cycle-associated genes in HepG2 cells were significantly altered by the treatment with 15 ?g/mL clavatustide B after 48 h. CCNE2 (cyclin E2) was proved to be the key regulator of clavatustide B-induced G1-S transition blocking in several cancer cell lines by using real-time PCR. PMID:24879544

  9. Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability

    PubMed Central

    2013-01-01

    Background Alvinella pompejana is an annelid worm that inhabits deep-sea hydrothermal vent sites in the Pacific Ocean. Living at a depth of approximately 2500 meters, these worms experience extreme environmental conditions, including high temperature and pressure as well as high levels of sulfide and heavy metals. A. pompejana is one of the most thermotolerant metazoans, making this animal a subject of great interest for studies of eukaryotic thermoadaptation. Results In order to complement existing EST resources we performed deep sequencing of the A. pompejana transcriptome. We identified several thousand novel protein-coding transcripts, nearly doubling the sequence data for this annelid. We then performed an extensive survey of previously established prokaryotic thermoadaptation measures to search for global signals of thermoadaptation in A. pompejana in comparison with mesophilic eukaryotes. In an orthologous set of 457 proteins, we found that the best indicator of thermoadaptation was the difference in frequency of charged versus polar residues (CvP-bias), which was highest in A. pompejana. CvP-bias robustly distinguished prokaryotic thermophiles from prokaryotic mesophiles, as well as the thermophilic fungus Chaetomium thermophilum from mesophilic eukaryotes. Experimental values for thermophilic proteins supported higher CvP-bias as a measure of thermal stability when compared to their mesophilic orthologs. Proteome-wide mean CvP-bias also correlated with the body temperatures of homeothermic birds and mammals. Conclusions Our work extends the transcriptome resources for A. pompejana and identifies the CvP-bias as a robust and widely applicable measure of eukaryotic thermoadaptation. Reviewer This article was reviewed by Sándor Pongor, L. Aravind and Anthony M. Poole. PMID:23324115

  10. High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    PubMed Central

    2010-01-01

    Background Bathymodiolus azoricus is a deep-sea hydrothermal vent mussel found in association with large faunal communities living in chemosynthetic environments at the bottom of the sea floor near the Azores Islands. Investigation of the exceptional physiological reactions that vent mussels have adopted in their habitat, including responses to environmental microbes, remains a difficult challenge for deep-sea biologists. In an attempt to reveal genes potentially involved in the deep-sea mussel innate immunity we carried out a high-throughput sequence analysis of freshly collected B. azoricus transcriptome using gills tissues as the primary source of immune transcripts given its strategic role in filtering the surrounding waterborne potentially infectious microorganisms. Additionally, a substantial EST data set was produced and from which a comprehensive collection of genes coding for putative proteins was organized in a dedicated database, "DeepSeaVent" the first deep-sea vent animal transcriptome database based on the 454 pyrosequencing technology. Results A normalized cDNA library from gills tissue was sequenced in a full 454 GS-FLX run, producing 778,996 sequencing reads. Assembly of the high quality reads resulted in 75,407 contigs of which 3,071 were singletons. A total of 39,425 transcripts were conceptually translated into amino-sequences of which 22,023 matched known proteins in the NCBI non-redundant protein database, 15,839 revealed conserved protein domains through InterPro functional classification and 9,584 were assigned with Gene Ontology terms. Queries conducted within the database enabled the identification of genes putatively involved in immune and inflammatory reactions which had not been previously evidenced in the vent mussel. Their physical counterpart was confirmed by semi-quantitative quantitative Reverse-Transcription-Polymerase Chain Reactions (RT-PCR) and their RNA transcription level by quantitative PCR (qPCR) experiments. Conclusions We have established the first tissue transcriptional analysis of a deep-sea hydrothermal vent animal and generated a searchable catalog of genes that provides a direct method of identifying and retrieving vast numbers of novel coding sequences which can be applied in gene expression profiling experiments from a non-conventional model organism. This provides the most comprehensive sequence resource for identifying novel genes currently available for a deep-sea vent organism, in particular, genes putatively involved in immune and inflammatory reactions in vent mussels. The characterization of the B. azoricus transcriptome will facilitate research into biological processes underlying physiological adaptations to hydrothermal vent environments and will provide a basis for expanding our understanding of genes putatively involved in adaptations processes during post-capture long term acclimatization experiments, at "sea-level" conditions, using B. azoricus as a model organism. PMID:20937131

  11. Mitochondrial genome of the hydrothermal vent crab Austinograea alayseae (Crustacea: Bythograeidae): genetic differences between individuals from Tofua Arc and Manus Basin.

    PubMed

    Kim, Se-Joo; Kim, Hyun Sub; Ju, Se-Jong

    2014-08-01

    The brachyuran crab Austinograea alayseae is one of the most common species found in hydrothermal vent fields of the southwestern Pacific Ocean. In this study, we found that the mitochondrial genome (mitogenome) of A. alayseae from Tofua Arc is 15,611 bp in length and has the typical gene arrangement of a brachyuran. We also compared the mitogenomes of A. alayseae from two different regions, Tofua Arc and Manus Basin. Their genomes were identical, except for the control region, which showed 82.29% nucleotide similarity. These results will be helpful in developing stable markers for the identification of A. alayseae at the sub-species level. PMID:23795854

  12. Magnetic properties and opaque mineralogy of rocks from selected seafloor hydrothermal sites at oceanic ridges

    Microsoft Academic Search

    Anita L. Wooldridge; Stephen E. Haggerty; Peter A. Rona; Christopher G. A. Harrison

    1990-01-01

    Magnetic properties [natural remanent magnetization (NRM), susceptibility (chi), Curie point temperature (Tc), saturation isothermal remanent magnetization (IRMs), and Köenigsberger ratio (Q)] and opaque mineralogy were determined for basalts, diabases, gabbros, periodites, and serpentinites collected by dredging and submersible from the rift valley at five hydrothermal sites [15°N, 17°N, 23°N (the Snake Pit hydrothermal field), 26°N (the TAG hydrothermal field) on

  13. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean

    PubMed Central

    Fitzsimmons, Jessica N.; Boyle, Edward A.; Jenkins, William J.

    2014-01-01

    Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on recent abyssal dFe enrichments near hydrothermal vents, however, the leaky vent hypothesis [Toner BM, et al. (2012) Oceanography 25(1):209–212] argues that some hydrothermal Fe persists in the dissolved phase and contributes a significant flux of dFe to the global ocean. We show here the first, to our knowledge, dFe (<0.4 µm) measurements from the abyssal southeast and southwest Pacific Ocean, where dFe of 1.0–1.5 nmol/kg near 2,000 m depth (0.4–0.9 nmol/kg above typical deep-sea dFe concentrations) was determined to be hydrothermally derived based on its correlation with primordial 3He and dissolved Mn (dFe:3He of 0.9–2.7 × 106). Given the known sites of hydrothermal venting in these regions, this dFe must have been transported thousands of kilometers away from its vent site to reach our sampling stations. Additionally, changes in the size partitioning of the hydrothermal dFe between soluble (<0.02 µm) and colloidal (0.02–0.4 µm) phases with increasing distance from the vents indicate that dFe transformations continue to occur far from the vent source. This study confirms that although the southern East Pacific Rise only leaks 0.02–1% of total Fe vented into the abyssal Pacific, this dFe persists thousands of kilometers away from the vent source with sufficient magnitude that hydrothermal vents can have far-field effects on global dFe distributions and inventories (?3% of global aerosol dFe input). PMID:25349389

  14. STATISTICAL SAMPLING APPROACH FOR CLOSING A SOIL VENTING SITE

    EPA Science Inventory

    The USEPA allowed the Performing Parties (PPs) to perform a soil vapor extraction process to a site contaminated by volatile organic compounds (VOC), contingent upon the process reducing the VOC concentrations in the soil by 75% within one year. An innovative injection-extraction...

  15. Geochemistry of a sediment push-core from the Lucky Strike hydrothermal field, Mid-Atlantic Ridge

    Microsoft Academic Search

    Á. S. Dias; R. A. Mills; R. N. Taylor; P. Ferreira; F. J. A. S. Barriga

    2008-01-01

    Hydrothermal sediment mineralogy and geochemistry can provide insights into seafloor mineralization processes and changes through time. We report a geochemical investigation of a short (22 cm) near-vent hydrothermal metalliferous sediment core from the Lucky Strike site (LS), on the Mid-Atlantic Ridge (MAR). The sediment was collected from the base of an active white smoker vent and comprises pure hydrothermal precipitates, mainly

  16. Facies reconstruction of a hydrothermally altered dacite extrusive sequence: Evidence from geophysical downhole logging data (ODP Leg 193)

    Microsoft Academic Search

    Anne Bartetzko; Holger Paulick; Gerardo Iturrino; Juliane Arnold

    2003-01-01

    ODP Leg 193 drilled into the PACMANUS hydrothermal field (Papua New Guinea), which is an active hydrothermal vent field associated with felsic magmatism in a convergent geodynamic setting. The PACMANUS hydrothermal field is part of the eastern Manus Basin and is located near the crest of Pual Ridge, a 500 to 700 meters high felsic neo-volcanic ridge. Two sites, Snowcap

  17. Bacterial Lifestyle in a Deep-sea Hydrothermal Vent Chimney Revealed by the Genome Sequence of the Thermophilic Bacterium Deferribacter desulfuricans SSM1

    PubMed Central

    Takaki, Yoshihiro; Shimamura, Shigeru; Nakagawa, Satoshi; Fukuhara, Yasuo; Horikawa, Hiroshi; Ankai, Akiho; Harada, Takeshi; Hosoyama, Akira; Oguchi, Akio; Fukui, Shigehiro; Fujita, Nobuyuki; Takami, Hideto; Takai, Ken

    2010-01-01

    The complete genome sequence of the thermophilic sulphur-reducing bacterium, Deferribacter desulfuricans SMM1, isolated from a hydrothermal vent chimney has been determined. The genome comprises a single circular chromosome of 2 234 389 bp and a megaplasmid of 308 544 bp. Many genes encoded in the genome are most similar to the genes of sulphur- or sulphate-reducing bacterial species within Deltaproteobacteria. The reconstructed central metabolisms showed a heterotrophic lifestyle primarily driven by C1 to C3 organics, e.g. formate, acetate, and pyruvate, and also suggested that the inability of autotrophy via a reductive tricarboxylic acid cycle may be due to the lack of ATP-dependent citrate lyase. In addition, the genome encodes numerous genes for chemoreceptors, chemotaxis-like systems, and signal transduction machineries. These signalling networks may be linked to this bacterium's versatile energy metabolisms and may provide ecophysiological advantages for D. desulfuricans SSM1 thriving in the physically and chemically fluctuating environments near hydrothermal vents. This is the first genome sequence from the phylum Deferribacteres. PMID:20189949

  18. Revisiting Near-Seafloor Magnetics on the TAG Hydrothermal Site (26°N, MAR): Tectonic and Hydrothermal Implications

    NASA Astrophysics Data System (ADS)

    Szitkar, F.; Dyment, J.

    2014-12-01

    We revisit the near seafloor magnetic anomaly for the TAG hydrothermal site presented by Tivey et al. (1993) taking advantage of more recent geological constraints from ODP Leg 158 drill holes across the hydrothermal mounds and high-resolution bathymetry. The dipolar magnetic anomaly associated with the site is better reduced to the pole assuming an inclination of 10° (instead of 44° expected at 26°N) for the magnetization vector. Such an observation suggests that basalt surrounding the site, which belongs to a strongly "faulted and fissured zone" (FFZ), has been rotated by ~53° along a N30°E horizontal axis (parallel to the MAR axis in this area) as a probable consequence of the detachment tectonics inferred in this area. The FFZ faults, together with the deeper detachment, focus and guide the hot ascending hydrothermal fluid. Magnetic forward modeling of the site shows that, although insufficient to explain the whole observed negative anomaly, the hydrothermal material - and more specifically the stockwork zone - is a significant cause of missing magnetization that contributes to about a third of the observed anomaly. The rest of the anomaly is accounted for by a deeper source possibly related to thermal demagnetization of an ascending hydrothermal pipe beneath the active part of the site. The significant contribution of the stockwork zone to the magnetic signature of TAG confirms that it is a common character of all type of hydrothermal sites, of potential interest for deep-sea mineral exploration. Tivey, M.A., Rona, P.A., and Schouten H., 1993, Reduced crustal magnetization beneath the active mound, TAG hydrothermal field, Mid-Atlantic Ridge, at 26°N: Earth and Planetary Science Letters, v. 115, p. 101-115, doi:10.1016/0012-821X(93)90216-V.

  19. The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea Hydrothermal Vent Fields Under the Arctic Ice Cap

    Microsoft Academic Search

    R. A. Reves-Sohn; H. Singh; S. Humphris; T. Shank; M. Jakuba; C. Kunz; C. Murphy; C. Willis

    2007-01-01

    Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic

  20. Pb isotopes in sulfides from mid-ocean ridge hydrothermal sites

    SciTech Connect

    LeHuray, A.P.; Church, S.E.; Koski, R.A.; Bouse, R.M.

    1988-04-01

    The authors report Pb isotope ratios of sulfides deposited at seven recently active mid-ocean ridge (MOR) hydrothermal vents. Sulfides from three sediment-starved sites on the Juan de Fuca Ridge contain Pb with isotope ratios identical to their local basaltic sources. Lead in two deposits from the sediment-covered Escanaba Trough, Gorda Ridge, is derived from the sediments and does not appear to contain any basaltic component. There is a range of isotope ratios in a Guaymas Basin deposit, consistent with a mixture of sediment and MOR basalt Pb. Lead in a Galapagos deposit differs slightly from known Galapagos basalt Pb isotope values. The faithful record of Pb isotope signatures of local sources in MOR sulfides indicates that isotope ratios from ancient analogues ca be used as accurate reflections of ancient oceanic crustal values in ophiolite-hosted deposits and continental crustal averages in sediment-hosted deposits. The preservation of primary ophiolitic or continental crustal Pb isotope signatures in ancient MOR sulfides provides a powerful tool for investigation of crustal evolution and for fingerprinting ancient terranes.

  1. Post-capture immune gene expression studies in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus acclimatized to atmospheric pressure.

    PubMed

    Barros, Inês; Divya, Baby; Martins, Inês; Vandeperre, Frederic; Santos, Ricardo Serrão; Bettencourt, Raul

    2015-01-01

    Deep-sea hydrothermal vents are extreme habitats that are distributed worldwide in association with volcanic and tectonic events, resulting thus in the establishment of particular environmental conditions, in which high pressure, steep temperature gradients, and potentially toxic concentrations of sulfur, methane and heavy metals constitute driving factors for the foundation of chemosynthetic-based ecosystems. Of all the different macroorganisms found at deep-sea hydrothermal vents, the mussel Bathymodiolus azoricus is the most abundant species inhabiting the vent ecosystems from the Mid-Atlantic Ridge (MAR). In the present study, the effect of long term acclimatization at atmospheric pressure on host-symbiotic associations were studied in light of the ensuing physiological adaptations from which the immune and endosymbiont gene expressions were concomitantly quantified by means of real-time PCR. The expression of immune genes at 0 h, 12 h, 24 h, 36 h, 48 h, 72 h, 1 week and 3 weeks post-capture acclimatization was investigated and their profiles compared across the samples tested. The gene signal distribution for host immune and bacterial genes followed phasic changes in gene expression at 24 h, 1 week and 3 weeks acclimatization when compared to other time points tested during this temporal expression study. Analyses of the bacterial gene expression also suggested that both bacterial density and activity could contribute to shaping the intricate association between endosymbionts and host immune genes whose expression patterns seem to be concomitant at 1 week acclimatization. Fluorescence in situ hybridization was used to assess the distribution and prevalence of endosymbiont bacteria within gill tissues confirming the gradual loss of sulfur-oxidizing (SOX) and methane-oxidizing (MOX) bacteria during acclimatization. The present study addresses the deep-sea vent mussel B. azoricus as a model organism to study how acclimatization in aquaria and the prevalence of symbiotic bacteria are driving the expression of host immune genes. Tight associations, unseen thus far, suggest that host immune and bacterial gene expression patterns reflect distinct physiological responses over the course of acclimatization under aquarium conditions. PMID:25462464

  2. Methane sources, distributions, and fluxes from cold vent sites at Hydrate Ridge, Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja U.; Collier, Robert W.; de Angelis, Marie A.; Suess, Erwin; Rehder, Gregor; Linke, Peter; Klinkhammer, Gary P.

    2005-06-01

    To constrain the fluxes of methane (CH4) in the water column above the accretionary wedge along the Cascadia continental margin, we measured methane and its stable carbon isotope signature (?13C-CH4). The studies focused on Hydrate Ridge (HR), where venting occurs in the presence of gas-hydrate-bearing sediments. The vent CH4 has a light ?13C-CH4 biogenic signature (-63 to -66‰ PDB) and forms thin zones of elevated methane concentrations several tens of meters above the ocean floor in the overlying water column. These concentrations, ranging up to 4400 nmol L-1, vary by 3 orders of magnitude over periods of only a few hours. The poleward undercurrent of the California Current system rapidly dilutes the vent methane and distributes it widely within the gas hydrate stability zone (GHSZ). Above 480 m water depth, the methane budget is dominated by isotopically heavier CH4 from the shelf and upper slope, where mixtures of various local biogenic and thermogenic methane sources were detected (-56 to -28‰ PDB). The distribution of dissolved methane in the working area can be represented by mixtures of methane from the two primary source regions with an isotopically heavy background component (-25 to -6‰ PDB). Methane oxidation rates of 0.09 to 4.1% per day are small in comparison to the timescales of advection. This highly variable physical regime precludes a simple characterization and tracing of "downcurrent" plumes. However, methane inventories and current measurements suggest a methane flux of approximately 3 × 104 mol h-1 for the working area (1230 km2), and this is dominated by the shallower sources. We estimate that the combined vent sites on HR produce 0.6 × 104 mol h-1, and this is primarily released in the gas phase rather than dissolved within fluid seeps. There is no evidence that significant amounts of this methane are released to the atmosphere locally.

  3. Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1T) from a deep-sea hydrothermal vent chimney

    SciTech Connect

    Copeland, A [U.S. Department of Energy, Joint Genome Institute; Gu, Wei [U.S. Department of Energy, Joint Genome Institute; Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Pan, Chongle [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2012-01-01

    Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1 T was the first isolate within the phylum ThermusDeinococcus to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1 T is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Complete genome sequence of Thermovibrio ammonificans HB-1T, a thermophilic, chemolithoautotrophic bacterium isolated from a deep-sea hydrothermal vent

    SciTech Connect

    Giovannelli, Donato [Rutgers University; Ricci, Jessica [Rutgers University; Perez-Rodriguez, Ileana [Rutgers University; Hugler, Michael [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; O'Brien, Charles [Rutgers University; Keddis, Ramaydalis [Rutgers University; Grosche, Ashley [Rutgers University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Davenport, Karen W. [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, James [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Vetriani, Costantino [Rutgers University

    2012-01-01

    Thermovibrio ammonificans type strain HB-1T is a thermophilic (Topt: 75 C), strictly anaero- bic, chemolithoautotrophic bacterium that was isolated from an active, high temperature deep-sea hydrothermal vent on the East Pacific Rise. This organism grows on mineral salts medium in the presence of CO2/H2, using NO3- or S0 as electron acceptors, which are re- duced to ammonium or hydrogen sulfide, respectively. T. ammonificans is one of only three species within the genus Thermovibrio, a member of the family Desulfurobacteriaceae, and it forms a deep branch within the phylum Aquificae. Here we report the main features of the genome of T. ammonificans strain HB-1T (DSM 15698T).

  5. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise

    PubMed Central

    German, C. R.; Bowen, A.; Coleman, M. L.; Honig, D. L.; Huber, J. A.; Jakuba, M. V.; Kinsey, J. C.; Kurz, M. D.; Leroy, S.; McDermott, J. M.; de Lépinay, B. Mercier; Nakamura, K.; Seewald, J. S.; Smith, J. L.; Sylva, S. P.; Van Dover, C. L.; Whitcomb, L. L.; Yoerger, D. R.

    2010-01-01

    Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global mid-ocean ridge remains unexplored for hydrothermal activity. Of particular interest are the world’s ultraslow spreading ridges that were the last to be demonstrated to host high-temperature venting but may host systems particularly relevant to prebiotic chemistry and the origins of life. Here we report evidence for previously unknown, diverse, and very deep hydrothermal vents along the ?110 km long, ultraslow spreading Mid-Cayman Rise (MCR). Our data indicate that the MCR hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultramafic systems and, at ?5,000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent types identified here and their relative geographic isolation make the MCR unique in the oceans. These new sites offer prospects for an expanded range of vent-fluid compositions, varieties of abiotic organic chemical synthesis and extremophile microorganisms, and unparalleled faunal biodiversity—all in close proximity. PMID:20660317

  6. Minor element partitioning and mineralogy in limpets from the Ischia CO2 vent site

    NASA Astrophysics Data System (ADS)

    Langer, Gerald; Sadekov, Aleksey; Nehrke, Gernot; Baggini, Cecilia; Rodolfo-Metalpa, Riccardo; Hall-Spencer, Jason; Bijma, Jelle; Elderfield, Henry

    2015-04-01

    Specimens of the patellogastropod limpet Patella caerulea were collected within and outside a CO2 vent site at Ischia, Italy. The shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. Minor element to calcium ratios were measured using laser-ablation-inductively-coupled-plasma-mass-spectroscopy (LA-ICPMS). Mg/Ca, Sr/Ca, and Li/Ca ratios were determined in calcitic as well as aragonitic parts of the shells. This approach allows for investigating the effects of the polymorph and the seawater carbonate chemistry on minor element partitioning separately.

  7. Vulcanolepas scotiaensis sp. nov., a new deep-sea scalpelliform barnacle (Eolepadidae: Neolepadinae) from hydrothermal vents in the Scotia Sea, Antarctica.

    PubMed

    Buckeridge, John S; Linse, Katrin; Jackson, Jennifer A

    2013-01-01

    A new deep-sea stalked barnacle, Vulcanolepas scotiaensis sp. nov. is described from hydrothermal vents at depths of 2400-2600 metres along segments of the East Scotia Ridge and from 1400 metres in the Kemp Caldera. Both locations are areas of volcanic activity that lie on the Antarctic-South American Ocean Ridge complex near the South Sandwich Islands. This discovery confirms a wide distribution in southern seas for Vulcanolepas, complementing the previous records from deep-sea vents in the Lau Basin and Kermadec Ridge in the southwest Pacific, and the Pacific Antarctic Ridge in the southeast Pacific. V. scotiaensis sp. nov., the third described species of Vulcanolepas shows an extraordinary range in morphology, requiring a reassessment of the original diagnosis for Vulcanolepas. Although the morphological envelope of V. scotiaensis sp. nov. includes representatives with a peduncle to capitulum ratio similar to that observed in most neolepadines, the peduncle generally shows greater proportional length than in species in any neolepadine genus except Leucolepas; it is distinguished from other species of Vulcanolepas by a broader capitulum, much smaller imbricating scales on the peduncle and more ornamented capitulum plates. The morphological diversity of V. scotiaensis sp. nov. is interpreted as having arisen due to abrupt changes in water temperature.LSID: urn:lsid:zoobank.org:act:AA2AFDA5-0B08-466A-A584-D3FDBDE9DA61. PMID:25113370

  8. Ocean Vents Were "Factories of Life"

    NSDL National Science Digital Library

    Nannapaneni, Sujani.

    1999-01-01

    This week's In the News focuses on discoveries that provide support for the theory that deep sea hydrothermal vents may have been the "factories of life" three and half billion years ago when Earth's atmosphere did not consist of any oxygen. A recent article published in Science (February 5, 1999, 283:831-833) discusses how scientists at Nagaoka University created an environment similar to a submarine hydrothermal system. Submarine hydrothermals are transition zones where hot water rises from a vent into the cold environment of the surrounding water. The hydrothermal vent sites are termed "black smokers" or sulfide chimneys and are formed when heated water containing metals and volcanic gases rises into the cold deep ocean from hot regions below the seafloor. These scientists added fluid containing the amino acid, glycine, to the simulated environment. They found that glycine polymerizes (one unit is added to the amino acid in a step-wise manner) in the hot region, is released into the cold region where its bonds are solidified, and re-enters the hot region and polymerizes again. The heat from the hot region drives this reaction. The repeated circulation of glycine through the hot and cold water regions of the simulated hydrothermal vents created oligopeptides of glycine. It is suggested that "life probably started with organic chemicals forming into amino acids...from which the first hydrogen-consuming microbes emerged"(3). Researchers at the Carnegie Institution's Geophysical Laboratory suggest that ammonia (NH3) production occurred in early Earth's crust and in hydrothermal vents. Furthermore, organic chemicals such as nitrogen and hydrogen are necessary to form amino acids, which are the basic components of living things. Chris German, of the Southampton Oceanography Centre, spotted a "a hot spring more than 9,000 feet under the Atlantic Ocean where a volcanic vent poured out hydrogen and provided conditions for hydrogen sulfide oxidizing microbes" to survive. Life forms such as giant clams, pale mussels, white crabs, and Pompeii worms (Nature, 1998, 391:545-546) have also been found on these sulfur chimneys. These creatures are dependent on bacteria, which use hydrogen sulfide from vent water as a primary energy source. Scientists hope that studying these ecosystems may shed light on the origin of life on Earth as well as on other worlds in our solar system. The nine resources listed provide background information and insights into these discoveries.

  9. Physiological and genomic features of a novel sulfur-oxidizing gammaproteobacterium belonging to a previously uncultivated symbiotic lineage isolated from a hydrothermal vent.

    PubMed

    Nunoura, Takuro; Takaki, Yoshihiro; Kazama, Hiromi; Kakuta, Jungo; Shimamura, Shigeru; Makita, Hiroko; Hirai, Miho; Miyazaki, Masayuki; Takai, Ken

    2014-01-01

    Strain Hiromi 1, a sulfur-oxidizing gammaproteobacterium was isolated from a hydrothermal vent chimney in the Okinawa Trough and represents a novel genus that may include a phylogenetic group found as endosymbionts of deep-sea gastropods. The SSU rRNA gene sequence similarity between strain Hiromi 1 and the gastropod endosymbionts was approximately 97%. The strain was shown to grow both chemolithoautotrophically and chemolithoheterotrophically with an energy metabolism of sulfur oxidation and O2 or nitrate reduction. Under chemolithoheterotrophic growth conditions, the strain utilized organic acids and proteinaceous compounds as the carbon and/or nitrogen sources but not the energy source. Various sugars did not support growth as a sole carbon source. The observation of chemolithoheterotrophy in this strain is in line with metagenomic analyses of endosymbionts suggesting the occurrence of chemolithoheterotrophy in gammaproteobacterial symbionts. Chemolithoheterotrophy and the presence of homologous genes for virulence- and quorum sensing-related functions suggest that the sulfur-oxidizing chomolithotrophic microbes seek animal bodies and microbial biofilm formation to obtain supplemental organic carbons in hydrothermal ecosystems. PMID:25133584

  10. Keeping "Cool" at Deep-Sea Vents

    NSDL National Science Digital Library

    Astrobiology Magazine

    This Astrobiology Magazine article reports that a research team of marine scientists has determined that water chemistry controls the location and distribution of two species of weird worms inhabiting deep-sea hydrothermal vent sites: the tubeworm (Riftia pachyptila) and Pompeii worm (Alvinella pompejana). The article includes color images of the worms and monitoring equipment, links to related web pages and other astrobiology resources, and an MP3 machine text-to-speech function.

  11. Biogeography of deep-sea wood fall, cold seep and hydrothermal vent Ostracoda (Crustacea), with the description of a new family and a taxonomic key to living Cytheroidea

    NASA Astrophysics Data System (ADS)

    Karanovic, Ivana; Brandão, Simone Nunes

    2015-01-01

    Stimulated by finding a novel cytheroid ostracod in a piece of sunken wood retrieved from the sea-bed in the Kuril-Kamchatka Trench, we have reviewed all previously published data on ostracods from similarly ephemeral deep-sea habitats (wood falls, hydrothermal vents and cold seeps). These data are placed in the context of all data on living, deep-sea ostracods from other environments. We confirm previous authors' conclusions that faunas from these ephemeral habitats are similar at the generic level, and include elements common to shallow and deep habitats. However, at the species level, endemism varies from zero at cold seeps, to 35% in wood falls and 60% at hydrothermal vents, which is an indication of the relative longevity of these habitats. Non-endemic species occur also in oligotrophic, deep-sea sediments but not in shallow environments. This is in contradiction to previous assumptions that these ephemeral faunas share more species and with shallow habitats than genera with the oligotrophic, deep-sea sediments. We agree with previous authors that the dispersal strategy of wood fall, vent and seep ostracods includes hitchhiking and we propose that it also includes the ability to survive ingestion by larger, more motile animals. The homogeneity of the faunas from ephemeral habitats collected off the American continent is in stark contrast to the highly endemic fauna found in Northwestern Pacific. This suggests that the ostracods may have biogeographical patterns similar to those previously proposed for other groups of benthos. However, any proposal for a global biogeographical scheme for ostracod distributions will have to await far more comprehensive coverage from presently unstudied regions. Finally, we describe and name a novel species of ostracod from the wood fall collected at a depth of 5229 m in the abyss east to the Kuril-Kamchatka Trench, Northwestern Pacific; erecting a new family Keysercytheridae fam. nov. and a new genus, Keysercythere gen. nov., to accommodate it, and name it, Keysercythere enricoi sp. nov. We present a preliminary key to all Cytheroidea families for which living representatives have been described.

  12. Distinctive Geomorphology of Gas Venting and Near Seafloor Gas Hydrate-Bearing sites

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Caress, D. W.; Lundsten, E.; Anderson, K.; Gwiazda, R.; McGann, M. L.; Edwards, B. D.; Riedel, M.; Herguera, J.

    2012-12-01

    High-resolution multibeam bathymetry and chirp seismic-reflection profiles collected with an Autonomous Underwater Vehicle (AUV) complimented by Remotely Operated Vehicle (ROV) observations and sampling reveal the fine scale geomorphology associated with gas venting and/or near subsurface gas hydrate accumulations along the Pacific North American continental margin (Santa Monica Basin, Hydrate Ridge, Eel River, Barkley Canyon, and Bullseye Vent) and along the transform faults in the Gulf of California. At the 1 m multibeam grid resolution of the new data, distinctive features and textures that are undetectable at lower resolution, show the impact of gas venting, gas hydrate development, and related phenomena on the seafloor morphology. Together a suite of geomorphic characteristics illustrates different stages in the development of seafloor gas venting systems. The more mature and/or impacted areas are associated with widespread exposures of methane-derived carbonates, which form broken and irregular seafloor pavements with karst-like voids in between the cemented blocks. These mature areas also contain elevated features >10 m high and circular seafloor craters with diameters of 3-50 m that appear to be associated with missing sections of the original seafloor. Smaller mound-like features (<10 m in diameter and 1-3 m higher than the surrounding seafloor) occur at multiple sites. Solid lenses of gas hydrate are occasionally exposed along fractures on the sides of these mounds and suggest that these are push-up features associated with gas hydrate growth within the near seafloor sediments. The youngest appearing features are associated with more-subtle (<3 m in diameter and ~0.5 m high) seafloor mounds, the crests of which are crossed with small cracks lined with white bacterial mats. ROV-collected (<1.5 m long) cores obtained from these subtle mounds encountered a hard layer at 30-60 cm sub-bottom. When this layer was penetrated, methane bubbles gushed out and continued to flow out for over an hour. These observations indicate that these small mounds are young features that trap considerable volumes of gas near the seafloor. Together these observations reveal the integrated effect that gas and/or gas hydrate occurrences can have on the seafloor. The existence of gaseous methane within ~1 m of the seafloor has intriguing implications as to the geo-hazard potential of such sites.

  13. Ammonificins A and B, Hydroxyethylamine Chroman Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, ThermoWibrio ammonificans

    E-print Network

    of chemolithoautotrophic bacteria, capable of oxidizing hydrogen sulfide, hydrogen, and other reduced inorganic compounds, anaerobic, chem- olithoautotrophic bacterium, was isolated from the walls of an active deep-sea hydrothermal of ammonium or hydrogen sulfide, respectively.3 Forty grams wet weight of the organism was extracted in Me

  14. Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys.

    PubMed

    Lin, T Jennifer; Breves, E A; Dyar, M D; Ver Eecke, H C; Jamieson, J W; Holden, J F

    2014-05-01

    Hyperthermophilic iron reducers are common in hydrothermal chimneys found along the Endeavour Segment in the northeastern Pacific Ocean based on culture-dependent estimates. However, information on the availability of Fe(III) (oxyhydr) oxides within these chimneys, the types of Fe(III) (oxyhydr) oxides utilized by the organisms, rates and environmental constraints of hyperthermophilic iron reduction, and mineral end products is needed to determine their biogeochemical significance and are addressed in this study. Thin-section petrography on the interior of a hydrothermal chimney from the Dante edifice at Endeavour showed a thin coat of Fe(III) (oxyhydr) oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite, and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The iron sulfide minerals were likely oxidized to Fe(III) (oxyhydr) oxide with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-dependent estimates of hyperthermophilic iron reducer abundances in this sample were 1740 and 10 cells per gram (dry weight) of material from the outer surface and the marcasite-sphalerite-rich interior, respectively. Two hyperthermophilic iron reducers, Hyperthermus sp. Ro04 and Pyrodictium sp. Su06, were isolated from other active hydrothermal chimneys on the Endeavour Segment. Strain Ro04 is a neutrophilic (pH opt 7-8) heterotroph, while strain Su06 is a mildly acidophilic (pH opt 5), hydrogenotrophic autotroph, both with optimal growth temperatures of 90-92 °C. Mössbauer spectroscopy of the iron oxides before and after growth demonstrated that both organisms form nanophase (<12 nm) magnetite [Fe3 O4 ] from laboratory-synthesized ferrihydrite [Fe10 O14 (OH)2 ] with no detectable mineral intermediates. They produced up to 40 mm Fe(2+) in a growth-dependent manner, while all abiotic and biotic controls produced <3 mm Fe(2+) . Hyperthermophilic iron reducers may have a growth advantage over other hyperthermophiles in hydrothermal systems that are mildly acidic where mineral weathering at increased temperatures occurs. PMID:24612368

  15. Submarine Hydrothermal Sites in Arc Volcanic-Back Arc Environment: Insight from Recent Marine Geophysical Investigations in the Southern Tyrrhenian Sea.

    NASA Astrophysics Data System (ADS)

    Cocchi, L.; Ligi, M.; Bortoluzzi, G.; Petersen, S.; Plunkett, S.; Muccini, F.; Canese, S.; Caratori Tontini, F.; Carmisciano, C.

    2014-12-01

    Hydrothermal alteration processes involve mineralogical and chemical changes, which are reflected in a major modification of potential field patterns observed over hydrothermal areas. Basalt-hosted hydrothermal sites exhibit characteristic responses with magnetic lows and minima of the gravity field. Near bottom AUV (Autonomous Underwater Vehicle) based potential field surveys have become a very effective technique in deep sea exploration. Here we present results of recent ship-borne and near seafloor magnetic and gravity investigations at deep (Marsili and Palinuro seamounts) and shallow (Panarea, Basiluzzo and Secca del Capo) hydrothermal sites in the Southern Tyrrhenian Sea including multibeam bathymetry, seafloor reflectivity and seismic profiles. At Marsili seamount, a large Fe-Mn-oxyhydroxides-rich chimney field is located at the summit (500 m depth). This site is correlated with pronounced magnetic and gravity lows (0 A/m and 2.0 g/cm3). Deep tow magnetic survey (Cruise MAVA11) revealed strong association between the complicated magnetization pattern and the main volcano-tectonic features of the ridge. Hydrothermal manifestations at Palinuro seamount occur mainly on the western sector within the rim of a caldera structure at depth of 600m. Recent AUV based magnetic surveys (Cruise POS442, 2012 using AUV "Abyss") detailed a magnetization low interpreted to represent the local distribution of subseafloor hydrothermal alteration (potentially massive sulfide deposits), and also mapped previously undiscovered inactive chimney fields. Hydrothermal sites observed at the arc-related volcanic islands (Panarea, Basiluzzo, Eolo and Secca del Capo) are confined to shallow depths (less then 300m) and associated with large ochreaceous mounds, vents and chimney fields such as those observed E of Basiluzzo Island. At this site a recent magnetic survey (Cruise PANA13_ASTREA) combined with Remote Operated Vehicle (ROV) investigations revealed that the submarine geothermal field of Panarea island is actually extending in NE-SW direction along preferential tectonic trends which intercept the submerged portion of Basiluzzo. These new findings could help the volcanic hazard mitigation of Panarea archipelago in case of a new gas crisis similar that which occurred in 2002.

  16. Comparative assessment of five potential sites for hydrothermal magma systems: geochemistry

    SciTech Connect

    White, A.F.

    1980-08-01

    A brief discussion is given of the geochemical objectives and questions that must be addressed in such an evaluation. A summary of the currently published literature that is pertinent in answering these questions is presented for each of the five areas: The Geysers-Clear Lake region, Long Valley, Rio Grand Rift, Roosevelt Hot Springs, and the Salton Trough. The major geochemical processes associated with proposed hydrothermal sites are categorized into three groups for presentation: geochemistry of magma and associated volcanic rocks, geochemistry of hydrothermal solutions, and geochemistry of hydrothermal alteration. (MHR)

  17. Subsurface Seismic Structure of the Nascent Ridge Vent Site, Makran Deformation Front, Offshore Pakistan

    NASA Astrophysics Data System (ADS)

    Fekete, Noemi; Spiess, Volkhard; Sahling, Heiko

    2010-05-01

    In 2007, a wide range of geophysical and geological data was collected along the Pakistan segment of the Makran accretionary prism. The main scientific goal of the offshore campaign was to identify, map, and characterize recent or presently active fluid vent sites at and beneath the seafloor. The extremely thick sedimentary cover of the subduction complex was hoped to help pin down the influence of sedimentation on the nature of venting and provide a solid basis to compare resulting seepage with other, largely differing vent systems such as in the Black Sea or at the West-African Margin. High-resolution seismo-acoustic data from the vicinity of the proto deformation front in approximately 3000 m water depth show uniform seismic layering in the subsurface. This is interpreted to indicate undisturbed hemipelagic, predominantly turbiditic sedimentation. At the estimated depth of the base of gas hydrate stability zone, high reflection amplitudes hint to the presence of trapped gas in the strata. The high-amplitude package is a single, clear, negative-polarity reflector towards the flanks of the fold, but becomes a set of elevated reflector segments and chaotic high-amplitude patches towards the crest. The depth of the anomaly below seafloor decreases by several hundred meters to a depth which is thought to be within the gas hydrate stability zone. The reflection polarity of the feature varies locally below the crest between negative, undefinable, and positive, the latter indicating a physical cause other than free gas presence. We attribute this to elevated gas hydrate concentration in the lower part of the stability zone. The structure exhibits 3D topography with vertical steps of several tens of meters within short lateral distances, as well as a chimney-like amplitude drop of relatively small extent. The sediment above the high-amplitude anomaly appears to be fractured, and displays acoustic turbidity in a large portion of the area. Acoustic and visual observations during the cruise documented free gas in the water column, the existence of which might indicate unknown mechanisms of free gas migration through the gas hydrate stability zone. Our data reveal the fine subsurface structure of this rare phenomenon on a few meters' scale, adding to a successful explanation of the feature.

  18. Seismic Structure of Shallow Sediments at the Nascent Ridge Vent Site, Makran Deformation Front, Offshore Pakistan

    NASA Astrophysics Data System (ADS)

    Fekete, N.; Spiess, V.; Ding, F.; Bruening, M.; Murton, B.; Sahling, H.

    2009-04-01

    In fall 2007, a wide range of geophysical and geological data was collected along the Pakistan segment of the Makran accretionary prism. The main scientific goal of the offshore campaign was to identify, map, and characterize recent or presently active fluid vent sites at and beneath the seafloor. The extremely thick sedimentary cover of the subduction complex is hoped to help pin down the influence of sedimentation on the nature of venting and provide a solid basis to compare resulting seepage with other, largely differing vent systems such as in the Black Sea or at the West-African Margin. We present high-resolution seismo-acoustic data from the vicinity of the proto deformation front in approximately 3500 m water depth. Because of the high sedimentation rates, no trench is visible in the bathymetric data, thus the location of ongoing subduction and deformation is not obvious. Seaward of the first fully-developed accretionary ridge and parallel to it, seafloor topography indicates the onset of deformation in the form of folding, called the Nascent Ridge. Uniform seismic layering beneath this feature is interpreted to indicate undisturbed hemipelagic, predominantly turbiditic sedimentation. At the estimated depth of the base of gas hydrate stability zone, high reflection amplitudes hint to the presence of trapped gas in the strata. The high-amplitude package is a single clear reflector towards the flanks of the fold, but becomes a set of elevated reflector segments and chaotic high-amplitude patches towards the crest. The depth of the anomaly below seafloor decreases by several hundred meters to a depth which is thought to be within the gas hydrate stability zone. The sediment on top appears to be fractured. Acoustic and visual observations documented free gas in the water column, the existence of which might indicate unknown mechanisms of free gas intrusions into the gas hydrate stability zone. Our data reveal the fine subsurface structure of this rare phenomenon on a few meters' scale, adding to a successful explanation of the feature.

  19. Hydrogen may be an energy source for endosymbiotic bacteria of the vent mussel Bathymodiolus puteoserpentis

    Microsoft Academic Search

    F. Zielinski; T. Pape; F. Wenzhöfer; R. Seifert; N. Dubilier

    2005-01-01

    The ultramafic hosted Logatchev hydrothermal vent field at the slow spreading Mid-Atlantic Ridge (MAR) exhibits unusually high hydrogen concentrations due to serpentinization of ultramafic rocks. Endmember H2-concentrations here have been calculated to be as high as 12 mM which is significantly higher than at most other vent sites along the MAR. Hydrogen is a potential energy source for bacteria providing

  20. (210)Po and (210)Pb in the tissues of the deep-sea hydrothermal vent mussel Bathymodiolus azoricus from the Menez Gwen field (Mid-Atlantic Ridge).

    PubMed

    Charmasson, Sabine; Le Faouder, Antoine; Loyen, Jeanne; Cosson, Richard P; Sarradin, Pierre-Marie

    2011-01-15

    The hydrothermal deep-sea vent fauna is naturally exposed to a highly specific environment enriched in potentially toxic species such as sulfides, metals and natural radionuclides due to the convective seawater circulation inside the oceanic crust and its interaction with basaltic or ultramafic host rocks. However, data on radionuclides in biota from such environment are very limited. An investigation was carried out on tissue partitioning of (210)Po and (210)Pb, two natural radionuclides within the (238)U decay chain, in Bathymodiolus azoricus specimens from the Mid-Atlantic Ridge (Menez Gwen field). These two elements showed different distributions with high (210)Pb levels in gills and high (210)Po levels in both gills and especially in the remaining parts of the body tissue (including the digestive gland). Various factors that may explain such partitioning are discussed. However, (210)Po levels encountered in B. azoricus were not exceptionally high, leading to weighted internal dose rate in the range 3 to 4 ?Gy h?¹. These levels are slightly higher than levels characterizing coastal mussels (~1 ?Gy h?¹). PMID:21126753

  1. Energetics of hydrothermal convection in heterogeneous ocean crust

    NASA Astrophysics Data System (ADS)

    Ruepke, Lars; Hasenclever, Joerg; Andersen, Christine

    2015-04-01

    Recent advances in hydrothermal flow modeling have revealed the key thermodynamic and fluid-dynamic controls on hydrothermal convection and vent temperatures at oceanic spreading centers. The observed upper limit to black smoker vent temperatures of approx. 400°C can be explained by the thermodynamic properties of water (Jupp and Schultz, 2000). Likewise, 3D models of hydrothermal flow at fast-spreading ridges show cylindrical upwellings with closely interwoven recharge flow (Coumou et al., 2008, Hasenclever et al., 2014). While these studies provide a robust theoretical basis for hydrothermal flow observations at fast-spreading ridges, the situation at slow-spreading ridges is different. The slow-spreading Mid-Atlantic Ridge produces highly heterogeneous crust along its tectonic and magmatic segments with significant permeability contrasts across structural and lithological interfaces. The sub-seafloor permeability structure has a strong control on vent field location such that off-axis hydrothermal systems are apparently consistently located at outcropping fault zones. We have recently shown that preferential flow along high-permeability conduits inevitably leads to the entrainment of cold ambient seawater (Andersen et al., 2014), which causes a temperature drop that is difficult to reconcile with fault-related high-temperature venting. A fundamental question is therefore how hydrothermal fluids can maintain their high temperature while flowing kilometers from a driving heat source through highly heterogeneous crust to a vent site at the seafloor? We address this question by exploring the energetics of hydrothermal convection in heterogeneous ocean crust using 2D and 3D flow simulations. In our analysis we focus on the energy balance of rising hydrothermal plumes and on mixing processes at permeability boundaries, with the aim to establish a more robust theoretical framework for hydrothermal flow through highly heterogeneous seafloor.

  2. Recent population expansion and connectivity in the hydrothermal shrimp

    E-print Network

    Teixeira, Sara

    ORIGINAL ARTICLE Recent population expansion and connectivity in the hydrothermal shrimp Rimicaris of the shrimp Rimicaris exoculata, which forms high-density local populations on hydrothermal vents along

  3. Time-averaged images and quantifications of seafloor hydrothermal plumes from acoustic imaging data: a case study at Grotto Vent, Endeavour Segment Seafloor Observatory

    Microsoft Academic Search

    K. G. Bemis; P. A. Rona; D. R. Jackson; C. Jones; K. Mitsuzawa; D. Palmer; D. Silver; R. Gudlavalletti

    2001-01-01

    Many simple models of plumes predict time-averaged behavior. Although instantaneous measurements of plumes are still useful, time-averaged measurements are more directly comparable. Averages of varying numbers of consecutive acoustic images are quantified and the results compared. The acoustic images of Grotto Vent in the Main Endeavour Vent Field were obtained during the VIP (Vents Imaging Pacific) 2000 cruise using the

  4. Long-term observations of tilt, seafloor pressure and temperatures in the Logatchev Hydrothermal Vent Field, Mid-Atlantic Ridge, 15°N.

    NASA Astrophysics Data System (ADS)

    Villinger, Heinrich; Gennerich, Hans-Hermann; Fabian, Marcus

    2010-05-01

    The Logatchev Hydrothermal Vent Field (LHF) was one of the foci of the German DFG-funded Priority Program 1144 where over the last 5 years attempts were made to monitor hydrothermal and magmatic activity by long-term measurements of (1) seafloor deformation (subsidence, uplift, tilt), (2) tremor (vertical seafloor acceleration, bottom pressure) (2) bottom water temperature variations and (4) variation of outflow temperatures of black smokers. In addition we measured horizontal temperature distribution and vertical temperature profiles in biological communities (mussel fields). Seafloor deformation was measured with an Ocean Bottom Tilt Station (OBT) with a biaxial bubble tilt sensor with a resolution of 1*10-6 rad. Ocean Bottom Pressure (OBP) - an obvious proxy for uplift or subsidence- was measured with a Paroscientific Digiquartz Pressure Sensor with an absolute resolution of 5 Pa (equivalent of 0.5mm depth change). A microelectromechanical systems (MEMS) accelerometer of type Kistler with about 10-5 m/s2 nominal resolution was mounted in the OBT's sensor pressure tube to measure vertical acceleration. A short mooring at the seafloor with 25 temperature sensor distributed over 25m, located close to the outflow plume of a black smoker recorded variations in plume activity. In addition a high temperature sensor was placed directly inside the outflow of two black smokers and recorded temperatures over a week resp. over almost one year. In summary, all our deployed systems worked very well and data quality was good to excellent. However we also had to face the occasional data loss due to power failure or corrosion problems inside of underwater connectors. Because of its very high resolution the precise leveling of the tilt station with the help of an ROV was a challenge.. Unfortunately due to logistical problems with ROV and/or cruise scheduling we lost one complete cruise and during the last cruise to LHF in January 2009, not all instruments could be recovered due to extended bad weather conditions. In our presentation we will present an overview of our instruments, discuss our technical design principles, demonstrate the capabilities of our instruments and show and discuss the data collected over the last 4 years. In conclusion, a meaningful interpretation of long-term time series of seafloor deformation, in particular tilt and pressure, is only possible with simultaneous observations of the physical oceanography in the area and the use of sensor arrays instead of single point observations.

  5. Molecular Diversity of New Thermococcales Isolates from a Single Area of Hydrothermal Deep-Sea Vents as Revealed by Randomly Amplified Polymorphic DNA Fingerprinting and 16S rRNA Gene Sequence Analysis

    PubMed Central

    Lepage, Elodie; Marguet, Evelyne; Geslin, Claire; Matte-Tailliez, Oriane; Zillig, Wolfram; Forterre , Patrick; Tailliez, Patrick

    2004-01-01

    Members of the Thermococcales are anaerobic Archaea belonging to the kingdom Euryarchaea that are studied in many laboratories as model organisms for hyperthermophiles. We describe here a molecular analysis of 86 new Thermococcales isolates collected from six different chimneys of a single hydrothermal field located in the 13°N 104°W segment of the East Pacific ridge at a depth of 2,330 m. These isolates were sorted by randomly amplified polymorphic DNA (RAPD) fingerprinting into nine groups, and nine unique RAPD profiles were obtained. One RAPD group corresponds to new isolates of Thermococcus hydrothermalis, whereas all other groups and isolates with unique profiles are different from the 22 reference strains included in this study. Analysis of 16S rRNA gene sequences of representatives of each RAPD group and unique profiles showed that one group corresponds to Pyrococcus strains, whereas all the other isolates are Thermococcus strains. We estimated that our collection may contain at least 11 new species. These putative species, isolated from a single area of hydrothermal deep-sea vents, are dispersed in the 16S rRNA tree among the reference strains previously isolated from diverse hot environments (terrestrial, shallow water, hydrothermal vents) located around the world, suggesting that there is a high degree of dispersal of Thermococcales. About one-half of our isolates contain extrachromosomal elements that could be used to search for novel replication proteins and to develop genetic tools for hyperthermophiles. PMID:15006744

  6. In situ measurements of hydrogen sulfide, oxygen, and temperature in diffuse fluids of an ultramafic-hosted hydrothermal vent field (Logatchev, 14°45?N, Mid-Atlantic Ridge): Implications for chemosymbiotic bathymodiolin mussels

    NASA Astrophysics Data System (ADS)

    Zielinski, Frank U.; Gennerich, Hans-Hermann; Borowski, Christian; WenzhöFer, Frank; Dubilier, Nicole

    2011-09-01

    The Logatchev hydrothermal vent field (14°45'N, Mid-Atlantic Ridge) is located in a ridge segment characterized by mantle-derived ultramafic outcrops. Compared to basalt-hosted vents, Logatchev high-temperature fluids are relatively low in sulfide indicating that the diffuse, low-temperature fluids of this vent field may not contain sufficient sulfide concentrations to support a chemosymbiotic invertebrate community. However, the high abundances of bathymodiolin mussels with bacterial symbionts related to free-living sulfur-oxidizing bacteria suggested that bioavailable sulfide is present at Logatchev. To clarify, if diffuse fluids above mussel beds of Bathymodiolus puteoserpentis provide the reductants and oxidants needed by their symbionts for aerobic sulfide oxidation, in situ microsensor measurements of dissolved hydrogen sulfide and oxygen were combined with simultaneous temperature measurements. High temporal fluctuations of all three parameters were measured above the mussel beds. H2S and O2 coexisted with mean concentrations between 9 and 31 ?M (H2S) and 216 and 228 ?M (O2). Temperature maxima (?7.4°C) were generally concurrent with H2S maxima (?156 ?M) and O2 minima (?142 ?M). Long-term measurements for 250 days using temperature as a proxy for oxygen and sulfide concentrations indicated that the mussels were neither oxygen limited nor sulfide limited. Our in situ measurements at Logatchev indicate that sulfide may also be bioavailable in diffuse fluids from other ultramafic-hosted vents along slow and ultraslow spreading ridges.

  7. COMPARISON OF VENTED AND ABSOLUTE PRESSURE TRANSDUCERS FOR WATER-LEVEL MONITORING IN HANFORD SITE CENTRAL PLATEAU WELLS

    SciTech Connect

    MCDONALD JP

    2011-09-08

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The disequilibrium is likely limited to wells screened across the water table (i.e., open to the deep vadose zone) where the depth to water is large or a low-permeability layer occurs in the vadose zone. Such wells are a pathway for air movement between the deep vadose zone and land surface and this sustains the pressure disequilibrium between the well bore and the atmosphere for longer time periods. Barometric over-response was not observed with the absolute pressure transducers because barometric compensation was achieved by directly measuring the air pressure within the well. Users of vented pressure transducers should be aware of the over-response issue in certain Hanford Site wells and ascertain if it will affect the use of the data. Pressure disequilibrium between the well and the atmosphere can be identified by substantial air movement through the wellbore. In wells exhibiting pressure disequilibrium, it is recommended that absolute pressure transducers be used rather than vented transducers for applications that require precise automated determinations of well water-level changes in response to barometric pressure fluctuations.

  8. Characterization of Microbial Communities Associated With Deep-Sea Hydrothermal Vent Animals of the East Pacific Rise and the Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Ward, N.; Page, S.; Heidelberg, J.; Eisen, J. A.; Fraser, C. M.

    2002-12-01

    The composition of microbial communities associated with deep-sea hydrothermal vent animals is of interest because of the key role of bacterial symbionts in driving the chemosynthetic food chain of the vent system, and also because bacterial biofilms attached to animal exterior surfaces may play a part in settlement of larval forms. Sequence analysis of 16S ribosomal RNA (rRNA) genes from such communities provides a snapshot of community structure, as this gene is present in all Bacteria and Archaea, and a useful phylogenetic marker for both cultivated microbial species, and uncultivated species such as many of those found in the deep-sea environment. Specimens of giant tube worms (Riftia pachyptila), mussels (Bathymodiolus thermophilus), and clams (Calyptogena magnifica) were collected during the 2002 R/V Atlantis research cruises to the East Pacific Rise (9N) and Galápagos Rift. Microbial biofilms attached to the exterior surfaces of individual animals were sampled, as were tissues known to harbor chemosynthetic bacterial endosymbionts. Genomic DNA was extracted from the samples using a commercially available kit, and 16S rRNA genes amplified from the mixed bacterial communities using the polymerase chain reaction (PCR) and oligonucleotide primers targeting conserved terminal regions of the 16S rRNA gene. The PCR products obtained were cloned into a plasmid vector and the recombinant plasmids transformed into cells of Escherichia coli. Individual cloned 16S rRNA genes were sequenced at the 5' end of the gene (the most phylogenetically informative region in most taxa) and the sequence data compared to publicly available gene sequence databases, to allow a preliminary assignment of clones to taxonomic groups within the Bacteria and Archaea, and to determine the overall composition and phylogenetic diversity of the animal-associated microbial communities. Analysis of Riftia pachyptila exterior biofilm samples revealed the presence of members of the delta and epsilon proteobacteria, low GC Gram positive bacteria (firmicutes), spirochetes, CFB (Cytophaga-Flavobacterium-Bacteroides) group, green nonsulfur bacteria, acidobacteria, verrucomicrobia, and planctomycetes. The presence of the latter three taxonomic groups is of special interest, as they represent phylogenetically distinct groups within the Bacteria for which specific ecological functions have not yet been identified, but which have been found to be widely distributed and often numerically significant in diverse terrestrial and aquatic habitats. Although further sequencing is required to demonstrate the presence of a Riftia-associated microbial population distinct from that of the surrounding seawater, results available from three Riftia individuals from the East Pacific Rise suggest this to be the case. Analysis of microbial communities associated with the gill tissue of the mussel Bathymodiolus thermophilus shows a population dominated by gamma-Proteobacterial chemoautotrophic symbionts, although lower frequency novel phylotypes have been detected. Representatives of specific taxonomic groups have been selected for sequencing of the complete 16S rRNA gene, and the sequences used to reconstruct phylogenetic trees to more accurately determine the evolutionary relationships between the novel sequences, and available sequences for both cultured and non-cultured bacteria.

  9. Find a Plume, Find a Vent

    NSDL National Science Digital Library

    This classroom activity gives students an appreciation for the difficulties deep sea researchers must face in order to find hydrothermal vents. Working in small groups, students can complete this Web investigation in a single class period. The printable handout includes a series of inquiry-based questions that prompt students to use what they already know about mid-ocean ridges to hypothesize about how scientists locate deep sea vents, detailed directions for a Web research project that takes them on a virtual deep sea journey investigating hydrothermal vents, and a worksheet that helps students apply their building knowledge to locate a vent in the northern Pacific Ocean.

  10. Geochemistry of fluid phases and sediments: Relevance to hydrothermal circulation in Middle Valley, ODP Legs 139 and 169

    USGS Publications Warehouse

    Gieskes, J.M.; Simoneit, B.R.T.; Shanks, Wayne C., III; Goodfellow, W.D.; James, R.H.; Baker, P.A.; Ishibashi, J.-I.

    2002-01-01

    Geochemical and isotopic studies of pore fluids and solid phases recovered from the Dead Dog and Bent Hill hydrothermal sites in Middle Valley (Ocean Drilling Program Leg 169) have been compared with similar data obtained previously from these sites during Ocean Drilling Program Leg 139. Although generally the hydrothermal systems reflect non-steady state conditions, the data allow an assessment of the history of the hydrothermal processes. Sediment K/A1 ratios as well as the distribution of anhydrite in the sediments suggest that the Dead Dog hydrothermal field has been, and still is, active. In contrast, similar data in the Bent Hill hydrothermal field indicate a waning of hydrothermal activity. Pore fluid and hydrothermal vent data in the Dead Dog hydrothermal field are similar in nature to the data collected during ODP Leg 139. In the area of the Bent Hill sulfide deposit, however, the pore water data indicate that recent wholesale flushing of the sediment column with relatively unaltered seawater has obliterated a previous record of hydrothermal activity in the pore fluids. Data from the deepest part of Hole 1035A in the Bent Hill locality show the presence of hydrothermal fluids at greater depths in this area. This suggests the origin of the hydrothermal fluids found to be emanating from Hole 1035F, which constitutes one of the first man made hydrothermal vents in the Middle Valley hydrothermal system. Similarly, CORKed Hole 858G, because of seal failures, has acted as a hydrothermal vent, with sulfide deposits forming inside the CORK. ?? 2002 Elsevier Science Ltd. All rights reserved.

  11. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii.

    PubMed Central

    Moyer, C L; Dobbs, F C; Karl, D M

    1994-01-01

    PCR was used to amplify (eu)bacterial small-subunit (16S) rRNA genes from total-community genomic DNA. The source of total-community genomic DNA used for this culture-independent analysis was the microbial mats from a deep-sea, hydrothermal vent system, Pele's Vents, located at Loihi Seamount, Hawaii. Oligonucleotides complementary to conserved regions in the 16S rRNA-encoding DNA (rDNA) of bacteria were used to direct the synthesis of PCR products, which were then subcloned by blunt-end ligation into phagemid vector pBluescript II. Restriction fragment length polymorphism patterns, created by using tandem tetrameric restriction endonucleases, revealed the presence of 12 groups of 16S rRNA genes representing discrete operational taxonomic units (OTUs). The rank order abundance of these putative OTUs was measured, and the two most abundant OTUs accounted for 72.9% of all of the 16S rDNA clones. Among the remaining 27.1% of the 16S rDNA clones, none of the 10 OTUs was represented by more than three individual clones. The cumulative OTU distribution for 48 bacterial 16S rDNA clones demonstrated that the majority of taxa represented in the clone library were detected, a result which we assume to be an estimate of the diversity of bacteria in the native hydrothermal vent habitat. 16S rDNA fingerprinting of individual clones belonging to particular OTUs by using an oligonucleotide probe that binds to a universally conserved region of the 16S rDNA fragments was conducted to confirm OTU specificity and 16S rDNA identity. Images PMID:7512808

  12. Hydrothermal Plume Geochemistry along the East Lau Spreading Center

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Baker, E.; Martinez, F.; Buck, N.; Walker, S.; Seewald, J.; Proskurowski, G.; Lupton, J.; Wheat, G.

    2008-12-01

    In 2004 and 2008, we conducted extensive surveys of hydrothermal plumes along the East Lau Spreading Center (ELSC) in the Lau Back Arc Basin. The survey in 2008 is the most comprehensive plume survey conducted on any ridge to date. It covered 100 km2 by towing the 120 kHz side scan sonar and associated sensors from 19.9 to 21° S at 1 km intervals extending 5km on each side of the ridge crest. This part of the survey encompassed the known vent fields, Tow Cam, ABE, and Kila Moana. A fourth major vent field north of ABE was also identified. Near the ABE vent field survey lines were done at 0.5km intervals. The Valu Fa Ridge from 21.9 to 22.4°S was also surveyed using 7 lines at 0.7km spacing. The side scan sonar was towed ~ 100m above the sea floor with plume sensing instruments on the towline, clump weight, sonar, and on a line extended below the clump weight. Plume sensors included the Vents In Situ Analyzer, optical backscatter, Oxidation Reduction Potential, and CTD. Vertical and towed hydrocasts were located in areas of interest to collect sea water samples for chemical characterization of the plumes. While the surveys indicate that robust (high temperature) venting was restricted to an area within 1km of the ridge axis, there was some limited evidence of lower temperature venting further form the axis. The plume data from the sensors and discrete samples will be used to chemically characterize the hydrothermal plumes found along the ELSC. Emphasis will be placed on known vent fields and the North ABE field. 3He and Mn in the plumes will be compared to vent fluid data at the known sites. Although the N. ABE field appears to be the largest of the vent fields in this region, vent fluids from it have not yet been collected. The plumes above N. ABE have the most elevated levels of 3He and Mn of all of the plumes sampled along the ELSC and Valu Fa Ridges. This vent field is located closer to the transitions between andesitic rocks in the south and basaltic rocks in the north. This transition also marks the boundary between an underlying magma chamber to no magma chamber in the north. Characterizing the N. ABE field is likely important in fully integrating the role and style of hydrothermal venting along the ELSC.

  13. Geology and chemistry of hydrothermal deposits from active submarine volcano Loihi, Hawaii

    Microsoft Academic Search

    Alexander Malahoff; Gary M. McMurtry; John C. Wiltshire; Hsueh-Wen Yeh

    1982-01-01

    High-resolution bathymetric surveys, bottom photography and sample analyses show that Loihi Seamount at the southernmost extent of the Hawaiian `hotspot' is an active, young submarine volcano that is probably the site of an emerging Hawaiian island. Hydrothermal deposits sampled from the active summit rift system were probably formed by precipitation from cooling vent fluids or during cooling and oxidation of

  14. Dispersal of hydrothermal plumes in the near field of natural CO2 seeps in the Okinawa Trough using primordial helium-3

    NASA Astrophysics Data System (ADS)

    Buss, A.; Walter, M.; Mertens, C.; Sültenfuss, J.; Nakamura, K.; Rehder, G. J.; Rhein, M.

    2011-12-01

    The Okinawa Trough back-arc basin in the west Pacific Ocean is one of the two known hydrothermal active areas where venting of liquid CO2 bubbles has been observed. During the RV Sonne cruise SO-196 in March 2008 two hydrothermal vent sites in the southern Okinawa Trough were investigated: Hatoma Knoll and Yonaguni Knoll IV. Data were collected to characterise the dispersal of the hydrothermal plume and hence the spreading of CO2 in the water column. The data set consists of CTD casts with additional sensors for redox potential and pH as well as velocity measurements with a lowered acoustic Doppler current profiler (LADCP) and water samples to determine helium isotope concentrations. The dispersal of the hydrothermal plumes at the two vent sites was analysed using primordial helium as a conservative tracer for hydrothermal venting and anomalies in the redox potential and pH as an indicator of plume characteristics. The relation between the measured decrease in pH and ?3He showed a good correlation in the density ranges of the plumes at Hatoma Knoll as well as at Yonaguni Knoll IV. The heat fluxes from both vent sites were estimated through the maximum rise height of the plume and the background stratification. The vent site Hatoma Knoll lies in the middle of the caldera of a submarine volcano. One non-buoyant plume with a maximum rise height of 140 m above the seafloor has been identified. The vent site emitted a total heat flux of about 80 MW. The excess of ?3He in the water column agrees well with the maximum rise height of the plume, thus indicating a plume that had risen almost undisturbed. The vent site Yonaguni Knoll IV is located in a valley between a group of seamounts. Two non-buoyant plumes have been identified, with maximum rise heights of 230 m and 270 m above the seafloor. The total heat flux from the vent site was about 540 MW. An excess of ?3He has been found up to 600 m above the seafloor which could be caused by strong vertical mixing, but also by yet undiscovered hydrothermal vents north of the working area at Yonaguni Knoll IV. The stronger plume variability at Yonaguni Knoll IV compared to Hatoma Knoll is a result of the difference in the hydrographic and topographic settings between the vent sites.

  15. Warrego Valles and Other Candidate Sites of Local Hydrothermal Activity Within The Thaumasia Region, Mars

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Tanaka, K. L.; Lias, J. H.; Hare, T. M.; Anderson, R. C.; Gulick, V. C.

    1998-01-01

    We have previously demonstrated for the Thaumasia region of Mars that: (1) valley formation peaked during the Noachian and declined substantially during the Hesperian and Amazonian Periods and (2) valleys, many of which form networking systems, largely occur near volcanoes, highly faulted terrains, and large impact craters of similar age, thus suggesting hydrothermal activity. In Tanaka et al, the various hypotheses for valley formation on Mars are presented, and a geologic explanation for valley erosion in the Thaumasia region is given that "best fits" the region's geographic and geologic datasets. That comprehensive GIS-based investigation suggests that hydrothermal and seismic activity were the primary causes of valley formation in the Thaumasia region; the data make widespread precipitation less likely as a major factor in valley formation, except perhaps during the Early Noachian, for which much of the geologic record has been destroyed. Based on the reconstruction of the stratigraphic, tectonic, volcanic, and erosional histories and the close association of valleys in time and space with Noachian to Early Hesperian volcanoes and rift systems and Hesperian to Early Amazonian impact craters less than 50 km in diameter, we propose 13 sites of hydrothermal activity within the Thaumasia region; these are the best examples of valleys associated with these geologic features, but there are other less pronounced correlations elsewhere in the region.

  16. Near-Seafloor Magnetic Exploration of Submarine Hydrothermal Systems in the Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, F.; de Ronde, C. E. J.; Tivey, M.; Kinsey, J. C.

    2014-12-01

    Magnetic data can provide important information about hydrothermal systems because hydrothermal alteration can drastically reduce the magnetization of the host volcanic rocks. Near-seafloor data (?70 m altitude) are required to map hydrothermal systems in detail; Autonomous Underwater Vehicles (AUVs) are the ideal platform to provide this level of resolution. Here, we show the results of high-resolution magnetic surveys by the ABE and Sentry AUVs for selected submarine volcanoes of the Kermadec arc. 3-D magnetization models derived from the inversion of magnetic data, when combined with high resolution seafloor bathymetry derived from multibeam surveys, provide important constraints on the subseafloor geometry of hydrothermal upflow zones and the structural control on the development of seafloor hydrothermal vent sites as well as being a tool for the discovery of previously unknown hydrothermal sites. Significant differences exist between the magnetic expressions of hydrothermal sites at caldera volcanoes ("donut" pattern) and cones ("Swiss cheese" pattern), respectively. Subseafloor 3-D magnetization models also highlight structural differences between focused and diffuse vent sites.

  17. Temporal monitoring and quantification of hydrothermal activity from photomosaics and 3D video reconstruction: The Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Barreyre, T.; Escartin, J.; Cannat, M.; Garcia, R. A.

    2011-12-01

    Seafloor imagery provides detailed and accurate constrain on the distribution, geometry, and nature of hydrothermal outflow, and its links to the ecosystems that they sustain. Repeated surveys allow us to evaluate the temporal variability of these systems. Geo-referenced and co-registered photomosaics of the Lucky Strike hydrothermal field (Mid Atlantic Ridge, 37°N), derived from >60,000 seafloor images acquired in 1996, 2006, 2008 and 2009, using deep-towed and ROV vehicles. Newly-developed image processing techniques, specifically tailored to generate giga-mosaics in the underwater environment, include correction of illumination artifacts and removal of the edges between individual images so as to obtain a continuous and single mosaic image over a surface of up ~800x800 m and with a pixel resolution of 5-10 mm. Photomosaicing is complemented by 3D-reconstruction of hydrothermal edifices from video imagery, with the mapping of image texture over the 3D model surface. These image and video data can also be directly linked with high-resolution microbathymetry acquired near-bottom acoustic systems. Preliminary analysis of these mosaics reveals the distribution of low-temperature hydrothermal outflow, recognizable owing to its association with bacterial mats and hydrothermal deposits easily identifiable in the imagery. These low-temperature venting areas, often associated with high-temperature hydrothermal vents, are irregularly distributed throughout the site, defining clusters. In detail, the outflow geometry is largely controlled by the nature of the substrate (e.g., cracks and fissures, diffuse flow patches, existing hydrothermal constructs). The spatial relationships between the high- and diffuse venting as revealed by the imagery provide constraints on the shallow plumbing structure throughout the site.. Imagery provides constraints on temporal variability at two time-scales. First, we can identify changes in the distribution and presence of actively venting areas between the different image mosaics, hence at time-scales ranging from 1 to 13 years; of >50 sites examined, more than two-thirds displayed a decrease in hydrothermal activity. Second, the image mosaics reveal broad patches of seafloor with evidence of fossil hydrothermal activity, as indicated by the presence of extinct chimneys and hydrothermal deposits, and within which actively venting areas tend to concentrate. While there is no dating of fossil hydrothermal deposits, these deposits probably record changes in hydrothermal activity at time scales of 100's to 1000's of years. Overall these data document a decay in the extent and intensity of hydrothermal activity that is observed both at the short- and long-timescale. This decline is not apparent in the instrumental records of temperature outflows at individual vents (2009-2011 time-series), thus demonstrating the need and complementarity of imaging and instrumental monitoring. These results demonstrate that repeated image surveys with adequate processing can be routinely performed to characterize a broad range of sites of interest (e.g., cold seeps, hydrothermal fields, gas outflows, etc.), their temporal variability at timescales of 1 to 10s of years, and hence opening the possibility to better understand the dynamics of fluid flow in the sub-seafloor.

  18. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: Model-based evidence for significant POC supply to seafloor sediments

    NASA Astrophysics Data System (ADS)

    German, C. R.; Legendre, L. L.; Sander, S. G.; Niquil, N.; Luther, G. W.; Bharati, L.; Han, X.; Le Bris, N.

    2015-06-01

    Submarine hydrothermal venting has recently been identified to have the potential to impact ocean biogeochemistry at the global scale. This is the case because processes active in hydrothermal plumes are so vigorous that the residence time of the ocean, with respect to cycling through hydrothermal plumes, is comparable to that of deep ocean mixing caused by thermohaline circulation. Recently, it has been argued that seafloor venting may provide a significant source of bio-essential Fe to the oceans as the result of a close coupling between Fe and organic carbon in hydrothermal plumes. But a complementary question remains to be addressed: does this same intimate Fe-Corg association in hydrothermal plumes cause any related impact to the global C cycle? To address this, SCOR-InterRidge Working Group 135 developed a modeling approach to synthesize site-specific field data from the East Pacific Rise 9°50? N hydrothermal field, where the range of requisite data sets is most complete, and combine those inputs with global estimates for dissolved Fe inputs from venting to the oceans to establish a coherent model with which to investigate hydrothermal Corg cycling. The results place new constraints on submarine Fe vent fluxes worldwide, including an indication that the majority of Fe supplied to hydrothermal plumes should come from entrainment of diffuse flow. While this same entrainment is not predicted to enhance the supply of dissolved organic carbon to hydrothermal plumes by more than ?10% over background values, what the model does indicate is that scavenging of carbon in association with Fe-rich hydrothermal plume particles should play a significant role in the delivery of particulate organic carbon to deep ocean sediments, worldwide.

  19. Discovery of new hydrothermal activity and chemosynthetic fauna on the Central Indian Ridge at 18°-20° S.

    PubMed

    Nakamura, Kentaro; Watanabe, Hiromi; Miyazaki, Junichi; Takai, Ken; Kawagucci, Shinsuke; Noguchi, Takuro; Nemoto, Suguru; Watsuji, Tomo-o; Matsuzaki, Takuya; Shibuya, Takazo; Okamura, Kei; Mochizuki, Masashi; Orihashi, Yuji; Ura, Tamaki; Asada, Akira; Marie, Daniel; Koonjul, Meera; Singh, Manvendra; Beedessee, Girish; Bhikajee, Mitrasen; Tamaki, Kensaku

    2012-01-01

    Indian Ocean hydrothermal vents are believed to represent a novel biogeographic province, and are host to many novel genera and families of animals, potentially indigenous to Indian Ocean hydrothermal systems. In particular, since its discovery in 2001, much attention has been paid to a so-called 'scaly-foot' gastropod because of its unique iron-sulfide-coated dermal sclerites and the chemosynthetic symbioses in its various tissues. Despite increasing interest in the faunal assemblages at Indian Ocean hydrothermal vents, only two hydrothermal vent fields have been investigated in the Indian Ocean. Here we report two newly discovered hydrothermal vent fields, the Dodo and Solitaire fields, which are located in the Central Indian Ridge (CIR) segments 16 and 15, respectively. Chemosynthetic faunal communities at the Dodo field are emaciated in size and composition. In contrast, at the Solitaire field, we observed faunal communities that potentially contained almost all genera found at CIR hydrothermal environments to date, and even identified previously unreported taxa. Moreover, a new morphotype of 'scaly-foot' gastropod has been found at the Solitaire field. The newly discovered 'scaly-foot' gastropod has similar morphological and anatomical features to the previously reported type that inhabits the Kairei field, and both types of 'scaly-foot' gastropods genetically belong to the same species according to analyses of their COI gene and nuclear SSU rRNA gene sequences. However, the new morphotype completely lacks an iron-sulfide coating on the sclerites, which had been believed to be a novel feature restricted to 'scaly-foot' gastropods. Our new findings at the two newly discovered hydrothermal vent sites provide important insights into the biodiversity and biogeography of vent-endemic ecosystems in the Indian Ocean. PMID:22431990

  20. Time-Series Exploration and Biological, Geological, and Geochemical Characterization of the Rosebud and Calyfield Hydrothermal Vent Fields at 86°W and 89.5°W on the Galapagos Rift

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Hammond, S.; Fornari, D.; Waller, R.; Ding, K.; Seyfried, W.; Butterfield, D.; Lilley, M. D.; Perfit, M.

    2002-12-01

    In May-June 2002, the Galapagos Rift axis was explored during a NOAA Ocean Exploration Program expedition that investigated three sites along the Rift between 86°W and 89.5°W. Two major vent fields with markedly different community structures were discovered near 86° 13'W (Rosebud) and 89° 37'W (Calyfield) and were biologically, geologically and geochemically characterized. Alvin dives were initially conducted to extend the long-running biological and geochemical time-series at some of the earliest discovered vent sites (e.g., Rose Garden, 1979; Musselbed, 1977). Alvin dives to the Rose Garden (RG) area (86°W) revealed: 1) a notable absence of the 14 seafloor markers and ~7 stacks of Alvin dive weights that were observed during the last visit to RG in 1990; 2) relatively recent lava flows (as indicated by a 0.6 wt. percent increase in evolved N-MORB MgO in RG [1985] and Rosebud lava flows); and 3) relatively young (small/juvenile) species assemblages. Thus, the well-developed vent faunal communities documented 12 years earlier at RG were apparently buried by eruptive lava flows. Within 200 meters of RG, a new site, Rosebud (2470m), has emerged to support communities presently in the early stages of their development in fluids exhibiting the highest temperatures (23°C) and H2S concentrations (>0.55 mmol per L) observed on the Galapagos Rift. Photomosaics of the Rosebud vent field (70 x 50 m) reveal this site to consist of 4 major venting areas containing vestimentiferan tubeworms (majority less than 6cm in length), linear rows of bathymodiolid mussels (average ~1cm in length), and adjacent carpets of amphianthid anemones (ca. 50 per square meter). A single assemblage of larger mussels (>10cm) was observed on the margin of the field. Vesicomyid clams (ca. 10 individuals), all less than 3 cm, were observed along cracks in the central sheet flow. Based on extensive time-series analysis of biological community structure on the East Pacific Rise, the age of the Rosebud communities are likely not more than 2.5 years old. The western-most known vent field on the Galapagos Rift, Calyfield, (60m x 60m; 1679m), was discovered at 89° 37'W, and is dominated by the Vesicomyid clam Calyptogena magnifica. This field is similar in appearance to the Clam Acres site at 21°N on East Pacific Rise). Photomosaics constructed via images acquired from Alvin revealed the distribution of large clams (ca. 18-32cm) to predominate in the flow contacts between pillow lavas, along with numerous clumps of bathymodiolid mussels (individuals >10 fold larger than those found at Rosebud), sparse vestimentiferan (Oasisia) tubeworms, numerous amphipod swarms, and the presence of large patches of a grey encrusting sponge on the pillow basalts. This Demospongiae sp. appears endemic to Calyfield. Differences in these communities, their relationship to vent fluid chemistry, and patterns of community succession at eastern Pacific vents will be presented.

  1. A geological and geophysical investigation of Baby Bare, locus of a ridge flank hydrothermal system in the Cascadia Basin

    Microsoft Academic Search

    Nathan C. Becker; C. Geoffrey Wheat; Michael J. Mottl; Jill L. Karsten; Earl E. Davis

    2000-01-01

    Baby Bare is one of three small basement outcrops on the eastern, sediment-buried Juan de Fuca Ridge flank that have localized heat loss and fluid movement within 3.5 Ma oceanic crust. Low-temperature (25°C) hydrothermal vents near the summit of Baby Bare represent the highest-temperature occurrence of off-axis hydrothermal activity found in oceanic crust older than 1 million years. This site

  2. Vent Activity

    USGS Multimedia Gallery

    Southerly winds offered decent views of the collapse pits on the west flank of Pu`u `? `?. The TEB vent is the heavily fuming vent beyond Pu`u `? `? to the right, and the active tube system extends to the right out of the image frame....

  3. Hydrothermal activity at the Arctic mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pedersen, Rolf B.; Thorseth, Ingunn H.; Nygård, Tor Eivind; Lilley, Marvin D.; Kelley, Deborah S.

    Over the last 10 years, hydrothermal activity has been shown to be abundant at the ultraslow spreading Arctic Mid-Ocean Ridges (AMOR). Approximately 20 active and extinct vent sites have been located either at the seafloor, as seawater anomalies, or by dredge sampling hydrothermal deposits. Decreasing spreading rates and decreasing influence of the Icelandic hot spot toward the north along the AMOR result in a north-south change from a shallow and magmatically robust to a deep and magmatically starved ridge system. This contrast gives rise to large variability in the ridge geology and in the nature of the associated hydrothermal systems. The known vent sites at the southern part of the ridge system are either low-temperature or white smoker fields. At the deep, northern parts of the ridge system, a large black smoker field has been located, and seawater anomalies and sulfide deposits suggest that black smoker-type venting is common. Several of these fields may be peridotite-hosted. The hydrothermal activity at parts of the AMOR exceeds by a factor of 2 to 3 what would be expected by extrapolating from observations on faster spreading ridges. Higher fracture/fault area relative to the magma volume extracted seems a likely explanation for this. Many of the vent fields at the AMOR are associated with axial volcanic ridges. Strong focusing of magma toward these ridges, deep rifting of the ridges, and subsequent formation of long-lived detachment faults that are rooted below the ridges may be the major geodynamic mechanisms causing the unexpectedly high hydrothermal activity.

  4. Deep Sea Vents Web List

    NSDL National Science Digital Library

    This student-friendly list has eight web sites that relate to deep sea vents. A short description follows each site, listing the reference materials, interactive tools, videos, sound recordings, photo archives, or other resources that can be found there.

  5. REE/Fe variations in hydrothermal sediments: Implications for the REE content of seawater

    SciTech Connect

    Olivarez, A.M.; Owen, R.M. (Univ. of Michigan, Ann Arbor (USA))

    1989-03-01

    Seafloor hydrothermal vent solutions exhibit rare earth element (REE) enrichments ranging between one to three orders of magnitude greater than average seawater. To assess the impact of these hydrothermal inputs on ocean chemistry, the authors have examined he behavior of REEs for hydrothermal sediments collected adjacent to two Pacific spreading ridge sites: the East Pacific Rise at 19{degree}S, and the Southern Juan de Fuca Ridge at 45{degree}N. In general, the REE/Fe ratios for both proximal and distal hydrothermal sediments are greater than vent solutions by a factor of 2 to 500, and these ratios increase with increasing distance away from the ridge axis. An evaluation of these results in the context of previous models of REE behavior indicates that, in fact, seawater experiences a net depletion in REEs as a result of hydrothermal activity. This is due primarily to the large scavenging capacity of iron oxyhydroxides which precipitate from these solutions. Such an interpretation explains why the REE content of seawater collected in the vicinity of hydrothermal vents is anomalously lower than normal seawater sampled from a comparable depth.

  6. Seafloor Hydrothermal Activity at the Galapagos Triple Junction, East Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, H.; Yu, Z.; Zhang, G.; Tao, C.; Chen, S.

    2014-12-01

    Since the first discovery of black smokers on the Gaplapgaos spreading center, over 500 hydrothermal sites have been confirmed on the mid-ocean ridge, arc and back-arc settings (Beaulieu et al., 2013). However, the hydrothermal activity at triple-junction has not received much attention. Consequently, there are outstanding questions regarding the features of the hydrothermal system, and the effect of the hydrothermal circulation on the tectonic activity of the triple-junction. In 2009, the Chinese Dayang Cruise 21 discovered the Precious Stone field (PSF) on the Dietz Semount at the southern flank of the Galapagos triple junction (GTJ). Most studies of the GTJ focus on the topographictectonic and stresssimulation, which suggest that the GTJ had complex evoluation(Smith et al., 2011, 2013; Mitchell et al., 2011,Schouten et al., 2012). Water anomay were clear detected and samples of hydrothermal deposit and rocks were collected by TV-Grab (Figure.1). This study aims to understand the geological features of the PSF related hydrothermal activity. Hydrothermal mineralization Three types of sedimentary hydrothermal deposits representing three different hydrothermal activity stages (Figure 1)are confirmed in the PSF: 1) sediments with native sulfur and pyrite clasts(Type I), 2) Fe—Mn oxides (Type II), and 3) clay minerals mainlynontronite(Type III). Type II sedimentsprecipitate early and the source comprises of clasts of distal hydrothermal plume. The nontronite-rich sediments propably derive from the low-temperature alteration of Fe—Mn oxides. Type 1 sediments are found on the active hydrothermal venting field. Hydrothermal plume Water anomaly were detected at the southewestern PSF. We observed widespreadsedimentary hydrothermal depositsin the western PSF, but no water anomaly. According to the results of five water anomaly dectection lines, we predicted the existence of three hydrothermal vents in the PSF. Seafloor type inversion Multi-beam backscatter data were used to study the seafloor type and distribution of the PSF. The results indicate that sedimentary hydrothermal deposits are widespread at the western PSF. Basalt makes up of the seafloor of the active hydrothermal vents. The results mentioned above suggest that the hydrothemal activity at the PSF is multi-stage, long-lived and wildspread.

  7. Detection and characterisation of mutations responsible for allele-specific protein thermostabilities at the Mn-superoxide dismutase gene in the deep-sea hydrothermal vent polychaete Alvinella pompejana.

    PubMed

    Bruneaux, Matthieu; Mary, Jean; Verheye, Marie; Lecompte, Odile; Poch, Olivier; Jollivet, Didier; Tanguy, Arnaud

    2013-05-01

    Alvinella pompejana (Polychaeta, Alvinellidae) is one of the most thermotolerant marine eukaryotes known to date. It inhabits chimney walls of deep-sea hydrothermal vents along the East Pacific Rise (EPR) and is exposed to various challenging conditions (e.g. high temperature, hypoxia and the presence of sulphides, heavy metals and radiations), which increase the production of dangerous reactive oxygen species (ROS). Two different allelic forms of a manganese-superoxide dismutase involved in ROS detoxification, ApMnSOD1 and ApMnSOD2, and differing only by two substitutions (M110L and A138G) were identified in an A. pompejana cDNA library. RFLP screening of 60 individuals from different localities along the EPR showed that ApMnSOD2 was rare (2 %) and only found in the heterozygous state. Dynamic light scattering measurements and residual enzymatic activity experiments showed that the most frequent form (ApMnSOD1) was the most resistant to temperature. Their half-lives were similarly long at 65 °C (>110 min) but exhibited a twofold difference at 80 °C (20.8 vs 9.8 min). Those properties are likely to be explained by the occurrence of an additional sulphur-containing hydrogen bond involving the M110 residue and the effect of the A138 residue on the backbone entropy. Our results confirm the thermophily of A. pompejana and suggest that this locus is a good model to study how the extreme thermal heterogeneity of the vent conditions may help to maintain old rare variants in those populations. PMID:23608997

  8. Diffused vs. Focused Flow - Metaproteogenomic Insights into Effects of Hydrothermal Fluid Flow on Metal-Sulfide Chimney Colonizing Biofilms

    NASA Astrophysics Data System (ADS)

    Pjevac, P.; Markert, S.; Richter, M.; Gruber-Vodicka, H.; Schweder, T.; Amann, R.; Meyerdierks, A.

    2014-12-01

    At many sites of hydrothermal discharge in the deep-sea, the deposition of metal sulfides from hydrothermal fluids leads to the formation of geological structures known as hydrothermal chimneys. The mixing of reduced hydrothermal fluids with oxygenated seawater leads to the formation of steep redox gradients within the chimney walls. These gradients facilitate the co-existence of metabolically diverse microorganisms in the narrow habitable zone of hydrothermal chimney walls. However, the overall composition of chimney-associated microbial community is usually of low complexity and represents an environment suitable for metaomic-based studies. We used metagenomic and metaproteomic tools to compare microbial communities colonizing two metal-sulfide chimneys from the Manus Basin back-arc spreading center in the Bismarck Sea off Papua New Guinea. These chimneys were supplied by the same source hydrothermal fluids, but exhibited different fluid flow regimes. One chimney (RMR5) had a focused venting edifice, while the other (RMR-D) displayed diffuse fluid efflux on its entire outer surface. Although the microbial diversity of both chimneys is similar and dominated by mesophilic Epsilonproteobacteria, our results indicate a strong structuring effect of hydrothermal fluid flow regime on chimney-associated biofilms. The microbial community composition indicates a homogeneous colonization of the diffuse chimney walls. In contrast, the walls of the focused venting chimney appear to be colonized in layers reflecting different temperature tolerances of the dominant microorganisms. Sulfide-oxidation is likely the key metabolism in both chimneys, which is in line with the high sulfide content of the source hydrothermal fluid. However, preliminary metaproteome analysis indicates high activity of low-abundant methanotrophic Bacteria in the diffuser chimney walls. This finding is particularly interesting in light of the very low methane content of the source hydrothermal fluid. Overall, this study is among the first metaprotoemic investigations of hydrothermal vent associated communities and provides deep insights into the metabolic versatility of hydrothermal chimney colonizing microbes.

  9. Find a Plume, Find a Vent

    NSDL National Science Digital Library

    This classroom activity will give students an appreciation for the difficulties deep sea researchers must face in order to find hydrothermal vents. Working in small groups, students can complete this Web investigation in a single class period. The printable six-page handout includes a series of inquiry-based questions that prompt students to use what they already know about mid-ocean ridges to hypothesize about how scientists locate deep sea vents. In addition, it has detailed directions for a Web research project that takes them on a virtual deep sea journey, investigating hydrothermal vents and a worksheet that helps students apply their knowledge to locate a vent in the northern Pacific Ocean.

  10. Geological and geochemical controls on the distribution of Alviniconcha vent snail symbioses: Have we finally linked mantle to microbe? (Invited)

    NASA Astrophysics Data System (ADS)

    Girguis, P. R.; Beinart, R.; Sanders, J.; Seewald, J.

    2010-12-01

    Gastropods of the genus Alviniconcha are found at hydrothermal vent fields in the Western Pacific, and have been reported to associate with either ?- or ?-Proteobacterial endosymbionts. These symbionts harness energy from the oxidation of chemicals in vent fluid to fix inorganic carbon and are the primary source of nutrition for the holobiont. An extensive sampling effort during a recent expedition to the Eastern Lau Spreading Center (ELSC) has revealed that Alviniconcha host both previously observed symbiont types, as well as an additional ?- proteobacterial symbiont. Specifically, we collected 266 Alviniconcha individuals from four vent fields along the spreading center (30-140km apart) which span the north-south transition from fast spreading, basalt-hosted to slower spreading, andesite-hosted fields. Vent fluids from each field were also analyzed for the abundances of aqueous volatile and non-volatile species. The symbionts of all collected Alviniconcha were genotyped using restriction fragment length polymorphism analysis as well as quantitative PCR. Individuals were found to primarily host one of the three symbiont genotypes (two ?- and one ?-Proteobacteria). Notably, we found that the two northern-most sites (basalt-hosted vents) were greatly dominated by individuals with the ?-Proteobacterial symbiont, while the two southern sites (andesite-hosted vents) were dominated by individuals hosting one of the two ?-Proteobacterial symbionts. This pattern corresponds to differences in the aqueous chemistry of the vent fluids along the spreading center. In particular, we have measured higher concentrations of hydrogen and hydrogen sulfide in the vent fluids at the northern sites than in the fluids of the southern sites. We posit that vent chemistry -which is influenced by subsurface water-rock interactions- may be influencing the dominance of each symbiont type along the ELSC. The putative implications for the role that geology and geochemistry plays in holobiont distribution and evolution will be discussed. An assemblage of Alviniconcha snails in the Lau basin

  11. Microearthquakes in the black smoker hydrothermal field, East Pacific Rise at 21/sup 0/N

    SciTech Connect

    Riedesel, M.; Orcutt, J.A.; MacDonald, K.C.; McClain, J.S.

    1982-12-10

    In July and August 1980, an array of five ocean bottom seismographs was deployed within 3 km of the 350 /sup 0/C hydrothermal vents at the Rivera submersible experiment (RISE) site at 21/sup 0/N, on the East Pacific Rise. Two of these instruments were placed within 600 m of the vents, using a transponder navigation network. The array detected four basic types of events. The first type consisted of local, very small microearthquakes. Locations obtained for 11 of these events place three within 1 km of the vents, with the others elsewhere along the rise crest. They appear to originate either from movement on the faults in the area or from the hydrothermal system beneath this area. A study of the S-P times of this type indicates a maximum hypocentral depth of 2-3 km, implying a similar limit to the depth of hydrothermal circulation and brittle fracturing in the vicinity of the vents. The second type of event found consisted of emergent earthquakes that have many of the characteristics of volcanic harmonic tremor. The frequency of these events falls in the 1-5 Hz range and are similar in appearance to those seen at Mount St. Helens prior to and during its May 1980 eruption. They may be either hydrothermal or volcanic in origin. The third type of event produced a very monochromatic, high-frequency seismogram, with the energy concentrated at 20 Hz. These events also appear to have a local origin.

  12. Sulfurovum aggregans sp. nov., a hydrogen-oxidizing, thiosulfate-reducing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent chimney, and an emended description of the genus Sulfurovum.

    PubMed

    Mino, Sayaka; Kudo, Hideaki; Arai, Takayuki; Sawabe, Tomoo; Takai, Ken; Nakagawa, Satoshi

    2014-09-01

    A novel mesophilic, strictly hydrogen-oxidizing, sulfur-, nitrate- and thiosulfate-reducing bacterium, designated strain Monchim33(T), was isolated from a deep-sea hydrothermal vent chimney at the Central Indian Ridge. The non-motile, rod-shaped cells were Gram-stain-negative and non-sporulating. Growth was observed between 15 and 37 °C (optimum 33 °C; 3.2 h doubling time) and between pH 5.4 and 8.6 (optimum pH 6.0). The isolate was a strictly anaerobic chemolithoautotroph capable of using molecular hydrogen as the sole energy source and carbon dioxide as the sole carbon source. The G+C content of the genomic DNA was 42.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate belonged to the genus Sulfurovum and was closely related to Sulfurovum sp. NBC37-1 and Sulfurovum lithotrophicum 42BK(T) (95.6 and 95.4?% similarity, respectively). DNA-DNA hybridization demonstrated that the novel isolate could be differentiated genotypically from Sulfurovum sp. NBC37-1 and Sulfurovum lithotrophicum. On the basis of the molecular and physiological traits of the new isolate, the name Sulfurovum aggregans sp. nov. is proposed, with the type strain Monchim33(T) (?=?JCM 19824(T)?=?DSM 27205(T)). PMID:24966202

  13. Effects of anhydrite precipitation on hydrothermal convection patterns at fast-spreading ridges

    NASA Astrophysics Data System (ADS)

    Ruepke, Lars; Hasenclever, Joerg

    2014-05-01

    Recent advances in hydrothermal modeling capabilities have revealed the key thermodynamic and fluid-dynamic controls on hydrothermal convection patterns and vent temperatures at oceanic spreading centers. The observed upper limit to black smoker vent temperatures of approx. 400°C can be explained by the thermodynamic properties of water (Jupp and Schultz, 2000). Likewise, 3D models of hydrothermal flow at fast-spreading ridges show cylindrical upwellings with adjacent warm recharge flow (Coumou et al., 2008). This close relation between dis- and recharge flow implies that hydrothermal convection cells have a relatively short wavelength (~500m), which is difficult to reconcile with ideas on elongated along-axis convection cells proposed for the East Pacific Rise (Tolstoy et al., 2008) and with the irregular spacing of hydrothermal sites along ridge segments. One possible additional process controlling the spacing/wavelength of hydrothermal convection cells may be chemical precipitation reactions. A key reaction in hydrothermal systems is the precipitation of anhydrite. In recharge zones, heating of 1 kg of seawater to approx. 350°C results in the precipitation of roughly 1.4 g of anhydrite, which is buffered by the amount of calcium dissolved in seawater. More significant may be the precipitation of anhydrate when calcium-rich hydrothermal fluids mix with sulfate rich seawater. A consequence of anhydrite precipitation is the progressive clogging of pore space, which in turn affects permeability and thereby hydrothermal flow. We have implemented the above processes into 2D and 3D hydrothermal flow models and will present first results of how chemical reactions can affect hydrothermal flow patterns at fast-spreading ridges.

  14. Structure and phylogeny of the crustacean hyperglycemic hormone and its precursor from a hydrothermal vent crustacean: the crab Bythograea thermydron 2 2 Abbreviations: CHH, crustacean hyperglycemic hormone; MALDI-TOF MS, matrix-assisted laser desorption\\/ionization-time of flight mass spectrometry; RACE, rapid amplification of cDNA ends; RP-HPLC, reversed phase high performance liquid chromatography; XO, X-organ; SG, sinus gland

    Microsoft Academic Search

    Jean-Yves Toullec; Joëlle Vinh; Jean-Pierre Le Caer; Bruce Shillito; Daniel Soyez

    2002-01-01

    The structure of a well-known neurohormone involved in homeostasis regulation and stress response, the crustacean hyperglycemic hormone, was investigated in the deep-sea hydrothermal vent crab Bythograea thermydron. The neuropeptide was isolated from neurohemal organs (sinus glands) and its biological activity checked using an homologous bioassay. Partial amino acid sequence was established by a combination of Edman chemistry and mass spectrometry.

  15. The structure of iron-oxyhydroxide mounds affected by iron-oxidizing bacteria at shallow submarine hydrothermal vent in Satsuma Iwo-Jima

    NASA Astrophysics Data System (ADS)

    Kuratomi, T.; Kiyokawa, S.; Ikehara, M.; Goto, S.; Hoshino, T.; Ikegami, F.; Minowa, Y.

    2014-12-01

    Satsuma Iwo-Jima, located 38km south of Kyusyu island, Japan, is preserved and identified on occurring iron precipitation at shallow ocean where can be recorded modern analogy of iron precipitation and sedimentation. This is a volcanic island in the northwestern rim of Kikai caldera. Iron- and silica-rich mounds (0.5-3m wide and 0.2-7m high) are developing with hydrothermal activity (pH=5.5, 50-60 degree Celsius), and there is high deposition rate of iron-oxides (33 cm/year). In this study, we analyzed samples (20-30 cm long) recovered from iron oxidized mounds at seafloor by the observation with CT scan, FE-SEM and thin-sectioned samples, and the chemical analysis with EDS, XRF, XRD and DNA, and found that the structure of mounds has unique information. Each mounds are formed two layers: blackish hard layer and brownish soft layer. The inside of samples is constructed from the aggregation of convex structure (3-4 cm) covered by hard layers as a rim. Petrographic observations indicate that both layers have filament-like forms, and the form in soft layer is perpendicular to that in the hard layer. The number of iron oxides particles observed on filament-like forms in soft layer increases toward hard layer. Hard layer consists of aggregation of bacillus-like form as the chain of particle (about 2 um). At soft layer, on the other hand, bacteria-like form with smaller particles (<0.5 um) is observed. Bacteria-like form could be classified into 3 types (helix, ribbon-like, twisted). Furthermore, hard layers consist of ferrihydrite and opal-A (Si: 26.8%, Fe: 56.0%) and soft one is composed by ferrihydrite, opal-A and silica mineral (Si: 36.5%, Fe: 43.5%). Mariprofundus ferrooxydansknown as iron-oxidizing bacteria belonging to Zeta-proteobacteria identified in this matter. Bacteria-like form is considered to be the stalk made by iron-oxidizing bacteria. Such neutrophilic iron-oxidizing bacteria prefers an environment of redox interface between hydrothermal water and seawater, and their activity made hard rim at outer soft layer. This high deposition rate of iron hydroxides probably derives from the chemical reaction of oxidizing ferrous to ferric around stalks of iron-oxidizing bacteria.

  16. Halophilic Archaea determined from geothermal steam vent aerosols

    E-print Network

    Kelley, Scott

    Halophilic Archaea determined from geothermal steam vent aerosols Dean G. Ellis, Richard W. Bizzoco Hydrothermal vents, known as `fumaroles', are ubiq- uitous features of geothermal areas. Although their geology contained halophilic Archaea closely related to the Haloarcula spp. found in non-geothermal salt mats

  17. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field

    E-print Network

    Gilli, Adrian

    organisms that are typical of volcanically driven systems. In 1979, the world was astounded by the discovery any hydrothermal system found to date, hosting diffusely venting carbonate monoliths towering tens of hydrothermal chimneys and black smoker vents driven by the cooling of magma beneath mid-ocean ridges and host

  18. 30. TRACE ELEMENT AND SR-ISOTOPIC CONTENTS OF HYDROTHERMAL CLAYS AND SULFIDES FROM THE SNAKE PIT HYDROTHERMAL FIELD: ODP SITE 649 1

    Microsoft Academic Search

    Kathryn M. Gillis; Alan D. Smith; John N. Ludden

    Several meters of unconsolidated hydrothermal sediment were recovered from the Snake Pit hydrothermal field during ODP Leg 106. Polymetallic sulfides comprise most of the sediment with minor fragments of massive sulfide, organic debris, clay minerals, and fresh glass shards. Trace element and Sr-isotope contents of hydrothermal clays and sulfides from Holes 649B and 649G indicate that these minerals precipitated from

  19. Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields.

    PubMed

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren; Morais, Paula V

    2015-04-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the "Rapid Annotation using the Subsystems Technology" server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics ?-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population. PMID:25636836

  20. Volcanic, tectonic, and hydrothermal features identified in the Lau Basin with near-bottom multibeam sonar data

    NASA Astrophysics Data System (ADS)

    Ferrini, V. L.; Tivey, M. K.; Carbotte, S. M.; Martinez, F.

    2007-12-01

    We present high-resolution bathymetric maps of six hydrothermal vent fields located along the Eastern Lau Spreading Center and Valu Fa Ridge in the Lau backarc basin. Generated with near-bottom SM2000 multibeam sonar data collected with ROV Jason 2, these maps provide sufficient detail to quantify tectonic, volcanic, and hydrothermal features that reveal important differences in these hydrothermal systems, their geologic settings, and the nature of their volcanic substrate. The Kilo Moana and Tow Cam vent fields, hosted in basaltic substrate, have bathymetric characteristics that distinguish them from the Mariner and Vai Lili fields that are hosted in andesitic substrate. The basalt-hosted vent fields are located on relatively flat seafloor crosscut by extensive faults and fissures. At these sites, the high-resolution bathymetry indicates that volcanic activity pre-dates tectonic activity. Pillow and lobate flows at these sites can be discerned as sub-meter roughness, with amplitudes of 0.1- 0.4 m over length scales of 0.5-1 m. Vent structures (5-15 m tall) are clearly identifiable. In contrast, the andesite- hosted vent fields have more relief, and roughness is evident as finger-like flow fronts related to more viscous andesitic flows. Volcanic domes (15-30 m diameter), some with collapse craters (10-20 m diameter), are also evident at these vent fields. Hydrothermal structures at Mariner are as tall as 25m, while at Vai Lili vents are smaller and difficult to distinguish from the rough seafloor that surrounds them. The detailed bathymetry at these vent fields is consistent with the tectonic activity pre-dating volcanic activity. The bathymetric features documented at the ABE and Tui Malila vent fields are transitional to the contrasting features observed to the north (at Kilo Moana and Tow Cam) and south (Mariner and Vai Lili). Bathymetric maps from ABE and Tui Malila reveal pillow and lobate flows, faults that post-date volcanic activity, finger-like flow fronts, and volcanic domes (Tui Malila). Hydrothermal structures at these sites are <5m tall.

  1. Post-Drilling Changes in Seabed Landscape and Megabenthos in a Deep-Sea Hydrothermal System, the Iheya North Field, Okinawa Trough

    PubMed Central

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, ‘artificially’ creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has been altered for long-term. PMID:25902075

  2. Refining the Subseafloor Circulation Model of the Middle Valley Hydrothermal System Using Fluid Geochemistry

    NASA Astrophysics Data System (ADS)

    Inderbitzen, K. E.; Wheat, C. G.; Baker, P. A.; Fisher, A. T.

    2014-12-01

    Currently, fluid circulation patterns and the evolution of rock/fluid compositions as circulation occurs in subseafloor hydrothermal systems are poorly constrained. Sedimented spreading centers provide a unique opportunity to study subsurface flow because sediment acts as an insulating blanket that traps heat from the cooling magma body and limits: (a) potential flow paths for seawater to recharge the aquifer in permeable upper basaltic basement and (b) points of altered fluid egress. This also allows for a range of thermal and geochemical gradients to exist near the sediment-water interface. Models of fluid circulation patterns in this type of hydrologic setting have been generated (eg. Stein and Fisher, 2001); however fluid chemistry datasets have not previously been used to test the model's viability. We address this issue by integrating the existing circulation model with fluid compositional data collected from sediment pore waters and high temperature hydrothermal vents located in Middle Valley on the Juan de Fuca Ridge. Middle Valley hosts a variety of hydrologic regimes: including areas of fluid recharge (Site 855), active venting (Site 858/1036; Dead Dog vent field), recent venting (Site 856/1035; Bent Hill Massive Sulfide deposit) and a section of heavily sedimented basement located between recharge and discharge sites (Site 857). We will present new results based on thermal and geochemical data from the area of active venting (Sites 858 and 1036), that was collected during Ocean Drilling Program Legs 139 and 169 and a subsequent heat flow/gravity coring effort. These results illuminate fine scale controls on secondary recharge and fluid flow within the sediment section at Site 858/1036. The current status of high temperature vents in this area (based on observations made in July, 2014) will also be outlined.

  3. Loki's Castle: Discovery and geology of a black smoker vent field at the Arctic Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Pedersen, R.; Thorseth, I. H.; Lilley, M. D.; Barriga, F. J.; Früh-Green, G.; Nakamura, K.

    2010-12-01

    Previous attempts to locate hydrothermal vent fields and unravel the nature of venting at the ultraslow spreading and magma starved parts of the Arctic Mid Ocean Ridge (AMOR) have been unsuccessful. A black smoker vent field was eventually discovered at the Mohns-Knipovich bend at 73.5°N in 2008, and the field was revisited in 2009 and 2010. The Loki’s Castle vent field is located on the crest of an axial volcanic ridge that is bordered by a tectonic terrain dominated by core complexes to the NW, and a ridge flank that is buried by sediments from the Bear Island Fan to the SE. Fluid compositions are anomalous to other basalt-hosted fields and indicate interactions with sediments at depths. The vent field is associated with an unusually large hydrothermal deposit, which documents that extensive venting occurs at ultraslow spreading ridges despite the strongly reduced magmatic heat budget. ROV surveys have shown that venting occurs in two areas separated by around 100 m. Micro-bathymetry acquired by a Hugin AUV documents that two 20-30 tall mounds that coalesce at the base have developed around the vent sites. The micro-bathymetry also shows that the venting is located above two normal faults that define the NW margin of a rift that runs along the crest of the volcano. The black smoker fluids reach 317 °C, with an end-member SiO2 content of 16 mmol/kg. End-member chlorinity is around 85% of seawater suggesting that the fluids have phase-separated at depth. The fluid compositions indicate that the rock-water reactions occur around 2 km below the seafloor. The crustal thickness is estimated to be 4 +/- 0.5 km in the area. Whereas the depth of the reaction zone is comparable with faster spreading ridges, the fraction of crust cooled convectively by hydrothermal circulation is two times that of vent fields at ridges with normal crustal thickness.

  4. Venting mechanism

    SciTech Connect

    Kielar, S.J.; Rasmer, C.L.; Stimpson, F.F.

    1990-11-20

    This patent describes a venting mechanism for a drive axle assembly or the like. It comprises: a housing with an interior and an exterior, a gear assembly arranged in the housing, the housing being filled with a lubricant up to a predetermined level, and a flow of the lubricant being formed in the housing above the predetermined level when the gear assembly is operated, the venting mechanism comprising: a tube member mounted on the housing above the predetermined level and extending through a wall of the housing to allow for passage of air between the interior and the exterior of the housing, and a deflector vane pivotally attached at an open end of the tube member in the interior of the housing to prevent passage of lubricant out of the housing through the open end of the tube member.

  5. Major off-axis hydrothermal activity on the northern Gorda Ridge

    USGS Publications Warehouse

    Rona, Peter A.; Denlinger, Roger P.; Fisk, M. R.; Howard, K. J.; Taghon, G. L.; Klitgord, Kim D.; McClain, James S.; McMurray, G. R.; Wiltshire, J. C.

    1990-01-01

    The first hydrothermal field on the northern Gorda Ridge, the Sea Cliff hydrothermal field, was discovered and geologic controls of hydrothermal activity in the rift valley were investigated on a dive series using the DSV Sea Cliff. The Sea Cliff hydrothermal field was discovered where predicted at the intersection of axis-oblique and axis-parallel faults at the south end of a linear ridge at mid-depth (2700 m) on the east wall. Preliminary mapping and smpling of the field reveal: a setting nested on nearly sediment-free fault blocks 300 m above the rift valley floor 2.6 km from the axis; a spectrum of venting types from seeps to black smokers; high conductive heat flow estimated to be equivalent to the convective flux of multiple black smokers through areas of the sea floor sealed by a caprock of elastic breccia primarily derived from basalt with siliceous cement and barite pore fillings; and a vent biota with Juan de Fuca Ridge affinites. These findings demonstrate the importance of off-axis hydrothermal activity and the role of the intersection of tectonic lineations in controlling hydrothermal sites at sea-floor spreading centers.

  6. Serpentinization-assisted deformation processes and characterization of hydrothermal fluxes at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Genc, Gence

    Seafloor hydrothermal systems play a significantly important role in Earth’s energy and geochemical budgets and support the existence and development of complex biological ecosystems by providing nutrient and energy to microbial and macrafaunal ecosystems through geochemical fluxes. Heat output and fluid flow are key parameters which characterize hydrothermal systems at oceanic spreading centers by constraining models of hydrothermal circulation. Although integrated measurements of heat flux in plumes are critically important as well, quantification of heat flux at discrete sources (vent orifices versus patches of seafloor shimmering diffuse flow) from direct measurements is particularly essential for examining the partitioning of heat flow into focused and diffuse components of venting and determining geochemical fluxes from these two modes of flow. Hydrothermal heat output also constrains the permeability of young oceanic crust and thickness of the conductive boundary layer that separates magmatic heat source from overlying hydrothermal circulation. This dissertation will be fundamentally focused on three main inter-connected topics: (1) the design and development of direct high- or low-temperature heat flow measuring devices for hydrothermal systems, (2) the collection of new heat output results on four cruises between 2008 and 2010 at several distinct hydrothermal sites along mid-ocean ridges (MORs) to estimate total heat output from individual vent structures such as Dante, Hulk or the whole vent field (e.g., Main Endeavour Vent Field (MEF)), the partitioning between focused and diffuse hydrothermal venting in MEF, and determination of initial estimates of geochemical flux from diffuse hydrothermal fluids which may be influenced by the activity in subsurface biosphere and finally (3) the deformation and uplift associated with serpentinization at MORs and subduction zones. Despite extensive efforts spent for the last couple of decades on heat flow measurement methods and techniques either in the plumes or right at sources, there is still limited knowledge of direct estimates of heat discharge particularly at the vent scale and reliable estimates of temporal variation in heat flux. Moreover, a few previously used tools to make discrete measurements were associated with mechanical complications and/or problems mostly related to electronics or irrecoverable damage due to environmental problems such as accumulation of sediments/particles from hydrothermal fluids. In this dissertation we showed the stages of design, fabrication, calibration and in-situ deployment from DSV Alvin for two unique heat flow measuring seafloor instruments; cup anemometer and turbine flow meter. The devices have proven to be robust, practical, and simple to maneuver and perform in both focused and diffuse flow milieus. Field experiments showed that these self-contained devices yielded a broad range of accurate heat flow estimates ranging from 2 cm/s to 200 cm/s with minimum required maintenance and much less on-station time compared to previous designs. This dissertation reports 63 successful point measurements of focused and diffuse fluid flow the majority of which were completed at the Main Endeavour, High Rise and Mothra hydrothermal vent fields along Endeavour Segment of Juan de Fuca Ridge. By coupling a fraction of our flow rate results with geochemical data (i.e. fluid volatile concentrations) collected with in-situ mass spectrometer, direct geochemical flux were estimated from both focused and diffuse flows. Heat and fluid flow results we have obtained complement our understanding of serpentinization assisted deformation processes at Mid-Ocean Ridges and subduction zones. This dissertation also includes a simple mathematical model developed for crustal deformation and seafloor uplift resulting from volume expansion associated with subsurface serpentinization. Application of this model shows the apparent deformation at the central portion of the east wall of the axial valley at the TAG hydrothermal field and the Quaternary uplift of the

  7. Dynamics and storage of brine in mid-ocean ridge hydrothermal systems

    Microsoft Academic Search

    Fabrice J. Fontaine; William S. D. Wilcock

    2006-01-01

    Mid-ocean ridge hydrothermal systems are known to vent fluids with salinities substantially different from seawater as a result of phase separation and segregation of the resulting vapor and brine phases. Time series of vent temperature and salinity (chlorinity) show that some black-smoker vent fields such as the Main Endeavour Field on the Juan de Fuca Ridge have vented fluids with

  8. Hydrothermal plumes in the NE Lau basin: A regional perspective

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.

    2013-12-01

    Exploration for mineral resources and the presence of an extensive plume of excess 3He centered at 1750 m water depth in the Samoa-Tonga-Fiji region (Lupton, 2004) have motivated exploration for active hydrothermal vent sites in the NE Lau basin during the past decade. The region is tectonically complex with back-arc spreading centers, rift zones, and volcanic centers, all of which potentially host active venting and/or active volcanism. To date, 400 km of the three back-arc spreading centers in the NE Lau basin (FRSC, Fonualei Rift and Spreading Center; MTJ, Mangatolu Triple Junction; and NELSC, Northeastern Lau Spreading Center) plus several volcanic centers have been systematically surveyed for hydrothermal plumes using towed CTD or MAPR arrays that include both optical backscatter and oxidation-reduction potential (ORP) sensors. The FRSC, where spreading rates range from 47 mm/a in the south to 85 mm/a in the north, has 5 active sites (plume depths ranging from 1300-2200 m) distributed one every ~40 km over its 200 km length. There is evidence for 4 active sites (plume depths range from 1950-2380 m) along the 150 km combined length of the MTJ segments, however plumes were optically weak (dNTU < 0.02) and except for one location along the northeastern limb, no ORP anomalies were detected. Plumes were observed off-axis to the MTJ at a bathymetric high adjacent to the northeastern limb (1700 m) as well as over the summit of a cratered volcanic edifice east of the central junction (1200-1300 m). The southern segment of the NELSC was the site of an active eruption in 2008 which injected event plumes throughout the water column (900-1600 m depth range) in addition to the chronic plume from the Maka massive sulfide vent site (1500 m). There is evidence for at least two additional active areas along the northern segments of the NELSC (1800-1900 m). Several volcanoes in the region are hydrothermally active ranging from the northernmost volcano on the Tonga arc (Niua) with plumes centered at 600-1000 m, to the series of North Mata volcanoes where hydrothermal plumes disperse into the water column at depths ranging from 2000 to 2600 m, and the especially intense plumes over West Mata (1050 - 1200 m) while it was observed actively erupting in 2008 and 2009. The regional picture is not one of a clear 'smoking-gun' source for the 1750 m helium plume, but one of widespread hydrothermal and volcanic activity injecting hydrothermal products to the ocean over a broad depth range.

  9. Particulate DNA in smoker fluids: Evidence for existence of microbial populations in hot hydrothermal systems

    SciTech Connect

    Straube, W.L.; Colwell, R.R. (Univ. of Maryland, College Park (USA) Univ. of Maryland, Baltimore (USA)); Deming, J.W.; Baross, J.A. (Univ. of Washington, Seattle (USA)); Somerville, C.C. (Univ. of Maryland, College Park (USA))

    1990-05-01

    As part of an interdisciplinary study of hydrothermal vents on the Endeavour Segment of the Juan de Fuca Ridge, we used the submersible ALVIN to collect 57 fluid samples from 17 different hot vents (smokers and flanges) and their environs for the purpose of extracting particulate DNA. Particulate material concentrated from these samples was lysed enzymatically (enz) and by a combination of enzyme and French press treatment (fp). Concentrations of partially purified DNA recovered from these lysates were determined spectrofluorometrically. Ambient seawater surrounding the vents was found to contain low DNA concentrations, 0.18 to 0.32 ng of DNA per ml, while low-temperature vent samples yielded significantly higher concentrations of 0.37 to 2.12 ng of DNA per ml. Although DNA recovery values from superheated (210 to 345{degree}C) flange samples were not significantly different from ambient seawater values, most of the superheated (174 to 357{degree}C) smoker fluid samples contained particulate DNA in concentrations too high to be attributable to entrained seawater. Detailed sampling at one smoker site demonstrated not only the existence of significant levels of particulate DNA in the superheated smoker fluids but also the presence of an elevated microbial population in the buoyant plume 20 to 100 m above the smoker. These results underscore the heterogeneity of smoker environments within a given hydrothermal vent fluid and indicate that microorganisms exist in some superheated fluids.

  10. Application of AUVs in the Exploration for and Characterization of Arc Volcano Seafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E. J.; Walker, S. L.; Caratori Tontini, F.; Baker, E. T.; Embley, R. W.; Yoerger, D.

    2014-12-01

    The application of Autonomous Underwater Vehicles (AUVs) in the search for, and characterization of, seafloor hydrothermal systems associated with arc volcanoes has provided important information at a scale relevant to the study of these systems. That is, 1-2 m resolution bathymetric mapping of the seafloor, when combined with high-resolution magnetic and water column measurements, enables the discharge of hydrothermal vent fluids to be coupled with geological and structural features, and inferred upflow zones. Optimum altitude for the AUVs is ~70 m ensuring high resolution coverage of the area, maximum exposure to hydrothermal venting, and efficency of survey. The Brothers caldera and Clark cone volcanoes of the Kermadec arc have been surveyed by ABE and Sentry. At Brothers, bathymetric mapping shows complex features on the caldera walls including embayment's, ridges extending orthogonal to the walls and the location of a dominant ring fault. Water column measurements made by light scattering, temperature, ORP and pH sensors confirmed the location of the known vent fields on the NW caldera wall and atop the two cones, and discovered a new field on the West caldera wall. Evidence for diffuse discharge was also seen on the rim of the NW caldera wall; conversely, there was little evidence for discharge over an inferred ancient vent site on the SE caldera wall. Magnetic measurements show a strong correlation between the boundaries of vent fields determined by water column measurements and observed from manned submersible and towed camera surveys, and donut-shaped zones of magnetic 'lows' that are focused along ring faults. A magnetic low was also observed to cover the SE caldera site. Similar surveys over the NW edifice of Clark volcano also show a strong correlation between active hydrothermal venting and magnetic lows. Here, the survey revealed a pattern resembling Swiss cheese of magnetic lows, indicating more widespread permeability. Moreover, the magnetic survey showed evidence for a highly magnetized ring structure ~350 m below the volcano summit considered to represent a buried (by continued growth of the cone) caldera rim. Zones of magnetic lows located inside the inferred caldera that are not associated with present-day venting are consistent with an earlier stage of hydrothermal activity.

  11. Find the Deep Sea Vent

    NSDL National Science Digital Library

    This interactive tool helps students grasp the difficult task of locating deep sea vents by allowing them to virtually "survey" a portion of the Juan de Fuca Ridge in the Pacific Ocean. Students begin by using a CTD (Conductivity - Temperature - Depth) package to take a number of initial water-temperature readings. They then focus on a 40-kilometer (24.8-mile) path, taking up to 55 temperature readings along it. Based on their readings, they narrow in on a specific segment and select five points to survey, using the CTD package in its vertical mode. Finally, they select one of these points and send a submersible down to determine if they have truly found a hydrothermal vent.

  12. Verification of numerical models for hydrothermal plume water through field measurements at TAG

    E-print Network

    Wichers, Sacha

    2005-01-01

    Hydrothermal vents discharge superheated, mineral rich water into our oceans, thereby providing a habitat for exotic chemosynthetic biological communities. Hydrothermal fluids are convected upwards until they cool and reach ...

  13. Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin

    Microsoft Academic Search

    Ken Takai; Takuro Nunoura; Jun-ichiro Ishibashi; John Lupton; Ryohei Suzuki; Hiroshi Hamasaki; Yuichiro Ueno; Shinsuke Kawagucci; Toshitaka Gamo; Yohey Suzuki; Hisako Hirayama; Koki Horikoshi

    2008-01-01

    A newly discovered hydrothermal field called the Mariner field on the Valu Fa Ridge in the southern Lau Basin was explored and characterized with geochemical and microbiological analyses. The hydrothermal fluid discharging from the most vigorous vent (Snow Chimney, maximum discharge temperature 365°C) was boiling at the seafloor at a depth of 1908 m, and two distinct end-member hydrothermal fluids

  14. Culturability and Secondary Metabolite Diversity of Extreme Microbes: Expanding Contribution of Deep Sea and Deep-Sea Vent Microbes to Natural Product Discovery

    Microsoft Academic Search

    Robin K. Pettit

    2011-01-01

    Microbes from extreme environments do not necessarily require extreme culture conditions. Perhaps the most extreme environments\\u000a known, deep-sea hydrothermal vent sites, support an incredible array of archaea, bacteria, and fungi, many of which have now\\u000a been cultured. Microbes cultured from extreme environments have not disappointed in the natural products arena; diverse bioactive\\u000a secondary metabolites have been isolated from cultured extreme-tolerant

  15. Hydrothermal Phase Relations Among Uranyl Minerals at the Nopal I Analog Site

    SciTech Connect

    Murphy, William M. [Geological and Environmental Sciences, California State University, Chico, CA, 95929 (United States)

    2007-07-01

    Uranyl mineral paragenesis at Nopal I is an analog of spent fuel alteration at Yucca Mountain. Petrographic studies suggest a variety of possible hydrothermal conditions for uranium mineralization at Nopal I. Calculated equilibrium phase relations among uranyl minerals show uranophane stability over a broad range of realistic conditions and indicate that uranyl mineral variety reflects persistent chemical potential heterogeneity. (author)

  16. Hydrothermal plume-particle fluxes at 13°N on the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    German, C. R.; Colley, S.; Palmer, M. R.; Khripounoff, A.; Klinkhammer, G. P.

    2002-11-01

    We have investigated the geochemical flux to sediment traps deployed close to the Totem vent site, 13°N EPR. An important emphasis has been to investigate what proportion of this settling flux derives from direct co-precipitation of vent-fluid material as polymetallic sulphides and what proportion is in the form of Fe oxyhydroxide material which not only co-precipitates vent-fluid metals but can also scavenge dissolved material from seawater. Mass fluxes and major element compositions (Fe, S, Al, Mn, CaCO 3 and C org) for our near vent samples compare well with results from previously reported Pacific hydrothermal sediment trap studies, both at this site and on the Endeavour Ridge. Our samples record large fluxes of Cu, Zn and Pb, as well as V and P, all of which are in excess over typical open-ocean trap values. If P and V are transported to the traps as sinking Fe-oxyhydroxide material from the neutrally buoyant plume, we calculate that 10-20% of the Fe entering the near vent traps occurs as oxidised material with the remaining 80-90% being supplied by polymetallic sulphides. Shale-normalised REE distribution patterns for near-vent trap samples are similar to those for local vent fluids and sulphidic sediments. Detailed mass balance calculations, however, reveal evidence for additional input from hydrothermal Fe-oxyhydroxide material with a scavenged REE composition that is less "evolved" than that reported for local neutrally buoyant plume particles. U fluxes into the near vent traps are high and consistent with uptake by sulphides. 210Pb fluxes are also high and appear dominated by co-precipitation direct from vent-fluids as Pb-sulphides. In contrast, Fe-oxyhydroxide scavenging from seawater can account for the entire 230Th and 232Th fluxes reported. If the scavenging processes identified here were similarly active in neutrally buoyant plumes, we would predict hydrothermal scavenging to impact ocean biogeochemical cycles significantly, e.g. causing removal of ca. 10% of the dissolved 230Th production from the deep water column, out to a distance of ca. 10-100 km off-axis, along the entire 60,000 km global ridge-crest.

  17. Manifestations of hydrothermal discharge from young abyssal hills on the fast-spreading East Pacific Rise flank

    NASA Astrophysics Data System (ADS)

    Haymon, Rachel M.; MacDonald, Ken C.; Benjamin, Sara B.; Ehrhardt, Christopher J.

    2005-02-01

    Spectacular black smokers along the mid-ocean-ridge crest represent a small fraction of total hydrothermal heat loss from ocean lithosphere. Previous models of measured heat flow suggest that 40% 50% of oceanic hydrothermal heat and fluid flux is from young seafloor (0.1 5 Ma) on mid-ocean-ridge flanks. Despite evidence that ridge-flank hydrothermal flux affects crustal properties, ocean chemistry, and the deep-sea biosphere, few ridge-flank vent sites have been discovered. We describe the first known seafloor expressions of hydrothermal discharge from tectonically formed abyssal hills flanking a fast-spreading ridge. Seafloor manifestations of fluid venting from two young East Pacific Rise abyssal hills (0.1 Ma at 10°20?N, 103°33.2?W; 0.5 Ma at 9°27?N, 104°32.3?W) include fault-scarp hydrothermal mineralization and macrofauna; fault-scarp flocculations containing hyperthermophilic microbes; and hilltop sediment mounds and craters possibly created by fluid expulsion. These visible features can be exploited for hydrothermal exploration of the vast abyssal hill terrain flanking the mid-ocean ridge and for access to the subseafloor biosphere. Petrologic evidence suggests that abyssal hills undergo repeated episodes of transitory fluid discharge, possibly linked to seismic events, and that fluid exit temperatures can be briefly high enough to transport copper (?250 °C).

  18. Modeling of Perturbations in Mid-Ocean Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Singh, S.; Lowell, R. P.

    2013-12-01

    Mid-ocean ridge hydrothermal systems are complex fluid circulation systems straddling the locations of formation of oceanic crust. Due to the dynamic nature of the crust building process, these systems are episodically subject to magmatic and seismic perturbations. Magma may be emplaced deep or shallow in the oceanic crust thereby changing the thermal structure and permeability of the system. Such events would enhance hydrothermal venting resulting in an increase in vent temperature and heat output along with a decrease in vent salinity in a phase separating system. Event plumes, which may be associated with dike intrusions into the shallow crust, are an important class of such perturbations. In this case, the formation of low salinity vapor may add to the thermal buoyancy flux and allow the plume to rise rapidly to a considerable height above the seafloor. Additionally, seismic or tectonic disturbances may occur both deep and shallow in the crust, changing the fluid-flow structure in the system. Upon knowledge of a major magmatic or seismotectonic event, temporary surveillance at the respective mid ocean ridge site is often increased as a result of rapid response cruises. One of the most common observations made after such events is the temperature of vent fluids, which is then correlated to time of observed activity and used to estimate the residence time of fluids in the system. However, our numerical results indicate that for deep-seated perturbations, surface salinity may show quicker response than temperature. This result serves as our motivation to seek better understanding of propagation mechanism of perturbations through hydrothermal systems. We construct analytical models for fluid flow, heat and salt transfer in both single cracks and through porous media to investigate how perturbations affect both heat and salt transfer to the surface. Our preliminary results for simplified fluid circulation systems tend to support the results from numerical modeling. We plan to develop further our analytical models to understand the variability in the response time of hydrothermal systems to perturbations and its relation to the site of the event within the crust. By incorporating the effects of phase separation near the seafloor on fluid buoyancy, this work will also provide us insight into formation of event plumes. We also plan to investigate whether surface salinity is a better indicator than temperature of hydrothermal disturbances beneath the seafloor.

  19. Global depression in gene expression as a response to rapid thermal changes in vent mussels

    PubMed Central

    Boutet, Isabelle; Tanguy, Arnaud; Le Guen, Dominique; Piccino, Patrice; Hourdez, Stéphane; Legendre, Pierre; Jollivet, Didier

    2009-01-01

    Hydrothermal vent mussels belonging to the genus Bathymodiolus are distributed worldwide and dominate communities at shallow Atlantic hydrothermal sites. While organisms inhabiting coastal ecosystems are subjected to predictable oscillations of physical and chemical variables owing to tidal cycles, the vent mussels sustain pronounced temperature changes over short periods of time, correlated to the alternation of oxic/anoxic phases. In this context, we focused on the short-term adaptive response of mussels to temperature change at a molecular level. The mRNA expression of 23 genes involved in various cell functions of the vent mussel Bathymodiolus azoricus was followed after heat shocks for either 30 or 120 min, at 25 and 30°C over a 48 h recovery period at 5°C. Mussels were genotyped at 10 enzyme loci to explore a relationship between natural genetic variation, gene expression and temperature adaptation. Results indicate that the mussel response to increasing temperature is a depression in gene expression, such a response being genotypically correlated at least for the Pgm-1 locus. This suggests that an increase in temperature could be a signal triggering anaerobiosis for B. azoricus or this latter alternatively behaves more like a ‘cold’ stenotherm species, an attribute more related to its phylogenetic history, a cold seeps/wood fall origin. PMID:19515664

  20. Hydrothermal Vents: Hot Spots Of Microbial Diversity

    NSDL National Science Digital Library

    ScienceDaily

    This page contains a popular press article about a recent study of marine microbial diversity. It summarizes the major findings of the study and discusses the novel methodology used. There are also links to other news stories on related topics.

  1. Acquisition of epibiotic bacteria along the life cycle of the hydrothermal shrimp Rimicaris exoculata

    PubMed Central

    Guri, Mathieu; Durand, Lucile; Cueff-Gauchard, Valérie; Zbinden, Magali; Crassous, Philippe; Shillito, Bruce; Cambon-Bonavita, Marie-Anne

    2012-01-01

    The caridean shrimp Rimicaris exoculata dominates the fauna at several Mid-Atlantic Ridge hydrothermal vent sites. This shrimp has an enlarged gill chamber, harboring a dense ectosymbiotic community of chemoautotrophic bacteria associated with mineral oxide deposits. Until now, their acquisition is not fully understood. At three hydrothermal vent sites, we analyzed the epibionts diversity at different moult stages and also in the first stages of the shrimp life (eggs, hatched eggs (with larvae) and juveniles). Hatched eggs associated with young larvae were collected for the first time directly from gravid females at the Logachev vent site during the Serpentine cruise. An approach using 16S rRNA clone libraries, scanning and transmission electron microscopy, and fluorescent in situ hybridization was used. Molecular results and microscope observations indicated a switch in the composition of the bacterial community between early R. exoculata life cycle stage (egg libraries dominated by the Gammaproteobacteria) and later stages (juvenile/adult libraries dominated by the Epsilonproteobacteria). We hypothesized that the epibiotic phylotype composition could vary according to the life stage of the shrimp. Our results confirmed the occurrence of a symbiosis with Gammaproteobacteria and Epsilonproteobacteria, but more complex than previously assumed. We revealed the presence of active type-I methanotrophic bacteria colonizing the cephalothorax of shrimps from the Rainbow site. They were also present on the eggs from the Logachev site. This could be the first ‘epibiotic' association between methanotrophic bacteria and hydrothermal vent crustacean. We discuss possible transmission pathways for epibionts linked to the shrimp life cycle. PMID:21993397

  2. Extensive hydrothermal activity in the NE Lau basin revealed by ROV dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E. J.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N. J.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Kenner-Chavis, P.; Martinez-Lyons, A.; Sheehan, C.; Brian, R.

    2014-12-01

    Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning within an arc/backarc setting.

  3. Geolipids produced by methanogens and sulfate-reducing bacteria at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Bradley, A. S.; Hayes, J. M.; Summons, R. E.

    2003-12-01

    Molecular biomarkers document the presence in a geologic system of particular microbial lineages, or of microbes that use specific metabolic processes. Lipid extracts from carbonate rocks of the Lost City Hydrothermal Field yield a predominance of biomarkers diagnostic for methanogenic archaea including the ether lipids archaeol, sn-2 and sn-3 hydroxyarchaeol, and dihydroxyarchaeol and the hydrocarbon 2,6,10,15,19-pentamethylicosane (PMI). Sterols and hopanoids, diagnostic for eukaryotes and bacteria respectively, were subordinate. At ten sites surveyed thus far, biomarker types were not correlated with vent temperature or activity. Hydroxyarchaeols were detected in three active (T >= 70° C) and two inactive vents. Glycerol monoethers with saturated and unsaturated C15-C20 n-alkyl chains, diagnostic for sulfate-reducing bacteria, were detected in five active and three inactive vents. Carbohydrates were detected in four active vents, but not in the inactive vents. High concentrations of sn-2 and sn-3 hydroxyarchaeol and a dihydroxyarchaeol at a 70° C site (sample 3869-1404) suggest that methane cycling is the dominant metabolic processes at this location. The presence of methanogens at this site is confirmed by the presence of pentamethylicosane. Stable isotopic compositions of these biomarkers will be used to determine whether these methanogens are consuming or producing methane. This sample also contains C16 and C18 saturated glycerol monoethers. In conjunction with genomic studies, the biomarker analyses will document the metabolic roles of microbes in this system.

  4. Scientific Scope and Summary of the Arctic Gakkel Vents (AGAVE) Expedition

    NASA Astrophysics Data System (ADS)

    Reves-Sohn, R. A.; Edmonds, H.; Humphris, S.; Shank, T.; Singh, H.; Ericsson, B.; Hedman, U.; Helmke, E.; Jakuba, M.; Kunz, C.; Larsson, B.; Liljebladh, B.; Linder, J.; Murphy, C.; Nakamura, K.; Pontbriand, C.; Sato, T.; Schlindwein, V.; Stranne, C.; Tausendfreund, M.; Upchurch, L.; Willis, C.; Winsor, P.

    2007-12-01

    The AGAVE project is an international collaboration between scientists in the United States, Sweden, Japan, and Germany with the overarching scientific objective of studying the geological, chemical, and biological characteristics of hydrothermal venting on the Gakkel Ridge, the most slowly diverging tectonic plate boundary on Earth. The AGAVE expedition took place on the IB Oden from July 1 - August 10, 2007, and occupied two field sites where evidence of hydrothermal venting had been detected in the water column during the 2001 Arctic Mid-Ocean Ridge Experiment (AMORE). The first site (~85N, 7.5E) is characterized by peridotite outcrops on normal fault scarps, while the second site (~85.5N, 85E) is characterized by constructional basaltic volcanism, thereby allowing for a comparative study of hydrothermal processes at two segments of an ultra-slow spreading ridge with contrasting geological and tectonic settings. Five primary oceanographic assets were employed during the expedition; a high-resolution, ship-mounted multi-beam bathymetry system, a CTD-rosette system for surveying and sampling the water column, the PUMA autonomous underwater vehicle (AUV) for fine-scale water column surveys, the JAGUAR AUV for near-bottom geophysical and photographic surveys, and the CAMPER wireline system for acquiring digital images and samples of the deep seafloor. The combined results from the expedition are significantly expanding our understanding of volcanic and hydrothermal processes on the Gakkel Ridge. Important initial results include the discovery of the Asgard volcanic chain at the 85E segment, the discovery of extensive microbial mats covering these volcanoes, the discovery of basaltic glass fragments covering large portions of the seafloor near the volcanoes, and detailed mapping and sampling of water column plumes.

  5. Hydrothermal systems: A decade of discovery in slow spreading environments

    NASA Astrophysics Data System (ADS)

    Kelley, Deborah S.; Shank, Timothy M.

    Although much of the Mid-Atlantic Ridge is unexplored, investigations this past decade show that it hosts a rich diversity of hydrothermal systems with fluid chemistries and biogeographic heterogeneity that span much greater compositional ranges than those within intermediate and fast spreading mid-ocean ridge systems. Extreme attenuation of the crust and formation of detachment faults are now known to be key to this diversity, resulting in three classes of hydrothermal systems. Type 1 systems host high-temperature, black smokers driven by heat extracted from cooling magma and/or proximal gabbroic crust. Acidic vent fluids are enriched in magmatically derived carbon dioxide, with variable concentrations of methane, hydrogen, and hydrogen sulfide. Type II fields host black smokers driven by cooling of variable mixtures of gabbroic and ultramafic material. Fluids are enriched in carbon dioxide, reflecting the magmatic-gabbroic influence, but they also contain elevated concentrations of methane, hydrogen, and low-molecular weight hydrocarbons: hallmarks of serpentinization reactions. Type III systems are low-temperature, peridotite-hosted environments where fluid circulation is driven predominantly by cooling of mantle material. Carbon dioxide is absent, but fluids are enriched in methane, hydrogen, and low-molecular weight hydrocarbons of abiogenic origin. There are now more than 225 endemic species inhabiting slow spreading ridges with full species diversity ranging from ˜30 to >100 species within a given site. The fundamental drivers of vent faunal community structure are considered to be a function of geologic setting, composition, and variability of the resulting vent fluid chemistry, differences in depth, life history strategies of individual species, and the great geographic distance typically separating vent sites on slow spreading ridges.

  6. Energy and Carbon Flow: Comparing ultramafic- and basalt-hosted vents

    NASA Astrophysics Data System (ADS)

    Perner, M.; Bach, W.; Seifert, R.; Strauss, H.; Laroche, J.

    2010-12-01

    In deep-sea vent habitats hydrothermal fluids provide the grounds for life by supplying reduced inorganic compounds (e.g. H2, sulfide). Chemolithoautotrophs can oxidize these substrates hereby yielding energy, which can then be used to fuel autotrophic CO2 fixation. Depending on the type of host rocks (and the degree of admixed ambient seawater) the availability of inorganic electron donors can vary considerably. While in ultramafic-hosted vents H2 levels are high and H2-oxidizing metabolisms are thought to dominate, in basalt-hosted vents, H2 is much lower and microbial sulfide oxidation is considered to prevail [1, 2]. We have investigated the effect of H2 and sulfide availability on the microbial community of distinct H2-rich and H2-poor vent sites along the Mid-Atlantic Ridge. Hydrothermally influenced samples were collected from the H2-rich ultramafic-hosted Logatchev field (15°N) and the comparatively H2-poor basalt-hosted vents from 5°S and 9°S. We conducted catabolic energy calculations to estimate the potential of various electron donors to function as microbial energy sources. We performed incubation experiments with hydrothermal fluids amended with H2 or sulfide and radioactively labelled bicarbonate and determined H2 and sulfide consumption and carbon incorporation rates. We constructed metagenomic libraries for sequence-based screening of genes encoding key enzymes for H2 uptake (NiFe uptake hydrogenases, group 1), sulfide oxidation (sulfide quinone oxidoreductase, sqr) and CO2 fixation pathways (RubisCOs of the Calvin cycle [CBB] and beta-subunit of the ATP citrate lyase of the reductive tricarboxylic acid cycle [rTCA]). We evaluated parts of the metagenomes from basalt-hosted sites by pyrosequencing. Based on our incubation experiments - under the conditions applied - we could not confirm that generally H2 consumption rates and biomass syntheses in fluids derived from ultramafic-hosted locations are significantly enhanced over those from basalt-hosted vents or that elevated sulfide consumption rates and biomass syntheses are significantly elevated in emissions from basalt-hosted over those from ultramafic-hosted vents. Yet, PCR-amplification from environmental samples demonstrated that the richness of uptake hydrogenases is significantly higher in the tested ultramafic-hosted (n = 4) than in the basalt-hosted (n = 3) vents. The sequence-based screening of metagenomic libraries constructed from basalt-hosted sites resulted in finding only 1 recognizable sqr-gene, but no genes encoding uptake hydrogenases or key enzymes of the CBB or rTCA cycles. Pyrosequencing of a diffuse fluid and a vent chimney (both basalt-hosted) has currently not lead to a great diversity of genes encoding enzymes associated with sulfur oxidizing mechanisms, but have displayed some genes encoding enzymes required for the maturation of uptake hydrogenases. Geochemical constraints appear to effect metabolic diversity and activity differently. [1] Amend, J., et al. (2010) AbSciCon. Texas, USA: p. 5134 [2] McCollom, T.M. (2007) Astrobiol. 7(6): p. 933-950

  7. U-Th isotopic systematics and ages of carbonate chimneys at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Shen, C.; Kelley, D. S.; Cheng, H.; Edwards, R.

    2009-12-01

    The Lost City Hydrothermal Field (LCHF) is a serpentinite-hosted vent field located 15 km west of the spreading axis of the Mid-Atlantic Ridge. In this study, uranium-thorium (U-Th) geochronological techniques have been used to examine the U-Th isotopic systematics of hydrothermal fluids and the 230Th ages of hydrothermally-precipitated carbonate chimneys at the LCHF. Fluid sample analyses indicate that endmember fluids likely contain only 0.0073 ng/g U or less compared to 3.28 ± 0.03 ng/g of U in ambient seawater. For fluid samples with <15 mmol/kg Mg, 232Th concentration is 0.11 to 0.13 pg/g and surrounding seawater concentration average is 0.133 ± 0.016 pg/g. The 230Th/232Th atomic ratios of the vent fluids range from 1 ± 10 to 26 ± 4 ×10-6 and are less than those of seawater. Chimney U is seawater-derived and 238U concentrations range from 1-10 ?g/g and the mean chimney corrected initial ?234U is 146.9 ± 0.5, which is not significantly different from the ambient seawater value of 146.5 ± 0.6. Carbonate thorium concentrations range broadly from 0.035-125 ng/g and 230Th/232Th atomic ratios vary from near seawater values of 43 ± 8 × 10-6 up to 530 ± 25 × 10-3. Chimney ages range from 18 ± 6 yrs to 122 ± 12 kyrs. The youngest chimneys are at the intersection of two active, steeply-dipping normal faults that cut the Atlantis Massif; the oldest chimneys are located in the southwest portion of the field. Vent deposits on a steep, fault-bounded wall on the east side of the field are all <4 kyrs old, indicating that mass wasting in this region is relatively recent. Comparison of results to prior age-dating investigations of submarine hydrothermal systems shows that the LCHF is the most long-lived hydrothermal system known to date. It is likely that seismic activity and active faulting within the Atlantis Massif and the Atlantis Fracture Zone, coupled with volumetric expansion of the underlying serpentinized host rocks play major roles in sustaining hydrothermal activity at this site. The longevity of venting at the LCHF may have implications for ecological succession of microorganisms within serpentinite-hosted vent environments.

  8. Absolute magnetization of the seafloor at a basalt-hosted hydrothermal site: Insights from a deep-sea submersible survey

    NASA Astrophysics Data System (ADS)

    Szitkar, Florent; Dyment, Jérôme; Fouquet, Yves; Choi, Yujin; Honsho, Chie

    2015-02-01

    The analysis of high-resolution vector magnetic data acquired by deep-sea submersibles (DSSs) requires the development of specific approaches adapted to their uneven tracks. We present a method that takes advantage of (1) the varying altitude of the DSS above the seafloor and (2) high-resolution multibeam bathymetric data acquired separately, at higher altitude, by an Autonomous Underwater Vehicle, to estimate the absolute magnetization intensity and the magnetic polarity of the shallow subseafloor along the DSS path. We apply this method to data collected by DSS Nautile on a small active basalt-hosted hydrothermal site. The site is associated with a lack of magnetization, in agreement with previous findings at the same kind of sites: the contrast between nonmagnetic sulfide deposits/stockwork zone and strongly magnetized basalt is sufficient to explain the magnetic signal observed at such a low altitude. Both normal and reversed polarities are observed in the lava flows surrounding the site, suggesting complex history of accumulating volcanic flows.

  9. Vent of Sand Volcano

    USGS Multimedia Gallery

    Vent of sand volcano produced by liquefaction is about 4 ft across in strawberry field near Watsonville. Strip spanning vent is conduit for drip irrigation system. Furrow spacing is about 1.2 m (4 ft) on center....

  10. Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring

    NASA Astrophysics Data System (ADS)

    Thoma, Eben D.; Secrest, Cary; Hall, Eric S.; Lee Jones, Donna; Shores, Richard C.; Modrak, Mark; Hashmonay, Ram; Norwood, Phil

    This technical note describes a United States Environmental Protection Agency (U.S. EPA) measurement project to determine elemental mercury (Hg 0) emissions from a mercury cell chlor-alkali (MCCA) facility in the southeastern U.S. during a 53-day monitoring campaign in the fall of 2006. The optical remote sensing (ORS) area source measurement method EPA OTM 10 was used to provide Hg 0 flux data for the site. These results are reported and compared with cell room roof-vent monitoring data acquired by the facility for similar time periods. The 24-h extrapolated mercury emission rate estimates determined by the two monitoring approaches are shown to be similar with overall averages in the 400 g day -1 range with maximum values around 1200 g day -1. Results from the OTM 10 measurements, which include both cell room emissions and potential fugitive sources outside the cell room, are shown to be approximately 10% higher than cell room monitoring results indicating that fugitive emissions from outside the cell room produce a small but measurable effect for this site.

  11. Boron isotope systematics of hydrothermal fluids from submarine hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Yamaoka, K.; Hong, E.; Ishikawa, T.; Gamo, T.; Kawahata, H.

    2013-12-01

    Boron is highly mobile in submarine hydrothermal systems and useful to trace the process of water-rock reaction. In this study, we measured the boron content and isotopic composition of vent fluids collected from arc-backarc hydrothermal systems in the western Pacific. In sediment-starved hydrothermal systems (Manus Basin, Suiyo Seamount, and Mariana Trough), the boron content and isotopic composition of vent fluids are dependent on type of host rock. The end member fluids from MORB-like basalt-hosted Vienna Woods in the Manus Basin showed low boron content and high ?11B value (0.53 mM, 29.8‰), while dacite-hosted PACMANUS and the Suiyo Seamount showed high boron contents and low ?11B values (1.45 and 1.52 mM, 13.6 and 18.5‰, respectively). The Alice Springs and Forecast Vent field in the Mariana Trough showed values intermediate between them (0.72 and 0.63 mM, 19.9 and 24.0‰, respectively), reflecting reaction of seawater and basalt influenced by slab material. In phase separated hydrothermal systems (North Fiji Basin), boron content and isotopic composition of vent fluids (0.44-0.56 mM, 34.5-35.9‰) were similar to those in the Vienna Woods. Considering little fractionation of boron and boron isotope during phase separation demonstrated by the previous experimental studies, it is suggested that the host rock in the North Fiji Basin is MORB-like basalt. In sediment-hosted hydrothermal system (Okinawa Trough), the reaction with boron-enriched sediment following seawater-rock reaction resulted in significantly high boron contents and low ?11B values of vent fluids (4.4-5.9 mM, 1.5-2.6‰). The water-sediment ratio was estimated to be ~2. In spite of the different geological settings, the end member fuids from all vent fields are enriched in B relative to seawater (0.41 mM, 39.6‰) and the ?11B values are inversely propotional to the boron concentrations. It suggests that boron isotopic composition of vent fluid predominantly depends on the amount of boron originated from solid-phase.

  12. An economical vent cover

    NASA Technical Reports Server (NTRS)

    Lee, A. C.; Mcdonald, M. D.

    1972-01-01

    Inexpensive formed-plastic vent cover has been developed that allows controlled purge of vent systems and also provides blowout protection. Cover can also be used in relief mode to allow normal system relief flows without disengaging from vent system. Cover consists of two parts made of plastics with varying densities to fit media used and desired pressures.

  13. U-Th systematics and 230Th ages of carbonate chimneys at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Ludwig, Kristin A.; Shen, Chuan-Chou; Kelley, Deborah S.; Cheng, Hai; Edwards, R. Lawrence

    2011-04-01

    The Lost City Hydrothermal Field (LCHF) is a serpentinite-hosted vent field located 15 km west of the spreading axis of the Mid-Atlantic Ridge. In this study, uranium-thorium (U-Th) geochronological techniques have been used to examine the U-Th systematics of hydrothermal fluids and the 230Th ages of hydrothermally-precipitated carbonate chimneys at the LCHF. Fluid sample analyses indicate that endmember fluids likely contain only 0.0073 ng/g U or less compared to 3.28 ± 0.03 ng/g of U in ambient seawater. For fluid samples containing only 2-21% ambient seawater (1.1-11 mmol/kg Mg), Th concentration is 0.11-0.13 pg/g and surrounding seawater concentrations average 0.133 ± 0.016 pg/g. The 230Th/ 232Th atomic ratios of the vent fluids range from 1 (±10) × 10 -6 to 11 (±5) × 10 -6, are less than those of seawater, and indicate that the vent fluids may contribute a minor amount of non-radiogenic 230Th to the LCHF carbonate chimney deposits. Chimney 238U concentrations range from 1 to 10 ?g/g and the average chimney corrected initial ? 234U is 147.2 ± 0.8, which is not significantly different from the ambient seawater value of 146.5 ± 0.6. Carbonate 232Th concentrations range broadly from 0.0038 ± 0.0003 to 125 ± 16 ng/g and 230Th/ 232Th atomic ratios vary from near seawater values of 43 (±8) × 10 -6 up to 530 (±25) × 10 -3. Chimney ages, corrected for initial 230Th, range from 17 ± 6 yrs to 120 ± 13 kyrs. The youngest chimneys are at the intersection of two active, steeply-dipping normal faults that cut the Atlantis Massif; the oldest chimneys are located in the southwest portion of the field. Vent deposits on a steep, fault-bounded wall on the east side of the field are all <4 kyrs old, indicating that mass wasting in this region is relatively recent. Comparison of results to prior age-dating investigations of submarine hydrothermal systems shows that the LCHF is the most long-lived hydrothermal system known to date. It is likely that seismic activity and active faulting within the Atlantis Massif and the Atlantis Fracture Zone, coupled with volumetric expansion of the underlying serpentinized host rocks play major roles in sustaining hydrothermal activity at this site. The longevity of venting at the LCHF may have implications for ecological succession of microorganisms within serpentinite-hosted vent environments.

  14. Dissolved Organic Carbon Distribution in Two Hydrothermal Systems - West Mata, NE Lau Basin during an eruption event and basement fluids from sediment-buried Juan de Fuca Ridge flanks

    NASA Astrophysics Data System (ADS)

    Lin, H.; Cowen, J. P.; Butterfield, D. A.; Embley, R. W.; Resing, J.

    2009-12-01

    Hydrothermal systems have profound influence in regulating seawater chemistry. However, the extent hydrothermal systems have impact on deep ocean DOC remains unclear. This study will provide data on dissolved organic carbon distribution in two very different hydrothermal systems. The first is hydrothermal fluids produced from a near-arc volcano in Northeast Lau Basin. Samples were collected with the Butterfield fluid sampler during an eruption event at West Mata during May 2009. The eruption event allowed collection of fluids from both new and established vents, high temperature focused and low temperature diffused vents. This unique opportunity should shed light on DOC changes in nascent hydrothermal systems in accordance with early microbiological community succession. The second hydrothermal environment is a 3.5 Myr-sediment-covered basement aquifer located on the east flank of Juan de Fuca Ridge. Basement Fluids were collected from basement ~280 mbsf (~20 m below sediment-basement interface) using 0.25” stainless steal fluid delivery lines of the Circulation Obviating Retrofit Kit (CORK) observatories at Ocean Drilling program borehole 1301A; samples were drawn up the FDL by a new clean pumping system (Mobile Pump Valve Unit or MPVU) and collected in an acid-cleaned 60-L Large Volume Bag Sampler (LVBS). Due to the effective hydraulic barrier of the 260 m thick of sediment over-lying the basement at this site, the basement fluid here does not readily exchange with bottom seawater. In contrast to vent fluid in Lau vent field, the basement fluid has been circulating in the basement, on average, several thousand years. DOC data will be presented from these hydrothermal fluids and discussed with respect to the DOC cycle in the deep ocean.

  15. Discovery of a Hydrothermal Sulfide Deposit on the Southwest Indian Ridge at 49.2°E

    NASA Astrophysics Data System (ADS)

    Han, X.; Wu, G.; Cui, R.; Qiu, Z.; Deng, X.; Wang, Y.; Scientific Party Of Dy115-21 Cruise Leg 7

    2010-12-01

    Southwest Indian Ridge (SWIR). It is located the farthest west and the shallowest sulfide deposit yet reported at the SWIR. During R/V Dayangyihao Cruise DY115-21, Leg 7 (March 11 to April 15 2010, chief scientist: Dr. Xiqiu Han), we conducted comprehensive geophysical mapping, hydrothermal plume surveying, video sled observing and geological sampling along the largely unexplored ridge segments between 56°E and 45°E. The most significant result of this leg is the discovery of a new hydrothermal sulfide deposit at 49.26°E, 37.94°S in water depths of around 1400m. The sampling site is currently inactive, with no biota observed and no significant hydrothermal anomalies. The sulfide samples mainly consist of sphalerite, wurtzite, pyrite, chalcopyrite and secondary copper minerals. The plume survey revealed that at least two active hydrothermal venting sites exist within 5 km of the sampling site at the water depths of 2300-2800m and 1300-1400m, respectively. Evidences from the oceanfloor observation and geological sampling imply that this area may contain rather promising economic sulfide ore deposit. The data and samples collected so far will serve to understand the tectonic, volcanic and hydrothermal processes of the ridge segment. More detailed and higher resolution survey work is needed in future to locate the active venting sites at the seafloor and to evaluate the ore resource potential of this field. Acknowledgement: The study was supported by COMRA project DYXM-115-02-1-02 and the Fundamental Research Funds for National Nonprofit Institute Grant JT0801.

  16. Analysis of Dissimilatory Sulfite Reductase and 16S rRNA Gene Fragments from Deep-Sea Hydrothermal Sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific

    PubMed Central

    Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu

    2004-01-01

    This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5°C and natural vent fluids at 7°C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and ?- and ?-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with “Nanoarchaeota.” The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300°C were affiliated with the ?-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4°C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments. PMID:14711668

  17. Multiple techniques for mineral identification on Mars:. a study of hydrothermal rocks as potential analogues for astrobiology sites on Mars

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Murad, Enver; Lane, Melissa D.; Mancinelli, Rocco L.

    2004-06-01

    Spectroscopic studies of Mars analog materials combining multiple spectral ranges and techniques are necessary in order to obtain ground truth information for interpretation of rocks and soils on Mars. Two hydrothermal rocks from Yellowstone National Park, Wyoming, were characterized here because they contain minerals requiring water for formation and they provide a possible niche for some of the earliest organisms on Earth. If related rocks formed in hydrothermal sites on Mars, identification of these would be important for understanding the geology of the planet and potential habitability for life. XRD, thermal properties, VNIR, mid-IR, and Raman spectroscopy were employed to identify the mineralogy of the samples in this study. The rocks studied here include a travertine from Mammoth Formation that contains primarily calcite with some aragonite and gypsum and a siliceous sinter from Octopus Spring that contains a variety of poorly crystalline to amorphous silicate minerals. Calcite was detected readily in the travertine rock using any one of the techniques studied. The small amount of gypsum was uniquely identified using XRD, VNIR, and mid-IR, while the aragonite was uniquely identified using XRD and Raman. The siliceous sinter sample was more difficult to characterize using each of these techniques and a combination of all techniques was more useful than any single technique. Although XRD is the historical standard for mineral identification, it presents some challenges for remote investigations. Thermal properties are most useful for minerals with discrete thermal transitions. Raman spectroscopy is most effective for detecting polarized species such as CO 3, OH, and CH, and exhibits sharp bands for most highly crystalline minerals when abundant. Mid-IR spectroscopy is most useful in characterizing Si-O (and metal-O) bonds and also has the advantage that remote information about sample texture (e.g., particle size) can be determined. Mid-IR spectroscopy is also sensitive to structural OH, CO 3, and SO 4 bonds when abundant. VNIR spectroscopy is best for characterizing metal excitational bands and water, and is also a good technique for identification of structural OH, CO 3, SO 4, or CH bonds. Combining multiple techniques provides the most comprehensive information about mineralogy because of the different selection rules and particle size sensitivities, in addition to maximum coverage of excitational and vibrational bands at all wavelengths. This study of hydrothermal rocks from Yellowstone provides insights on how to combine information from multiple instruments to identify mineralogy and hence evidence of water on Mars.

  18. So You Want the Public to Care About Your Favourite Submarine Vent-Site? An Art-School Approach to Making Deep-Ocean Science More Accessible

    NASA Astrophysics Data System (ADS)

    German, J. A.; German, C. R.

    2012-12-01

    In January 2012 the ROV Jason, part of UNOLS/DESSC's National Deep Submergence Facility, conducted the first dives to the world's deepest vent-sites at the Piccard Field, Mid Cayman Rise. The expedition was led by an internationally recognized team of senior scientists and the diverse and spectacular vents present, together with the unusual fauna that they host, were imaged using the new NDSF HDTV camera. Even so, this presentation starts with the premise that such experienced, senior, scientists may not be the best judges of what makes for the best or most engaging public outreach product. When producing a video for outreach, a first consideration must be "why should my viewer be interested?". For any outreach video, there is no incentive for anyone to view it, aside from mutual interests between the message of the video and the viewer. This is the fundamental theoretical application that must always be considered when making any outreach video, poster, banner, etc. For an oceanographic outreach video, viewers could be from any background, relating to science. It is important not to discriminate against any viewer. This requires reducing the informational content to its most fundamental form. We all start from the ground up, which is what outreaches' purpose is: exposing the content of the video to those who are unexposed, in an enticing way. With all this considered, you have to start somewhere. As an enticing artwork, music is a fundamental step to making an impact. It is emotional, and sets a firm narrative, that will underpin the other layers of the message of the outreach. It is important to retain your viewers' interest through a short, sweet experience; they may have no prior knowledge of your field and a harsh concentrated exposure to something new is rarely enjoyable. They need something inspiring, impactful, and unique. Accompanying this music should be video clips that match the patterns of the music. They should be compliant with the music's tone, meaning no long shots set to fast and intense music, and vice versa; no intense flashing imagery set to mellow, ambient music. This is hard to proscribe but important, nevertheless. Arbitrary cuts between shots, without consideration to the musical measures, can be very effective in leaving the viewer disoriented and confused by the experience. Hence, music-to-shot considerations may be the most important component to how well a viewer will be engaged. These are some of the bare essentials to what should be considered when preparing a short outreach video. With more time, more can be done, adding a simple narrative explaining the message further and/or shots of the narrator to develop a sense of human interaction, further enticing the viewer.

  19. Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls

    PubMed Central

    Bernardino, Angelo F.; Levin, Lisa A.; Thurber, Andrew R.; Smith, Craig R.

    2012-01-01

    Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to ß diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities. PMID:22496753

  20. Shallow water submarine hydrothermal activity - A case study in the assessment of ocean acidification and fertilization

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yoshida, K.; Hagiwara, T.; Nagao, K.; Kusakabe, M.; Wang, B.; Chen, C. A.

    2012-12-01

    Most natural Shallow Water submarine Hydrothermal activates (SWH) along coastlines are related to hydrothermal eruptions involving heating of groundwater with the volcanic gas. These SWHs supply nutrients such as phosphorus and micro nutrients like iron to the euphotic zone, contributing to the overall natural fertility and primary productivity of coastal waters. However, SWHs also have a negative effect, dispersing toxic materials such as mercury and arsenic, and affecting the acidification of the surrounding waters. In this study, we evaluate the impact of "iron supply" and "ocean acidification" on the primary production in a coastal marine environment, at a SWH area discovered off Gueshandao Island, northeast Taiwan. In the past three years, expeditions were conducted and observations made around this SWH site. Divers, small boats and a research vessel (R/V OR1, Ocean University National Taiwan) were used to survey successively larger areas around the site. Some of the results obtained are as follows. Hydrothermal vents are located in a hilly terrain rich with hot spring water with gas erupting intermittently. There are two types of vents, roughly divided by color, yellow hot spring water with higher temperature >110 degC ejected from sulfur chimneys of various sizes, and colorless water with lower temperature ~80 degC ejected directly from the crevices of the andesitic bedrock. Natural sulfur solidifying in the mouth of a small chimney was captured by a video camera, and explosions were also observed at intervals of a few minutes. Sediment, sand and particles of sulfur were deposited on the sides to a radius of about 50 m condensing around the chimney. The bottom type changes from sand/particles to outcrop/rock away from the vents. Moreover, gas samples were collected from the vents; the ratios of gas concentrations (N2/Ar) and isotopic composition of noble gas (3He/4He) suggest that these volcanic gases are mantle-derived. Hydrothermal fluid with high pH values between 2.1 ~ 3.5 erupts from the vents, and diffuses toward the ocean surface affecting water up to 1 km way. The high pCO2 in the surface seawater is widely distributed, and the low pH value is also observed widely in mid-depth water (5 ~ 15 m). Water samples collected around the SHW site show higher concentrations of nutrients Si and P, and typically higher micro nutrients Mn, and even Fe as compared to normal seawater. Chlorophyll a in particular shows high values of several tens to hundreds times greater than normal subtropical seawater. We find for the first time in the nature, that SHW enhances the growth of phytoplankton, and contributes to primary productivity of the surrounding waters.

  1. Life in terrestrial hydrothermal systems: analogues for Mars? Martin Lee*, and Darren Mark (SUERC, East Kilbride)

    E-print Network

    Guo, Zaoyang

    Life in terrestrial hydrothermal systems: analogues for Mars? Martin Lee*, and Darren Mark (SUERC, East Kilbride) *Martin.Lee@Glasgow.ac.uk Life requires a favorable environment in which to evolve that hydrothermal systems have been suggested that life may have originated and evolved at a hydrothermal vent type

  2. Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps.

    PubMed

    Borda, Elizabeth; Kudenov, Jerry D; Chevaldonné, Pierre; Blake, James A; Desbruyères, Daniel; Fabri, Marie-Claire; Hourdez, Stéphane; Pleijel, Fredrik; Shank, Timothy M; Wilson, Nerida G; Schulze, Anja; Rouse, Greg W

    2013-11-01

    Since its description from the Galapagos Rift in the mid-1980s, Archinome rosacea has been recorded at hydrothermal vents in the Pacific, Atlantic and Indian Oceans. Only recently was a second species described from the Pacific Antarctic Ridge. We inferred the identities and evolutionary relationships of Archinome representatives sampled from across the hydrothermal vent range of the genus, which is now extended to cold methane seeps. Species delimitation using mitochondrial cytochrome c oxidase subunit I (COI) recovered up to six lineages, whereas concatenated datasets (COI, 16S, 28S and ITS1) supported only four or five of these as clades. Morphological approaches alone were inconclusive to verify the identities of species owing to the lack of discrete diagnostic characters. We recognize five Archinome species, with three that are new to science. The new species, designated based on molecular evidence alone, include: Archinome levinae n. sp., which occurs at both vents and seeps in the east Pacific, Archinome tethyana n. sp., which inhabits Atlantic vents and Archinome jasoni n. sp., also present in the Atlantic, and whose distribution extends to the Indian and southwest Pacific Oceans. Biogeographic connections between vents and seeps are highlighted, as are potential evolutionary links among populations from vent fields located in the east Pacific and Atlantic Oceans, and Atlantic and Indian Oceans; the latter presented for the first time. PMID:24026823

  3. Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps

    PubMed Central

    Borda, Elizabeth; Kudenov, Jerry D.; Chevaldonné, Pierre; Blake, James A.; Desbruyères, Daniel; Fabri, Marie-Claire; Hourdez, Stéphane; Pleijel, Fredrik; Shank, Timothy M.; Wilson, Nerida G.; Schulze, Anja; Rouse, Greg W.

    2013-01-01

    Since its description from the Galapagos Rift in the mid-1980s, Archinome rosacea has been recorded at hydrothermal vents in the Pacific, Atlantic and Indian Oceans. Only recently was a second species described from the Pacific Antarctic Ridge. We inferred the identities and evolutionary relationships of Archinome representatives sampled from across the hydrothermal vent range of the genus, which is now extended to cold methane seeps. Species delimitation using mitochondrial cytochrome c oxidase subunit I (COI) recovered up to six lineages, whereas concatenated datasets (COI, 16S, 28S and ITS1) supported only four or five of these as clades. Morphological approaches alone were inconclusive to verify the identities of species owing to the lack of discrete diagnostic characters. We recognize five Archinome species, with three that are new to science. The new species, designated based on molecular evidence alone, include: Archinome levinae n. sp., which occurs at both vents and seeps in the east Pacific, Archinome tethyana n. sp., which inhabits Atlantic vents and Archinome jasoni n. sp., also present in the Atlantic, and whose distribution extends to the Indian and southwest Pacific Oceans. Biogeographic connections between vents and seeps are highlighted, as are potential evolutionary links among populations from vent fields located in the east Pacific and Atlantic Oceans, and Atlantic and Indian Oceans; the latter presented for the first time. PMID:24026823

  4. Seawater bicarbonate removal during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  5. Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola

    PubMed Central

    Campbell, Barbara J.; Smith, Julie L.; Hanson, Thomas E.; Klotz, Martin G.; Stein, Lisa Y.; Lee, Charles K.; Wu, Dongying; Robinson, Jeffrey M.; Khouri, Hoda M.; Eisen, Jonathan A.; Cary, S. Craig

    2009-01-01

    Submarine hydrothermal vents are model systems for the Archaean Earth environment, and some sites maintain conditions that may have favored the formation and evolution of cellular life. Vents are typified by rapid fluctuations in temperature and redox potential that impose a strong selective pressure on resident microbial communities. Nautilia profundicola strain Am-H is a moderately thermophilic, deeply-branching Epsilonproteobacterium found free-living at hydrothermal vents and is a member of the microbial mass on the dorsal surface of vent polychaete, Alvinella pompejana. Analysis of the 1.7-Mbp genome of N. profundicola uncovered adaptations to the vent environment—some unique and some shared with other Epsilonproteobacterial genomes. The major findings included: (1) a diverse suite of hydrogenases coupled to a relatively simple electron transport chain, (2) numerous stress response systems, (3) a novel predicted nitrate assimilation pathway with hydroxylamine as a key intermediate, and (4) a gene (rgy) encoding the hallmark protein for hyperthermophilic growth, reverse gyrase. Additional experiments indicated that expression of rgy in strain Am-H was induced over 100-fold with a 20°C increase above the optimal growth temperature of this bacterium and that closely related rgy genes are present and expressed in bacterial communities residing in geographically distinct thermophilic environments. N. profundicola, therefore, is a model Epsilonproteobacterium that contains all the genes necessary for life in the extreme conditions widely believed to reflect those in the Archaean biosphere—anaerobic, sulfur, H2- and CO2-rich, with fluctuating redox potentials and temperatures. In addition, reverse gyrase appears to be an important and common adaptation for mesophiles and moderate thermophiles that inhabit ecological niches characterized by rapid and frequent temperature fluctuations and, as such, can no longer be considered a unique feature of hyperthermophiles. PMID:19197347

  6. Enrichment in trace metals (Al, Mn, Co, Cu, Mo, Cd, Fe, Zn, Pb and Hg) of macro-invertebrate habitats at hydrothermal vents along the Mid-Atlantic Ridge

    Microsoft Academic Search

    E Kadar; Valentina Costa; Ines Martins; Ricardo Serrao Santos; Jonathan J. Powell

    2005-01-01

    The present study describes several features of the aquatic environment\\u000a with the emphasis on the total vs. filter-passing fraction (FP) of heavy\\u000a metals in microhabitats of two typical deep-sea vent organisms: the\\u000a filter-feeder, symbiont-bearing Bathymodiolus and the grazer shrimps\\u000a Rimicaris\\/Mirocaris from the Mid-Atlantic Ridge (MAR). The concentration\\u000a of 10 trace elements: Al, Mn, Co, Cu, Mo, Cd, Fe, Zn, Pb

  7. National Science Foundation: Sea Vent Viewer

    NSDL National Science Digital Library

    The National Science Foundation sponsors thousands of substantial research projects every year across a very broad range of scholarly fields, and this recent provocative addition to the NSF's Earth & Environmental Science site will be of real interest to many. This particular feature allows visitors to explore the area of the ocean floor in and around a sea vent, complete with various interactive features. For those who are not already aware of sea vents, they support a rich ecosystem that includes fish, shrimp, tubeworms, mussels, crabs, and clams. The water from these sea vents comes out at close to 756 degrees Fahrenheit and appears to gush out in the same manner as smoke. Browsing through this underwater world, visitors can learn about the vents and the diverse life forms that exist 1.5 miles beneath the surface of the ocean.

  8. Two hydrothermal fields at the southern Central Indian Ridge (CIR) - structural and magnetic investigations

    NASA Astrophysics Data System (ADS)

    Bartsch, C.; Barckhausen, U.

    2013-12-01

    With the research cruises INDEX in the years 2011 and 2012 we investigated the active ridge system of the southern Central Indian Ridge (CIR) in the Indian Ocean at the Rodriguez Triple Junction (RTJ) in terms of hydrothermal activities. Based on the analysis of structural/bathymetric and magnetic data we found indicators for the activity of hydrothermal vent sites which are related to the geometry of the ridge and the magma chambers. The CIR represents a typical slow spreading rift axis which strikes approximately north-south with an average spreading rate of 4.7 cm/a. An analysis of the spreading velocities from NW to SE illustrates a slight decrease from 4.7 cm/a to 4.5 cm/a at the RTJ. From 21°S to 25°30'S the ridge consists of six sections separated by discontinuities and one transform fault. The rift valley shows an asymmetric behaviour with steep slopes in the east and shallower slopes in the western part. The position of the center of magnetic Anomaly 1 is in some cases influenced by structural features like an overlapping spreading center and bending, along axis updoming, and an oceanic core complex. Furthermore, the spreading velocities show local changes near prominent structural features like the Knorr seamount. In this particular case, recent spreading was almost entirely confined to the western flank of the CIR. While the Knorr seamount blocks spreading in eastern direction. In general, in the mapped area a discrepancy between the center of magnetic Anomaly 1 and the bathymetric expression of the spreading center can be noticed in many places. In the northwestern part of the working area the active spreading axis lies west of the center of magnetic Anomaly 1, whereas in the southeastern part indications for a recent ridge jump to the east are observed. Such tectonic activities in combination with magmatic events are indicators for hydrothermal activity. In terms of structural geology normal faults and detachment faults represent pathways for the fluids to rise to the seafloor. Also a magma body as a heat source must be present in the vicinity of hydrothermal fields. It is necessary that the dimension of the magma source is relatively small, because too much volcanic activity might block the pathways for the fluids. The active vent fields known today from the CIR are characterized by sheet flow lavas. They are located at the eastern ridge flanks which are the steeper ones and close to non-transform discontinuities at the section ends. In that case the normal faults and limited volcanic activity are channelways for the hydrothermal fluids. At two hydrothermal vent fields a more detailed magnetic dataset shows a clear decrease in magnetic susceptibility of the basaltic rocks in the vicinity of the known vent sites. Responsible for that decrease is a process called metal leaching which is part of the hydrothermal vent site evolution circle. 3-D forward modeling provides insight into the dimensions of the hydrothermally altered rock bodies at the two locations.

  9. Battery Vent Mechanism And Method

    DOEpatents

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  10. Battery vent mechanism and method

    SciTech Connect

    Ching, L.K.W.

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  11. Dodo Field and Solitaire Field: Newly Discovered Hydrothermal Fields at the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Tamaki, K.; Shipboard Scientists Of Yk09-13 Leg1 Cruise

    2010-12-01

    In October 2009, we conducted seafloor reconnaissance by means of a manned deep-sea submersible vehicle (DSV) Shikai6500 in two regions of the Central Indian Ridge (CIR) 18 deg-20’S and successfully discovered two active hydrothermal sites; one is the Dodo field at the Dodo Great Lava Plain (CIR Segment 16 at 18 deg 20’S ) and the other is the Solitaire Field at the Roger Plateau (Segment 15 at 19 deg 33’S). The black smoker fluids in the Dodo field exhibit unusually high concentrations of H2 in spite of the slightly brine-enriched feature of the fluids. Chemosynthetic faunal communities in the Dodo field are emaciated in size and composition. The Solitaire field is characterized by extensive diffusing flows throughout the field, suggesting that the emission patterns of the hydrothermal fluids were atypical among the CIR hydrothermal systems known so far including the Dodo field. The most outstanding feature was the prosperous macrofaunal communities that potentially contained the almost entire members of macrofaunal genera found in the CIR hydrothermal environments and even previously unexplored animal members (e.g., Alvinellidae polychaetes). Moreover, a new morphotype of scaly foot gastropod, of which one type has been known only in the Kairei field in the world, dominated the chemosynthetic animal communities in the Solitaire field. These findings provide important insights into geochemical diversity of hydrothermal activity and biodiversity and biogeography of vent-endemic ecosystem in the Indian Ocean.

  12. Evaluation of nutrient sources for the sponges inhabited around seafloor hydrothermal fields in the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Nagashio, H.; Yamanaka, T.; Watanabe, H.; Yamagami, S.; Ise, Y.; Makita, H.

    2012-12-01

    Since discovery of seafloor hydrothermal vents, the dense and endemic animal communities inhabited around the hot vents have been the most impressive feature for many scientists. Such animals have been known as chemosynthesis-based species and studied many investigators. On the other hand, some benthic animals found on abyssal plain have been observed slightly high density at the adjacent area to active vent sites. It implies that those opportunistic benthoses may also rely on the chemosynthetic primary production and the hydrothermal chemosynthetic ecosystem may extend widely rather than previous expectation. In that case, it is an interesting issue how the dense sponge community is sustained around the hydrothermal fields. For clarifying the issue isotope geochemical study has been performed to evaluate food sources of the sponges and some other animals obtained from the deep seafloor in the Okinawa Trough. Stable isotope analysis for carbon, nitrogen, and sulfur of the sample organisms obtained from the Izena Hole, where active hydrothermal emission has been observed, show significant low d13C and d34S values for the sponge samples. Those results suggest plausible contribution of sulfur oxidizing bacteria as food source for the sponges because such low d13C and d34S values are often observed for thioautotrophic chemosynthesis-based animals. The sulfur isotopic ratios of the sponges are almost comparable with the ratio reported hydrogen sulfide emitted from the vents, implying that the source of sulfur for sulfur oxidizing bacteria is magmatic and/or hydrothermal in origin. On the other hand, the sponge sample obtained from the Tarama Knoll ,where active hydrothermal emission were not found yet, shows similar isotopic characteristics observed for the sponges from the Izena Hole. It may also imply the importance of sulfur oxidizing bacteria as food source for the sponge at the Tarama Knoll. Turbid water was often observed during dive studies by the ROV around the summit of Tarama Knoll. Methane positive anomaly was also detected from the sampled turbid water, suggesting that it is hydrothermal plume. Therefore, active high-temperature hydrothermal emission supplying hydrogen sulfide is expected at the Tarama Knoll. Although plentiful supply of methane is also significant characteristics of hydrothermal activity in the Okinawa Trough, contribution of methanotrophic product was not significant from our isotopic study. Some Demospongia sponges have been reported to harbor methanotrophic symbionts, but the hexactinellid sponges have not been observed such symbionts until now. Further investigation about several types of sponge has been required. As a conclusion, our results suggest that dense sponges community inhabited around hydrothermal fields in the Okinawa Trough may be supported by sulfur-oxidizing bacterial production, and the energy source for those bacteria is hydrothermal and/or magmatic acitivity in origin

  13. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments

    NASA Astrophysics Data System (ADS)

    de Beer, D.; Haeckel, M.; Neumann, J.; Wegener, G.; Inagaki, F.; Boetius, A.

    2013-02-01

    This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan). The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulphate reduction (SR) and anaerobic methane oxidation (AOM). Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed to emanate from the sediments, and the pH reached approximately 4.5 in a sediment depth >6 cm, as determined in situ by microsensors. Methane and sulphate co-occurred in most sediment samples from the vicinity of the vents down to a depth of at least 3 m. However, SR and AOM were restricted to the upper 7-15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulphate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000-1700 mM), through the ensuing high H2CO3 levels (approx. 1-2 mM) uncouples the proton-motive-force (PMF) and thus inhibits biological energy conservation by ATPase-driven phosphorylation. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.

  14. An estimate of hydrothermal fluid residence times and vent chimney growth rates based on 210Pb Pb ratios and mineralogic studies of sulfides dredged from the Juan de Fuca Ridge

    USGS Publications Warehouse

    Kadko, D.; Koski, R.; Tatsumoto, M.; Bouse, R.

    1985-01-01

    The 210Pb Pb ratios across two sulfide samples dredged from the Juan de Fuca Ridge are used to estimate the growth rate of the sulfide material and the residence time of the hydrothermal fluid within the oceanic crust from the onset of basalt alteration. 210Pb is added to the hydrothermal fluid by two processes: (1) high-temperature alteration of basalt and (2) if the residence time of the fluid is on the order of the 22.3-year half-life of 210Pb, by in-situ growth from 222Rn (Krishnaswami and Turekian, 1982). Stable lead is derived only from the alteration of basalt. The 210Pb Pb ratio across one sample was ??? 0.5 dpm/10-6 g Pb, and across the other it was ??? 0.4 dpm/10-6 g Pb. These values are quite close to the 238U Pb ratios of basalts from the area, suggesting that the residence time of the hydrothermal fluid from the onset of basalt alteration is appreciably less than the mean life of 210Pb, i.e., the time required for ingrowth from the radon. An apparent growth rate of 1.2 cm/yr is derived from the slope of the 210Pb Pb curve for one of the samples. This is consistent with its mineralogy and texture which suggest an accretionary pattern of development. There is no obvious sequential growth pattern, and virtually no gradient in 210Pb Pb across the second sample. This is consistent with alteration of the original 210Pb Pb distribution by extensive remobilization reactions which are inferred from the mineralogic and textural relationships of the sample. ?? 1985.

  15. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such determinations rely on studies of pieces of deep oceanic crust uplifted by tectonic forces such as along the Southwest Indian Ridge, or more complete sections of oceanic crust called ophiolite sequences which are presently exposed on continents owing to tectonic emplacement. Much of what is thought to happen in submarine hydrothermal systems is inferred from studies of ophiolite sequences, and especially from the better-exposed ophiolites in Oman, Cyprus and North America. The focus of much that follows is on a few general features: pressure, temperature, oxidation states, fluid composition and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  16. Advances in Vent, Seep, Whale-and Wood-Fall Biology The study of chemosynthetic ecosystems as an

    E-print Network

    Levin, Lisa

    of rearing vent and whale-fall animals, and of creat- ing replicate whale-fall chemosynthetic habitats environments into a single volume. Animals inhabiting wood, whale, seep and hydrothermal vent ecosystems grow very slowly (Cordes et al.) at methane seeps. Animal phy- siology reveals novel adaptations

  17. Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Allen, Douglas E.; Seyfried, W. E.

    2004-03-01

    The discovery of ultramafic hosted hydrothermal systems at Rainbow (36°N MAR) and Lost City, a vent site approximately 15 km west of the MAR at 30°N, provides unique perspectives on chemical and heat-generating processes associated with serpentinization at a range of chemical and physical conditions. Heat balance calculations together with constraints imposed by geochemical modeling indicate that significant changes in temperature are not likely to occur at either vent system as a result of the exothermic nature of olivine hydrolysis. At Rainbow, the relatively high temperatures in subseafloor reaction zones (in excess of 400°C), which must be linked to magmatic processes, inhibit olivine hydrolysis, effectively precluding mineralization-induced heating effects. Geochemical modeling of the Lost City vent fluids indicates temperatures in excess of those measured (40-75°C). The relatively high subseafloor temperatures (˜ 200 ± 50°C) requires conductive cooling of the fluids on ascent to the seafloor—a scenario in keeping with the mineralization of chimney structures actually observed. Although the intermediate temperatures predicted for subseafloor reaction zones at Lost City could be expected to enhance olivine to serpentine conversion, dissolved Cl, K/Cl and Na/Cl ratios of the Lost City vent fluids are virtually unchanged from seawater values and indicate little hydration of olivine, which is a necessary condition for exothermic heat generation by serpentinization. Apparently the fluid/rock mass ratio is too high or fluid residence times too low for this to occur to any significant extent. Thus, in spite of the off-axis location of the Lost City vents and apparent lack of a localized heat source, mineralization reactions likely play an insignificant role in accounting for hydrothermal circulation. It is more likely that tectonic processes associated with the slow spreading MAR, permit access of seawater to relatively deep and still hot lithospheric units and/or near axis magmatic heat sources, before venting. Additional chemical and physical (temperature, flow rate) data for Lost City and similar hydrothermal systems are needed to test key elements of the proposed model.

  18. Hydrothermal Systems on Kermadec Arc Volcanoes Revealed by PISCES V Submersible Dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; de Ronde, C. E.; Massoth, G. J.; Wright, I. C.; Butterfield, D. A.; Clark, M. R.; Chadwick, W. W.; Lupton, J. E.; Malahoff, A.; Rowden, A. A.; Stott, M.; Evans, L. J.; Greene, R. R.; Opatkiewicz, A.; Roe, K.

    2005-12-01

    An interdisciplinary team of scientists from New Zealand and the United States conducted seventeen dives with the PISCES V at eight Kermadec arc volcanoes (seven were the first exploration) in April and May of 2005. The dive sites were selected based on the results of water column and multibeam surveys conducted by the New Zealand research vessel Tangaroa between 1999 and 2004. Five of the sites (Monowai, Macauley, "W", Brothers and Healy) were in calderas or on young cones within calderas. Two sites were on the summits of stratovolcanoes (Rumble V and Clark) without calderas and one site was in a summit crater (Giggenbach). A planned dive site on Monowai Cone was cancelled due to safety concerns based on its history of recent volcanic activity from hydroacoustic monitoring, mass-wasting and surface observations of sulfur slicks and CO2 bubble columns made in the October 2004. Hydrothermal systems were found at all of the sites but they differed in the style of venting. Three factors appear to determine the character of venting on the Kermadec Arc volcanoes. First, depth exerts important boundary conditions on the style of venting because of its control of the boiling point of seawater. The sites range in depth from less than 100 m (Giggenbach) to 1800 m (Brothers caldera wall). At the shallowest depths, degassing and boiling were observed (Giggenbach Volcano at 180 m) commonly accompanied by the precipitation of elemental sulfur (340 m at the bottom of the summit crater at Macauley Cone). At greater depths such as the northwest wall of Brother's volcano, higher temperature vent fluids alter near-surface country rock and have precipitated massive sulfides on the seafloor. Second, some of the volcanoes (Monowai, Brothers and Macauley cones and Giggenbach crater) have likely had recent magmatic/eruptive activity which could result in the enhanced degassing. Finally, outcrop-scale fracturing that mimics larger-scale regional tectonic lineaments appears to focus the venting on many of the volcanoes. Extensive chemosynthetic-based faunal communities were found at all the sites except for Healy (which is dominated by diffuse venting of iron-rich fluids). There was considerable variation in the biota at the separate sites. Mussels of several species were generally dominant and often formed extensive sheets which were associated with high densities of crabs or seastars. Stalked barnacles and shrimps were also common at several sites. Tubeworms were rarely encountered in any quantity. The fauna appears to differ from that further north in the Lau Basin.

  19. Vente et dveloppement Assistance technique

    E-print Network

    Spino, Claude

    Vente et développement Assistance technique à l'équipe de vente Développement d'affaires et des marchés Mise en oeuvre et application de programmes de fidélisation ou de vente Représentation corporative (foires, salons, festivals et congrès) Étude aux points de vente Veille technologique et concurrentielle

  20. Geochemical Characterization of Hydrothermal Plume Fluids From Peridotite- and Basalt- Dominated Regions of the Ultra-Slow Spreading Gakkel Ridge

    NASA Astrophysics Data System (ADS)

    Upchurch, L.; Edmonds, H. N.; Resing, J.; Nakamura, K.; Buck, N.; Liljebladh, B.; Stranne, C.; Tupper, G.; Winsor, P.

    2007-12-01

    Geochemical characterization of hydrothermal plumes initially located during the 2001 AMORE cruise to the Gakkel Ridge was undertaken as part of the 2007 Arctic Gakkel Vents Expedition (AGAVE). One peridotite- and one basalt-dominated area were targeted for this exploration to constrain the range of venting environments found on the Gakkel Ridge, the ultra-slow spreading endmember of the global mid-ocean ridge. CTD hydrocasts at the 7 E peridotite-hosted site relocated the plumes found initially on the AMORE cruise. The target plume was located between 2800 and 2950 meters and exhibited a localized signal in temperature and light scattering. While shipboard analysis of dissolved gases was unavailable at the 7 E site, samples were preserved for manganese and helium measurements. No Eh signal was found at the 7 E site. The 85 E basalt-hosted site has experienced recent volcanic activity and was more extensively studied relative to the 7 E site during the AGAVE cruise. CTD casts detected numerous temperature, light scattering, and Eh plumes at 85 E indicative of multiple hydrothermal sources. Three of the plumes sampled exhibited methane concentrations ranging from 20 nM to greater than 250 nM and hydrogen concentrations ranging from 10nM to 100nM. In situ Eh measurements recorded negative excursions of at least 25 mV in each plume. Associated manganese and particle chemistry samples collected at both sites will be analyzed in time for this meeting.

  1. Subsurface Controls on Habitability of Hydrothermal Waters

    NASA Astrophysics Data System (ADS)

    Fristad, K. E.; Som, S. M.; Hoehler, T. M.

    2014-12-01

    Liquid water alone does not make an environment habitable. Environmental settings dominated by water-rock reactions such as in hydrothermal vents and springs are natural targets for astrobiological investigation of waterworlds because the rich geochemical diversity at these locales provides abundant energy in solvent to support microbial life. Hydrogen oxidizers are of particular interest because H2-based metabolisms are widespread and deeply rooted throughout the phylogenetic tree of life, implying they may have emerged extremely early in the evolution, and possibly even the origin, of life on Earth and potentially any other rocky bodies bearing liquid water. Dihydrogen (H2) can be lithogenically produced by the hydrolytic oxidation of the ferrous iron component in Fe-bearing minerals as well as by radiolytic cleavage of water by ?, ?, or ? radiation produced during the decay of radioactive isotopes. Lithogenic H2 production mechanisms operate across a range of rock types, but the concentration of dissolved H2 available to life is controlled by a number of subsurface factors such as surface geometry, water to rock ratio, production rate, and fluid flux. These factors are often controlled by the larger geologic and structural context of a particular site. We present results of an ongoing project that surveys H2 concentrations from terrestrial hydrothermal waters in diverse chemical and physical settings. Aqueous H2 concentrations and potential subsurface controls are presented for sites across the western U.S. including Yellowstone National Park, Lassen Volcanic National Park, and Iceland. In coordination with field data, we also investigate the habitability of various sites numerically by coupling a geochemical model of water-rock interaction with that of single-cell methanogenesis and compute a habitability index for the given environment. In particular, we investigate the control that temperature, rock composition, water composition, and water to rock ratio (dilution) has on biological potential.

  2. Ivanenko V.N. 2006. Copepoda (Introduction). In: D. DESBRYERES, M. SEGONZAC & M. BRIGHT (Eds.) Handbook of Deep-Sea Hydrothermal

    E-print Network

    Ivanenko, Viatcheslav N.

    to create a comprehensive database on animals living at hydrothermal vents, which contains information on overview of our current knowledge on the animals living at hydrothermal vents. The discovery, which aim to help non-specialists to identify the animals. 86 authors contributed with their expertise

  3. Fume from Volcanic Vent

    USGS Multimedia Gallery

    The upper TEB flow field, looking south. The fuming hole in the foreground is the TEB vent. The other fume sources, which help delineate the lava tube, are coming from collapsed areas down the tube system....

  4. Microbial Diversity of Carbonate Chimneys at the Lost City Hydrothermal Field: Implications for Life-Sustaining Systems in Peridotite Seafloor Environments

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Cimino, P.; Kelley, D. S.; Baross, J. A.

    2002-12-01

    The Lost City Hydrothermal Field (LCHF) is a novel peridotite-hosted vent environment discovered in Dec. 2000 at 30 N near the Mid-Atlantic Ridge. This field contains multiple large (up to 60 m), carbonate chimneys venting high pH (9-10), moderate temperature (45-75 C) fluids. The LCHF is unusual in that it is located on 1.5 my-old oceanic crust, 15 km from the nearest spreading axis. Hydrothermal flow in this system is believed to be driven by exothermic serpentinization reactions involving iron-bearing minerals in the underlying seafloor. The conditions created by such reactions, which include significant quantities of dissolved methane and hydrogen, create habitats for microbial communities specifically adapted to this unusual vent environment. Ultramafic, reducing hydrothermal environments like the LCHF may be analogous to geologic settings present on the early Earth, which have been suggested to be important for the emergence of life. Additionally, the existence of hydrothermal environments far away from an active spreading center expands the range of potential life-supporting environments elsewhere in the solar system. To study the abundance and diversity of microbial communities inhabiting the environments that characterize the LCHF, carbonate chimney samples were analyzed by microscopic and molecular methods. Cell densities of between 105 and 107 cells/g were observed within various samples collected from the chimneys. Interestingly, 4-11% of the microbial population in direct contact with vent fluids fluoresced with Flavin-420, a key coenzyme involved in methanogenesis. Enrichment culturing from chimney material under aerobic and anaerobic conditions yielded microorganisms in the thermophilic and mesophilic temperature regimes in media designed for methanogenesis, methane-oxidation, and heterotrophy. PCR analysis of chimney material indicated the presence of both Archaea and Eubacteria in the carbonate samples. SSU rDNA clone libraries constructed from the Eubacterial DNA show that diverse microbial communities, including autotrophic microorganisms and animal symbionts, are contained within the vent structures. In concert, these results indicate that abundant and varied microbial communities inhabit different regions of the chimney structure and may be specifically adapted to the reducing, volatile-rich fluids percolating through the chimneys. In addition to expanding the range of known deep-sea ecosystems, the microbial ecology of carbonate structures associated with hydrothermal venting at the LCHF may provide key insights into the microbiology of subsurface environments near this site. Studying the microbial communities within these systems will enable us to better understand geo-microbial processes associated with serpentinite environments and perhaps allow us to expand our search for life elsewhere in the universe.

  5. Geochemical and Visual Indicators of Hydrothermal Fluid Flow through a Sediment-Hosted Volcanic Ridge in the Central Bransfield Basin (Antarctica)

    PubMed Central

    Aquilina, Alfred; Connelly, Douglas P.; Copley, Jon T.; Green, Darryl R. H.; Hawkes, Jeffrey A.; Hepburn, Laura E.; Huvenne, Veerle A. I.; Marsh, Leigh; Mills, Rachel A.; Tyler, Paul A.

    2013-01-01

    In the austral summer of 2011 we undertook an investigation of three volcanic highs in the Central Bransfield Basin, Antarctica, in search of hydrothermal activity and associated fauna to assess changes since previous surveys and to evaluate the extent of hydrothermalism in this basin. At Hook Ridge, a submarine volcanic edifice at the eastern end of the basin, anomalies in water column redox potential (Eh) were detected close to the seafloor, unaccompanied by temperature or turbidity anomalies, indicating low-temperature hydrothermal discharge. Seepage was manifested as shimmering water emanating from the sediment and from mineralised structures on the seafloor; recognisable vent endemic fauna were not observed. Pore fluids extracted from Hook Ridge sediment were depleted in chloride, sulfate and magnesium by up to 8% relative to seawater, enriched in lithium, boron and calcium, and had a distinct strontium isotope composition (87Sr/86Sr ?=?0.708776 at core base) compared with modern seawater (87Sr/86Sr ?0.70918), indicating advection of hydrothermal fluid through sediment at this site. Biogeochemical zonation of redox active species implies significant moderation of the hydrothermal fluid with in situ diagenetic processes. At Middle Sister, the central ridge of the Three Sisters complex located about 100 km southwest of Hook Ridge, small water column Eh anomalies were detected but visual observations of the seafloor and pore fluid profiles provided no evidence of active hydrothermal circulation. At The Axe, located about 50 km southwest of Three Sisters, no water column anomalies in Eh, temperature or turbidity were detected. These observations demonstrate that the temperature anomalies observed in previous surveys are episodic features, and suggest that hydrothermal circulation in the Bransfield Strait is ephemeral in nature and therefore may not support vent biota. PMID:23359806

  6. Multiple techniques for mineral identification on Mars: a study of hydrothermal rocks as potential analogues for astrobiology sites on Mars

    Microsoft Academic Search

    Janice L. Bishop; Enver Murad; Rocco L. Mancinelli

    2004-01-01

    Spectroscopic studies of Mars analog materials combining multiple spectral ranges and techniques are necessary in order to obtain ground truth information for interpretation of rocks and soils on Mars. Two hydrothermal rocks from Yellowstone National Park, Wyoming, were characterized here because they contain minerals requiring water for formation and they provide a possible niche for some of the earliest organisms

  7. Influences of the 'A' and 'B' site cation species in the kinetics of hydrothermal synthesis of ABO(3) perovskite-type materials

    Microsoft Academic Search

    Bonnie Lynn Gersten

    1999-01-01

    A study was conducted to determine the effect of the 'A' and 'B' site cations in the kinetics of the low temperature (below 200°C) hydrothermal. synthesis of the ABO3 perovskites (i.e., BaTiO3, SrTiO3, Ba0.5Sr0.5TiO 3, PbTiO3, PbZrO3 and PbZr0.52Ti 0.48O3). A thermodynamic model of aqueous solutions was applied to assure phase-pure synthesis conditions and to differentiate thermodynamics from kinetics. Optimal

  8. New hydrothermal fields found along the SWIR during the Legs 5-7 of the Chinese DY115-20 Expedition

    NASA Astrophysics Data System (ADS)

    Tao, C.; Wu, G.; Ni, J.; Zhao, H.; Su, X.; Zhou, N.; Li, J.; Chen, Y. J.; Cui, R.; Deng, X.; Egorov, I.; Dobretsova, I. G.; Sun, G.; Qiu, Z.; Deng, X.; Zhou, J.; Gu, C.; Li, J.; Yang, J.; Zhang, K.; Wu, X.; Chen, Z.; Lei, J.; Huang, W.; Zhou, P.; Ding, T.; Jin, W.; Li, H.; Lin, J.

    2009-12-01

    Six new hydrothermal fields and two water column hydrothermal anomalies have been found along the Southwest Indian Ridge (SWIR) during the Legs 5-7 of the Chinese DY115-20 expedition on R/V Dayangyihao from 2008 to 2009. An inactive hydrothermal field was found at 50.5°E (50.467°E, 37.658°S, 1,739m), the shallowest portion of Segment 27. Recovered samples include sulfide and opal chimneys, metalliferous sediments, basalt and relicts of hydrothermal vent-fauna. This field appears to become inactive recently. A carbonate field was found near 51°E (50.853°E, 37.650°S; 51°E, 37.608°S). This field extends about 15-km long in parallel to the ridge axis and locates at about 10-km off the ridge axis. Abundant different live and dead faunas were found. Many carbonate material and basalt samples were recovered. This new basalt-hosted carbonate field could represent a new category of ridge hydrothermal system. A hydrothermal field was found at 51.7°E (51.732°E, 37.466°S, 1,595m). Obvious Eh, Ch4 and turbidity anomalies were observed, while many alive fauna were also found. Massive sulfide and basalts were recovered, suggesting that this might be a large-scale hydrothermal field. Another hydrothermal field was found at 53.3°E (53.255°E, 36.101°S, 2,218m). Water column anomalies were observed and large amount of sponge, coral and anemone were captured. A hydrothermal field combined with ultramafic rocks was found at 63.5°E (63.541°E, 27.951°S). CH4, Eh, H2S and temperature anomalies were detected. Massive sulfide, oxidized chimney and sediment were sampled. Serpentinized ultramafic rocks were recovered at a nearby site. This would be the first ultramafic-hosted hydrothermal system found at SWIR. An active hydrothermal filed was found at 63.9°E (63.923°E, 27.851°S, 2,759m) west to Mt. Joundane. Large amount of alive faunas (anemone, crab, mussel and fish) was captured. Some hydrothermal oxides and anemones were collected. Three new hydrothermal vents were detected 400 m and 550 m north to the 49.65°E active field that was discovered in 2007. These new vents and water column anomalies are located 400 m and 550 m north to the 49.65°E field, respectively. Two obvious water column anomalies were detected at 51.41°E, 37.43°S and 51.62°E, 37.44°S. These observations suggest that the average spacing between vent sites along the 48-54°E segment of SWIR is about 90 km, which is similar to that of global spreading ridges and slightly smaller than that of fast spreading ridges.

  9. The scale of hydrothermal circulation of the Iheya-North field inferred from intensive heat flow measurements and ocean drilling

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Kinoshita, M.; Yamamoto, H.; Nakajima, R.; Kumagai, H.; Takai, K.

    2014-12-01

    Iheya-North hydrothermal field situated in the middle Okinawa trough backarc basin is one of the largest ongoing Kuroko deposits in the world. Active chimneys as well as diffuse ventings (maximum fluid temperature 311 °C) have been located and studied in detail through various geological and geophysical surveys. To clarify the spatial scale of the hydrothermal circulation system, intensive heat flow measurements were carried out and ~100 heat flow data in and around the field from 2002 to 2014. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 was carried out, and subbottom temperature data were obtained around the hydrothermal sites. During the JAMSTEC R/V Kaiyo cruise, KY14-01 in 2014, Iheya-North "Natsu" and "Aki" hydrothermal fields were newly found. The Iheya-Noth "Natsu" and "Aki" sites are located 1.2 km and 2.6 km south from the Iheya-North original site, respectively, and the maximum venting fluid temperature was 317 °C. We obtained one heat flow data at the "Aki" site. The value was 17 W/m2. Currently, the relationship between these hydrothermal sites are not well known. Three distinct zones are identified by heat flow values within 3 km from the active hydrothermal field. They are high-heat flow zone (>1 W/m2; HHZ), moderate-heat-flow zone (1-0.1 W/m2; MHZ); and low-heat-flow zone (<0.1 W/m2; LHZ). With increasing distance east of the HHZ, heat flow gradually decreases towards MHZ and LHZ. In the LHZ, temperature at 37m below the seafloor (mbsf) was 6 °C, that is consistent with the surface low heat flow suggesting the recharge of seawater. However, between 70 and 90 mbsf, the coarser sediments were cored, and temperature increased from 25 °C to 40°C. The temperature was 905°C at 151 mbsf, which was measured with thermoseal strips. The low thermal gradient in the upper 40 m suggests downward fluid flow. We infer that a hydrothermal circulation in the scale of ~1.5 km horizontal vs. ~a few hundred meters vertical.

  10. Parachute having improved vent line stacking

    NASA Technical Reports Server (NTRS)

    Hengel, John E.

    1994-01-01

    A parachute having an improved vent line stacking wherein the parachute is provided with a canopy having a central vent opening and a vent band secured to the canopy around the periphery of the vent opening, with a plurality of vent lines each lying on a diameter of the vent opening and having its ends secured to the vent band on opposite sides of the vent opening is described. The vent lines are sewed to the vent band in an order such that the end of a first vent line is sewed to the vent band at a starting point with the end of a second vent band then being sewed to the vent band adjacent to and counterclockwise from the first band. A third vent band is sewed to the vent band adjacent to and clockwise from the first band, with a fourth vent band being sewed to the vent band adjacent to and counterclockwise from the second vent band. It can be seen that, if the vent lines are numbered in the order of being sewed to the vent band, the odd numbered vent lines will run consecutively in a clockwise direction and the even numbered lines will run consecutively in a counterclockwise direction from the starting point. With this order of assembly, each and every vent line will be separated from adjacent vent lines by no more than one vent line in the center of the vent opening where the vent lines cross.

  11. Diversity of biogenic minerals in low-temperature Si-rich deposits from a newly discovered hydrothermal field on the ultraslow spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Chen, Shun; Zhou, Huaiyang; Zhang, Lixue; Wu, Zijun; Li, Jiangtao; Li, Jiwei; Xu, Hengchao

    2011-09-01

    A newly discovered hydrothermal field on the ultraslow spreading Southwest Indian Ridge expands the known ranges of biogenic minerals, microbes, and hydrothermal deposits. The deposits from this vent site show typical characteristics of low-temperature hydrothermal deposits. Rare earth element fractionation might be partly influenced by bacterial activity. A physicochemical gradient is present across the layer of deposits, providing suitable microhabitats for various microbes. Molecular phylogenetic analysis demonstrates a diverse range of bacteria, some of which are involved in sulfur, iron, and nitrogen metabolism. A high diversity of biogenic Fe and Si minerals are present in the deposits. Biogenic silica, Fe-sulfides, and Fe-oxides with distinctive morphologies are closely related to microbes. Several novel Fe-oxide structures are found and attributed to new types of biogenic minerals. The precipitation of porous silica spherules and Fe-sulfides can be strongly promoted by extracellular polymer saccharides. Biominer