Science.gov

Sample records for hydrothermally treated liquid

  1. Drying grain using a hydrothermally treated liquid lignite fuel

    SciTech Connect

    Bukurov, Z.; Cvijanovic, P.; Bukurov, M.; Ljubicic, B.R.

    1995-12-01

    A shortage of domestic oil and natural gas resources in Yugoslavia, particularly for agricultural and industrial purposes, has motivated the authors to explore the possibility of using liquid lignite as an alternate fuel for drying grain. This paper presents a technical and economic assessment of the possibility of retrofitting grain-drying plants currently fueled by oil or natural gas to liquid lignite fuel. All estimates are based on lignite taken from the Kovin deposit. Proposed technology includes underwater mining techniques, aqueous ash removal, hydrothermal processing, solids concentration, pipeline transport up to 120 km, and liquid lignite direct combustion. For the characterization of Kovin lignite, standard ASTM procedures were used: proximate, ultimate, ash, heating value, and Theological analyses were performed. Results from an extensive economic analysis indicate a delivered cost of US$20/ton for the liquid lignite. For the 70 of the grain-drying plants in the province of Vojvodina, this would mean a total yearly saving of about US $2,500,000. The advantages of this concept are obvious: easy to transport and store, nonflammable, nonexplosive, nontoxic, 30%-40% cheaper than imported oil and gas, domestic fuel is at hand. The authors believe that liquid lignite, rather than an alternative, is becoming more and more an imperative.

  2. COMBUSTION OF HYDROTHERMALLY TREATED COALS

    EPA Science Inventory

    The report gives results of an evaluation of: (1) the relationship of the combustion characteristics of hydrothermally treated (HTT) coals to environmental emissions, boiler design, and interchangeability of solid fuels produced by the Hydrothermal Coal Process (HCP) with raw coa...

  3. Physicochemical properties of hydrothermally treated hemicellulose from oil palm frond.

    PubMed

    Fazilah, Ariffin; Azemi, Mohamed N Mohd; Karim, Alias A; Norakma, Mohd N

    2009-02-25

    Hemicelluloses from oil palm frond (OPF) were extracted using 3 M potassium hydroxide (KOH) for 4 h at 40 degrees C with stirring at 400 rpm to obtain hemicelluloses A and B. The total yield of the hemicellulose isolated from OPF was 33% (dry weight). Both hemicelluloses A and B were then subjected to hydrothermal treatment at 121 degrees C and 1.03 x 10(5) Pa for 10, 30, and 50 min. Physicochemical characterizations of hydrothermally treated hemicelluloses, such as Klason lignin content and reducing sugar content, were performed to study the effect of autohydrolysis processing on OPF-derived hemicelluloses. It was shown that Klason lignin content in hemicellulose A was higher than that in hemicellulose B and decreased after hydrothermal treatment. Hydrothermal treatment enhanced the solubility of hemicelluloses, which reflects their higher reducing sugar content. Monosaccharide analysis using HPLC showed that xylose was the predominant monosaccharide for both hemicelluloses A and B. PMID:19166335

  4. Hydrothermally treated coals for pulverized coal injection. Final technical report

    SciTech Connect

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-10-01

    This project investigated the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coalfield and the Usibelli Coal Mine, Alaska, were used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times of 10, 60 and 120 minutes. Products were characterized to determine their suitability for pulverized coal injection. Characterization included proximate and ultimate analyses, vitrinite reflectance and TGA reactivity. A literature survey was also conducted.

  5. Method for treating liquid wastes

    SciTech Connect

    Katti, Kattesh V.; Volkert, Wynn A.; Singh, Prahlad; Ketring, Alan R.

    1995-01-01

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

  6. Method for treating liquid wastes

    SciTech Connect

    Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

    1995-12-26

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

  7. Instabilities during liquid migration into superheated hydrothermal systems

    SciTech Connect

    Fitzgerald, Shaun D.; Woods, Andrew W.

    1995-01-26

    Hydrothermal systems typically consist of hot permeable rock which contains either liquid or liquid and saturated steam within the voids. These systems vent fluids at the surface through hot springs, fumaroles, mud pools, steaming ground and geysers. They are simultaneously recharged as meteoric water percolates through the surrounding rock or through the active injection of water at various geothermal reservoirs. In a number of geothermal reservoirs from which significant amounts of hot fluid have been extracted and passed through turbines, superheated regions of vapor have developed. As liquid migrates through a superheated region of a hydrothermal system, some of the liquid vaporizes at a migrating liquid-vapor interface. Using simple physical arguments, and analogue laboratory experiments we show that, under the influence of gravity, the liquid-vapor interface may become unstable and break up into fingers.

  8. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch.

    PubMed

    Zeng, Feng; Ma, Fei; Kong, Fansheng; Gao, Qunyu; Yu, Shujuan

    2015-04-01

    Waxy rice starch was subjected to annealing (ANN) and heat-moisture treatment (HMT). These starches were also treated by a combination of ANN and HMT. The impact of single and dual modifications (ANN-HMT and HMT-ANN) on the molecular weight (M(w)), crystalline structure, thermal properties, and the digestibility were investigated. The relative crystallinity and short-range order on the granule surface increased on ANN, whereas decreased on HMT. All treated starches showed lower M(w) than that of the native starch. Gelatinization onset temperature, peak temperature and conclusion temperature increased for both single and dual treatments. Increased slowly digestible starch content was found on HMT and ANN-HMT. However, resistant starch levels decreased in all treated starches as compared with native starch. The results would imply that hydrothermal treatment induced structural changes in waxy rice starch significantly affected its digestibility. PMID:25442528

  9. High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO{sub 2} using ionic liquid as a template

    SciTech Connect

    Liu, Hong; Wang, Mengyang; Hu, Hongjiu; Liang, Yuguang; Wang, Yong; Cao, Weiran; Wang, Xiaohong

    2011-03-15

    Mesoporous silicas and Fe-SiO{sub 2} with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 {sup o}C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 {sup o}C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 {sup o}C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO{sub 2} has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 {sup o}C for 12 d or steam-treated at 600 {sup o}C for 6 h. -- Graphical abstract: Worm-like mesoporous silica and Fe-SiO{sub 2} with high hydrothermal stability have been synthesized using ionic liquid 1-hexadecane-3-methylimidazolium bromide as a template under the assistance of NaF at high temperature. Display Omitted Research highlights: {yields} Increasing aging temperature improved the hydrothermal stability of materials. {yields}Addition of NaF enhanced the polymerization degree of silicates. {yields} Mesoporous SiO{sub 2} and Fe-SiO{sub 2} obtained have remarkable hydrothermal stability.

  10. Hydrothermally treated coals for pulverized coal injection. [Quarterly] technical progress report, January--March 1995

    SciTech Connect

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-04-01

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and the Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products are being characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance and TGA reactivity. A literature survey is being conducted.

  11. Hydrothermally treated coals for pulverized coal injection. Technical progress report, April 1995--June 1995

    SciTech Connect

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-07-01

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products have been characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance, TGA reactivity and thermochemical modeling. A literature survey has been conducted.

  12. Adsorption behavior of hydrothermally treated municipal sludge & pulp and paper industry sludge.

    PubMed

    Alatalo, Sara-Maaria; Repo, Eveliina; Mäkilä, Ermei; Salonen, Jarno; Vakkilainen, Esa; Sillanpää, Mika

    2013-11-01

    Aim of the study was to investigate how hydrothermal carbonization changes adsorption efficiency toward metal ions of typical sludges. Hydrothermal carbonization is a novel and green method of treating biomasses. Reactions take place in an aqueous environment at relatively mild temperature and high pressure resulting a different end biomass structure than obtained from traditional pyrolysis. Anaerobically digested sludge (ADS) and pulp and paper industry sludge (INS) were utilized as a feedstock. Adsorption behavior of ADS and INS was examined towards Pb(II), Cr(III), Cr(VI), As(III) and As(V). Both ADS and INS were found to remove Pb(II) effectively and followed Sips adsorption isotherm. Adsorption kinetics was fast and followed pseudo-second order model. Furthermore, intraparticle diffusion was observed to be partly responsible in the adsorption process. Hydrothermal carbonization indicated high potential for the production of novel carbonaceous materials for metal removal from waters. PMID:23994693

  13. Improvement of thermal properties of low-rank coals treated by hydrothermal process

    SciTech Connect

    Xie, X.F.; Ohki, A.; Maeda, S.

    1999-07-01

    Australian low-rank coals, Loy Yang coal, Yallourn coal and Indonesian Adaro coal are hydrothermally treated at 200-350 C. The simultaneous TG/DTA is used to investigate the thermal properties, which include the volatile release profile under a nitrogen atmosphere and the burning profile under an air atmosphere. It is found that the temperature of volatile matter combustion (Ti1) of the hot water dried coals (upgraded coals) increases with heat treatment temperature (HTT), whereas the temperature of char combustion (Ti2), the temperature of maximum reaction (Tmax) and the temperature of char burn out (Tout) do not have large increase on the HTT. These results suggest that the HWD process can raise the volatile matter ignition temperature, resulting in improving the spontaneous ignition temperature, but it still maintains the original combustion behavior. Results from TG-DTA measurements are consistent with those determined by FTIR and solid state {sup 13}C CP/MAS NMR.

  14. Modelling GAC adsorption of biologically pre-treated process water from hydrothermal carbonization.

    PubMed

    Fettig, J; Liebe, H

    2015-01-01

    Granular-activated carbon (GAC) adsorption of biologically pre-treated process waters from hydrothermal carbonization (HTC) of different materials was investigated. Overall, isotherms showed that most of the dissolved organic substances are strongly adsorbable while the non-adsorbable fractions are small. The equilibrium data were modelled by using five fictive components to represent the organic matter. Mean film transfer coefficients and mean intraparticle diffusivities were derived from short-column and batch kinetic test data, respectively. Breakthrough curves in GAC columns could be predicted satisfactorily by applying the film-homogeneous diffusion model and using the equilibrium and kinetic parameters determined from batch tests. Thus, the approach is suited to model GAC adsorption of HTC process water under technical-scale conditions. PMID:26114274

  15. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid

    SciTech Connect

    Zhao, Jinbo; Wu, Lili; Zou, Ke

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Ni(OH){sub 2} precursors were synthesized in ionic liquid and water solution by hydrothermal method. Black-Right-Pointing-Pointer NiO hollow microspheres were prepared by thermal treatment of Ni(OH){sub 2} precursors. Black-Right-Pointing-Pointer NiO hollow microspheres were self-assembled by mesoporous cubic and hexagonal nanocrystals with high specific surface area. Black-Right-Pointing-Pointer The mesoporous structure is stable at 773 K. Black-Right-Pointing-Pointer The ionic liquid absorbed on the O-terminate surface of the crystals to form hydrogen bond and played key roles in determining the final shape of the NiO novel microstructure. -- Abstract: The novel NiO hexagonal hollow microspheres have been successfully prepared by annealing Ni(OH){sub 2}, which was synthesized via an ionic liquid-assisted hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption and Fourier transform infrared spectrometer (FTIR). The results show that the hollow NiO microstructures are self-organized by mesoporous cubic and hexagonal nanocrystals. The mesoporous structure possessed good thermal stability and high specific surface area (ca. 83 m{sup 2}/g). The ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate ([Bmim][BF{sub 4}]) was found to play a key role in controlling the morphology of NiO microstructures during the hydrothermal process. The special hollow mesoporous architectures will have potential applications in many fields, such as catalysts, absorbents, sensors, drug-delivery carriers, acoustic insulators and supercapacitors.

  16. Removal of Hexavalent Chromium from Electroplating Industrial Effluents by Using Hydrothermally Treated Fly Ash

    NASA Astrophysics Data System (ADS)

    Ram Mohan Rao, S.; Basava Rao, V. V.

    Chromium in the wastewater coming out from tanneries and electroplating industries is to be treated because of exposure to it may produce effects on the liver, kidney, gastrointestinal and immune systems. On the other hand, fly ash produced from coal fired power plants is having disposal problem and it has to be properly utilized. In this study, the fly ash, subjected to hydrothermal treatment is used as adsorbent to remove Cr (VI) from synthetic samples. The effect of initial stock solution, contact time, adsorbent dose and pH were studied in a batch experiment. Results are compared with powdered activated carbon, granular activated carbon and untreated fly ash. The capacity of adsorption was found to be increased in the case of treated fly ash and it follows the order of powdered activated carbon >granular activated carbon >treated fly ash >untreated fly ash. The adsorption isotherms of Langmuir constants and Freundlich constants for all the adsorbents were determined. The Langmuir adsorption isotherm was recommended.

  17. Conventional and microwave hydrothermal synthesis of monodispersed metal oxide nanoparticles at liquid-liquid interface

    EPA Science Inventory

    Monodispersed nanoparticles of metal oxide including ferrites MFe2O4 (M=, Ni, Co, Mn) and γ-Fe2O3, Ta2O5 etc. have been synthesized using a water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure uses readily availab...

  18. Liquid Carbon Dioxide Venting at the Champagne Hydrothermal Site, NW Eifuku Volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Lupton, J.; Lilley, M.; Butterfield, D.; Evans, L.; Embley, R.; Olson, E.; Proskurowski, G.; Resing, J.; Roe, K.; Greene, R.; Lebon, G.

    2004-12-01

    In March/April 2004, submersible dives with the remotely-operated vehicle ROPOS discovered an unusual CO2-rich hydrothermal system near the summit of NW Eifuku, a submarine volcano located at 21.49° N, 144.04° E in the northern Mariana Arc. Although several sites of hydrothermal discharge were located on NW Eifuku, the most intense venting was found at 1600-m depth at the Champagne site, slightly west of the volcano summit. The Champagne site was found to be discharging two distinct fluids into the ocean: a) several small white chimneys were emitting milky 103° C gas-rich hydrothermal fluid with at least millimolar levels of H2S and b) cold (< 4° C) droplets coated with a milky skin were rising slowly from the sediment. These droplets were later determined to consist mainly of liquid CO2, with H2S as a probable secondary component. The droplets were sticky, and did not tend to coalesce into larger droplets, even though they adhered to the ROV like clumps of grapes. The film coating the droplets was assumed to be CO2 hydrate (or clathrate) which is known to form whenever liquid CO2 contacts water under these P,T conditions. Samples of the 103° C hydrothermal fluids were collected in special gas-tight titanium sampling bottles that were able to withstand the high internal pressures created by the dissolved gases. The Champagne hydrothermal fluids contained a surprising 2.3 moles/kg of CO2, an order of magnitude higher than any CO2 values previously reported for submarine hydrothermal fluids. The overall gas composition was 87% CO2, < 0.1% CH4, < 2 ppm H2, 0.012 mM/kg 4He, with the remaining 13% (322 mM/kg) assumed to be sulfur gases (H2S, SO2, etc.). (Additional analyses planned will confirm the speciation of this sulfur gas component). The helium had R/RA = 7.3, typical of subduction zone systems (R = 3He/4He and RA = Rair). Isotopic analysis of the CO2 yielded δ 13C = -1.75 ‰ , much heavier than the -6.0 ‰ typical for carbon in MOR vent fluids. The C/3He

  19. Ionic liquid assisted hydrothermal fabrication of hierarchically organized γ-AlOOH hollow sphere

    SciTech Connect

    Tang, Zhe; Liu, Yunqi; Li, Guangci; Hu, Xiaofu; Liu, Chenguang

    2012-11-15

    Highlights: ► The γ-AlOOH hollow spheres were synthesized via an ionic liquid-assisted hydrothermal treatment. ► Ionic liquid plays an important role in the morphology of the product. ► Ionic liquid can be easily removed from the product and reused in next experiment. ► A “aggregation–solution–recrystallization” formation mechanism may occur in the system. -- Abstract: Hierarchically organized γ-AlOOH hollow spheres with nanoflake-like porous surface texture have been successfully synthesized via an ionic liquid-assisted hydrothermal synthesis method in citric acid monohydrate (CAMs). It was found that ionic liquid [bmim]{sup +}Cl{sup −} played an important role in the morphology of the product due to its strong interactions with reaction particles. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). The results show that the product has narrow particle size distribution (500–900 nm particle diameter range), high specific surface area (240.5 m{sup 2}/g) and large pore volume (0.61 cm{sup 3}/g). The corresponding γ-Al{sub 2}O{sub 3} hollow spheres can be obtained by calcining it at 550 °C for 3 h. The proposed formation mechanism and other influencing factors of the γ-AlOOH hollow sphere material, such as reaction temperature, reaction duration, CAMs and urea, have also been investigated.

  20. Ammonia stripping of biologically treated liquid manure.

    PubMed

    Alitalo, Anni; Kyrö, Aleksis; Aura, Erkki

    2012-01-01

    A prerequisite for efficient ammonia removal in air stripping is that the pH of the liquid to be stripped is sufficiently high. Swine manure pH is usually around 7. At pH 7 (at 20°C), only 0.4% of ammonium is in ammonia form, and it is necessary to raise the pH of swine slurry to achieve efficient ammonia removal. Because manure has a very high buffering capacity, large amounts of chemicals are needed to change the slurry pH. The present study showed that efficient air stripping of manure can be achieved with a small amount of chemicals and without strong bases like NaOH. Slurry was subjected to aerobic biological treatment to raise pH before stripping. This facilitated 8 to 32% ammonia removal without chemical treatment. The slurry was further subjected to repeated cycles of stripping with MgO and Ca(OH)(2) additions after the first and second strippings, respectively, to raise slurry pH in between the stripping cycles. After three consecutive stripping cycles, 59 to 86% of the original ammonium had been removed. It was shown that the reduction in buffer capacity of the slurry was due to ammonia and carbonate removal during the stripping cycles. PMID:22218195

  1. Subcritical hydrothermal treatment for the recovery of liquid fertilizer from scallop entrails.

    PubMed

    Hwang, In-Hee; Aoyama, Hiroya; Abe, Natsuki; Matsuo, Takayuki; Matsuto, Toshihiko

    2015-01-01

    Scallop entrails are organic wastes containing abundant proteins and minerals but are considered difficult to recycle because of high cadmium concentrations. In this work, the current problem of scallop entrails recycling was investigated and a subcritical hydrothermal treatment (SCHT) was examined for the recovery of liquid fertilizer from scallop entrails. Scallop entrails are mainly recycled for composting and feedstuff production. However, the dilution by mixing scallop entrails with other feed waste was the sole countermeasure to reduce the cadmium concentration of compost. For feedstuff production, whole product derived from scallop entrails was exported to other countries instead of domestic utilization. Temperature, retention time (RT) at given temperature, and liquid-to-solid (LS) ratio were examined as SCHT conditions for scallop entrails processing. The extraction ratio of each constituent mainly depends on the temperature rather than the RT or the LS ratio. Upon the SCHT of scallop entrails at 200°C, an RT of 20 min, and an LS ratio of 10, the extraction of fertilizer constituents such as nitrogen, phosphorus, and potassium from the liquid product was optimum, whereas the release of cadmium was suppressed. The concentrations of heavy metals in the liquid product obtained using the above-mentioned SCHT conditions were below the maximum permissible concentration stipulated by the Fertilizer Control Law. SCHT is considered to be a feasible recycling method for scallop entrails to recover fertilizer components with a concomitant separation of cadmium from the product. PMID:25409578

  2. Ionic liquid-based hydrothermal synthesis of Lu2O3 and Lu2O3:Eu3+ microcrysals

    NASA Astrophysics Data System (ADS)

    Li, Yinyan; Xu, Shiqing

    2016-09-01

    Uniform and well-defined Lu2O3 and Lu2O3:Eu3+ microarchitectures have been successfully synthesized via a green and facile ionic liquid-based hydrothermal method followed by a subsequent calcination process. Novel 3D micro-rodbundles and 1D microrods of Lu2O3 and Lu2O3:Eu3+ were controllably obtained through this method. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and photoluminescence spectra were used to characterize the micromaterials. The proposed formation mechanisms have been investigated on the basis of a series of SEM studies of the products obtained at different hydrothermal durations. The results indicated that hydrothermal temperature and the ionic liquid-tetrabutylammonium hydroxide were two key factors for the formation as well as the morphology control of the Lu2O3 and Lu2O3:Eu3+ microarchitectures.

  3. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James R

    2014-11-04

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  4. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  5. Linear and nonlinear stability of hydrothermal waves in planar liquid layers driven by thermocapillarity

    NASA Astrophysics Data System (ADS)

    Sáenz, P. J.; Valluri, P.; Sefiane, K.; Karapetsas, G.; Matar, O. K.

    2013-09-01

    A shallow planar layer of liquid bounded from above by gas is set into motion via the thermocapillary effect resulting from a thermal gradient applied along its interface. Depending on the physical properties of the liquid and the strength of the gradient, the system is prone to departure from its equilibrium state and to the consequent development of an oscillatory regime. This problem is numerically investigated for the first time by means of two-phase direct numerical simulations fully taking into account the presence of a deformable interface. Obliquely travelling hydrothermal waves (HTWs), similar to those first described by Smith and Davis [J. Fluid Mech. 132, 119-144 (1983)], 10.1017/S0022112083001512, are reported presenting good agreement with linear stability theory and experiments. The nonlinear spatiotemporal growth of the instabilities is discussed extensively along with the final bulk flow for both the liquid and gas phases. Our study reveals the presence of interface deformations which accompany the HTWs pattern with a certain time-delay. The local interface heat fluxes are found to be significantly affected by the transient nature of the HTWs, contradicting the results of previous single-phase studies.

  6. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  7. Role of Graphene Oxide Liquid Crystals in Hydrothermal Reduction and Supercapacitor Performance.

    PubMed

    Wang, Bin; Liu, Jinzhang; Zhao, Yi; Li, Yan; Xian, Wei; Amjadipour, Mojtaba; MacLeod, Jennifer; Motta, Nunzio

    2016-08-31

    The formation of liquid crystal (LC) phases in graphene oxide (GO) aqueous solution is utilized to develop high-performance supercapacitors. To investigate the effect of LC formation on the properties of subsequently reduced GO (rGO), we compare films prepared through blade-coating of viscous LC-GO solution and ultrasonic spray-coating of diluted GO aqueous dispersion. After hydrothermal reduction under identical conditions, the films show different morphology, oxygen content, and specific capacitance. Trapped water in the LC GO film plays a role in preventing restacking of sheets and facilitating the removal of oxygenated groups during the reduction process. In device architectures with either liquid or polymer electrolyte, the specific capacitance of the blade-coated film is twice as high as that of the spray-coated one. For a blade-coated film with mass loading of 0.115 mg/cm(2), the specific capacitance reaches 286 F/g in aqueous electrolyte and 263 F/g in gelled electrolyte, respectively. This study suggests a route to pilot-scale production of high-performance graphene supercapacitors through blade-coated LC-GO films. PMID:27529434

  8. Hydrothermal waves under microgravity in a differentially heated long liquid bridge with aspect ratio near the Rayleigh-limit

    NASA Astrophysics Data System (ADS)

    Schwabe, D.

    2005-08-01

    A liquid bridge of 15.0 mm length L and 3.0 mm radius r (aspect ratio A = L/r = 5) from 2 cSt silicone oil (Pr = 28) was established under microgravity during the flight of the sounding rocket MAXUS-4. Four different temperature differences ΔT = 7K, 9K, 10K, 12K have been applied between the ends, each for sufficient time to reach steady state thermocapillary flow conditions. The aim of the experiment - to observe the onset of hydrothermal waves and to measure their features like the waves phase speed and the angle between the wave vector and the applied temperature gradient - was reached. We used microgravity in this experiment in a twofold manner; (1) a liquid bridge with A = 5 can be established only under microgravity; (2) it was possible to study hydrothermal waves without the influence of gravity and without the aspect ratio restrictions at normal gravity.

  9. Hydrothermal microwave valorization of eucalyptus using acidic ionic liquid as catalyst toward a green biorefinery scenario.

    PubMed

    Xu, Ji-Kun; Chen, Jing-Huan; Sun, Run-Cang

    2015-10-01

    The application of the acidic ionic liquid (IL), 1-butyl-3-methylimidazolium hydrogensulfate ([bmim]HSO4), as a catalyst in the hydrothermal microwave treatment (HMT) and green upgradation of eucalyptus biomass has been investigated. The process was carried out in a microwave reactor system at different temperatures (140-200°C) and evaluated for severities. The xylooligosaccharides (XOS, refers to a DP of 2-6) yield up to 5.04% (w/w) of the initial biomass and 26.72% (w/w) of xylan were achieved. Higher temperature resulted in lower molecular weight product, and enhanced the concentration of monosaccharides and byproducts. The morphology and structure of the solid residues were performed using an array of techniques, such as SEM, XRD, FTIR, BET surface area, and CP/MAS (13)C NMR, by which the increase of crystallinity, the destruction of surface structure, and the changes in functional groups and compositions were studied after the pretreatment, thus significantly enhancing the enzymatic hydrolysis. PMID:26119053

  10. Hydrothermal pretreatment of coal

    SciTech Connect

    Loo, Bock; Ross, D.S.

    1990-08-14

    We are examining the effects on composition and behavior of Argonne-supplied Wyodak coal under both thermal (no added water/N{sub 2}) and hydrothermal (liquid water/N{sub 2}) conditions at 350{degree}C for periods of 30 min and 5 hr, with emphasis during this period on the longer treatment. Field ionization mass spectrometry (FIMS) of the untreated, thermally treated, and hydrothermally treated coals is conducted at conditions where the samples are heated from ambient to 500{degree}C at 2.5{degree}/min. In the 5 hr work the volatilities of the coals are 24%, 16%, and 25% respectively. Solvent swelling studies with the recovered coals do not demonstrate the expected lower degree of crosslinking in the hydrothermal case. Both the thermal and hydrothermal treatments yield products with a decreased swelling ratio, but the ratio for the product from the aqueous treatment is slightly lower than that from thermal treatment. At present we cannot reconcile this result with our other data. 4 refs., 6 figs.

  11. Valorization of the aqueous phase obtained from hydrothermally treated Dunaliella salina remnant biomass.

    PubMed

    Pirwitz, Kristin; Rihko-Struckmann, Liisa; Sundmacher, Kai

    2016-11-01

    Up to 90% of Dunaliella salina biomass remains unused after extraction of the main product β-carotene. The potential of mild hydrothermal liquefaction (HTL) to exploit this biomass as a source of valuable by-products was assessed. The results indicate that 80% of the remnant was converted into glucose by mild HTL (100°C, 0min). The recovered glucose was successfully used as a carbon source to cultivate biotechnologically relevant microorganisms, namely Chlorella vulgaris, Escherichia coli and Saccharomyces cerevisiae. Furthermore, the analysis of energy demand and operating costs confirms the beneficial effect of mild liquefaction on the overall process economics of algal β-carotene production. PMID:27475332

  12. Methods for treating a liquid using draw solutions

    DOEpatents

    Wilson, Aaron D; Orme, Christopher J.

    2016-07-26

    Draw solutions comprising at least one N-cyclicalkyl-cycloalkylamine and a secondary solvent. The N-cyclicalkyl-cycloalkylamine comprises the chemical structure: ##STR00001## wherein n is 0, 1, or 2, n' is 0, 1, or 2, and each of R.sup.1-R.sup.6 is independently selected from the group consisting of an alkyl group, an alkoxy group, an acetyl group, an aryl group, a hydrogen group, a hydroxyl group, and a phosphorus-containing group. Methods of treating a liquid using the draw solution are also disclosed.

  13. The effect of NaOH concentration on the steam-hydrothermally treated bioactive microarc oxidation coatings containing Ca, P, Si and Na on pure Ti surface.

    PubMed

    Zhou, Rui; Wei, Daqing; Cao, Jianyun; Feng, Wei; Cheng, Su; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2015-04-01

    The microarc oxidation (MAO) coating covered pure Ti plates are steam-hydrothermally treated in autoclaves containing NaOH solutions with different concentrations of 0, 0.001, 0.01, 0.1 and 1mol·L(-1). Due to the composition of Ti, O, Ca, P, Si and Na elements in the MAO coating, anatase and hydroxyapatite (HA) crystals are generated from the previously amorphous MAO coating after the steam-hydrothermal treatment. Meanwhile, it is noticed that the amount of HA crystals increases but showing a decline trend in aspect ratio in morphologies with the increasing of NaOH concentration. Interestingly, the steam-hydrothermally treated MAO coatings exhibit better bonding strength with Ti substrate (up to 43.8±1.1MPa) than that of the untreated one (20.1±3.1MPa). In addition, benefiting from the corrosive attack of the dissolved NaOH in water vapor on the MAO coating, Ti-OH is also formed on the steam-hydrothermally treated MAO coating surface, which can trigger apatite nucleation. Thus, the steam-hydrothermally treated MAO coatings exhibit good apatite-inducing ability. PMID:25686996

  14. Speciation of uranium in surface-modified, hydrothermally treated, (UO{sub 2}){sup 2+}-exchanged smectite clays

    SciTech Connect

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.; Wasserman, S.R.

    1997-08-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS data from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.

  15. Vapor-Liquid Partitioning of Iron and Manganese in Hydrothermal Fluids: An Experimental Investigation with Application to the Integrated Study of Basalt-hosted Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Pester, N. J.; Seyfried, W. E.

    2010-12-01

    The chemistry of deep-sea hydrothermal vent fluids, expressed at the seafloor, reflects a complex history of physicochemical reactions. After three decades of field and experimental investigations, the processes of fluid-mineral equilibria that transform seawater into that of a typical “black smoker” are generally well described in the literature. Deep crustal fluids, when encountering a given heat source that ultimately drives hydrothermal circulation, routinely intersect the two-phase boundary. This process results in the nearly ubiquitous observations of variable salinity in vent fluids and is often a secondary driver of circulation via the evolution of a more buoyant (i.e. less saline) phase. Phase separation in chemically complex fluids results in the partitioning of dissolved species between the two evolved phases that deviates from simple charge balance calculations and these effects become more prominent with increasing temperature and/or decreasing pressure along the two-phase envelope. This process of partitioning has not been extensively studied and the interplay between the effects of phase separation and fluid-mineral equilibrium are not well understood. Most basalt-hosted hydrothermal systems appear to enter a steady state mode wherein fluids approach the heat source at depth and rise immediately once the two-phase boundary is met. Thus, venting fluids exhibit only modest deviations from seawater bulk salinity and the effects of partitioning are likely minor for all but the most volatile elements. Time series observations at integrated study sites, however, demonstrate dynamic changes in fluid chemistry following eruptions/magmatic events, including order of magnitude increases in gas concentrations and unexpectedly high Fe/Cl ratios. In this case, the time dependence of vapor-liquid partitioning relative to fluid-mineral equilibrium must be considered when attempting to interpret changes in subsurface reaction conditions. The two-phase region of

  16. Behavior of polymer-based electroactive actuator incorporated with mild hydrothermally treated CNTs

    NASA Astrophysics Data System (ADS)

    Melvin, Gan Jet Hong; Ni, Qing-Qing; Natsuki, Toshiaki

    2014-12-01

    We fabricated an actuator that was made from polyurethane (PU) with carbon nanotubes (CNTs) as the filler. To improve the dispersion of the CNTs, a mild hydrothermal treatment was carried out. Carboxyl and hydroxyl groups were introduced to the surface of the CNTs, and they were found to be highly dispersed in polar solvents such as dimethylformamide. To evaluate these films, we mainly focused on electrical properties, such as dielectric spectroscopy, space charge measurements, and actuator behavior. We found that the PU/CNTs film bents toward the cathode when an electric field was applied, and it reverted to its original position when the electric field was removed. Upon the inclusion of the CNTs as the filler for the polymer, the electrical properties of the films improved significantly. The highly polarized films had a high relative permittivity, and this produced a higher Maxwell pressure, which assisted the actuation. A high accumulated charge density was observed from space charge measurements in some of the films, and this explains the bending direction and the actuation mechanism.

  17. Hydrothermal synthesis of copper selenides with controllable phases and morphologies from an ionic liquid precursor

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodi; Duan, Xiaochuan; Peng, Peng; Zheng, Wenjun

    2011-12-01

    Cu2-xSe nanocrystals and CuSe nanoflakes are successfully synthesized through a convenient hydrothermal method from an ionic liquid precursor 1-n-butyl-3-ethylimidazolium methylselenite ([BMIm][SeO2(OCH3)]). The phases and morphologies of the copper selenides can be controlled by simply changing the atom ratio of Cu/Se in the reactants and reaction temperature. Furthermore, it is found that the [BMIm][SeO2(OCH3)] not only serves as Se source but also has influence on the shapes of CuSe nanoflakes. The adsorption of alkyl imidazolium rings ([BMIm]+) onto the (0001) facets of covellite CuSe prohibits the growth in the [0001] direction, and CuSe nuclei growth mainly processes along the six symmetric directions (+/-[01&cmb.macr;11], +/-[101&cmb.macr;1&cmb.macr;], and +/-[1&cmb.macr;100]) to form flakelike CuSe. The obtained copper selenides are characterized by XRD, SEM, EDS, XPS, TEM, and HRTEM. The results indicate that the Cu2-xSe nanocrystals are nearly spherical particles with an average diameter of about 20 nm, the hexagonal CuSe nanoflakes are single crystals with an edge length of 100-400 nm and a thickness of 25-50 nm. The potential formation mechanism of the copper selenides is also proposed.Cu2-xSe nanocrystals and CuSe nanoflakes are successfully synthesized through a convenient hydrothermal method from an ionic liquid precursor 1-n-butyl-3-ethylimidazolium methylselenite ([BMIm][SeO2(OCH3)]). The phases and morphologies of the copper selenides can be controlled by simply changing the atom ratio of Cu/Se in the reactants and reaction temperature. Furthermore, it is found that the [BMIm][SeO2(OCH3)] not only serves as Se source but also has influence on the shapes of CuSe nanoflakes. The adsorption of alkyl imidazolium rings ([BMIm]+) onto the (0001) facets of covellite CuSe prohibits the growth in the [0001] direction, and CuSe nuclei growth mainly processes along the six symmetric directions (+/-[01&cmb.macr;11], +/-[101&cmb.macr;1&cmb.macr;], and +/-[1

  18. Hydrothermal synthesis of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with ionic liquids as stabilizer

    SciTech Connect

    Liu, Xiao-Di Chen, Hao; Liu, Shan-Shan; Ye, Li-Qun; Li, Yin-Ping

    2015-02-15

    Highlights: • Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with good dispersity have been synthesized via hydrothermal method. • Ionic liquid [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles. • Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K. - Abstract: Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have been successfully synthesized under hydrothermal condition with the assistant of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C{sub 16}mim]Cl). The structure and morphology of the sample have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), and the results indicate that the as-synthesized inverse spinel Fe{sub 3}O{sub 4} nanoparticles have an average diameter of about 10 nm and exhibit relatively good dispersity. More importantly, it is found that [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles by adsorbing on the particles surfaces to prevent the agglomeration. In addition, the obtained superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K.

  19. Hydrothermally Treated Chitosan Hydrogel Loaded with Copper and Zinc Particles as a Potential Micronutrient-Based Antimicrobial Feed Additive

    PubMed Central

    Rajasekaran, Parthiban; Santra, Swadeshmukul

    2015-01-01

    Large-scale use of antibiotics in food animal farms as growth promoters is considered as one of the driving factors behind increasing incidence of microbial resistance. Several alternatives are under investigation to reduce the amount of total antibiotics used in order to avoid any potential transmission of drug resistant microbes to humans through food chain. Copper sulfate and zinc oxide salts are used as feed supplement as they exhibit antimicrobial properties in addition to being micronutrients. However, higher dosage of copper and zinc (often needed for growth promoting effect) to animals is not advisable because of potential environmental toxicity arising from excreta. Innovative strategies are needed to utilize the complete potential of trace minerals as growth promoting feed supplements. To this end, we describe here the development and preliminary characterization of hydrothermally treated chitosan as a delivery vehicle for copper and zinc nanoparticles that could act as a micronutrient-based antimicrobial feed supplement. Material characterization studies showed that hydrothermal treatment makes a chitosan hydrogel that rearranged to capture the copper and zinc metal particles. Systemic antimicrobial assays showed that this chitosan biopolymer matrix embedded with copper (57.6 μg/ml) and zinc (800 μg/ml) reduced the load of model gut bacteria (target organisms of growth promoting antibiotics), such as Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and Lactobacillus fermentum under in vitro conditions. Particularly, the chitosan/copper/zinc hydrogel exhibited significantly higher antimicrobial effect against L. fermentum, one of the primary targets of antibiotic growth promoters. Additionally, the chitosan matrix ameliorated the cytotoxicity levels of metal supplements when screened against a murine macrophage cell line RAW 264.7 and in TE-71, a murine thymic epithelial cell line. In this proof-of-concept study, we show that by using

  20. Hydrothermally Treated Chitosan Hydrogel Loaded with Copper and Zinc Particles as a Potential Micronutrient-Based Antimicrobial Feed Additive.

    PubMed

    Rajasekaran, Parthiban; Santra, Swadeshmukul

    2015-01-01

    Large-scale use of antibiotics in food animal farms as growth promoters is considered as one of the driving factors behind increasing incidence of microbial resistance. Several alternatives are under investigation to reduce the amount of total antibiotics used in order to avoid any potential transmission of drug resistant microbes to humans through food chain. Copper sulfate and zinc oxide salts are used as feed supplement as they exhibit antimicrobial properties in addition to being micronutrients. However, higher dosage of copper and zinc (often needed for growth promoting effect) to animals is not advisable because of potential environmental toxicity arising from excreta. Innovative strategies are needed to utilize the complete potential of trace minerals as growth promoting feed supplements. To this end, we describe here the development and preliminary characterization of hydrothermally treated chitosan as a delivery vehicle for copper and zinc nanoparticles that could act as a micronutrient-based antimicrobial feed supplement. Material characterization studies showed that hydrothermal treatment makes a chitosan hydrogel that rearranged to capture the copper and zinc metal particles. Systemic antimicrobial assays showed that this chitosan biopolymer matrix embedded with copper (57.6 μg/ml) and zinc (800 μg/ml) reduced the load of model gut bacteria (target organisms of growth promoting antibiotics), such as Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and Lactobacillus fermentum under in vitro conditions. Particularly, the chitosan/copper/zinc hydrogel exhibited significantly higher antimicrobial effect against L. fermentum, one of the primary targets of antibiotic growth promoters. Additionally, the chitosan matrix ameliorated the cytotoxicity levels of metal supplements when screened against a murine macrophage cell line RAW 264.7 and in TE-71, a murine thymic epithelial cell line. In this proof-of-concept study, we show that by using

  1. A Novel Strategy for Preparation of Si-HA Coatings on C/C Composites by Chemical Liquid Vaporization Deposition/Hydrothermal Treatments.

    PubMed

    Xin-Bo, Xiong; Xin-Ye, Ni; Ya-Yun, Li; Cen-Cen, Chu; Ji-Zhao, Zou; Xie-Rong, Zeng

    2016-01-01

    A novel strategy for the preparation of Si-doped hydroxyapatite (Si-HA) coatings on H2O2-treated carbon/carbon composites (C/C) was developed. HA coating was prepared on C/C through chemical liquid vaporization deposition (CLVD)/hydrothermal treatment. HA coating was immersed in an H2SiO3 solution at an autoclave at 413 K for transformation into Si-HA coating. The effects of H2SiO3 mass contents on the phase, morphology, and composition of the Si-HA coatings were studied through SEM, EDS,XRD, and FTIR. Their bonding performance to C/C was measured through a scratch test. Under the optimal content condition, the in vitro skull osteoblast response behaviors of the Si-HA coating were evaluated. Results showed that SiO3(2-) could enter into the HA lattice and occupy the PO4(3-) sites. Doped SiO3(2-) significantly improved the bonding performance of the HA coating to C/C in comparison with the untreated HA. The adhesive strength of the coatings initially increased and then decreased with increasing H2SiO3 content. Meanwhile, the cohesive strength of the Si-HA coatings was almost nearly identical. The Si-HA coating achieved at a content of 90% H2SiO3 exhibited the best bonding performance, and its osteoblast compatibility in vitro was superior to that of the untreated HA coating on C/C through CLVD/hydrothermal treatment. PMID:27492664

  2. A Novel Strategy for Preparation of Si-HA Coatings on C/C Composites by Chemical Liquid Vaporization Deposition/Hydrothermal Treatments

    PubMed Central

    Xin-bo, Xiong; Xin-ye, Ni; Ya-yun, Li; Cen-cen, Chu; Ji-zhao, Zou; Xie-rong, Zeng

    2016-01-01

    A novel strategy for the preparation of Si-doped hydroxyapatite (Si-HA) coatings on H2O2-treated carbon/carbon composites (C/C) was developed. HA coating was prepared on C/C through chemical liquid vaporization deposition (CLVD)/hydrothermal treatment. HA coating was immersed in an H2SiO3 solution at an autoclave at 413 K for transformation into Si-HA coating. The effects of H2SiO3 mass contents on the phase, morphology, and composition of the Si-HA coatings were studied through SEM, EDS,XRD, and FTIR. Their bonding performance to C/C was measured through a scratch test. Under the optimal content condition, the in vitro skull osteoblast response behaviors of the Si-HA coating were evaluated. Results showed that SiO32− could enter into the HA lattice and occupy the PO43− sites. Doped SiO32− significantly improved the bonding performance of the HA coating to C/C in comparison with the untreated HA. The adhesive strength of the coatings initially increased and then decreased with increasing H2SiO3 content. Meanwhile, the cohesive strength of the Si-HA coatings was almost nearly identical. The Si-HA coating achieved at a content of 90% H2SiO3 exhibited the best bonding performance, and its osteoblast compatibility in vitro was superior to that of the untreated HA coating on C/C through CLVD/hydrothermal treatment. PMID:27492664

  3. A Novel Strategy for Preparation of Si-HA Coatings on C/C Composites by Chemical Liquid Vaporization Deposition/Hydrothermal Treatments

    NASA Astrophysics Data System (ADS)

    Xin-Bo, Xiong; Xin-Ye, Ni; Ya-Yun, Li; Cen-Cen, Chu; Ji-Zhao, Zou; Xie-Rong, Zeng

    2016-08-01

    A novel strategy for the preparation of Si-doped hydroxyapatite (Si-HA) coatings on H2O2-treated carbon/carbon composites (C/C) was developed. HA coating was prepared on C/C through chemical liquid vaporization deposition (CLVD)/hydrothermal treatment. HA coating was immersed in an H2SiO3 solution at an autoclave at 413 K for transformation into Si-HA coating. The effects of H2SiO3 mass contents on the phase, morphology, and composition of the Si-HA coatings were studied through SEM, EDS,XRD, and FTIR. Their bonding performance to C/C was measured through a scratch test. Under the optimal content condition, the in vitro skull osteoblast response behaviors of the Si-HA coating were evaluated. Results showed that SiO32‑ could enter into the HA lattice and occupy the PO43‑ sites. Doped SiO32‑ significantly improved the bonding performance of the HA coating to C/C in comparison with the untreated HA. The adhesive strength of the coatings initially increased and then decreased with increasing H2SiO3 content. Meanwhile, the cohesive strength of the Si-HA coatings was almost nearly identical. The Si-HA coating achieved at a content of 90% H2SiO3 exhibited the best bonding performance, and its osteoblast compatibility in vitro was superior to that of the untreated HA coating on C/C through CLVD/hydrothermal treatment.

  4. Study concerning the utilization of the ocean spreading center environment for the conversion of biomass to a liquid fuel. (Includes Appendix A: hydrothermal petroleum genesis). [Supercritical water

    SciTech Connect

    Steverson, M.; Stormberg, G.

    1985-01-01

    This document contains a report on the feasibility of utilizing energy obtained from ocean spreading centers as process heat for the conversion of municipal solid wastes to liquid fuels. The appendix contains a paper describing hydrothermal petroleum genesis. Both have been indexed separately for inclusion in the Energy Data Base. (DMC)

  5. Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route

    SciTech Connect

    Tang, Zhe Liang, Jilei Li, Xuehui Li, Jingfeng Guo, Hailing; Liu, Yunqi Liu, Chenguang

    2013-06-01

    A simple and novel synthesis process, one-step ionic liquid-assisted hydrothermal synthesis route, has been developed in the work to synthesize Bohemithe (γ-AlOOH) with flower-like structure. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM). Ionic liquid [Omim]{sup +}Cl{sup −}, as a template, plays an important role in the morphology and pore structure of the products due to its strong interactions with reaction particles. With the increase in the dosage of ionic liquid [Omim]{sup +}Cl{sup −}, the morphology of the γ-AlOOH was changed from initial bundles of nanosheets (without ionic liquid) into final well-developed monodispersed 3D flower-like architectures ([Omim]{sup +}Cl{sup −}=72 mmol). The pore structure was also altered gradually from initial disordered slit-like pore into final relatively ordered ink-bottle pore. Furthermore, the proposed formation mechanism and other influencing factors such as reaction temperature and urea on formation and morphology of the γ-AlOOH have also been investigated. - Graphical abstract: The flower-like γ-AlOOH architectures composed by nanosheets with narrow size distribution (1.6–2.2 μm) and uniform pore size (6.92 nm) have been synthesized via a one-step ionic liquid-assisted hydrothermal route. - Highlights: • The γ-AlOOH microflowers were synthesized via an ionic liquid-assisted hydrothermal route. • Ionic liquid plays an important role on the morphology and porous structure of the products. • Ionic liquid can be easily removed from the products and reused in recycling experiments. • A “aggregation–recrystallization–Ostwald Ripening“formation mechanism may occur.

  6. Treating Total Liquid Refusal with Backward Chaining and Fading.

    ERIC Educational Resources Information Center

    Hagopian, Louis P.; And Others

    1996-01-01

    In this study of a 12-year-old boy with autism, mental retardation, and a history of severe gastrointestinal problems, who refused liquids and food, backward chaining was used to shape drinking from a cup and a fading procedure was used to increase the water he was required to drink. (Author/CR)

  7. Development of Hydrothermal Liquefaction and Upgrading Technologies for Lipid-Extracted Algae Conversion to Liquid Fuels

    SciTech Connect

    Zhu, Yunhua; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Jones, Susanne B.

    2013-10-01

    Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrotreating liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available test results. The system assumes an LEA feed rate of 608 dry metric ton/day and that the feedstock is converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid hydrocarbon fuels, mainly alkanes. Performance and cost results demonstrate that HTL would be an effective option to convert LEA to liquid fuel. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent and the overall energy efficiency at higher heating value basis was estimated to be 69.5%. The minimum fuel selling price (MFSP) was estimated to be $0.75/L with LEA feedstock price at $33.1 metric ton at dry basis and 10% internal rate of return. A sensitivity analysis indicated that the largest effects to production cost would come from the final products yields and the upgrading equipments cost. The impact of plant scale on MFSP was also investigated.

  8. Process for treating liquid chlorinated hydrocarbon wastes containing iron

    SciTech Connect

    Doane, E.P.

    1986-09-30

    A process is described for reducing the ferric chloride content of liquid waste streams comprising higher boiling chlorinated hydrocarbons and containing amounts of ferric chloride. The process consists essentially of contacting the waste stream with an amount of water sufficient to convert ferric chloride contained in the stream to solid ferric chloride hexahydrate, and then removing the solid hexahydrate by filtration or centrifugation from the waste stream.

  9. Combined effect of carbon dioxide and sulfur on vapor-liquid partitioning of metals in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Kokh, Maria A.; Lopez, Mathieu; Gisquet, Pascal; Lanzanova, Aurélie; Candaudap, Frédéric; Besson, Philippe; Pokrovski, Gleb S.

    2016-08-01

    Although CO2 is a ubiquitous volatile in geological fluids typically ranging from a few to more than 50 wt%, its effect on metal vapor-liquid fractionation during fluid boiling and immiscibility phenomena in the Earth's crust remains virtually unknown. Here we conducted first experiments to quantify the influence of CO2 on the partition of different metals in model water + salt + sulfur + CO2 systems at 350 °C and CO2 pressures up to 100 bar, which are typical conditions of formation of many hydrothermal ore deposits. In addition, we performed in situ Raman spectroscopy measurements on these two-phase systems, to determine sulfur and carbon speciation in the liquid and vapor phases. Results show that, in S-free systems and across a CO2 concentration range of 0-50 wt% in the vapor phase, the absolute vapor-liquid partitioning coefficients of metals (Kvap/liq = Cvap/Cliq, where C is the mass concentration of the metal in the corresponding vapor and liquid phase) are in the range 10-6-10-5 for Mo; 10-4-10-3 for Na, K, Cu, Fe, Zn, Au; 10-3-10-2 for Si; and 10-4-10-1 for Pt. With increasing CO2 from 0 to 50 wt%, Kvap/liq values decrease for Fe, Cu and Si by less than one order of magnitude, remain constant within errors (±0.2 log unit) for Na, K and Zn, and increase by 0.5 and 2 orders of magnitude, respectively for Au and Pt. The negative effect of CO2 on the partitioning of some metals is due to weakening of hydration of chloride complexes of some metals (Cu, Fe) in the vapor phase and/or salting-in effects in the liquid phase (Si), whereas both phenomena are negligible for complexes of other metals (Na, K, Zn, Mo). The only exception is Pt (and in a lesser extent Au), which partitions significantly more to the vapor of S-free systems in the presence of CO2, likely due to formation of volatile carbonyl (CO) complexes. In the S-bearing system, with H2S content of 0.1-1.0 wt% in the vapor, Kvap/liq values of Cu, Fe, Mo, and Au are in the range 0.01-0.1, those of Pt 0

  10. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems.

    PubMed

    Xia, Ao; Murphy, Jerry D

    2016-04-01

    Biogas production via anaerobic digestion (AD) has rapidly developed in recent years. In addition to biogas, digestate is an important byproduct. Liquid digestate is the major fraction of digestate and may contain high levels of ammonia nitrogen. Traditional processing technologies (such as land application) require significant energy inputs and raise environmental risks (such as eutrophication). Alternatively, microalgae can efficiently remove the nutrients from digestate while producing high-value biomass that can be used for the production of biochemicals and biofuels. Both inorganic and organic carbon sources derived from biogas production can significantly improve microalgal production. Land requirement for microalgal cultivation is estimated as 3% of traditional direct land application of digestate. PMID:26776247

  11. Treating amblyopia with liquid crystal glasses: a pilot study.

    PubMed

    Spierer, Abraham; Raz, Judith; Benezra, Omry; Herzog, Rafi; Cohen, Evelyne; Karshai, Ilana; Benezra, David

    2010-07-01

    PURPOSE. To evaluate the use of liquid crystal glasses (LCG) for the treatment of amblyopia caused by refractive errors, strabismus, or both. METHODS. In this noncomparative, prospective, interventional case series, 28 children (age range, 4-7.8 years) with monocular amblyopia participated, of which 24 completed the study. In the LCG, the occluding and nonoccluding phases of the flicker were electronically set in all patients at a fixed rate. The rate was set so that accumulated occlusion was 5 hours during 8 hours' weartime. Occlusion was applied only to the good eye. All 24 children were followed up regularly for 9 months. Best corrected VA for distance and near, fixation patterns, and binocular function were measured. VA for distance was measured with the Snellen chart and for near with the Rossano/Weiss chart. RESULTS. Mean VA for distance at the end of the study (after 9 months) was 0.59 (SD, 0.16) compared with 0.27 (SD, 0.09) at the beginning (P < 0.001). Most of the children (92%) complied well with the treatment. (Good compliance was defined as wearing the LCG for at least 8 hours per day.) Stereopsis at the end of treatment was good (better than 60 sec arc) in 21% of the children compared with 8% at the beginning. No serious adverse events were recorded. CONCLUSIONS. The use of LCG in patients with amblyopia yielded an improvement in near and distance VA and in stereopsis. Treatment was well accepted by children and parents. PMID:20164454

  12. Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading

    SciTech Connect

    Zhu, Yunhua; Biddy, Mary J.; Jones, Susanne B.; Elliott, Douglas C.; Schmidt, Andrew J.

    2014-09-15

    A series of experimental work was conducted to convert woody biomass to gasoline and diesel range products via hydrothermal liquefaction (HTL) and catalytic hydroprocessing. Based on the best available test data, a techno-economic analysis (TEA) was developed for a large scale woody biomass based HTL and upgrading system to evaluate the feasibility of this technology. In this system, 2000 dry metric ton per day woody biomass was assumed to be converted to bio-oil in hot compressed water and the bio-oil was hydrotreated and/or hydrocracked to produce gasoline and diesel range liquid fuel. Two cases were evaluated: a stage-of-technology (SOT) case based on the tests results, and a goal case considering potential improvements based on the SOT case. Process simulation models were developed and cost analysis was implemented based on the performance results. The major performance results included final products and co-products yields, raw materials consumption, carbon efficiency, and energy efficiency. The overall efficiency (higher heating value basis) was 52% for the SOT case and 66% for the goal case. The production cost, with a 10% internal rate of return and 2007 constant dollars, was estimated to be $1.29 /L for the SOT case and $0.74 /L for the goal case. The cost impacts of major improvements for moving from the SOT to the goal case were evaluated and the assumption of reducing the organics loss to the water phase lead to the biggest reduction in the production cost. Sensitivity analysis indicated that the final products yields had the largest impact on the production cost compared to other parameters. Plant size analysis demonstrated that the process was economically attractive if the woody biomass feed rate was over 1,500 dry tonne/day, the production cost was competitive with the then current petroleum-based gasoline price.

  13. Corrosion behavior of surface treated steel in liquid sodium negative electrode of liquid metal battery

    NASA Astrophysics Data System (ADS)

    Lee, Jeonghyeon; Shin, Sang Hun; Lee, Jung Ki; Choi, Sungyeol; Kim, Ji Hyun

    2016-03-01

    While liquid metal batteries are attractive options for grid-scale energy storage applications as they have flexible siting capacities and small footprints, the compatibility between structural materials such as current collectors and negative electrode such as sodium is one of major issues for liquid metal batteries. Non-metallic elements such as carbon, oxygen, and nitrogen in the liquid sodium influence the material behaviors of the cell construction materials in the battery system. In this study, the compatibility of structural materials with sodium is investigated in high temperature liquid sodium, and electrochemical impedance spectroscopy (EIS) is used to monitor in-situ the corrosion behavior at the surface of materials in sodium. Chemical vapor deposition (CVD) coatings of SiC and Si3N4 are applied as protective barriers against dissolution and corrosion on the steel surface. The results show that CVD coating of Si compounds can delay corrosion of steel in high temperature liquid sodium comparing to the result of as-received specimens, while SiC coating is more durable than Si3N4 coating in high temperature liquid sodium.

  14. Microscopic characterization of tension wood cell walls of Japanese beech (Fagus crenata) treated with ionic liquids.

    PubMed

    Kanbayashi, Toru; Miyafuji, Hisashi

    2016-09-01

    Tension wood that is an abnormal part formed in angiosperms has been barely used for wood industry. In this study, to utilize the tension wood effectively by means of liquefaction using ionic liquid, we performed morphological and topochemical determination of the changes in tension wood of Japanese beech (Fagus crenata) during ionic liquid treatment at the cellular level using light microscopy, scanning electron microscopy and confocal Raman microscopy. Ionic liquid treatment induced cell wall swelling in tension wood. Changes in the tissue morphology treated with ionic liquids were different between normal wood and tension wood, moreover the types of ionic liquids. The ionic liquid 1-ethyl-3-methylimidazolium chloride liquefied gelatinous layers rapidly, whereas 1-ethylpyridinium bromide liquefied slowly but delignified selectively. These novel insights into the deconstruction behavior of tension wood cell walls during ionic liquid treatment provide better understanding of the liquefaction mechanism. The obtained knowledge will contribute to development of an effective chemical processing of tension wood using ionic liquids and lead to efficient use of wood resources. PMID:27285953

  15. α-Fe2O3 cubes with high visible-light-activated photoelectrochemical activity towards glucose: hydrothermal synthesis assisted by a hydrophobic ionic liquid.

    PubMed

    Xu, Li; Xia, Jiexiang; Wang, Leigang; Qian, Jing; Li, Huaming; Wang, Kun; Sun, Kaiyong; He, Minqiang

    2014-02-17

    A liquid/liquid interfacial reaction system was designed to fabricate α-Fe2O3 cubes. The reaction system uses a hydrophobic ionic liquid containing iron ions ([(C8H17)2(CH3)2N]FeCl4) for manufacturing α-Fe2O3 cubes by a novel and environmentally friendly hydrothermal method under low-temperature conditions (140 °C). The iron-containing ionic liquid is hydrophobic and can form a liquid/liquid interface with water, which is vital for fabrication of the α-Fe2O3 cubes. Nanomaterials synthesized from hydrophobic iron-containing ionic liquids show good crystallinity, well-developed morphology, and uniform size. The effect of different ionic liquids on the morphology of α-Fe2 O3 was investigated in detail. [(C8H17)2(CH3)2N]FeCl4 is assumed to perform the triple role of forming a liquid/liquid interface with water and acting as reactant and template at the same time. The effect of the reaction temperature on the formation of the α-Fe2O3 cubes was also studied. Temperatures lower or higher than 140 °C are not conducive to formation of the α-Fe2O3 cubes. Their photoelectrochemical properties were tested by means of the transient photocurrent response of electrodes modified with as-prepared α-Fe2O3 cubes. The photocurrent response of an α-Fe2O3 cubes/indium tin oxide electrode is high and stable, and it shows great promise as a photoelectrochemical glucose sensor with high sensitivity and fast response, which are beneficial to practical applications of nanosensors. PMID:24458597

  16. Hydrothermal Processing

    SciTech Connect

    Elliott, Douglas C.

    2011-03-11

    This chapter is a contribution to a book on Thermochemical Conversion of Biomass being edited by Prof. Robert Brown of Iowa State University. It describes both hydrothermal liquefaction and hydrothermal gasification of biomass to fuels.

  17. Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route

    NASA Astrophysics Data System (ADS)

    Tang, Zhe; Liang, Jilei; Li, Xuehui; Li, Jingfeng; Guo, Hailing; Liu, Yunqi; Liu, Chenguang

    2013-06-01

    A simple and novel synthesis process, one-step ionic liquid-assisted hydrothermal synthesis route, has been developed in the work to synthesize Bohemithe (γ-AlOOH) with flower-like structure. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM). Ionic liquid [Omim]+Cl-, as a template, plays an important role in the morphology and pore structure of the products due to its strong interactions with reaction particles. With the increase in the dosage of ionic liquid [Omim]+Cl-, the morphology of the γ-AlOOH was changed from initial bundles of nanosheets (without ionic liquid) into final well-developed monodispersed 3D flower-like architectures ([Omim]+Cl-=72 mmol). The pore structure was also altered gradually from initial disordered slit-like pore into final relatively ordered ink-bottle pore. Furthermore, the proposed formation mechanism and other influencing factors such as reaction temperature and urea on formation and morphology of the γ-AlOOH have also been investigated.

  18. Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes.

    PubMed

    Del Mundo Dacera, Dominica; Babel, Sandhya; Parkpian, Preeda

    2009-08-15

    The suitability for land application of anaerobically digested sewage sludge treated with naturally fermented and Aspergillus niger (A. niger) fermented raw liquid from pineapple wastes, in terms of changes in the forms and amount of heavy metals and nutrient and pathogen content, were investigated in this study. Leaching studies for fermented liquid at optimum conditions (pH and contact time with best metal removal efficiencies) were carried out for the removal of Cd, Cr, Cu, Pb, Ni and Zn from sewage sludge, with citric acid as a reference. Using the same sludge before and after leaching, sequential fractionation studies were done to observe the effect of treatment on the forms of metals in sludge and their mobility and bioavailability. Results of laboratory scale studies revealed that leaching with all extractants at selected optimum conditions resulted in a decrease in heavy metals and pathogen content of the treated sludge, presence of sufficient amount of nutrients (nitrogen and phosphorous) and dominance of residual fractions in most metals, with sludge treated with A. niger, having the best quality. The results, therefore, indicate the high potential of the treated sludge for land application, with no harm from heavy metals released and no toxicity to the soil and groundwater. PMID:19232826

  19. Hydrothermal carbonization: process water characterization and effects of water recirculation.

    PubMed

    Stemann, Jan; Putschew, Anke; Ziegler, Felix

    2013-09-01

    Poplar wood chips were treated hydrothermally and the increase of process efficiency by water recirculation was examined. About 15% of the carbon in the biomass was dissolved in the liquid phase when biomass was treated in de-ionized water at 220 °C for 4 h. The dissolved organic matter contained oxygen and was partly aerobically biodegradable. About 30-50% of the total organic carbon originated from organic acids. A polar and aromatic fraction was extracted and a major portion of the organic load was of higher molecular weight. By process water recirculation organic acids in the liquid phase concentrated and catalyzed dehydration reactions. As a consequence, functional groups in hydrothermally synthesized coal declined and dewaterability was enhanced. Recirculated reactive substances polymerized and formed additional solid substance. As a result, carbon and energetic yields of the produced coal rose to 84% and 82%, respectively. PMID:23792664

  20. Prevention of trace and major element leaching from coal combustion products by hydrothermally-treated coal ash

    SciTech Connect

    Adnadjevic, B.; Popovic, A.; Mikasinovic, B.

    2009-07-01

    The most important structural components of coal ash obtained by coal combustion in 'Nikola Tesla A' power plant located near Belgrade (Serbia) are amorphous alumosilicate, alpha-quartz, and mullite. The phase composition of coal ash can be altered to obtain zeolite type NaA that crystallizes in a narrow crystallization field (SiO{sub 2}/Al{sub 2}O{sub 3}; Na{sub 2}O/SiO{sub 2}; H{sub 2}O/Na{sub 2}O ratios). Basic properties (crystallization degree, chemical composition, the energy of activation) of obtained zeolites were established. Coal ash extracts treated with obtained ion-exchange material showed that zeolites obtained from coal ash were able to reduce the amounts of iron, chromium, nickel, zinc, copper, lead, and manganese in ash extracts, thus proving its potential in preventing pollution from dump effluent waters.

  1. Template-free synthesis of CdS hollow nanospheres based on an ionic liquid assisted hydrothermal process and their application in photocatalysis

    SciTech Connect

    Li Xinping; Gao Yanan; Yu Li; Zheng Liqiang

    2010-06-15

    Polycrystalline CdS hollow nanospheres with diameter of about 130 nm have been successfully synthesized in high yield by an ionic liquid (IL) assisted template-free hydrothermal method for the first time. Both the molar ratios of Cd/S precursor in the solution and the reaction temperature play important roles in the formation of the CdS hollow nanospheres. The concentrations of capping agent hexamethylenetetramine (HMT) and polyvinylpyrrolidone (PVP) are also crucial for the morphology and size of the final product. IL was found to be a key component in the formation of CdS hollow structures, because solid spheres were obtained in the absence of IL. A subsequent growth mechanism of hollow interior by localized Ostwald ripening process has been further discussed. Such hollow structures show high photocatalytic ability in the photodegradation of methylene blue. - Graphical abstract: TEM images of typical as-prepared CdS hollow nanospheres.

  2. Corrosion behavior of Al-surface-treated steels in liquid Pb?Bi in a pot

    NASA Astrophysics Data System (ADS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2004-12-01

    Corrosion tests were performed in oxygen-saturated liquid Pb-Bi at 450 °C and 550 °C in a pot for 3000 h for Al-surface-treated steels containing various levels of Cr contents. The Al surface treatments were achieved using a gas diffusion method and a melt dipping method. Al2O3, FeAl2 and AlCr2 produced by the gas diffusion method exhibited corrosion resistance to liquid Pb-Bi, while the surface layer produced by the melt dipping method suffered a severe corrosion attack. Fe4Al13 and Fe2Al5 produced by the melt dipping method disappeared during the corrosion test at 550 °C and only FeAl remained.

  3. In situ observations of liquid-liquid phase separation in aqueous ZnSO4 solutions at temperatures up to 400 °C: Implications for Zn2+-SO42- association and evolution of submarine hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Wan, Ye; Hu, Wenxuan; Chou, I.-Ming; Cao, Jian; Wang, Xiaoyu; Wang, Meng; Li, Zhen

    2016-05-01

    Liquid-liquid immiscibility is gaining recognition as an important process in hydrothermal fluid activity. However, studies of this complex process are relatively limited. We examined liquid-liquid immiscibility in aqueous ZnSO4 solutions at temperatures above ∼266.5 °C and at vapor-saturation pressures. The homogeneous aqueous ZnSO4 solution separated into ZnSO4-rich (L1) and ZnSO4-poor (L2) liquid phases coexisting with the vapor phase. The L1-L2 phase separation temperature decreased with increasing ZnSO4 concentration up to 1.0 mol/kg, and then increased at greater ZnSO4 concentrations, showing a typical lower critical solution temperature (LCST) of ∼266.5 °C. Gunningite (ZnSO4·H2O) precipitated in 2.0 mol/kg ZnSO4 solution at 360 °C. The L1-L2 phase separation resulted mainly from the strong Zn2+-SO42- association at high temperatures. The major results of this study are: (1) the discovery of the LCST in these systems, a macroscale property associated with polymeric mixtures; (2) analyses of the peak area ratios of the v1(SO42-) and OH stretching bands, which suggest that the sulfate concentration increases with increasing temperature in L1, especially above 375 °C; (3) a new Raman v1(SO42-) mode at ∼1005 cm-1 observed only in the L1 phase, whose fraction increases with increasing temperature; and (4) the shape of the OH Raman stretching band, which indicates that water molecules and solute interact much more strongly in L1 than in the coexisting L2 phase, suggesting that water molecules fit into the framework formed by various Zn2+-SO42- pairs and chain structures in L1. These results have potential implications for understanding transport and reduction of seawater-derived sulfate in submarine hydrothermal systems. The formation of an immiscible sulfate-rich liquid phase can favor the circulation of sulfate within mid-ocean ridge basalt because the sulfate-rich liquid density is higher than that of the coexisting fluid. The reduction of sulfate

  4. Ionic Liquid-Assisted Hydrothermal Method Synthesis of Flower-Like MoS2 and Their Electrochemical Performances.

    PubMed

    Li, Maohua; Yang, Bo; Hao, Junying; Lu, Yi; Long, Zerong; Liu, Yumei

    2016-06-01

    Molybdenum disulfide (MoS2) was prepared successfully via hydrothermal reaction at 200 degrees C in water/ethanol (1:1) solvent system using the ammonium molybdate and sodium thiosulfate as the molybdenum sources and sulfur sources, 1-butyl-3-methylimidazolium chloride salt [BMIM][Cl] as the additive agent. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the morphology and structure of flower-like products. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy spectrum analysis results show that the as-prepared product is a pure phase of MoS2. The prepared products are used as electrode materials for Li-ion batteries and showed excellent cycle stability and high Coulombic efficiency at a current density of 200 mA x g(-1) in the voltage range of 0.01 - 3.00 V (vs. Li/Li+). In addition, this paper also examined the influence of the reaction time and the amount of template agent on morphology, and discussed the reaction mechanism of the formation of flower-like morphology. PMID:27427696

  5. Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses

    NASA Astrophysics Data System (ADS)

    Hwang, S.-J.; Chen, T.-A.; Lin, K.-R.; Jeng, S.-C.

    2012-04-01

    The surface energy of a conventional homeotropic polyimide (PI) alignment layer was altered via ultraviolet (UV) light irradiation, and the pretilt angle of the PI was changed along with the surface energy. The surface energy can be controlled by either UV exposure time or irradiation intensity. A switchable liquid crystal Fresnel lens (LCFL) was created by the UV-treated alignment layers to form a Fresnel zone-distribution hybrid alignment, vertically aligned and hybrid aligned LC in the odd and even zones, respectively. The LCFL was made polarization-independent by circular buffing, and it had a diffraction efficiency of ˜22% at a low driving voltage of ˜1.2 V.

  6. Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis.

    PubMed

    Kim, Dong-Hyun; Lee, Sang-Bum; Jeong, Gwi-Taek

    2014-06-01

    In this work, to evaluate the efficacy of marine macro-algae Enteromorpha intestinalis as a potential bioenergy resource, the effects of reaction conditions (solid-to-liquid ratio, reaction temperature, and reaction time) on sugars produced by a combined process of hydrothermal and enzymatic hydrolysis were investigated. As a result of the hydrothermal hydrolysis, a 7.3g/L (8% yield) total reducing sugar was obtained under conditions including solid-to-liquid ratio of 1:10, reaction temperature of 170°C, and reaction time of 60min. By subsequent (post-hydrothermal) enzymatic hydrolysis of samples treated at 170°C for 30min, a 20.1g/L (22% yield) was achieved. PMID:24727694

  7. Ionic liquid-assisted hydrothermal synthesis of dendrite-like NaY(MoO4)2:Tb3+ phosphor

    NASA Astrophysics Data System (ADS)

    Tian, Yue; Chen, Baojiu; Tian, Bining; Sun, Jiashi; Li, Xiangping; Zhang, Jinsu; Cheng, Lihong; Zhong, Haiyang; Zhong, Hua; Meng, Qingyu; Hua, Ruinian

    2012-07-01

    Micro-sized NaY(MoO4)2:Tb3+ phosphors with dendritic morphology was synthesized by a ionic liquid-assisted hydrothermal process. X-ray diffraction (XRD) indicated that the as-prepared product is pure tetragonal phase of NaY(MoO4)2. Field emission scanning electron microscopy (FE-SEM) images showed that the as-prepared NaY(MoO4)2:Tb3+ phosphors have dendritic morphology. The photoluminescent (PL) spectra displayed that the as-prepared NaY(MoO4)2:Tb3+ phosphors show a stronger green emission with main emission wavelength 545 nm corresponding to the 5D4→7F5 transition of Tb3+ ion, and the optimal Tb3+ doping concentration for obtaining maximum emission intensity was confirmed to be 10 mol%. Based on Van Uitert's and Dexter's models the electric dipole-dipole (D-D) interaction was confirmed to be responsible for the concentration quenching of 5D4 fluorescence of Tb3+ in the NaY(MoO4)2:Tb3+ phosphors. The intrinsic radiative transition lifetime of 5D4 level is found to be 0.703 ms.

  8. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat, III; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  9. 75 FR 1704 - Modification to Consolidated Return Regulation Permitting an Election To Treat a Liquidation of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ..., 2009 (74 FR 45757), temporary regulations (TD 9458), contains an error which may prove to be misleading... Permitting an Election To Treat a Liquidation of a Target, Followed by a Recontribution to a New Target, as a... amendment. Summary: This document contains a correction to temporary regulations (TD 9458), which...

  10. Adhesion strength measurements of excimer-laser-treated PTFE surfaces using liquid photoreagents

    NASA Astrophysics Data System (ADS)

    Hopp, Bela; Smausz, Tomi; Kresz, Norbert; Ignacz, Ferenc

    2003-04-01

    The most known feature of polytetrafluoroethylene (PTFE) is its adhesion behavior: it is hydrophobic and oleophobic at the same time. This can cause serious problems and obstacles during the surface treatment and fixing of PTFE objects. During our experiments Teflon films were irradiated by an ArF excimer laser beam in presence of liquid photoreagents containing amine groups (aminoethanol, 1,2-diaminoethane, triethylene-tetramine). In consequence of the treatment the adhesion of the modified surfaces significantly increased, the samples could be glued and moistened. The adhesion strength of the glued surfaces was measured in the function of the applied laser fluence. The adhesion strength increased drastically between 0 - 1 mJ/cm2 and showed saturation above 1 mJ/cm2 at approximately 5 - 9 MPa values depending on the applied photoreagents. On the basis of our experiments it was found that the treatment with triethylene-tetramine was the most effective. The surface chemical modifications of the treated Teflon samples can be due to the incorporation of amine groups into the surface layer.

  11. Liquid chromatography-mass spectrometry for measuring deoxythioguanosine in DNA from thiopurine-treated patients.

    PubMed

    Coulthard, Sally A; Berry, Phil; McGarrity, Sarah; Ansari, Azhar; Redfern, Christopher P F

    2016-08-15

    Adverse reactions and non-response are common in patients treated with thiopurine drugs. Current monitoring of drug metabolite levels for guiding treatment are limited to analysis of thioguanine nucleotides (TGNs) in erythrocytes after chemical derivatisation. Erythrocytes are not the target tissue and TGN levels show poor correlations with clinical response. We have developed a sensitive assay to quantify deoxythioguanosine (dTG) without derivatisation in the DNA of nucleated blood cells. Using liquid chromatography and detection by tandem mass spectrometry, an intra- and inter-assay variability below 7.8% and 17.0% respectively were achieved. The assay had a detection limit of 0.0003125ng (1.1 femtomoles) dTG and was quantified in DNA samples relative to endogenous deoxyadenosine (dA) in a small group of 20 patients with inflammatory bowel disease, all of whom had been established on azathioprine (AZA) therapy for more than 25 weeks. These patients had dTG levels of 20-1360mol dTG/10(6)mol dA; three patients who had not started therapy had no detectable dTG. This method, comparable to previous methods in sensitivity, enables the direct detection of a cytotoxic thiopurine metabolite without derivatisation in an easily obtainable, stable sample and will facilitate a better understanding of the mechanisms of action of these inexpensive yet effective drugs. PMID:27362994

  12. Converting ultrasonic induction heating deposited monetite coating to Na-doped HA coating on H 2O 2-treated C/C composites by a two-step hydrothermal method

    NASA Astrophysics Data System (ADS)

    Xin-bo, Xiong; Jian-feng, Hung; Xie-rong, Zeng; Cen-cen, Chu

    2011-10-01

    a monetite coating on H 2O 2-treated C/C composites was prepared by ultrasonic induction heating (UIH) technology. Subsequently, this coating was subjected to an ammonia hydrothermal treatment to form a undoped hydroxyapatite (U-HA) coating. Finally, the as-prepared U-HA coating was placed in a NaOH solution and hydrothermally treated to produce the other hydroxyapatite (Na-HA) coating. The structure, morphology and chemical composition of the two HA coatings were characterized by XRD, FTIR, SEM and EDS, the adhesiveness and local mechanical properties, e.g. nanohardness and Young's modulus of the two HA coatings to C/C composites was evaluated by a scratch test and nanoindentation technique respectively. The results showed that the two HA coatings had the alike morphology and crystallization. But, compared with the U-HA coating, the Na-HA coating was doped with Na ions, and gave a Ca/P ratio close to a stoichiometric hydroxyapatite, and thus showed a higher nano-indentation value, Young's modulus, and larger bonding strength. These results verified the strengthened effect of Na ion in hydroxyapatite coating on carbon/carbon (C/C) composities.

  13. Persistent Effectivity of Gas Plasma-Treated, Long Time-Stored Liquid on Epithelial Cell Adhesion Capacity and Membrane Morphology

    PubMed Central

    Hoentsch, Maxi; Bussiahn, René; Rebl, Henrike; Bergemann, Claudia; Eggert, Martin; Frank, Marcus; von Woedtke, Thomas; Nebe, Barbara

    2014-01-01

    Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first time-dependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics. PMID:25170906

  14. Ionic liquids as antimicrobials, solvents, and prodrugs for treating skin disease

    NASA Astrophysics Data System (ADS)

    Zakrewsky, Michael A.

    The skin is the largest organ in the body. It provides a compliant interface for needle-free drug delivery, while avoiding major degradative pathways associated with the GI tract. These can result in improved patient compliance and sustained and controlled release compared to other standard delivery methods such as intravenous injection, subcutaneous injection, and oral delivery. Concurrently, for the treatment of skin related diseases (e.g. bacterial infection, skin cancer, psoriasis, atopic dermatitis, etc.) cutaneous application provides targeted delivery to the disease site, allowing the use of more potent therapeutics with fewer systemic side effects. Unfortunately, the outer layer of the skin -- the stratum corneum (SC) -- presents a significant barrier to most foreign material. This is particularly true for large hydrophilic molecules (>500Da), which must partition through tortuous lipid channels in the SC to penetrate deep tissue layers where the majority of skin-related diseases reside. Interestingly, over the last few decades ionic liquids (ILs) have emerged as a burgeoning class of designer solvents. ILs have been proven beneficial for use in industrial processing, catalysis, pharmaceuticals, and electrochemistry to name a few. The ability to modulate either the cation or anion individually presents an advantageous framework for tuning secondary characteristics without sacrificing the primary function of the IL. Here we report the use of novel ILs for cutaneous drug delivery. Specifically, we demonstrate their potential as potent, broad-spectrum antimicrobials, as solvents for topical delivery of hydrophilic and hydrophobic drugs, and as prodrugs to either reduce the dose-dependent toxicity of drugs that cause skin irritation or enhance delivery of macromolecules into skin and cells. Thus, our results clearly demonstrate ILs holds promise as a transformative platform for treating skin disease.

  15. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    NASA Astrophysics Data System (ADS)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  16. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  17. One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents

    NASA Astrophysics Data System (ADS)

    Wu, Ruihan; Yu, Baowei; Liu, Xiaoyang; Li, Hongliang; Wang, Weixuan; Chen, Lingyun; Bai, Yitong; Ming, Zhu; Yang, Sheng-Tao

    2016-01-01

    Graphene sponge (GS) has found applications in oil removal due to the hydrophobic nature of graphene sheets. Current hydrothermal preparations of GS use toxic reducing reagents, which might cause environmental pollution. In this study, we reported that graphene oxide (GO) could be hydrothermally reduced by glucose to form GS for the adsorption of oils and various organic solvents. Graphene sheets were reduced by glucose during the hydrothermal treatment and formed 3D porous structure. GS efficiently adsorbed organic solvents and oils with competitive adsorption capacities. GS was able to treat pollutants in pure liquid form and also in the simulated seawater. GS could be easily regenerated by evaporating or burning. After 10 cycles, the adsorption capacity still retained 77% by evaporating and 87% by burning. The implication to the applications of GS in water remediation is discussed.

  18. Controlling the alignment of liquid crystals by nanoparticle-doped and UV-treated polyimide alignment films

    NASA Astrophysics Data System (ADS)

    Jeng, Shie-Chang; Hwang, Su-June; Chen, Tai-An; Liu, Han-Shiang; Chen, Mu-Zhe

    2012-03-01

    We have developed two approaches for controlling the pretilt angles of liquid crystal molecules by using conventional polyimide (PI) alignment materials either doping homogeneous PIs with Polyhedral Oligomeric Silsequioxanes (POSS) nanoparticles or treating homeotropic PIs with ultraviolet light. These techniques are very simple and are compatible with current methods familiar in the LCD industry. The characteristics of modified PI alignment films and their applications for photonic devices are demonstrated in this paper.

  19. Process and device for injecting a liquid agent used for treating a geological formation in the vicinity of a well bore traversing this formation

    SciTech Connect

    Colonna, J.; Fitremann, Jm.; Genin, R.; Sarda, Jp.

    1984-02-14

    A technique is disclosed for liquid treating a geological formation. It comprises spraying the liquid with a pressurized carrier gas, using a spraying pipe whose length and diameter are adjusted as a function of the pressure prevailing at the level of the formation and of the characteristics of the injected liquid and the pressurized carrier gas, so that the size of the liquid droplets at the outlet of the spraying pipe has a narrow range of distribution about a single preselected value.

  20. Rapid microwave hydrothermal synthesis of ZnGa{sub 2}O{sub 4} with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water

    SciTech Connect

    Sun Meng; Li Danzhen; Zhang Wenjuan; Chen Zhixin; Huang Hanjie; Li Wenjuan; He Yunhui; Fu Xianzhi

    2012-06-15

    ZnGa{sub 2}O{sub 4} was synthesized from Ga(NO{sub 3}){sub 3} and ZnCl{sub 2} via a rapid and facile microwave-assisted hydrothermal method. The photocatalytic properties of the as-prepared ZnGa{sub 2}O{sub 4} were evaluated by the degradation of pollutants in air and aqueous solution under ultraviolet (UV) light illumination. The results demonstrated that ZnGa{sub 2}O{sub 4} had exhibited efficient photocatalytic activities higher than that of commercial P25 (Degussa Co.) in the degradation of benzene, toluene, and ethylbenzene, respectively. In the liquid phase degradation of dyes (methyl orange, Rhodamine B, and methylene blue), ZnGa{sub 2}O{sub 4} has also exhibited remarkable activities higher than that of P25. After 32 min of UV light irradiation, the decomposition ratio of methyl orange (10 ppm, 150 mL) over ZnGa{sub 2}O{sub 4} (0.06 g) was up to 99%. The TOC tests revealed that the mineralization ratio of MO (10 ppm, 150 mL) was 88.1% after 90 min of reaction. A possible mechanism of the photocatalysis over ZnGa{sub 2}O{sub 4} was also proposed. - Graphical abstract: In the degradation of RhB under UV light irradiation, ZnGa{sub 2}O{sub 4} had exhibited efficient photo-activity, and after only 24 min of irradiation the decomposition ratio was up to 99.8%. Highlights: Black-Right-Pointing-Pointer A rapid and facile M-H method to synthesize ZnGa{sub 2}O{sub 4} photocatalyst. Black-Right-Pointing-Pointer The photocatalyst exhibits high activity toward benzene and dyes. Black-Right-Pointing-Pointer The catalyst possesses more surface hydroxyl sites than TiO{sub 2} (P25). Black-Right-Pointing-Pointer Deep oxidation of different aromatic compounds and dyes over catalyst.

  1. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process.

    PubMed

    Nitsos, Christos K; Matis, Konstantinos A; Triantafyllidis, Kostas S

    2013-01-01

    The natural resistance to enzymatic deconstruction exhibited by lignocellulosic materials has designated pretreatment as a key step in the biological conversion of biomass to ethanol. Hydrothermal pretreatment in pure water represents a challenging approach because it is a method with low operational costs and does not involve the use of organic solvents, difficult to handle chemicals, and "external" liquid or solid catalysts. In the present work, a systematic study has been performed to optimize the hydrothermal treatment of lignocellulosic biomass (beech wood) with the aim of maximizing the enzymatic digestibility of cellulose in the treated solids and obtaining a liquid side product that could also be utilized for the production of ethanol or valuable chemicals. Hydrothermal treatment experiments were conducted in a batch-mode, high-pressure reactor under autogeneous pressure at varying temperature (130-220 °C) and time (15-180 min) regimes, and at a liquid-to-solid ratio (LSR) of 15. The intensification of the process was expressed by the severity factor, log R(o). The major changes induced in the solid biomass were the dissolution/removal of hemicellulose to the process liquid and the partial removal and relocation of lignin on the external surface of biomass particles in the form of recondensed droplets. The above structural changes led to a 2.5-fold increase in surface area and total pore volume of the pretreated biomass solids. The enzymatic hydrolysis of cellulose to glucose increased from less than 7 wt% for the parent biomass to as high as 70 wt% for the treated solids. Maximum xylan recovery (60 wt%) in the hydrothermal process liquid was observed at about 80 wt% hemicellulose removal; this was accomplished by moderate treatment severities (log R(o)=3.8-4.1). At higher severities (log R(o)=4.7), xylose degradation products, mainly furfural and formic acid, were the predominant chemicals formed. PMID:23180649

  2. Ultrasonically treated liquid interfaces for progress in cleaning and separation processes.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth

    2016-01-01

    Ultrasound and acoustic cavitation enable ergonomic and eco-friendly treatment of complex liquids with outstanding performance in cleaning, separation and recycling of resources. A key element of ultrasonic-based technology is the high speed of mixing by streams, flows and jets (or shock waves), which is accompanied by sonochemical reactions. Mass transfer across the phase boundary with a great variety of catalytic processes is substantially enhanced through acoustic emulsification. Encapsulation, separation and recovery of liquids are fast with high production yield if applied by ultrasound. Here we discuss the state of knowledge of these processes by ultrasound and acoustic cavitation from a perspective of a physico-chemical model in order to predict and control the outcome. We focus on the physical interpretation and quantification of ultrasonic parameters and properties of liquids to understand the chemistry of liquid/liquid interfaces in acoustic fields. The roles of thermodynamic enthalpy and entropy (incl. Laplace and osmotic pressure) in the context of sonochemical reactions (separation, catalysis, degradation, cross-linking, ion exchange and phase transfer) are outlined. The synergy of ultrasound and electric fields or continuous flow chemistry for cleaning and separation via emulsification is highlighted by specific strategies involving polymers and ultrasonic membranes. PMID:26435267

  3. Hydrothermal Liquefaction of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  4. Anhydrite Solubility and Ca Isotope Fractionation in the Vapor-Liquid Field of the NaCl-H2O System: Implications for Hydrothermal Vent Fluids at Mid-ocean Ridges

    NASA Astrophysics Data System (ADS)

    Scheuermann, P.; Syverson, D. D.; Higgins, J. A.; Seyfried, W. E., Jr.

    2015-12-01

    Hydrothermal experiments were performed at 410, 420 and 450°C between 180-450 bar to investigate anhydrite (CaSO4) solubility and Ca isotope fractionation in the liquid-vapor stability field of the NaCl-H2O system. Experiments were conducted in flexible gold reaction cells and a fixed volume Ti reactor to reach all pressures between the critical curve and three-phase boundary. During isothermal decompression at 410°C, anhydrite solubility in the liquid phase increases (1 to 9 mmol/kg Ca), whereas the solubility decreases in the vapor phase (130 to < 10 umol/kg Ca). At 410°C and 290-270 bar, the partition coefficient, log Km = log (mv / ml), for Ca decreases from -1.35 to -2.46, and that of SO4 decreases from -1.76 to -2.82. At 420°C the Ca:SO4 ratio of the starting solution was 2:1, and the pH25°C decreases in the liquid and increases in the vapor upon decompression. Ca hydrolysis in the liquid and complex interactions between undetermined aqueous species in the vapor could explain this pattern. At 410 and 450°C, the experiments started with a Ca:SO4 ratio of 1:1. Along the 410°C isotherm, pH25°C initially increases in both the liquid and vapor, potentially caused by precipitation of an H+ bearing salt, such as NaHSO4. 30-40 bar below the critical curve there is a sudden decrease in pH25°C as the putative salt phase may become unstable and dissolve. At 450°C, pH25°C decreases in the vapor and increases in the liquid, as HCl and H2SO4 partition into the vapor. Ca isotope data at 420°C between 375-300 bar indicate that the vapor is isotopically light relative to the liquid. At lower pressures both phases approach the isotopic composition of the coexisting anhydrite, suggesting that dissolved Ca speciation becomes more structurally similar to anhydrite. This study furthers our understanding of elemental partitioning and isotopic fractionation in mineral-fluid systems with implications for mass transfer reactions at/near the magma-hydrothermal boundary at

  5. Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids

    DOEpatents

    Wertsching, Alan K.; Peterson, Eric S.; Wey, John E.

    2007-12-25

    The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.

  6. Hydrothermal treatment of MSWI bottom ash forming acid-resistant material.

    PubMed

    Etoh, Jiro; Kawagoe, Takeshi; Shimaoka, Takayuki; Watanabe, Koichiro

    2009-03-01

    To recycle municipal solid waste incinerator (MSWI) bottom ash, synthesis of hydrothermal minerals from bottom ash was performed to stabilize heavy metals. MSWI bottom ash was mixed with SiO(2), Al(OH)(3), and Mg(OH)(2) so its chemical composition was similar to that of hydrothermal clay minerals. These solid specimens were mixed with water at a liquid/solid ratio of 5. The reaction temperature was 200 degrees C, and reactions were performed for 24-240h. Generation of kaolinite/smectite mixed-layer clay mineral was found in the samples after the reaction of the mixture of bottom ash, SiO(2), and Mg(OH)(2). Calcium silicate hydrate minerals such as tobermorite and xonotlite were also generated. X-ray powder diffraction suggested the presence of amorphous materials. Leaching tests at various pHs revealed that the concentration of heavy metals in the leachates from MSWI bottom ash hydrothermally treated with SiO(2) and Mg(OH)(2) was lower than that in leachates from non-treated bottom ash, especially under acid conditions. Hydrothermal treatment with modification of chemical composition may have potential for the recycling of MSWI bottom ash. PMID:18845427

  7. Hydrothermal treatment of MSWI bottom ash forming acid-resistant material

    SciTech Connect

    Etoh, Jiro Kawagoe, Takeshi; Shimaoka, Takayuki; Watanabe, Koichiro

    2009-03-15

    To recycle municipal solid waste incinerator (MSWI) bottom ash, synthesis of hydrothermal minerals from bottom ash was performed to stabilize heavy metals. MSWI bottom ash was mixed with SiO{sub 2}, Al(OH){sub 3}, and Mg(OH){sub 2} so its chemical composition was similar to that of hydrothermal clay minerals. These solid specimens were mixed with water at a liquid/solid ratio of 5. The reaction temperature was 200 deg. C, and reactions were performed for 24-240 h. Generation of kaolinite/smectite mixed-layer clay mineral was found in the samples after the reaction of the mixture of bottom ash, SiO{sub 2}, and Mg(OH){sub 2}. Calcium silicate hydrate minerals such as tobermorite and xonotlite were also generated. X-ray powder diffraction suggested the presence of amorphous materials. Leaching tests at various pHs revealed that the concentration of heavy metals in the leachates from MSWI bottom ash hydrothermally treated with SiO{sub 2} and Mg(OH){sub 2} was lower than that in leachates from non-treated bottom ash, especially under acid conditions. Hydrothermal treatment with modification of chemical composition may have potential for the recycling of MSWI bottom ash.

  8. Silica Transport and Distribution in Saline, Immiscible Fluids: Application to Subseafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Steele-Macinnis, M.; Bodnar, R. J.; Lowell, R.; Rimstidt, J. D.

    2009-05-01

    systems to predict the evolution of silica distribution in time and space in these systems. Preliminary runs illustrate a significant effect of salinity in the evolving and boiling system on silica solubility. The model predicts that silica solubility is progressively enhanced in the two-phase liquid-plus-vapor region as brine is concentrated by the preferential loss of vapor. The model also predicts that there is a narrow region of intense quartz deposition in the deep part of the upflow zone, where the fluid reenters the one-phase field. The model currently treats the wallrock as an infinite quartz reservoir, but future work will fully couple the quartz solubility and fluid flow models, to allow porosity adjustment and resultant permeability evolution by quartz dissolution and precipitation. This work was supported in part by the Institute for Critical Technology and Applied Sciences (ICTAS) at Virginia Tech

  9. Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide.

    PubMed

    Kanbayashi, Toru; Miyafuji, Hisashi

    2015-09-01

    MAIN CONCLUSION : [EtPy][Br] is more reactive toward lignin than toward the PSs in wood cell walls, and [EtPy][Br] treatment results in inhomogenous changes to the cell wall's ultrastructural and chemical components. The effects of the ionic liquid 1-ethylpyridinium bromide ([EtPy][Br]), which prefers to react with lignin rather than cellulose on the wood cell walls of Japanese cedar (Cryptomeria japonica), were investigated from a morphology and topochemistry point of view. The [EtPy][Br] treatment induced cell wall swelling, the elimination of warts, and the formation of countless pores in the tracheids. However, many of the pit membranes and the cellulose crystalline structure remained unchanged. Raman microscopic analyses revealed that chemical changes in the cell walls were different for different layers and that the lignin in the compound middle lamella and the cell corner resists interaction with [EtPy][Br]. Additionally, the interaction of [EtPy][Br] with the wood cell wall is different to that of other types of ionic liquid. PMID:25556160

  10. Effects of process parameters on hydrothermal carbonization

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Helal

    In recent years there has been increased research activity in renewable energy, especially upgrading widely available lignicellulosic biomass, in a bid to counter the increasing environmental concerns related with the use of fossil fuels. Hydrothermal carbonization (HTC), also known as wet torrefaction or hot water pretreatment, is a process for pretreatment of diverse lignocellulosic biomass feedstocks, where biomass is treated under subcritical water conditions in short contact time to produce high-value products. The products of this process are: a solid mass characterized as biochar/biocoal/biocarbon, which is homogeneous, energy dense, and hydrophobic; a liquid stream composed of five and six carbon sugars, various organic acids, and 5-HMF; and a gaseous stream, mainly CO2. A number of process parameters are considered important for the extensive application of the HTC process. Primarily, reaction temperature determines the characteristics of the products. In the solid product, the oxygen carbon ratio decreases with increasing reaction temperature and as a result, HTC biochar has the similar characteristics to low rank coal. However, liquid and gaseous stream compositions are largely correlated with the residence time. Biomass particle size can also limit the reaction kinetics due to the mass transfer effect. Recycling of process water can help to minimize the utility consumption and reduce the waste treatment cost as a result of less environmental impact. Loblolly pine was treated in hot compressed water at 200 °C, 230 °C, and 260 °C with 5:1 water:biomass mass ratio to investigate the effects of process parameters on HTC. The solid product were characterized by their mass yields, higher heating values (HHV), and equilibrium moisture content (EMC), while the liquid were characterized by their total organic carbon content and pH value.

  11. Reed's Syndrome: A Case of Multiple Cutaneous Leiomyomas Treated with Liquid Nitrogen Cryotherapy.

    PubMed

    Basendwh, Mohammad A; Fatani, Mohammad; Baltow, Badee

    2016-01-01

    Reed's syndrome is an autosomal dominant genetic disorder. Affected individuals are at increased risk of developing benign smooth muscle tumors in the skin and uterus. In this article, we report a case of a 52-year-old female who presented to our dermatology clinic complaining of painful skin lesions on her right arm, left forearm and trunk. The patient had a past medical history of uterine leiomyomatosis for which she underwent hysterectomy 17 years ago. The patient's family history revealed that her mother, 2 sisters and 2 maternal aunts also had uterine leiomyomas. The diagnosis of Reed's syndrome was confirmed by histopathologic examination of the patient's dermal lesion in conjunction with her surgical and family histories. Five years after the initial presentation, the patient underwent treatment with liquid nitrogen cryotherapy for the dermal leiomyomas. After the treatment, marked improvement was noticed with regard to the pain and size of the skin lesions. PMID:27064320

  12. Reed's Syndrome: A Case of Multiple Cutaneous Leiomyomas Treated with Liquid Nitrogen Cryotherapy

    PubMed Central

    Basendwh, Mohammad A.; Fatani, Mohammad; Baltow, Badee

    2016-01-01

    Reed's syndrome is an autosomal dominant genetic disorder. Affected individuals are at increased risk of developing benign smooth muscle tumors in the skin and uterus. In this article, we report a case of a 52-year-old female who presented to our dermatology clinic complaining of painful skin lesions on her right arm, left forearm and trunk. The patient had a past medical history of uterine leiomyomatosis for which she underwent hysterectomy 17 years ago. The patient's family history revealed that her mother, 2 sisters and 2 maternal aunts also had uterine leiomyomas. The diagnosis of Reed's syndrome was confirmed by histopathologic examination of the patient's dermal lesion in conjunction with her surgical and family histories. Five years after the initial presentation, the patient underwent treatment with liquid nitrogen cryotherapy for the dermal leiomyomas. After the treatment, marked improvement was noticed with regard to the pain and size of the skin lesions. PMID:27064320

  13. Posaconazole liquid suspension in solid organ transplant recipients previously treated with voriconazole

    PubMed Central

    Shoham, S.; Ostrander, D.; Marr, K.

    2015-01-01

    Background Posaconazole (PCZ) has become an attractive alternative to voriconazole (VCZ) in transplant recipients with suspected or proven invasive filamentous fungal infections, given fewer drug interactions. Here, we describe our experience with PCZ after VCZ in solid organ transplant (SOT) recipients. Methods VCZ was replaced by PCZ liquid solution in 19 SOT recipients (15 lung, 2 kidney, 1 liver, and 1 heart/lung) with invasive pulmonary aspergillosis (12/19; 63.2%), possible invasive pulmonary fungal infection (2/19; 10.5%), prophylaxis (2/19; 10.5%), or pulmonary scedosporiosis, mucormycosis, and mixed fungal species (1 each). Rationales for switch were suspected adverse reactions to VCZ (17/19; 89.4 %) and desire to broaden spectrum of coverage to include agents of mucormycosis (3/19; 15.8 %). Results PCZ was well tolerated in all patients. In those patients with baseline liver enzyme abnormalities, a median change occurred in concentrations of alanine transaminase (–20 IU/L), aspartate aminotransferase (–17.5 IU/L), and alkaline phosphatase (–61.5 IU/L). Clinical success (resolution, stabilization, or prevention of infection) was achieved in 16/19 (84%) people. Conclusion PCZ appears to have a reasonable safety and tolerability profile and may be an effective alternative in SOT patients who require an agent with anti-mold activity, but are unable to tolerate VCZ. PMID:25846433

  14. A Metabonomic Analysis of Serum from Rats Treated with Ricinine Using Ultra Performance Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    Peng, Jing; Cai, Shuang; Wang, Lin; Zhao, Nan; Zhang, Ting-jian; Chen, Zai-xing; Meng, Fan-hao

    2014-01-01

    A metabonomic approach based on ultra performance liquid chromatography coupled with mass spectrometry (UPLC/MS) was used to study the hepatotoxicity of ricinine in rats. Potential biomarkers of ricinine toxicity and toxicological mechanism were analyzed by serum metabonomic method. The significant differences in the metabolic profiling of the control and treated rats were clear by using the principal components analysis (PCA) of the chromatographic data. Significant changes of metabolite biomarkers like phenylalanine, tryptophan, cholic acid, LPC and PC were detected in the serum. These biochemical changes were related to the metabolic disorders in amino acids and phospholipids. This research indicates that UPLC/MS-based metabonomic analysis of serum samples can be used to predict the hepatotoxicity and further understand the toxicological mechanism induced by ricinine. This work shows that metabonomics method is a valuable tool in drug mechanism study. PMID:24618672

  15. Homogeneous liquid crystal alignment characteristics on solution-derived HfYGaO films treated with IB irradiation.

    PubMed

    Lee, Yun-Gun; Park, Hong-Gyu; Jeong, Hae-Chang; Lee, Ju Hwan; Heo, Gi-Seok; Seo, Dae-Shik

    2015-06-29

    Solution-derived HfYGaO films have been treated by ion beam (IB) irradiation and used as liquid crystal (LC) alignment layers. Solution processing was adopted due to its simplicity, high throughput, and facile composition modification. Homogeneous and uniform LC alignment was achieved on the IB-irradiated HfYGaO films, and when these films were adopted in twisted nematic (TN) cells, electro-optical performance comparable to that of TN cells with conventional polyimide layers was achieved, with almost no capacitance-voltage hysteresis. Moreover, LC cells based on IB-irradiated HfYGaO films had a high thermal budget. The proposed IB-irradiated solution-derived HfYGaO films have considerable potential for use in advanced LC applications. PMID:26191738

  16. Liquid biopsy-based clinical research in early breast cancer: The EORTC 90091-10093 Treat CTC trial.

    PubMed

    Ignatiadis, Michail; Rack, Brigitte; Rothé, Francoise; Riethdorf, Sabine; Decraene, Charles; Bonnefoi, Hervé; Dittrich, Christian; Messina, Carlo; Beauvois, Melanie; Trapp, Elisabeth; Goulioti, Theodora; Tryfonidis, Konstantinos; Pantel, Klaus; Repollet, Madeline; Janni, Wolfgang; Piccart, Martine; Sotiriou, Christos; Litiere, Saskia; Pierga, Jean-Yves

    2016-08-01

    There is increasing evidence that breast cancer evolves over time under the selection pressure of systemic treatment. Today, treatment decisions in early breast cancer are based on primary tumour characteristics without considering the disease evolution. Chemoresistant micrometastatic disease is poorly characterised and thus it is not used in current clinical practice as a tool to personalise treatment approaches. The detection of chemoresistant circulating tumour cells (CTCs) has been shown to be associated with worse prognosis in early breast cancer. The ongoing Treat CTC trial is the first international, liquid biopsy-based trial evaluating the concept of targeting chemoresistant minimal residual disease: detection of CTCs following adjuvant chemotherapy (adjuvant cohort) or neoadjuvant chemotherapy in patients who did not achieve pathological complete response (neoadjuvant cohort). This article presents the rational and design of this trial and the results of the pilot phase after 350 patients have been screened and provides insights that might provide information for future trials using the liquid biopsy approach as a tool towards precision medicine (NCT01548677). PMID:27289552

  17. Whole Algae Hydrothermal Liquefaction: 2014 State of Technology

    SciTech Connect

    Jones, Susanne B.; Zhu, Yunhua; Snowden-Swan, Lesley J.; Anderson, Daniel; Hallen, Richard T.; Schmidt, Andrew J.; Albrecht, Karl O.; Elliott, Douglas C.

    2014-07-30

    This report describes the base case yields and operating conditions for converting whole microalgae via hydrothermal liquefaction and upgrading to liquid fuels. This serves as the basis against which future technical improvements will be measured.

  18. Hyperbaric Hydrothermal Atomic Force Microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  19. Hyperbaric hydrothermal atomic force microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  20. ANIMAL PERFORMANCE, CARCASS QUALITY, AND TISSUE RESIDUES WITH BEEF STEERS FED FORAGE SORGHUM SILAGES GROWN ON SOIL TREATED WITH LIQUID DIGESTED SLUDGE

    EPA Science Inventory

    Processed sewage sludges are a renewable resource which have potential as a fertilizer material on agricultural land. Forage sorghum (Sorghum bicolor) silages, grown on soil treated with Pensacola liquid digested sludge (LDS) turned under prior to planting, were fed as the main i...

  1. Behavior of Listeria monocytogenes on frankfurters surface treated with lauric arginate and/or a liquid smoke extract delivered using the Sprayed Lethality in Container (SLIC®) technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the viability of Listeria monocytogenes (LM) on commercially-produced frankfurters prepared without lactates that were surface treated with 0 or 4 mL of a blend of LAE (CytoGuard; 1.0% LAE final concentration) diluted in a concentrated liquid smoke extrac...

  2. Ongoing hydrothermal activities within Enceladus.

    PubMed

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-12

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus. PMID:25762281

  3. Hydrothermal treatment of electric arc furnace dust.

    PubMed

    Yu, Bing-Sheng; Wang, Yuh-Ruey; Chang, Tien-Chin

    2011-06-15

    In this study, ZnO crystals were fabricated from electric arc furnace dust (EAFD) after alkaline leaching, purification and hydrothermal treatment. The effects of temperature, duration, pH, and solid/liquid ratio on ZnO crystal morphology and size were investigated. Results show a high reaction temperature capable of accelerating the dissolution of ZnO precursor, expediting the growth of 1D ZnO, and increasing the L/D ratio in the temperature range of 100-200°C. ZnO crystals with high purity can also be obtained, using the one-step hydrothermal treatment with a baffle that depends on the different solubility of zincite and franklinite in the hydrothermal conditions. PMID:21497436

  4. Characterization of advanced preprocessed materials (Hydrothermal)

    SciTech Connect

    Rachel Emerson; Garold Gresham

    2012-09-01

    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  5. Tuning photoluminescence of organic rubrene nanoparticles through a hydrothermal process

    PubMed Central

    2011-01-01

    Light-emitting 5,6,11,12-tetraphenylnaphthacene (rubrene) nanoparticles (NPs) prepared by a reprecipitation method were treated hydrothermally. The diameters of hydrothermally treated rubrene NPs were changed from 100 nm to 2 μm, depending on hydrothermal temperature. Photoluminescence (PL) characteristics of rubrene NPs varied with hydrothermal temperatures. Luminescence of pristine rubrene NPs was yellow-orange, and it changed to blue as the hydrothermal temperature increased to 180°C. The light-emitting color distribution of the NPs was confirmed using confocal laser spectrum microscope. As the hydrothermal temperature increased from 110°C to 160°C, the blue light emission at 464 to approximately 516 nm from filtered-down NPs was enhanced by H-type aggregation. Filtered-up rubrene NPs treated at 170°C and 180°C exhibited blue luminescence due to the decrease of intermolecular excimer densities with the rapid increase in size. Variations in PL of hydrothermally treated rubrene NPs resulted from different size distributions of the NPs. PMID:21711925

  6. Core Cracking and Hydrothermal Circulation Profoundly Affect Ceres' Geophysical Evolution

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Desch, Steven J.; Castillo-Rogez, Julie C.

    2014-11-01

    The dwarf planet (1)Ceres is about to be visited by the Dawn spacecraft [1]. In addition to a recent report of water vapor emission [2], observations and models of Ceres suggest that its evolution was shaped by interactions between liquid water and silicate rock [3,4].Hydrothermal processes in a heated core require both fractured rock and liquid. Using a new core cracking model coupled to a thermal evolution code [5], we find volumes of fractured rock always large enough for significant interaction to occur. Therefore, liquid persistence is key. It is favored by antifreezes such as ammonia [4], by silicate dehydration which releases liquid, and by hydrothermal circulation itself, which enhances heat transport into the hydrosphere. The heating effect from silicate hydration seems minor. Hydrothermal circulation can profoundly affect Ceres' evolution: it prevents core dehydration via “temperature resets”, global cooling events lasting ~50 Myr, followed by ~1 Gyr periods during which Ceres' interior is nearly isothermal and its hydrosphere largely liquid. Whether Ceres has experienced such extensive hydrothermalism may be determined through examination of its present-day structure. A large, fully hydrated core (radius 420 km) suggests that extensive hydrothermal circulation prevented core dehydration. A small, dry core (radius 350 km) suggests early dehydration from short-lived radionuclides, with shallow hydrothermalism at best. Intermediate structures with a partially dehydrated core seem ambiguous, compatible both with late partial dehydration without hydrothermal circulation, and with early dehydration with extensive hydrothermal circulation. Thus, gravity measurements by the Dawn orbiter [1] could help discriminate between scenarios for Ceres' evolution.References:[1] Russell C. T. & Raymond C. A. (2011) Sp. Sci. Rev. 163, 3-23.[2] Küppers M. et al. (2014) Nature 505, 525-527.[3] Rivkin A. et al. (2011) Sp. Sci. Rev. 163, 95-116.[4] Castillo-Rogez J. C. & Mc

  7. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  8. Sample Return from Ancient Hydrothermal Springs

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2008-01-01

    Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].

  9. Enhanced heat transfer in partially-saturated hydrothermal systems

    SciTech Connect

    Bixler, N.E.; Carrigan, C.R.

    1986-01-01

    The role of capillarity is potentially important for determining heat transfer in hydrothermal regions. Capillarity allows mixing of phases in liquid/vapor systems and results in enhanced two-phase convection. Comparisons involving a numerical model with capillarity and analytical models without indicate that heat transfer can be enhanced by about an order of magnitude. Whether capillarity can be important for a particular hydrothermal region will depend on the nature of mineral precipitation as well as pore and fracture size distributions.

  10. Hydrothermal systems as environments for the emergence of life

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    1996-01-01

    Analysis of the chemical disequilibrium provided by the mixing of hydrothermal fluids and seawater in present-day systems indicates that organic synthesis from CO2 or carbonic acid is thermodynamically favoured in the conditions in which hyperthermophilic microorganisms are known to live. These organisms lower the Gibbs free energy of the chemical mixture by synthesizing many of the components of their cells. Primary productivity is enormous in hydrothermal systems because it depends only on catalysis of thermodynamically favourable, exergonic reactions. It follows that hydrothermal systems may be the most favourable environments for life on Earth. This fact makes hydrothermal systems logical candidates for the location of the emergence of life, a speculation that is supported by genetic evidence that modern hyperthermophilic organisms are closer to a common ancestor than any other forms of life. The presence of hydrothermal systems on the early Earth would correspond to the presence of liquid water. Evidence that hydrothermal systems existed early in the history of Mars raises the possibility that life may have emerged on Mars as well. Redox reactions between water and rock establish the potential for organic synthesis in and around hydrothermal systems. Therefore, the single most important parameter for modelling the geochemical emergence of life on the early Earth or Mars is the composition of the rock which hosts the hydrothermal system.

  11. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation.

    PubMed

    Pala, Mehmet; Kantarli, Ismail Cem; Buyukisik, Hasan Baha; Yanik, Jale

    2014-06-01

    Grape pomace was treated by hydrothermal carbonization (sub-critical water, 175-275°C) and torrefaction (nitrogen atmosphere, 250 and 300°C), with mass yield of solid product (char) ranging between 47% and 78%, and energy densification ratio to 1.42-1.15 of the original feedstock. The chars were characterised with respect to their fuel properties, morphological and structural properties and combustion characteristics. The hydrothermal carbonization produced the char with greater energy density than torrefaction. The chars from torrefaction were found to be more aromatic in nature than that from hydrothermal carbonization. Hydrothermal carbonization process produced the char having high combustion reactivity. Most interesting was the finding that aqueous phase from hydrothermal carbonization had antioxidant activity. The results obtained in this study showed that HTC appears to be promising process for a winery waste having high moisture content. PMID:24709539

  12. Dissolution of D2EHPA in liquid-liquid extraction process: implication on metal removal and organic content of the treated water.

    PubMed

    Lee, Po-Ching; Li, Chi-Wang; Chen, Jie-Yuan; Li, Ying-Sheng; Chen, Shiao-Shing

    2011-11-15

    Effects of pH, extractant/diluent ratios, and metal concentrations on the extent of extractant dissolution during liquid-liquid extraction were investigated. Experimental result shows that D(2)EHPA dissolution increases dramatically at pH above 4, leveling off at pH 6-7. The phenomenon is consistent with deprotonation of D(2)EHPA and the domination of negatively charged D(2)EHPA species at pH of higher than 4. Concentration of D(2)EHPA in the aqueous phase, i.e., the extent of extractant dissolution, drops after addition of metal and decreases with increasing metal concentration. The amount of D(2)EHPA 're-entering' the organic phase is calculated to be 2.04 mol per mol of Cd added, which is quite closed to the stoichiometric molar ratio of 2 between D(2)EHPA and Cd via ion exchange reaction. The effect of metal species on the extent of extractant/metal complexes re-entering is in the order of Cd ≈ Zn > Ag, which might be coincident to the complexation stability of these metals with D(2)EHPA. The extent of extractant dissolution in liquid-liquid extraction process depends on the type and concentration of metal to be removed, pH of aqueous phase, and extractant/diluent ratios. PMID:21937070

  13. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  14. Core cracking and hydrothermal circulation can profoundly affect Ceres' geophysical evolution

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Desch, Steven J.; Castillo-Rogez, Julie C.

    2015-02-01

    Observations and models of Ceres suggest that its evolution was shaped by interactions between liquid water and silicate rock. Hydrothermal processes in a heated core require both fractured rock and liquid. Using a new core cracking model coupled to a thermal evolution code, we find volumes of fractured rock always large enough for significant interaction to occur. Therefore, liquid persistence is key. It is favored by antifreezes such as ammonia, by silicate dehydration which releases liquid, and by hydrothermal circulation itself, which enhances heat transport into the hydrosphere. The effect of heating from silicate hydration seems minor. Hydrothermal circulation can profoundly affect Ceres' evolution: it prevents core dehydration via "temperature resets," core cooling events lasting ˜50 Myr during which Ceres' interior temperature profile becomes very shallow and its hydrosphere is largely liquid. Whether Ceres has experienced such extensive hydrothermalism may be determined through examination of its present-day structure. A large, fully hydrated core (radius 420 km) would suggest that extensive hydrothermal circulation prevented core dehydration. A small, dry core (radius 350 km) suggests early dehydration from short-lived radionuclides, with shallow hydrothermalism at best. Intermediate structures with a partially dehydrated core seem ambiguous, compatible both with late partial dehydration without hydrothermal circulation, and with early dehydration with extensive hydrothermal circulation. Thus, gravity measurements by the Dawn orbiter, whose arrival at Ceres is imminent, could help discriminate between scenarios for Ceres' evolution.

  15. Methods to enhance the characteristics of hydrothermally prepared slurry fuels

    SciTech Connect

    Anderson, C.M.; Musich, M.A.; Mann, M.D.; DeWall, R.A.; Richter, J.J.; Potas, T.A.; Willson, W.G.

    2000-04-25

    Methods are disclosed for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300 to 350 C.

  16. Methods to enhance the characteristics of hydrothermally prepared slurry fuels

    DOEpatents

    Anderson, Chris M.; Musich, Mark A.; Mann, Michael D.; DeWall, Raymond A.; Richter, John J.; Potas, Todd A.; Willson, Warrack G.

    2000-01-01

    Methods for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300.degree. to 350.degree. C.

  17. 77 FR 36914 - Modification to Consolidated Return Regulation Permitting an Election To Treat a Liquidation of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... the Federal Register (74 FR 45757 and 74 FR 45789, respectively). The regulations modify the election... final regulations in the Federal Register (TD 9515, 76 FR 11956), which republished the 2009 temporary... liquidation of a target corporation. These regulations apply to corporations filing consolidated income...

  18. Sensitive determination of estrogens in environmental waters treated with polymeric ionic liquid-based stir cake sorptive extraction and liquid chromatographic analysis.

    PubMed

    Chen, Lei; Mei, Meng; Huang, Xiaojia; Yuan, Dongxing

    2016-05-15

    A simple, sensitive and environmentally friendly method using polymeric ionic liquid-based stir cake sorptive extraction followed by high performance liquid chromatography with diode array detection (HPLC/DAD) has been developed for efficient quantification of six selected estrogens in environmental waters. To extract trace estrogens effectively, a poly (1-ally-3-vinylimidazolium chloride-co-ethylene dimethacrylate) monolithic cake was prepared and used as the sorbent of stir cake sorptive extraction (SCSE). The effects of preparation conditions of sorbent and extraction parameters of SCSE for estrogens were investigated and optimized. Under optimal conditions, the developed method showed satisfactory analytical performance for targeted analytes. Low limits of detection (S/N=3) and quantification limits (S/N=10) were achieved within the range of 0.024-0.057µg/L and 0.08-0.19µg/L, respectively. Good linearity of method was obtained for analytes with the correlation coefficients (R(2)) above 0.99. At the same time, satisfactory method repeatability and reproducibility was achieved in terms of intra- and inter-day precisions, respectively. Finally, the established SCSE-HPLC/DAD method was successfully applied for the determination of estrogens in different environmental water samples. Recoveries obtained for the determination of estrogens in spiked samples ranged from 71.2% to 108%, with RSDs below 10% in all cases. PMID:26992499

  19. Quantitative determination of octylphenol, nonylphenol, alkylphenol ethoxylates and alcohol ethoxylates by pressurized liquid extraction and liquid chromatography-mass spectrometry in soils treated with sewage sludges.

    PubMed

    Andreu, Vicente; Ferrer, Emilia; Rubio, José Luís; Font, Guillermina; Picó, Yolanda

    2007-05-25

    Surfactants have one of the highest production rates of all organic chemicals. Non-ionic surfactants, especially alkylphenol ethoxylates, received most attention as precursors of estrogenic metabolic products generated during wastewater treatment. Alkylphenols (octyl and nonylphenol), alkylphenol polyethoxylates (APEOs), and alcohol ethoxylates (AEOs) have been determined in a Mediterranean forest soil (Mediterranean Rendzic Leptosol) amended with sludges from six waste water treatment plants (WWTPs) located in the Valencian Community. These compounds were isolated from soil by pressurized liquid extraction (PLE) using a mixture acetone-hexane (50:50 v/v), the extracts were cleaned up by solid-phase extraction (SPE) with C(18), and determined by liquid chromatography atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) using analytical standards for quantification. The method enabled high-reliable identification by monitoring the corresponding ammonium adduct [M+NH(3)](+) for AEOs and APEOs, and the deprotonated molecule [M-H](-) for octyl and nonylphenol. Recoveries, determined spiking soil samples at different concentrations, ranged from 89 to 94%, with limits of quantification from 1 to 100 microg kg(-1). Data obtained from a soil sample mixed with biosolids in the laboratory showed that these compounds are present at concentrations ranging from 0.02 to 5 mg kg(-1). According to these concentrations, levels of possible risk can be concluded for the presence of non-ionic surfactants in soil. However, further assessment will be necessary to establish the relationship between exposure and effect findings. PMID:17306341

  20. Laser-driven microflow-induced bistable orientation of a nematic liquid crystal in perfluoropolymer-treated unrubbed cells.

    PubMed

    Jampani, V S R; Skarabot, M; Takezoe, H; Muševič, I; Dhara, S

    2013-01-14

    We demonstrate laser-driven microflow-induced orientational change (homeotropic to planar) in a dye-doped nematic liquid crystal. The homeotropic to planar director alignment is achieved in unrubbed cells in the thermal hysteresis range of a discontinuous anchoring reorientation transition due to the local heating by light absorption in dye-doped sample. Various bistable patterns were recorded in the cell by a programmable laser tweezers. The width of the patterns depend on the scanning speed of the tightly focussed laser beam and the minimum width obtained is approximately equal to 0.57μm which is about 35 times smaller than the earlier report in the rubbed cells. We show that the motion of the microbeam spot causes local flow as a result the liquid crystal director is aligned along that direction. PMID:23388965

  1. Concentration and form of copper released into aquatic systems from commercial liquid and micronized pressure treated lumber.

    EPA Science Inventory

    The fate and effects of pristine engineered metal nanomaterials (ENMs) in simplified systems have been widely studied; however, little is known about the potential release and impact of metal ENMs from consumer goods, especially lumber that has been treated with micronized copper...

  2. Concentration and form of copper released into aquatic systems from commercial liquid and micronized pressure treated lumber

    EPA Science Inventory

    The fate and effects of pristine engineered metal nanomaterials (ENMs) in simplified systems have been widely studied; however, little is known about the potential release and impact of metal ENMs from consumer goods, especially lumber which has been treated with micronized coppe...

  3. A randomized controlled trial to compare the effects of liquid versus powdered recombinant human growth hormone in treating patients with severe burns

    PubMed Central

    CHEN, GUOXIAN; SHAO, HUAWEI; PAN, XUANLIANG

    2016-01-01

    Recombinant human growth hormone (rhGH) promotes protein utilization and synthesis, and is widely used as a therapy to treat severe burns. The present randomized controlled trial evaluated the effects of different forms of rhGH on patients with severe burns. A total of 29 adult severe burns patients were enrolled between February 2009 and November 2011, and randomly assigned to either treatment group (T, liquid rhGH) or control group (C, powder rhGH). From days 5 to 7 following the infliction of burns, both patient groups received rhGH at 0.067 mg/kg/d, once for 10 days. Median serum pre-albumin levels increased in both groups following treatment, the elevation from baseline was significantly higher in the T group on day 10 compared to the C group (88 mg/l vs. 65 mg/l, P=0.046). C-reactive protein, fasting plasma glucose and body weight decreased in both groups. Body weight was significantly lower in the T compared to the C group at baseline, Day 5 and Day 10 (P=0.046, P=0.018 and P=0.006, respectively), however the decrease from baseline levels were not significantly different. Wound healing time was similar between groups (P=0.270). In conclusion the early use of liquid rather than powder rhGH may be more beneficial for treating adult patients with severe burns. PMID:27123246

  4. CrystaSulf{sup SM} liquid redox and TDA gas phase H{sub 2}S conversion technologies for sour gas treating

    SciTech Connect

    Dalrymple, D.A.; Deberry, D.W.; Srinivas, G.

    1999-07-01

    Sour natural gas that contains hydrogen sulfide (H{sub 2}S) accounts for 15 to 25% of the gas processed in the US. Worldwide, as much as 30% of the gas reserves are sour. The need for more cost-effective approaches to process subquality gas is becoming more evident as new drilling occurs deeper within existing fields and in new fields. These types of producing zones tend to be sour. Gas containing very small amounts of sulfur (e.g., less than 0.2 long tons per day (LTPD)) can be cost-effectively treated with nonregenerable scavengers. This can be performed by injecting a liquid scavenger directly into a pipe containing the sour gas (direct injection) or by passing the sour gas through a tower containing a liquid or solid scavenger. Gas containing more than 25 to 30 LTPD of sulfur is generally processed by first separating the acid gases with an amine unit and then processing the amine offgas in a Claus plant to produce molten elemental sulfur. However, gas streams with sulfur amounts between 0.2 and 25 LTPD have generally posed treatment challenges to industry. This paper describes two emerging technologies for treating gases containing H{sub 2}S--the CrystaSulf{sup SM} liquid redox process and the TDA gas phase direct oxidation process. Both convert the H{sub 2}S to elemental sulfur and both are being pilot tested during 1999. Radian International is commercializing both processes. CrystaSulf appears to be well suited to treat sour streams containing between 0.2 and 25 LTPD of sulfur. CrystaSulf can achieve sulfur control efficiencies of 99.8% or greater and can be applied directly to sour streams or to tailgases from amine units or Clause plants. The TDA direct oxidation process provides a cost effective way to treat amine unit tailgas and in a single stage can achieve 85 to 97% sulfur control efficiencies for that stream. Following successful pilot plant testing, both processes will be available commercially.

  5. PROCESS IMPROVEMENT STUDIES ON THE BATTELLE HYDROTHERMAL COAL PROCESS

    EPA Science Inventory

    The report gives results of a study to improve the economic viability of the Battelle Hydrothermal (HT) Coal Process by reducing the costs associated with liquid/solid separation and leachant regeneration. Laboratory experiments were conducted to evaluate process improvements for...

  6. Experimental constraints on hydrothermal activities in Enceladus

    NASA Astrophysics Data System (ADS)

    Sekine, Y.; Shibuya, T.; Suzuki, K.; Kuwatani, T.

    2012-12-01

    C). This is because NH3 decomposition proceeds inefficiently due to efficient H2 production via serpentinization. Our experimental results also suggest that SiO2 concentration dissolved in hydrothermal fluids simulating Enceladus' condition would be buffered by the serpentine-brucite system. The presence of NH3 in the hydrothermal conditions keeps pH of the solution high (pH 9-11). We suggest that under such conditions, SiO2 concentrations in the fluids would be 0.1 mmol/L or less for temperature < 350°C. Given the SiO2 solubility of 1-10 mmol/L at 0°C and pH 9-11, direct formation of amorphous SiO2 would not occur in Enceladus' hydrothermal systems. To produce amorphous SiO2, large-scale hydrothermal activities and subsequent concentration of dissolved SiO2 in the ocean (due to freezing and/or evaporation of liquid water) would be required, which is consistent with high concentrations of radiogenic Ar and sodium salts in the plume [2, 6]. [1] Porco et al., Science 311, 1393 (2006). [2] Postberg et al., Nature 459, 1098 (2009). [3] Matson et al., Icarus 187, 569 (2007). [4] Hansen t al., Geophs. Res. Lett. 38, L11202 (2011). [5] Hsu et al., EOS Trans. AGU, (2010). [6] Waite et al., Nature 460, 487 (2009).

  7. Observation of hydrothermal flows with acoustic video camera

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Asada, A.; Tamaki, K.; Scientific Team Of Yk09-13 Leg 1

    2010-12-01

    To evaluate hydrothermal discharging and its diffusion process along the ocean ridge is necessary for understanding balance of mass and flux in the ocean, ecosystem around hydrothermal fields and so on. However, it has been difficult for us to measure hydrothermal activities without disturbance caused by observation platform ( submersible, ROV, AUV ). We wanted to have some observational method to observe hydrothermal discharging behavior as it was. DIDSON (Dual-Frequency IDentification SONar) is acoustic lens-based sonar. It has sufficiently high resolution and rapid refresh rate that it can substitute for optical system in turbid or dark water where optical systems fail. DIDSON operates at two frequencies, 1.8MHz or 1.1MHz, and forms 96 beams spaced 0.3° apart or 48 beams spaced 0.6° apart respectively. It images out to 12m at 1.8MHz and 40m at 1.1MHz. The transmit and receive beams are formed with acoustic lenses with rectangular apertures and made of polymethylpentene plastic and FC-70 liquid. This physical beam forming allows DIDSON to consume only 30W of power. DIDSON updates its image between 20 to 1 frames/s depending on the operating frequency and the maximum range imaged. It communicates its host using Ethernet. Institute of Industrial Science, University of Tokyo ( IIS ) has understood DIDSON’s superior performance and tried to find new method for utilization of it. The observation systems that IIS has ever developed based on DIDSON are waterside surveillance system, automatic measurement system for fish length, automatic system for fish counting, diagnosis system for deterioration of underwater structure and so on. A next challenge is to develop an observation method based on DIDSON for hydrothermal discharging from seafloor vent. We expected DIDSON to reveal whole image of hydrothermal plume as well as detail inside the plume. In October 2009, we conducted seafloor reconnaissance using a manned deep-sea submersible Shinkai6500 in Central Indian

  8. Using UCST Ionic Liquid as a Draw Solute in Forward Osmosis to Treat High-Salinity Water.

    PubMed

    Zhong, Yujiang; Feng, Xiaoshuang; Chen, Wei; Wang, Xinbo; Huang, Kuo-Wei; Gnanou, Yves; Lai, Zhiping

    2016-01-19

    The concept of using a thermoresponsive ionic liquid (IL) with an upper critical solution temperature (UCST) as a draw solute in forward osmosis (FO) was successfully demonstrated here experimentally. A 3.2 M solution of protonated betaine bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56 °C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a water-rich phase and an IL-rich phase: the water-rich phase was the produced water that contained a low IL concentration, and the IL-rich phase could be used directly as the draw solution in the next cycle of the FO process. The thermal stability, thermal-responsive solubility, and UV-vis absorption spectra of the IL were also studied in detail. PMID:26649525

  9. Effect of hydrothermal heat treatment on magnetic properties of copper zinc ferrite rf sputtered films

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Gadipelly, Thirupathi; Singh, R.

    2016-05-01

    The hydrothermal treatment to the nano-structured films can overcome the destruction of the films. The Cu-Zn Ferrite films were fabricated by RF-sputtering on quartz substrates. Subsequently, the as deposited films were heat treated using hydrothermal process. The X-ray diffraction pattern of the as-deposited and hydrothermal treated films indicate nano-crystalline cubic spinel structure. The amorphous nature of the films is removed after hydrothermal treatment with decreased crystallite size. The field emission scanning electron micrographs showed merged columnar growth for as deposited films, which changes to well define columns after hydrothermal heating. The homogeneous cluster distribution is observed in surface view of the hydrothermal treated films. Hydrothermal treated films show merging of in-plane and out of plane magnetization plots (M(H)) whereas the M(H) plots of as deposited films show angular dependence. The strong angular dependence is observed in the FMR spectra due to the presence of a uniaxial anisotropy in the films. The ferromagnetic interactions decrease in hydrothermal heated films due to the reduced shape anisotropy and crystallite size.

  10. Hydrothermal reactivity of saponite.

    USGS Publications Warehouse

    Whitney, G.

    1983-01-01

    The nature and extent of the reactions of synthetic Fe-free saponite have been investigated under experimental hydrothermal conditions as a first step towards understanding saponite reactivity under relatively simple conditions. Saponite crystallizes from amorphous gel of ideal saponite composition within 7 days at 300o-550oC under P = 1 kbar. Reactions subsequent to this initial crystallization depend on reaction T and interlayer cations. Saponite is found to react hydrothermally, over a period of 200 days, at T down to 400oC, at least 150oC lower than previously reported, but showed no signs of reaction below 400oC. At 450oC, a mixture of talc/saponite and saponite/phlogopite clays forms from K-saponite via intracrystalline layer transformations, while above 450oC the initial K-saponite dissolves, with talc and phlogopite forming as discrete phases. After 200 days reactions at 400-450oC were not complete, so that given sufficient time to reach equilibrium, a lower hydrothermal stability limit for saponite is possible. Further study of the Fe-bearing saponite system will be required before experimental results can be applied to natural systems.-D.F.B.

  11. Iodine speciation in dog foods and treats by high performance liquid chromatography with inductively coupled plasma mass spectrometry detection.

    PubMed

    Wilson, Robert A; Yanes, Enrique G; Kemppainen, Robert J

    2016-06-01

    An analytical method for determination of the iodine species 3-monoiodotyrosine (MIT), iodide, 3,5-diiodotyrosine (DIT), 3,5-diiodothyronine (3, 5-T2), 3,5,3'-triiodothyronine (T3), and thyroxine (T4) in dog foods and treats is reported. Iodine speciation was carried out using a HPLC method capable of both anion-exchange and reversed-phase retention coupled with inductively coupled plasma mass spectrometry detection (LC-ICP-MS). The method was evaluated by the analysis of the iodine species concentrations in twelve dog foods and treats following enzymatic digestion. The concentrations of MIT, iodide, DIT, T3, and T4 in the samples ranged from 0.64-59.5μg/g, 0.86-4.05μg/g,

  12. Hydroxyapatite ceramics from hydrothermally prepared powders

    SciTech Connect

    Lin, C.H.; Huang, C.W.; Chang, S.C.

    1994-12-31

    Hydroxyapatite (Ca{sub 5}(PO{sub 4}){sub 3}(OH)) is an effective material for artificial human bone production. Hydroxyapatite powders were hydrothermally produced in this work by reacting Ca(OH){sub 2} with Na{sub 3}PO{sub 4}{center_dot}12H{sub 2}O in an autoclave at various temperature and for various times. The particle size of hydroxyapatite was observed to be very fine, uniform, around 50 nm, as well as independent of reaction time. The hydroxyapatite powders were compacted and sintered at various temperatures for 2 hrs. The density, grain size, and hardness of the hydroxyapatite ceramics were measured and compared with those of the hydroxyapatite ceramics produced by the powders from the commercial source. The hydroxyapatite ceramics from the hydrothermal powders were found to have a higher density, smaller grain size, and higher hardness. After the hydroxyapatite ceramics were dipped in a simulated biological body liquid for 10 days, the density and hardness of the hydroxyapatite ceramics from the hydrothermal powders were less deteriorated than those of the hydroxyapatite ceramics from the commercial powder.

  13. Novel technology for hydrothermal treatment of NPP evaporator concentrates

    SciTech Connect

    Avramenko, Valentin; Dobrzhansky, Vitaly; Marinin, Dmitry; Sergienko, Valentin; Shmatko, Sergey

    2007-07-01

    A novel technology was developed for treatment of evaporator concentrates produced as a result of operation of evaporation devices comprising the main component of special water purification systems of nuclear power plants (NPP). The developed technology includes a hydrothermal (T=250-300 deg. C and P=80-120 bar) processing of evaporator concentrates in oxidation medium in order to destruct stable organic complexes of cobalt radionuclides and remove these radionuclides by oxide materials formed during such a processing. The cesium radionuclides contained in evaporator concentrates are removed by a conventional method-through application of one of the developed composite sorbents with ferrocyanides of transition metals used as active agents. Extensive laboratory studies of the processes occurring in evaporator concentrates under hydrothermal conditions were performed. It was shown that hydrothermal oxidation of evaporator concentrates has a number of advantages as compared to traditional oxidation methods (ozonization, photo-catalytic, electrochemical and plasma oxidation). A laboratory installation was built for the flow-type hydrothermal oxidation of NPP evaporator concentrates. The obtained experimental results showed good prospects for the developed method application. On the basis of the results obtained, a pilot installation of productivity up to 15 l/hour was developed and built in order to work out the technology of evaporator concentrates hydrothermal treatment. The pilot tests of the hydrothermal technology for evaporator concentrates hydrothermal treatment were performed for 6 months in 2006 at the 1. reactor unit of the Novovoronezhskaya NPP (Voronezh Region, Russia). Optimal technological regimes were determined, and estimations of the economic soundness of the technology were made. The advantages of the presented technology in terms of management of concentrated liquid radioactive wastes (LRW) at nuclear cycle facilities, as compared to other methods

  14. Simultaneous Determination of Hormonal Residues in Treated Waters Using Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Guedes-Alonso, Rayco; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2013-01-01

    In the last years, hormone consumption has increased exponentially. Because of that, hormone compounds are considered emerging pollutants since several studies have determinted their presence in water influents and effluents of wastewater treatment plants (WWTPs). In this study, a quantitative method for the simultaneous determination of oestrogens (estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, and diethylstilbestrol), androgens (testosterone), and progestogens (norgestrel and megestrol acetate) has been developed to determine these compounds in wastewater samples. Due to the very low concentrations of target compounds in the environment, a solid phase extraction procedure has been optimized and developed to extract and preconcentrate the analytes. Determination and quantification were performed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The method developed presents satisfactory limits of detection (between 0.15 and 9.35 ng·L−1), good recoveries (between 73 and 90% for the most of compounds), and low relative standard deviations (under 8.4%). Samples from influents and effluents of two wastewater treatment plants of Gran Canaria (Spain) were analyzed using the proposed method, finding several hormones with concentrations ranged from 5 to 300 ng·L−1. PMID:23533966

  15. Liquid crystal alignment on ion-beam-treated polyimide with a long alkyl side chain: near edge X-ray absorption fine structure spectroscopy analysis.

    PubMed

    Seo, Joo-Hong; Hwang, Soo Won; Song, Dong Han; Shin, Jae Hoon; Yoon, Tae-Hoon; Kim, Jae Chang; Yi, Mi Hye

    2009-02-19

    Liquid crystal alignment on ion-beam-treated polyimides with a long alkyl side chain was investigated using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The long alkyl side chains and the asymmetric distribution and orientational order of the pi-bonds of the polyimide surface can be determined by analyzing the angular dependent resonance intensities of the NEXAFS measurements. Herein, we demonstrate that the pretilt angle of the LC cell made by our method decreases as more long alkyl side chains are destroyed. Additionally, the tilt direction of the LC molecules can be determined from the asymmetric distribution of pi-bonds of the polyimide created by the ion beam irradiation. PMID:19161281

  16. Delisting petition for 300-M saltstone (treated F006 sludge) from the 300-M liquid effluent treatment facility

    SciTech Connect

    Not Available

    1989-04-04

    This petition seeks exclusion for stabilized and solidified sludge material generated by treatment of wastewater from the 300-M aluminum forming and metal finishing processes. The waste contains both hazardous and radioactive components and is classified as a mixed waste. The objective of this petition is to demonstrate that the stabilized sludge material (saltstone), when properly disposed, will not exceed the health-based standards for the hazardous constituents. This petition contains sampling and analytical data which justify the request for exclusion. The results show that when the data are applied to the EPA Vertical and Horizontal Spread (VHS) Model, health-based standards for all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of the stabilized sludge material in concrete vaults will meet the requirements pertaining to Waste Management Activities for Groundwater Protection at the Savannah River Site in Aiken, S.C. Documents set forth performance objectives and disposal options for low-level radioactive waste disposal. Concrete vaults specified for disposal of 300-M saltstone (treated F006 sludge) assure that these performance objectives will be met.

  17. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet.

    PubMed

    Dolezalova, Eva; Lukes, Petr

    2015-06-01

    Electrical discharge plasmas can efficiently inactivate various microorganisms. Inactivation mechanisms caused by plasma, however, are not fully understood because of the complexity of both the plasma and biological systems. We investigated plasma-induced inactivation of Escherichia coli in water and mechanisms by which plasma affects bacterial cell membrane integrity. Atmospheric pressure argon plasma jet generated at ambient air in direct contact with bacterial suspension was used as a plasma source. We determined significantly lower counts of E. coli after treatment by plasma when they were assayed using a conventional cultivation technique than using a fluorescence-based LIVE/DEAD staining method, which indicated that bacteria may have entered the viable-but-nonculturable state (VBNC). We did not achieve resuscitation of these non-culturable cells, however, we detected their metabolic activity through the analysis of cellular mRNA, which suggests that cells may have been rather in the active-but-nonculturable state (ABNC). We hypothesize that peroxidation of cell membrane lipids by the reactive species produced by plasma was an important pathway of bacterial inactivation. Amount of malondialdehyde and membrane permeability of E. coli to propidium iodide increased with increasing bacterial inactivation by plasma. Membrane damage was also demonstrated by detection of free DNA in plasma-treated water. PMID:25212700

  18. Hydrothermal carbonization of industrial mixed sludge from a pulp and paper mill.

    PubMed

    Mäkelä, Mikko; Benavente, Verónica; Fullana, Andrés

    2016-01-01

    Mixed sludge from a pulp and paper mill was hydrothermally carbonized at 180-260°C for 0.5-5h with the use of HCl or NaOH for determining the effect of acid and base additions during sludge carbonization. Based on the results carbonization was mainly governed by dehydration, depolymerization and decarboxylation of sludge components. Additive type had a statistically significant effect on hydrochar carbon content and carbon and energy yield, of which especially energy yield increased through the use of HCl. The theoretical energy efficiencies of carbonization increased with decreasing reaction temperature, retention time and the use of HCl and suggested that the energy requirement could be covered by the energy content of attained hydrochar. The BOD5/COD-ratios of analyzed liquid samples indicated that the dissolved organic components could be treated by conventional biological methods. PMID:26519695

  19. Metabolomic analysis of swine urine treated with β2-agonists by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    Wu, Yuping; Bi, Yanfeng; Bingga, Gali; Li, Xiaowei; Zhang, Suxia; Li, Jiancheng; Li, Hui; Ding, Shuangyang; Xia, Xi

    2015-06-26

    The illegal use of β2-agonists in livestock production was previously detected by efficient methods based on mass spectrometry to control the residues of these drugs. Nevertheless, such methods still remain a challenging task for authorities who monitor these residues because the use of "cocktails" composed of mixtures of low amounts of several substances as well as the synthesis of new compounds of unknown structure prevent efficient prevention of illegal use of growth-promoting agents. Here, we outlined a metabolomics-based strategy for detecting the use of "cocktails" composed of mixtures of low amounts of three β2-agonists via urine profiling. Urine profiles of controls and swine treated with mixture of low amounts of three substances (clenbuterol, salbutamol, and ractopamine) were analyzed with ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The metabolic differences between controls and β2-agonists-treated groups were compared using multivariate data analysis. Fourteen metabolites were identified related with the β2-agonists treatment, while two co-biomarkers, 2-indolecarboxylic acid and fluorometholone acetate, either in single or "cocktails" of low-dose mixture of clenbuterol, salbutamol, and ractopamine, could be considered as diagnostic markers for the detection of illegal use of β2-agonists. The results of depletion study demonstrated that it is practical to use the markers for monitoring of β2-agonists. PMID:25980694

  20. Hydrothermal reaction of fly ash. Final report

    SciTech Connect

    Brown, P.W.

    1994-12-31

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  1. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  2. Cody hydrothermal system

    SciTech Connect

    Heasler, H.P.

    1982-01-01

    The hot springs of Colter's Hell are the surface manifestations of a much larger hydothermal system. That system has been studied to define its extent, maximum temperature, and mechanism of operation. The study area covers 2700 km/sup 2/ (1040 mi/sup 2/) in northwest Wyoming. Research and field work included locating and sampling the hot springs, geologic mapping, thermal logging of available wells, measuring thermal conductivities, analyzing over 200 oil and gas well bottom-hole temperatures, and compiling and analyzing hydrologic data. These data were used to generate a model for the hydrothermal system.

  3. The fate of lignin during hydrothermal pretreatment

    PubMed Central

    2013-01-01

    Background Effective enzymatic hydrolysis of lignocellulosic biomass benefits from lignin removal, relocation, and/or modification during hydrothermal pretreatment. Phase transition, depolymerization/repolymerization, and solubility effects may all influence these lignin changes. To better understand how lignin is altered, Populus trichocarpa x P. deltoides wood samples and cellulolytic enzyme lignin (CEL) isolated from P. trichocarpa x P. deltoides were subjected to batch and flowthrough pretreatments. The residual solids and liquid hydrolysate were characterized by gel permeation chromatography, heteronuclear single quantum coherence NMR, compositional analysis, and gas chromatography–mass spectrometry. Results Changes in the structure of the solids recovered after the pretreatment of CEL and the production of aromatic monomers point strongly to depolymerization and condensation being primary mechanisms for lignin extraction and redeposition. The differences in lignin removal and phenolic compound production from native P. trichocarpa x P. deltoides and CEL suggested that lignin-carbohydrate interactions increased lignin extraction and the extractability of syringyl groups relative to guaiacyl groups. Conclusions These insights into delignification during hydrothermal pretreatment point to desirable pretreatment strategies and plant modifications. Because depolymerization followed by repolymerization appears to be the dominant mode of lignin modification, limiting the residence time of depolymerized lignin moieties in the bulk liquid phase should reduce lignin content in pretreated biomass. In addition, the increase in lignin removal in the presence of polysaccharides suggests that increasing lignin-carbohydrate cross-links in biomass would increase delignification during pretreatment. PMID:23902789

  4. Versatile hydrothermal synthesis of one-dimensional composite structures

    NASA Astrophysics Data System (ADS)

    Luo, Yonglan

    2008-12-01

    In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.

  5. Resource recovery from waste LCD panel by hydrothermal transformation of polarizer into organic acids.

    PubMed

    Li, Feng; Bai, Lan; He, Wenzhi; Li, Guangming; Huang, Juwen

    2015-12-15

    Based on the significant advantages of hydrothermal technology, it was applied to treat polarizer from the waste LCD panel with the aim of transforming it into organic acids (mainly acetic acid and lactic acid). Investigation was done to evaluate the effects of different factors on yields of organic acids, including the reaction temperature, reaction time and H2O2 supply, and the degradation process of polarizer was analyzed. Liquid samples were analyzed by GC/MS and HPLC, and solid-phase products were characterized by SEM and FTIR. Results showed that at the condition of temperature 300 °C and reaction time 5 min, the organic materials reached its highest conversion rate of 71.47% by adding 0.2 mL H2O2 and acetic acid was dominant in the products of organic acids with the yield of 6.78%. When not adding H2O2 to the system, the yields of lactic and acetic acid were respectively 4.24% and 3.80% at a nearly equal degree, they are suitable for esterification to form ethyl lactate instead of separating them for this case. In the hydrothermal process, polarizer was first decomposed to monosaccharides, alkane, etc., and then furfural and acids are produced with further decomposition. PMID:26094243

  6. Hydrothermal processes at seafloor spreading centers,

    SciTech Connect

    Sleep, N.H.

    1983-01-01

    This chapter discusses the initial entry of hydrothermal seawater into deep levels of the oceanic crust, the effectiveness of hydrothermal circulation in cooling the crust, the geometry of hydrothermal circulation, the relationship between the hydrothermal circulation and the magma chamber, the reaction of the oceanic crust with the seawater, and the identification of the hydrothermal fluid which alters a rock sample. Topics considered include the crack front, observation relevant to the crack front, the limitations of the crack front hypothesis, the observed pattern of hydrothermal alteration, the nature of the hydrothermal fluid, the physics of large scale convection, and convection through crack zones. Knowledge of hydrothermal circulation at the ridge axis is based on sampling of the hydrothermal fluid, indirect geophysical measurements of the oceanic crust, and studies of rocks which are believed to have undergone hydrothermal alteration at the ridge axis. Includes 2 drawings.

  7. Hydrothermal electrocatalytic oxidation for the treatment of herbicides wastewater.

    PubMed

    Xiao, Hanshuang; Lv, Baoying; Gao, Junxia; Zhao, Guohua

    2016-05-01

    A hydrothermal electrocatalytic oxidation (HTECO) method is adopted to treat the biorefractory and toxic 2,4-dichlorophenoxyacetic acid (2,4-D) herbicides wastewater on nano-Pt/Ti electrode in the existence of H2O2. Comparisons for the removal of 2,4-D and total organic carbon (TOC) have been carried out between HTECO with individual electrochemical oxidation (EO) and hydrothermal catalytic oxidation (HTCO), showing that high mineralization efficiency was obtained in HTECO process. The possible factors resulting in the high removal efficiency in HTECO process have been studied by investigating the properties of the electrode and solution in hydrothermal condition, the amount of active radicals, the decay kinetic, and evolution of main intermediates of 2,4-D. Thus, an enhanced mechanism for HTECO method for the treatment of herbicides wastewater has been obtained. PMID:26865489

  8. High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery.

    PubMed

    Ferraz Júnior, Antônio Djalma Nunes; Etchebehere, Claudia; Zaiat, Marcelo

    2015-06-01

    This study evaluated the influence of a high organic loading rate (OLR) on thermophilic hydrogen production at an up-flow anaerobic packed-bed reactor (APBR) treating a residual liquid stream of a Brazilian biorefinery. The APBR, filled with low-density polyethylene, was operated at an OLR of 84.2 kg-COD m(-3) d(-1). This value was determined in a previous study. The maximum values of hydrogen production and yield were 5,252.6 mL-H2 d(-1) and 3.7 mol-H2 mol(-1)(total carbohydrates), respectively. However, whereas the OLR remained constant, the specific organic load rate (sOLR) decreased throughout operation from 1.38 to 0.72 g-Total carbohydratesg-VS(-1) h(-1), this decrease negatively affected hydrogen production. A sOLR of 0.98 g-Total carbohydratesg-VS(-1) h(-1) was optimal for hydrogen production. The microbial community was studied using 454-pyrosequencing analysis. Organisms belonging to the genera Caloramator, Clostridium, Megasphaera, Oxobacter, Thermoanaerobacterium, and Thermohydrogenium were detected in samples taken from the reactor at operation days 30 and 60, suggesting that these organisms contribute to hydrogen production. PMID:25812810

  9. Characteristics of liquid phase deposited SiO2 on (NH4)2S-treated GaAs with an ultrathin Si interface passivation layer

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Yen, Chih-Feng

    2014-05-01

    The characteristics of liquid-phase-deposited SiO2 film on GaAs were investigated. A mixture of H2SiF6 and H3BO3 aqueous precursors was used as the growth solution. SiO2 on GaAs with (NH4)2S treatment shows good electrical characteristics owing to the reduction of native oxides and sulfur passivation. The electrical characteristics are further improved with an ultrathin Si interface passivation layer (Si IPL) from the reduction of Fermi-level pinning and interface state density. Moreover, during the SiO2 deposition, HF in the growth solution can simultaneously and effectively remove native oxides on Si IPL and provide fluorine passivation on it. The Al/SiO2/Si IPL/(NH4)2S-treated GaAs MOS capacitor shows superior electrical properties. The leakage current densities can reach 7.4 × 10-9 and 6.83 × 10-8 A/cm2 at ±2 V. The interface state density can reach a 2.11 × 1011 cm-2 eV-1 with low frequency-dispersion of 8%.

  10. Hydrothermal Chemotrophic Biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Westall, F.; Campbell, K. A.; Gautret, P.; Bréhéret, J.; Foucher, F.; Vago, J.; Kminek, G.; Hubert, A.; Hickman-Lewis, K.; Cockell, C. S.

    2016-05-01

    Hydrothermal chemotrophic biosignatures (morphological and geo-organochemical) were common in shallow water on the anaerobic early Earth, preserved by silicification. They are representative also of shallow crustal biosignatures.

  11. Distribution of buried hydrothermal alteration deduced from high-resolution magnetic surveys in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Bouligand, Claire; Glen, Jonathan M. G.; Blakely, Richard J.

    2014-04-01

    Yellowstone National Park (YNP) displays numerous and extensive hydrothermal features. Although hydrothermal alteration in YNP has been extensively studied, the volume, geometry, and type of rock alteration at depth remain poorly constrained. In this study, we use high-resolution airborne and ground magnetic surveys and measurements of remanent and induced magnetization of field and drill core samples to provide constraints on the geometry of hydrothermal alteration within the subsurface of three thermal areas in YNP (Firehole River, Smoke Jumper Hot Springs, and Norris Geyser Basin). We observe that hydrothermal zones from both liquid- and vapor-dominated systems coincide with magnetic lows observed in aeromagnetic surveys and with a decrease of the amplitude of short-wavelength anomalies seen in ground magnetic surveys. This suggests a strong demagnetization of both the shallow and deep substratum within these areas associated with the removal of magnetic minerals by hydrothermal alteration processes. Such demagnetization is confirmed by measurements of rock samples from hydrothermal areas which display significantly decreased total magnetization. A pronounced negative anomaly is observed over the Lone Star Geyser and suggests a significant demagnetization of the substratum associated with areas displaying large-scale fluid flow. The ground and airborne magnetic surveys are used to evaluate the distribution of magnetization in the subsurface. This study shows that significant demagnetization occurs over a thickness of at least a few hundred meters in hydrothermal areas at YNP and that the maximum degree or maximum thickness of demagnetization correlates closely with the location of hydrothermal activity and mapped alteration.

  12. Controlling the shell formation in hydrothermally reduced graphene hydrogel.

    PubMed

    Hu, Kaiwen; Xie, Xingyi; Cerruti, Marta; Szkopek, Thomas

    2015-05-26

    Graphene hydrogels/aerogels are emerging three-dimensional graphene macroscopic assemblies of potential use in many applications including energy storage, pollutant adsorption, and gas sensing. In this Letter, we identify, characterize and control the formation of the exterior shell structure of graphene hydrogels prepared via hydrothermal reduction of graphene oxide. Unlike the porous bulk of the hydrogel, the shell is a compact, highly ordered layer with a higher electrical conductivity. Shell formation is dependent upon the surface anchoring of graphene oxide at the liquid-air and liquid-container interfaces. By purposefully weakening surface anchoring of graphene oxide using mild thermal or chemical prereduction method prior to hydrothermal reduction, we have succeeded in completely suppressing shell formation in the graphene hydrogel. The resulting graphene hydrogel shows a lower volume reduction with a porous bulk structure immediately accessible from the surface, in contrast to graphene hydrogels prepared under conventional conditions. PMID:25942331

  13. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  14. Investigation of plant hormone level changes in shoot tips of longan (Dimocarpus longan Lour.) treated with potassium chlorate by liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Susawaengsup, Chanthana; Rayanakorn, Mongkon; Wongpornchai, Sugunya; Wangkarn, Sunanta

    2011-08-15

    The endogenous levels of indole-3-acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA) and cytokinins (CKs) and their changes were investigated in shoot tips of ten longan (Dimocarpus longan Lour.) trees for off-season flowering until 60 days after potassium chlorate treatment in comparison with those of ten control (untreated) longan trees. These analytes were extracted and interfering matrices removed with a single mixed-mode solid phase extraction under optimum conditions. The recoveries at three levels of concentration were in the range of 72-112%. The endogenous plant hormones were separated and quantified by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Detection limits based on the signal-to-noise ratio ranged from 10 ng mL(-1) for gibberellin A4 (GA4) to 200 ng mL(-1) for IAA. Within the first week after potassium chlorate treatment, dry weight (DW) amounts in the treated longan shoot tips of four gibberellins, namely: gibberellin A1(GA1), gibberellic acid (GA3), gibberellin A19 (GA19) and gibberellin A20 (GA20), were found to increase to approximately 25, 50, 20 and 60 ng g(-1) respectively, all of which were significantly higher than those of the controls. In contrast, gibberellin A8 (GA8) obtained from the treated longan was found to decrease to approximately 20 ng g(-1)DW while that of the control increased to around 80 ng g(-1)DW. Certain CKs which play a role in leaf bud induction, particularly isopentenyl adenine (iP), isopentenyl adenosine (iPR) and dihydrozeatin riboside (DHZR), were found to be present in amounts of approximately 20, 50 and 60 ng g(-1)DW in the shoot tips of the control longan. The analytical results obtained from the two-month off-season longan flowering period indicate that high GA1, GA3, GA19 and GA20 levels in the longan shoot tips contribute to flower bud induction while high levels of CKs, IAA and ABA in the control longan contribute more to the vegetative development. PMID:21726716

  15. Probing Hydrothermal Organic Reaction Mechanisms with Hydrothermal Photochemistry

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Gould, I.; Shock, E.

    2013-12-01

    In most hydrothermal organic experiments the emphasis is on reaction product distributions and kinetic measurements, with mechanistic information or the direct evidence of proposed reaction intermediates rare or lacking. We believe that greater mechanistic insight will yield greater predictive power. Previously, we studied the reactions of a model ketone, dibenzylketone (DBK) in aqueous media at 300°C and 700 bars for durations up to several days [1], and found that many of the reaction products arise from coupling of benzyl and related radicals generated through homolytic bond cleavage of DBK. In the present work, we find that in situ photochemical generation of the radicals can provide independent evidence for radical intermediates in the hydrothermal reaction of DBK, yielding valuable insights into the thermal reactions. Hydrothermal photochemical experiments of DBK were conducted in water in sealed fused silica glass tubes at 300°C and 86 bars under UV irradiation for minutes. The short timescale of the experiments allows the primary radical coupling products of DBK to be generated and identified, and their follow-up reactions to be monitored directly. The primary hydrothermal photolysis products include toluene, bibenzyl, a three-benzene-ring product (with isomers), and two four-benzene-ring products (with isomers), which represent a much simpler version of the products obtained through thermal reactions under similar conversions. Most of the observed photolysis products were identical to the ones in the thermal reactions, and those not observed in thermal reactions were found to be the short-lived precursors of the thermal products. As an example, the transformation of one four-ring product to the other was attained and monitored by experiments in which hydrothermal photolysis of DBK was followed by thermolysis at 300°C for a further few hours. The transformation steps included dehydration and isomerization, which were known to be thermodynamically

  16. Subsurface Controls on Habitability of Hydrothermal Waters

    NASA Astrophysics Data System (ADS)

    Fristad, K. E.; Som, S. M.; Hoehler, T. M.

    2014-12-01

    Liquid water alone does not make an environment habitable. Environmental settings dominated by water-rock reactions such as in hydrothermal vents and springs are natural targets for astrobiological investigation of waterworlds because the rich geochemical diversity at these locales provides abundant energy in solvent to support microbial life. Hydrogen oxidizers are of particular interest because H2-based metabolisms are widespread and deeply rooted throughout the phylogenetic tree of life, implying they may have emerged extremely early in the evolution, and possibly even the origin, of life on Earth and potentially any other rocky bodies bearing liquid water. Dihydrogen (H2) can be lithogenically produced by the hydrolytic oxidation of the ferrous iron component in Fe-bearing minerals as well as by radiolytic cleavage of water by α, β, or γ radiation produced during the decay of radioactive isotopes. Lithogenic H2 production mechanisms operate across a range of rock types, but the concentration of dissolved H2 available to life is controlled by a number of subsurface factors such as surface geometry, water to rock ratio, production rate, and fluid flux. These factors are often controlled by the larger geologic and structural context of a particular site. We present results of an ongoing project that surveys H2 concentrations from terrestrial hydrothermal waters in diverse chemical and physical settings. Aqueous H2 concentrations and potential subsurface controls are presented for sites across the western U.S. including Yellowstone National Park, Lassen Volcanic National Park, and Iceland. In coordination with field data, we also investigate the habitability of various sites numerically by coupling a geochemical model of water-rock interaction with that of single-cell methanogenesis and compute a habitability index for the given environment. In particular, we investigate the control that temperature, rock composition, water composition, and water to rock ratio

  17. Reduction and structural evolution of graphene oxide sheets under hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Niu, Yongan; Fang, Qinghong; Zhang, Xin; Zhang, Panpan; Li, Yao

    2016-09-01

    This work carefully investigated the hydrothermal reduction of graphene oxide (GO) sheets. To evaluate the reduced extent, the as-prepared GO and RGO sheets in different conditions were measured by FT-IR, UV-Vis, Raman spectra and TEM morphologies. It revealed that the hydrothermal reduction of GO sheets was undergone four steps and the optimal condition was treated at 180 °C for 24 h. These RGO sheets exhibited the expectant morphologies and maintained the original sizes.

  18. Hydrothermal Synthesis and Characterization of Novel Brackebuschite-Type Transition Metal Vanadates: Ba2M(VO4)2(OH), M = V(3+), Mn(3+), and Fe(3+), with Interesting Jahn-Teller and Spin-Liquid Behavior.

    PubMed

    Sanjeewa, Liurukara D; McGuire, Michael A; Garlea, Vasile O; Hu, Longyu; Chumanov, George; McMillen, Colin D; Kolis, Joseph W

    2015-07-20

    A new series of transition metal vanadates, namely, Ba2M(VO4)2(OH) (M = V(3+), Mn(3+), and Fe(3+)), was synthesized as large single crystals hydrothermally in 5 M NaOH solution at 580 °C and 1 kbar. This new series of compounds is structurally reminiscent of the brackebuschite mineral type. The structure of Ba2V(VO4)2(OH) is monoclinic in space group P21/m, a = 7.8783(2) Å, b = 6.1369(1) Å, c = 9.1836(2) Å, β = 113.07(3)°, V = 408.51(2) Å(3). The other structures are similar and consist of one-dimensional trans edge-shared distorted octahedral chains running along the b-axis. The vanadate groups bridge across edges of their tetrahedra. Structural analysis of the Ba2Mn(VO4)2(OH) analogue yielded a new understanding of the Jahn-Teller effect in this structure type. Raman and infrared spectra were investigated to observe the fundamental vanadate and hydroxide vibrational modes. Single-crystal temperature-dependent magnetic studies on Ba2V(VO4)2(OH) reveal a broad feature over a wide temperature range with maximum at ∼100 K indicating that an energy gap could exist between the antiferromagnetic singlet ground state and excited triplet states, making it potentially of interest for quantum magnetism studies. PMID:26154989

  19. Hydrothermal synthesis of ammonium illite

    USGS Publications Warehouse

    Sucha, V.; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.

    1998-01-01

    Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.

  20. Introduction to Atlantic Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.; Thompson, Geoffrey

    1993-06-01

    Seafloor hydrothermal research has advanced rapidly from local to global scope through a sequence of discoveries. Hydrothermal research at seafloor spreading centers began in the mid-1960s with the discovery of hot metalliferous brines and sediments ponded in deeps along the slow spreading (half rate 1 cm yr-1) axis of the Red Sea [Chamock, 1964; Miller, 1964; Swallow and Crease, 1965; Miller et al., 1966; Hunt et al., 1967; Bischoff, 1969]. At the same time a hydrothermal metalliferous component was identified in sediments of the East Pacific Rise [Skomyakova, 1965; Arrhenins and Bonatti, 1965; Boström and Peterson, 1966]. Geophysicists recognized that heat flow measurements at spreading centers could only be explained by convective cooling of the crust with circulating seawater [Elder, 1967; Lister, 1972].

  1. Investigation of the influence of liquid water films on O3 and PAN deposition on plant leaf surfaces treated with organic / inorganic compounds

    NASA Astrophysics Data System (ADS)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Kesselmeier, Jürgen; Sörgel, Matthias

    2016-04-01

    Liquid water films on environmental surfaces play an important role in various fields of interest (Burkhardt and Eiden, 1994). For example, the deposition of water soluble trace gases could be increased by surface moisture. Chameides and Stelson (1992) found out that the dissolution of trace gases in airborne particulate matter increases with rising water/solid ratio of the particles. Further, Flechard et al. (1999) concluded that deliquescent salt particles represent a potential sink for trace gases, depending on their chemical property. The formation of surface water films and its influence on the gas deposition was proposed by many previous studies (Fuentes and Gillespie, 1992, Burkhardt and Eiden, 1994, van Hove et al., 1989, Burkhardt et al., 1999, Flechard et al., 1999). In this study we investigate the influence of leaf surface water films on the deposition of O3 and PAN under controlled laboratory conditions. A twin cuvette system described in Sun et al. (2015) was used to control the environmental parameters such as light, temperature, trace gas mixing ratio and humidity. Furthermore, the leaf surface was treated with various organic and inorganic solutions to investigate the influence of deposited compounds on the electrical surface conductance of the leaves and the surface deposition of O3 and PAN at various relative humidities. The result shows that RHcrit, where the electrical surface conductance (G) increases exponentially, was 40 % during the light period and 50 % during the dark period. Furthermore, we observed that the formation of the leaf surface liquid film was depended on the deposited compounds on the leaf cuticles. For the O3 deposition on plants (Quercus ilex) a clear enhancement at rising environmental air humidity under light and dark condition was found. The increase during light conditions can be related partly to increasing stomatal conductance with higher RH. From the non-stomatal deposition measured in dark experiments, we could

  2. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    PubMed

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes. PMID:26676001

  3. Understanding hydrothermal carbonization of mixed feedstocks for waste conversion

    NASA Astrophysics Data System (ADS)

    Lu, Xiaowei

    Hydrothermal carbonization (HTC) is an environmentally beneficial means to convert waste materials to value-added solid and liquid products with minimal greenhouse gas emission. Research is lacking on understanding the influence of critical process conditions on product formation and environmental implication associated with HTC of waste streams. This work was conducted to determine how reaction conditions and heterogeneous compound mixtures (representative of municipal wastes) influence hydrothermal carbonization processes. The specific experiments include: (1) determine how carbonization product properties are manipulated by controlling feedstock composition, process conditions, and catalyst addition; (2) determine if carbonization of heterogeneous mixtures follows similar pathways as that with pure feedstocks; and (3) evaluate and compare the carbon and energy-related implications associated with carbonization products with those associated with other common waste management processes for solid waste.

  4. Hydrothermal processes at seafloor spreading centers,

    SciTech Connect

    Rona, P.A.; Bostrom, K.; Laubier, L.; Smith, K.L.

    1983-01-01

    This book examines research on the description and interpretation of hydrothermal and associated phenomena at seafloor spreading centers. An interdisciplinary overview of the subject is presented, including geological, geophysical, geochemical, and biological discoveries. The implications of the discoveries for understanding the earth's heat transfer, geochemical mass balances and cycles, mineralization, and biological adaptation are discussed. Topics considered include geologic setting (e.g., the four dimensions of the spreading axis, geological processes of the mid-ocean ridge), hydrothermal convection (e.g., oxygen and hydrogen isotope studies, the basic physics of water penetration into hot rock), Iceland and oceanic ridges (e.g., chemical evidence from Icelandic geothermal systems, the physical environment of hydrothermal systems), mass balances and cycles (e.g., reduced gases and bacteria in hydrothermal fluids, the effects of hydrothermal activity on sedimentary organic matter), ferromanganese deposits, hydrothermal mineralization, and the biology of hydrothermal vents.

  5. Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment

    PubMed Central

    2013-01-01

    Background Ensiling is a well-known method for preserving green biomasses through anaerobic production of organic acids by lactic acid bacteria. In this study, wheat straw is subjected to ensiling in combination with hydrothermal treatment as a combined pretreatment method, taking advantage of the produced organic acids. Results Ensiling for 4 weeks was accomplished in a vacuum bag system after addition of an inoculum of Lactobacillus buchneri and 7% w/w xylose to wheat straw biomass at 35% final dry matter. Both glucan and xylan were preserved, and the DM loss after ensiling was less than 0.5%. When comparing hydrothermally treated wheat straw (170, 180 and 190°C) with hydrothermally treated ensiled wheat straw (same temperatures), several positive effects of ensiling were revealed. Glucan was up-concentrated in the solid fraction and the solubilisation of hemicellulose was significantly increased. Subsequent enzymatic hydrolysis of the solid fractions showed that ensiling significantly improved the effect of pretreatment, especially at the lower temperatures of 170 and 180°C. The overall glucose yields after pretreatments of ensiled wheat straw were higher than for non-ensiled wheat straw hydrothermally treated at 190°C, namely 74-81% of the theoretical maximum glucose in the raw material, which was ~1.8 times better than the corresponding yields for the non-ensiled straw pretreated at 170 or 180°C. The highest overall conversion of combined glucose and xylose was achieved for ensiled wheat straw hydrothermally treated at 180°C, with overall glucose yield of 78% and overall conversion yield of xylose of 87%. Conclusions Ensiling of wheat straw is shown to be an effective pre-step to hydrothermal treatment, and can give rise to a welcomed decrease of process temperature in hydrothermal treatments, thereby potentially having a positive effect on large scale pretreatment costs. PMID:23945109

  6. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge.

    PubMed

    Huang, Hua-Jun; Yuan, Xing-Zhong

    2016-01-01

    Various hydrothermal treatment methods, including hydrothermal carbonization, liquefaction and sub/super-critical water gasification, have been applied to the disposal of sewage sludge for producing bio-materials or bio-fuels. It has become a research hotspot whether the heavy metals contained in sewage sludge can be well treated/stabilized after the hydrothermal treatments. This review firstly summarized the methods of assessing heavy metals' contamination level/risk and then discussed the migration and transformation behaviors of heavy metals from the following aspects: the effect of reaction temperature, the effect of additives (catalysts and other biomass), the effect of the type of solvent and the effect of reaction time. This review can provide an important reference for the further study of the migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. PMID:26577578

  7. Steady-state thermodynamics of transfer through a gas—liquid interface, treated as a limiting case of thermo-osmosis

    NASA Astrophysics Data System (ADS)

    Phillips, L. F.

    1994-10-01

    The flux of a gas through a gas—liquid interface has been calculated by applying Onsager's theory to a system which evolves continuously through the following stages: (1) a system in which thermo-osmosis of a gas takes place through a horizontal membrane located between two semi-infinite gas reservoirs, (2) a system similar to (1) except that the gas in the lower reservoir has undergone a continuous transition to liquid via the critical point, and (3) a system similar to (2) except that the pores in the membrane have been allowed to expand to the point where the membrane has been replaced by a stagnant layer of gas. The resulting expression, which agrees with one obtained previously, shows that the gas flux through the interface depends on the gradients of both temperature and partial pressure at the liquid surface.

  8. Hydrothermal pretreatment of sugarcane bagasse using response surface methodology improves digestibility and ethanol production by SSF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane bagasse was characterized as a feedstock for production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160-200 deg C and 5-20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohy...

  9. Hydrothermal carbonization of animal wastes for carbon sequestration and energy generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrothermal carbonization of swine manure and poultry litter was conducted at 200°C for 20 hours at a 4:1 water:feedstock ratio. Carbon content of the solid, liquid and gas-phases was measured to determine the mass of carbon sequestered within the biochar. Carbon mass recoveries ranged from 95-100%...

  10. POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLING AND LIQUID CHROMATOGRAPHY-ELECTROSPRAY/ION-TRAP MASS SPECTROMETRY FOR ASSESSING SELECTED PRESCRIPTION AND ILLICIT DRUGS IN TREATED SEWAGE EFFLUENTS

    EPA Science Inventory

    The purpose of the research presented in this paper is two-fold: (1) to demonstrate the 4 coupling of two state-of-the-art techniques: a time-weighted polar organic integrative sampler (POCIS) and micro-liquid chromatography-electrospray/ion trap mass spectrometry (u-LC-6 ES/ITMS...

  11. Difference in cellular damage and cell death in thermal death time disks and high hydrostatic pressure treated Salmonella Enteritidis (ATCC13076) in liquid whole egg

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in membrane damage including leakage of intracellular UV-materials and loss of viability of Salmonella Enteritidis (ATCC13076) in liquid whole egg (LWE) following thermal-death-time (TDT) disk and high hydrostatic pressure treatments were examined. Salmonella enteritidis was inoculated ...

  12. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    PubMed

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. PMID:25218204

  13. Hydrocarbon treating process

    SciTech Connect

    Verachtert, T. A.

    1984-11-06

    A process is disclosed for treating hydrocarbon streams such as naphtha by the oxidation of mercaptans into disulfide compounds which remain in the hydrocarbon stream. The conversion is effected during passage of the hydrocarbon and an aqueous stream downward through a cylindrical mass of liquid-liquid contact material. The liquids then flow through a cylindrical screen into an annular separation zone which surrounds a lower part of the contact material. After decantation in the separation zone, the aqueous material, which preferably contains the oxidation catalyst, is recycled.

  14. Chemical and biochemical transformations in hydrothermal plumes

    NASA Astrophysics Data System (ADS)

    Lilley, Marvin D.; Feely, Richard A.; Trefry, John H.

    Hydrothermal plumes integrate the heat and mass flux originating at seafloor hydrothermal vents thereby providing both a means of detecting hydrothermal activity and estimating hydrothermal fluxes. Many chemical species are introduced into the deep sea via hydrothermal plumes (Figure 1) in concentrations many orders of magnitude higher than that existing in background seawater (e.g. H2, CH4 3He, Mn, Fe) while others are scavenged from seawater by hydrothermal particles (e.g. PO4-3, V, As, rare earth elements, Th). Dilution by entrainment of background seawater in the buoyant portion of the plume is very rapid (see chapters by Lupton and McDuff, this volume) such that the hydrothermal component in the near-field portion of the neutrally buoyant plume represents only about 0.01% of the mixture. Nevertheless, chemical tracers such as 3He, CH4, and Mn are widely utilized in addition to temperature, salinity, and light transmission anomalies to detect hydrothermal venting and to draw inferences about the nature of the underlying geochemistry of the hydrothermal system. Many other chemical tracers can be utilized during plume studies to provide additional information about the nature of the venting. These include particles, H2, Al, and radioisotopes, among others.

  15. The production of glucose from corn stalk using hydrothermal process with pre-treatment ultrasound assisted alkaline

    NASA Astrophysics Data System (ADS)

    Yolanda, Dora; Prasutiyo, Indry; Trisanti, P. N.; Sumarno

    2015-12-01

    The production of glucose from corn stalk by using subcritical hydrothermal technology is studied in this work. Ultrasound-assisted alkaline delignification methods are used as pre-treatment. The corn stalk powder were pretreated with ultrasound-assisted alkaline (NaOH 2% w/w, solid to liquid ratio 1:22 w/v) at room temperature and 30 minutes. After pre-treatment, solid residue and liquid fractions are separated by filtration. Pretreated solids are further submitted to hydrothermal process for glucose production. Hydrothermal process was carried out at 100 Bar and 120°C in various times. The solid product was characterized by SEM and XRD. And liquid product was analysis using DNS method to determine percentage of glucose. From XRD analysis showed that crystallinity of material was lower than delignification product.

  16. Optimizing an Experimental System for Assessing the Amounts and Forms of Copper Released into Aquatic Systems from Commercially Available Liquid and Micronized Pressure Treated Lumber

    EPA Science Inventory

    The fate and effects of pristine engineered metal nanomaterials (ENMs) in simplified systems have been widely studied; however, little is known about the potential release and impact of metal ENMs from consumer goods, especially lumber which has been treated with micronized coppe...

  17. Hydrothermal Habitats: Measurements of Bulk Microbial Elemental Composition, and Models of Hydrothermal Influences on the Evolution of Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Neveu, Marc Francois Laurent

    Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the

  18. Fluidized bed heat treating system

    SciTech Connect

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  19. Characterization of a hydroxyapatite sputtered film subject to hydrothermal treatment using FE-SEM and STEM.

    PubMed

    Ozeki, K; Aoki, H; Masuzawa, T

    2011-01-01

    Hydroxyapatite (HA) was coated onto a titanium substrate using radio frequency magnetron sputtering. The sputtered film was crystallized using a hydrothermal treatment. The films were observed using X-ray diffractometry, field emission scanning electron microscopy (FE-SEM) and scanning transmission electron microscopy (STEM) equipped with energy dispersive X-ray spectroscopy (EDX).It was observed that the surface of the hydrothermally-treated film was covered with globular particles. The FE-SEM observations indicated that these particles were composed of columnar grains with a grain size of 20-50 nm. In the STEM cross-sectional observation of the HA-Ti interface, HA crystalline phase regions were observed, in part, in the non-crystalline phase layer of the as-sputtered film. After the hydrothermal treatment, the HA layer crystallized; the HA crystallization proceeded to a distance of 30 nm above the titanium surface. From an EDX line scan analysis, the titanium oxide layer was not observed at the HA-Ti interface of the as-sputtered film; however, in the hydrothermally-treated film, the titanium oxide layer, with a 15 nm thickness, was observed between the mixing layer and the titanium substrate. The formation of titanium oxide at the HA-Ti interface would contribute to the adhesion improvement of the sputtered film following the hydrothermal treatment. PMID:22072082

  20. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  1. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  2. Hydrothermal Origin for Carbonate Globules in Martian Meteorite ALH84001: A Terrestrial Analogue from Spitsbergen (Norway)

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Amundsen, Hans E. F.; Blake, David F.; Bunch, Ted

    2002-01-01

    Carbonate minerals in the ancient Martian meteorite ALH84001 are the only known solid phases that bear witness to the processing of volatile and biologically critical compounds (CO2, H2O) on early Mars. Similar carbonates have been found in xenoliths and their host basalts from Quaternary volcanic centers in northern Spitsbergen (Norway). These carbonates were deposited by hot (i.e., hydrothermal) waters associated with the volcanic activity. By analogy with the Spitsbergen carbonates, the ALH84001 carbonates were probably also deposited by hot water. Hydrothermal activity was probably common and widespread on Early Mars, which featured abundant basaltic rocks, water as ice or liquid, and heat from volcanos and asteroid impacts. On Earth, descendants of the earliest life forms still prefer hydrothermal environments, which are now shown to have been present on early Mars.

  3. Hydrothermal origin for carbonate globules in Martian meteorite ALH84001: a terrestrial analogue from Spitsbergen (Norway)

    NASA Astrophysics Data System (ADS)

    Treiman, Allan H.; Amundsen, Hans E. F.; Blake, David F.; Bunch, Ted

    2002-12-01

    Carbonate minerals in the ancient Martian meteorite ALH84001 are the only known solid phases that bear witness to the processing of volatile and biologically critical compounds (CO 2, H 2O) on early Mars. Similar carbonates have been found in xenoliths and their host basalts from Quaternary volcanic centers in northern Spitsbergen (Norway). These carbonates were deposited by hot (i.e., hydrothermal) waters associated with the volcanic activity. By analogy with the Spitsbergen carbonates, the ALH84001 carbonates were probably also deposited by hot water. Hydrothermal activity was probably common and widespread on Early Mars, which featured abundant basaltic rocks, water as ice or liquid, and heat from volcanos and asteroid impacts. On Earth, descendants of the earliest life forms still prefer hydrothermal environments, which are now shown to have been present on early Mars.

  4. A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing.

    PubMed

    Patel, Bhavish; Guo, Miao; Izadpanah, Arash; Shah, Nilay; Hellgardt, Klaus

    2016-01-01

    The need for efficient and clean biomass conversion technologies has propelled Hydrothermal (HT) processing as a promising treatment option for biofuel production. This manuscript discussed its application for pre-treatment of microalgae biomass to solid (biochar), liquid (biocrude and biodiesel) and gaseous (hydrogen and methane) products via Hydrothermal Carbonisation (HTC), Hydrothermal Liquefaction (HTL) and Supercritical Water Gasification (SCWG) as well as the utility of HT water as an extraction medium and HT Hydrotreatment (HDT) of algal biocrude. In addition, the Solar Energy Retained in Fuel (SERF) using HT technologies is calculated and compared with benchmark biofuel. Lastly, the Life Cycle Assessment (LCA) discusses the limitation of the current state of art as well as introduction to new potential input categories to obtain a detailed environmental profile. PMID:26514623

  5. Suspect screening of emerging pollutants and their major transformation products in wastewaters treated with fungi by liquid chromatography coupled to a high resolution mass spectrometry.

    PubMed

    Llorca, Marta; Lucas, Daniel; Ferrando-Climent, Laura; Badia-Fabregat, Marina; Cruz-Morató, Carles; Barceló, Damià; Rodríguez-Mozaz, Sara

    2016-03-25

    A new approach for the screening of 33 pharmaceuticals and 113 of their known transformation products in wastewaters was developed. The methodology is based on the analysis of samples by liquid chromatography coupled to high resolution mass spectrometry (HRMS) followed by data processing using specific software and manual confirmation. A home-made library was built with the transformation products reported in literature for the target pharmaceuticals after treatment with various fungi. The method was applied to the search of these contaminants in 67 samples generated along treatment of wastewaters with white-rot fungus Trametes versicolor. The screening methodology allowed the detection of different transformation products (TPs) generated from degradation of parent compounds after fungal treatment. This approach can be a useful tool for the rapid screening and tentative detection of emerging contaminants during water treatment in both full and batch-scale studies when pure standards are not available. PMID:26553957

  6. On the interpretation of gravity variations in the presence of active hydrothermal systems: Insights from the Nisyros Caldera, Greece

    NASA Astrophysics Data System (ADS)

    Gottsmann, J.; Rymer, H.; Wooller, L. K.

    2005-12-01

    We report on short-term (over tens of minutes) residual gravity changes recorded at the restless Nisyros caldera in Greece via a series of discrete measurements at benchmarks within or in proximity to a hydrothermal area located along the caldera floor. The obtained time series reveal sinusoidal gravity variations with amplitudes of up to 25 μGal and wavelengths of 40-50 min. Degassing of a magmatic source coupling into (shallow) hydrothermal systems including the ascent of steam pockets and transient pressure variations during steam/liquid interface propagation appear to be the most likely causative process for the observed short-term variations. We assess standard protocols of microgravity surveys for hazard assessment in volcanic areas in the light of these findings and propose additional techniques, such as continuous gravimetry, for the discrimination of hydrothermal signals from deeper-seated, i.e. magmatic, signals during gravity monitoring of restless volcanoes hosting active hydrothermal systems.

  7. Minimizing liquid contaminants in natural gas liquids

    SciTech Connect

    Brown, R.L.; Wines, T.H.; Williamson, K.M.

    1996-12-31

    In processing natural gas liquids, significant contamination occurs with liquid dispersions and emulsions. Natural gas liquids (NGL) and liquid petroleum gas (LPG) streams are treated with caustic to remove residual organic sulfur compounds such as mercaptans and with amines to remove hydrogen sulfide. In both cases a liquid/liquid contactor is used. Significant amounts of the caustic or amine can be carried over into the product stream in process units that are running at rates above design capacity, are treating high sulfur feed stocks, or have other operational problems. The carried over liquid results in off-spec products, excessive loses of caustic or amine, and can cause operating problems in downstream processes. In addition, water is a significant contaminant which can cause LPG and natural gasoline to be off-specification. This paper discusses a new technique for separating very stable liquid dispersions of caustic, amine, or water from natural gas liquids using liquid/liquid cartridge coalescers constructed with specially formulated polymer and fluoropolymer medium with enhanced surface properties. In addition, factors influencing the coalescer mechanism will be discussed including interfacial tension, concentration of surface active compounds, steric repulsion, and electrostatic charge affects. Results from field tests, operating data from commercial installations, and economic benefits will also be presented.

  8. Effect of hydrothermal treatment on properties of Ni-Al layered double hydroxides and related mixed oxides

    SciTech Connect

    Kovanda, Frantisek Rojka, Tomas; Bezdicka, Petr; Jiratova, Kveta; Obalova, Lucie; Pacultova, Katerina; Bastl, Zdenek; Grygar, Tomas

    2009-01-15

    The Ni-Al layered double hydroxides (LDHs) with Ni/Al molar ratio of 2, 3, and 4 were prepared by coprecipitation and treated under hydrothermal conditions at 180 deg. C for times up to 20 h. Thermal decomposition of the prepared samples was studied using thermal analysis and high-temperature X-ray diffraction. Hydrothermal treatment increased significantly the crystallite size of coprecipitated samples. The characteristic LDH diffraction lines disappeared completely at ca. 350 deg. C and a gradual crystallization of NiO-like mixed oxide was observed at higher temperatures. Hydrothermal treatment improved thermal stability of the Ni2Al and Ni3Al LDHs but only a slight effect of hydrothermal treatment was observed with the Ni4Al sample. The Rietveld refinement of powder XRD patterns of calcination products obtained at 450 deg. C showed a formation of Al-containing NiO-like oxide and a presence of a considerable amount of Al-rich amorphous component. Hydrothermal aging of the LDHs resulted in decreasing content of the amorphous component and enhanced substitution of Al cations into NiO-like structure. The hydrothermally treated samples also exhibited a worse reducibility of Ni{sup 2+} components. The NiAl{sub 2}O{sub 4} spinel and NiO still containing a marked part of Al in the cationic sublattice were detected in the samples calcined at 900 deg. C. The Ni2Al LDHs hydrothermally treated for various times and related mixed oxides obtained at 450 deg. C showed an increase in pore size with increasing time of hydrothermal aging. The hydrothermal treatment of LDH precursor considerably improved the catalytic activity of Ni2Al mixed oxides in N{sub 2}O decomposition, which can be explained by suppressing internal diffusion effect in catalysts grains. - Graphical Abstract: Hydrothermal treatment of Ni-Al LDH precursors influenced the porous structure of related mixed oxides and considerably improved their catalytic activity in N{sub 2}O decomposition; the higher catalytic

  9. Geochemistry of some gases in hydrothermal fluids from the southern Juan de Fuca Ridge

    USGS Publications Warehouse

    Evans, William C.; White, L.D.; Rapp, J.B.

    1988-01-01

    Five samples of hydrothermal fluids from two vent areas on the southern Juan de Fuca Ridge were analyzed for dissolved gases. Concentrations in the end-member hydrothermal fluid of H2 (270-527 ??mol/kg), CH4 (82-118 ??mol/kg), and CO2 (3920-4460 ??mol/kg) are well above values in ambient seawater and are similar to concentrations reported for other ridge crest hydrothermal systems. The carbon isotopic ratios of the CH4(??13C=-17.8 to -20.8) and CO2(??13C=-3.6 to -4.7) suggest that at least some of the CH4 and CO2 in the fluids is basalt-derived. The range of ??13C values for the basalt-derived CO2 is -6.8 to -9.7, calculated by assuming conservation of recharge ??CO2 during hydrothermal circulation. Apparent temperatures of equilibration between the CH4 and the basalt-derived CO2 range from 640??C to 750??C. Small amounts of ethane (C2H6/CH4??? 0.9 ?? 10-3-2.2 ?? 10-3), propane, and butane detected in the samples may also have formed in the basalt. One sample of almost pure (95.5%) hydrothermal fluid contained a significant fraction, up to 63% and 74%, respectively, of the recharge Ar and N2. This suggests that the fluid has not undergone extensive vapor-liquid phase separation. -Authors

  10. Treating separated liquid dairy manure derived from mesophilic anaerobic digester effluent to reduce indicator pathogens and Salmonella concentrations for use as organic fertilizer.

    PubMed

    Collins, Elizabeth W; Ogejo, Jactone A; Krometis, Leigh Anne H

    2015-01-01

    Dairy manure has much potential for use as an organic fertilizer in the United States. However, the levels of indicator organisms and pathogens in dairy manure can be ten times higher than stipulated use guidelines by the National Organic Standards Board (NOSB) even after undergoing anaerobic digestion at mesophilic temperatures. The objective of this study was to identify pasteurization temperatures and treatment durations to reduce fecal coliforms, E. coli, and Salmonella concentrations in separated liquid dairy manure (SLDM) of a mesophilic anaerobic digester effluent to levels sufficient for use as an organic fertilizer. Samples of SLDM were pasteurized at 70, 75, and 80°C for durations of 0 to 120 min. Fecal coliforms, E. coli, and Salmonella concentrations were assessed via culture-based techniques. All of the tested pasteurization temperatures and duration combinations reduced microbial concentrations to levels below the NOSB guidelines. The fecal coliforms and E. coli reductions ranged 2from 0.76 to 1.34 logs, while Salmonella concentrations were reduced by more than 99% at all the pasteurization temperatures and active treatment durations. PMID:26061210

  11. Dynamics of the Yellowstone hydrothermal system

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-09-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  12. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  13. Hydrothermal Occurrences in Gusev Crater

    NASA Astrophysics Data System (ADS)

    Ruff, S. W.; Farmer, J. D.; Milliken, R.; Mills, V. W.; Shock, E.

    2011-12-01

    Exploration of the Gusev crater landing site by the Spirit rover has revealed for the first time, in situ evidence of hydrothermal activity on Mars. Most compelling are eroded outcrops of opaline silica found adjacent to "Home Plate" [1], an eroded stack of volcaniclastic deposits stratigraphically overlain by a vesicular basalt unit [2]. Recent work [3] demonstrates that the silica outcrops occur in a stratiform unit that possibly surrounds Home Plate. The outcrops are dominated by opal-A with no evidence for diagenesis to other silica phases. No other hydrous or alteration phases have been identified within the outcrops; most notable is a lack of sulfur phases. The outcrops have porous and in some cases, brecciated microtextures. Taken together, these observations support the interpretation that the opaline silica outcrops were produced in a hot spring or perhaps geyser environment. In this context, they are silica sinter deposits precipitated from silica-rich hydrothermal fluids, possibly related to the volcanism that produced the Home Plate volcanic rocks. On Earth, debris aprons in which sinter is brecciated, reworked, and cemented, are common features of hot springs and geysers and are good analogs for the Martian deposits. An alternative hypothesis is that the silica resulted from acid-sulfate leaching of precursor rocks by fumarolic steam condensates. But stratigraphic, textural, and chemical observations tend to diminish this possibility [3]. We are conducting extensive laboratory and field investigations of silica from both hot spring/geyser and fumarole environments to understand the full range of mineralogical, chemical, textural, and morphological variations that accompany its production, in order to shed more light on the Home Plate occurrence. The recent discovery of abundant Mg-Fe carbonate (16-34 wt%) in outcrops named Comanche provides possible evidence for additional hydrothermal activity in Gusev [4]. However, the carbonate is hosted by olivine

  14. Seawater bicarbonate removal during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  15. What Defines a Separate Hydrothermal System

    SciTech Connect

    Lawless, J.V.; Bogie, I.; Bignall, G.

    1995-01-01

    Separate hydrothermal systems can be defined in a variety of ways. Criteria which have been applied include separation of heat source, upflow, economic resource and geophysical anomaly. Alternatively, connections have been defined by the effects of withdrawal of economically useful fluid and subsidence, effects of reinjection, changes in thermal features, or by a hydrological connection of groundwaters. It is proposed here that: ''A separate hydrothermal system is one that is fed by a separate convective upflow of fluid, at a depth above the brittle-ductile transition for the host rocks, while acknowledging that separate hydrothermal systems can be hydrologically interconnected at shallower levels''.

  16. A facile vapor-phase hydrothermal method for direct growth of titanate nanotubes on a titanium substrate via a distinctive nanosheet roll-up mechanism.

    PubMed

    Liu, Porun; Zhang, Haimin; Liu, Hongwei; Wang, Yun; Yao, Xiangdong; Zhu, Guangshan; Zhang, Shanqing; Zhao, Huijun

    2011-11-30

    We present a facile vapor-phase hydrothermal approach for direct growth of vertically aligned titanate nanotubes on a titanium foil substrate. The resultant nanotubes display external diameters of 50-80 nm and walls with an average thickness of 10 nm that consist of more than 10 titanate layers. This is in strong contrast to the titanate nanotubes obtained from alkaline liquid-phase hydrothermal methods, which are generally smaller than 12 nm in external diameter and have walls consisting of less than five titanate layers. Importantly, the investigation confirmed that under vapor-phase hydrothermal conditions, the nanotubes were formed via a distinctive nanosheet roll-up mechanism that differs remarkably from those of conventional liquid-phase hydrothermal processes. For the first time, a coaxial circular cylinder crystal structure of the resultant nanotubes was confirmed. PMID:22035232

  17. The targeted proteins in tumor cells treated with the α-lactalbumin-oleic acid complex examined by descriptive and quantitative liquid chromatography-tandem mass spectrometry.

    PubMed

    Fang, B; Zhang, M; Fan, X; Ren, F Z

    2016-08-01

    An α-lactalbumin-oleic acid (α-LA-OA) complex has exhibited selective antitumor activity in animal models and clinical trials. Although apoptosis and autophagy are activated and the functions of several organelles are disrupted in response to α-LA-OA, the detailed antitumor mechanism remains unclear. In this study, we used a novel technique, isobaric tags for relative and absolute quantitation, to analyze the proteome of tumor cells treated with α-LA-OA. We identified 112 differentially expressed proteins: 95 were upregulated to satisfy the metabolism of tumor cells; 17 were downregulated and targets of α-LA-OA. According to the differentially expressed proteins, α-LA-OA exerted its antitumor activity by disrupting cytoskeleton stability and cell motility, and by inhibiting DNA, lipid, and ATP synthesis, leading to cellular stress and activation of programmed cell death. This study provides a systematic evaluation of the antitumor activity of α-LA-OA, identifying its interacting targets and establishing the theoretical basis of α-LA-OA for use in cancer therapy. PMID:27236751

  18. Comprehensive monitoring and management of a long-term thermophilic CSTR treating coffee grounds, coffee liquid, milk waste, and municipal sludge.

    PubMed

    Shofie, Mohammad; Qiao, Wei; Li, Qian; Takayanagi, Kazuyuki; Li, Yu-You

    2015-09-01

    The CSTR process has previously not been successfully applied to treat coffee residues under thermophilic temperature and long term operation. In this experiment, the CSTR was fed with mixture substrate (TS ∼ 70 g/L) of coffee grounds, coffee wastewater, milk waste and municipal sludge and it was operated under 55 °C for 225 days. A steady state was achieved under HRT 30 days and OLR 4.0 kg-COD/m(3)/d. However, there was an 35 days inhibition with VFA accumulation (propionic acid 700-1900 mg/L) when doubling the OLR by shortening HRT to 15 days. But, an addition of microelements and sulfate (0.5 g/L) in feedstock increased reactor resilience and stability under high loading rate and propionic acid stress. Continuous monitoring of hydrogen in biogas indicated the imbalance of acetogenesis. The effectiveness of comprehensive parameters (total VFA, propionic acid, IA/PA, IA/TA and CH4 content) was proved to manage the thermophilic system. PMID:26038324

  19. Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass.

    PubMed

    Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali

    2015-01-01

    The present works investigate hydrothermal pretreatment of oil palm empty fruit bunch and oil palm frond fiber in a batch tube reactor system with temperature and time range from 170 to 250°C and 10 to 20min, respectively. The behavior of soluble sugars, acids, furans, and phenols dramatically changed over treatment severities as determined by HPLC. The cellulose-rich treated solids were analyzed by SEM, WAXD, and BET surface area. Enzymatic hydrolysis was performed from both pretreated slurries and washed solid, and data obtained suggested that tannic acid derived from lignin degradation was a potential cellulase inhibitor. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused structural changes on the cellulose-hemicellulose-lignin matrix, resulting in the opening and expansion of specific surface area and pore volume. The current results provided important factors that maximize conversion of cellulose to glucose from oil palm biomass by hydrothermal process. PMID:25460995

  20. QUANTITATIVE ANALYSIS OF THE LASSEN HYDROTHERMAL SYSTEM, NORTH CENTRAL CALIFORNIA.

    USGS Publications Warehouse

    Ingebritsen, S.E.; Sorey, M.L.

    1985-01-01

    Our conceptual model of the Lassen system is termed a liquid-dominated hydrothermal system with a parasitic vapor-dominated zone. The essential feature of this model is that steam and steam-heated discharge at relatively high altitudes in Lassen Volcanic National Park (LVNP) and liquid discharge with high chloride concentrations at relatively low altitudes outside LVNP are both fed by an upflow of high-enthalpy two-phase fluid within the Park. Liquid flows laterally away from the upflow area toward the areas of high-chloride discharge, and steam rises through a vapor-dominated zone to feed the steam and steam-heated features. Numerical simulations show that several conditions are necessary for the development of this type of system, including (1) large-scale topographic relief; (2) an initial period of convective heating within an upflow zone followed by (3) a change in hydrologic or geologic conditions that initiates drainage of liquid from portions of the upflow zone; and (4) low-permeability barriers that inhibit the movement of cold water into the vapor zone. Refs.

  1. Controllable synthesis of α- and β-MnO(2): cationic effect on hydrothermal crystallization.

    PubMed

    Huang, Xingkang; Lv, Dongping; Yue, Hongjun; Attia, Adel; Yang, Yong

    2008-06-01

    α- and β-MnO(2) were controllably synthesized by hydrothermally treating amorphous MnO(2) obtained via a reaction between Mn(2+) and MnO(4)(-), and cationic effects on the hydrothermal crystallization of MnO(2) were investigated systematically. The crystallization is believed to proceed by a dissolution-recrystallization mechanism; i.e. amorphous MnO(2) dissolves first under hydrothermal conditions, then condenses to recrystallize, and the polymorphs formed are significantly affected by added cations such as K(+), NH(4)(+) and H(+) in the hydrothermal systems. The experimental results showed that K(+)/NH(4)(+) were in competition with H(+) to form polymorphs of α- and β-MnO(2), i.e., higher relative K(+)/NH(4)(+) concentration favoured α-MnO(2), while higher relative H(+) concentration favoured β-MnO(2). PMID:21825766

  2. Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles

    SciTech Connect

    Wu, M.; Long, J.; Huang, A.; Luo, Y.; Feng, S.; Xu, R.

    1999-12-21

    Uniform nanoparticles of rutile and anatase were prepared, respectively, by a new approach, a microemulsion-mediated method, in which the microemulsion medium was further treated by hydrothermal reaction. Herein, the combined procedure of microemulsion and hydrothermal synthesis to prepare nanoparticles is referred to as a microemulsion-mediated hydrothermal (MMH) method. This MMH method could lead to the formation of crystalline titania powders under much milder reaction conditions than the normally reported microemulsion-mediated methods, in which posttreatment of calcination was necessary. In this work, a kind of solution was formed by dissolving tetrabutyl titanate into hydrochloric acid or nitric acid, and the solution was dispersed in an organic phase for the preparation of the microemulsion medium. The aqueous cores of water/Triton X-100/hexanol/cyclohexane microemulsions were used as constrained microreactors for a controlled growth of titania particles under hydrothermal conditions. The product of hydrothermal synthesis was separated and dried for characterization. The phase components and the morphologies and grain sizes of products were determined by X-ray diffraction (XRD) and by transmission electron microscopy (TEM). The effects of changing the variables of the reaction conditions, such as the use of acid, the concentrations of acid, the reaction temperatures, and/or the reaction times on the phases and morphologies of the titania product are described.

  3. Hydrothermal treatment for inactivating some hygienic microbial indicators from food waste-amended animal feed.

    PubMed

    Jin, Yiying; Chen, Ting; Li, Huan

    2012-07-01

    To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60-110 degrees C for 10-60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 degrees C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 degrees C. The information from the present study will contribute to the microbial risk control of food waste-amended animal feed, to cope with legislation on food or feed safety. PMID:22866582

  4. Lipid Adaptation of Shrimp Rimicaris exoculata in Hydrothermal Vent.

    PubMed

    Zhu, Si; Ye, Mengwei; Yan, Xiaojun; Zhou, Yadong; Wang, Chunsheng; Xu, Jilin

    2015-12-01

    The shrimp Rimicaris exoculata is the most abundant species in hydrothermal vents. Lipids, the component of membranes, play an important role in maintaining their function normally in such extreme environments. In order to understand the lipid adaptation of R. exoculata (HV shrimp) to hydrothermal vents, we compared its lipid profile with the coastal shrimp Litopenaeus vannamei (EZ shrimp) which lives in the euphotic zone, using ultra performance liquid chromatography electrospray ionization-quadrupole time-of-flight mass spectrometry. As a result, the following lipid adaptation can be observed. (1) The proportion of 16:1 and 18:1, and non-methylene interrupted fatty acid (48.9 and 6.2 %) in HV shrimp was higher than that in EZ shrimp (12.7 and 0 %). While highly-unsaturated fatty acids were only present in the EZ shrimp. (2) Ceramide and sphingomyelin in the HV shrimp were enriched in d14:1 long chain base (96.5 and 100 %) and unsaturated fatty acids (67.1 and 57.7 %). While in the EZ shrimp, ceramide and sphingomyelin had the tendency to contain d16:1 long chain base (68.7 and 75 %) and saturated fatty acids (100 and 100 %). (3) Triacylglycerol content (1.998 ± 0.005 nmol/mg) in the HV shrimp was higher than that in the EZ shrimp (0.092 ± 0.005 nmol/mg). (4) Phosphatidylinositol and diacylglycerol containing highly-unsaturated fatty acids were absent from the HV shrimp. (5) Lysophosphatidylcholine and lysophosphatidylethanolamine were rarely detected in the HV shrimp. A possible reason for such differences was the result of food resources and inhabiting environments. Therefore, these lipid classes mentioned above may be the biomarkers to compare the organisms from different environments, which will be benefit for the further exploitation of the hydrothermal environment. PMID:26475295

  5. Fabrication of hydroxyapatite and TiO 2 nanorods on microarc-oxidized titanium surface using hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Song, Ho-Jun; Kim, Ji-Woo; Kook, Min-Suk; Moon, Won-Jin; Park, Yeong-Joon

    2010-09-01

    AC-type microarc oxidation (MAO) and hydrothermal treatment techniques were used to enhance the bioactivity of commercially pure titanium (CP-Ti). The porous TiO 2 layer fabricated by the MAO treatment had a dominant anatase structure and contained Ca and P ions. The MAO-treated specimens were treated hydrothermally to form HAp crystallites on the titanium oxide layer in an alkaline aqueous solution (OH-solution) or phosphorous-containing alkaline solution (POH-solution). A small number of micro-sized hydroxyapatite (HAp) crystallites and a thin layer composed of nano-sized HAps were formed on the Ti-MAO-OH group treated hydrothermally in an OH-solution, whereas a large number of micro-sized HAp crystallites and dense anatase TiO 2 nanorods were formed on the Ti-MAO-POH group treated hydrothermally in a POH-solution. The layer of bone-like apatite that formed on the surface of the POH-treated sample after soaking in a modified simulated body fluid was thicker than that on the OH-treated samples.

  6. Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A.

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2010-01-01

    Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

  7. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  8. Hydrothermal Manganese Mineralization Near the Samoan Hotspot

    NASA Astrophysics Data System (ADS)

    Hein, J. R.; Staudigel, H.; Koppers, A.; Hart, S. R.; Dunham, R.

    2006-12-01

    The thickest beds of hydrothermal manganese oxides recovered to date from the global ocean were collected from a volcanic cone in the south Pacific. In April 2005, samples were dredged aboard the R.V. Kilo Moana from a volcanic cone on the lower flank of Tulaga seamount (about 2,700 m water depth; 14° 39.222' S; 170° 1.730' W), located 115 km SW of Vailulu'u, the volcanically and hydrothermally active center of the Samoan hotspot. Additional hydrothermal manganese samples were collected off Ofu Island (dredge Alia 107), 72 km to the WSW of Vailulu'u. Manganese-oxide beds up to 9 cm thick are composed of birnessite and 10 Å manganates. Some layers consist of Mn-oxide columnar structures 4 cm long and 1 cm wide, which have not been described previously. The mean Mn and Fe contents of 18 samples are 51 weight percent and 0.76 weight percent, respectively. Elevated concentrations of Li (mean 0.11 wt. percent) are indicators of a hydrothermal origin, and distinguishes these samples, along with the high Mn and low Fe contents, from hydrogenetic Fe-Mn crusts. Other enriched elements include Ba (mean 0.14 percent), Cu (249 ppm), Mo (451 ppm), Ni (400 ppm), Zn (394 ppm), V (214 ppm), and W (132 ppm). Chondrite-normalized REE patterns show large negative Ce anomalies and LREE enrichments, both characteristic of hydrothermal Mn deposits. Small negative Eu anomalies are not typical of hydrothermal deposits and can be explained either by the absence of leaching of plagioclase by the hydrothermal fluids or by the precipitation of Eu-rich minerals, such as barite and anhydrite, at depth. The high base-metal contents indicate that sulfides are not forming deeper in the hydrothermal system or that such deposits are being leached by the ascending fluids. Textures of the thickest Mn deposits indicate that the Mn oxides formed below the seabed from ascending fluids during multiple phases of waxing and waning hydrothermal pulses. The deposits were later exposed at the seafloor by

  9. Rare earth element systematics in hydrothermal fluids

    SciTech Connect

    Michard, A. )

    1989-03-01

    Rare earth element concentrations have been measured in hydrothermal solutions from geothermal fields in Italy, Dominica, Valles Caldera, Salton Sea and the Mid-Atlantic Ridge. The measured abundances show that hydrothermal activity is not expected to affect the REE balance of either continental or oceanic rocks. The REE enrichment of the solutions increases when the pH decreases. High-temperature solutions (> 230{degree}C) percolating through different rock types may show similar REE patterns.

  10. Hazards From Hydrothermally Sealed Volcanic Conduits

    NASA Astrophysics Data System (ADS)

    Christenson, Bruce W.; Werner, Cynthia A.; Reyes, Agnes G.; Sherburn, Steve; Scott, Bradley J.; Miller, Craig; Rosenburg, Michael J.; Hurst, Anthony W.; Britten, Karen A.

    2007-01-01

    The 17 March 2006 eruption from Raoul Island (Kermadec arc, north of New Zealand) is interpreted as a magmatic-hydrothermal event triggered by shaking associated with a swarm of local earthquakes. The eruption, which tragically claimed the life of New Zealand Department of Conservation Ranger Mark Kearney, occurred without significant volcanic seismicity or any of the precursory responses the volcanic hydrothermal system exhibited prior to a similarly sized eruption in 1964.

  11. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect

    Not Available

    1982-05-01

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  12. Investigation on phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions

    SciTech Connect

    Li, Peng Ding, Tian Liu, Liping Xiong, Guang

    2013-12-15

    The phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions was investigated by UV Raman spectroscopy, X-ray diffraction, X-ray fluorescence and scanning electron microscopy techniques. The results revealed that the products and transformation rate are dependent on the alkalinities. All of the starting and resulting zeolites are constructed with the 4-ring and 6-ring secondary building units. The products have lower Si/Al ratio, higher framework density and smaller pore size, which are more stable under alkaline hydrothermal condition. During the phase transformation the fragments of faujasite are formed, then the fragments combine to form different zeolites depending on basicity. Zeolite NaY crystals are consumed as the reservoir for the transformation products during the recrystallization process. For the first time, a 4-membered ring intermediate was found at the early stage of the recrystallization process. A cooperative interaction of liquid and solid phases is required for inducing the phase transformation. - Graphical Abstract: Phase transformation of NaY zeolite under alkaline hydrothermal condition is achieved by the cooperative interaction of the liquid and solid phases. A 4-membered ring species is an intermediate for recrystallization process. Highlights: • The products and transformation rate are dependent on the alkalinity. • A 4-membered ring species is an intermediate for recrystallization process. • A cooperative interaction of liquid and solid phases is required.

  13. A simulation of the hydrothermal response to the Chesapeake Bay bolide impact

    USGS Publications Warehouse

    Sanford, W.E.

    2005-01-01

    Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. ?? Blackwell Publishing Ltd.

  14. Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents.

    PubMed

    Caporgno, M P; Pruvost, J; Legrand, J; Lepine, O; Tazerout, M; Bengoa, C

    2016-08-01

    Although the hydrothermal liquefaction is considered a promising technology for converting microalgae into liquid biofuels, there are still some disadvantages. This paper demonstrated that the bio-oil yield can be significantly improved by adding alcohols as co-solvents and carrying out the conversion at mild conditions (<250°C), but at the expense of a reduced bio-oil quality. By adding ethanol, the bio-oil yields obtained (up to ∼60%) were comparable to the yield obtained at severe operating conditions using only water as solvent (54±2% on average), but the quality of the bio-oil was lower. However, the main advantages of the process here described lie in the utilisation of wet microalgae (∼75% moisture) and alcohol concentrations which avoid both drying the microalgae and decreasing the amount of microalgae loaded in the reactor. PMID:27155795

  15. Convective rolls and hydrothermal waves in evaporating sessile drops.

    PubMed

    Karapetsas, George; Matar, Omar K; Valluri, Prashant; Sefiane, Khellil

    2012-08-01

    Recent experiments on the evaporation of sessile droplets have revealed the spontaneous formation of various patterns including the presence of hydrothermal waves. These waves had previously been observed, in the absence of evaporation, in thin liquid layers subjected to an imposed, uniform temperature gradient. This is in contrast to the evaporating droplet case wherein these gradients arise naturally due to evaporation and are spatially and temporally varying. In the present paper, we present a theory of evaporating sessile droplets deposited on a heated surface and propose a candidate mechanism for the observed pattern formation using a linear stability analysis in the quasi-steady-state approximation. A qualitative agreement with experimental trends is observed. PMID:22775413

  16. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    The recent recognition that metallic mineral deposits are concentrated by hydrothermal processes at seafloor spreading centers constitutes a scientific breakthrough that opens active sites at seafloor spreading centers as natural laboratories to investigate ore-forming processes of such economically useful deposits as massive sulfides in volcanogenic rocks on land, and that enhances the metallic mineral potential of oceanic crust covering two-thirds of the Earth both beneath ocean basins and exposed on land in ophiolite belts. This paper reviews our knowledge of processes of hydrothermal mineralization and the occurrence and distribution of hydrothermal mineral deposits at the global oceanic ridge-rift system. Sub-seafloor hydrothermal convection involving circulation of seawater through fractured rocks of oceanic crust driven by heat supplied by generation of new lithosphere is nearly ubiquitous at seafloor spreading centers. However, ore-forming hydrothermal systems are extremely localized where conditions of anomalously high thermal gradients and permeability increase hydrothermal activity from the ubiquitous low-intensity background level (⩽ 200°C) to high-intensity characterized by high temperatures ( > 200-c.400°C), and a rate and volume of flow sufficient to sustain chemical reactions that produce acid, reducing, metal-rich primary hydrothermal solutions. A series of mineral phases with sulfides and oxides as high- and low-temperature end members, respectively, are precipitated along the upwelling limb and in the discharge zone of single-phase systems as a function of increasing admixture of normal seawater. The occurrence of hydrothermal mineral deposits is considered in terms of spatial and temporal frames of reference. Spatial frames of reference comprise structural features along-axis (linear sections that are the loci of seafloor spreading alternating with transform faults) and perpendicular to axis (axial zone of volcanic extrusion and marginal

  17. Marine diagenesis of hydrothermal sulfide

    SciTech Connect

    Moammar, M.O.

    1985-01-01

    An attempt is made to discuss the artificial and natural oxidation and hydrolysis of hydrothermal sulfide upon interaction with normal seawater. Synthetic and natural ferrosphalerite particles used in kinetic oxidation and hydrolysis studies in seawater develop dense, crystalline coatings consisting of ordered and ferrimagnetic delta-(Fe, Zn)OOH. Due to the formation of this reactive diffusion barrier, the release of Zn into solution decreases rapidly, and sulfide oxidation is reduced to a low rate determined by the diffusion of oxygen through the oxyhydroxide film. This also acts as an efficient solvent for ions such as Zn/sup 2 +/, Ca/sup 2 +/, and possibly Cd/sup 2 +/, which contribute to the stabilization of the delta-FeOOH structure. The oxidation of sulfide occurs in many seafloor spreading areas, such as 21/sup 0/N on the East Pacific Ridge. In these areas the old surface of the sulfide chimneys are found to be covered by an orange stain, and sediment near the base of nonactive vents is also found to consist of what has been referred to as amorphous iron oxide and hydroxide. This thesis also discusses the exceedingly low solubility of zinc in seawater, from delta-(Fe, Zn)OOH and the analogous phase (zinc-ferrihydroxide) and the zinc exchange minerals, 10-A manganate and montmorillonite. The concentrations of all four are of the same magnitude (16, 36.4, and 12 nM, respectively) as the zinc concentration in deep ocean water (approx. 10 nM), which suggests that manganates and montmorillonite with iron oxyhydroxides control zinc concentration in the deep ocean.

  18. Treating Meningitis

    MedlinePlus

    ... ways to treat bacterial meningitis. 1 They compared steroids (dexamethasone) with pla- cebo. The doctors gave medication ( ... compared anti- biotics by themselves with antibiotics plus steroids. Dr. Fritz and colleagues compared the mortality (deaths) ...

  19. Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility

    PubMed Central

    2013-01-01

    Background The investigation of structural organisation in lignocellulose materials is important to understand changes in cellulase accessibility and reactivity resulting from hydrothermal deconstruction, to allow development of strategies to maximise bioethanol process efficiencies. To achieve progress, wheat straw lignocellulose and comparative model wood cellulose were characterised following increasing severity of hydrothermal treatment. Powder and fibre wide-angle X-ray diffraction techniques were employed (WAXD), complemented by enzyme kinetic measurements up to high conversion. Results Evidence from WAXD indicated that cellulose fibrils are not perfectly crystalline. A reduction in fibril crystallinity occurred due to hydrothermal treatment, although dimensional and orientational data showed that fibril coherency and alignment were largely retained. The hypothetical inter-fibril spacing created by hydrothermal deconstruction of straw was calculated to be insufficient for complete access by cellulases, although total digestion of cellulose in both treated straw and model pulp was observed. Both treated straw and model pulps were subjected to wet mechanical attrition, which caused separation of smaller fibril aggregates and fragments, significantly increasing enzyme hydrolysis rate. No evidence from WAXD measurements was found for preferential hydrolysis of non-crystalline cellulose at intermediate extent of digestion, for both wood pulp and hydrothermally treated straw. Conclusions The increased efficiency of enzyme digestion of cellulose in the lignocellulosic cell wall following hydrothermal treatment is a consequence of the improved fibril accessibility due to the loss of hemicellulose and disruption of lignin. However, incomplete accessibility of cellulase at the internal surfaces of fibrillar aggregates implies that etching type mechanisms will be important in achieving complete hydrolysis. The reduction in crystalline perfection following hydrothermal

  20. Effect of Hydrothermal Treatment on Sinterability of Hydroxyapatite

    SciTech Connect

    Kawagoe, D.; Fujimori, H.; Goto, S.; Yamasaki, N.; Ioku, K.

    2006-05-15

    Calcium hydroxyapatite, Ca10(PO4)6(OH)2:HA, is the inorganic principle component of natural bones and teeth. It has been already suggested that the amount of OH ion in the crystal structure of HA is closely related to the biocompatibility. The amount of OH ion in current HA, however, has not been controlled. In order to prepare more functional HA ceramics, the amount of OH ion must be controlled. In this study, HA ceramics with different OH amount were prepared from fine HA crystals by spark plasma sintering (SPS). Fine powder of HA was treated hydrothermally at 200 deg. C for 24 h with pH 10 NH3 aqueous solution. The samples were pressed uniaxialy under 60 MPa, and then they were SPS at 800 deg. C, 900 deg. C and 1000 deg. C for 10 min with the heating rate of 25 deg. C{center_dot}min-1. No phases other than HA were revealed by XRD for the starting samples after hydrothermal treatment and samples after sintering by SPS at 800 deg. C, 900 deg. C and 1000 deg. C for 10 min. The quantity of OH ion in HA ceramics sintered by SPS was decreased with increasing temperature of sintering. Transparent HA ceramics were prepared by SPS at 900 deg. C and 1000 deg. C.

  1. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  2. Numerical Simulations of Europa Hydrothermal Plumes

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Lenferink, E.

    2009-12-01

    The liquid water interiors of Europa and other icy moons of the outer solar system are likely to be driven by geothermal heating from the sea floor, leading to the development of buoyant hydrothermal plumes. These plumes potentially control icy surface geomorphology, and are of interest to astrobiologists. We have performed a series of simulations of these plumes using the MITGCM. We assume in this experiment that Europa's ocean is deep (of order 100 km) and unstratified, and that plume buoyancy is controlled by temperature, not composition. A series of experiments was performed to explore a limited region of parameter space, with ocean depth H ranging from 50 to 100 km deep, source heat flux Q between 1 and 10 GW, and values of the Coriolis parameter f between 30% and 90% of the Europa average value. As predicted by earlier work, the plumes in our simulations form narrow cylindrical chimneys (a few km across) under the influence of the Coriolis effect. These plumes broaden over time until they become baroclinically unstable, breaking up into cone-shaped eddies when they become 20-35 km in diameter; the shed eddies are of a similar size. Large-scale currents in the region of the plume range between 1.5 and 5 cm/s; temperature anomalies in the plume far from the seafloor are tiny, varying between 30 and 160 microkelvin. Variations in plume size, shape, speed, and temperature are in excellent agreement with previous laboratory tank experiments, and in rough agreement with theoretical predictions. Plume dynamics and geometry are controlled by a "natural Rossby number" which depends strongly on depth H and Coriolis parameter f, but only weakly on source heat flux Q. However, some specific theoretical predictions are not borne out by these simulations. The time elapsed between startup of the source and the beginning of eddy-shedding is much less variable than predicted; also, the plume temperature varies with ocean depth H when our theory says it should not. Both of

  3. Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Hsu, S.; Sekine, Y.; Kempf, S.; Juhasz, A.; Horanyi, M.; Moragas-Klostermeyer, G.; Srama, R.

    2013-12-01

    hydrothermal liquid, probably as it travels upwards towards the surface (e.g., Matson et al., 2012). The temperatures of the near surface waters which fuel the plume are close to 0°C (Schmidt et al. 2008). Formation and stablility of a nano-colloidal silica phase requires alkaline pH (8 - 10) and only tolerates a mild salinity, not higher than a few percent, which agrees with previous compositional measurements of ice grains in Enceladus plume (Postberg et al. 2009, 2011).

  4. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    USGS Publications Warehouse

    Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.

    2009-01-01

    Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.

  5. Development of a method based on on-line reversed phase liquid chromatography and gas chromatography coupled by means of an adsorption-desorption interface for the analysis of selected chiral volatile compounds in methyl jasmonate treated strawberries.

    PubMed

    de la Peña Moreno, Fernando; Blanch, Gracia Patricia; Flores, Gema; Ruiz Del Castillo, Maria Luisa

    2010-02-12

    A method based on the use of the through oven transfer adsorption-desorption (TOTAD) interface in on-line coupling between reversed phase liquid chromatography and gas chromatography (RPLC-GC) for the determination of chiral volatile compounds was developed. In particular, the method was applied to the study of the influence of methyl jasmonate (MJ) treatment on the production and enantiomeric composition of selected aroma compounds in strawberry. The compounds studied were ethyl 2-methylbutanoate, linalool and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (i.e. furaneol), which were examined on days 3, 6 and 9 after treatment. The method developed resulted in relative standard deviations (RSDs) of 21.6%, 8.1% and 9.8% and limits of detection (LD) of 0.04, 0.07 and 0.02mg/l for ethyl 2-methylbutanoate, linalool and furaneol, respectively. The application of the RPLC-TOTAD-GC method allowed higher levels of ethyl 2-methylbutanoate, linalool and furaneol to be detected, particularly after 9 days of treatment. Besides, MJ demonstrated to affect the enantiomeric distribution of ethyl 2-methylbutanoate. On the contrary, the enantiomeric composition of linalool and furaneol kept constant in both control and MJ-treated strawberries throughout the study. These results are discussed. PMID:19878953

  6. Studies on supercritical hydrothermal syntheses of uranium and lanthanide oxide particles and their reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Hwang, DongKi; Tsukahara, Takehiko; Tanaka, Kosuke; Osaka, Masahiko; Ikeda, Yasuhisa

    2015-11-01

    In order to develop preparation method of raw metal oxide particles for low decontaminated MOX fuels by supercritical hydrothermal (SH) treatments, we have investigated behavior of aqueous solutions dissolving U(VI), Ln(III) (Ln: lanthanide = Ce, Pr, Nd, Sm, Tb), Cs(I), and Sr(II) nitrate or chloride compounds under SH conditions (temperature = 400-500 °C, pressure = 30-40 MPa). As a result, it was found that Ln(NO3)3 (Ln = Ce, Pr, Tb) compounds produce LnO2, that Ln(NO3)3 (Ln = Nd, Sm) compounds are hardly converted to their oxides, and that LnCl3 (Ln = Ce, Pr, Nd, Sm, Tb), CsNO3, and Sr(NO3)2 do not form their oxide compounds. Furthermore, HNO2 species were detected in the liquid phase obtained after treating HNO3 aqueous solutions containing Ln(NO3)3 (Ln = Ce, Pr, Tb) under SH conditions, and also NO2 and NO compounds were found to be produced by decomposition of HNO3. From these results, it was proposed that the Ln oxide (LnO2) particles are directly formed with oxidation of Ln(III) to Ln(IV) by HNO3 and HNO2 species in the SH systems. Moreover, the uranyl ions were found to form U3O8 and UO3 depending on the concentration of HNO3. From these results, it is expected that the raw metal oxide particles for low decontaminated MOX fuels are efficiently prepared by the SH method.

  7. Comment on 'Consequences of phase separation on the distribution of hydrothermal fluids at ASHES vent field, axial volcano, Juan de Fuca ridge' by Christopher G. Fox

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Ingebritsen, S. E.; Essaid, H. I.

    1993-02-01

    Fox (1990), in order to explain observations during the Axial Seamount Hydrothermal Emissions Study (ASHES), proposed a conceptual model for a two-phase subsea hydrothermal system in which steam controlled flow patterns by blocking liquid flow. An attempt is made here to demonstrate with a very general model that relative permeability contrasts by themselves do not cause spatial isolation of phases in steam/liquid water systems and that density segregation, independent of relative permeability effects, should not be ruled out as an explanation for the observations at the ASHES site. Fox replies that density segregation is probably not the only mechanism at work.

  8. Hydrothermally reduced graphene oxide as a supercapacitor

    NASA Astrophysics Data System (ADS)

    Johra, Fatima Tuz; Jung, Woo-Gwang

    2015-12-01

    The supercapacitance behavior of hydrothermally reduced graphene oxide (RGO) was investigated for the first time. The capacitive behavior of RGO was characterized by using cyclic voltammetry and galvanostatic charge-discharge methods. The specific capacitance of hydrothermally reduced RGO at 1 A/g was 367 F/g in 1 M H2SO4 electrolyte, which was higher than that of RGO synthesized via the hydrazine reduction method. The RGO-modified glassy carbon electrode showed excellent stability. After 1000 cycles, the supercapacitance was 107.7% of that achieved in the 1st cycle, which suggests that RGO has excellent electrochemical stability as a supercapacitor electrode material. The energy density of hydrothermal RGO reached 44.4 W h/kg at a power density of 40 kW/kg.

  9. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    SciTech Connect

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  10. Hydrothermal processing of radioactive combustible waste

    SciTech Connect

    Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

    1998-09-01

    Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO{sub 2} and H{sub 2}O, with 30 wt.% H{sub 2}O{sub 2} as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture.

  11. Thermodynamics of Strecker synthesis in hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Shock, Everett

    1995-01-01

    Submarine hydrothermal systems on the early Earth may have been the sites from which life emerged. The potential for Strecker synthesis to produce biomolecules (amino and hydroxy acids) from starting compounds (ketones, aldehydes, HCN and ammonia) in such environments is evaluated quantitatively using thermodynamic data and parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Although there is an overwhelming thermodynamic drive to form biomolecules by the Strecker synthesis at hydrothermal conditions, the availability and concentration of starting compounds limit the efficiency and productivity of Strecker reactions. Mechanisms for concentrating reactant compounds could help overcome this problem, but other mechanisms for production of biomolecules may have been required to produce the required compounds on the early Earth. Geochemical constraints imposed by hydrothermal systems provide important clues for determining the potential of these and other systems as sites for the emergence of life.

  12. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response.

    PubMed

    Shi, Xingling; Xu, Lingli; Munar, Melvin L; Ishikawa, Kunio

    2015-04-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant-gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl2 solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120°C was the critical temperature for the hydrothermal treatment condition. Treatment below 120°C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. PMID:25686920

  13. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  14. Reaction kinetics of hydrothermal carbonization of loblolly pine.

    PubMed

    Reza, M Toufiq; Yan, Wei; Uddin, M Helal; Lynam, Joan G; Hoekman, S Kent; Coronella, Charles J; Vásquez, Victor R

    2013-07-01

    Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30 min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73 kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed. PMID:23651600

  15. Biogeochemistry of hydrothermally and adjacent non-altered soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

  16. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Shi, Juan; Liu, Jian; Wang, Daxi; Zhao, Zhen; Cheng, Kai; Li, Jianmei

    2016-07-01

    The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH3. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu2+ from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.

  17. The chemistry of hydrothermal magnetite: a review

    USGS Publications Warehouse

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  18. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  19. Treating Sludges

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Discussed are some of the ways to handle municipal and industrial wastewater treatment sludge presented at the 1978 American Chemical Society meeting. Suggestions include removing toxic materials, recovering metals, and disposing treated sewage sludge onto farm land. Arguments for and against land use are also given. (MA)

  20. Recrystallization of starches by hydrothermal treatment: digestibility, structural, and physicochemical properties.

    PubMed

    Trinh, Khanh Son

    2015-12-01

    Gelatinized starches were recrystallized under hydrothermal treatment and their properties were characterized by X-ray diffractometry, solid-state (13)C cross-polarization and magic-angle spinning nuclear magnetic resonance, differential scanning calorimetry, gel-permeation chromatography, high-performance anion-exchange chromatography using pulsed amperomeric detection, high-performance size-exclusion chromatography with attached multiangle laser light scattering and refractive index detectors, and digestibility analysis. Amylopectin molecules of hylon (V, VII) and water yam starch contained long side-chains with high proportion of fb1 and fb2. Under hydrothermal treatment, the double helix proportion and relative crystallinity significantly increased and reached maxima of water yam (48.7 and 28.2 %, respectively). Except water yam starch, X-ray diffraction pattern of all starches exhibited the evidence of type 2 amylose-lipid complex. Besides, under DSC measurement, potato and hylon starches showed the endotherm of amylose-amylose interaction. The hydrothermal treatment caused the recrystallization resulting in the decrease of RDS, especially in case of hylon and water yam starch. HTT water yam contained highest SDS (48.3 %) and HTT hylon VII contained highest RS (44.5 %). The relationship between structure and digestibility was observed, in which, high amylose content and specific structures of amylopectin molecule were necessary for the production of RS and/or SDS of hydrothermally treated starches. PMID:26604340

  1. Polymer Assisted Core-shell Ag-C nanoparticles Synthesis via Green hydrothermal Technique

    NASA Astrophysics Data System (ADS)

    Williams, James; Mishra, Sanjay

    2009-03-01

    Core-Shell Ag-C nanoparticles were synthesized in the presence of glucose through a one-pot green hydrothermal wet chemical process. An aqueous solution of glucose and Ag nitrate was hydrothermally treated to produce porous carbonaceous shell over silver core nanoparticles. The growth of carbon shells was regulated by either of the polymers (poly) vinyl pyrrolidone (PVP) or poly vinyl alcohol (PVA). The two polymers were compared to take a measure of different tunable sizes of cores, and shells. The effects of hydrothermal temperature, time, and concentration of reagents on the final formation of nanostructures were studied using UV-vis extinction spectra, transmission electron microscope, and Raman spectroscopy. The polymer molecules were found to be incorporated into carbonaceous shell. The resulting opacity of the shell was found to be hydrothermal time and temperature dependent. The shell structure was found to be more uniform with PVP than PVA. Furthermore, the polymer concentration was found to influence size and shape of the core-silver particles as well. The core-shelled nanoparticles have surfaces with organic groups capable of assembling with different reagents that could be useful in drug-delivery, optical nanodevices or biochemistry.

  2. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity

    PubMed Central

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  3. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    PubMed

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  4. Hydrothermal systems and the emergence of life

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    1994-01-01

    The author reviews current thought about life originating in hyperthermophilic microorganisms. Hyperthermophiles obtain food from chemosynthesis of sulfur and have an RNA nucleotide sequence different from bacteria and eucarya. It is postulated that a hyperthermophile may be the common ancestor of all life. Current research efforts focus on the synthesis of organic compounds in hydrothermal systems.

  5. Garnet phosphors prepared via hydrothermal synthesis

    SciTech Connect

    Phillips, M.L.F.; Walko, R.J.; Shea, L.E.

    1996-05-01

    This project studied hydrothermal synthesis as a route to producing green-emitting cathodoluminescent phosphorus isostructural with yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}, or YAG). Aqueous precipitation of Y, Gd, Al, Ga, and Tb salts produced amorphous gels, which were heated with water at 600 C and 3,200 bar to produce crystalline YAG:Tb, Y{sub 3}Ga{sub 5}O{sub 12}:Tb, Y{sub 3}Al{sub 3}Ga{sub 2}O{sub 12}:Tb, and Gd{sub 3}Ga{sub 5}O{sub 12}:Tb powders. Process parameters were identified that yielded submicron YAG:Tb and Y{sub 3}Ga{sub 5}O{sub 12}:Tb powders without grinding. Cathodoluminescent efficiencies were measured as functions of power density at 600 V, using both the hydrothermal garnets and identical phosphor compositions synthesized at high temperatures. Saturation behavior was independent of synthetic technique, however, the hydrothermal phosphorus were less susceptible to damage (irreversible efficiency loss) at very high power densities (up to 0.1 W/cm{sup 2}). The fine grain sizes available with hydrothermal synthesis make it an attractive method for preparing garnet phosphorus for field emission, projection, and head-up displays.

  6. Hydrothermal systems and the emergence of life.

    PubMed

    Shock, E L

    1994-03-01

    The author reviews current thought about life originating in hyperthermophilic microorganisms. Hyperthermophiles obtain food from chemosynthesis of sulfur and have an RNA nucleotide sequence different from bacteria and eucarya. It is postulated that a hyperthermophile may be the common ancestor of all life. Current research efforts focus on the synthesis of organic compounds in hydrothermal systems. PMID:11539585

  7. The hydrothermal power of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Grose, C. J.; Afonso, J. C.

    2015-10-01

    We have estimated the power of ventilated hydrothermal heat transport, and its spatial distribution, using a set of recently developed plate models which highlight the effects of axial hydrothermal circulation and thermal insulation by oceanic crust. Testing lithospheric cooling models with these two effects, we estimate that global advective heat transport is about 6.6 TW, significantly lower than most previous estimates, and that the fraction of that extracted by vigorous circulation on the ridge axes (< 1 My old) is about 50 % of the total, significantly higher than previous estimates. These new estimates originate from the thermally insulating properties of oceanic crust in relation to the mantle. Since the crust is relatively insulating, the effective properties of the lithosphere are "crust dominated" near ridge axes (a thermal blanketing effect yielding lower heat flow) and gradually approach mantle values over time. Thus, cooling models with crustal insulation predict low heat flow over young seafloor, implying that the difference of modeled and measured heat flow is due to the heat transport properties of the lithosphere, in addition to ventilated hydrothermal circulation as generally accepted. These estimates may bear on important problems in the physics and chemistry of the Earth because the magnitude of ventilated hydrothermal power affects chemical exchanges between the oceans and the lithosphere, thereby affecting both thermal and chemical budgets in the oceanic crust and lithosphere, the subduction factory, and the convective mantle.

  8. Hydrothermal synthesis and near in situ analysis of NiFe2O4 nanoparticles.

    PubMed

    Almeida, Trevor P; Fay, Mike; Zhu, Yanqiu; Brown, Paul D

    2012-11-01

    The hydrothermal synthesis (HS) of NiFe2O4 nanoparticles (NPs) has been investigated using a novel valve-assisted pressure autoclave. This approach has facilitated the rapid quenching of hydrothermal suspensions into liquid nitrogen, providing 'snapshots' representative of the near in situ physical state of the synthesis reaction products as a function of known temperature. The acquired samples were examined using complementary characterisation techniques of transmission electron microscopy and X-ray diffractometry (XRD). The HS of NiFe2O4 NPs (< 25 nm) at pH - 8 proceeded through the formation and dissolution of intermediate amorphous Fe(OH)3 and FeNi3Cl2(OH)8 x H2O sheets with increasing reaction temperature. The near in situ nature of the HS suspension resulted in the formation of NaCI by-product during drying in advance of XRD investigation, not during the HS process. PMID:23421289

  9. Using toughreact to model reactive fluid flow and geochemical transport in hydrothermal systems

    SciTech Connect

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2003-07-31

    The interaction between hydrothermal fluids and the rocks through which they migrate alters the earlier formed primary minerals and leads to the formation of secondary minerals, resulting in changes in the physical and chemical properties of the system. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers nonisothermal multi-component chemical transport in both liquid and gas phases. A variety of subsurface thermo-physical-chemical processes is considered under a wide range of conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to problems in fundamental analysis of the hydrothermal systems and in the exploration of geothermal reservoirs including chemical evolution, mineral alteration, mineral scaling, changes of porosity and permeability, and mineral recovery from geothermal fluids.

  10. Agricultural residue valorization using a hydrothermal process for second generation bioethanol and oligosaccharides production.

    PubMed

    Vargas, Fátima; Domínguez, Elena; Vila, Carlos; Rodríguez, Alejandro; Garrote, Gil

    2015-09-01

    In the present work, the hydrothermal valorization of an abundant agricultural residue has been studied in order to look for high added value applications by means of hydrothermal pretreatment followed by fed-batch simultaneous saccharification and fermentation, to obtain oligomers and sugars from autohydrolysis liquors and bioethanol from the solid phase. Non-isothermal autohydrolysis was applied to barley straw, leading to a solid phase with about a 90% of glucan and lignin and a liquid phase with up to 168 g kg(-1) raw material valuable hemicellulose-derived compounds. The solid phase showed a high enzymatic susceptibility (up to 95%). It was employed in the optimization study of the fed-batch simultaneous saccharification and fermentation, carried out at high solids loading, led up to 52 g ethanol/L (6.5% v/v). PMID:26000836

  11. One step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor

    NASA Astrophysics Data System (ADS)

    Sari, Fitri Nur Indah; Ting, Jyh-Ming

    2015-11-01

    Nitrogen doped graphene (NDG) has been synthesized using a microwave-assisted hydrothermal (MHT) method within only several minute. In the method, homemade graphene oxide was reduced using ethylene glycol (EG) to obtain the graphene while ammonia liquid was used as the nitrogen source. However, it was found that the reduction and doping simultaneously occurred and the addition of ammonia further enhanced the reduction. The reduction and doping were examined through various analysis and the mechanisms were proposed. The effects of the hydrothermal temperature and time on the reduction and doping were discussed. It was also shown that the doping leads to enhanced specific capacitance by as much as 54%, a high specific energy density of 42.8 W h kg-1 at a power density of 4330 W kg-1, and excellent long term stability up to 98% retention after 1000 cycles at wide working voltage of 1.6 V in 2 M H2SO4.

  12. Anhydrite precipitation in seafloor hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  13. The Biogeochemistry of Sulfur in Hydrothermal Systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Rogers, K. L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. Understanding how sulfur became prevalent in biochemical processes and many biomolecules requires knowledge of the reaction properties of sulfur-bearing compounds. We have previously estimated thermodynamic data for thiols, the simplest organic sulfur compounds, at elevated temperatures and pressures. If life began in hydrothermal environments, it is especially important to understand reactions at elevated temperatures among sulfur-bearing compounds and other organic molecules essential for the origin and persistence of life. Here we examine reactions that may have formed amino acids with thiols as reaction intermediates in hypothetical early Earth hydrothermal environments. (There are two amino acids, cysteine and methionine, that contain sulfur.) Our calculations suggest that significant amounts of some amino acids were produced in early Earth hydrothermal fluids, given reasonable concentrations H2, NH3, H2S and CO. For example, preliminary results indicate that glycine activities as high as 1 mmol can be reached in these systems at 100 C. Alanine formation from propanethiol is also a favorable reaction. On the other hand, the calculated equilibrium log activities of cysteine and serine from propanethiol are -21 and -19, respectively, at 100 C. These results

  14. Near- and supercritical ethanol treatment of biocrude from hydrothermal liquefaction of microalgae.

    PubMed

    Yang, Le; Li, Yongdan; Savage, Phillip E

    2016-07-01

    Biocrude produced from algae by hydrothermal liquefaction was treated with near- and supercritical ethanol and ethanol-water mixtures at 210-290°C for 0.5-4h. Longer reaction times and higher temperatures better promoted esterification reactions. Dilution of the ethanol with water led to lower yields of treated biocrude and reduced ester content. The viscosity of treated biocrude was an order of magnitude lower than that of the crude bio-oil, and the treated biocrude exhibited the characteristics of a Newtonian fluid. Overall, treatment of biocrude with near- and supercritical ethanol generated a treated bio-oil with lower viscosity, more ester content, and in nearly 100wt% yield. PMID:27055767

  15. Method validation and simultaneous determination of retinol, retinyl palmitate, β-carotene, α-tocopherol and vitamin C in rat serum treated with 7,12 dimethylbenz[a]anthracene and Plantago major L. by high- performance liquid chromatography using diode-array detection.

    PubMed

    Levent, Abdulkadi; Oto, Gokhan; Ekin, Suat; Berber, Ismet

    2013-02-01

    A new and simple high-performance liquid chromatography method was developed and validated for the simultaneous determination of retinol, retinyl palmitate, β-carotene, α-tocopherol and vitamin C in rat serum treated with Plantago Major L. and 7,12 dimethylbenz[a]anthracene. High-performance liquid chromatography analysis was performed utilizing an Inertsil ODS3 reversed phase column with methanol-tetrahydrofuran-water as mobile phase under gradient conditions, at 1.5 mL min(-1) flow rate and 25 °C. Diode-array detection was at 325, 450, 290 and 270 nm (retinol and retinyl palmitate), β-carotene, α-tocopherol and vitamin C, respectively and runnig time 18 min. The high-performance liquid chromatography assay and extraction procedure proposed are simple, rapid, sensitive and accurate. The method was then applied for the determination of retinol, retinyl palmitate, β-carotene, α-tocopherol and vitamin C in rat serum. Results of this study demonstrated that; at 60th day DMBA-treated group, there was a significant decrease in vitamin levels compared to the levels of control group. A significant increase was observed in vitamin levels of 7,12 dimethylbenz[α]anthracene+Plantago Major L.-treated group compared to the DMBA-treated group. Additionally, the results obtained in the study are found to be in agreement with data reported in the literature. PMID:23176060

  16. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1). PMID:18163874

  17. Shallow Water Hydrothermal Vents in the Gulf of California: Natural Laboratories for Multidisciplinary Research

    NASA Astrophysics Data System (ADS)

    Forrest, M.; Hilton, D. R.; Price, R. E.; Kulongoski, J. T.

    2015-12-01

    Modern and fossil examples of shallow water submarine hydrothermal vents occur throughout the Gulf of California. These sites offer important information about the processes involved in the extensional tectonics that created the Gulf of California and continue to shape the region to this day. Due to their accessibility, shallow water marine hydrothermal vents are far easier to access and study than their deeper analogs, and these settings can provide natural laboratories to study biogeochemical processes. Certain biogeochemical and biomineralizing processes occurring at shallow vents are very similar to those observed around deep-sea hydrothermal vents. In some cases, authigenic carbonates form around shallow vents. However, the hydrothermal precipitates are generally composed of Fe-oxyhydroxides, Mn-oxides, opal, calcite, pyrite and cinnabar, and their textural and morphological characteristics suggest microbial mediation for mineral deposition. Modern shallow-water hydrothermal vents also support complex biotic communities, characterized by the coexistence of chemosynthetic and photosynthetic organisms. These shallow vents are highly productive and provide valuable resources to local fishermen. Extant shallow water hydrothermal activity has been studied in Bahía Concepción, San Felipe, Punta Estrella, El Coloradito, Puertecitos, and around the Islas Encantadas. Discrete streams of gas bubbles are often discharged along with hot liquids at shallow water vents. The vent liquids generally exhibit lower salinities than seawater, and their isotopic compositions indicate that they contain meteoric water mixed with seawater. The composition of the shallow vent gas is primarily made up of CO2, but may also be enriched in N2, H2S, CH4, and other higher hydrocarbons. The geochemistry of these gases can be informative in determining the sources and processes involved in their generation. In particular, 3He/4He ratios may provide valuable information about the origin of

  18. Hydrothermal Fluxes in Europan Ocean: The Effect of Seawater and Oceanic Crust Composition

    NASA Astrophysics Data System (ADS)

    Foustoukos, D.; Seyfried, W.

    2005-12-01

    The recent discovery of electrolyte-enriched liquid water layer in Jupiter icy satellite, Europa, has triggered numerous investigations to assess the chemical composition and physicochemical processes occurring within Europan ocean. Europa appears to be strongly differentiated composed by a metallic core and a hydrated silicate mantle. Thus, heat fluxes could be generated in the planetary core through radioactive decay stimulating volcanic events and serving as the driving force for subseafloor hydrothermal activity. Beyond doubt, the chemical composition of the seawater and the oceanic substrate on Europa plays a key role in regulating pH and redox reactions during presumed hydrothermal alteration processes. Hydrothermal alteration of basalt and peridotite, for example, will likely yield different pH conditions, with the ultramafic-hosted hydrothermal system resulting in higher pH, significantly affecting the ratio of reduced/oxidized sulfur and the metal fluxes. Incipient alteration of basalt and peridotite will also generate reducing conditions, although the H2/H2S ratio of the coexisting fluid will be higher in the ultramafic systems. An important chemical control on Europan ocean evolution is the redox state of the sulfur originated from the oceanic crust and the SO4-enriched neutral-alkaline seawater. In general, relatively alkaline and oxidizing conditions favor the formation of SO4, while more acidic and reducing conditions yield H2S(aq) stable. Thus, hydrothermal alteration of basalt and peridotite facilitates sulfate reduction, while constraints imposed by a more oxidizing mineral assemblage (e.g. hematite-magnetite-pyrite) would render low H2(aq) conditions inhibiting formation of reduced sulfate species. Extensive hydrothermal alteration of fresh basalt, however, forming epidote and anhydrite, would preclude phase equilibria involving hematite. Consequently, initial neutral pH would be shifted towards more acidic conditions, limiting by this way any

  19. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  20. Fungal colonization of an Ordovician impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  1. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  2. Hydrothermal Activity on ultraslow Spreading Ridge: new hydrothermal fields found on the Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Deng, X.; Lei, J.; Wang, Y.; Zhang, K.; Zhou, J.; Liu, W.

    2014-12-01

    Ultraslow spreading ridge makes up about 25% of global mid-ocean ridge length. Previous studies believed that hydrothermal activity is not widespread on the ultraslow spreading ridge owing to lower magma supply. Southwest Indian ridge (SWIR) with the spreading rate between 1.2cm/a to 1.4cm/a, represents the ultraslow spreading ridge. In 2007, Chinese Cruise (CC) 19th discovered the Dragon Flag deposit (DFD) on the SWIR, which is the first active hydrothermal field found on the ultraslow spreading ridge. In recent years, over 10 hydrothermal fields have been found on the SWIR between Indomed and Gallieni transform faults by the Chinese team. Tao et al. (2012) implied that the segment sections with excess heat from enhanced magmatism and suitable crustal permeability along slow and ultraslow ridges might be the most promising areas for searching for hydrothermal activities. In 2014, CC 30thdiscovered five hydrothermal fields and several hydrothermal anomalies on the SWIR. Dragon Horn Area (DHA). The DHA is located on the southern of segment 27 SWIR, with an area of about 400 km2. The geophysical studies indicated that the DHA belongs to the oceanic core complex (OCC), which is widespread on the slow spreading ridges (Zhao et al., 2013). The rocks, such as gabbro, serpentinized peridotite, and consolidated carbonate were collected in the DHA, which provide the direct evidence with the existence of the OCC. However, all rock samples gathered by three TV-grab stations are basalts on the top of the OCC. A hydrothermal anomaly area, centered at 49.66°E,37.80° S with a range of several kms, is detected in the DHA. It is probably comprised of several hydrothermal fields and controlled by a NW fault. New discovery of hydrothermal fields. From January to April 2014, five hydrothermal fields were discovered on the SWIR between 48°E to 50°E during the leg 2&3 of the CC 30th, which are the Su Causeway field (48.6°E, 38.1°S), Bai Causeway field (48.8°E, 37.9 °S), Dragon

  3. Hydrothermal Detoxization of Slate Containing Asbestos and the Possibility of Application for Fertilizer of its Products

    SciTech Connect

    Myojin, Sachi; Yamasaki, Chizuko; Yamasaki, Nakamichi; Kuroki, Toshihiro; Manabe, Wataru

    2010-11-24

    Hydrothermal decomposition of slate (building materials) containing asbestos has been attempted by using a NH{sub 4}H{sub 2}PO{sub 4} solution. Firstly, the alteration of chrysotile as a starting material was investigated under hydrothermal conditions of 200 deg. C, 12 hrs of reaction time and with a phosphate solution. It was confirmed that the original fibrous form of chrysotile had been perfectly collapsed by the SEM observation. The chrysotile (asbestos) disappeared to form Mg-Ca-Silicate (Ca{sub 7}Mg{sub 2}P{sub 6}O{sup 24}) estimated by XRD. The composition and chemical form of reaction products (Mg-Ca-Silicate) was predicted to application as a fertilizer. Fertilizer effect of these resulted product on cultivations of Japanese radish (leaves), soybeans and tomatoes, was examined by using a special medium of mixed soil with a low content of N, P, K and a thermal-treated zeolite one. The fertilizer effects of the product were compared to commercial fertilizers such as N, N-K-P and P types. In order to estimate the fertilizer effect, the size of crops, number of fruits and number of leaves were measured everyday. As a result, these hydrothermal products of slate containing asbestos were as good as commercial fertilizers on the market. Fruits groups especially had a good crop using the hydrothermal slate product. These results show that the main components of hydrothermal treatments slate are calcium silicate and magnesium phosphate. Its decomposition reaction products may have the possibility of application for fertilization of crops which require nucleic acid--phosphorus.

  4. How Is Thrombotic Thrombocytopenic Purpura Treated?

    MedlinePlus

    ... and surgery. Treatments are done in a hospital. Plasma Therapy Plasma is the liquid part of your blood. It ... nutrients to your body. TTP is treated with plasma therapy. This includes: Fresh frozen plasma for people ...

  5. Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production.

    PubMed

    Danso-Boateng, E; Shama, G; Wheatley, A D; Martin, S J; Holdich, R G

    2015-02-01

    Hydrothermal carbonisation of primary sewage sludge was carried out using a batch reactor. The effect of temperature and reaction time on the characteristics of solid (hydrochar), liquid and gas products, and the conditions leading to optimal hydrochar characteristics were investigated. The amount of carbon retained in hydrochars decreased as temperature and time increased with carbon retentions of 64-77% at 140 and 160°C, and 50-62% at 180 and 200°C. Increasing temperature and treatment time increased the energy content of the hydrochar from 17 to 19 MJ/kg but reduced its energy yield from 88% to 68%. Maillard reaction products were identified in the liquid fractions following carbonisations at 180 and 200°C. Theoretical estimates of the methane yields resulting from the anaerobic digestion of the liquid by-products are also presented and optimal reaction conditions to maximise these identified. PMID:25496954

  6. Using Hydrothermal Plumes and Their Chemical Composition to Identify and Understand Hydrothermal Activity at Explorer Ridge

    NASA Astrophysics Data System (ADS)

    Resing, J.; Lebon, G.; Baker, E.; Walker, S.; Nakamura, K.; Silvers, B.

    2002-12-01

    During June and July, 2002, an extensive survey of the hydrothermal systems of the Explorer Ridge was made aboard the R/V Thomas Thompson. This survey employed hydrocasts and the Autonomous Benthic Explorer (ABE) to locate and map hydrothermal vent fields. A total of 28 hydrocasts (17 verticals and 11 tow-yos) were used to search for hydrothermal activity from 49.5°N to 50.3°N on the Explorer Ridge. During the hydrocasts continuous measurements were made of conductivity, temperature, pressure, light backscatter, eH, Fe, Mn, and pH. Discrete samples were collected for total dissolved Fe and Mn, methane, pH, total CO2, and particulate matter. Most of the strong hydrothermal venting was near the Magic Mountain area of the Explorer Ridge at ~49.76° N, 130.26° W, where strong particulate backscatter signals (~0.130 NTUs) and moderate temperature anomalies (~ 0.05 °C) were detected. The particulate matter causing the backscatter was made up primarily of volatile particulate sulfur (PS) with little to no hydrothermal PFe. PS:PFe ratios exceeded 25 in the areas of most intense venting, . These PFe and PS data suggest that the hydrothermal Fe, if any, is deposited as sulfide minerals beneath the sea floor and that S is far in excess of Fe in the hydrothermal fluids. In the most intense plumes,total dissolvable Fe and Mn were between 20 and 30 nM, pH anomalies exceeded 0.025 pH units (indicating an increase of ~10uM CO2), and methane reached 16nM. These results suggest that the fluids exiting the sea floor are metal-poor and moderately gas-rich.

  7. Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw

    PubMed Central

    2013-01-01

    Background The use of the enzymatic hydrolysis of lignocellulose with subsequent fermentation to ethanol provides a green alternative for the production of transportation fuels. Because of its recalcitrant nature, the lignocellulosic biomass must be pretreated before enzymatic hydrolysis. However, the pretreatment often results in the formation of compounds that are inhibitory for the enzymes or fermenting organism. Although well recognized, little quantitative information on the inhibition of individual cellulase components by identified inhibitors is available. Results Strong cellulase inhibitors were separated from the liquid fraction of the hydrothermal pretreatment of wheat straw. HPLC and mass-spectroscopy analyses confirmed that the inhibitors were oligosaccharides (inhibitory oligosaccharides, IOS) with a degree of polymerization from 7 to 16. The IOS are composed of a mixture of xylo- (XOS) and gluco-oligosaccharides (GOS). We propose that XOS and GOS are the fragments of the xylan backbone and mixed-linkage β-glucans, respectively. The IOS were approximately 100 times stronger inhibitors for Trichoderma reesei cellobiohydrolases (CBHs) than cellobiose, which is one of the strongest inhibitors of these enzymes reported to date. Inhibition of endoglucanases (EGs) by IOS was weaker than that of CBHs. Most of the tested cellulases and hemicellulases were able to slowly degrade IOS and reduce the inhibitory power of the liquid fraction to some extent. The most efficient single enzyme component here was T. reesei EG TrCel7B. Although reduced by the enzyme treatment, the residual inhibitory power of IOS and the liquid fraction was strong enough to silence the major component of the T. reesei cellulase system, CBH TrCel7A. Conclusions The cellulase inhibitors described here may be responsible for the poor yields from the enzymatic conversion of the whole slurries from lignocellulose pretreatment under conditions that do not favor complete degradation of

  8. Evidence for Hydrothermal Vents as "Biogeobatteries" (Invited)

    NASA Astrophysics Data System (ADS)

    Nielsen, M. E.; Girguis, P. R.

    2010-12-01

    Hydrothermal vents are unique systems that play an important role in oceanic biogeochemical cycles. As chemically reduced hydrothermal fluid mixes with cold oxic seawater, minerals precipitate out of solution resulting in chimney structures composed largely of metal sulfides and anhydrite. Pyrite, which is a natural semi-conductor, is the primary sulfide mineral, but other minerals within chimneys are also conductive (e.g. chalcopyrite, wurtzite, and some iron oxides). Sulfide chimneys are also known to host an extensive endolithic microbial community. Accordingly, submarine hydrothermal systems appear to be examples of biogeobatteries, wherein conductive mineral assemblages span naturally occuring redox gradients and enable anaerobic microbes to access oxygen as an oxidant via extracellular electron transfer (or EET). To test this hypothesis, we ran a series of electrochemical laboratory experiments in which pyrite was used as an anode (in a vessel flushed with hydrothermal-like fluid). When placed in continuity with a carbon fiber cathode, pyrite was found to accept and conduct electrons from both abiotic and biological processes (microbial EET). Specifically, electrical current increased 4-fold (5 nA/m2 to 20 nA/m2) in response to inoculation with a slurry prepared from a hydrothermal vent sample. Inspection of the pyrite anode with SEM revealed ubiquitous coverage by microbes. DNA was extracted from the anodes and the inoculum, and was subjected to pyrosequencing to examine prokaryotic diversity. These data suggest that key microbial phylotypes were enriched upon the pyrite, implicating them in EET. In addition, we deployed an in situ experiment based on microbial fuel cell architecture with a graphite anode inserted into a vent wall coupled to a carbon fiber cathode outside the vent. We observed current production over the course of one year, implying microbial EET in situ. Via pyrosequencing, we observed that the microbial community on the anode was

  9. Pyrite Recrystallization Experiments With Circulating Hydrothermal Solution

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Abe, A.; Tanaka, K.

    2007-12-01

    Pyrite is one of the most common sulfide minerals found in hydrothermal deposits and sea-floor sediments from hydrothermal fumaroles. Hydrothermal fluid flow plays an important role in crystallization of sulfide minerals. In this study, we tried to reproduce pyrite crystallization with one-way flowing hydrothermal fluid. We designed a circuit circulating hydrothermal fluid by thermal convection. A rectangular circuit (42.6 cm by 17.3 cm) of SUS316 pressure tubes with 5 mm in inner diameter was used as a reaction vessel. In the circuit, pyrite dissolves to acidic fluid in upstream region. Then, pyrite will crystallize again in downstream region as temperature decreases. The rectangular plane was held to be 20 degrees inclination to generate thermal convection. One of the long sides of the rectangular was heated by an electric furnace. Starting materials were put in a tube to be heated. Upper half, approximately 20 cm, of the tube was filled with quartz sand. Next quarter was filled with equivalent mass mixture of quartz sand and powdered pyrite crystals. The lowest quarter was filled with mixture of quartz sand, pyrite, anhydrite and sulfur, those mass are equivalent. The solution was a mixture of 0.5mol/l HCl and 3.0mol/l NaCl. Maximum temperature was controlled to approximately 350°C at the center of the heated tube. Experimental durations were up to 9 days. Fluid pressure increased to approximately 6 MPa as heating. After the experiments, the run products were fixed with resin in a sample tube, and vertical sections were observed by SEM. In the run products, pyrite dissolved at the lower part of the starting material. In the upper half of the sample tube, pyrite crystals precipitated on quartz surface. Crystallization density depends on temperature gradient of the fluid. Predominant morphology of the pyrite crystals consists (100) plains. Tiny framboidal aggregates and crystals with (210) plains also occur. In the run products of longer than 3 days run durations

  10. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings.

    PubMed

    Yang, Chung-Wei; Lui, Truan-Sheng

    2009-09-01

    Hydroxyapatite coatings (HACs) with a low crystalline state were prepared using the plasma spraying process followed by hermetic autoclaving hydrothermal treatment at 100, 150 and 200 degrees C. Experimental evidence confirmed that the HACs became significantly crystallized and the content of amorphous calcium phosphate decreased by performing the autoclaving hydrothermal treatment in an ambient saturated steam pressure system. The obvious chemisorbed hydroxy groups (OH) peak in the X-ray photoelectron spectra detected from the hydrothermally crystallized HAC specimens means that the hydroxyl-deficient state of plasma-sprayed HACs is significantly improved by the abundant replenished OH groups. The HA nanocrystallite observed from scanning electron microscopy and transmission electron microscopy images within hydrothermally treated HACs is the result of nucleation and grain growth through the replenishment of OH groups into the hydroxyl-deficient HA crystal structure. The microstructural self-healing effect is a result of reduction in defects (pores, microcracks and lamellar boundaries) due to new-growth HA nanocrystallite. According to the systematic derivation of the Arrhenius equation, the HA crystallization is a second-order Arrhenius reaction kinetics. Besides the effects of heating temperature and an atmosphere with abundant water molecules, the saturated steam pressure is a crucial factor which significantly improves the crystallization rate constant and further reduces the activation energy for the hydrothermal HA crystallization. PMID:19376760

  11. Hydrothermal brecciation in the Jemez Fault zone, Valles Caldera, New Mexico: Results from CSDP (Continental Scientific Drilling Program) corehole VC-1

    SciTech Connect

    Hulen, J.B.; Nielson, D.L.

    1987-06-01

    Paleozoic and Precambrian rocks intersected deep in Continental Scientific Drilling Program corehole VC-1, adjacent to the late Cenozoic Valles caldera complex, have been disrupted to form a spectacular breccia sequence. The breccias are of both tectonic and hydrothermal origin, and probably formed in the Jemez fault zone, a major regional structure with only normal displacement since mid-Miocene. Tectonic breccias are contorted, crushed, sheared, and granulated; slickensides are commmon. Hydrothermal breccias, by contrast, lack these frictional textures, but arej commonly characterized by fluidized matrix foliation and prominent clast rounding. Fluid inclusions in the hydrothermal breccias are dominantly two-phase, liquid-rich at room temperature, principally secondary, and form two distinctly different compositional groups. Older inclusions, unrelated to brecciation, are highly saline and homogenize to the liquid phase in the temperature range 189 to 246/sup 0/C. Younger inclusions, in part of interbreccia origin, are low-salinity and homogenize (also to liquid) in the range 230 to 283/sup 0/C. Vapor-rich inclusions locally trapped along with these dilute liquid-rich inclusions document periodic boiling. These fluid-inclusion data, together with alteration assemblages and textures as well as the local geologic history, have been combined to model hydrothermal brecciation at the VC-1 site.

  12. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    PubMed

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. PMID:25842108

  13. Hydrothermal phase transformation of hematite to magnetite

    PubMed Central

    2014-01-01

    Different phases of iron oxide were obtained by hydrothermal treatment of ferric solution at 200°C with the addition of either KOH, ethylenediamine (EDA), or KOH and EDA into the reaction system. As usually observed, the α-Fe2O3 hexagonal plates and hexagonal bipyramids were obtained for reaction with KOH and EDA, respectively. When both KOH and EDA were added into the reaction system, we observed an interesting phase transformation from α-Fe2O3 to Fe3O4 at low-temperature hydrothermal conditions. The phase transformation involves the formation of α-Fe2O3 hexagonal plates, the dissolution of the α-Fe2O3 hexagonal plates, the reduction of Fe3+ to Fe2+, and the nucleation and growth of new Fe3O4 polyhedral particles. PMID:24940172

  14. Colorado's hydrothermal resource base: an assessment

    SciTech Connect

    Pearl, R.H.

    1981-01-01

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  15. Iridium material for hydrothermal oxidation environments

    DOEpatents

    Hong, Glenn T.; Zilberstein, Vladimir A.

    1996-01-01

    A process for hydrothermal oxidation of combustible materials in which, during at least a part of the oxidation, corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises iridium, iridium oxide, an iridium alloy, or a base metal overlaid with an iridium coating. Iridium has been found to be highly resistant to environments encountered in the process of hydrothermal oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 800.degree. C.

  16. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  17. Effluent from diffuse hydrothermal venting. 1: A simple model of plumes from diffuse hydrothermal sources

    SciTech Connect

    Trivett, D.A.

    1994-09-01

    This paper focuses on modeling the fate of effluent from diffuse seafloor hydrothermal activity after it has been vented into the water column. The model was formulated using a number of simplifying assumptions which permit direct application of this model to field measurements. I have limited the configurations to those where the hydrothermal outflow velocities are smaller than horizontal current. I assume that the entrainment of ambient seawater into the plume is constant over the length of the plume. This permits formulation of a first-order relation for the rise height and dilution in a diffuse hydrothermal plume as a function of downstream distance. The analytic model is compared with a simple laboratory simulation of the hydrothermal flow. The results suggest that diffuse hydrothermal effluent will penetrate to a height in the water column that is proportional to the overall dimension of the diffuse vent patch, multiplied by a dimensionless plume intensity parameter. I also ahow relations for plume dilution which will be compared with field data in part 2 of this work.

  18. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Albrecht, Karl O.; Hallen, Richard T.; Holladay, Johnathan E.

    2013-10-01

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 °C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating was effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.

  19. Stable light isotope biogeochemistry of hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1996-01-01

    The stable isotopic composition of the elements O, H, S and C in minerals and other chemical species can indicate the existence, extent, conditions and the processes (including biological activity) of hydrothermal systems. Hydrothermal alteration of the 18O/16O and D/H values of minerals can be used to detect fossil systems and delineate their areal extent. Water-rock interactions create isotopic signatures which indicate fluid composition, temperature, water-rock ratios, etc. The 18O/16O values of silica and carbonate deposits tend to increase with declining temperature and thus help to map thermal gradients. Measurements of D/H values can help to decipher the origin(s) of hydrothermal fluids. The 34S/32S and 13C/12C values of fluids and minerals reflect the origin of the S and C as well as oxygen fugacities and key redox processes. For example, a wide range of 34S/32S values which are consistent with equilibration below 100 degrees C between sulfide and sulfate can be attributed to sulfur metabolizing bacteria. Depending on its magnitude, the difference in the 13C/12C value of CO2 and carbonates versus organic carbon might be attributed either to equilibrium at hydrothermal temperatures or, if the difference exceeds 1% (10/1000), to organic biosynthesis. Along the thermal gradients of thermal spring outflows, the 13C/12C value of carbonates and 13C-depleted microbial organic carbon increases, principally due to the outgassing of relatively 13C-depleted CO2.

  20. Stable light isotope biogeochemistry of hydrothermal systems.

    PubMed

    Des Marais, D J

    1996-01-01

    The stable isotopic composition of the elements O, H, S and C in minerals and other chemical species can indicate the existence, extent, conditions and the processes (including biological activity) of hydrothermal systems. Hydrothermal alteration of the 18O/16O and D/H values of minerals can be used to detect fossil systems and delineate their areal extent. Water-rock interactions create isotopic signatures which indicate fluid composition, temperature, water-rock ratios, etc. The 18O/16O values of silica and carbonate deposits tend to increase with declining temperature and thus help to map thermal gradients. Measurements of D/H values can help to decipher the origin(s) of hydrothermal fluids. The 34S/32S and 13C/12C values of fluids and minerals reflect the origin of the S and C as well as oxygen fugacities and key redox processes. For example, a wide range of 34S/32S values which are consistent with equilibration below 100 degrees C between sulfide and sulfate can be attributed to sulfur metabolizing bacteria. Depending on its magnitude, the difference in the 13C/12C value of CO2 and carbonates versus organic carbon might be attributed either to equilibrium at hydrothermal temperatures or, if the difference exceeds 1% (10/1000), to organic biosynthesis. Along the thermal gradients of thermal spring outflows, the 13C/12C value of carbonates and 13C-depleted microbial organic carbon increases, principally due to the outgassing of relatively 13C-depleted CO2. PMID:9243011

  1. Modeling Microbiological Interactions with Hydrothermal Flow

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori

    2006-01-01

    All organisms require energy. Characterizing and quantifying the biological demand for energy places constraints on the possible interactions of organisms with each other and with the environment. This talk will consider energetic and mass transfer constraints on the ecology of hydrothermal vent microbes. Following a general introduction to the biological energy requirements and their link to environmental conditions, energy constraints will be applied to several vent-relevant case studies.

  2. Hydrothermal carbonization of poly(vinyl chloride).

    PubMed

    Poerschmann, J; Weiner, B; Woszidlo, S; Koehler, R; Kopinke, F-D

    2015-01-01

    Poly(vinyl chloride) (PVC) was subjected to hydrothermal carbonization in subcritical water at 180-260 °C. Dehydrochlorination increased with increasing reaction temperature. The release of chlorine was almost quantitative above ∼235 °C. The fraction of organic carbon (OC) recovered in the hydrochar decreased with increasing operating temperature from 93% at 180 °C to 75% at 250 °C. A wide array of polycyclic aromatic hydrocarbons (PAHs) could be detected in the aqueous phase, but their combined concentration amounted to only ∼140 μg g(-1) PVC-substrate at 240 °C. A pathway for the formation of cyclic hydrocarbons and O-functionalized organics was proposed. Chlorinated hydrocarbons including chlorophenols could only be identified at trace levels (low ppb). Polychlorinated dibenzodioxins (PCDDs) and dibenzofurans (PCDFs) could not be detected. The sorption potential of the hydrochar turned out to be very low, in particular for polar organic pollutants. Our results provide strong evidence that hydrothermal carbonization of household organic wastes which can be tied to co-discarded PVC-plastic residues is environmentally sound regarding the formation of toxic organic products. Following these findings, hydrothermal treatment of PVC-waste beyond operating temperatures of ∼235 °C to allow complete release of organic chlorine should be further pursued. PMID:25150971

  3. Numerical simulation of magmatic hydrothermal systems

    USGS Publications Warehouse

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.

    2010-01-01

    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  4. Hydrothermal Formation of Calcium Copper Tetrasilicate.

    PubMed

    Johnson-McDaniel, Darrah; Comer, Sara; Kolis, Joseph W; Salguero, Tina T

    2015-12-01

    We describe the first hydrothermal synthesis of CaCuSi4 O10 as micron-scale clusters of thin platelets, distinct from morphologies generated under salt-flux or solid-state conditions. The hydrothermal reaction conditions are surprisingly specific: too cold, and instead of CaCuSi4 O10 , a porous calcium copper silicate forms; too hot, and calcium silicate (CaSiO3 ) forms. The precursors also strongly impact the course of the reaction, with the most common side product being sodium copper silicate (Na2 CuSi4 O10 ). Optimized conditions for hydrothermal CaCuSi4 O10 formation from calcium chloride, copper(II) nitrate, sodium silicate, and ammonium hydroxide are 350 °C at 3000 psi for 72 h; at longer reaction times, competitive delamination and exfoliation causes crystal fragmentation. These results illustrate that CaCuSi4 O10 is an even more unique material than previously appreciated. PMID:26482329

  5. Surface roughened zirconia: towards hydrothermal stability.

    PubMed

    Camposilvan, Erik; Flamant, Quentin; Anglada, Marc

    2015-07-01

    Surface roughness is needed in several yttria-stabilized zirconia components used in restorative dentistry for osseointegration or adhesion purposes. This can be achieved by different treatments, which may also modify the microstructure of the surface. Among them, sandblasting and chemical etching are widely used, but their effect on hydrothermal aging of zirconia is not fully understood. In the present work, the zirconia long-term stability of rough surfaces prepared by these techniques is analyzed and a method is proposed for preventing hydrothermal aging while maintaining the original surface appearance and mechanical properties. The method involves pressure infiltration of a Cerium salt solution on the roughened surfaces followed by a thermal treatment. The solution, trapped by surface defects and small pores, is decomposed during thermal treatment into Cerium oxide, which is diffused at high temperature, obtaining Ce co-doping in the near-surface region. In addition, the microstructural changes induced in the near-surface by sandblasting or chemical etching are removed by the thermal treatment together with surface defects. No color modification was observed and the final roughness parameters were in the range of existing implants of proved good osseointegration. The aging resistance of Ce co-doped materials was strongly enhanced, showing the absence of aging after artificial degradation, increasing in this way the surface mechanical integrity. The proposed treatment is easily applicable to the current manufacturing procedures of zirconia dental posts, abutments, crowns and dentures, representing a solution to hydrothermal aging in these and other biomedical applications. PMID:25867636

  6. Modeling Hydrothermal Mineralization: Fractal or Multifrcatal Models?

    NASA Astrophysics Data System (ADS)

    Cheng, Q.

    2004-05-01

    Hydrothermal mineralization occurs when the natural geo-processes involve the interaction of ore material-carrying hydrothermal fluids with rocks in the earth's crust in a specific geological environment. Mineralization can cause element concentration enrichment or depletion in the country rocks. Local enrichment may form ore body that can be mined for profit at the current economic and technological conditions. To understand the spatial distribution of element concentration enrichment or depletion caused by mineralization in a mineral district is essential for mineral exploration and mineral prediction. Grade-tonnage model and mineral deposits size distribution model are common models used for characterizing mineral deposits. This paper proposes a non-linear mineralization model on the basis of a modified classical igneous differentiation mineralization model to describe the generation of multifractal distribution of element concentration in the country rocks as well as grade-tonnage fractal/multifractal distribution of ore deposits that have been often observed in hydrothermal mineralization. This work may also lead to a singularity model to explain the common properties of mineralization and mineralization-associated geochemical anomaly diversity and the generalized self-similarity of the anomalies. The model has been applied to a case study of mineral deposits prediction and mineral resource assessment in the Abitibi district, northern Ontario, Canada.

  7. Hydrothermal synthesis map of bismuth titanates

    NASA Astrophysics Data System (ADS)

    Sardar, Kripasindhu; Walton, Richard I.

    2012-05-01

    The hydrothermal synthesis of four bismuth titanate materials from common bismuth and titanium precursors under hydrothermal conditions is described. Reaction of NaBiO3·2H2O and anatase TiO2 in concentrated NaOH solution at 240 °C is shown to produce perovskite and sillenite phases Na0.5Bi0.5TiO3 and Bi12TiO20, depending on the ratio of metal precursors used. When KOH solution is used and a 1:1 ratio of the same precursors, a pyrochlore Bi1.43Ti2O6(OH)0.29(H2O)0.66 is formed. The use of a mixture of HNO3 and NaOH is shown to facilitate the formation of the Aurivillius-type bismuth titanate Bi4Ti3O12. The phases have been isolated separately as phase-pure powders and profile refinement of powder X-ray diffraction data allows comparisons with comparable materials reported in the literature. Analysis of Bi LIII-edge X-ray absorption near edge structure (XANES) spectra of the materials shows the oxidation state of bismuth is +3 in all of the hydrothermally derived products.

  8. Diffuse flow from hydrothermal vents. Doctoral thesis

    SciTech Connect

    Trivett, D.A.

    1991-08-01

    The effluent from a collection of diffuse hydrothermal vents was modelled to determine the fate of the source of flow under typical environmental conditions at seafloor spreading centers. A laboratory simulation was conducted to test an analytic model of diffuse plume rise. The results showed that diffuse plumes are likely to remain near the seafloor, with their maximum rise height scaled with the diameter of the source of diffuse flow. The entrainment of ambient seawater into these plumes is limited by the proximity to the seafloor, thus slowing the rate of dilution. The model of diffuse plume behaviour was used to guide the design and implementation of a scheme for monitoring the flow from diffuse hydrothermal vents in the ocean. A deployment of an array at the Southern Juan de Fuca Ridge yielded measurements of a variety of diffuse plume properties, including total heat output. Two distinct sources of hydrothermal flow were detected during the field deployment. The larger source was 1-1.5km north of the instrument array, and its energy output was 450 + or - 270MW. A smaller source was located 100m east of one instrument in the array. The energy output of the source was 12 + or - 8MW. The rise heights of the centerlines of these plumes were 45m and 10m, respectively.

  9. Quantitative analysis of the hydrothermal system in Lassen Volcanic National Park and Lassen Known Geothermal Resource Area

    SciTech Connect

    Sorey, M.L.; Ingebritsen, S.E.

    1984-01-01

    The Lassen hydrothermal system is in the southern Cascade Range, approximately 70 kilometers east-southeast of Redding, California. The conceptual model of the Lassen system is termed a liquid-dominated hydrothermal system with a parasitic vapor-dominated zone. The essential feature of this model is that steam and steam-heated discharge at relatively high elevations in Lassen Volcanic National Park (LVNP) and liquid discharge with high chloride concentrations at relatively low elevations outside LVNP in the Lassen Known Geothermal Resource Area (KGRA) are both fed by an upflow of high-enthalpy, two-phase fluid within the Park. Liquid flows laterally away from the upflow area towards the areas of high-chloride discharge, and steam rises through a vapor-dominated zone to feed the steam and steam-heated features. The geometric model corresponds to an areally restricted flow regime that connects the Bumpass Hell area in LVNP with regions of chloride hot springs in the Mill Creek canyon in the KGRA south of LVNP. Simulations of thermal fluid withdrawal in the Mill Creek Canyon were carried out in order to determine the effects of such withdrawal on portions of the hydrothermal system within the Park. 19 refs., 17 figs., 4 tabs.

  10. Modes of crustal accretion and their implications for hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, Sonja; Rüpke, Lars H.; Hasenclever, Jörg

    2016-02-01

    Hydrothermal convection at mid-ocean ridges links the ocean's long-term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast-spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal-scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ.

  11. Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA

    USGS Publications Warehouse

    Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D Kirk; Hunt, Andrew G.; Evans, William C.

    2016-01-01

    Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.

  12. Isolation of polyphenols from spent coffee grounds and silverskin by mild hydrothermal pretreatment.

    PubMed

    Conde, Teresa; Mussatto, Solange I

    2016-05-18

    In this study, a new method for isolation of polyphenols (PP) from spent coffee grounds (SCG) and coffee silverskin (CS) is described. The method consisted of a mild hydrothermal pretreatment at 120°C, for 20 min, using a liquid-to-solid ratio of 20 mL/g. PP (determined as gallic acid equivalents, GAE) were the most abundant components in the extracts produced by this method, corresponding to 32.92 mgGAE/gSCG and 19.17 mgGAE/gCS, among which flavonoids corresponded to 8.29 and 2.73 mg quercetin equivalents/g of SCG and CS, respectively. Both extracts presented antioxidant activity but the results were higher for SCG extract, probably due to the highest content of PP present. Negligible effects (less than 1% solubilization) were caused by the hydrothermal pretreatment on cellulose, hemicellulose, and protein fractions of these materials. Some mineral elements were present in the extracts, with potassium being the most abundant. Hydrothermal pretreatment under mild conditions was demonstrated to be an efficient method to recover antioxidant PP from coffee residues. PMID:26458021

  13. Modelling magmatic gas scrubbing in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Di Napoli, Rossella; Aiuppa, Alessandro; Valenza, Mariano; Bergsson, Baldur; Ilyinskaya, Evgenia; Pfeffer, Melissa Anne; Rakel Guðjónsdóttir, Sylvía

    2015-04-01

    In volcano-hosted hydrothermal systems, the chemistry of deeply rising magmatic gases is extensively modified by gas-water-rock interactions taking place within the hydrothermal reservoir, and/or at shallow groundwaters conditions. These reactions can scrub reactive, water-soluble species (S, halogens) from the magmatic gas phase, so that their quantitative assessment is central to understanding the chemistry of surface gas manifestations, and brings profound implications to the interpretation of volcanic-hydrothermal unrests. Here, we present the results of numerical simulations of magmatic gas scrubbing, in which the reaction path modelling approach (Helgeson, 1968) is used to reproduce hydrothermal gas-water-rock interactions at both shallow (temperature up to 109°C; low-T model runs) and deep reservoir (temperature range: 150-250 °C; high-T model runs) conditions. The model was built based upon the EQ3/6 software package (Wolery and Daveler, 1992), and consisted into a step by step addition of a high-temperature magmatic gas to an initial meteoric water, in the presence of a dissolving aquifer rock. The model outputted, at each step of gas addition, the chemical composition of a new aqueous solution formed after gas-water-rock interactions; which, upon reaching gas over-pressuring (PgasTOT > Psat(H2O) at run T), is degassed (by single-step degassing) to separate a scrubbed gas phase. As an application of the model results, the model compositions of the separated gases are finally compared with compositions of natural gas emissions from Hekla volcano (T< 100°C) and from Krisuvik geothermal system (T> 100°C), resulting into an excellent agreement. The compositions of the model solutions are also in fair agreement with compositions of natural thermal water samples. We conclude that our EQ3/6-based reaction path simulations offer a realistic representation of gas-water-rock interaction processes occurring underneath active magmatic-hydrothermal systems

  14. Hydrothermal synthesis map of bismuth titanates

    SciTech Connect

    Sardar, Kripasindhu; Walton, Richard I.

    2012-05-15

    The hydrothermal synthesis of four bismuth titanate materials from common bismuth and titanium precursors under hydrothermal conditions is described. Reaction of NaBiO{sub 3}{center_dot}2H{sub 2}O and anatase TiO{sub 2} in concentrated NaOH solution at 240 Degree-Sign C is shown to produce perovskite and sillenite phases Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} and Bi{sub 12}TiO{sub 20}, depending on the ratio of metal precursors used. When KOH solution is used and a 1:1 ratio of the same precursors, a pyrochlore Bi{sub 1.43}Ti{sub 2}O{sub 6}(OH){sub 0.29}(H{sub 2}O){sub 0.66} is formed. The use of a mixture of HNO{sub 3} and NaOH is shown to facilitate the formation of the Aurivillius-type bismuth titanate Bi{sub 4}Ti{sub 3}O{sub 12}. The phases have been isolated separately as phase-pure powders and profile refinement of powder X-ray diffraction data allows comparisons with comparable materials reported in the literature. Analysis of Bi L{sub III}-edge X-ray absorption near edge structure (XANES) spectra of the materials shows the oxidation state of bismuth is +3 in all of the hydrothermally derived products. - Graphical abstract: Use of NaBiO{sub 3}{center_dot}2H{sub 2}O and TiO{sub 2} as reagents under hydrothermal conditions allows the phase-pure preparation of four crystalline bismuth titanate materials. Highlights: Black-Right-Pointing-Pointer NaBiO{sub 3} and TiO{sub 2} under hydrothermal conditions allow formation of bismuth titanates. Black-Right-Pointing-Pointer Synthesis of four distint phases has been mapped. Black-Right-Pointing-Pointer Bi LIII-edge XANES shows Bi is reduced to oxidation state +3 in all materials. Black-Right-Pointing-Pointer A new hydrated bismuth titanate pyrochlore has been isolated.

  15. U and Th Concentration and Isotopic Composition of Hydrothermal Fluids at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Shen, C.; Cheng, H.; Edwards, R.; Kelley, D. S.; Butterfield, D. A.

    2006-12-01

    Uranium and Th concentration and isotopic composition of hydrothermal fluids at the Lost City Hydrothermal Field (LCHF) were determined using multi-collector inductively coupled plasma mass spectrometry (MC-ICP- MS). The LCHF is an off-axis, serpentinite-hosted hydrothermal system located at 30°N near the Mid- Atlantic Ridge. Carbonate chimneys reaching 60 m in height vent alkaline (pH~10), calcium-rich fluids at 40- 91°C and the towers are home to dense microbial communities. Vent fluid and seawater U and Th concentration and isotopic composition data provide critical information for constraining U-Th chimney ages. The increased sensitivity (1-2%) of MC-ICP-MS combined with an Aridus nebulization system allows the precise measurement of small quantities of sample (~150 ml) with low concentrations (<<1ng/g) of U and Th. In this study, we have developed MC-ICP-MS techniques to measure the U and Th concentration and isotopic composition (234U, 238U, 230Th, and 232Th) of eight hydrothermal fluid samples. Endmember fluids with ~1mmol/kg Mg have ~0.02 ng/g U, confirming that end-member fluids contain near-zero values of both Mg and U. Thorium concentrations of fluids are close to deep seawater values. U and Th isotopic compositions are reported at the permil level. These data may provide new insights into the role of serpentinite-hosted hydrothermal systems in the budgets of U and Th in the ocean. Techniques presented in this study may be applied to other hydrothermal and seep environments.

  16. Extraction of edingtonite from a natural zeolite under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Tutti, F.; Kamyab, S. M.; Barghi, M. A.; Badiei, A.

    2013-01-01

    In the present study, edingtonite has been extracted from natural zeolite clinoptilolite by simulating the natural hydrothermal conditions in the laboratory, under the influence of solutions with different concentrations of Ba+2 and Na+, varying from 0.5 to 2.8 mol/L, at 150 °C. In this work, the essential hydrothermal conditions have been provided by hydrothermal autoclaves. The natural and laboratory prepared samples were characterized by XRD, XRF and SEM methods.

  17. Hydrothermal Conditions and the Origin of Cellular Life.

    PubMed

    Deamer, David W; Georgiou, Christos D

    2015-12-01

    The conditions and properties of hydrothermal vents and hydrothermal fields are compared in terms of their ability to support processes related to the origin of life. The two sites can be considered as alternative hypotheses, and from this comparison we propose a series of experimental tests to distinguish between them, focusing on those that involve concentration of solutes, self-assembly of membranous compartments, and synthesis of polymers. Key Word: Hydrothermal systems. PMID:26684507

  18. The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault

    NASA Astrophysics Data System (ADS)

    Humphris, Susan E.; Tivey, Margaret K.; Tivey, Maurice A.

    2015-11-01

    Over the last ten years, geophysical studies have revealed that the Trans-Atlantic Geotraverse (TAG) hydrothermal field (26°08‧N on the Mid-Atlantic Ridge) is located on the hanging wall of an active detachment fault. This is particularly important in light of the recognition that detachment faulting accounts for crustal accretion/extension along a significant portion of the Mid-Atlantic Ridge, and that the majority of confirmed vent sites on this slow-spreading ridge are hosted on detachment faults. The TAG hydrothermal field is one of the largest sites of high-temperature hydrothermal activity and mineralization found to date on the seafloor, and is comprised of active and relict deposits in different stages of evolution. The episodic nature of hydrothermal activity over the last 140 ka provides strong evidence that the complex shape and geological structure of the active detachment fault system exerts first order, but poorly understood, influences on the hydrothermal circulation patterns, fluid chemistry, and mineral deposition. While hydrothermal circulation extracts heat from a deep source region, the location of the source region at TAG is unknown. Hydrothermal upflow is likely focused along the relatively permeable detachment fault interface at depth, and then the high temperature fluids leave the low-angle portion of the detachment fault and rise vertically through the highly fissured hanging wall to the seafloor. The presence of abundant anhydrite in the cone on the summit of the TAG active mound and in veins in the crust beneath provides evidence for a fluid circulation system that entrains significant amounts of seawater into the shallow parts of the mound and stockwork. Given the importance of detachment faulting for crustal extension at slow spreading ridges, the fundamental question that still needs to be addressed is: How do detachment fault systems, and the structure at depth associated with these systems (e.g., presence of plutons and/or high

  19. Interactions Between Serpentinization, Hydrothermal Activity and Microbial Community at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Delacour, A.; Frueh-Green, G. L.; Bernasconi, S. M.; Schaeffer, P.; Frank, M.; Gutjahr, M.; Kelley, D. S.

    2008-12-01

    Seafloor investigations of slow- and ultraslow-spreading ridges have reported many occurrences of exposed mantle peridotites and gabbroic rocks on the ocean floor. Along the Mid-Atlantic Ridge, these uplifted portions of oceanic crust host high-temperature black smoker-type hydrothermal systems (e.g., Rainbow, Logatchev, Saldanha), and the more distinct low-temperature Lost City Hydrothermal Field (LCHF). Built on a southern terrace of the Atlantis Massif, the LCHF is composed of carbonate-brucite chimneys that vent alkaline and low-temperature (40-90°C) hydrothermal fluids. These fluids are related to serpentinization of mantle peridotites, which together with minor gabbroic intrusions form the basement of the LCHF. Long-lived hydrothermal activity at Lost City led to extensive seawater-rock interaction in the basement rocks, as indicated by seawater-like Sr- and mantle to unradiogenic Nd-isotope compositions of the serpentinites. These high fluid fluxes in the southern part of the massif influenced the conditions of serpentinization and have obliterated the early chemical signatures in the serpentinites, especially those of carbon and sulfur. Compared to reducing conditions commonly formed during the first stages of serpentinization, serpentinization at Lost City is characterized by relatively oxidizing conditions resulting in a predominance of magnetite, the mobilization/dissolution and oxidation of igneous sulfides to secondary pyrite, and the incorporation of seawater sulfate, all leading to high bulk-rock S-isotope compositions. The Lost City hydrothermal fluids contain high concentrations in methane, hydrogen, and low-molecular weight hydrocarbons considered as being produced abiotically. In contrast, organic compounds in the serpentinites are dominated by the occurrences of isoprenoids (pristane, phytane, and squalane), polycyclic compounds (hopanes and steranes), and higher abundances of C16 to C20 n-alkanes indicative of a marine organic input. We

  20. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Takai, Ken

    2014-12-01

    In the past few decades, chemosynthetic ecosystems at deep-sea hydrothermal vents have received attention as plausible analogues to the early ecosystems of Earth, as well as to extraterrestrial ecosystems. These ecosystems are sustained by chemical energy obtained from inorganic redox substances (e.g., H2S, CO2, H2, CH4, and O2) in hydrothermal fluids and ambient seawater. The chemical and isotope compositions of the hydrothermal fluid are, in turn, controlled by subseafloor physical and chemical processes, including fluid-rock interactions, phase separation and partitioning of fluids, and precipitation of minerals. We hypothesized that specific physicochemical principles describe the linkages among the living ecosystems, hydrothermal fluids, and geological background in deep-sea hydrothermal systems. We estimated the metabolic energy potentially available for productivity by chemolithotrophic microorganisms at various hydrothermal vent fields. We used a geochemical model based on hydrothermal fluid chemistry data compiled from 89 globally distributed hydrothermal vent sites. The model estimates were compared to the observed variability in extant microbial communities in seafloor hydrothermal environments. Our calculations clearly show that representative chemolithotrophic metabolisms (e.g., thiotrophic, hydrogenotrophic, and methanotrophic) respond differently to geological and geochemical variations in the hydrothermal systems. Nearly all of the deep-sea hydrothermal systems provide abundant energy for organisms with aerobic thiotrophic metabolisms; observed variations in the H2S concentrations among the hydrothermal fluids had little effect on the energetics of thiotrophic metabolism. Thus, these organisms form the base of the chemosynthetic microbial community in global deep-sea hydrothermal environments. In contrast, variations in H2 concentrations in hydrothermal fluids significantly impact organisms with aerobic and anaerobic hydrogenotrophic metabolisms

  1. Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods

    SciTech Connect

    Li, Jianlin; Wu, Qingliu; Wu, Ji

    2015-01-01

    This chapter summarizes the synthesis of various types of nanoparticles as well as surface modifications of nanomaterials using hydrothermal and solvothermal methods. First, the definition, history, instrumentation, and mechanism of hydrothermal and solvothermal methods as well as the important parameters af-fecting the nucleation and crystal growth of nanomaterials are briefly introduced. Then the specific hydrothermal and solvothermal methods used to grow oxides, Group II-VI, III-V, IV, transitional metals, and metal-organic framework nanoparticles are summarized. Finally, the hydrothermal and solvothermal strategies used for the surface modification of nanomaterials are discussed.

  2. Mineralogical and Fluid Inclusion Studies on Seafloor Hydrothermal Vents at TA25 Caldera, Tonga Arc

    NASA Astrophysics Data System (ADS)

    Choi, S. K.; Pak, S. J.; Choi, S. H.; Lee, K. Y.; Kim, H. S.; Lee, I. K.

    2015-12-01

    The extensive hydrothermal vent field was discovered at TA25("V18s-HR" in the SO-167 cruise) caldera in the Tonga arc, southwest Pacific. The TA25 caldera is a submarine volcano of dacitic composition and hosts the NE- and NW-trending hydrothermal vent on the western caldera wall. These active hydrothermal crusters are mostly small (chimney: <0.5m in tall; sulfide mound: <3m in diameter) and immature, and emit the transparent fluids of which temperature range from 150℃ to 242℃ (average = 203℃). The hydrothermal sulfide ores, recovered by ROV and/or TV-grab, are mainly composed of sphalerite, pyrite, marcasite, galena, chalcopyrite, covellite, tennantite, enargite and sulfates such as barite, gypsum/anhydrite. It is observed that three distinct mineralogical zonation from exterior to interior of the chimneys: (1) barite-gypsum/anhydrite-pyrite-sphalerite; (2) sphalerite-pyrite-galena±chalcopyrite; (3) sphaleirte-pyrite-chalcopyrite-enargite-tennantite±galena±covellite. FeS content in sphalerite increases from chimney exterior to interior. Chalcopyrite is more abundant in the mound than in the chimney, implying fluid temperatures in mound are greater than in the chimney. The enargite assemblage (pyrite-chalcopyrite-enargite-tennantite) is indicative of high-sulfidation epithermal deposits. Fluid inclusions on barite crystals from mound samples show mono-type inclusion (two-phase liquid-rich inclusions) which is less than 20㎛ in diameter. Homogenization temperatures and salinities from fluid inclusion study range from 148℃ to 341℃ (average = 213℃) and 0.4 to 3.6 equiv. wt.% NaCl, respectively. The main mineralization temperature in mound might be greater than 200℃ since barite on fluid inclusion is early stage mineral.

  3. The Magmatic-Hydrothermal Transition of The Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Chambefort, I. S.; Dilles, J. H.; Heinrich, C. A.; Wälle, M.

    2015-12-01

    The Taupo Volcanic Zone (TVZ), New Zealand is a rifting arc that produced over the last 2 My over 6000 km3 of caldera-associated volcanic products. About four times as much magma is estimated to be trapped at depth below the central TVZ than is erupted, feeding heat, volatiles and chemicals into 23 geothermal systems with a total of ca. 4.2 GW thermal energy release. We present here a combined study linking melt, hypersaline and dilute fluid inclusion chemistry, surface and reservoir fluid chemistry and whole rock lithochemistry and discuss the magmatic-hydrothermal chemical zoning in large silicic systems. New dataset of full lithogeochemistry in active geothermal systems of the TVZ refine the zoned chemical footprint left by both dilute meteoric-dominated and magmatic-hydrothermal fluids. Altered whole rock trace elements content (including precious metals and volatiles) shows major variation with depth, due to the influence of past hydrothermal activity, magmatic degassing, natural variability of the reservoir rocks, and current active fluid-rock interactions. The concentrations of Li, Cs, Tl, Bi, Sn, Ag, Se, Te, as well as Au, generally increase upward toward the paleosurface, where they are 10-100 times greater than near known or potentially 'active' intrusions. New direct in-situ analyses of trapped fluid inclusions in phenocrysts and hydrothermal veins associated with magmatic subsolidus crystallization are compared with liquid-dominated dilute fluid inclusions and geothermal fluids Li, Cs, B, Na, Cl, K content (and precious metals) providing a unique direct assessment of the role of each component (magma, rock, fluids) in New Zealand's world known geothermal systems.

  4. Water-rock interactions in warm Enceladus inferred from silica formation and hydrothermal experiments

    NASA Astrophysics Data System (ADS)

    Sekine, Yasuhito; Shibuya, T.; Postberg, F.; Hsu, H.; Suzuki, K.; Masaki, Y.; Kuwatani, T.; Tachibana, S.

    2013-10-01

    A plume of vapour and water ice particles rich in sodium salts erupting from warm fractures near the south pole of Saturn’s icy moon Enceladus suggest the presence of a liquid-water reservoir in the interior, which is or has been in contact with the moon’s rocky core. Cassini’s findings of silica nanoparticles in the E-ring originating from the plumes imply active geochemistry involving hydrothermal water-rock interactions. However, the particular conditions of temperature and mineral compositions that can sustain the formation of silica inside Enceladus are yet unconstrained. Here we report laboratory experiments and numerical calculations of hydrothermal reactions simulating Enceladus’ interior. To achieve silica concentrations in the fluids, which are sufficient for the formation of colloidal silica nanoparticles, hydrous silicates of Enceladus’ core would be composed mainly of serpentine and saponite/talc, consistent with a chondritic composition of its rocky core. Fluid temperature needs to reach ≥ ~100°C, suggesting extensive hydrothermal activity. Our experimental results suggest that, in contrast to previous reports, a lack of N2 in the plumes is in good agreement with a hot interior because decomposition of primordial NH3 to N2 would have been kinetically inhibited even at high temperatures (i.e., ~400°C). These results support the idea that deep hydrothermal circulation in a warm core drives hotspots in the ice mantle, possibly causing large tidal dissipation and anomalous heat flux from the south-pole region. Furthermore, to achieve such high temperatures in Enceladus, the Saturnian system might have formed in ~3-5 Myrs after the CAIs formation in the protoplanetary disk, consistent with the proposed formation age for another moon of Saturn, Iapetus.

  5. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-01

    It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2wt% bio-oil, having a high heating value of 32.35MJ/kg and a viscosity of 305cp, and 22wt% solid residue were realized at a liquefaction temperature of 250°C, a reaction time of 60min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels. PMID:26013692

  6. Hydrothermal Syntheses of Colloidal Carbon Spheres from Cyclodextrins

    SciTech Connect

    Shin, Yongsoon; Wang, Li Q.; Bae, In-Tae; Arey, Bruce W.; Exarhos, Gregory J.

    2008-09-18

    Colloidal carbon spheres have been prepared from aqueous alpha-, beta-, and gamma-cyclodextrin (CD) solutions in closed systems under hydrothermal conditions at 160 oC. Both liquid and solid-state 13C NMR spectra taken for samples at different reaction times have been used to monitor the dehydration and carbonization pathways. CD slowly hydrolyzes to glucose and forms 5-hydroxymethyl furfural (HMF) followed by carbonization into colloidal carbon spheres. The isolated carbon spheres are 70-150 nm in diameter, exhibit a core-shell structure, and are comprised of a condensed core (C=C) peppered with resident chemical functionalities including carboxylate and hydroxyl groups. Evidence from 13C solid-state NMR and FT-IR spectra reveal that the evolving carbon spheres show a gradual increase in the amount of aromatic carbon as a function of reaction time and that the carbon spheres generated from gamma-CD contain significantly higher aromatic carbon than those derived from alpha- and beta-CD.

  7. The partitioning of uranium and neptunium onto hydrothermally altered concrete

    SciTech Connect

    Zhao, P.; Allen, P.G.; Sylwester, E.R.; Viani, B.E.

    1999-10-14

    Cementitious materials that are used to construct the ground support for high-level repositories have a high probability of interacting with radionuclide-bearing fluids derived from failed waste packages. Cementitious materials provide a highly alkaline environment; pore fluids in concrete can have pH {gt} 10 for thousands to hundreds of thousands of years. Studies have shown that fresh concrete and cement phases strongly retard or immobilize certain actinides. Consequently, cementitious materials may serve as a barrier to the release of the radionuclides to the far field. However, the effect of thermal alteration of these materials, which may occur in high-level repositories, on their interaction with radionuclides has not been addressed. In contrast to retardation, colloidal silica-enriched particles that are abundant in the pore fluids of cementitious materials may facilitate radionuclide migration through the near-field into the adjacent geological environment. Due to the uncertainties of these two opposite effects, it is important to investigate the interaction of actinides with cementitious materials under varying conditions. It is expected that cementitious materials in high-level waste repositories will be subjected to and altered by hot dry and/or humid conditions forhundreds to thousands of years by the time they interact with radionuclide-bearing fluids. After alteration, the chemical and mineralogical properties of these materials will be significantly different from that of the as-placed or fresh concrete. To assess the effect that this alteration would have on radionuclide interactions, samples of hardened concrete (untreated concrete) were hydrothermally heated at 200 C for 8 months (treated concrete). The concrete used in the experiments consisted of portland cement with an aggregate of dolomitic limestone. X-ray diffraction analysis has shown that portlandite and amorphous calcium silicate hydrate gels were converted to the crystalline calcium

  8. Laser refrigeration of hydrothermal nanocrystals in physiological media

    PubMed Central

    Roder, Paden B.; Smith, Bennett E.; Zhou, Xuezhe; Crane, Matthew J.; Pauzauskie, Peter J.

    2015-01-01

    Coherent laser radiation has enabled many scientific and technological breakthroughs including Bose–Einstein condensates, ultrafast spectroscopy, superresolution optical microscopy, photothermal therapy, and long-distance telecommunications. However, it has remained a challenge to refrigerate liquid media (including physiological buffers) during laser illumination due to significant background solvent absorption and the rapid (∼ps) nonradiative vibrational relaxation of molecular electronic excited states. Here we demonstrate that single-beam laser trapping can be used to induce and quantify the local refrigeration of physiological media by >10 °C following the emission of photoluminescence from upconverting yttrium lithium fluoride (YLF) nanocrystals. A simple, low-cost hydrothermal approach is used to synthesize polycrystalline particles with sizes ranging from <200 nm to >1 μm. A tunable, near-infrared continuous-wave laser is used to optically trap individual YLF crystals with an irradiance on the order of 1 MW/cm2. Heat is transported out of the crystal lattice (across the solid–liquid interface) by anti-Stokes (blue-shifted) photons following upconversion of Yb3+ electronic excited states mediated by the absorption of optical phonons. Temperatures are quantified through analysis of the cold Brownian dynamics of individual nanocrystals in an inhomogeneous temperature field via forward light scattering in the back focal plane. The cold Brownian motion (CBM) analysis of individual YLF crystals indicates local cooling by >21 °C below ambient conditions in D2O, suggesting a range of potential future applications including single-molecule biophysics and integrated photonic, electronic, and microfluidic devices. PMID:26589813

  9. Laser refrigeration of hydrothermal nanocrystals in physiological media.

    PubMed

    Roder, Paden B; Smith, Bennett E; Zhou, Xuezhe; Crane, Matthew J; Pauzauskie, Peter J

    2015-12-01

    Coherent laser radiation has enabled many scientific and technological breakthroughs including Bose-Einstein condensates, ultrafast spectroscopy, superresolution optical microscopy, photothermal therapy, and long-distance telecommunications. However, it has remained a challenge to refrigerate liquid media (including physiological buffers) during laser illumination due to significant background solvent absorption and the rapid (∼ ps) nonradiative vibrational relaxation of molecular electronic excited states. Here we demonstrate that single-beam laser trapping can be used to induce and quantify the local refrigeration of physiological media by >10 °C following the emission of photoluminescence from upconverting yttrium lithium fluoride (YLF) nanocrystals. A simple, low-cost hydrothermal approach is used to synthesize polycrystalline particles with sizes ranging from <200 nm to >1 μm. A tunable, near-infrared continuous-wave laser is used to optically trap individual YLF crystals with an irradiance on the order of 1 MW/cm(2). Heat is transported out of the crystal lattice (across the solid-liquid interface) by anti-Stokes (blue-shifted) photons following upconversion of Yb(3+) electronic excited states mediated by the absorption of optical phonons. Temperatures are quantified through analysis of the cold Brownian dynamics of individual nanocrystals in an inhomogeneous temperature field via forward light scattering in the back focal plane. The cold Brownian motion (CBM) analysis of individual YLF crystals indicates local cooling by >21 °C below ambient conditions in D2O, suggesting a range of potential future applications including single-molecule biophysics and integrated photonic, electronic, and microfluidic devices. PMID:26589813

  10. Hydrothermal Pretreatment of Date Palm (Phoenix dactylifera L.) Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential.

    PubMed

    Fang, Chuanji; Schmidt, Jens Ejbye; Cybulska, Iwona; Brudecki, Grzegorz P; Frankær, Christian Grundahl; Thomsen, Mette Hedegaard

    2015-01-01

    Date palm residues are one of the most promising lignocellulosic biomass for bioethanol production in the Middle East. In this study, leaflets and rachis were subjected to hydrothermal pretreatment to overcome the recalcitrance of the biomass for enzymatic conversion. Evident morphological, structural, and chemical changes were observed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy after pretreatment. High glucan (>90% for both leaflets and rachis) and xylan (>75% for leaflets and >79% for rachis) recovery were achieved. Under the optimal condition of hydrothermal pretreatment (210°C/10 min) highly digestible (glucan convertibility, 100% to leaflets, 78% to rachis) and fermentable (ethanol yield, 96% to leaflets, 80% to rachis) solid fractions were obtained. Fermentability test of the liquid fractions proved that no considerable inhibitors to Saccharomyces cerevisiae were produced in hydrothermal pretreatment. Given the high sugar recovery, enzymatic digestibility, and ethanol yield, production of bioethanol by hydrothermal pretreatment could be a promising way of valorization of date palm residues in this region. PMID:26347878

  11. Hydrothermal Pretreatment of Date Palm (Phoenix dactylifera L.) Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential

    PubMed Central

    Fang, Chuanji; Schmidt, Jens Ejbye; Cybulska, Iwona; Brudecki, Grzegorz P.; Frankær, Christian Grundahl; Thomsen, Mette Hedegaard

    2015-01-01

    Date palm residues are one of the most promising lignocellulosic biomass for bioethanol production in the Middle East. In this study, leaflets and rachis were subjected to hydrothermal pretreatment to overcome the recalcitrance of the biomass for enzymatic conversion. Evident morphological, structural, and chemical changes were observed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy after pretreatment. High glucan (>90% for both leaflets and rachis) and xylan (>75% for leaflets and >79% for rachis) recovery were achieved. Under the optimal condition of hydrothermal pretreatment (210°C/10 min) highly digestible (glucan convertibility, 100% to leaflets, 78% to rachis) and fermentable (ethanol yield, 96% to leaflets, 80% to rachis) solid fractions were obtained. Fermentability test of the liquid fractions proved that no considerable inhibitors to Saccharomyces cerevisiae were produced in hydrothermal pretreatment. Given the high sugar recovery, enzymatic digestibility, and ethanol yield, production of bioethanol by hydrothermal pretreatment could be a promising way of valorization of date palm residues in this region. PMID:26347878

  12. First hydrothermal active vent discovered on the Galapagos Microplate

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Wu, G.; Su, X.; Zhang, G.; Chinese DY115-21 Leg 3 Scientific Party

    2011-12-01

    The Galapagos Microplate (GM) lies on the western Gaplapagos Spreading Center (GSC), representing one of the classic Ridge-Ridge-Ridge (R-R-R) plate boundaries of the Nazca, Cocos, and Pacific plates. The presence of the 'black smoke' and hydrothermal vent community were firstly confirmed on the GSC. Lots of hydrothermal fields were discovered on the center and eastern GSC, while the western GSC has not been well investigated. During 17th Oct. to 9th Nov. 2009, the 3rd leg of Chinese DY115-21 cruise with R/V Dayangyihao has been launched along 2°N-5°S near equatorial East Pacific Rise (EPR). Two new hydrothermal fields were confirmed. One is named 'Precious Stone Mountain', which is the first hydrothermal field on the GM. The other is found at 101.47°W, 0.84°S EPR. The 'Precious Stone Mountain' hydrothermal field (at 101.49°W, 1.22°N) is located at an off-axial seamount on the southern GM boundary, with a depth from 1,450 to 1,700m. Hydrothermal fluids emitting from the fissures and hydrothermal fauna were captured by deep-tow video. Few mineral clasts of pyrite and chalcopyrite were separated from one sediment sample, but no sulfide chimney was found yet. Hydrothermal fauna such as alive mussels, crabs, shrimps, tubeworms, giant clams, as well as rock samples were collected by TV-Grab. The study of the seafloor classification with Simrad EM120 multi-beam echosounder has been conducted on the 'Precious Stone Mountain' hydrothermal field. The result indicates that seafloor materials around the hydrothermal field can be characterized into three types, such as the fresh lava, hydrothermal sediment, and altered rock.

  13. Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes

    SciTech Connect

    Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen

    2014-03-01

    Graphical abstract: Hexagonal Mg(OH){sub 2} nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH){sub 2} nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH){sub 2} nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH){sub 2} nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH){sub 2} nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH){sub 2} nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH){sub 2}) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH){sub 2} nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH){sub 2} nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH){sub 2} nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes.

  14. Mixing from below in hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Gomez-Rivas, Enrique; Markl, Gregor; Walter, Bejamin

    2014-05-01

    Unconformity-related hydrothermal ore deposits typically show indications of mixing of two end-member fluids: (a) hot, deep, rock-buffered basement brines and (b) colder fluids derived from the surface or overlying sediments. The hydromechanics of bringing these fluids together from above and below remain unclear. Classical percolative Darcy-flow models are inconsistent with (1) fluid overpressure indicated by fracturing and brecciation, (2) fast fluid flow indicated by thermal disequilibrium, and (3) strong fluid composition variations on the mm-scale, indicated by fluid inclusion analyses (Bons et al. 2012; Fusswinkel et al. 2013). We propose that fluids first descend, sucked down by desiccation reactions in exhumed basement. Oldest fluids reach greatest depths, where long residence times and elevated temperatures allow them the extensively equilibrate with their host rock, reach high salinity and scavenge metals, if present. Youngest fluids can only penetrate to shallower depths and can (partially) retain signatures from their origin, for example high Cl/Br ratios from the dissolution of evaporitic halite horizons. When fluids are released from all levels of the crustal column, these fluids mix during rapid ascent to form hydrothermal ore deposits. Mixing from below provides a viable hydromechanical mechanism to explain the common phenomenon of mixed shallow and deep fluids in hydrothermal ore deposits. Bons, P.D., Elburg, M.A., Gomez-Rivas, E. 2012. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. doi:10.1016/j.jsg.2012.07.005 Fusswinkel, T., Wagner, T., Wälle, M., Wenzel, T., Heinrich, C.A., Markl, M. 2013. Fluid mixing forms basement-hosted Pb-Zn deposits: Insight from metal and halogen geochemistry of individual fluid inclusions. Geology. doi:10.1130/G34092.1

  15. Abiotic Organic Chemistry in Hydrothermal Systems.

    NASA Astrophysics Data System (ADS)

    Simoneit, B. R.; Rushdi, A. I.

    2004-12-01

    Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.

  16. Hydrothermal synthesis of lutetium disilicate nanoparticles

    SciTech Connect

    Tang Xiaoping; Gao Yanfeng; Chen Hongfei; Luo Hongjie

    2012-04-15

    A simple, low-cost hydrothermal method was developed to synthesize irregular-and rod-shaped lutetium disilicate (Lu{sub 2}Si{sub 2}O{sub 7}) powders with sizes ranging from 71 to 340 nm. The synthesis temperature was 260 Degree-Sign C, which is nearly 1300 Degree-Sign C lower than that required for the solid-state reaction. The results indicated that both the hydrothermal temperature and pH values had great influences on the composition, crystalline phase and morphology of the powders. The formation mechanism, basic thermophysical properties, stability and anticorrosion properties of the Lu{sub 2}Si{sub 2}O{sub 7} powders were also investigated. The obtained powders possessed low thermal conductivity, a suitable thermal expansion coefficient (3.92-5.17 Multiplication-Sign 10{sup -6} K{sup -1}) with the silicon-based substrate and excellent thermal and structural stability. During hot corrosion testing, the surfaces of the samples appeared to react with the water and molten salt vapors, but no serious failure occurred. - Graphical abstract: An image for the as-prepared Lu{sub 2}Si{sub 2}O{sub 7} powders (left) and XRD pattern (right) (inset shows the SEM graph of powders). Highlights: Black-Right-Pointing-Pointer We synthesized Lu{sub 2}Si{sub 2}O{sub 7} powders via a hydrothermal process at 260 Degree-Sign C. Black-Right-Pointing-Pointer Crystalline phase and morphology of the powders changed with experimental parameter. Black-Right-Pointing-Pointer Hot corrosion was determined in an airflow environment containing alkaline vapor.

  17. The hydrothermal alteration of cooling lava domes

    NASA Astrophysics Data System (ADS)

    Ball, Jessica L.; Stauffer, Philip H.; Calder, Eliza S.; Valentine, Greg A.

    2015-12-01

    Hydrothermal alteration is a recognized cause of volcanic instability and edifice collapse, including that of lava domes or dome complexes. Alteration by percolating fluids transforms primary minerals in dome lavas to weaker secondary products such as clay minerals; moreover, secondary mineral precipitation can affect the porosity and permeability of dome lithologies. The location and intensity of alteration in a dome depend heavily on fluid pathways and availability in conjunction with heat supply. Here we investigate postemplacement lava dome weakening by hydrothermal alteration using a finite element numerical model of water migration in simplified dome geometries. This is combined with the rock alteration index (RAI) to predict zones of alteration and secondary mineral precipitation. Our results show that alteration potential is highest at the interface between the hot core of a lava dome and its clastic talus carapace. The longest lived alteration potential fields occur in domes with persistent heat sources and permeabilities that allow sufficient infiltration of water for alteration processes, but not so much that domes cool quickly. This leads us to conclude that alteration-induced collapses are most likely to be shallow seated and originate in the talus or talus/core interface in domes which have a sustained supply of magmatic heat. Mineral precipitation at these zones of permeability contrast could create barriers to fluid flow, potentially causing gas pressurization which might promote deeper seated and larger volume collapses. This study contributes to our knowledge of how hydrothermal alteration can affect lava domes and provides constraints on potential sites for alteration-related collapses, which can be used to target hazard monitoring.

  18. Porosity evolution in Icelandic hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  19. Hydrothermal processes at Mount Rainier, Washington

    SciTech Connect

    Frank, D.G.

    1985-01-01

    Field studies and thermal-infrared mapping at Mount Rainier indicate areas of active hydrothermal alteration where excess surface heat flux is about 9 megawatts. Three representative settings include: (1) An extensive area (greater than 12,000 m/sup 2/) of heated ground and slightly acidic boiling-point fumaroles at 76-82/sup 0/C at East and West Craters on the volcano's summit; (2) A small area (less than 500 m/sup 2/) of heated ground and sub-boiling-point fumaroles at 55-60/sup 0/C on the upper flank at Disappointment Cleaver, and other probably similar areas at Willis Wall, Sunset Amphitheater, and the South Tahoma and Kautz headwalls; (3) Sulfate and carbon dioxide enriched thermal springs at 9-24/sup 0/C on the lower flank of the volcano in valley walls beside the Winthrop and Paradise Glaciers. In addition, chloride- and carbon dioxide-enriched thermal springs issue from thin sediments that overlie Tertiary rocks at, or somewhat beyond, the base of the volcanic edifice in valley bottoms of the Nisqually and Ohanapecosh Rivers where maximum spring temperatures are 19-25/sup 0/C, respectively, and where extensive travertine deposits have developed. The heat flow, distribution of thermal activity, and nature of alteration products indicate that a narrow, central hydrothermal system exists within Mount Rainier forming steam-heated snowmelt at the summit craters and localized leakage of steam-heated fluids within 2 kilometers of the summit. The lateral extent of the hydrothermal system is limited in that only sparse, neutral sulfate-enriched thermal water issues from the lower flank of the cone. Simulations of geochemical mass transfer suggest that the thermal springs may be derived from an acid sulfate-chloride parent fluid which has been neutralized by reaction with andesite and highly diluted with shallow ground water.

  20. Hydrothermal Alteration in the Logatchev Hydrothermal Field: Implications From Secondary Mineral Assemblages and Mineral Chemistry

    NASA Astrophysics Data System (ADS)

    Lackschewitz, K. S.; Augustin, N.; Devey, C. W.; Eisenhauer, A.; Garbe-Schoenberg, D.; James, R.

    2005-12-01

    We present new data on secondary mineral assemblages, clay and whole rock chemistry and clay mineral strontium and lithium isotopic compositions of altered rocks and sediments from the active, ultramafic-hosted Logatchev hydrothermal field reflecting various alteration conditions (e.g. fluid mixing, water-rock interaction). The altered ultramafic rocks are mainly consist of lizardite, chrysotile whereas magnetite and pyrite are minor minerals. Chlorite, chlorite-smectite mixed-layer (e.g., corrensite), smectite and talc are additional common phases in the clay fraction of most of these samples.Iron-hydroxides and iron sulfides are the main components of the hydrothermal crusts, with some amounts of pyroxene, chlorite, illite and pyrite. The hydrothermal sediments beneath the crusts are characterized by quartz, smectite and chlorite as main minerals. Analyses of clay separates representing a variety of alteration styles demonstrates that significant and characteristic changes in the bulk rock chemical composition are associated with various alteration conditions. The elements Cr, Cu, Pb and U appears to have a general enrichment in the lizardite and chlorite concentrates in comparison to a depleted mantle. 87Sr/86Sr ratios of clay concentrates vary between 0.7083 and 0.7096 suggesting that the clays either formed as a result of seawater alteration or hydrothermal alteration with various portions of seawater. The strontium isotopic ratio of a chlorite sample from hydrothermal sediments beneath the hydrothermal crust is much lower than the isotopic data reported for the lizardites suggesting precipitation from fluid with lower seawater content. The Li isotopic composition (δ7Li) of the clay separates varies between -5.4 and +6.4‰. Thus, the clays are enriched in 6Li relative to both seawater (~31‰) and hydrothermal vent fluids from the Logatchev field (~6‰) suggesting that 6Li is preferentially retained in alteration products. When considered together with the

  1. Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction

    SciTech Connect

    Liang, Xianqing; Zhong, Jun; Shi, Yalin; Guo, Jin; Huang, Guolong; Hong, Caihao; Zhao, Yidong

    2015-01-15

    Highlights: • A novel approach to synthesis of N-doped few-layer graphene has been developed. • The high doping levels of N in products are achieved. • XPS and XANES results reveal a thermal transformation of N bonding configurations. • The developed method is cost-effective and eco-friendly. - Abstract: Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22 at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications.

  2. Hydrothermal synthesis of La1-XSrXMnO3 dendrites

    NASA Astrophysics Data System (ADS)

    Makovec, Darko; Goršak, Tanja; Zupan, Klementina; Lisjak, Darja

    2013-07-01

    Single-crystalline dendrites of La1-XSrXMnO3 (LSMO) perovskite were synthesized using a simple hydrothermal method without the use of surfactants. The Sr2+, La3+, and Mn2+ ions were co-precipitated with aqueous NaOH under a flow of Ar. The aqueous suspension of the precipitates was hydrothermally treated in an autoclave filled with ambient air at temperatures ranging from 220 °C to 300 °C. The products were characterized using a combination of X-ray diffractometry (XRD) and transmission electron microscopy (TEM, HREM, EDXS). The dendrites formed either in a "tree-like" shape, with the trunk and the branches extending along the <111> directions of the quasi-cubic structure, or in the hexagonal shape of a "snowflake". The mechanism of the dendrite nucleation was proposed, based on phase development. During the hydrothermal treatment at lower temperatures the hexagonal platelet crystals of Sr1-XLaXMnO3 with the hexagonal perovskite structure form first. At higher temperatures the LSMO nucleates epitaxially at the edges of the hexagonal crystals and grows outward, forming the dendrite. To the best of our knowledge, this is the first report on the synthesis of crystalline dendrites of La1-XSrXMnO3 perovskite.

  3. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    SciTech Connect

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  4. Merging genomes with geochemistry in hydrothermal ecosystems.

    PubMed

    Reysenbach, Anna-Louise; Shock, Everett

    2002-05-10

    Thermophilic microbial inhabitants of active seafloor and continental hot springs populate the deepest branches of the universal phylogenetic tree, making hydrothermal ecosystems the most ancient continuously inhabited ecosystems on Earth. Geochemical consequences of hot water-rock interactions render these environments habitable and supply a diverse array of energy sources. Clues to the strategies for how life thrives in these dynamic ecosystems are beginning to be elucidated through a confluence of biogeochemistry, microbiology, ecology, molecular biology, and genomics. These efforts have the potential to reveal how ecosystems originate, the extent of the subsurface biosphere, and the driving forces of evolution. PMID:12004120

  5. Hydrothermal mineralising systems as critical systems

    NASA Astrophysics Data System (ADS)

    Hobbs, Bruce

    2015-04-01

    Hydrothermal mineralising systems as critical systems. Bruce E Hobbs1,2, Alison Ord1 and Mark A. Munro1. 1. Centre for Exploration Targeting, The University of Western Australia, M006, 35 Stirling Highway, Crawley, WA 6009, Australia. 2. CSIRO Earth and Resource Engineering, Bentley, WA, Australia Hydrothermal mineralising systems are presented as large, open chemical reactors held far from equilibrium during their life-time by the influx of heat, fluid and dissolved chemical species. As such they are nonlinear dynamical systems and need to be analysed using the tools that have been developed for such systems. Hydrothermal systems undergo a number of transitions during their evolution and this paper focuses on methods for characterising these transitions in a quantitative manner and establishing whether they resemble first or second (critical) phase transitions or whether they have some other kind of nature. Critical phase transitions are characterised by long range correlations for some parameter characteristic of the system, power-law probability distributions so that there is no characteristic length scale and a high sensitivity to perturbations; as one approaches criticality, characteristic parameters for the system scale in a power law manner with distance from the critical point. The transitions undergone in mineralised hydrothermal systems are: (i) widespread, non-localised mineral alteration involving exothermic mineral reactions that produce hydrous silicate phases, carbonates and iron-oxides, (ii) strongly localised veining, brecciation and/or stock-work formation, (iii) a series of endothermic mineral reactions involving the formation of non-hydrous silicates, sulphides and metals such as gold, (iv) multiple repetitions of transitions (ii) and (iii). We have quantified aspects of these transitions in gold deposits from the Yilgarn craton of Western Australia using wavelet transforms. This technique is convenient and fast. It enables one to establish if

  6. Vertical Cable Seismic Survey for Hydrothermal Deposit

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2012-04-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques

  7. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    SciTech Connect

    Ridley, W.I.; Perfit, M.R.; Smith, M.F.; Jonasson, I.R.

    1994-06-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85{degree}49 feet W and 85{degree} 55 feet W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens` equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (<10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. 50 refs., 10 figs., 4 tabs.

  8. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  9. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    SciTech Connect

    Zheng, Ji-Lu Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  10. Carbon dioxide in magmas and implications for hydrothermal systems

    USGS Publications Warehouse

    Lowenstern, J. B.

    2001-01-01

    This review focuses on the solubility, origin, abundance, and degassing of carbon dioxide (CO2) in magma-hydrothermal systems, with applications for those workers interested in intrusion-related deposits of gold and other metals. The solubility of CO2 increases with pressure and magma alkalinity. Its solubility is low relative to that of H2O, so that fluids exsolved deep in the crust tend to have high CO2/H2O compared with fluids evolved closer to the surface. Similarly, CO2/H2O will typically decrease during progressive decompression- or crystallization-induced degassing. The temperature dependence of solubility is a function of the speciation of CO2, which dissolves in molecular form in rhyolites (retrograde temperature solubility), but exists as dissolved carbonate groups in basalts (prograde). Magnesite and dolomite are stable under a relatively wide range of mantle conditions, but melt just above the solidus, thereby contributing CO2 to mantle magmas. Graphite, diamond, and a free CO2-bearing fluid may be the primary carbon-bearing phases in other mantle source regions. Growing evidence suggests that most CO2 is contributed to arc magmas via recycling of subducted oceanic crust and its overlying sediment blanket. Additional carbon can be added to magmas during magma-wallrock interactions in the crust. Studies of fluid and melt inclusions from intrusive and extrusive igneous rocks yield ample evidence that many magmas are vapor saturated as deep as the mid crust (10-15 km) and that CO2 is an appreciable part of the exsolved vapor. Such is the case in both basaltic and some silicic magmas. Under most conditions, the presence of a CO2-bearing vapor does not hinder, and in fact may promote, the ascent and eruption of the host magma. Carbonic fluids are poorly miscible with aqueous fluids, particularly at high temperature and low pressure, so that the presence of CO2 can induce immiscibility both within the magmatic volatile phase and in hydrothermal systems

  11. Localization Effect on Pt-Loaded Ce0.5Zr0.5O2 Nanoparticles Inserted Into Mesoporous SBA-16 by Hydrothermal Processing.

    PubMed

    Yotou, Hiroaki; Okamoto, Takumi; Ito, Miho; Sekino, Tohru; Tanaka, Shun-Ichiro

    2015-09-01

    We succeeded to use hydrothermal treatment to insert prefabricated Pt-loaded Ce0.5Zr0.5O2 (PtCZ) nanoparticles into the mesopores of the SBA-16 mesoporous silica without disordering of the mesoporous structure. Samples prepared by the hydrothermal treatment exhibited superior oxygen storage capacity compared to that of simple dry mixed sample. The oxygen storage capacity of the hydrothermally treated PtCZ is attributed to the localized PtCZ nanoparticles inside the mesopores of the SBA-16. FTIR analysis suggested that the PtCZ nanoparticles inside the mesopores possess the Si-O-Zr linkages that are bonded to the inner walls of the SBA-16 host. This linkage is the key reason for the superior oxygen storage capacity of PtCZ localized in the mesopores by hydrothermal treatment. It is considered that the formation of the Si-O-Zr linkage in the hydrothermally treated samples resulted in crystalline distortions of Ce0.5Zr0.5O2 nanoparticles inside the mesopores, and which contribute to enhance the oxygen storage capacity of PtCZ. PMID:26716294

  12. Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction

    SciTech Connect

    Butterfield, D.A.; McDuff, R.E.; Lilley, M.D. ); Massoth, G.J. ); Lupton, J.E. )

    1990-08-10

    Hydrothermal fluids collected from the ASHES vent field in 1986, 1987, and 1988 exhibit a very wide range of chemical composition over a small area ({approximately} 60 m in diameter). Compositions range from a 300C, gas-enriched (285 mmol/kg CO{sub 2}), low-chlorinity ({approximately} 33% of seawater) fluid to a 328C, relatively gas-depleted (50 mmol/kg CO{sub 2}), high-chlorinity ({approximately} 116% of seawater) fluid. The entire range of measured compositions at ASHES is best explained by a single hydrothermal fluid undergoing phase separation while rising through the ocean crust, followed by partial segregation of the vapor and brine phases. Other mechanisms proposed to produce chlorinity variations in hydrothermal fluids (precipitation/dissolution of a chloride-bearing mineral or crustal hydration) cannot produce the covariation of chlorinity and gas content observed at ASHES. There is good argument of the measured fluid compositions generated by a simple model of phase separation, in which gases are partitioned according to Henry's law and all salt remains in the liquid phase. Significant enrichments in silica, lithium and boron in the low-chlorinity fluids over levels predicted by the model are attributed to fluid-rock interaction in the upflow zone. Depletions in iron and calcium suggest that these elements have been removed by iron-sulfide and anhydrite precipitation at some time in the history of the low-chlorinity fluids. The distribution of low- and high-chlorinity venting is consistent with mechanisms of phase segregation based on differential buoyancy or relative permeability. The relatively shallow depth of the seafloor (1,540 m) and the observed chemistry of ASHES fluids are consistent with phase separation in the sub-critical or near-critical region.

  13. The long term observed effect of air and water injection into a fracture hydrothermal system

    SciTech Connect

    Mario Cesar Suarez Arriaga; Mirna Tello Lopez; Luis de Rio; Hector Gutierrez Puente

    1992-01-01

    Injection of atmospheric air mixed with waste reinjection liquid, has been occurring since 1982 at the Los Azufres, Mexico volcanic hydrothermal system. Several chemical and thermodynamical evidences show that air injection into this fractured geothermal field, could be considered as a long term natural tracer test. Nitrogen and Argon separated from the air mixture migrate from reinjection wells to production zones following preferential paths closely related to high permeability conduits. These paths can be detected, looking into the N2 solubility evolution of production wells. The anisotropic nature of the fractured volcanic rock, would demand considerably amounts of artificial tracer in order to be detected at the producing wells, specially when fluid extraction is low. This explains the unsuccessful recovery of the artificial tracer tests performed in past years at Tejamaniles, the southern field's sector. On the other hand, chloride concentrations and other salts, are increasing in the liquid produced by the oldest wells of the sector.

  14. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes.

    PubMed

    Berge, Nicole D; Li, Liang; Flora, Joseph R V; Ro, Kyoung S

    2015-09-01

    Although there are numerous studies suggesting hydrothermal carbonization is an environmentally advantageous process for transformation of wastes to value-added products, a systems level evaluation of the environmental impacts associated with hydrothermal carbonization and subsequent hydrochar combustion has not been conducted. The specific objectives of this work are to use a life cycle assessment approach to evaluate the environmental impacts associated with the HTC of food wastes and the subsequent combustion of the generated solid product (hydrochar) for energy production, and to understand how parameters and/or components associated with food waste carbonization and subsequent hydrochar combustion influence system environmental impact. Results from this analysis indicate that HTC process water emissions and hydrochar combustion most significantly influence system environmental impact, with a net negative GWP impact resulting for all evaluated substituted energy-sources except biomass. These results illustrate the importance of electricity production from hydrochar particularly when it is used to offset coal-based energy sources. HTC process water emissions result in a net impact to the environment, indicating a need for developing appropriate management strategies. Results from this analysis also highlight a need for additional exploration of liquid and gas-phase composition, a better understanding of how changes in carbonization conditions (e.g., reaction time and temperature) influence metal and nutrient fate, and the exploration of liquid-phase treatment. PMID:26049203

  15. The reaction of synthetic nuclear waste glass in steam and hydrothermal solution

    SciTech Connect

    Ebert, W.L.; Bates, J.K.

    1989-12-31

    Glass monoliths of the WVCM 44, WVCM 50, SRL 165, and SRL 202 compositions were reacted in steam and in hydrothermal liquid at 200{degree}C. The glass reaction resulted in the formation of leached surface layers in both environments. The reaction in steam proceeds at a very low rate until precipitates form, after which the glass reaction proceeds at a greater rate. Precipitates were formed on all glass types reacted in steam. The assemblage of phases formed was unique to each glass type, but several precipitates were common to all glasses, including analcime, gyrolite, and weeksite. Reaction in steam occurs in a thin layer of condensed water which becomes saturated with respect to the observed phases after only a few days of reaction. The reaction in steam is accelerated relative to reaction in hydrothermal liquid in the sense that secondary phases from after a shorter reaction time, that is, after less glass has reacted, because of the smaller effective leachant volume present in the steam environment. A knowledge of the secondary phases which form and their influence on the glass reaction rate is crucial to the modeling effort of the repository program. 9 refs., 3 figs., 2 tabs.

  16. Predicting the drying properties of sludge based on hydrothermal treatment under subcritical conditions.

    PubMed

    Mäkelä, Mikko; Fraikin, Laurent; Léonard, Angélique; Benavente, Verónica; Fullana, Andrés

    2016-03-15

    The effects of hydrothermal treatment on the drying properties of sludge were determined. Sludge was hydrothermally treated at 180-260 °C for 0.5-5 h using NaOH and HCl as additives to influence reaction conditions. Untreated sludge and attained hydrochar samples were then dried under identical conditions with a laboratory microdryer and an X-ray microtomograph was used to follow changes in sample dimensions. The effective moisture diffusivities of sludge and hydrochar samples were determined and the effect of process conditions on respective mean diffusivities evaluated using multiple linear regression. Based on the results the drying time of untreated sludge decreased from approximately 80 min to 37-59 min for sludge hydrochar. Drying of untreated sludge was governed by the falling rate period where drying flux decreased continuously as a function of sludge moisture content due to heat and mass transfer limitations and sample shrinkage. Hydrothermal treatment increased the drying flux of sludge hydrochar and decreased the effect of internal heat and mass transfer limitations and sample shrinkage especially at higher treatment temperatures. The determined effective moisture diffusivities of sludge and hydrochar increased as a function of decreasing moisture content and the mean diffusivity of untreated sludge (8.56·10(-9) m(2) s(-1)) and sludge hydrochar (12.7-27.5·10(-9) m(2) s(-1)) were found statistically different. The attained regression model indicated that treatment temperature governed the mean diffusivity of hydrochar, as the effects of NaOH and HCl were statistically insignificant. The attained results enabled prediction of sludge drying properties through mean moisture diffusivity based on hydrothermal treatment conditions. PMID:26773481

  17. Ecology of deep-sea hydrothermal vent communities: A review

    SciTech Connect

    Lutz, R.A.; Kennish, M.J. )

    1993-08-01

    The present article reviews studies of the past 15 years of active and inactive hydrothermal vents. The focus of the discussion is on the ecology of the biological communities inhabiting hydrothermal vents. These communities exhibit high densities and biomass, low species diversity, rapid growth rates, and high metabolic rates. The authors attempt to relate the biology of hydrothermal vent systems to geology. Future directions for hydrothermal vent research are suggested. Since many vent populations are dependent on hydrothermal fluids and are consequently unstable, both short- and long-term aspects of the ecology of the vent organisms and the influence of chemical and geological factors on the biology of vent systems need to be established. 200 refs., 28 figs.

  18. Hydrothermal Activity in the Northern Guaymas Basin

    NASA Astrophysics Data System (ADS)

    Berndt, C.; Hensen, C.; Mortera-Gutierrez, C. A.; Sarkar, S.; Geilert, S.; Schmidt, M.; Liebetrau, V.; Kipfer, R.; Scholz, F.; Doll, M.; Muff, S.; Karstens, J.; Böttner, C.; Chi, W. C.; Moser, M.; Behrendt, R.; Fiskal, A.; Evans, T.; Planke, S.; Lizarralde, D.; Lever, M. A.

    2015-12-01

    Rift-related magmatism in the Guaymas Basin, Gulf of California induces hydrothermal activity within the basin sediments. Mobilized fluids migrate to the seafloor where they are emitted into the water column changing ocean chemistry and fuelling chemosynthetic ecosystems. New seismic and geochemical data from the northern rift arm of the Guaymas Basin document the variety of fluid expulsion phenomena from large-scale subsurface sediment mobilization related to contact metamorphosis to focused small-scale structures. The geochemical composition of emitted fluids depends largely on the age of the fluid escape structures with respect to the underlying intrusions. Whereas, old structures are dominated by methane emission, young vent sites are characterized by hot fluids that carry a wide range of minerals in solution. The overall high geothermal gradient within the basin (mainly between 160 and 260 °C/km) leads to a thin gas hydrate stability zone. Thus, deep hydrothermal fluid advection affects the gas hydrate system and makes it more dynamic than in colder sedimentary basins.

  19. Hydrothermal reactions of fly ash. Final report

    SciTech Connect

    Brown, P.W.

    1995-12-31

    The emphasis of the work done has been to determine the reactivities of two ashes believed to be representative of those generated. A bituminous ash and a lignitic ash have been investigated. The reactions of these ashes undergo when subjected to mild hydrothermal conditions were explored. The nature of the reactions which the ashes undergo when alkaline activators, calcium hydroxide and calcium sulfate are present was also investigated. It was determined that calcium silicate hydrate, calcium aluminate hydrate, and the calcium sulfoaluminate hydrate ettringite form under these conditions. It appears 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}3CaSO{sub 4}{center_dot}32H{sub 2}O (ettringite) formation needs to be considered in ashes which contain significant amounts of sulfate. Therefore the stability region for ettringite was established. It was also determined that calcium silicate hydrate, exhibiting a high internal surface area, will readily form with hydrothermal treatment between 50{degrees} and 100{degrees}C. This phase is likely to have a significant capacity to take up heavy metals and oxyanions and this ability is being explored.

  20. Hydrothermal system at Newberry Volcano, Oregon

    SciTech Connect

    Sammel, E.A.; Ingebritsen, S.E.; Mariner, R.H.

    1988-09-10

    Results of recent geological and geophysical studies at Newberry Volcano have been incorporated into conceptual and numerical models of a magma-based hydrothermal system. Numerical simulations begin with emplacement of a small magma body, the presumed source of silicic eruptions at Newberry that began about 10,000 B.P., into a thermal regime representing 100,000 years of cooling of a large underlying intrusion. Simulated flow patterns and thermal histories for three sets of hypothetical permeability values are compatible with data from four geothermal drill holes on the volcano. Meteoric recharge cools the caldera-fill deposits, but thermal water moving up a central conduit representing a permeable volcanic vent produces temperatures close to those observed in drill holes within the caldera. Meteoric recharge from the caldera moves down the flanks and creates a near-isothermal zone that extends several hundred meters below the water table, producing temperature profiles similar to those observed in drill holes on the flanks. The temperatures observed in drill holes on the flanks are not influenced by the postulated Holocene magma body. The elevated temperature gradients measured in the lower portions of these holes may be related to the cumulative effect of older intrusions. The models also indicate that meteoric recharge to the deep hydrothermal system probably originates within or near the caldera. Relatively low fluid velocities at depth suggest that at least a significant fraction of the thermal fluid may be very old.

  1. The effect of stirring in the hydrothermal process to convert the mixed municipal solid waste into uniform solid fuel

    NASA Astrophysics Data System (ADS)

    Prawisudha, P.; Mu'min, G. F.; Yoshikawa, K.; Pasek, A. D.

    2016-06-01

    An innovative waste treatment technology has been developed in Indonesia to treat the mixed municipal solid waste into a solid fuel by employing the hydrothermal process. A mixture of organic and plastic waste was treated in a 2.5 L reactor using saturated steam in the temperature range of 120 to 180 °C. Two modes of operation were employed to achieve two different goals, i.e. without stirring (NS mode) and with stirring (WS mode). It was observed that both modes resulted in increasing density of product up to twofold of the raw MSW. In NS mode, the processed mixed MSW was converted into two different products; however, in WS mode the bulky plastic was converted into small granules, producing a uniform product. The results suggest that by hydrothermal treatment, the organic fibers in the organic parts are trapped into the plastic, and the stirring breaks the bulky plastics, producing uniform granules suitable as solid fuel. Therefore, the stirring during the hydrothermal process can be a solution to treat the MSW as it is, without any separation, to produce a clean and renewable energy source.

  2. Compositional Variability of Rutile in Hydrothermal Ore Deposits

    NASA Astrophysics Data System (ADS)

    Clark, J. R.; Williams-Jones, A. E.

    2009-05-01

    overlaps between mineralization types. Nevertheless, element combinations and ratios can be used to distinguish qualitatively between rutile compositions for most ore deposit types, and statistical methods can be used to provide more quantitative evaluation. Rutile occurs in significant abundance (typically 0.05 to 0.5 vol%) in most metallic ore deposits and is most plentiful in sulfidic systems where high fS2 and/or fO2 conditions stabilize rutile in the presence of minerals such as pyrite and hematite. Rutile is also persistent in weathering environments, and is likely to survive transport by glacial and fluvial processes. As a common component of heavy mineral sands, rutile is readily separable by routine magnetic, heavy liquid, and other density methods. These features, combined with the sensitive compositional variations in altered and mineralized rocks noted above, and the relative ease of analyses by routine electron microprobe methods, suggest that rutile has considerable potential as a geochemical indicator mineral for hydrothermal ore deposits, analogous to the kimberlite indicator minerals such as Cr-pyrope, magnesiochromite and picroilmenite that are used regularly in diamond exploration.

  3. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the

  4. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  5. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation.

    PubMed

    Teske, Andreas; de Beer, Dirk; McKay, Luke J; Tivey, Margaret K; Biddle, Jennifer F; Hoer, Daniel; Lloyd, Karen G; Lever, Mark A; Røy, Hans; Albert, Daniel B; Mendlovitz, Howard P; MacGregor, Barbara J

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  6. Reactive transport modeling of hydrothermal circulation in oceanic crust: effect of anhydrite precipitation on the dynamics of submarine hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Yang, J.

    2009-12-01

    Hydrothermal fluid circulation represents an extremely efficient mechanism for the exchange of heat and matter between seawater and oceanic crust. Precipitation and dissolution of minerals associated with hydrothermal flow at ridge axes can alter the crustal porosity and permeability and hence influence the dynamics of hydrothermal systems. In this study, a fully coupled fluid flow, heat transfer and reactive mass transport model was developed using TOUGHREACT to evaluate the role of mineral precipitation and dissolution on the evolution of hydrothermal flow systems, with a particular attention focused on anhydrite precipitation upon heating of seawater in recharge zones and the resultant change in the crustal porosity and permeability. A series of numerical case studies were carried out to assess the effect of temperature and aqueous phase inflow concentrations on the reactive geochemical system. The impact of chemically induced porosity and permeability changes on the dynamics of hydrothermal systems was also addressed.

  7. Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    NASA Astrophysics Data System (ADS)

    Thal, Janis; Tivey, Maurice; Yoerger, Dana R.; Bach, Wolfgang

    2016-09-01

    North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 documents the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100%) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is

  8. Effects of glacial ice on subsurface temperatures of hydrothermal systems in Yellowstone National Park, Wyoming: Fluid-inclusion evidence

    SciTech Connect

    Bargar, K.E.; Fournier, R.O. )

    1988-12-01

    Hydrothermal quartz and fluorite crystals containing liquid-rich fluid inclusions (coexisting vapor-rich fluid inclusions were not observed) were found in drill cores from eight relatively shallow research holes drilled by the US Geological Survey in and near major geyser basins of Yellowstone National Park. Homogenization temperatures (T{sub h}) for mostly secondary fluid inclusions show variations in temperature that have occurred at give depths since precipitation of the host minerals. Within major hydrothermal upflow zones, fluid-inclusion T{sub h} values all were found to be equal to or higher (commonly 20-50 C and up to 155 C higher) than present temperatures at the depths sampled. During periods when thick glacial ice covered the Yellowstone National Park region, pore-fluid pressures in the underlying rock were increased in proportion to the weight of the overlying column of ice. Accordingly, theoretical reference boiling-point curves that reflect the maximum temperature attainable in a hot-water geothermal system at a given depth were elevated, and temperatures within zones of major hydrothermal upflow (drill holes Y-2, Y-3, Y-6, Y-11, Y-13, and upper part of Y-5) increased. The thicknesses of ice required to elevate boiling-point curves sufficiently to account for the observed fluid-inclusion T{sub h} values are within the ranges estimated by glacial geologic studies. At the margins of major hydrothermal upflow zones (drill holes Y-4 and Y-9), fluid-inclusion T{sub h} values at given depths range from 57 C lower to about the same as the current temperature measurements because of a previous decrease in the rate of discharge of warm water and/or an increase in the rate of recharge of cold water into the hydrothermal system.

  9. Feedbacks of Rock Hydration on Hydrothermal Convection

    NASA Astrophysics Data System (ADS)

    Iyer, K.; Ruepke, L.

    2009-04-01

    Hydration of the oceanic lithosphere is an important process which alters both the chemical and physical properties of the affected lithologies. Although hydrothermal convection has been extensively researched, little work has been done on the effects of hydration reactions occurring during convection. One of the most important reactions occurring in the oceanic lithosphere is serpentinization of ultramafic rocks. We present a numerical solution for hydrothermal circulation which explores the feedbacks generated during serpentinization of mantle rocks. The model is two dimensional and uses the FEM approach. Three coupled, time-dependent equations are solved: the first equation is mass conserving and is based on Darcy flow. The second equation describes heat transport and accounts for advective and diffusive heat transfer as well as latent heat effects. The final equation describes the serpentinization rate of olivine in ultramafic rocks (Emmanuel and Berkowitz, 2006) and is derived from experimental results (Martin and Fyfe, 1970). Serpentinization is a fluid-consuming process and manifests itself as a sink term in the Darcy flow equation. The exothermic heat of reaction is added as a source term in the heat transport equation. Moreover, serpentinization is associated with a large positive volume change. This large volume change may decrease the porosity of the rock but can also increase permeability by deformation. The rate of serpentinization used in the model is, therefore, also coupled to the porosity and permeability. We investigate the role of hydration in a box model using thermodynamically constrained fluid properties where the lower part is composed of reactive mantle rocks. The effects of serpentinization on the temperatures of the venting fluids and variations in flow pathways are explored. Furthermore, the model is also used in a mid-ocean ridge setting and the amount and depth of serpentinization, in addition to the above mentioned effects, is also

  10. Entropy Production in Convective Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Boersing, Nele; Wellmann, Florian; Niederau, Jan

    2016-04-01

    Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate

  11. The Sasquatch Hydrothermal Field: Linkages Between Seismic Activity, Hydrothermal Flow, and Geology

    NASA Astrophysics Data System (ADS)

    Glickson, D. A.; Kelley, D. S.; Delaney, J. R.

    2006-12-01

    The Sasquatch Hydrothermal Field is the most northern known vent field along the central Endeavour Segment of the Juan de Fuca Ridge, located 6 km north of the Main Endeavour Field (MEF) near 47° 59.8'N, 129° 4.0'W. It was discovered in 2000, after two large earthquake swarms in June 1999 and January 2000 caused increased venting temperatures in the MEF and significant changes in volatile composition along the entire axis [Johnson et al., 2000; Lilley et al., 2003; Proskurowski et al., 2004]. From 2004-2006, Sasquatch and the surrounding axial valley were comprehensively mapped with SM2000 multibeam sonar system and Imagenex scanning sonar at a resolution of 1-5 m. These data were combined with visual imagery from Alvin and ROV dives to define the eruptive, hydrothermal, and tectonic characteristics of the field and distal areas. Based on multibeam sonar results, bathymetric relief of the segment near Sasquatch is subdued. The broad axial valley is split by a central high that rises 30-40 m above the surrounding seafloor. Simple pattern analysis of the valley shows two fundamentally different regions, distinguished by low and high local variance. Areas of low variance correspond to a collapse/drainback landscape characterized by ropy sheet flow, basalt pillars, and bathtub rings capped by intact and drained lobate flows. Areas of high variance generally correspond to three types of ridge structures: 1) faulted basalt ridges composed of truncated pillow basalt, rare massive flows, and widespread pillow talus; 2) constructional basalt ridges composed of intact pillow flow fronts; and 3) extinct sulfide ridges covered by varying amounts of sulfide talus and oxidized hydrothermal sediment. Sasquatch is located in a depression among truncated pillow ridges, and is comprised of ~10, 1-6 m high, fragile sulfide chimneys that vent fluids up to 289°C. The active field extends only ~25 x 25 m, although a linear, N-S trending ridge of nearly continuous extinct sulfide

  12. Water control well treating solution and method

    SciTech Connect

    Boles, J. L.; Mancillas, G.

    1984-10-16

    A well treating solution is shown for changing the relative permeability of a formation being treated to water. The solution is made by mixing an amphoteric polymeric material, a mutual solvent and a surface active agent in a brine carrier liquid. The well treating solution is injected into the formation at pump rates below the fracture gradient of the formation. The well is briefly shut-in, after which production can be resumed. The treating solution and method taught lower the permeability of the producing formation to water without substantially affecting the formation's permeability to oil and gas.

  13. Geochemistry of hydrothermal plume in the Suiyo Seamount Caldera.

    NASA Astrophysics Data System (ADS)

    Shitashima, K.; Maeda, Y.

    2002-12-01

    Chemical compounds of the hot basalt origin are discharged into the deep ocean via hydrothermal plume by the deep-sea hydrothermal activity. The hydrothermal plume is widely diffused to the ocean by mixing with ambient seawater. Chemical reactions and interactions with microorganisms in the diffusion process of the hydrothermal plume are important to comprehend the oceanic geochemical cycles. Recently, it has been clarified that the variation of hydrothermal activity is greatly controlled in the tidal current. Not only geochemical observation but also physical observation, such as water current measurement, are necessary for the understanding of the deep-sea hydrothermal systems including the behavior of hydrothermal plume. In order to observe the diffusion process of hydrothermal plumes, sampling and chemical mapping of the hydrothermal plume and measurement of water current were carried out at the Suiyo Seamount Caldera during research cruises under the ?Archaean Park? project funded by MEXT. The three-dimensional acoustic current meters were moored at the height of 13m and 125m above the bottom in the Suiyo Seamount Caldera. At the 13m height, average water current speed and current direction were 10.46 cm/second and 228.1 degrees, respectively, and maximum water current speed was over 40.46 cm/second. On the other hand, average water current speed and current direction at the 125m height were 3.87 cm/second and 57.8 degrees, respectively. The strong water current of the southwest direction in 24 hours periods existed near bottom of the caldera. In addition, downward current and water temperature depreciation were observed, when there was the strong current in 24 hours periods. These results suggest that the low-temperature ocean water around the Suiyo Seamount flows toward the bottom of caldera periodically. The mini CTDT-RMS mounted twelve 1.2L Niskin bottles and the in-situ pH sensor were installed on the ROV or manned submersible. The hydrothermal plume

  14. Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu Mo deposit, Iran: Evidence from fluid inclusions

    NASA Astrophysics Data System (ADS)

    Hezarkhani, Ardeshir

    2006-12-01

    The Sar-Cheshmeh porphyry Cu-Mo deposit is located in Southwestern Iran (˜65 km southwest of Kerman City) and is associated with a composite Miocene stock, ranging in composition from diorite through granodiorite to quartz-monzonite. Field observations and petrographic studies demonstrate that the emplacement of the Sar-Cheshmeh stock took place in several pulses, each with associated hydrothermal activity. Molybdenum was concentrated at a very early stage in the evolution of the hydrothermal system and copper was concentrated later. Four main vein Groups have been identified: (I) quartz+molybdenite+anhydrite±K-feldspar with minor pyrite, chalcopyrite and bornite; (II) quartz+chalcopyrite+pyrite±molybdenite±calcite; (III) quartz+pyrite+calcite±chalcopyrite±anhydrite (gypsum)±molybdenite; (IV) quartz±calcite±gypsum±pyrite±dolomite. Early hydrothermal alteration produced a potassic assemblage (orthoclase-biotite) in the central part of the stock, propylitic alteration occurred in the peripheral parts of the stock, contemporaneously with potassic alteration, and phyllic alteration occurred later, overprinting earlier alteration. The early hydrothermal fluids are represented by high temperature (350-520 °C), high salinity (up to 61 wt% NaCl equivalent) liquid-rich fluid inclusions, and high temperature (340-570 °C), low-salinity, vapor-rich inclusions. These fluids are interpreted to represent an orthomagmatic fluid, which cooled episodically; the brines are interpreted to have caused potassic alteration and deposition of Group I and II quartz veins containing molybdenite and chalcopyrite. Propylitic alteration is attributed to a liquid-rich, lower temperature (220-310 °C), Ca-rich, evolved meteoric fluid. Influx of meteoric water into the central part of the system and mixing with magmatic fluid produced albitization at depth and shallow phyllic alteration. This influx also caused the dissolution of early-formed copper sulphides and the remobilization of

  15. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions.

    PubMed

    Lewis, Lev; Derakhshandeh, Maziar; Hatzikiriakos, Savvas G; Hamad, Wadood Y; MacLachlan, Mark J

    2016-08-01

    We report the facile preparation of gels from the hydrothermal treatment of suspensions of cellulose nanocrystals (CNCs). The properties of the hydrogels have been investigated by rheology, electron microscopy, and spectroscopy with respect to variation in the temperature, time, and CNC concentration used in preparation. Desulfation of the CNCs at high temperature appears to be responsible for the gelation of the CNCs, giving highly porous networks. The viscosity and storage modulus of the gels was shown to increase when samples were prepared at higher treatment temperature. Considering the wide natural abundance and biocompatibility of CNCs, this simple, green approach to CNC-based hydrogels is attractive for producing materials that can be used in drug delivery, insulation, and as tissue scaffolds. PMID:27467200

  16. Hydraulic characterization of hydrothermally altered Nopal tuff

    SciTech Connect

    Green, R.T.; Meyer-James, K.A.; Rice, G.

    1995-07-01

    Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

  17. Hydrothermal synthesis of vanadium pentoxide nanowires

    NASA Astrophysics Data System (ADS)

    Kumar, J. Santhosh; Thangadurai, P.

    2016-05-01

    Nanowires of V2O5 were prepared via hydrothermal route using NH4VO3 as precursor in the presence of sulfuric acid at 120°C for 24 h. This synthesis process is free of any templates and reducing agents. Thermal analysis showed a phase change at 350°C and the samples were annealed at 500°C. The XRD analysis showed the monoclinic phase for the as-prepared and orthorhombic phase of V2O5 when annealed at 500°C. Characteristic Raman peaks also expressed the same structural features. Microstructure analysis by SEM showed the nanowire structure of V2O5 with thickness in the range of 20-50 nm and length in micrometers. The possible mechanisms of formation of the nanowires were schematically explained based on the layered structure of V2O5.

  18. Deep-Sea Hydrothermal-Vent Sampler

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Venkateswaran, Kasthur; Matthews, Jaret B.

    2008-01-01

    An apparatus is being developed for sampling water for signs of microbial life in an ocean hydrothermal vent at a depth of as much as 6.5 km. Heretofore, evidence of microbial life in deep-sea hydrothermal vents has been elusive and difficult to validate. Because of the extreme conditions in these environments (high pressures and temperatures often in excess of 300 C), deep-sea hydrothermal- vent samplers must be robust. Because of the presumed low density of biomass of these environments, samplers must be capable of collecting water samples of significant volume. It is also essential to prevent contamination of samples by microbes entrained from surrounding waters. Prior to the development of the present apparatus, no sampling device was capable of satisfying these requirements. The apparatus (see figure) includes an intake equipped with a temperature probe, plus several other temperature probes located away from the intake. The readings from the temperature probes are utilized in conjunction with readings from flowmeters to determine the position of the intake relative to the hydrothermal plume and, thereby, to position the intake to sample directly from the plume. Because it is necessary to collect large samples of water in order to obtain sufficient microbial biomass but it is not practical to retain all the water from the samples, four filter arrays are used to concentrate the microbial biomass (which is assumed to consist of particles larger than 0.2 m) into smaller volumes. The apparatus can collect multiple samples per dive and is designed to process a total volume of 10 L of vent fluid, of which most passes through the filters, leaving a total possibly-microbe-containing sample volume of 200 mL remaining in filters. A rigid titanium nose at the intake is used for cooling the sample water before it enters a flexible inlet hose connected to a pump. As the water passes through the titanium nose, it must be cooled to a temperature that is above a mineral

  19. CONCEPTUAL MODELS FOR THE LASSEN HYDROTHERMAL SYSTEM.

    USGS Publications Warehouse

    Ingebritsen, S.E.; Sorey, M.L.

    1987-01-01

    The Lassen hydrothermal system, like a number of other systems in regions of moderate to great topographic relief, includes steam-heated features at higher elevations and high-chloride springs at lower elevations, connected to and fed by a single circulation system at depth. Two conceptual models for such systems are presented. They are similar in several ways: however, there are basic differences in terms of the nature and extent of vapor-dominated conditions beneath the steam-heated features. For some Lassen-like systems, these differences could have environmental and economic implications. Available data do not make it possible to establish a single preferred model for the Lassen system, and the actual system is complex enough that both models may apply to different parts of the system.

  20. Energetics of hydrothermal convection in heterogeneous ocean crust

    NASA Astrophysics Data System (ADS)

    Ruepke, Lars; Hasenclever, Joerg; Andersen, Christine

    2015-04-01

    Recent advances in hydrothermal flow modeling have revealed the key thermodynamic and fluid-dynamic controls on hydrothermal convection and vent temperatures at oceanic spreading centers. The observed upper limit to black smoker vent temperatures of approx. 400°C can be explained by the thermodynamic properties of water (Jupp and Schultz, 2000). Likewise, 3D models of hydrothermal flow at fast-spreading ridges show cylindrical upwellings with closely interwoven recharge flow (Coumou et al., 2008, Hasenclever et al., 2014). While these studies provide a robust theoretical basis for hydrothermal flow observations at fast-spreading ridges, the situation at slow-spreading ridges is different. The slow-spreading Mid-Atlantic Ridge produces highly heterogeneous crust along its tectonic and magmatic segments with significant permeability contrasts across structural and lithological interfaces. The sub-seafloor permeability structure has a strong control on vent field location such that off-axis hydrothermal systems are apparently consistently located at outcropping fault zones. We have recently shown that preferential flow along high-permeability conduits inevitably leads to the entrainment of cold ambient seawater (Andersen et al., 2014), which causes a temperature drop that is difficult to reconcile with fault-related high-temperature venting. A fundamental question is therefore how hydrothermal fluids can maintain their high temperature while flowing kilometers from a driving heat source through highly heterogeneous crust to a vent site at the seafloor? We address this question by exploring the energetics of hydrothermal convection in heterogeneous ocean crust using 2D and 3D flow simulations. In our analysis we focus on the energy balance of rising hydrothermal plumes and on mixing processes at permeability boundaries, with the aim to establish a more robust theoretical framework for hydrothermal flow through highly heterogeneous seafloor.

  1. Methane and radioactive isotopes in submarine hydrothermal systems

    SciTech Connect

    Kim, K.R.

    1983-01-01

    This thesis consists of two parts: 1) methane and 2) radioactive isotopes, especially radon, in submarine hydrothermal systems. Both parts deal with the use of these gases as tracers for mapping hydrothermal vents at sea, and with their relationships to other sensitive tracers such as helium, manganese, and temperature. Hydrothermal methane was used as a real-time tracer for locating new submarine hydrothermal systems along spreading axes, discovering new hydrothermal systems at two locations in Pacific Ocean: 1) 20/sup 0/S on East Pacific Rise, and 2) Mariana Trough Back-arc Basin. Methane shows good correlations with helium-3 and temperature with similar ratios in various hydrothermal systems, 3 to 42 x 10/sup 6/ for the methane to helium-3 ratio, and 3 to 19 ..mu.. cc/kg/sup 0/C for the methane to temperature anomaly. These similar ratios from different areas provide evidence for chemical homogeneity of submarine hydrothermal waters. A good correlation between methane and manganese appears to be associated only with high-temperature hydrothermal systems. Radioisotopes in the vent waters of 21/sup 0/N high-temperature hydrothermal system have end-member concentrations of 7.5 to 40 dpm/kg for Ra-226, 360 dpm/kg for Rn 222, 62 dpm/kg for Pb-210, and 19 dpm/kg for Po-210. The radon activity for this system is one order of magnitude lower, and the Pb-210 activity is one order or magnitude higher, than those a the low temperature Galapagos system. All these observations suggest that the high radon, and low Pb-210 activity observed in Galapagos system may originate from the extensive subsurface mixing and water-rock interaction in this system (direct injection of radon and scavenging of Pb-210).

  2. Peptide synthesis under Enceladus hydrothermal condition

    NASA Astrophysics Data System (ADS)

    Fujishima, Kosuke; Takano, Yoshinori; Takai, Ken; Takahagi, Wataru; Adachi, Keito; Shibuya, Takazo; Tomita, Masaru

    2016-07-01

    Enceladus is one of the moons of Saturn, and it has been known to harbor interior ocean beneath the icy crust. The mass spectrometry data obtained by Cassini spacecraft indicates the presence of salty, and most likely alkaline ocean containing various organic compounds. While geochemical and other radiation related processes for in situ production of organics remain elusive, thermally unaltered carbonaceous chondrites, consisting the main body of Enceladus are known to be enriched with organic matters potentially including the building blocks of life (e.g., amino acids and amino acid precursors). Assuming that abiotic amino acids exist in the Enceladus alkaline seawater, we hypothesized that water-rock interaction may contribute to condensation of localized amino acids leading to peptide formation. In order to test this hypothesis, we have developed the Enceladus hydrothermal reactor based on the chemical constraints obtained through previous experimental and theoretical studies. We have added six different amino acids and introduced a thermal fluctuation system simulating the periodic tidal heating of the interior chondritic core. Total, eight sea water samples were obtained over the course of 147 days of experiment. While detection of peptide using Capillary Electrophoresis Time-of-Flight Mass Spectrometry (CE-TOF/MS) is still at the preliminary stage, so far pH monitoring and H2 and CO2 Gas Chromatography Mass Spectrometry (GC-MS) data clearly indicated the occurrence of serpentinization/carbonation reaction. Here, we discuss the interaction between aqueous alteration reactions and thermal cycling processes for the role of abiotic peptide formation under the Enceladus hydrothermal condition.

  3. Permeability reduction in granite under hydrothermal conditions

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2001-01-01

    The formation of impermeable fault seals between earthquake events is a feature of many models of earthquake generation, suggesting that earthquake recurrence may depend in part on the rate of permeability reduction of fault zone materials under hydrothermal conditions. In this study, permeability measurements were conducted on intact, fractured, and gouge-bearing Westerly granite at an effective pressure of 50 MPa and at temperatures from 150?? to 500??C, simulating conditions in the earthquake-generating portions of fault zones. Pore fluids were cycled back and forth under a 2 MPa pressure differential for periods of up to 40 days. Permeability of the granite decreased with time t, following the exponential relation k = c(10-rt). For intact samples run between 250?? and 500??C the time constant for permeability decrease r was proportional to temperature and ranged between 0.001 and 0.1 days-1 (i.e., between 0.4 and 40 decades year-1 loss of permeability). Values of r for the lower-temperature experiments differed little from the 250??C runs. In contrast, prefractured samples showed higher rates of permeability decrease at a given temperature. The surfaces of the fractured samples showed evidence of dissolution and mineral growth that increased in abundance with both temperature and time. The experimentally grown mineral assemblages varied with temperature and were consistent with a rock-dominated hydrothermal system. As such mineral deposits progressively seal the fractured samples, their rates of permeability decrease approach the rates for intact rocks at the same temperature. These results place constraints on models of precipitation sealing and suggest that fault rocks may seal at a rate consistent with earthquake recurrence intervals of typical fault zones.

  4. Potential biomass in deep-sea hydrothermal vent ecosystem

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Takai, K.

    2012-12-01

    Since the first discovery of black smoker vents hosting chemosynthetic macrofaunal communities (Spiess et al., 1980), submarine hydrothermal systems and associated biota have attracted interest of many researchers (e.g., Humphris et al., 1995; Van Dover, 2000; Wilcock et al., 2004). In the past couple of decades, particular attention has been paid to chemolithoautotrophic microorganisms that sustain the hydrothermal vent-endemic animal communities as the primary producer. This type of microorganisms obtains energy from inorganic substances (e.g., sulfur, hydrogen, and methane) derived from hydrothermal vent fluids, and is often considered as an important modern analogue to the early ecosystems of the Earth as well as the extraterrestrial life in other planets and moons (e.g., Jannasch and Mottl, 1985; Nealson et al., 2005; Takai et al., 2006). Even today, however, the size of this type of chemosynthetic deep-sea hydrothermal vent ecosystem is largely unknown. Here, we present geophysical and geochemical constraints on potential biomass in the deep-sea hydrothermal vent ecosystem. The estimation of the potential biomass in the deep-sea hydrothermal vent ecosystem is based on hydrothermal fluid flux calculated from heat flux (Elderfield and Schltz, 1996), maximum chemical energy available from metabolic reactions during mixing between hydrothermal vent fluids and seawater (McCollom, 2007), and maintenance energy requirements of the chemolithoautotrophic microorganisms (Hoehler, 2004). The result shows that the most of metabolic energy sustaining the deep-sea hydrothermal vent ecosystem is produced by oxidation reaction of reduced sulfur, although some parts of the energy are derived from hydrogenotrophic and methanotrophic reactions. The overall total of the potential biomass in deep-sea hydrothermal vent ecosystem is calculated to be much smaller than that in terrestrial ecosystems including terrestrial plants. The big difference in biomass between the

  5. Pyrrhotite catalyzes the synthesis of uracil under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    López Ibáñez de Aldecoa, A.; Menor-Salván, C.

    2013-09-01

    The hypothesis of a prebiotic origin for metabolic cycles in hydrothermal systems gained interest during last years. The experimental approach to support this hypothesis was oriented mainly to the formation of organic molecules in iron sulfide mineral surfaces from inorganic precursors. In this work, we explore the behavior of previously formed, prebiotically plausible organic molecules in iron sulfide rich, low temperature hydrothermal environments. Using urea as a starting point, we found that uracil and other nitrogen heterocycles could be synthesized using water-urea solution as precursor in a packed pyrrhotite bed reactor, simulating hydrothermal conditions.

  6. Predicting fluoride and chloride concentrations of hydrothermal fluids

    SciTech Connect

    Zhu, Chen )

    1992-01-01

    A new method of predicting F and Cl concentrations of hydrothermal fluids has been developed, which can be used to study water-rock interactions in a variety of hydrothermal, metamorphic, and magnetic processes. This method is based on a comprehensive assessment of thermodynamic partitioning of F-Cl-OH between minerals and hydrothermal fluids. The calculation method is explained. Fluid compositions obtained by applying this method to amphibolites from Hunts Brook Fault Zone, Connecticut, and to Santa Rita porphyry copper deposits, New Mexico, are similar to results obtained by metasomatism modeling and from fluid inclusion studies.

  7. Acoustic properties of a crack containing magmatic or hydrothermal fluids

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2000-01-01

    We estimate the acoustic properties of a crack containing maginatic or hydrothermal fluids to quantify the source properties of long-period (LP) events observed in volcanic areas assuming that a crack-like structure is the source of LP events. The tails of synthetic waveforms obtained from a model of a fluid-driven crack are analyzed by the Sompi method to determine the complex frequencies of one of the modes of crack resonance over a wide range of the model parameters ??/a and ??f/??s, where ?? is the P wave velocity of the rock matrix, a is the sound speed of the fluid, and ??f and ??s are the densities of the fluid and rock matrix, respectively. The quality factor due to radiation loss (Qr) for the selected mode almost monotonically increases with increasing ??/a, while the dimensionless frequency (??) of the mode decreases with increasing ??/a and ??f/??s. These results are used to estimate Q and ?? for a crack containing various types of fluids (gas-gas mixtures, liquid-gas mixtures, and dusty and misty gases) for values of a, ??f, and quality factor due to intrinsic losses (Qi) appropriate for these types of fluids, in which Q is given by Q-1 = Qr-1 + Qi-1. For a crack containing such fluids, we obtain Q ranging from almost unity to several hundred, which consistently explains the wide variety of quality factors measured in LP events observed at various volcanoes. We underscore the importance of dusty and misty gases containing small-size particles with radii around 1 ??m to explain long-lasting oscillations with Q significantly larger than 100. Our results may provide a basis for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events in terms of fluid compositions beneath volcanoes. Copyright 2000 by the American Geophysical Union.

  8. β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment.

    PubMed

    Nata, Iryanti Fatyasari; Wang, Steven Sheng-Shih; Wu, Tsai-Mao; Lee, Cheng-Kang

    2012-11-01

    A transparent nanofibril suspension could be readily obtained by treating purified squid pen powder in water with ultrasonic irradiation. The obtained suspension is consisted of β-chitin nanofibrils (CNF) with 3-10 nm in width and several micrometers in length. The degree of acetylation (DA) of CNF was found to be 84% which is about 10% lower than that of untreated sample. The CNF suspension could be transformed into a durable 3-D hydrogels (CH) by simply heating to 180 °C for 1-4 h in an autoclave. Hydrophobic interaction between CNF was believed to play the major role for CNF self-assembling into hydrogels, since the as-prepared chitin hydrogels readily dissolved in a typical chaotropic solution (8 M urea) under room temperature. The hydrothermal duration and CNF concentration (0.3-2% (w/v)) strongly affected the physical properties of CH. The suspension of 1% (w/v) CNF treated with 4 h, 180 °C hydrothermal heating generated a CH with 99.3% water content, CNF with 87% crystallinity and an mechanical strength of 0.7 N breaking force. PMID:22944409

  9. Understanding the structural features of high-amylose maize starch through hydrothermal treatment.

    PubMed

    Yang, Jianing; Xie, Fengwei; Wen, Wenqiang; Chen, Ling; Shang, Xiaoqin; Liu, Peng

    2016-03-01

    In this study, high-amylose starches were hydrothermally-treated and the structural changes were monitored with time (up to 12h) using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). When high-amylose starches were treated in boiling water, half-shell-like granules were observed by SEM, which could be due to the first hydrolysis of the granule inner region (CLSM). This initial hydrolysis could also immediately (0.5h) disrupt the semi-crystalline lamellar regularity (SAXS) and dramatically reduce the crystallinity (XRD); but with prolonged time of hydrothermal treatment (≥2 h), might allow the perfection or formation of amylose single helices, resulting in slightly increased crystallinity (XRD and DSC). These results show that the inner region of granules is composed of mainly loosely-packed amylopectin growth rings with semi-crystalline lamellae, which are vulnerable under gelatinization or hydrolysis. In contrast, the periphery is demonstrated to be more compact, possibly composed of amylose and amylopectin helices intertwined with amylose molecules, which require greater energy input (higher temperature) for disintegration. PMID:26708428

  10. Ethanol from a biorefinery waste stream: Saccharification of amylase, protease and xylanase treated wheat bran.

    PubMed

    Wood, Ian P; Cook, Nicola M; Wilson, David R; Ryden, Peter; Robertson, James A; Waldron, Keith W

    2016-05-01

    Biorefining aims to exploit the full value of plant material by sequentially extracting and valorising its components. Many studies focus on the saccharification of virgin biomass sources, but it may be more efficient to pre-extract high-value components before hydrolysis to fermentable sugars. In the current study, a bran residue from de-starched, protein depleted and xylanase treated wheat bran has been subjected to hydrothermal pretreatment, saccharification and fermentation procedures to convert the residue to ethanol. The most effective pretreatment conditions (>190 °C, 10 min) and saccharification conditions were identified following bench-scale liquid hot water pretreatment. Pre-extraction of enzymatically-hydrolysable starch and xylan reduced the release of furfural production, particularly when lower pretreatment severities were used. Pilot-scale steam explosion of the lignocellulosic residue followed by cellulase treatment and conversion to ethanol at a high substrate concentration (19%) gave an ethanol titre of ≈ 25 g/L or a yield of 93% of the theoretical maximum. PMID:26769514

  11. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge

    SciTech Connect

    Rona, P.A. . Atlantic Oceanographic and Meteorological Labs.); Hannington, M.D. ); Raman, C.V. ); Thompson, G.; Tivey, M.K.; Humphris, S.E. ); Lalou, C. . Lab. CNRS-CEA); Petersen, S. Aachen Univ. of Technology )

    1993-12-01

    The TAG hydrothermal field is a site of major active and inactive volcanic-hosted hydrothermal mineralization in the rift valley of the slow-spreading Mid-Atlantic Ridge at 26[degree]N. The axial high is the principal locus of present magmatic intrusions. The TAG field contains three main areas of present and past hydrothermal activity: (1) an actively venting high-temperature sulfide mound; (2) two former high-temperature vent areas; (3) a zone of low-temperature venting and precipitation of Fe and Mn oxide deposits. The volcanic centers occur at the intersections between ridge axis-parallel normal faults and projected axis-transverse transfer faults. The intersections of these active fault systems may act as conduits both for magmatic intrusions from sources beneath the axial high that build the volcanic centers and for hydrothermal upwelling that taps the heat sources. Radiometric dating of sulfide samples and manganese crusts in the hydrothermal zones and dating of sediments intercalated with pillow lava flows in the volcanic center adjacent to the active sulfide mound indicate multiple episodes of hydrothermal activity throughout the field driven by heat supplied by episodic intrusions over a period of at least 140 [times] 10[sup 3] yr. The sulfide deposits are built by juxtaposition and superposition during relatively long residence times near episodic axial heat sources counterbalanced by mass wasting in the tectonically active rift valley of the slow-spreading oceanic ridge. Hydrothermal reworking of a relict hydrothermal zone by high-temperature hydrothermal episodes has recrystallized sulfides and concentrated the first visible primary gold reported in a deposit at an oceanic ridge.

  12. Enhanced Photocatalytic Performance of ZnS for Reversible Amination of α-oxo Acids by Hydrothermal Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Qiliang; Liu, Xiaoyang; Yang, Yanqiang; Su, Wenhui

    2012-08-01

    To understand how life could have originated on early Earth, it is essential to know what biomolecules and metabolic pathways are shared by extant organisms and what organic compounds and their chemical reaction channels were likely to have been primordially available during the initial phase of the formation of prebiotic metabolism. In a previous study, we demonstrated for the first time the reversible amination of α-oxo acids on the surface of photo-illuminated ZnS. The sulfide mineral is a typical component at the periphery of submarine hydrothermal vents which has been frequently argued as a very attractive venue for the origin of life. In this work, in order to simulate more closely the precipitation environments of ZnS in the vent systems, we treated newly-precipitated ZnS with hydrothermal conditions and found that its photocatalytic power was significantly enhanced because the relative crystallinity of the treated sample was markedly increased with increasing temperature. Since the reported experimental conditions are believed to have been prevalent in shallow-water hydrothermal vents of early Earth and the reversible amination of α-oxo acids is a key metabolic pathway in all extant life forms, the results of this work provide a prototypical model of the prebiotic amino acid redox metabolism. The amino acid dehydrogenase-like chemistry on photo-irradiated ZnS surfaces may advance our understanding of the establishment of archaic non-enzymatic metabolic systems.

  13. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  14. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  15. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  16. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  17. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  18. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  19. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    SciTech Connect

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  20. Hydrothermal modification of titanium surface in calcium solutions.

    PubMed

    Hamad, Kenichi; Kon, Masayuki; Hanawa, Takao; Yokoyama, Ken'ichi; Miyamoto, Youji; Asaoka, Kenzo

    2002-05-01

    Hydrothermal modification of a titanium surface in calcium solutions was performed. The apatite precipitation on the modified surface in Hanks' solution, as a simulated body fluid, was evaluated and the surface microstructure changes after the modification were characterized by thin-film X-ray diffractometry (TF-XRD) and X-ray photoelectron spectroscopy (XPS). Hydrothermal modification in CaO solution enhanced the precipitation of apatite on the titanium surface. High pH, high pressure and high temperature of the CaO solution increased the thickness of the surface-modified layer and enhanced the synthesis of calcium titanate which possibly promoted the precipitation of apatite in Hanks' solution. Hydrothermal modification in CaCl2 solution, on the other hand, showed reverse effects. The modification of titanium in CaO solution with hydrothermal treatment is expected to result in excellent osteointegration and can be easily performed by using an autoclave, a clinical apparatus widely used. PMID:11962668

  1. Microbiological production and ecological flux of northwestern subduction hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Sunamura, M.; Okamura, K.; Noguchi, T.; Yamamoto, H.; Fukuba, T.; Yanagawa, K.

    2012-12-01

    Deep-sea hydrothermal system is one of the most important sources for heat and chemical flux from the oceanic crust to the global ocean. The rich biological community around the hydrothermal vent shows chemolithoautotrophic microbial production are important in deep sea ecosystems. More than 99% of microbiological available chemical components in hydrothermal vent fluid, e.g. sulfide, methane, hydrogen, Fe2+, and Mn2+, is released into surrounding seawater to construct hydrothermal plume, suggesting that the chemolithoautotrophic-microbial primary production in the hydrothermal plume is huge and important in the whole hydrothermal ecosystems. To understand the impact of hydrothermal plume to a microbial ecosystem and a connectivity with zooplankton, we targeted and investigated a total of 16 hydrothermal fileds (7 sites in Okinawa trough, 3 sites in Ogasawara arc, and 6 sites in Mariana arc and back arc) and investigated in several cruises under the TAIGA project in Japan. Hydrothermal fluids in the subduction system are rich in sulfide. The hydrothermal fluids in the Okinawa trough, Ogasawara arc. and Mariana trough are characterized by rich in methane, poor in other reduced chemicals, and rich in iron, respectively. The major microbial composition was a potential sulfur oxidizing microbes SUP05 in the plume ecosystems, while an aerobic methanotrophic bacteria was secondary major member in methane-rich hydrothermal systems in Okinawa trough. Microbial quantitative and spatial distribution analyses of each plume site showed that the microbial population size and community structures are influenced by original chemical components of hydrothermal fluid, e.g. sulfide, methane and iron concentration. Microbial quantitative data indicated the removal/sedimentation of microbial cells from the plume and effect of phase separation in a same vent field through construction of gas-rich or gas-poor plumes. After the correlation of plume mixing effect, we estimates that the

  2. Identifying Martian Hydrothermal Sites: Geological Investigation Utilizing Multiple Datasets

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Baker, V. R.; Anderson, R. C.; Scott, D. H.; Rice, J. W., Jr.; Hare, T. M.

    2000-01-01

    Comprehensive geological investigations of martian landscapes that may have been modified by magmatic-driven hydrothermal activity, utilizing multiple datasets, will yield prime target sites for future hydrological, mineralogical, and biological investigations.

  3. Direct use of hydrothermal energy: a review of environmental aspects

    SciTech Connect

    O'Banion, K.; Layton, D.

    1981-08-28

    The potential environmental impacts of the exploration, development, and production of hydrothermal geothermal energy for direct use applications are reviewed and evaluated. Mitigation strategies and research and development needs are included. (MHR)

  4. Impact-induced Hydrothermal Systems and Mineral Deposition on Mars

    NASA Technical Reports Server (NTRS)

    Thorsos, I. E.; Newsom, H. E.; Davies, A. G.

    2002-01-01

    Modeling of hydrothermal circulation at impact craters on Mars to determine system duration and potential mineral deposition in the context of Mars exploration. Additional information is contained in the original extended abstract.

  5. Development of acoustic observation method for seafloor hydrothermal flows

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Tamura, H.; Asada, A.; Kinoshita, M.; Tamaki, K.

    2012-12-01

    In October 2009, we conducted seafloor reconnaissance using a manned deep-sea submersible Shinkai6500 in Central Indian Ridge 18-20deg.S, where hydrothermal plume signatures were previously perceived. Acoustic video camera "DIDSON" was equipped on the top of Shinkai6500 in order to get acoustic video images of hydrothermal plumes. The acoustic video images of the hydrothermal plumes had been captured in three of seven dives. We could identify shadings inside the acoustic video images of the hydrothermal plumes. Silhouettes of the hydrothermal plumes varied from second to second, and the shadings inside them also varied. These variations corresponded to internal structures and flows of the plumes. DIDSON (Dual-Frequency IDentification SONar) is acoustic lens-based sonar. It has sufficiently high resolution and rapid refresh rate that it can substitute for optical system in turbid or dark water where optical systems fail. Ins. of Industrial Science, University of Tokyo has understood DIDSON's superior performance and tried to develop a new observation method based on DIDSON for hydrothermal discharging from seafloor vent. We expected DIDSON to reveal whole image of hydrothermal plume as well as detail inside the plume. The proposed method to observe and measure hydrothermal flow is the one to utilize a sheet-like acoustic beam. Scanning with concentrated acoustic beam gives distances to the edges of the hydrothermal flows. And then, the shapes of the flows can be identified even in low and zero visibility conditions. Tank experiment was conducted. The purposes of this experiment were to make an attempt at proposed method to delineate underwater hydrothermal flows and to understand relationships among acoustic video image, flow rate and water temperature. Water was heated in the hot tub and pumped to the water tank through the silicon tube. We observed water flows discharging from the tip of the tube with DIDSON. Flow rate had been controlled and temperatures of the

  6. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Kawagucci, S.; Miyazaki, J.; Watsuji, T.; Ishibashi, J.; Yamamoto, H.; Nozaki, T.; Kashiwabara, T.; Shibuya, T.

    2012-12-01

    In 2010, IODP Expedition 331 was conducted in the Iheya North Field, the Okinawa Trough and drilled several sites in hydrothermally active subseafloor. In addition, during the IODP Expedition 331, four new hydrothermal vents were created. These post-drilling artificial hydrothermal vents provide excellent opportunities to investigate the physical, chemical and microbiological characteristics of the previously unexplored subseafloor hydrothermal fluid reservoirs, and to monitor and estimate how the anthropogenic drilling behaviors affect the deep-sea hydrothermal vent ecosystem. We were very much interested in the difference of hydrothermal fluid chemistry between the natural hydrothermal vents and the artificial hydrothermal vents. The IODP porewater chemistry of the cores pointed to the density-driven stratification of the phase-separated hydrothermal fluids and the natural vent fluids were likely derived only from the shallower vapor-enriched phases. However, the artificial hydrothermal vents had deeper fluid sources in the subseafloor hydrothermal fluid reservoirs composed of vapor-lost (Cl-enriched) phases. The fluids from the artificial hydrothermal vents were sampled by ROV at 5, 12 and 18 months after the IODP expedition. The artificial hydrothermal vent fluids were slightly enriched with Cl as compared to the natural hydrothermal vent fluids. Thus, the artificial hydrothermal vents successfully entrained the previously unexplored subseafloor hydrothermal fluids. The newly created hydrothermal vents also hosted the very quickly grown, enormous chimney structures, of which mineral compositions were highly variable among the vents. However, the quickly grown C0016B and C0016D vent chimneys were found to be typical Kuroko ore even though the chimney growth rates in the artificial vents were extremely faster than those in the natural vents. In addition, the IODP drilling operation not only created new hydrothermal vents by deep drilling but also induced the

  7. Hydrothermal fabrication of three-dimensional secondary battery anodes.

    PubMed

    Liu, Jinyun; Zhang, Hui Gang; Wang, Junjie; Cho, Jiung; Pikul, James H; Epstein, Eric S; Huang, Xingjiu; Liu, Jinhuai; King, William P; Braun, Paul V

    2014-11-01

    A generalized hydrothermal strategy for fabricating three-dimensional (3D) battery electrodes is presented. The hydrothermal growth deposits electrochemically active nanomaterials uniformly throughout the complex 3D mesostructure of the scaffold. Ni inverse opals coated with SnO2 nanoparticles or Co3O4 nanoplatelets, and SiO2 inverse opals coated with Fe3O4 are fabricated, all of which show attractive properties including good capacity retention and C-rate performances. PMID:25195592

  8. Hydrothermal vents of Yellowstone Lake, Yellowstone National Park, Wyoming

    SciTech Connect

    Kaplinski, M.A.; Morgan, P. . Geology Dept.)

    1993-04-01

    Hydrothermal vent systems within Yellowstone Lake are located within the Yellowstone caldera in the northeastern and West Thumb sections of the lake. The vent systems lie within areas of extremely high geothermal gradients (< 1,000 C/km) in the lake sediments and occur as clusters of individual vents that expel both hydrothermal fluids and gas. Regions surrounding the vents are colonized by unique, chemotropic biologic communities and suggest that hydrothermal input plays an important role in the nutrient dynamics of the lake's ecosystem. The main concentration of hydrothermal activity occurs in the northeast region of the main lake body in a number of locations including: (1) along the shoreline from the southern edge of Sedge Bay to the inlet of Pelican Creek; (2) the central portion of the partially submerged Mary Bay phreatic explosion crater, within deep (30--50 m) fissures; (3) along the top of a 3 km long, steep-sided ridge that extends from the southern border of Mary Bay, south-southeast into the main lake basin; and (4) east of Stevenson Island along the lower portion of the slope (50--107 m) into the lake basin, within an anastomosing series of north to northwest trending, narrow troughs or fissures. Hydrothermal vents were also located within, and surrounding the West Thumb of Yellowstone Lake, with the main concentration occurring the offshore of the West Thumb and Potts Geyser Basin. Hydrothermal vents in Yellowstone Lake occur along fractures that have penetrated the lake sediments or along the tops of ridges and near shore areas. Underneath the lake, rising hydrothermal fluids encounter a semi-permeable cap of lake sediments. Upwardly convecting hydrothermal fluid flow may be diverted by the impermeable lake sediments along the buried, pre-existing topography. These fluids may continue to rise along topography until fractures are encountered, or the lake sediment cover is thinned sufficiently to allow egress of the fluids.

  9. The magnetic signature of hydrothermal systems in slow spreading environments

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; Dyment, Jérôme

    Slow spreading mid-ocean ridges like the Mid-Atlantic Ridge host a remarkable diversity of hydrothermal systems including vent systems located on the neovolcanic axis, large axial volcanoes, in transform faults and nontransform offsets, and associated with low-angle detachment faults, now recognized as a major tectonic feature of slow spreading environments. Hydrothermal systems are hosted in various lithologies from basalt to serpentinized peridotite and exposed lower oceanic crust. The substantial variations of hydrothermal processes active in these environments have important implications for the magnetic structure of oceanic crust and upper mantle. Hydrothermal processes can both destroy the magnetic minerals in basalt, diabase, and gabbro and create magnetic minerals by serpentinization of ultramafic rocks and deposition of magnetic minerals. We report on the diversity of magnetic anomaly signatures over the vent systems at slow spreading ridges and show that the lateral scale of hydrothermal alteration is fundamentally a local phenomenon. This highly focused process leads to magnetic anomalies on the scale of individual vent fields, typically a few hundreds of meters or less in size. To detect such features, high-resolution, near-bottom magnetic surveys are required rather than sea surface surveys. High-resolution surveys are now more tractable with deep-towed systems, dynamically positioned ships, and with the recent development of autonomous underwater vehicles, which allow detailed mapping of the seafloor on a scale relevant to hydrothermal activity. By understanding these present-day active hydrothermal systems, we can explore for yet to be discovered buried deposits preserved off-axis, both to determine past history of hydrothermal activity and for resource assessment.

  10. Chemical environments of submarine hydrothermal systems. [supporting abiogenetic theory

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    The paper synthesizes diverse information about the inorganic geochemistry of submarine hydrothermal systems, provides a description of the fundamental physical and chemical properties of these systems, and examines the implications of high-temperature, fluid-driven processes for organic synthesis. Emphasis is on a few general features, i.e., pressure, temperature, oxidation states, fluid composition, and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  11. Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber.

    PubMed

    Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali

    2014-10-01

    Hydrothermal pretreatment of oil palm mesocarp fiber was conducted in tube reactor at treatment severity ranges of log Ro = 3.66-4.83 and partial removal of hemicellulose with migration of lignin was obtained. Concerning maximal recovery of glucose and xylose, 1.5% NaOH was impregnated in the system and subsequent ball milling treatment was employed to improve the conversion yield. The effects of combined hydrothermal and ball milling pretreatments were evaluated by chemical composition changes by using FT-IR, WAXD and morphological alterations by SEM. The successful of pretreatments were assessed by the degree of enzymatic digestibility of treated samples. The highest xylose and glucose yields obtained were 63.2% and 97.3% respectively at cellulase loadings of 10 FPU/g-substrate which is the highest conversion from OPMF ever reported. PMID:25058299

  12. Hydrothermal epitaxy of perovskite thin films

    NASA Astrophysics Data System (ADS)

    Chien, Allen T.

    1998-12-01

    This work details the discovery and study of a new process for the growth of epitaxial single crystal thin films which we call hydrothermal epitaxy. Hydrothermal epitaxy is a low temperature solution route for producing heteroepitaxial thin films through the use of solution chemistry and structurally similar substrates. The application of this synthesis route has led to the growth of a variety of epitaxial perovskite (BaTiOsb3, SrTiOsb3, and Pb(Zr,Ti)Osb3 (PZT)) thin films which provides a simple processing pathway for the formation of other materials of technological interest. BaTiOsb3 and PZT heteroepitaxial thin films and powders were produced by the hydrothermal method at 90-200sp°C using various alkali bases. XRD and TEM analysis shows that, in each case, the films and powders form epitaxially with a composition nearly identical to that of the starting precursors. Sequential growth experiments show that film formation initiates by the nucleation of submicron faceted islands at the step edges of the SrTiOsb3 substrates followed by coalescence after longer growth periods. A Ba-rich interfacial layer between the BaTiOsb3 islands and the SrTiOsb3 surface is seen by cross-section TEM during early growth periods. Electrophoretic and Basp{2+} adsorption data provide a chemical basis for the existence of the interfacial layer. Homoepitaxial growth of SrTiOsb3 on SrTiOsb3 also occurs by island growth, suggesting that the growth mode may be a consequence of the aqueous surface chemistry inherent in the process. Film formation is shown to be affected by any number of factors including type of base, pH, temperature, and substrate pretreatments. Different cation bases (Na-, K-, Rb-, Cs-, TMA-OH) demonstrated pronounced changes in powder and film morphology. For example, smaller cation bases (e.g., NaOH, KOH and RbOH) resulted the formation of 1.5 mum \\{100\\} faceted perovskite PbTiOsb3 blocks while larger cation bases (e.g., CsOH and TMA-OH) produced 500 nm sized

  13. Process to upgrade coal liquids by extraction prior to hydrodenitrogenation

    DOEpatents

    Schneider, Abraham; Hollstein, Elmer J.; Janoski, Edward J.; Scheibel, Edward G.

    1982-01-01

    Oxygen compounds are removed, e.g., by extraction, from a coal liquid prior to its hydrogenation. As a result, compared to hydrogenation of such a non-treated coal liquid, the rate of nitrogen removal is increased.

  14. Microbial Community in the Hydrothermal System at Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Kato, S.; Itahashi, S.; Kakegawa, T.; Utsumi, M.; Maruyama, A.; Ishibashi, J.; Marumo, K.; Urabe, T.; Yamagishi, A.

    2004-12-01

    There is unique ecosystem around deep-sea hydrothermal area. Living organisms are supported by chemical free energy provided by the hydrothermal water. The ecosystem is expected to be similar to those in early stage of life history on the earth, when photosynthetic organisms have not emerged. In this study, we have analyzed the microbial diversity in the hydrothermal area at southern Mariana trough. In the "Archaean Park Project" supported by special Coordination Fund, four holes were bored and cased by titanium pipes near hydrothermal vents in the southern Mariana trough in 2004. Hydrothermal fluids were collected from these cased holes and natural vents in this area. Microbial cells were collected by filtering the hydrothermal fluid in situ or in the mother sip. Filters were stored at -80C and used for DNA extraction. Chimneys at this area was also collected and stored at -80C. The filters and chimney samples were crushed and DNA was extracted. DNA samples were used for amplification of 16S rDNA fragments by PCR using archaea specific primers and universal primers. The PCR fragments were cloned and sequenced. These PCR clones of different samples will be compared. We will extend our knowledge about microbiological diversity at Southern Mariana trough to compare the results obtained at other area.

  15. Microbial processing of carbon in hydrothermal systems (Invited)

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J. P.

    2013-12-01

    Microorganisms are known to be active in hydrothermal systems. They catalyze reactions that consume and produce carbon compounds as a result of their efforts to gain energy, grow and replace biomass. However, the rates of these processes, as well as the size of the active component of microbial populations, are poorly constrained in hydrothermal environments. In order to better characterize biogeochemical processes in these settings, a quantitative relationship between rates of microbial catalysis, energy supply and demand and population size is presented. Within this formulation, rates of biomass change are determined as a function of the proportion of catabolic power that is converted into biomass - either new microorganisms or the replacement of existing cell components - and the amount of energy that is required to synthesize biomass. The constraints that hydrothermal conditions place on power supply and demand are explicitly taken into account. The chemical composition, including the concentrations of organic compounds, of diffuse and focused flow hydrothermal fluids, hydrothermally influenced sediment pore water and fluids from the oceanic lithosphere are used in conjunction with cell count data and the model described above to constrain the rates of microbial processes that influence the carbon cycle in the Juan de Fuca hydrothermal system.

  16. Hydrothermal iron flux variability following rapid sea level changes

    NASA Astrophysics Data System (ADS)

    Middleton, Jennifer L.; Langmuir, Charles H.; Mukhopadhyay, Sujoy; McManus, Jerry F.; Mitrovica, Jerry X.

    2016-04-01

    Sea level changes associated with Pleistocene glacial cycles have been hypothesized to modulate melt production and hydrothermal activity at ocean ridges, yet little is known about fluctuations in hydrothermal circulation on time scales longer than a few millennia. We present a high-resolution record of hydrothermal activity over the past 50 ka using elemental flux data from a new sediment core from the Mir zone of the TAG hydrothermal field at 26°N on the Mid-Atlantic Ridge. Mir sediments reveal sixfold to eightfold increases in hydrothermal iron and copper deposition during the Last Glacial Maximum, followed by a rapid decline during the sea level rise associated with deglaciation. Our results, along with previous observations from Pacific and Atlantic spreading centers, indicate that rapid sea level changes influence hydrothermal output on mid-ocean ridges. Thus, climate variability may discretize volcanic processing of the solid Earth on millennial time scales and subsequently stimulate variability in biogeochemical interactions with volcanic systems.

  17. Targeting organic molecules in hydrothermal environments on Mars

    NASA Astrophysics Data System (ADS)

    Parnell, J.; Bowden, S. A.; Lindgren, P.; Wilson, R.; Cooper, J. M.

    2008-09-01

    Hydrothermal deposits on Mars Hydrothermal systems are proposed as environments that could support organic synthesis, the evolution of life or the maintenance of life [1,2,3]. They have therefore been suggested as primary targets for exploration on Mars [1,2,4,].There is now confidence that hydrothermal deposits occur at the martian surface. This is based on a range of criteria that could point towards hydrothermal activity, including volcanic activity, magmatic-driven tectonism, impact cratering in icy terrains, hydrous alteration of minerals and typical hydrothermal mineralogies [4]. The proposals to search for evidence of life at martian hydrothermal sites have been focussed on seeking morphological evidence of microbial activity [5]. Here we discuss the potential to seek a chemical signature of organic matter in hydrothermal systems. Organics in terrestrial hydrothermal systems Terrestrial hydrothermal systems can have large quantities of organic matter because they intersect organic-rich sedimentary rocks or oil reservoirs. Thus the signatures that they contain reflect some preexisting concentration of fossil organic compounds, rather than life which was active in the hydrothermal system. If any extant life was incorporated in these hydrothermal systems, it is swamped by the fossil molecules. Examples of environments where organic materials may become entrained include subsurface hydrothermal mineral deposits, generation of hydrothermal systems by igneous intrusions, and hot fluid venting at the seafloor. Nevertheless, there is value in studying the interactions of hydrothermal systems with fossil organic matter, for information about the survivability of organic compounds, phase relationships between carbonaceous and noncarbonaceous materials, and where in hydrothermal deposits to find evidence of organic matter. Microbial colonization of hot spring systems is feasible at depth within the systems and at the surface where the hydrothermal waters discharge

  18. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource

    NASA Astrophysics Data System (ADS)

    White, J. T.; Karakhanian, A.; Connor, C. B.; Connor, L.; Hughes, J. D.; Malservisi, R.; Wetmore, P.

    2015-06-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  19. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    USGS Publications Warehouse

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  20. Lignocellulose Recalcitrance Screening by Integrated High Throughput Hydrothermal Pretreatment and Enzymatic Saccharification

    SciTech Connect

    Selig, M. J.; Tucker, M. P.; Sykes, R. W.; Reichel, K. L.; Brunecky, R.; Himmel, M. E.; Davis, M. F.; Decker, S. R.

    2010-04-01

    We report a novel 96-well multiplate reactor system for comparative analysis of lignocellulose recalcitrance via integrated hydrothermal pretreatment and enzymatic saccharification. The system utilizes stackable nickel/gold-plated 96-well aluminum reactor plates, a clamping device fit to a standard Parr reactor, and robotics for efficient liquids and solids handling. A capacity of 20 plates allows up to 1,920 separate hydrothermal reactions per run. Direct and rapid analysis of key end-products, glucose and xylose, is facilitated by the use of glucose oxidase/peroxidase and xylose dehydrogenase-linked assays. To demonstrate efficacy, a set of 755 poplar core samples from the US Department of Energy's BioEnergy Science Center was tested. Total sugar release ranged from 0.17 to 0.64 g/g of biomass and correlated strongly with the ratio of syringyl to guaiacyl lignins in the samples. Variance among sample replicates was sufficiently minimal to permit clear assignment of differences in recalcitrance throughout this large sample set.

  1. Effects of NaOH Concentration on CO2 Reduction via Hydrothermal Water

    NASA Astrophysics Data System (ADS)

    Onoki, Takamasa; Takahashi, Hiro; Kori, Toshinari; Yamasaki, Nakamichi; Hashida, Toshiyuki

    2006-05-01

    The reductions of CO2 under hydrothermal conditions were investigated by using the micro autoclave (45cm3) lined with Hastelloy-C alloy. Sodium hydrogen carbonate (NaHCO3) was used as a starting material. H2 gas was used as reducing agents. NaHCO3 powder, H2 gas and water put into the autoclave simultaneously. The autoclave was heated upto 300°C by induction heater. In this study, effects of pH value of the NaOH solution in the autoclave are investigated. Reaction products were analyzed with gas chromatographs (GC), liquid chromatographs (LC), X-ray diffractometor (XRD) and Scanning electron microscopy (SEM). The following things were showed in this research: CO2 was reducted to HCOO- and CH4 at high conversion ratio under hydrothermal conditions. HCOO- was formed at high selectivity using Hastelloy-C reactor in the alkaline solution with Raney Ni catalyst. Raney Ni was exellent methanation catalyst, and CH4 formation progressed via HCO3-, not via CO. It is cleared that the NaOH solution in the autoclave should be kept pH value 11.0 for the highest conversion ratio from CO2 to useful carbonic compounds (CH4, HCOO-).

  2. TEMPEST: A three-dimensional time-dependent computer program for hydrothermal analysis: Volume 1, Numerical methods and input instructions

    SciTech Connect

    Trent, D.S.; Eyler, L.L.; Budden, M.J.

    1983-09-01

    This document describes the numerical methods, current capabilities, and the use of the TEMPEST (Version L, MOD 2) computer program. TEMPEST is a transient, three-dimensional, hydrothermal computer program that is designed to analyze a broad range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. 10 refs., 22 figs., 2 tabs.

  3. Hydrothermal Vents of Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Stark, Joyce

    As a member of REVEL (Research and Education: Volcanoes, Exploration and Life), I had an opportunity to participant in a scientific research cruise focused on the active volcanoes along the Juan de Fuca Ridge, the submarine spreading center off the Washington- Oregon-Canada coast. REVEL was sponsored by the National Science Foundation, University of Washington, Pennsylvania State University and the American Museum of Natural History. We studied the geological, chemical and biological processes associated with active hydrothermal systems and my research focused on the biological communities of the sulfide structures. We worked on board the Woods Hole Oceanographic Institution Vessel, R/V Atlantis and the submersible ALVIN was used to sample the "Black Smokers". As a member of the scientific party, I participated in collection and sorting of biological specimens from the vent communities, attended lectures by scientists, contributed to the cruise log website, maintained a journal and developed my own research project. It was my responsibility to bring this cutting-edge research back to the classroom.

  4. Geomicrobiology of deep-sea hydrothermal vents.

    PubMed

    Jannasch, H W; Mottl, M J

    1985-08-23

    During the cycling of seawater through the earth's crust along the mid-ocean ridge system, geothermal energy is transferred into chemical energy in the form of reduced inorganic compounds. These compounds are derived from the reaction of seawater with crustal rocks at high temperatures and are emitted from warm (hydrothermal fluid mixes with downwelling cold, oxygenated seawater. The predominant production of biomass, however, is the result of symbiotic associations between chemolithotrophic bacteria and certain invertebrates, which have also been found as fossils in Cretaceous sulfide ores of ophiolite deposits. PMID:17841485

  5. Catalytic hydrothermal liquefaction of water hyacinth.

    PubMed

    Singh, Rawel; Balagurumurthy, Bhavya; Prakash, Aditya; Bhaskar, Thallada

    2015-02-01

    Thermal and catalytic hydrothermal liquefaction of water hyacinth was performed at temperatures from 250 to 300 °C under various water hyacinth:H2O ratio of 1:3, 1:6 and 1:12. Reactions were also carried out under various residence times (15-60 min) as well as catalytic conditions (KOH and K2CO3). The use of alkaline catalysts significantly increased the bio-oil yield. Maximum bio-oil yield (23 wt%) comprising of bio-oil1 and bio-oil2 as well as conversion (89%) were observed with 1N KOH solution. (1)H NMR and (13)C NMR data showed that both bio-oil1 and bio-oil2 have high aliphatic carbon content. FTIR of bio-residue indicated that the usage of alkaline catalyst resulted in bio-residue samples with lesser oxygen functionality indicating that catalyst has a marked effect on nature of the bio-residue and helps to decompose biomass to a greater extent compared to thermal case. PMID:25240515

  6. Cellulose Aggregation under Hydrothermal Pretreatment Conditions.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Kovalenko, Andriy; Skaf, Munir S

    2016-08-01

    Cellulose, the most abundant biopolymer on Earth, represents a resource for sustainable production of biofuels. Thermochemical treatments make lignocellulosic biomaterials more amenable to depolymerization by exposing cellulose microfibrils to enzymatic or chemical attacks. In such treatments, the solvent plays fundamental roles in biomass modification, but the molecular events underlying these changes are still poorly understood. Here, the 3D-RISM-KH molecular theory of solvation has been employed to analyze the role of water in cellulose aggregation under different thermodynamic conditions. The results show that, under ambient conditions, highly structured hydration shells around cellulose create repulsive forces that protect cellulose microfibrils from aggregating. Under hydrothermal pretreatment conditions, however, the hydration shells lose structure, and cellulose aggregation is favored. These effects are largely due to a decrease in cellulose-water interactions relative to those at ambient conditions, so that cellulose-cellulose attractive interactions become prevalent. Our results provide an explanation to the observed increase in the lateral size of cellulose crystallites when biomass is subject to pretreatments and deepen the current understanding of the mechanisms of biomass modification. PMID:27301535

  7. Geomicrobiology of Deep-Sea Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Jannasch, Holger W.; Mottl, Michael J.

    1985-08-01

    During the cycling of seawater through the earth's crust along the midocean ridge system, geothermal energy is transferred into chemical energy in the form of reduced inorganic compounds. These compounds are derived from the reaction of seawater with crustal rocks at high temperatures and are emitted from warm (<= 25 degrees C) and hot (~ 350 degrees C) submarine vents at depths of 2000 to 3000 meters. Chemolithotrophic bacteria use these reduced chemical species as sources of energy for the reduction of carbon dioxide (assimilation) to organic carbon. These bacteria form the base of the food chain, which permits copious populations of certain specifically adapted invertebrates to grow in the immediate vicinity of the vents. Such highly prolific, although narrowly localized, deep-sea communities are thus maintained primarily by terrestrial rather than by solar energy. Reduced sulfur compounds appear to represent the major electron donors for aerobic microbial metabolism, but methane-, hydrogen-, iron-, and manganese-oxidizing bacteria have also been found. Methanogenic, sulfur-respiring, and extremely thermophilic isolates carry out anaerobic chemosynthesis. Bacteria grow most abundantly in the shallow crust where upwelling hot, reducing hydrothermal fluid mixes with downwelling cold, oxygenated seawater. The predominant production of biomass, however, is the result of symbiotic associations between chemolithotrophic bacteria and certain invertebrates, which have also been found as fossils in Cretaceous sulfide ores of ophiolite deposits.

  8. Frictional slip of granite at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    To measure the strength, sliding behavior, and friction constitutive properties of faults at hydrothermal conditions, laboratory granite faults containing a layer of granite powder (simulated gouge) were slid. The mechanical results define two regimes. The first regime includes dry granite up to at least 845?? and wet granite below 250??C. In this regime the coefficient of friction is high (?? = 0.7 to 0.8) and depends only modestly on temperature, slip rate, and PH2O. The second regime includes wet granite above ~350??C. In this regime friction decreases considerably with increasing temperature (temperature weakening) and with decreasing slip rate (velocity strengthening). These regimes correspond well to those identified in sliding tests on ultrafine quartz. The results highlight the importance of fluid-assisted deformation processes active in faults at depth and the need for laboratory studies on the roles of additional factors such as fluid chemistry, large displacements, higher concentrations of phyllosilicates, and time-dependent fault healing. -from Authors

  9. Hydrothermal Gasification for Waste to Energy

    NASA Astrophysics Data System (ADS)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  10. Reconnaissance of the hydrothermal resources of Utah

    SciTech Connect

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  11. Soft-hydrothermal processing of red cedar bedding reduces its induction of cytochrome P450 in mouse liver.

    PubMed

    Li, Z; Okano, S; Yoshinari, K; Miyamoto, T; Yamazoe, Y; Shinya, K; Ioku, K; Kasai, N

    2009-04-01

    Red cedar-derived bedding materials cause changes in cytochrome P450-dependent microsomal enzyme systems in laboratory animals. We examined the effect of essential oil of red cedar (EORC), as well as the effect of bedding from which it had been removed, on the hepatic expression cytochrome P450s in mice. EORC was obtained from liquid extracts of red cedar bedding by a soft-hydrothermal process and was administered orally to mice. Between days 1 and 2 after administration, hepatic P450s were significantly induced as follows: CYP3As, 7.1x; CYP1As, 1.6x; CYP2E1, 1.5x; CYP2Cs, 1.6x. A housing study of mice indicated that red cedar bedding increased the levels of these P450s in mouse liver, whereas mice housed in cedar bedding from which EORC had been removed (ST-cedar bedding) showed significantly lower levels of P450s, especially CYP3As, CYP1As and CYP2E1. Soft-hydrothermal processing partially removed many components of EORC. In particular, several volatile sesquiterpenes, naphthalene-derived aromatics and 4,4-dimethyl-13alpha-androst-5-ene were decreased in the ST-cedar bedding, suggesting that these may be responsible for P450 induction. This study demonstrated that the removal of these volatile compounds by soft-hydrothermal processing can decrease the hepatic P450-inducing effect of red cedar bedding. PMID:19116287

  12. Sub-glacial Origin of the Hot Springs Bay Valley hydrothermal System, Akutan, Alaska

    NASA Astrophysics Data System (ADS)

    Stelling, P. L.; Tobin, B.; Knapp, P.

    2015-12-01

    Exploration for geothermal energy in Hot Springs Bay Valley (HSBV) on Akutan Island, Alaska, has revealed a rich hydrothermal history, including what appears to be a stage of peak activity during a significant glacial period. Alteration mineralogy observed in 754 m of drill core recovered from the outflow zone is dominated by chlorite and includes minor smectite clays, a suite of zeolite species and several moderately high-temperature hydrothermal minerals (epidote/clinozoisite, prehnite, adularia and wairakite). The latter minerals each have minimum formation temperatures exceeding 200 oC, and fluid inclusion results in related calcite crystals indicate temperatures of formation to be as high as 275 oC, some 100 oC hotter than the modern boiling point with depth (BPD) curve at that depth (>62 m). In order to maintain liquid temperatures this high, the pressure during mineralization must have been substantially greater (~680 bar), a pressure change equivalent to erosion of ~280 m of rock (ρ=2.5 g/cm3). Although glacial erosion rates are too low (0.034 mm/yr; Bekele et al., 2003) for this amount of erosion to occur in a single glaciation, glacial melting and ablation are substantially more rapid (~100 mm/yr; Bekele et al., 2003; Person et al., 2012). Thus, a more probable scenario than pure erosion is that peak hydrothermal conditions occurred during a large glacial event, with the added pressure from the overlying ice allowing the high temperature minerals to form closer to the ground surface. Subsequent melting of the ice eroded upper tributary valleys and upper levels of the originally smectite-rich alteration assemblage, explaining the paucity of swelling clays in the region. We present mineralogical, fluid inclusion and geochronologic evidence to support these conclusions, and discuss the general implications of sub-glacial hydrothermal system formation and geothermal resource potential. References: Bekele, E., Rostron, B. and Person, M. (2003) Fluid pressure

  13. Hydrothermal synthesis of hydrocarbons at low temperature. Implications for sustaining a biosphere in Europa

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, Rafael; Montoya, Lilia; Davis, Wanda; McKay, Chris

    Observational evidence from Earth-borne systems and space missions as well as theoretical arguments suggest that Jupiter's satellite Europa could be geologically active today and may possess an ocean of liquid water of about 100 km deep underneath the icy surface about 10 km thickness. The existence of an aqueous ocean is an important requirement for life, as we know it. However, a biosphere also depends of an adequate energy source to drive the most fundamental biological processes such as metabolism, growth, reproduction, etc. Methanogenesis associated with hydrothermal vents may potentially drive a biosphere in an European ocean. We report here on the production of a large variety of hydrocarbons in hydrothermal systems at low temperatures (150° C). The chemical composition of the hydrothermal vent gases was derived from a thermochemical model that assumes that Europa had a cometary (solar, less H) abundance at high temperatures characteristic of a vent. Specifically the following gas mixture was used: 45% CO2 , 45% CH4, and 10 % N2 . A 500 ml stainless steel reactor was filled with 200 ml triply distilled water and the gas mixture at 1 bar at 25° C. In some experiments 3 g of pyrite were added into the reaction vessel. The system was heated for 24 hrs in the temperature range from 100 to 375° C. At the completion of the experiment, the reaction was quenched to 25° C and the gas mixture was analyzed by GC-FTIR-MS techniques. In the absence of pyrite, methane is oxidized to carbon dioxide with the possible production of hydrogen. In contrast in the presence of pyrite, methane is converted into a suite of hydrocarbons from C2 to C7 containing all possible isomers. The production of these compounds was found at temperatures as low as 150° C. In order to get a better understanding of the chemical mechanism involved in the synthesis of hydrocarbons and explore the effect on the initial oxidation state of the carbon used, we performed additional experiments in

  14. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  15. Evaluating the Historical Importance of Impact Induced Hydrothermal Systems on Mars Using the Stable Isotopic Composition of Martian Water

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.

    2010-01-01

    The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced hydrothermal alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (<30 C) interactions, and that high temperature weathering in impact-induced hydrothermal systems have not been a dominant process on Mars. The average oxygen isotopic composition of water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and hydrothermal interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less hydrothermal interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact hydrothermal systems did not play

  16. Evaluation of a new liquid occlusive dressing for excisional wounds.

    PubMed

    Singer, Adam J; Nable, Maria; Cameau, Paul; Singer, Daniel D; McClain, Steve A

    2003-01-01

    We evaluated a novel octylcyanoacrylate-based liquid occlusive dressing for partial-thickness wounds. One hundred and fifteen standardized wounds were created with an electric dermatome set at a depth of 600 micro on the flanks of three pigs and randomly treated with liquid occlusive dressing, a hydrocolloid dressing, or gauze. In one pig, wounds were swabbed with Staphylococcus aureus. Biopsies were taken after 4, 5, 6, and 21 days. Hemostasis was obtained in all wounds treated with the liquid occlusive. The percent reepithelialization of wounds treated with the liquid occlusive and hydrocolloid dressings were significantly greater at days 4 and 5 than control wounds (78% and 82% vs. 40%, p < 0.001 and 99% and 100% vs. 72%, p < 0.001, respectively). None of the liquid occlusive-treated wounds challenged with bacteria became infected. Foreign body reactions were least common in wounds treated with the liquid occlusive (p < 0.001). Scar depth was less for liquid occlusive- and hydrocolloid-treated wounds than controls (285 micro and 303 micro vs. 490 micro, p < 0.001). We conclude that excisional wounds treated with the liquid occlusive dressing reepithelialize as quickly as hydrocolloid-treated wounds. The liquid occlusive dressing is an effective microbial barrier and hemostatic agent resulting in fewer foreign body reactions than hydrocolloid-treated wounds or controls. PMID:12753599

  17. Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment.

    PubMed

    Basso, Daniele; Weiss-Hortala, Elsa; Patuzzi, Francesco; Castello, Daniele; Baratieri, Marco; Fiori, Luca

    2015-04-01

    The possibility to apply the hydrothermal carbonization (HTC) process to off-specification compost (EWC 19.05.03) at present landfilled was investigated in this work. The aim was to produce a carbonaceous solid fuel for energy valorization, with the perspective of using HTC as a complementary technology to common organic waste treatments. Thus, samples of EWC 19.05.03 produced by a composting plant were processed through HTC in a batch reactor. Analytical activities allowed to characterize the HTC products and their yields. The hydrochar was characterized in terms of heating value, thermal stability and C, H, O, N, S and ash content. The liquid phase was characterized in terms of total organic carbon and mineral content. The composition of the gas phase was measured. Results show that the produced hydrochar has a great potentiality for use as solid fuel. PMID:25700341

  18. The use of air as a natural tracer infractured hydrothermal systems, Los Azufres, Mexico, case study

    SciTech Connect

    Mario Cesar Sudrez Arriaga; Hector Gutierrez Puente, Josefina Moreno Ochoa

    1991-01-01

    Injection of atmospheric air mixed with cold water has been occurring since 1982 at the Los Azufres geothermal field. Several chemical and thermodynamical evidences show that air injection into this fractured hydrothermal system could be considered as a long term natural tracer test. Nitrogen and Argon separated from the air mixture migrate, under the action of the induced injection-extraction gradient, from reinjection sectors to production zones following preferential paths closely related to high permeability conduits. A coarse numerical estimation of the average permeability tensor existing at Tejamaniles, the southern sector, explains the unsuccessful recovery of the artificial tracer tests performed in past years: the anisotropic nature of the fractured volcanic rock would demand considerably quantities of tracer in order to be detected at the producing wells, especially when fluid extraction was low. At the same time concentrations of calcium, cesium, chloride, potassium, rubidium and sodium, are increasing in the liquid produced by the oldest wells of this field's sector.

  19. Green hydrothermal synthesis and optical properties of γ-Gd2S3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Khajuria, Sonika; Ladol, Jigmet; Sanotra, Sumit; Sheikh, Haq Nawaz

    2016-06-01

    Green synthesis of γ-Gd2S3 nanoparticles was carried out using low-temperature hydrothermal route in autoclave. A 1:1 mixture of ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate, ([EMIM][EtSO4]), and water was used as a solvent. Synthesized nanoparticles were characterized by x-ray powder diffraction (XRPD), scanning electron microscopy (SEM), UV-visible spectroscopy (UV-vis), particle size by dynamic light scattering (DLS) technique, and photoluminescence (PL) studies. XRPD suggests cubic Th3P4-type structure for obtained Gd2S3 nanoparticles. The size of synthesized nanoparticles is about 86 nm. Optical band gap for these nanoparticles estimated from electronic spectrum is 2.95 eV which shows blue shift from values reported for bulk Gd2S3 due to pronounced quantum mechanical effect. These nanoparticles show sharp emission peak at 385 nm and a broad shoulder at 475 nm when excited at 260 nm.

  20. Green hydrothermal synthesis and optical properties of γ-Gd2S3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Khajuria, Sonika; Ladol, Jigmet; Sanotra, Sumit; Sheikh, Haq Nawaz

    2015-07-01

    Green synthesis of γ-Gd2S3 nanoparticles was carried out using low-temperature hydrothermal route in autoclave. A 1:1 mixture of ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate, ([EMIM][EtSO4]), and water was used as a solvent. Synthesized nanoparticles were characterized by x-ray powder diffraction (XRPD), scanning electron microscopy (SEM), UV-visible spectroscopy (UV-vis), particle size by dynamic light scattering (DLS) technique, and photoluminescence (PL) studies. XRPD suggests cubic Th3P4-type structure for obtained Gd2S3 nanoparticles. The size of synthesized nanoparticles is about 86 nm. Optical band gap for these nanoparticles estimated from electronic spectrum is 2.95 eV which shows blue shift from values reported for bulk Gd2S3 due to pronounced quantum mechanical effect. These nanoparticles show sharp emission peak at 385 nm and a broad shoulder at 475 nm when excited at 260 nm.

  1. Phases' characteristics of poultry litter hydrothermal carbonization under a range of process parameters.

    PubMed

    Mau, Vivian; Quance, Julie; Posmanik, Roy; Gross, Amit

    2016-11-01

    The aim of this work was to study the hydrothermal carbonization of poultry litter under a range of process parameters. Experiments were conducted to investigate the effect of HTC of poultry litter under a range of operational parameters (temperature, reaction time, and solids concentration) on the formation and characteristics of its phases. Results showed production of a hydrochar with caloric value of 24.4MJ/kg, similar to sub-bituminous coal. The gaseous phase consisted mainly of CO2. However, significant amounts of H2S dictate the need for (further) treatment. The process also produced an aqueous phase with chemical characteristics suggesting its possible use as a liquid fertilizer. Temperature had the most significant effect on processes and product formation. Solids concentration was not a significant factor once dilution effects were considered. PMID:27544913

  2. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating.

    PubMed

    Chen, Wei-Hsin; Ye, Song-Ching; Sheen, Herng-Kuang

    2012-08-01

    Hydrothermal carbonization of sugarcane bagasse using wet torrefaction is studied. The biomass is torrefied in water or dilute sulfuric acid solution and microwaves are employed to heat the solutions where the reaction temperature is fixed at 180 °C. The effects of acid concentration, heating time and solid-to-liquid ratio on the performance of wet torrefaction are investigated. It is found that the addition of sulfuric acid and increasing heating time are conducive to carbonizing bagasse. The calorific value of bagasse can be increased up to 20.3% from wet torrefaction. With the same improvement in calorific value, the temperature of wet torrefaction is lower than that of dry torrefaction around 100 °C, revealing that wet torrefaction is a promising method to upgrade biomass as fuel. The calorific value of torrefied biomass can be predicted well based on proximate, elemental or fiber analysis, and the last one gives the best estimation. PMID:22705524

  3. Use of soft hydrothermal processing to improve and recycle bedding for laboratory animals.

    PubMed

    Miyamoto, T; Li, Z; Kibushi, T; Yamasaki, N; Kasai, N

    2008-10-01

    Cage bedding for laboratory rodents can influence animal wellbeing and thus the experimental data. In addition, a large amount of used bedding containing excrement is discharged as medical waste from life science institutes and breeding companies. We developed a ground-breaking system to improve fresh bedding and recycle used bedding by applying a soft hydrothermal process with high-temperature and high-pressure dry steam. The system removes both harmful organic components and aromatic hydrocarbons that can affect animals' metabolism. The purpose of the present study was to evaluate the chemical and physical properties of the improved fresh bedding and the recycled used bedding treated by the system. The results showed that 68-99% of the predominant aromatic hydrocarbons were removed from fresh bedding treated at 0.35 MPa and 140 degrees C for 120 min ('improved bedding'). In addition, 59.4-99.0% of predominant harmful organic compounds derived from excrement were removed from used bedding treated at 0.45 MPa and 150 degrees C for 60 min ('recycled bedding'). The soft hydrothermal treatment increased the number of acidic functional groups on the bedding surface and gave it the high adsorptive efficiency of ammonia gas. Harmful substances such as microorganisms, heavy metals and pesticides decreased below the detection limit. The results clearly showed that the improved and recycled bedding is safer for laboratory rodents and has the potential to ameliorate conditions in primary and secondary enclosures (e.g. cages and animal rooms) used for maintaining laboratory animals. This process may be one of the most advanced techniques in providing an alternative to softwood and other bedding, economizing through the recycling of used bedding and reducing bedding waste from animal facilities. PMID:18782819

  4. Impact Crater Hydrothermal Niches for Life on Mars: Question of Scale

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.

    2000-01-01

    A major focus in the search for fossil life on Mars is on ancient hydrothermal deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of hydrothermal activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized hydrothermal deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential hydrothermal sites on Mars. Such a strategy is being developed for volcanogenic hydrothermal systems, and a similar strategy is needed for impact hydrothermal systems.

  5. Hydrothermal zeolitisation controlled by host-rock lithofacies in the Periadriatic (Oligocene) Smrekovec submarine composite stratovolcano, Slovenia

    NASA Astrophysics Data System (ADS)

    Kralj, Polona

    2016-05-01

    Hydrothermal zeolites (laumontite, yugawaralite, analcime, heulandite, clinoptilolite), prehnite and pumpellyite have been recognised in a succession of volcanic, autoclastic, pyroclastic, resedimented volcaniclastic and mixed siliciclastic-volcaniclastic deposits. In cone-building lithofacies association attaining 310 m, the alteration minerals commonly change within a single normally graded depositional unit or alternate in the section on a dm- to m-scale, according to the host-rock lithofacies. Fine-grained deposits rich in juvenile glassy pyroclasts are altered to heulandite and clinoptilolite or analcime, and laumontite widely occurs in coarse-grained host-rocks (lapilli tuff, hyaloclastite breccia, volcaniclastic breccia, hyaloclastites) and fracture systems. In near-vent lithofacies association attaining 420 m, prehnite-laumontite, laumontite-analcime, and laumontite-heulandite-clinoptilolite zones developed as a result of superimposed thermal regime generated by the emplacement of an over 200 m thick sill. The recognised dependence of alteration on porosity, permeability and fracturing of the host-rock is closely related to hydrological conditions in the stratovolcano-hosted hydrothermal system with convective-advective flow regime. After separation of steam and gases from convecting hydrothermal fluids, denser liquids outflowed intermittently, preferentially through steeply inclined (20-30°) high-permeability layers in the stratovolcano edifice. In low-permeability layers the flow was slow and thermal conditions were mainly attained by conduction. Zeolites developed only in coarse- and fine-grained vitroclastic tuffs, presumably by the dissolution of volcanic glass. The interstratified siliciclastic siltstones, tuffites and resedimented deposits with low content of glassy particles are devoid of zeolites and indicate compositional constraint on zeolitisation. Lava flows, cooling in a submarine environment and undergoing disintegration and mingling with

  6. Temporal monitoring and quantification of hydrothermal activity from photomosaics and 3D video reconstruction: The Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Barreyre, T.; Escartin, J.; Cannat, M.; Garcia, R. A.

    2011-12-01

    Seafloor imagery provides detailed and accurate constrain on the distribution, geometry, and nature of hydrothermal outflow, and its links to the ecosystems that they sustain. Repeated surveys allow us to evaluate the temporal variability of these systems. Geo-referenced and co-registered photomosaics of the Lucky Strike hydrothermal field (Mid Atlantic Ridge, 37°N), derived from >60,000 seafloor images acquired in 1996, 2006, 2008 and 2009, using deep-towed and ROV vehicles. Newly-developed image processing techniques, specifically tailored to generate giga-mosaics in the underwater environment, include correction of illumination artifacts and removal of the edges between individual images so as to obtain a continuous and single mosaic image over a surface of up ~800x800 m and with a pixel resolution of 5-10 mm. Photomosaicing is complemented by 3D-reconstruction of hydrothermal edifices from video imagery, with the mapping of image texture over the 3D model surface. These image and video data can also be directly linked with high-resolution microbathymetry acquired near-bottom acoustic systems. Preliminary analysis of these mosaics reveals the distribution of low-temperature hydrothermal outflow, recognizable owing to its association with bacterial mats and hydrothermal deposits easily identifiable in the imagery. These low-temperature venting areas, often associated with high-temperature hydrothermal vents, are irregularly distributed throughout the site, defining clusters. In detail, the outflow geometry is largely controlled by the nature of the substrate (e.g., cracks and fissures, diffuse flow patches, existing hydrothermal constructs). The spatial relationships between the high- and diffuse venting as revealed by the imagery provide constraints on the shallow plumbing structure throughout the site.. Imagery provides constraints on temporal variability at two time-scales. First, we can identify changes in the distribution and presence of actively venting

  7. Phreatic and Hydrothermal Explosions: A Laboratory Approach

    NASA Astrophysics Data System (ADS)

    Scheu, B.; Dingwell, D. B.

    2010-12-01

    Phreatic eruptions are amongst the most common eruption types on earth. They might be precursory to another type of volcanic eruption but often they stand on their one. Despite being the most common eruption type, they also are one of the most diverse eruptions, in appearance as well as on eruption mechanism. Yet steam is the common fuel behind all phreatic eruptions. The steam-driven explosions occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or fresh volcanic deposits (such as ignimbrites, tephra and pyroclastic-flow deposits) and result in crater, tuff rings and debris avalanches. The intense heat of such material may cause water to boil and flash to steam, thereby generating an explosion of steam, water, ash, blocks, and bombs. Another wide and important field affected by phreatic explosions are hydrothermal areas; here phreatic explosions occur every few months creating explosion craters and resemble a significant hazard to hydrothermal power plants. Despite of their hazard potential, phreatic explosions have so far been overlooked by the field of experimental volcanology. A part of their hazard potential in owned by the fact that phreatic explosions are hardly predictable in occurrence time and size as they have manifold triggers (variances in groundwater and heat systems, earthquakes, material fatigue, water level, etc..) A new set of experiments has been designed to focus on this phreatic type of steam explosion, whereas classical phreatomagmatic experiments use molten fuel-coolant interaction (e.g., Zimanowski, et al., 1991). The violent transition of the superheated water to vapour adds another degree of explosivity to the dry magmatic fragmentation, driven mostly by vesicle bursting due to internal gas overpressure. At low water fractions the fragmentation is strongly enforced by the mixture of these two effects and a large fraction of fine pyroclasts are produced, whereas at high water fraction in the sample the

  8. Hydrothermal calcite in the Elephant Moraine

    SciTech Connect

    Faure, G.; Taylor, K.S.; Jones, L.M.

    1986-01-01

    In the course of geologic mapping of the Elephant Moraine on the east antarctic ice sheet, Faure and Taylor (1985) collected several specimens of black botryoidal calcite, composed of radiating acicular crystals that resemble stromatolites. Calcite from this and other specimens is significantly enriched in strontium-87 (the strontium-87/strontium-86 ratio equals 0.71417 +/- 0.00002), carbon-12 (delta carbon-13 equals -22.9 parts per thousand, PDB standard) and oxygen-16 (delta oxygen-18 equals -21.1 parts per thousand, standard mean ocean water) compared with calcite of marine origin. The enrichment in carbon-12 is similar to that of calcite associated with coal in the Allan Hills. The enrichment in oxygen-16 indicates that the calcite from the Elephant Moraine could only have precipitated in isotopic equilibrium with glacial melt water. Therefore, the temperature at which the black calcite precipitated from water of that isotope composition was about 85/sup 0/C. A temperature of this magnitude implies that the black calcite formed as a result of volcanic activity under the east antarctic ice sheet. The enrichment of the black calcite in carbon-12 suggests that it formed in part from carbon dioxide derived from the coal seams of the Weller Formation in the Beacon Supergroup. The isotopic composition of strontium in the black calcite is similar to that of carbonate beds and concretions in the Beacon rocks of southern Victoria Land. A volcanic-hydrothermal origin is also consistent with the very low total organic carbon content of 0.15% in the calcite.

  9. Hydrothermal synthesis of pyrochlores and their characterization

    NASA Astrophysics Data System (ADS)

    Redkin, Alexander F.; Ionov, Andrey M.; Kotova, Nataliya P.

    2013-10-01

    Pyrochlores, microlites, and U-betafites of pyrochlore group minerals were obtained from mixing experiments of the corresponding oxides and fluorides by hydrothermal synthesis at T = 800 °C and P = 200 MPa in the solution of 1.0 M NaF. The presence of U4+ in pyrochlore does not affect the cell parameter, which for the phases of pyrochlore-microlite series is 10.42 ± 0.01 Å. In a system with an excess of UO2, pyrochlores and microlites, containing uranium up to 0.2-0.3 atoms per formula unit (apfu), are formed. In the uranium-free system of betafites composition, perovskites and Ti-bearing pyrochlores are formed. U-pyrochlores of betafite series, containing 2Ti = Nb + Ta in moles, have cubic cell parameters of 10.26 ± 0.02 Å and U4+ isomorphic capacity of 0.4-0.5 apfu. In the pyrochlore structure, U4+ may substitute for Ca2+ and Na+ cations in the eightfold site. In pyrochlores of pyrochlore-microlite series, Ca2+ is replaced by U4+, while in pyrochlores of betafite series, U4+ replaces Na+. Phases with pyrochlore structure, containing U5+ and U6+ in the sixfold site, usually occupied by Nb5+, Ta5+, and Ti4+, are formed under oxidizing conditions (Cu-Cu2O buffer). They are characterized by low content of Nb5+, Ta5+ (<0.1 apfu), and anomalous behavior of the crystal lattice (compression, instead of expansion). Under natural conditions, the formation of pyrochlores containing a significant amount of U5+ and U6+ is unlikely.

  10. Hydrothermal alteration favoring phreatic eruption processes at Solfatara (Campi Flegrei)

    NASA Astrophysics Data System (ADS)

    Mayer, Klaus; Scheu, Bettina; Montanaro, Cristian; Aßbichler, Donjá; Isaia, Roberto; Dingwell, Donald B.

    2015-04-01

    Solfatara and Pisciarelli fumaroles are the main surface manifestations of the strong hydrothermal activity within the Campi Flegrei caldera system and pointing to a significant risk for phreatic eruptions in this densely populated area. Phreatic eruptions, triggered by various processes are hardly predictable in occurrence time and size. Despite their hazard potential, these eruptions, as well as the influence of hydrothermal alteration on their likelihood, magnitude and style, have so far been largely overlooked in experimental volcanology. The physical properties and the mechanical behavior of volcanic rocks are highly dependent on their original magmatic microstructure and on any eventual alteration of those microstructures due to hydrothermal reactions. We have therefore investigated the potential effects of hydrothermal alteration on rock microstructure and, as a consequence, on fragmentation dynamics. Rock samples from the vicinity of the Solfatara and Pisciarelli fumaroles have been characterized 1) geochemically (X-ray fluorescence, X-ray diffraction), 2) physically (density, porosity, permeability and elastic wave velocity) and 3) mechanically (uniaxial compressive strength, tensile strength). We furthermore have investigated the effects of hydrothermal alteration on fragmentation processes using a shock-tube apparatus, operating with Argon gas, water vapor and superheated water at temperatures up to 400°C and maximum pressures of 20 MPa. Fragmentation and ejection dynamics in the presence of three different energy sources within the pores have been investigated: overpressure by 1) Argon gas; or 2) water vapor and due to 3) steam flashing of superheated water. Fragmentation speed, fragmentation efficiency and fragmented particle ejection velocity were measured. Our results indicate on the one hand, that steam flashing provides the highest energy - resulting in increased fragmentation speed and particle ejection velocity and also a significant higher

  11. Bacterial Diets of Primary Consumers at Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Govenar, B.; Shank, T. M.

    2008-12-01

    Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets

  12. Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin

    NASA Astrophysics Data System (ADS)

    Takai, Ken; Nunoura, Takuro; Ishibashi, Jun-Ichiro; Lupton, John; Suzuki, Ryohei; Hamasaki, Hiroshi; Ueno, Yuichiro; Kawagucci, Shinsuke; Gamo, Toshitaka; Suzuki, Yohey; Hirayama, Hisako; Horikoshi, Koki

    2008-06-01

    A newly discovered hydrothermal field called the Mariner field on the Valu Fa Ridge in the southern Lau Basin was explored and characterized with geochemical and microbiological analyses. The hydrothermal fluid discharging from the most vigorous vent (Snow Chimney, maximum discharge temperature 365°C) was boiling at the seafloor at a depth of 1908 m, and two distinct end-member hydrothermal fluids were identified. The fluid chemistry of the typical Cl-enriched and Cl-depleted hydrothermal fluids was analyzed, as was the mineralogy of the host chimney structures. The variability in the fluid chemistry was potentially controlled by the subseafloor phase-separation (vapor loss process) and the microbial community activities. Microbial community structures in three chimney structures were investigated using culture-dependent and -independent techniques. The small subunit (SSU) rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities on the chimney surfaces differed among three chimneys. Cultivation analysis demonstrated significant variation in the culturability of various microbial components among the chimneys, particularly of thermophilic H2-oxidizing (and S-oxidizing) chemolithoautotrophs such as the genera Aquifex and Persephonella. The physical and chemical environments of chimney surface habitats are still unresolved and do not directly extrapolate the environments of possible subseafloor habitats. However, the variability in microbial community found in the chimneys also provides an insight into the different biogeochemical interactions potentially affected by the phase separation of the hydrothermal fluids in the subseafloor hydrothermal habitats. In addition, comparison with other deep-sea hydrothermal systems revealed that the Mariner field microbial communities have unusual characteristics.

  13. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass.

    PubMed

    Lynam, Joan G; Coronella, Charles J; Yan, Wei; Reza, Mohammad T; Vasquez, Victor R

    2011-05-01

    As a renewable non-food resource, lignocellulosic biomass has great potential as an energy source or feedstock for further conversion. However, challenges exist with supply logistics of this geographically scattered and perishable resource. Hydrothermal carbonization treats any kind of biomass in 200 to 260°C compressed water under an inert atmosphere to produce a hydrophobic solid of reduced mass and increased fuel value. A maximum in higher heating value (HHV) was found when 0.4 g of acetic acid was added per g of biomass. If 1g of LiCl and 0.4 g of acetic acid were added per g of biomass to the initial reaction solution, a 30% increase in HHV was found compared to the pretreatment with no additives, along with greater mass reduction. LiCl addition also reduces reaction pressure. Addition of acetic acid and/or LiCl to hydrothermal carbonization each contribute to increased HHV and reduced mass yield of the solid product. PMID:21411315

  14. Hydrothermal reactions of fly ash. Quarterly report, October 1, 1993--December 31, 1993

    SciTech Connect

    Brown, P.W.

    1994-05-01

    The reactions which occur when fly ash is treated under hydrothermal conditions are being Investigated. This is being done for two primary reasons. The first of these is to determine the nature of the phases that form, to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this proposed study is that, depending on the composition of the ash and the presence of selected additives, it may be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, have been selected for study. These are calcium silicate hydrates, calcium silicosulfates, calcium aluminosulfates, and alkali aluminosilicates. The specific compounds fabricated will be determined and their stability regions assessed. As a part of stability assessment, the extent to which selected hazardous species are sequestered will be determined. Finally, the cementing properties of these compounds will be established.

  15. Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.

    PubMed

    Yang, Sheng; Yuan, Tong-Qi; Li, Ming-Fei; Sun, Run-Cang

    2015-01-01

    Corncob lignin was treated with pressurized hot water in a cylindrical autoclave in current investigation. With the aim of investigating the effect of reaction temperature and retention time on the distribution of degradation products, the products were divided into five fractions including gas, volatile organic compounds, water-soluble oil, heavy oil, and solid residue. It was found that hydrothermal degradation of corncob lignin in pressurized hot water produced a large amount of phenolic compounds with lower molecular weight than the raw lignin. Some phenolic and benzene derivatives monomers such as vanillin, 2-methoxy-phenol, 2-ethyl-phenol, p-xylene, and 1, 3-dimethyl-benzene were also identified in the degradation products. The products were further analyzed by GC-MS, GPC, 2D-HSQC, and (31)P-NMR to investigate their suitability for partial incorporation into phenol formaldehyde adhesive as a substitution of phenol. The results indicated that the reaction temperature had more effect on the products distribution than the retention time. The optimal condition for heavy oil production appeared at 290 °C with retention time 0 min. The compounds of heavy oil had more active sites than the raw lignin, suggesting that the heavy oil obtained from hydrothermal degradation of lignin is a promising material for phenol formaldehyde adhesive synthesis. PMID:25109457

  16. Synthesis of hydrothermally stable, hierarchically mesoporous aluminosilicate Al-SBA-1 and their catalytic properties.

    PubMed

    Li, Na; Wang, Jin-Gui; Xu, Jian-Xiong; Liu, Jin-Yu; Zhou, Hui-Jing; Sun, Ping-Chuan; Chen, Tie-Hong

    2012-03-21

    Hydrothermally stable mesoporous aluminosilicates Al-SBA-1 with hierarchical pore structure have been successfully synthesized under alkaline condition at 120 °C by employing organic mesomorphous complexes of polyelectrolyte (poly(acrylic acid) (PAA)) and cationic surfactant (hexadecyl pyridinium chloride (CPC)) as template. The Si/Al ratio could be as high as 5 and the incorporation of Al into the silica framework did not disturb the well-ordered cubic Pm ̅3n mesostructure. Meanwhile, the incorporation of Al could greatly increase the specific surface area and pore volume of the samples. The Al-SBA-1 materials exhibited a high hydrothermal stability and remained stable even after being treated in boiling water for 10 days. The catalytic activity of the Al-SBA-1 materials was investigated by employing the Friedel-Crafts alkylation of toluene with benzyl alcohol as a model reaction and they exhibited excellent catalytic property due to the incorporated acid sites and the hierarchically mesoporous structure. PMID:22327221

  17. Hydrothermal Synthesis and Dielectric Properties of Lead Nickel Niobate Ceramics

    NASA Astrophysics Data System (ADS)

    Lu, Chung-Hsin; Hwang, Wen-Jeng

    1999-09-01

    Lead nickel niobate (Pb(Ni1/3Nb2/3)O3) has been prepared by a newly developed hydrothermal process. During the hydrothermal reaction at 250°C, a pyrochlore phase is formed. After calcining the 250°C-hydrothermally derived precursors at 750°C, a monophasic Pb(Ni1/3Nb2/3)O3 compound is successfully produced. Increasing the hydrothermal temperature significantly facilitates the formation of the perovskite phase. In comparison with the solid-state reaction, the hydrothermal process not only reduces the temperature for synthesizing Pb(Ni1/3Nb2/3)O3, but also decreases its particle size to the submicron range. The dielectric properties of Pb(Ni1/3Nb2/3)O3 strongly depend on the electric field frequency. Increasing the field frequency results in an increase in the apparent Curie temperature, which is associated with a decrease in the maximum dielectric permittivity. The critical exponent and diffuseness calculated by a modified permittivity-temperature equation verify the relaxor characteristics of Pb(Ni1/3Nb2/3)O3.

  18. Hydrothermal acid treatment for sugar extraction from Golenkinia sp.

    PubMed

    Choi, Sun-A; Choi, Won-Il; Lee, Jin-Suk; Kim, Seung Wook; Lee, Gye-An; Yun, Jihyun; Park, Ji-Yeon

    2015-08-01

    In this study, hydrothermal acid treatment for efficient recovery of sugar from Golenkinia sp. was investigated. The initial glucose and XMG (xylose, mannose, and galactose) contents of a prepared Golenkinia sp. solution (40g/L) were 15.05 and 5.24g/L, respectively. The microalgal cell walls were hydrolyzed, for sugar recovery, by enzymatic saccharification and/or hydrothermal acid treatment. Among the various hydrothermal acid treatment conditions, the most optimal were the 2.0% H2SO4 concentration at 150°C for 15min, under which the glucose- and XMG-extraction yields were 71.7% and 64.9%, respectively. By pH 4.8, 50°C enzymatic hydrolysis after optimal hydrothermal acid treatment, the glucose- and XMG-extraction yields were additionally increased by 8.3% and 0.8%, respectively. After hydrothermal acid treatment, the combination with the enzymatic hydrolysis process improved the total sugar yield of Golenkinia sp. to 75.4%. PMID:25976916

  19. Comparison of 14C ages of hydrothermal petroleums

    USGS Publications Warehouse

    Simoneit, B.R.T.; Kvenvolden, K.A.

    1994-01-01

    In order to set limits on the time frame of formation of hydrothermal petroleum, we have obtained 14C ages on samples from three diverse regions; Gulf of California (Guaymas Basin), Northeast Pacific Ocean (Escanaba Trough and Middle Valley), and the East African Rift (Tanganyika Trough). The results date the source of carbon and therefore provide maximum ages for the formation and emplacement of the hydrothermal petroleums. The youngest petroleum occurs iin the Souther Trough of Guaymas Basin (3200-6600 yr, mean 4692 yr); in the Northern Trough the petroleum is slightly older (7400 yr). Significantly older hydrothermal petroleum occurs in Escanaba Trough (17,000 yr) and Middle Valley (29,000 yr). A continental example from the East African Rift has an age of 25,000 yr, comparable to the ages observed in the oceanic samples from the Northeast Pacific Ocean. These ages affirm that hydrothermal petroleum formation is a very rapid process and took place some time between the latest Pleistocene and the present in these active hydrothermal systems. ?? 1994.

  20. Concerns of Hydrothermal Degradation in CAD/CAM Zirconia

    PubMed Central

    Kim, J.-W.; Covel, N.S.; Guess, P.C.; Rekow, E.D.; Zhang, Y.

    2010-01-01

    Zirconia-based restorations are widely used in prosthetic dentistry; however, their susceptibility to hydrothermal degradation remains elusive. We hypothesized that CAD/CAM machining and subsequent surface treatments, i.e., grinding and/or grit-blasting, have marked effects on the hydrothermal degradation behavior of Y-TZP. CAD/CAM-machined Y-TZP plates (0.5 mm thick), both with and without subsequent grinding with various grit sizes or grit-blasting with airborne alumina particles, were subjected to accelerated aging tests in a steam autoclave. Results showed that the CAD/CAM-machined surfaces initially exhibited superior hydrothermal degradation resistance, but deteriorated at a faster rate upon prolonged autoclave treatment compared with ground and grit-blasted surfaces. The accelerated hydrothermal degradation of CAD/CAM surfaces is attributed to the CAD/CAM machining damage and the absence of surface compressive stresses in the fully sintered material. Clinical relevance for surface treatments of zirconia frameworks in terms of hydrothermal and structural stabilities is addressed. PMID:19966039

  1. Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers

    NASA Astrophysics Data System (ADS)

    Lowell, Robert P.; Seewald, Jeffrey S.; Metaxas, Anna; Perfit, Michael R.

    Hydrothermal systems at oceanic spreading centers reflect the complex interactions among transport, cooling and crystallization of magma, fluid circulation in the crust, tectonic processes, water-rock interaction, and the utilization of hydrothermal fluids as a metabolic energy source by microbial and macro-biological ecosystems. The development of mathematical and numerical models that address these complex linkages is a fundamental part the RIDGE 2000 program that attempts to quantify and model the transfer of heat and chemicals from "mantle to microbes" at oceanic ridges. This volume presents the first "state of the art" picture of model development in this context. The most outstanding feature of this volume is its emphasis on mathematical and numerical modeling of a broad array of hydrothermal processes associated with oceanic spreading centers. By examining the state of model development in one volume, both cross-fertilization of ideas and integration across the disparate disciplines that study seafloor hydrothermal systems is facilitated. Students and scientists with an interest in oceanic spreading centers in general and more specifically in ridge hydrothermal processes will find this volume to be an up-to-date and indispensable resource.

  2. Geologic evolution of the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Denny, Alden R.; Kelley, Deborah S.; Früh-Green, Gretchen L.

    2016-02-01

    The Lost City Hydrothermal Field (LCHF) is a novel serpentinite-hosted vent field located on the Atlantis Massif southern wall. Results of 2 m resolution bathymetry, side scan, and video and still imagery, integrated with direct submersible observations provide the first high-resolution geologic map of the LCHF. These data form the foundation for an evolutionary model for the vent system over the past >120,000 years. The field is located on a down-dropped bench 70 m below the summit of the massif. The bench is capped by breccia and pelagic carbonate deposits underlain by variably deformed and altered serpentinite and gabbroic rocks. Hydrothermal activity is focused at the 60 m tall, 100 m across, massive carbonate edifice "Poseidon," which is venting 91°C fluid. Hydrothermal activity declines south and west of the Poseidon complex and dies off completely at distances greater than 200 m. East of Poseidon, the most recent stage of hydrothermal flow is characterized by egress of diffuse fluids from narrow fissures within a low-angle, anastomosing mylonite zone. South of the area of current hydrothermal activity, there is evidence of two discrete previously unrecognized relict fields. Active venting sites defined by carbonate-filled fissures that cut the carbonate cap rock at the summit of the massif mark the present-day northernmost extent of venting. These spatial relationships reflect multiple stages of field development, the northward migration of venting over time, and the likely development of a nascent field at the massif summit.

  3. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  4. Shallow Submarine Hydrothermal Systems in the Aeolian Volcanic Arc, Italy

    NASA Astrophysics Data System (ADS)

    Monecke, Thomas; Petersen, Sven; Lackschewitz, Klas; Hügler, Michael; Hannington, Mark D.; Gemmell, J. Bruce

    2009-03-01

    The majority of known high-temperature hydrothermal vents occur at mid-ocean ridges and back-arc spreading centers, typically at water depths from 2000 to 4000 meters. Compared with 30 years of hydrothermal research along spreading centers in the deep parts of the ocean, exploration of the approximately 700 submarine arc volcanoes is relatively recent [de Ronde et al., 2003]. At these submarine arc volcanoes, active hydrothermal vents are located at unexpectedly shallow water depth (95% at <1600-meter depth), which has important consequences for the style of venting, the nature of associated mineral deposits, and the local biological communities. As part of an ongoing multinational research effort to study shallow submarine volcanic arcs, two hydrothermal systems in the submerged part of the Aeolian arc have been investigated in detail during research cruises by R/V Poseidon (July 2006) and R/V Meteor (August 2007). Comprehensive seafloor video surveys were conducted using a remotely operated vehicle, and drilling to a depth of 5 meters was carried out using a lander-type submersible drill. This research has resulted in the first detailed, three-dimensional documentation of shallow submarine hydrothermal systems on arc volcanoes.

  5. Evidence for Hesperian Impact-Induced Hydrothermalism on Mars

    NASA Technical Reports Server (NTRS)

    Marzo, Giuseppe A.; Davila, Alfonso F.; Tornabene, Livio L.; Dohm, James M.; Fairen, Alberto G.; Gross, Christoph; Kneissl, Thomas; Bishop, Janice L.; Roush, Ted L.; McKay, Chris P.

    2010-01-01

    Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8 deg E, 17.0 deg N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.

  6. Baseline Hydrothermal Monitoring Data from Cascade Range Volcanoes

    NASA Astrophysics Data System (ADS)

    Crankshaw, I. M.; Ingebritsen, S.; Randolph-Flagg, N. G.; Newman, A. C.; Evans, W.; Spicer, K. R.; Ledingham, G.

    2015-12-01

    Since 2009 the U.S. Geological Survey has systematically monitored hydrothermal behavior at selected Cascade Range volcanoes in order to define baseline hydrothermal and geochemical conditions. Gas and water data have been collected at 25 monitoring sites on 10 of the highest-risk volcanoes in the Cascade Range. These sites include summit-fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and (or) large fluxes of magmatic CO2 or heat. The monitoring data are intended to (1) be suitable for comparison with other continuous geophysical monitoring data and (2) provide baseline data that will be useful during future episodes of volcanic unrest. Site records consist mainly of hourly temperature and (or) hydrothermal solute flux data spanning multiple years. Many of the hydrothermal time series data show considerable variability during quiescent periods, including diurnal, seasonal, and inter-annual variability. Having established baseline conditions, we are reducing our monitoring frequency, and data are being archived and analyzed with a view to providing useful and succinct summaries of baseline behavior during quiescent periods. The hydrothermal response to recent (November 2014 to present) unrest at Lassen Volcanic Center demonstrates the utility of long-term background data, which has made it straightforward to isolate symptoms of unrest.

  7. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.; Mccollom, Thomas; Schulte, Mithell D.

    1995-01-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of reduced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  8. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition

    DOE PAGESBeta

    Leow, Shijie; Witter, John R.; Vardon, Derek R.; Sharma, Brajendra K.; Guest, Jeremy S.; Strathmann, Timothy J.

    2015-05-11

    Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200–350 °C, 5–20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on factors influencing microalgae cell composition during cultivation and separate reports on HTL products linked to cell composition, the field still lacks a quantitative model to predict HTL conversion product yield and qualities from feedstock biochemical composition; the tailoring of microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae biofuels that must be leveraged upon for optimization of the whole process. This study developed predictive relationships for HTL biocrude yield and othermore » conversion product characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range of compositions (23–59% dw lipids, 58–17% dw proteins, 12–22% dw carbohydrates) and a defatted batch (0% dw lipids, 75% dw proteins, 19% dw carbohydrates). HTL biocrude yield (33–68% dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) content. A component additivity model (predicting biocrude yield from lipid, protein, and carbohydrates) was more accurate predicting literature yields for diverse microalgae species than previous additivity models derived from model compounds. FA profiling of the biocrude product showed strong links to the initial feedstock FA profile of the lipid component, demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA structural components could be represented using the defatted batch. These findings were used to introduce a new FA-based model that predicts biocrude oil yields along with other critical parameters, and is capable of adjusting for the wide variations in HTL methodology and microalgae species through the defatted batch. Lastly, the FA model was linked to an upstream cultivation model (Phototrophic Process Model

  9. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition

    SciTech Connect

    Leow, Shijie; Witter, John R.; Vardon, Derek R.; Sharma, Brajendra K.; Guest, Jeremy S.; Strathmann, Timothy J.

    2015-05-11

    Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200–350 °C, 5–20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on factors influencing microalgae cell composition during cultivation and separate reports on HTL products linked to cell composition, the field still lacks a quantitative model to predict HTL conversion product yield and qualities from feedstock biochemical composition; the tailoring of microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae biofuels that must be leveraged upon for optimization of the whole process. This study developed predictive relationships for HTL biocrude yield and other conversion product characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range of compositions (23–59% dw lipids, 58–17% dw proteins, 12–22% dw carbohydrates) and a defatted batch (0% dw lipids, 75% dw proteins, 19% dw carbohydrates). HTL biocrude yield (33–68% dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) content. A component additivity model (predicting biocrude yield from lipid, protein, and carbohydrates) was more accurate predicting literature yields for diverse microalgae species than previous additivity models derived from model compounds. FA profiling of the biocrude product showed strong links to the initial feedstock FA profile of the lipid component, demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA structural components could be represented using the defatted batch. These findings were used to introduce a new FA-based model that predicts biocrude oil yields along with other critical parameters, and is capable of adjusting for the wide variations in HTL methodology and microalgae species through the defatted batch. Lastly, the FA model was linked to an upstream cultivation model (Phototrophic Process Model

  10. Fabrication of hydroxyapatite on pure titanium by micro-arc oxidation coupled with microwave-hydrothermal treatment.

    PubMed

    Zhao, Quan-ming; Yang, Hui-lin; Liu, Zhong-tang; Gu, Xiao-feng; Li, Cheng; Feng, De-hong

    2015-02-01

    Porous hydroxyapatite (HA)-containing composite films were prepared by a novel method consisting of micro-arc oxidation (MAO) combined with microwave-hydrothermal (M-H) treatment. The morphology, composition and phase composition of the bioactive films were investigated with scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffraction. MTT assay was carried out to investigate the in vitro effects of the different surfaces on bone integration properties. The prepared MAO films consisted mainly of anatase, rutile and tricalcium phosphate along with amorphous calcium (Ca) and phosphorus (P) phases. The M-H-treated composite films were composed primarily of anatase, rutile and HA. As the time and temperature of the M-H treatment increased, the number of HA crystals gradually increased. Using the M-H method, HA was obtained at a lower temperature and in a shorter period of time compared to the conventional hydrothermal method. The results suggest that the M-H method significantly decreases the hydrothermal reaction temperature and also greatly shortens the reaction time. Due to the nanocrystallinity and porosity of the prepared composite films, the method presented here shows promise for the formation of bioactive materials for medical applications. PMID:25649513

  11. In vitro biocompatibility of magnesium-incorporated submicro-porous titanium oxide surface produced by hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; An, Chang-Hyeon

    2010-11-01

    This study investigated the surface characteristics and in vitro biocompatibility of titanium (Ti) oxide surface incorporating magnesium ions (Mg), produced by hydrothermal treatment using an alkaline Mg-containing solution, for future biomedical applications. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and optical profilometry. Mouse calvaria-derived osteoblastic cell (MC3T3-E1) attachment, spreading, proliferation, alkaline phosphatase (ALP) activity, and osteoblastic gene expression on Mg-containing surfaces were compared with untreated Ti surfaces. Hydrothermal treatment resulted in Mg-incorporated Ti oxide layer with submicro-porous surface structures approximately 2 μm in thickness. ICP-AES analysis revealed Mg ions release from treated surfaces into the solution. The Mg-incorporated surface displayed significantly increased cellular attachment and ALP activity compared with untreated surface ( p < 0.05), and supported better cell spreading. Real-time polymerase chain reaction analysis showed notably higher mRNA expression of the osteoblast transcription factor genes (Dlx5, Runx2) and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on the Mg-incorporated surfaces than untreated surfaces. These results demonstrate that the Mg-incorporated submicro-porous Ti oxide surface produced by hydrothermal treatment may improve implant osseointegration by enhancing the attachment, spreading and differentiation of osteoblastic cells.

  12. Liquid atomization

    NASA Astrophysics Data System (ADS)

    Bayvel, L.; Orzechowski, Z.

    The present text defines the physical processes of liquid atomization, the primary types of atomizers and their design, and ways of measuring spray characteristics; it also presents experimental investigation results on atomizers and illustrative applications for them. Attention is given to the macrostructural and microstructural parameters of atomized liquids; swirl, pneumatic, and rotary atomizers; and optical drop sizing methods, with emphasis on nonintrusive optical methods.

  13. Geology, alteration, and magmatic-hydrothermal history of The Geysers felsite -- potential applications for exploration and development

    SciTech Connect

    Hulen, J.B.; Nielson, D.L. )

    1993-01-01

    The [open quotes]felsite[close quotes] is a shallow, young, granitic intrusive body centrally located within and beneath. The Geysers steam field. The field and the felsite are coaxial, and hydrothermal alteration effected by hot-water dominated geothermal systems antedating the modern steam reservoir shows systematic vertical zonation with respect to the pluton. The research summarized in this communication was undertaken both to clarify the role of the pluton in reservoir evolution, and to characterize critical felsite-specific controls on the fields's deep porosity and permeability. The felsite comprises at least three major intrusive phases. Two are high-silica granites probably older than 1.3 Ma. The third is granodiorite (1 Ma), temporally and chemically equivalent to overlying extrusive dacites of the Clear Lake volcanic field. All three intrusive phases are too old to be heat sources for the modern steam field, but probably were the heat engines for the prior liquid-dominant systems. Younger, deeper magmatic heat sources are strongly implied for the current vapor-dominated regime. Porosity in the felsite is provided by: (1) Extensively mineralized fractures and breccias, probably of both tectonic and high-temperature hydrothermal origin; and (2) miarolitic cavities in the upper levels of the pluton. The latter could be analogous to calcite-dissolution cavities in overlying metagraywacke -- they could serve as storage sites for the fields's liquid water reserves. Porosity in these fractures, breccias, and vugs in partially occluded by hydrothermal vein minerals deposited in prior hotwater-dominated systems --tourmaline, ferroaxinite, quartz, potassium feldspar, epidote, actinolite, prehnite, and many others. Such secondary mineralization conceptually could serve as an excellent exploration guide to potentially productive portions of the felsite beyond the field's present boundaries.

  14. Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids.

    PubMed

    Biller, P; Riley, R; Ross, A B

    2011-04-01

    Hydrothermal processing of high lipid feedstock such as microalgae is an alternative method of oil extraction which has obvious benefits for high moisture containing biomass. A range of microalgae and lipids extracted from terrestrial oil seed have been processed at 350 °C, at pressures of 150-200 bar in water. Hydrothermal liquefaction is shown to convert the triglycerides to fatty acids and alkanes in the presence of certain heterogeneous catalysts. This investigation has compared the composition of lipids and free fatty acids from solvent extraction to those from hydrothermal processing. The initial decomposition products include free fatty acids and glycerol, and the potential for de-oxygenation using heterogeneous catalysts has been investigated. The results indicate that the bio-crude yields from the liquefaction of microalgae were increased slightly with the use of heterogeneous catalysts but the higher heating value (HHV) and the level of de-oxygenation increased, by up to 10%. PMID:21295976

  15. Energetics of amino acid synthesis in hydrothermal ecosystems

    NASA Technical Reports Server (NTRS)

    Amend, J. P.; Shock, E. L.

    1998-01-01

    Thermodynamic calculations showed that the autotrophic synthesis of all 20 protein-forming amino acids was energetically favored in hot (100 degrees C), moderately reduced, submarine hydrothermal solutions relative to the synthesis in cold (18 degrees C), oxidized, surface seawater. The net synthesis reactions of 11 amino acids were exergonic in the hydrothermal solution, but all were endergonic in surface seawater. The synthesis of the requisite amino acids of nine thermophilic and hyperthermophilic proteins in a 100 degreesC hydrothermal solution yielded between 600 and 8000 kilojoules per mole of protein, which is energy that is available to drive the intracellular synthesis of enzymes and other biopolymers in hyperthermophiles thriving in these ecosystems.

  16. Coordination Hydrothermal Interconnection Java-Bali Using Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Wicaksono, B.; Abdullah, A. G.; Saputra, W. S.

    2016-04-01

    Hydrothermal power plant coordination aims to minimize the total cost of operating system that is represented by fuel costand constraints during optimization. To perform the optimization, there are several methods that can be used. Simulated Annealing (SA) is a method that can be used to solve the optimization problems. This method was inspired by annealing or cooling process in the manufacture of materials composed of crystals. The basic principle of hydrothermal power plant coordination includes the use of hydro power plants to support basic load while thermal power plants were used to support the remaining load. This study used two hydro power plant units and six thermal power plant units with 25 buses by calculating transmission losses and considering power limits in each power plant unit aided by MATLAB software during the process. Hydrothermal power plant coordination using simulated annealing plants showed that a total cost of generation for 24 hours is 13,288,508.01.

  17. Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems

    SciTech Connect

    Aggarwal, J.K.; Palmer, M.R.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

  18. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    NASA Technical Reports Server (NTRS)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  19. Organic Biomarker Preservation in Silica-Rich Hydrothermal Systems with Implications to Mars

    NASA Astrophysics Data System (ADS)

    Jahnke, L. L.; Parenteau, M. N.; Farmer, J. D.

    2016-05-01

    Microbial community structure and preservation of organic matter in siliceous hydrothermal environments is a critical issue given the discovery of hydrothermal vents and silica on Mars. Here we discuss preservation of cyanobacterial biomarker lipid.

  20. Copper sulfate: Liquid or crystals?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two separate experiments were conducted to evaluate copper toxicity to channel catfish and free-swimming Ichthyophthirius multifiliis or Ich (the stage of Ich that can be treated); the compounds we used were CuSO4 crystals and a non-chelated liquid CuSO4 product. In 96 hr tests conducted in aquaria...

  1. Progress report on modeling studies: Natural state conditions and exploitation of the Dachny geothermal reservoir, Mutnovsky hydrothermal system, Kamchatka, Russia

    SciTech Connect

    Kiryukhin, A.V.

    1992-07-01

    The spatial distribution of pre-exploitation conditions (e.g. temperature and pressure distributions, liquid and vapor saturations, circulation characteristics of high-temperature fluids) in the Dachny site of the Mutnovsky hydrothermal system, obtained earlier using a 3-D mapping method (Kiryukhin et al, 1991), are revised on the basis of natural state simulations performed with the computer code TOUGH2 (Pruess, 1991). A 3-D model of the natural state conditions at the Dachny site was developed. The fine-tuning of the model has been achieved by comparing model results to the observations made in geothermal wells 1, 24, 01, 016 and 26 during flow tests conducted during 1983--1988. The behavior of these five wells in response to two exploitation scenarios, one with no reinjection, the other with 100 kg/s of liquid injection into well 027, was also computed.

  2. Hydrothermal synthesis as a route to mineralogically-inspired structures.

    PubMed

    McMillen, Colin D; Kolis, Joseph W

    2016-02-21

    The use of high temperature hydrothermal reactions to prepare crystals having mineralogically-related structures is described. Complex naturally occurring minerals can have fascinating structures and exhibit important features like low dimensionality, noncentrosymmetry, or ion channels that can provide excellent guideposts for the designed synthesis of new materials. Actual minerals, even though they may have intriguing physical properties, are often unsuitable for study because of the persistent impurities inevitably present in natural samples. Hydrothermal fluids at relatively high temperatures provide access to large, high quality single crystals of structures with mineral-like structures. This enables the study of physical properties like ionic conduction, magnetic spin frustration and non-linear optical behavior. Some fundamental considerations of the hydrothermal technique are discussed in the context of synthesizing mineralogically-inspired materials. The metal vanadates provide a surprisingly rich and diversified range of compounds and are selected to illustrate many of the concepts described here. A series of low dimensional mineral analogs featuring isolated units, chains, and layers have been prepared in the laboratory as large single crystals using a high temperature hydrothermal synthetic methods, and their physical properties are under investigation. The metal silicates are also highlighted as another promising field of exploration, since their hydrothermal synthesis surprisingly lags behind the enormous literature of the natural silicate minerals. The introduction of heteroelements, such as boron to make borosilicates, appears to also open the door to additional new materials. Many of these new materials have direct equivalents in the mineral kingdom, while others have no known analogs but are reminiscent of minerals and can be classified in the same ways. From these initial results there appears to be a very rich vein of synthetic minerals waiting

  3. Hydrothermal vents in Lake Tanganyika, East African, Rift system

    NASA Astrophysics Data System (ADS)

    Tiercelin, Jean-Jacques; Pflumio, Catherine; Castrec, Maryse; Boulégue, Jacques; Gente, Pascal; Rolet, Joël; Coussement, Christophe; Stetter, Karl O.; Huber, Robert; Buku, Sony; Mifundu, Wafula

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 °C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza,active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO3-enriched fluid similar to the NaHCO3 thermal fluids from lakes Magadi and Bogoria in the eastern branch off the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction off 219 and 179 °C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130 °N normal-dextral faults that intersect the north- south major rift trend. The source of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza.

  4. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    NASA Astrophysics Data System (ADS)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  5. How Is Pneumonia Treated?

    MedlinePlus

    ... page from the NHLBI on Twitter. How Is Pneumonia Treated? Treatment for pneumonia depends on the type ... can go back to their normal routines. Bacterial Pneumonia Bacterial pneumonia is treated with medicines called antibiotics. ...

  6. Treating Influenza (Flu)

    MedlinePlus

    ... can be used to treat influenza illness. Antiviral drugs fight influenza viruses in your body. They are different from ... chills and fatigue. Your doctor may prescribe antiviral drugs to treat your flu illness. Should Istill get aflu vaccine? Yes. Antiviral ...

  7. An improved hydrothermal diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Li, Jiankang; Bassett, W. A.; Chou, I.-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan

    2016-05-01

    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China.

  8. An improved hydrothermal diamond anvil cell.

    PubMed

    Li, Jiankang; Bassett, W A; Chou, I-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan

    2016-05-01

    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China. PMID:27250393

  9. Fate of Organic Micropollutants during Hydrothermal Carbonization

    NASA Astrophysics Data System (ADS)

    Weiner, B.; Baskyr, I.; Pörschmann, J.; Kopinke, F.-D.

    2012-04-01

    The hydrothermal carbonization (HTC) is an exothermic process, in which biomass in an aqueous suspension is transformed into a bituminous coal-like material (hydrochar) at temperatures between 180-250°C and under moderate pressure. With these process conditions, little gas is generated (1-5%), and a fraction of the organic carbon is dissolved in the aqueous phase (10-30%) but the largest part is obtained as solid char. The respective yields and the molecular composition depend on the choice of educts and the process conditions, such as temperature, pH-value, and reaction time. Various biomass-educts have recently been studied, such as waste materials from agriculture, brewer's spent grains, sewage sludge, as well as wood and paper materials. Besides their use for energy generation, the hydrochars have also been investigated as soil amendments. Prior to addition of the chars to soil, these should be free of toxic components that could be released into the environment as harmful organic pollutants. Herein, the potential for the degradation of trace organic pollutants, such as pesticides and pharmaceuticals, under typical HTC conditions will be presented. The degradation of selected organic pollutants with different polarity and hydrophobicity was investigated. Scope and limitations of the degradation potential of the HTC are discussed on examples of micro pollutants such as hormones, residues of pharmaceuticals and personal care products including their metabolites, and pesticides. We will show that the target analytes are partially and in some cases completely degraded. The degree of degradation depends on the HTC process conditions such as reaction temperature and time, the solution pH value, the presence of catalysts or additional reagents. The biotic and abiotic degradation of chlorinated organic compounds, in particular chlorinated aromatics, has been a well-known environmental problem and remains a challenging issue for the development of a HTC process for

  10. Integrated analysis of hydrothermal flow through pretreatment

    PubMed Central

    2012-01-01

    Background The impact of hydrothermal flowthrough (FT) pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar) and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal cellulase, and fermentation by Clostridium thermocellum). Results Compared to batch pretreatment, FT pretreatment consistently resulted in higher XMG recovery, higher removal of non-carbohydrate carbon and higher glucan solubilization by simultaneous saccharification and fermentation (SSF). XMG recovery was above 90% for FT pretreatment below 4.1 severity but decreased at higher severities, particularly for bagasse. Removal of non-carbohydrate carbon during FT pretreatment increased from 65% at low severity to 80% at high severity for corn stover, and from 40% to 70% for bagasse and poplar. Solids obtained by FT pretreatment were amenable to high conversion for all of the feedstocks and conversion systems examined. The optimal time and temperature for FT pretreatment on poplar were found to be 16 min and 210°C. At these conditions, SSF glucan conversion was about 85%, 94% of the XMG was removed, and 62% of the non carbohydrate mass was solubilized. Solubilization of FT-pretreated poplar was compared for C. thermocellum fermentation (10% inoculum), and for yeast-fungal cellulase SSF (5% inoculum, cellulase loading of 5 and 10 FPU/g glucan supplemented with β-glucosidase at 15 and 30 U/g glucan). Under the conditions tested, which featured low solids concentration, C. thermocellum fermentation achieved faster rates and more complete conversion of FT-pretreated poplar than did SSF. Compared to SSF, solubilization by C. thermocellum was 30% higher after 4 days, and was over twice as fast on ball-milled FT-pretreated poplar. Conclusions XMG removal trends were similar between feedstocks whereas glucan conversion trends were significantly different, suggesting that

  11. Dynamic behavior of Kilauea Volcano and its relation to hydrothermal systems and geothermal energy

    USGS Publications Warehouse

    Kauhikaua, Jim; Moore, R.B.

    1993-01-01

    Exploitation of hydrothermal systems on active basaltic volcanoes poses some unique questions about the role of volcanism and hydrothermal system evolution. Volcanic activity creates and maintains hydrothermal systems while earthquakes create permeable fractures that, at least temporarily, enhance circulation. Magma and water, possibly hydrothermal water, can interact violently to produce explosive eruptions. Finally, we speculate on whether volcanic behavior can be affected by high rates of heat extraction.

  12. Implementation of model predictive control on a hydrothermal oxidation reactor

    SciTech Connect

    Muske, K.R.; Dell`Orco, P.C.; Le, L.A.; Flesner, R.L.

    1998-12-31

    This paper describes the model-based control algorithm developed for a hydrothermal oxidation reactor at the Pantex Department of Energy facility in Amarillo, Texas. The combination of base hydrolysis and hydrothermal oxidation is used for the disposal of PBX 9404 high explosive at Pantex. The reactor oxidizes the organic compounds in the hydrolysate solutions obtained from the base hydrolysis process. The objective of the model predictive controller is to minimize the total aqueous nitrogen compounds in the effluent of the reactor. The controller also maintains a desired excess oxygen concentration in the reactor effluent to ensure the complete destruction of the organic carbon compounds in the hydrolysate.

  13. Hydrothermal systems on Mars: an assessment of present evidence.

    PubMed

    Farmer, J D

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  14. Tularosa Basin Play Fairway Analysis: Hydrothermal Alteration Map

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This is a hydrothermal alteration map of the Tularosa Basin area, New Mexico and Texas that was created using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral data band ratios based upon diagnostic features of clay, calcite, silica, gypsum, ferric iron, and ferrous iron. Mesoproterozoic granite in the San Andreas Range often appeared altered, but this may be from clays produced by weathering or, locally, by hydrothermal alteration. However, no field checking was done. This work was done under U.S. D.O.E. Contract #DE-EE0006730

  15. Hydrothermal systems on Mars: an assessment of present evidence

    NASA Technical Reports Server (NTRS)

    Farmer, J. D.

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  16. Evidence for hydrothermal alteration in the Hellas ejecta

    NASA Astrophysics Data System (ADS)

    Noe Dobrea, E. Z.; Swayze, G. A.

    2011-12-01

    We have analyzed data from MRO/CRISM, HiRISE, and CTX to study the massifs in the NW Hellas region. The Hellas basin is thought to have formed during the late heavy bombardment [Acuña et al. 1999] as a consequence of a massive impact. The impact not only excavated rocks from the deep stratigraphy, but it also deposited enough energy into the ejecta to support hydrothermal conditions [Newsom 1980]. Spectral observations of the mineralogy of the martian highlands north of Hellas suggest that the region was experiencing aqueous activity during that era [Pelkey et al. 2007]. Therefore, spectroscopic studies of the well-preserved massifs that form the rim and ejecta in northwest Hellas have the potential to reveal zones of hydrothermal alteration. Additionally, studies of the deep crustal rocks excavated as part of the ejecta are of particular relevance in light of recent discoveries of carbonate-bearing rocks exposed in complex craters on Mars [Michalski and Niles 2010; Wray et al. 2011]. Our analyses reveal outcrops in the massifs where evidence for products of hydrothermal alteration are observed. In particular, we find evidence for smectites, prehnite, chlorite, and illite exposed in these outcrops (Fig 1). The spectra of these altered units also exhibit a strong, broad concave-up absorption in the 1-1.5 μm region, consistent with the presence of Fe2+ in olivine, suggesting that only partial alteration has occurred. The mineralogy of hydrothermal alteration products is a function of the original composition of the host rock; the temperature, chemistry, and pH of the water; and the overburden pressure [DeRudder and. Beck 1963; Morris et al. 2001; 2003; Brown et al. 2010; Inoue et al. 2010]. On Earth, prehnite can form via low-grade metamorphism, where it occurs as part of the prehnite-pumpellyite metamorphic facies [Blatt and Tracy 1995], or as a product of the low-temperature (100-350°C) hydrothermal alteration of mafic rocks [Freedman et al. 2009; Marks et al

  17. Catalytic hydrothermal gasification of biomass for the production of hydrogen-containing feedstock (methane)

    SciTech Connect

    Elliott, Douglas C; Hart, Todd R; Neuenschwander, Gary G

    2008-04-07

    Hydrothermal processing can be used to treat wet biomass by converting the organic contaminants to gases. When the system is operated as a metal catalyzed process at nominally 350°C and 21 MPa (so-called low-temperature gasification), it can produce a methane/carbon dioxide product gas from water slurries of biomass. This process can be utilized for both waste disposal and energy recovery. Catalyst stability in an aqueous processing environment is a major hurdle for use of such a system. Development of useful catalyst formulations has been achieved through bench-scale process development work. Catalyst lifetimes in excess of 5000h have been shown. Protection of the catalyst from feedstock impurities is a second major issue, which is more prominent in the biomass applications. Systems are under development to address mineral matter and sulfur contaminants.

  18. Hydrothermolysis of biomass-ethanol fermentation of hydrothermal solutions with Saccharomyces carlsbergensis W 34

    SciTech Connect

    Bonn, G.; Bobleter, O.; Pfeifer, P.; Schwald, W.

    1983-12-01

    Research on alternative energy sources and raw materials is gaining in importance owing to the increasing shortage of energy carriers and petrochemicals. Hydrothermolysis of lignocellulosic biomass (e.g., wood, straw) degrades the high molecular substrate into low molecular compounds (sugars, furfurals, phenols etc.). In this process water dissolves hemicellulose at approximately 180/sup 0/ C, cellulose at approximately 270/sup 0/ C, and lignin at about 300/sup 0/ C, without the addition of any chemicals / 1-4/. Over 50% of the cellulose thus hydrolyzed can be fermented to ethanol by saccharomyces carlsbergensis W 34. To obtain these results it was necessary to carry out basic fermentation experiments on the inhibition of certain by-products such as lignin compounds, glyceraldehyde, methylglyoxal etc.. On the basis of these experiments, the optimum conditions for the fermentation to ethanol of hydrothermally treated pure cellulose (filter paper), cotton with and without impurities, waste cotton from textile manufacture, and straw, were examined.

  19. Anaerobic digestion of antibiotic residue in combination with hydrothermal pretreatment for biogas.

    PubMed

    Zhang, Guangyi; Li, Chunxing; Ma, Dachao; Zhang, Zhikai; Xu, Guangwen

    2015-09-01

    Antibiotic residues are difficult to be treated or utilized because of their high water content and residual antibiotics. This article is devoted to investigating the possibility of biogas production from cephalosporin C residue (CPCAR), one typical type of antibiotic residues, via anaerobic digestion in combination with hydrothermal pretreatment (HTPT). The results from the bench-scale experiments showed that the combination of HTPT and anaerobic digestion can provide a viable way to convert CPCAR into biogas, and the biogas and methane yields reached 290 and 200 ml(g TS)(-1), respectively. This article further evaluated the proposed technology in terms of energy balance and technical feasibility based on theoretical calculation using the data from a pilot HTPT test. It was shown that the process is totally self-sufficient in energy and its main challenging problem of ammonia inhibition can be solved via ammonia stripping. PMID:26038331

  20. Apparatus for treating cement kiln dust

    SciTech Connect

    Galli, R.

    1986-04-22

    An apparatus is described for treating cement kiln dust comprising an elongate reaction chamber, kiln dust entry means in the reaction chamber, atomized-spray nozzles in the reaction chamber for introducing atomized spray to kiln dust, separate conduits for liquid and gas separately connected to the atomized-spray nozzles for atomizing liquid by gas to form a fog of the liquid in an atmosphere of the gas, mixing means in the reaction chamber for mixing the kiln dust in contact with the fog and gaseous atmosphere of the reaction chamber, discharge means at one end of the reaction chamber for discharging the mixed and contacted kiln dust product from the reaction chamber. The kiln dust entry means are located in an upper region of the reaction chamber for depositing kiln dust gravitationally to a lower region of the reaction chamber. The atomized-spray nozzles are located in the upper region of the reaction chamber for depositing fog on kiln dust during mixing thereof, gas entry means on the reaction chamber for delivering gas to the reaction chamber for reaction with kiln dust and fog, gas exit means on the reaction chamber for discharging gas products from the reaction chamber. The gas entry and exit means are at opposite ends of the reaction chamber, and pre-entry liquid atomizing spray means in the gas entry means for treating gas by atomized liquid spray to effectively saturate the gas before delivery to the reaction chamber.

  1. The characteristics of hydrothermal plumes observed in the Precious Stone Mountain hydrothermal field, the Galapagos spreading center

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Li, H.; Zhou, J.; Deng, X.; Tao, W.; Zhang, G.; Liu, W.; He, Y.

    2014-12-01

    The Precious Stone Mountain hydrothermal field (PSMHF) is located on the southern rim of the Galapagos Microplate. It was found at the 3rd leg of the 2009 Chinese DY115-21 expedition on board R/V Dayangyihao. It is efficient to learn the distribution of hydrothermal plumes and locate the hydrothermal vents by detecting the anomalies of turbidity and temperature. Detecting seawater turbidity by MAPR based on deep-tow technology is established and improved during our cruises. We collected data recorded by MAPR and information from geological sampling, yielding the following results: (1)Strong hydrothermal turbidity and temperature anomalies were recorded at 1.23°N, southeast and northwest of PSMHF. According to the CTD data on the mooring system, significant temperature anomalies were observed over PSMHF at the depth of 1,470 m, with anomalies range from 0.2℃ to 0.4℃, which gave another evidence of the existence of hydrothermal plume. (2)At 1.23°N (101.4802°W/1.2305°N), the nose-shaped particle plume was concentrated at a depth interval of 1,400-1,600 m, with 200 m thickness and an east-west diffusion range of 500 m. The maximum turbidity anomaly (0.045 △NTU) was recorded at the depth of 1,500 m, while the background anomaly was about 0.01△NTU. A distinct temperature anomaly was also detected at the seafloor near 1.23°N. Deep-tow camera showed the area was piled up by hydrothermal sulfide sediments. (3) In the southeast (101.49°W/1.21°N), the thickness of hydrothermal plume was 300 m and it was spreading laterally at a depth of 1,500-1,800 m, for a distance about 800 m. The maximum turbidity anomaly of nose-shaped plume is about 0.04 △NTU at the depth of 1,600 m. Distinct temperature anomaly was also detected in the northwest (101.515°W/1.235°N). (4) Terrain and bottom current were the main factors controlling the distribution of hydrothermal plume. Different from the distribution of hydrothermal plumes on the mid-ocean ridges, which was mostly

  2. Living with the Heat. Submarine Ring of Fire--Grades 5-6. Hydrothermal Vent Ecology.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach about hydrothermal vent ecology. Students are expected to describe how hydrothermal vents are formed and characterize the physical conditions at these sites, explain chemosynthesis and contrast this process with photosynthesis, identify autotrophic bacteria as the basis for food webs in hydrothermal vent…

  3. Fluid Pressure Increases in Hydrothermal Systems Induced by Seismic Waves: Possible Triggers of Earthquakes and Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Roeloffs, E.

    2002-12-01

    That seismic waves trigger microseismicity in hydrothermal settings hundreds of km from the epicenter is plausibly linked to seismic-wave-induced fluid pressure changes at these distances. Although fluid pressure decreases have been observed in diverse settings, in the hydrothermal system at Long Valley, California, that seismic waves from earthquakes increase fluid pressure or discharge. Other published data, from thermal springs in Japan, Yellowstone, and Klamath Falls, Oregon, support the idea that seismic waves have induced pressure and discharge changes and that, in hydrothermal systems, these changes are usually increases. Temperature increases in seafloor hydrothermal vents within days after earthquakes as distant as 220 km imply, moreover, that seismic waves enhance conductance of vertical fluid flow pathways. The influence of seismic waves (wavelengths of km), on hot, fluid-filled subsurface fractures (apertures of mm to cm) could proceed by several mechanisms. Local fluid flow induced at crack walls could remove mineral seals. Spatially uniform acceleration can move gas bubbles relative to denser liquid and solid phases. Thermal expansion can elevate pressure around hot fluid that has penetrated upward. By lowering effective stress and directly weakening faults that are themselves flow paths, seismic waves could initiate processes leading to volcanic eruptions or other earthquakes where sufficient subsurface magma or elastic strain energy have previously accumulated. This type of earthquake-volcano linkage could explain why volcanos statistically erupt more frequently up to 5 years after M>7 earthquakes hundreds of km distant. For example, 11 months elapsed after the Ms 7.8 Luzon (Phillipines) earthquake before Mount Pinatubo erupted on June 15, 1991, 100 km away. Steam emission and 3 M4+ earthquakes in the Pinatubo area followed within days of the Luzon event, however, and a hydrothermal explosion on April 2 started the continuous unrest that built to

  4. Hydrothermal Alteration in the PACMANUS Hydrothermal Field: Implications From Secondary Mineral Assemblages and Mineral Chemistry, OPD Leg 193

    NASA Astrophysics Data System (ADS)

    Lackschewitz, K. S.; Kummetz, M.; Kummetz, M.; Ackermand, D.; Botz, R.; Devey, C. W.; Singer, A.; Stoffers, P.

    2001-12-01

    Leg 193 of the Ocean Drilling Program investigated the subsurface nature of the active PACMANUS hydrothermal field in the Manus backarc basin near Papua New Guinea. Drilling in different areas on the felsic neovolcanic Pual Ridge, including the high-temperature black smoker complex of Roman Ruins and the low-temperature Snowcap site with diffusive discharge yielded a complex alteration history with a regional primary alteration being overprinted by a secondary mineralogy. The intense hydrothermal alteration at both sites shows significant differences in the secondary mineralogy. At Roman Ruins, the upper 25 m of hydrothermally altered rocks are characterized by a rapid change from secondary cristobalite to quartz, implying a high temperature gradient. From 10 to 120 mbsf the clay mineralogy is dominated by illite and chlorite. The chlorite formation temperature calculated from oxygen isotope data lies at 250° C in 116 mbsf which is similar to the present fluid outflow temperatures of 240-250° C (Douville et al., 1999, Geochim. Cosmochim. Acta, 63, 627-643). Drilling in the Snowcap field recovered evidence for several stages of hydrothermal alteration. Between 50 and 150 mbsf, cristobalite and chlorite are the most abundant alteration minerals while hydrothermal pyrophyllite becomes abundant in some places At 67 mbsf, the isotopic composition of pyrophyllite gives a temperature for ist formation at 260° C whereas at 77 and 116 mbsf the pyrophyllite displays the highest temperatures of formation (>300° C). These temperatures are close to the maximum measured borehole temperatures of 313° C. The appearance of assemblages of chlorite, chlorite-vermiculite, chlorite-vermiculite-smectite and illite-smectite as well as the local development of corrensite below 150 mbsf suggests that the alteration at Snowcap may be more complex than that beneath Roman Ruins. Detailed geochemical studies of the authigenic clay mineral phases will provide further insights into the

  5. Liquid marbles

    NASA Astrophysics Data System (ADS)

    Aussillous, Pascale; Quéré, David

    2001-06-01

    The transport of a small amount of liquid on a solid is not a simple process, owing to the nature of the contact between the two phases. Setting a liquid droplet in motion requires non-negligible forces (because the contact-angle hysteresis generates a force opposing the motion), and often results in the deposition of liquid behind the drop. Different methods of levitation-electrostatic, electromagnetic, acoustic, or even simpler aerodynamic techniques-have been proposed to avoid this wetting problem, but all have proved to be rather cumbersome. Here we propose a simple alternative, which consists of encapsulating an aqueous liquid droplet with a hydrophobic powder. The resulting `liquid marbles' are found to behave like a soft solid, and show dramatically reduced adhesion to a solid surface. As a result, motion can be generated using gravitational, electrical and magnetic fields. Moreover, because the viscous friction associated with motion is very small, we can achieve quick displacements of the droplets without any leaks. All of these features are of potential benefit in microfluidic applications, and also permit the study of a drop in a non-wetting situation-an issue of renewed interest following the recent achievement of super-hydrophobic substrates.

  6. Liquid Crystals

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  7. Liquid marbles.

    PubMed

    Aussillous, P; Quéré, D

    2001-06-21

    The transport of a small amount of liquid on a solid is not a simple process, owing to the nature of the contact between the two phases. Setting a liquid droplet in motion requires non-negligible forces (because the contact-angle hysteresis generates a force opposing the motion), and often results in the deposition of liquid behind the drop. Different methods of levitation-electrostatic, electromagnetic, acoustic, or even simpler aerodynamic techniques-have been proposed to avoid this wetting problem, but all have proved to be rather cumbersome. Here we propose a simple alternative, which consists of encapsulating an aqueous liquid droplet with a hydrophobic powder. The resulting 'liquid marbles' are found to behave like a soft solid, and show dramatically reduced adhesion to a solid surface. As a result, motion can be generated using gravitational, electrical and magnetic fields. Moreover, because the viscous friction associated with motion is very small, we can achieve quick displacements of the droplets without any leaks. All of these features are of potential benefit in microfluidic applications, and also permit the study of a drop in a non-wetting situation-an issue of renewed interest following the recent achievement of super-hydrophobic substrates. PMID:11418851

  8. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  9. Hydrothermal alteration in the Valles caldera ring fracture zone and core hole VC-1: evidence for multiple hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Woldegabriel, Giday

    1990-02-01

    Two types of hydrothermal mineral assemblages, kaolinite-alunite and sericite-chlorite were recognized in outcrop and core samples from the Jemez volcanic field, New Mexico. Active and fossil acid-sulfate hydrothermal activity, producing kaolinite-alunite alteration occurs along the caldera ring fracture and within the resurgent dome, whereas alterations of the chlorite-sericite type are mostly confined to subsurface rocks. K/Ar dates on illitic clays (<2 μm, 2-0.25 μm and <0.25 μm) separated from hydrothermally altered samples are used to document hydrothermal episodes in pre-caldera rocks of the Jemez volcanic field. The clay separates are illitic (75-95% illite layers) with K 2O contents of 8.24-8.95% in the core samples and 4.22-6.67% in the outcrops. Three episodes of hydrothermal alteration are now recognized in the Jemez Mountains region based on K/Ar age dates of illites. The earliest event (≤17-11 Ma, n=4) occurred within altered and illite-rich (≥90% illite layers) lowermost Paleozoic rocks in core hole VC-1 and may correlate with the inception of volcanism in the Jemez region (≤16.5 Ma). Illitic clays from altered andesite and rhyolite from the topographic rim of the Valles caldera were dated at 8.2 and 6.96 Ma, suggesting that a hydrothermal event related to the waning stages of the Keres Group volcanism (13-5.8 Ma) was responsible for the alteration. These dates overlap minimum ages obtained on slightly altered basalt (8.05 Ma) and andesite lava (7.07 Ma) from the southern and northwestern topographic rim of the Valles caldera, respectively. Ages of 1.21 and 1.34 Ma from illite-rich (≥90% illite layers), hydrothermally altered Paleozoic sandstone at a depth of 479 m in VC-1 suggest hydrothermal activity contemporaneous with the formation of the Toledo (1.45 Ma) and Valles (1.12 Ma) calderas. Ore minerals of sphalerite, chalcopyrite, galena, barite, and molybdenite mineralization occur in the lower half of VC-1 and are related to the Toledo

  10. Experimental estimates of the energy budget of hydrothermal eruptions; application to 2012 Upper Te Maari eruption, New Zealand

    NASA Astrophysics Data System (ADS)

    Montanaro, Cristian; Scheu, Bettina; Cronin, Shane J.; Breard, Eric C. P.; Lube, Gert; Dingwell, Donald B.

    2016-10-01

    Sudden hydrothermal eruptions occur in many volcanic settings and may include high-energy explosive phases. Ballistics launched by such events, together with ash plumes and pyroclastic density currents, generate deadly proximal hazards. The violence of hydrothermal eruptions (or explosive power) depends on the energy available within the driving-fluids (gas or liquid), which also influences the explosive mechanisms, volumes, durations, and products of these eruptions. Experimental studies in addition to analytical modeling were used here to elucidate the fragmentation mechanism and aspects of energy balance within hydrothermal eruptions. We present results from a detailed study of recent event that occurred on the 6th of August 2012 at Upper Te Maari within the Tongariro volcanic complex (New Zealand). The eruption was triggered by a landslide from this area, which set off a rapid stepwise decompression of the hydrothermal system. Explosive blasts were directed both westward and eastward of the collapsed area, with a vertical ash plume sourced from an adjacent existing crater. All explosions ejected blocks on ballistic trajectories, hundreds of which impacted New Zealand's most popular hiking trail and a mountain lodge, 1.4 km from the explosion locus. We have employed rocks representative of the eruption source area to perform rapid decompression experiments under controlled laboratory conditions that mimic hydrothermal explosions under controlled laboratory conditions. An experimental apparatus for 34 by 70 mm cylindrical samples was built to reduce the influence of large lithic enclaves (up to 30 mm in diameter) within the rock. The experiments were conducted in a temperature range of 250 °C-300 °C and applied pressure between 4 MPa and 6.5 MPa, which span the range of expected conditions below the Te Maari crater. Within this range we tested rapid decompression of pre-saturated samples from both liquid-dominated conditions and the vapor-dominated field

  11. In situ synthesis and hydrothermal crystallization of nanoanatase TiO2 -SiO2 coating on aramid fabric (HTiSiAF) for UV protection.

    PubMed

    Deng, Hui; Zhang, Hongda

    2015-10-01

    TiO2 -SiO2 thin film was prepared by sol-gel method and coated on the aramid fabric to prepare functional textiles. The aramid fabric was dipped and withdrawn in TiO2 -SiO2 gel and hydrothermal crystallization at 80(°) C, then its UV protection functionality was evaluated. The crystalline phase and the surface morphology of TiO2 -SiO2 thin film were characterized using SEM, XRD, and AFM respectively. SEM showed hydrothermal crystallization led to a homogeneous dispersion of anatase nonocrystal in TiO2 -SiO2 film, and XRD suggested the mean particle size of the formed anatase TiO2 was less than 30 nm. AFM indicated that hydrothermal treatment enhanced the crystallization of TiO2 . UV protection analysis suggested that the hydrothermally treated coated textile had a better screening property in comparison with TiO2 -SiO2 gel and native aramid fabric. PMID:26303384

  12. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions. PMID:27088310

  13. Macromolecular liquids

    SciTech Connect

    Safinya, C.R.; Safran, S.A. ); Pincus, P.A. )

    1990-01-01

    Liquids include a broad range of material systems which are of high scientific and technological interest. Generally speaking, these are partially ordered or disordered phases where the individual molecular species have organized themselves on length scales which are larger than simple fluids, typically between 10 Angstroms and several microns. The specific systems reported on in this book include membranes, microemulsions, micelles, liquid crystals, colloidal suspensions, and polymers. They have a major impact on a broad spectrum of technological industries such as displays, plastics, soap and detergents, chemicals and petroleum, and pharmaceuticals.

  14. A hydrothermal seedling emergence model for giant ragweed (Ambrosia trifida)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Late-season seedling emergence of giant ragweed in Ohio crop fields complicates efforts for predicting the optimum time to implement control measures for minimizing crop-yield losses. Our objectives were to develop a hydrothermal seedling emergence model for a late-emerging biotype in Ohio and valid...

  15. Mineralization of Alvinella polychaete tubes at hydrothermal vents

    PubMed Central

    Georgieva, M N; Little, C T S; Ball, A D; Glover, A G

    2015-01-01

    Alvinellid polychaete worms form multilayered organic tubes in the hottest and most rapidly growing areas of deep-sea hydrothermal vent chimneys. Over short periods of time, these tubes can become entirely mineralized within this environment. Documenting the nature of this process in terms of the stages of mineralization, as well as the mineral textures and end products that result, is essential for our understanding of the fossilization of polychaetes at hydrothermal vents. Here, we report in detail the full mineralization of Alvinella spp. tubes collected from the East Pacific Rise, determined through the use of a wide range of imaging and analytical techniques. We propose a new model for tube mineralization, whereby mineralization begins as templating of tube layer and sublayer surfaces and results in fully mineralized tubes comprised of multiple concentric, colloform, pyrite bands. Silica appeared to preserve organic tube layers in some samples. Fine-scale features such as protein fibres, extracellular polymeric substances and two types of filamentous microbial colonies were also found to be well preserved within a subset of the tubes. The fully mineralized Alvinella spp. tubes do not closely resemble known ancient hydrothermal vent tube fossils, corroborating molecular evidence suggesting that the alvinellids are a relatively recent polychaete lineage. We also compare pyrite and silica preservation of organic tissues within hydrothermal vents to soft tissue preservation in sediments and hot springs. PMID:25556400

  16. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.

    2015-11-01

    In nearly four decades since the discovery of deep-sea vents, one-third of the length of global oceanic spreading ridges has been surveyed for hydrothermal activity. Active submarine vent fields are now known along the boundaries of 46 out of 52 recognized tectonic plates. Hydrothermal survey efforts over the most recent decade were sparked by national and commercial interests in the mineral resource potential of seafloor hydrothermal deposits, as well as by academic research. Here we incorporate recent data for back-arc spreading centers and ultraslow- and slow-spreading mid-ocean ridges (MORs) to revise a linear equation relating the frequency of vent fields along oceanic spreading ridges to spreading rate. We apply this equation globally to predict a total number of vent fields on spreading ridges, which suggests that ~900 vent fields remain to be discovered. Almost half of these undiscovered vent fields (comparable to the total of all vent fields discovered during 35 years of research) are likely to occur at MORs with full spreading rates less than 60 mm/yr. We then apply the equation regionally to predict where these hydrothermal vents may be discovered with respect to plate boundaries and national jurisdiction, with the majority expected to occur outside of states' exclusive economic zones. We hope that these predictions will prove useful to the community in the future, in helping to shape continuing ridge-crest exploration.

  17. Hydrothermal alteration of impact melt sheets with implications for Mars

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.

    1980-01-01

    A model of the interaction of water with an impact melt sheet is constructed to explain the presence of hydrothermal alteration, fluid flow channels, and the redistribution of volatile elements in terrestrial melt sheets. A calculation of the amount of water vaporized beneath a melt sheet with a large fraction of melt results in a maximum total steam/melt sheet ratio of 23% by weight. The model also applies to Martian impact melt sheets, which have a total volume greater than a global layer 60 m thick. Hydrothermal circulation of steam in Martian melt sheets may have produced iron-rich alteration clays, ferric hydroxides, and near-surface accumulations of salts. The ability of vapor-dominated hydrothermal systems to concentrate sulfate relative to chloride is consistent with the high sulfate to chloride ratio found in the Martian soil by the Viking landers. A major fraction of the Martian soil may consist of the erosion products of hydrothermally altered impact melt sheets.

  18. Air Pollution by Hydrothermal Volcanism and Human Pulmonary Function.

    PubMed

    Linhares, Diana; Ventura Garcia, Patrícia; Viveiros, Fátima; Ferreira, Teresa; dos Santos Rodrigues, Armindo

    2015-01-01

    The aim of this study was to assess whether chronic exposure to volcanogenic air pollution by hydrothermal soil diffuse degassing is associated with respiratory defects in humans. This study was carried in the archipelago of the Azores, an area with active volcanism located in the Atlantic Ocean where Eurasian, African, and American lithospheric plates meet. A cross-sectional study was performed on a study group of 146 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area) and a reference group of 359 individuals inhabiting an area without these secondary manifestations of volcanism (nonhydrothermal area). Odds ratio (OR) and 95% confidence intervals (CIs) were adjusted for age, gender, fatigue, asthma, and smoking. The OR for restrictive defects and for exacerbation of obstructive defects (COPD) in the hydrothermal area was 4.4 (95% CI 1.78-10.69) and 3.2 (95% CI 1.82-5.58), respectively. Increased prevalence of restrictions and all COPD severity ranks (mild, moderate, and severe) was observed in the population from the hydrothermal area. These findings may assist health officials in advising and keeping up with these populations to prevent and minimize the risk of respiratory diseases. PMID:26301247

  19. Hydrothermal emergence model for ripgut brome (Bromus diandrus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model that describes the emergence of ripgut brome (Bromus diandrus) was developed using a two-season data set from a no-tilled field in northeastern Spain. The relationship between cumulative emergence and hydrothermal time (HTT) was described by a sigmoid growth function (Chapman equation). HTT ...

  20. Hydrothermal carbonization of animal manures: Processes and energetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrothermal carbonization (HTC) is an emerging technology for thermochemically converting biomass and waste materials into value-added carbonaceous char called hydrochar. HTC is well suited to manage wet feedstocks streams because pre-drying prior to processing is not required as with gasification...