Science.gov

Sample records for hyperaccumulator plant berkheya

  1. THE EFFECT OF THE PH OF PH BUFFERED NUTRIENT SOLUTIONS ON NICKEL HYPERACCUMULATION BY ALYSSUM CORSICUM AND BERKHEYA CODDII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is hypothesized that plant hyperaccumulation of Ni evolved as a defense mechanism against diseases and insects. Two hyperaccumulators, Alyssum corsicum and Berkheya coddii, were compared to cabbage (Brassica oleracea) grown in MES-HEPES buffered nutrient solutions and maintained at four pH levels...

  2. Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler.

    PubMed

    Orłowska, Elżbieta; Przybyłowicz, Wojciech; Orlowski, Dariusz; Mongwaketsi, Nametso P; Turnau, Katarzyna; Mesjasz-Przybyłowicz, Jolanta

    2013-04-01

    The effect of arbuscular mycorrhizal fungi (AMF) on the distribution and concentration of elements in roots of Ni-hyperaccumulating plant Berkheya coddii was studied. Micro-PIXE (particle-induced X-ray emission) analysis revealed significant differences between AMF-inoculated and non-inoculated plants as well as between main and lateral roots. The accumulation of P, K, Mn and Zn in the cortical layer of lateral roots of inoculated plants confirmed the important role of AMF in uptake and accumulation of these elements. Higher concentration of P, K, Fe, Ni, Cu and Zn in the vascular stele in roots of AMF-inoculated plants than in the non-inoculated ones indicates more efficient translocation of these elements to the aboveground parts of the plant. These findings indicate the necessity of including the influence of AMF in studies on the uptake of elements by plants and in industrial use of B. coddii for Ni extraction from polluted soils. PMID:23369753

  3. Elemental distribution in reproductive and neural organs of the Epilachna nylanderi (Coleoptera: Coccinellidae), a phytophage of nickel hyperaccumulator Berkheya coddii (Asterales: Asteraceae) by micro-PIXE.

    PubMed

    Mesjasz-Przybyłowicz, Jolanta; Orłowska, Elżbieta; Augustyniak, Maria; Nakonieczny, Mirosław; Tarnawska, Monika; Przybyłowicz, Wojciech; Migula, Paweł

    2014-01-01

    The phenomenon of metal hyperaccumulation by plants is often explained by a pathogen or herbivore defense hypothesis. However, some insects feeding on metal hyperaccumulating plants are adapted to the high level of metals in plant tissues. Former studies on species that feed on the leaves of Berkheya coddii Roessler 1958 (Asteraceae), a nickel-hyperaccumulating plant, demonstrated several protective mechanisms involved in internal distribution, immobilization, and elimination of Ni from the midgut and Malpighian tubules. These species are mainly coleopterans, including the lady beetle, Epilachna nylanderi (Mulsant 1850) (Coleoptera: Coccinellidae), collected from the ultramafic ecosystem near Barberton in South Africa. By performing particle-induced X-ray emission microanalysis elemental microanalysis (PIXE), this study examined whether Ni may be harmful to internal body systems that decide on insect reactivity (central nervous system [CNS]), their reproduction, and the relationships between Ni and other micronutrients. Data on elemental distribution of nine selected elements in target organs of E. nylanderi were compared with the existing data for other insect species adapted to the excess of metals. Micro-PIXE maps of seven regions of the CNS showed Ni mainly in the neural connectives, while cerebral ganglia were better protected. Concentrations of other bivalent metals were lower than those of Ni. Testis, compared with other reproductive organs, showed low amounts of Ni. Zn was effectively regulated at physiological dietary levels. In insects exposed to excess dietary Zn, it was also accumulated in the reproductive organs. Comparison of E. nylanderii with other insects that ingest hyperaccumulating plants, especially chrysomelid Chrysolina clathrata (Clark) (Coleoptera: Chrysomelidae), showed lower protection of the CNS and reproductive organs. PMID:25399425

  4. Compartmentation and complexation of metals in hyperaccumulator plants

    PubMed Central

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-01-01

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their “strange” behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs. PMID:24065978

  5. Compartmentation and complexation of metals in hyperaccumulator plants.

    PubMed

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-01-01

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their "strange" behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs. PMID:24065978

  6. Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining.

    PubMed

    Boominathan, Rengasamy; Saha-Chaudhury, N M; Sahajwalla, Veena; Doran, Pauline M

    2004-05-01

    An important step in phytomining operations is the recovery of metal from harvested plant material. In this work, a laboratory-scale horizontal tube furnace was used to generate Ni-enriched bio-ore from the dried biomass of Ni hyperaccumulator plants. Prior to furnace treatment, hairy roots of Alyssum bertolonii were exposed to Ni in liquid medium to give biomass Ni concentrations of 1.9% to 7.7% dry weight; whole plants of Berkheya coddii were grown in Ni-containing soil to produce above-ground Ni levels of up to 0.49% dry weight. The concentration of Ca in the Ni-treated B. coddii biomass was about 15 times greater than in A. bertolonii. After furnace treatment at 1200 degrees C under air, Ni-bearing residues with crystalline morphology and containing up to 82% Ni were generated from A. bertolonii. The net weight loss in the furnace and the degree of concentration of Ni were significantly reduced when the furnace was purged with nitrogen, reflecting the importance of oxidative processes in Ni enrichment. Ni in the B. coddii biomass was concentrated by a factor of about 17 to yield a residue containing 8.6% Ni; this bio-ore Ni content is substantially higher than the 1% to 2% Ni typically found in mined ore. However, the B. coddii samples after furnace treatment also contained about 34% Ca, mainly in the form of hydroxyapatite Ca(5)(PO(4))(3)OH. Such high Ca levels may present significant challenges for further metallurgical processing. This work demonstrates the feasibility of furnace treatment for generating Ni-rich bio-ore from hyperaccumulator plants. The results also suggest that minimizing the uptake of Ca and/or reducing the Ca content of the biomass prior to furnace treatment would be a worthwhile strategy for improving the quality of Ni bio-ore produced in phytomining operations. PMID:15083504

  7. Tolerance to cadmium in plants: the special case of hyperaccumulators.

    PubMed

    Verbruggen, Nathalie; Juraniec, Michal; Baliardini, Cecilia; Meyer, Claire-Lise

    2013-08-01

    On sols highly polluted by trace metallic elements the majority of plant species are excluders, limiting the entry and the root to shoot translocation of trace metals. However a rare class of plants called hyperaccumulators possess remarkable adaptation because those plants combine extremely high tolerance degrees and foliar accumulation of trace elements. Hyperaccumulators have recently gained considerable interest, because of their potential use in phytoremediation, phytomining and biofortification. On a more fundamental point of view hyperaccumulators of trace metals are case studies to understand metal homeostasis and detoxification mechanisms. Hyperaccumulation of trace metals usually depends on the enhancement of at least four processes, which are the absorption from the soil, the loading in the xylem in the roots and the unloading from the xylem in the leaves and the detoxification in the shoot. Cadmium is one of the most toxic trace metallic elements for living organisms and its accumulation in the environment is recognized as a worldwide concern. To date, only nine species have been recognized as Cd hyperaccumulators that is to say able to tolerate and accumulate more than 0.01 % Cd in shoot dry biomass. Among these species, four belong to the Brassicaceae family with Arabidopsis halleri and Noccaea caerulescens being considered as models. An update of our knowledge on the evolution of hyperaccumulators will be presented here. PMID:23881358

  8. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.

    PubMed

    Deng, Teng-Hao-Bo; Cloquet, Christophe; Tang, Ye-Tao; Sterckeman, Thibault; Echevarria, Guillaume; Estrade, Nicolas; Morel, Jean-Louis; Qiu, Rong-Liang

    2014-10-21

    Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 μM) and high (50 μM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes. PMID:25222693

  9. Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant.

    PubMed

    Adki, Vinayak S; Jadhav, Jyoti P; Bapat, Vishwas A

    2013-02-01

    Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant's hyperaccumulation capacity. Plants showed tolerance up to 100 μM K(2)Cr(2)O(7) without any significant changes in root growth after 16 days treatment; whereas, chlorophyll content in plants treated with 1 and 10 μM K(2)Cr(2)O(7) were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p < 0.01) with increasing concentration of chromium. Exposures of N. cochenillifera to lower concentrations of K(2)Cr(2)O(7) (≤ 10 μM) induced catalase (CAT) and superoxide dismutase (SOD) significantly (p < 0.001) but higher concentrations of K(2)Cr(2)O(7) (>100 μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396 ± 1,722.672 mg Cr Kg(-1) dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714 ± 32.324 mg Cr Kg(-1) DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes. PMID:22914913

  10. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants

    SciTech Connect

    David E. Salt

    2002-04-08

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants.

  11. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans.

    PubMed

    Dhir, B; Srivastava, S

    2013-06-01

    Metal tolerance capacity of Salvinia natans, a metal hyperaccumulator, was evaluated. Plants were exposed to 10, 30 and 50 mg L⁻¹ of Zn, Cd, Co, Cr, Fe, Cu, Pb, and Ni. Plant biomass, photosynthetic efficiency, quantum yield, photochemical quenching, electron transport rate and elemental (%C, H and N) constitution remained unaffected in Salvinia exposed to 30 mg L⁻¹ of heavy metals, except for Cu and Zn exposed plants, where significant reductions were noted in some of the measured parameters. However, a significant decline was noted in most of the measured parameters in plants exposed to 50 mg L⁻¹ of metal concentration. Results suggest that Salvinia has fairly high levels of tolerance to all the metals tested, but the level of tolerance varied from metal to metal. PMID:23553503

  12. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.

    PubMed

    Zhang, Xue-Hong; Liu, Jie; Huang, Hai-Tao; Chen, Jun; Zhu, Yi-Nian; Wang, Dun-Qiu

    2007-04-01

    Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water. PMID:17207838

  13. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  14. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons(PAHs) co-contaminated s...

  15. Using hyperaccumulator plants to phytoextract soil Ni and Cd.

    PubMed

    Chaney, Rufus L; Angle, J Scott; McIntosh, Marla S; Reeves, Roger D; Li, Yin-Ming; Brewer, Eric P; Chen, Kuang-Yu; Roseberg, Richard J; Perner, Henrike; Synkowski, Eva Claire; Broadhurst, C Leigh; Wang, S; Baker, Alan J M

    2005-01-01

    Two strategies of phytoextraction have been shown to have promise for practical soil remediation: domestication of natural hyperaccumulators and bioengineering plants with the genes that allow natural hyperaccumulators to achieve useful phytoextraction. Because different elements have different value, some can be phytomined for profit and others can be phytoremediated at lower cost than soil removal and replacement. Ni phytoextraction from contaminated or mineralized soils offers economic return greater than producing most crops, especially when considering the low fertility or phytotoxicity of Ni rich soils. Only soils that require remediation based on risk assessment will comprise the market for phytoremediation. Improved risk assessment has indicated that most Zn + Cd contaminated soils will not require Cd phytoextraction because the Zn limits practical risk from soil Cd. But rice and tobacco, and foods grown on soils with Cd contamination without corresponding 100-fold greater Zn contamination, allow Cd to readily enter food plants and diets. Clear evidence of human renal tubular dysfunction from soil Cd has only been obtained for subsistence rice farm families in Asia. Because of historic metal mining and smelting, Zn + Cd contaminated rice soils have been found in Japan, China, Korea, Vietnam and Thailand. Phytoextraction using southern France populations of Thlaspi caerulescens appears to be the only practical method to alleviate Cd risk without soil removal and replacement. The southern France plants accumulate 10-20-fold higher Cd in shoots than most T. caerulescens populations such as those from Belgium and the UK. Addition of fertilizers to maximize yield does not reduce Cd concentration in shoots; and soil management promotes annual Cd removal. The value of Cd in the plants is low, so the remediation service must pay the costs of Cd phytoextraction plus profits to the parties who conduct phytoextraction. Some other plants have been studied for Cd

  16. Root responses to soil Ni heterogeneity in a hyperaccumulator and a non-accumulator species.

    PubMed

    Moradi, Ahmad B; Conesa, Héctor M; Robinson, Brett H; Lehmann, Eberhard; Kaestner, Anders; Schulin, Rainer

    2009-01-01

    We compared root responses of the Ni-hyperaccumulator plant Berkheya coddii Rossler with the non-accumulator plant Cicer arietinum L. to Ni heterogeneity in soil. We grew plants in growth containers filled with control soil, homogeneously spiked, and heterogeneously spiked soil with Ni concentrations of 62 and 125 mg kg(-1). Neutron radiography (NR) was used to observe the root distribution and the obtained images were analysed to reveal the root volumes in the spiked and unspiked segments of the growth container. There was no significant difference in root distribution pattern of B. coddii among different concentrations of Ni. Unlike B. coddii, the roots of C. arietinum initially grew into the spiked segments. However, the later developing roots did not penetrate the spiked segment suggesting an avoidance strategy. Our results indicate that, B. coddii does not forage towards the Ni-rich patches, although presence of Ni in soil changes its root morphology. PMID:19427726

  17. Feasibility of using hyperaccumulating plants to bioremediate metal-contaminated soil

    SciTech Connect

    Kelly, R.J.; Guerin, T.F.

    1995-12-31

    A feasibility study was carried out to determine whether selected plants were capable of hyperaccumulating anthropogenic sources of metals found in soils from three contaminated sites. A trial was conducted using the previously reported hyperaccumulators, Armeria maritima (thrift), Impatiens balsamina (balsam), Alyssum saxatile (gold dust), and the control species, Brassica oleracea (cabbage). Although none of these plants showed any substantial hyperaccumulation of Cu, Zn, Pb, and Cd, it was established that there is an optimum period in the life-cycle of these plants in which the metal concentration reaches a maximum. This period was dependent on the metal, soil, and plant type. The current paper describes the data obtained for Zn and Cu uptake by thrift.

  18. Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics

    PubMed Central

    DalCorso, Giovanni; Fasani, Elisa; Furini, Antonella

    2013-01-01

    Hyperaccumulator/hypertolerant plant species have evolved strategies allowing them to grow in metal-contaminated soils, where they accumulate high concentrations of heavy metals in their shoots without signs of toxicity. The mechanisms that allow enhanced metal uptake, root-to-shoot translocation and detoxification in these species are not fully understood. Complementary approaches such as transcriptomic-based DNA microarrays and proteomics have recently been used to gain insight into the molecular pathways evolved by metal hyperaccumulator/hypertolerant species. Proteomics has the advantage of focusing on the translated portion of the genome and it allows to analyze complex networks of proteins. This review discusses the recent analysis of metal hyperaccumulator/hypertolerant plant species using proteomics. Changes in photosynthetic proteins, sulfur, and glutathione metabolism, transport, biotic and xenobiotic defenses as well as the differential regulation of proteins involved in signaling and secondary metabolism are discussed in relation to metal hyperaccumulation. We also consider the potential contribution of several proteins to the hyperaccumulation phenotype. PMID:23898342

  19. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, Helen N; Eyles, Chris J; Bennett, Mark H; Smith, J Andrew C; Preston, Gail M

    2013-09-01

    The metal hyperaccumulator plant Noccaea caerulescens is protected from disease by the accumulation of high concentrations of metals in its aerial tissues, which are toxic to many pathogens. As these metals can lead to the production of damaging reactive oxygen species (ROS), metal hyperaccumulator plants have developed highly effective ROS tolerance mechanisms, which might quench ROS-based signals. We therefore investigated whether metal accumulation alters defence signalling via ROS in this plant. We studied the effect of zinc (Zn) accumulation by N. caerulescens on pathogen-induced ROS production, salicylic acid accumulation and downstream defence responses, such as callose deposition and pathogenesis-related (PR) gene expression, to the bacterial pathogen Pseudomonas syringae pv. maculicola. The accumulation of Zn caused increased superoxide production in N. caerulescens, but inoculation with P. syringae did not elicit the defensive oxidative burst typical of most plants. Defences dependent on signalling through ROS (callose and PR gene expression) were also modified or absent in N. caerulescens, whereas salicylic acid production in response to infection was retained. These observations suggest that metal hyperaccumulation is incompatible with defence signalling through ROS and that, as metal hyperaccumulation became effective as a form of elemental defence, normal defence responses became progressively uncoupled from ROS signalling in N. caerulescens. PMID:23758201

  20. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants

    PubMed Central

    Jaffré, Tanguy; Pillon, Yohan; Thomine, Sébastien; Merlot, Sylvain

    2013-01-01

    While an excess of metals such as zinc, cadmium or nickel (Ni) is toxic for most plants, about 500 plant species called hyperaccumulators are able to accumulate high amounts of these metals. These plants and the underlying mechanisms are receiving an increasing interest because of their potential use in sustainable biotechnologies such as biofortification, phytoremediation, and phytomining. Among hyperaccumulators, about 400 species scattered in 40 families accumulate Ni. Despite this wide diversity, our current knowledge of the mechanisms involved in Ni accumulation is still limited and mostly restricted to temperate herbaceous Brassicaceae. New Caledonia is an archipelago of the tropical southwest pacific with a third of its surface (5500 km2) covered by Ni-rich soils originating from ultramafic rocks. The rich New Caledonia flora contains 2145 species adapted to these soils, among which 65 are Ni hyperaccumulators, including lianas, shrubs or trees, mostly belonging to the orders Celastrales, Oxalidales, Malpighiales, and Gentianales. We present here our current knowledge on Ni hyperaccumulators from New Caledonia and the latest molecular studies developed to better understand the mechanisms of Ni accumulation in these plants. PMID:23898341

  1. Response to cytosolic nickel of Slow Vacuolar channels in the hyperaccumulator plant Alyssum bertolonii.

    PubMed

    Corem, Shira; Carpaneto, Armando; Soliani, Paolo; Cornara, Laura; Gambale, Franco; Scholz-Starke, Joachim

    2009-04-01

    We applied the patch-clamp technique to investigate the transport properties of the Slow Vacuolar (SV) channel identified in leaf vacuoles of Alyssum bertolonii Desv., a nickel hyperaccumulator plant growing in serpentine soil of the northern Apennines (Italy). SV currents recorded in vacuoles from adult plants collected in their natural habitat showed high sensitivity towards cytosolic nickel. Dose-response analyses indicated half-maximal current inhibition at submicromolar concentrations, i.e. up to three orders of magnitude lower than previously reported values from other plant species. The voltage-dependent increase of residual currents at saturating nickel concentrations could be interpreted as relief of channel block by nickel permeation at high positive membrane potentials. Including young plants of A. bertolonii into the study, we found that SV channels from these plants did not display elevated nickel sensitivity. This difference may be related to age-dependent changes in nickel hyperaccumulation of A. bertolonii leaf cells. PMID:19165480

  2. Cadmium leaching from micro-lysimeters planted with the hyperaccumulator Thlaspi caerulescens: experimental findings and modeling.

    PubMed

    Ingwersen, Joachim; Bücherl, Barbara; Neumann, Günter; Streck, Thilo

    2006-01-01

    The use of heavy metal hyperaccumulating plants has the potential to become a promising new technique to remediate contaminated sites. We investigated the role of metal mobilization in the Cd hyperaccumulation of Thlaspi caerulescens (J. & C. Presl, 'Ganges'). In a micro-lysimeter experiment we investigated the dynamics of Cd concentration of leachate as well as Cd removal by plant uptake in four treatments: (i) Control (bare soil), (ii) T. caerulescens, (iii) nonhyperaccumulator Brassica juncea (L.) Czern. ('PI 426308'), and (iv) co-cropping of the hyperaccumulator and nonhyperaccumulator. The experimental findings were analyzed using one- and two-site rate-limited desorption models. Co-cropping of T. caerulescens and B. juncea did not enhance metal uptake by B. juncea. Although Cd uptake of T. caerulescens was 10 times higher than that of B. juncea, the Cd concentration of leachate of the T. caerulescens treatment did not decrease below that of the B. juncea treatment. The Cd depletion in leachate was well reproduced by the two-site rate-limited desorption model. The optimized desorption coefficient was three orders of magnitude higher in the rhizosphere than in the bulk soil. Our results indicate that T. caerulescens accelerates the resupply of Cd from soil pointing to an important role of kinetic desorption in the hyperaccumulation by T. caerulescens. PMID:17071874

  3. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii.

    PubMed

    Barzanti, Rita; Ozino, Francesca; Bazzicalupo, Marco; Gabbrielli, Roberto; Galardi, Francesca; Gonnelli, Cristina; Mengoni, Alessio

    2007-02-01

    We report the isolation and characterization of endophytic bacteria, endemic to serpentine outcrops of Central Italy, from a nickel hyperaccumulator plant, Alyssum bertolonii Desv. (Brassicaceae). Eighty-three endophytic bacteria were isolated from roots, stems, and leaves of A. bertolonii and classified by restriction analysis of 16S rDNA (ARDRA) and partial 16S rDNA sequencing in 23 different taxonomic groups. All isolates were then screened for siderophore production and for resistance to heavy metals. One isolate representative of each ARDRA group was then tested for plant tissue colonization ability in sterile culture. Obtained results pointed out that, despite the high concentration of heavy metals present in its tissues, A. bertolonii harbors an endophytic bacterial flora showing a high genetic diversity as well as a high level of resistance to heavy metals that could potentially help plant growth and Ni hyperaccumulation. PMID:17264998

  4. Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii Desv.

    PubMed

    Mengoni, Alessio; Pini, Francesco; Huang, Li-Nan; Shu, Wen-Sheng; Bazzicalupo, Marco

    2009-10-01

    Bacteria associated with tissues of metal-hyperaccumulating plants are of great interest due to the multiple roles they may play with respect to plant growth and resistance to heavy metals. The variability of bacterial communities associated with plant tissues of three populations of Alyssum bertolonii, a Ni hyperaccumulator endemic of serpentine outcrops of Central Italy, was investigated. Terminal-restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes was applied to DNA extracted from leaf tissues of 30 individual plants from three geographically separated serpentine outcrops. Moreover, T-RFLP fingerprinting was also performed on DNA extracted from the same soils from which the plants were collected. Fifty-nine unique terminal-restriction fragments (TRFs) were identified, with more than half of the taxonomically interpreted TRFs assigned to Alpha- and Gamma-Proteobacteria and Clostridia. Data were then used to define the extent of variation of bacterial communities due to single plants or to plant populations. Results indicated a very high plant-by-plant variation of leaf-associated community (more than 93% of total variance observed). However, a core (numerically small) of plant-specific TRFs was found. This work demonstrates that plant-associated bacterial communities represent a large reservoir of biodiversity and that the high variability existing between plants, even from the same population, should be taken into account in future studies on association between bacteria and metal-hyperaccumulating plants. PMID:19479304

  5. Youngia erythrocarpa, a newly discovered cadmium hyperaccumulator plant.

    PubMed

    Lin, Lijin; Ning, Bo; Liao, Ming'an; Ren, Yajun; Wang, Zhihui; Liu, Yingjie; Cheng, Ji; Luo, Li

    2015-01-01

    The farmland weed Youngia erythrocarpa has been found to have the basic characteristics of a cadmium (Cd) hyperaccumulator. This study carried out preliminary and further Cd concentration gradient experiments and field experiment using Y. erythrocarpa to confirm this fact. The results showed that the biomass and resistance coefficient of Y. erythrocarpa decreased, but the root/shoot ratio and the Cd content in roots and shoots increased with the increase in soil Cd concentration. The Cd content in shoots of Y. erythrocarpa exceeded 100 mg/kg when the soil Cd concentration was 25 mg/kg in the two concentration gradient experiments, up to the maxima of 293.25 and 317.87 mg/kg at 100 mg/kg soil Cd. Both the bioconcentration factor of the shoots and the translocation factor exceeded 1 in all Cd treatments. In the field experiment, the total Cd extraction by shoots was 0.934-0.996 mg/m(2) at soil Cd levels of 2.04-2.89 mg/kg. Therefore, Y. erythrocarpa is a Cd hyperaccumulator that could be used to remediate Cd-contaminated farmland soil efficiently. PMID:25504193

  6. Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Wang, S. L.; Liao, W. B.; Yu, F. Q.; Liao, B.; Shu, W. S.

    2009-08-01

    A field survey was conducted to identify potential hyperaccumulators of Pb, Zn or Cd in the Beichang Pb/Zn mine outcrop in Yunnan Province, China. The average total concentrations of Pb, Zn, and Cd in the soils were up to 28,438, 5,109, and 52 mg kg-1, respectively. A total of 68 plant species belonging to 60 genera of 37 families naturally colonizing the outcrop were recorded. According to metal accumulation in the plants and translocation factor (TF), Silene viscidula was identified as potential hyperaccumulator of Pb, Zn, and Cd with mean shoot concentrations of 3,938 mg kg-1 of Pb (TF = 1.2), 11,155 mg kg-1 of Zn (TF = 1.8) and 236 mg kg-1 of Cd (TF = 1.1), respectively; S. gracilicanlis (Pb 3,617 mg kg-1, TF = 1.2) and Onosma paniculatum (Pb 1,837 mg kg-1, TF = 1.9) were potential Pb hyperaccumulators. Potentilla griffithii (Zn 8,748 mg kg-1, TF = 1.5) and Gentiana sp. (Zn 19,710 mg kg-1, TF = 2.7) were potential Zn hyperaccumulators. Lysimachia deltoides (Cd 212 mg kg-1, TF = 3.2) was a potential Cd hyperaccumulator. These new plant resources could be used to explore the mechanisms of Pb, Zn and/or Cd hyperaccumulation, and the findings could be applied for the phytoremediation of Pb, Zn and/or Cd-contaminated soils.

  7. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, H N; McCurrach, H; Mithani, A; Smith, J A C; Preston, G M

    2016-05-11

    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant-pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. PMID:27170725

  8. Do selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-Ray Microprobe Analysis.

    PubMed

    El Mehdawi, Ali F; Lindblom, Stormy D; Cappa, Jennifer J; Fakra, Sirine C; Pilon-Smits, Elizabeth A H

    2015-01-01

    Neighbors of Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus were found earlier to have elevated Se levels. Here we investigate whether Se hyperaccumulators affect Se localization and speciation in surrounding soil and neighboring plants. X-ray fluorescence mapping and X-ray absorption near-edge structure spectroscopy were used to analyze Se localization and speciation in leaves of Artemisia ludoviciana, Symphyotrichum ericoides and Chenopodium album growing next to Se hyperaccumulators or non-accumulators at a seleniferous site. Regardless of neighbors, A. ludoviciana, S. ericoides and C. album accumulated predominantly (73-92%) reduced selenocompounds with XANES spectra similar to the C-Se-C compounds selenomethionine and methyl-selenocysteine. Preliminary data indicate that the largest Se fraction (65-75%), both in soil next to hyperaccumulator S. pinnata and next to nonaccumulator species was reduced Se with spectra similar to C-Se-C standards. These same C-Se-C forms are found in hyperaccumulators. Thus, hyperaccumulator litter may be a source of organic soil Se, but soil microorganisms may also contribute. These findings are relevant for phytoremediation and biofortification since organic Se is more readily accumulated by plants, and more effective for dietary Se supplementation. PMID:26030363

  9. Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn-hyperaccumulating plant species.

    PubMed

    Liu, Jie; Shang, Weiwei; Zhang, Xuehong; Zhu, Yinian; Yu, Ke

    2014-02-28

    Identifying a hyperaccumulator is an important groundwork for the phytoextraction of heavy metal-contaminated soil. Celosia argentea Linn., which grew on a Mn tailing wasteland, was found to hyperaccumulate Mn (14 362mgkg(-1) in leaf dry matter) in this study. To investigate Mn tolerance and accumulation in C. argentea, a hydroponic culture experiment was conducted in a greenhouse. Results showed that the biomass and the relative growth rate of C. argentea were insignificantly different (p>0.05) at the Mn supply level ranging from 2.5mgL(-1) (control) to 400mgL(-1). Manganese concentrations in leaves, stems, and roots reached maxima of 20228, 8872, and 2823mgkg(-1) at 600mgMnL(-1), respectively. The relative rate of Mn accumulation increased by 91.2% at 400mgMnL(-1). Over 95% of the total Mn taken up by C. argentea was translocated to shoots. Thus, C. argentea exhibits the basic characteristics of a Mn-hyperaccumulator. This species has great potential to remediate Mn-contaminated soil cheaply and can also aid the studies of Mn uptake, translocation, speciation, distribution and detoxification in plants. PMID:24444455

  10. Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications.

    PubMed

    Losfeld, Guillaume; L'Huillier, Laurent; Fogliani, Bruno; Mc Coy, Stéphane; Grison, Claude; Jaffré, Tanguy

    2015-04-01

    Relationships between the trace-elements (TE) content of plants and associated soil have been widely investigated especially to understand the ecology of TE hyperaccumulating species to develop applications using TE phytoextraction. Many studies have focused on the possibility of quantifying the soil TE fraction available to plants, and used bioconcentration (BC) as a measure of the plants ability to absorb TE. However, BC only offers a static view of the dynamic phenomenon of TE accumulation. Accumulation kinetics are required to fully account for TE distributions in plants. They are also crucial to design applications where maximum TE concentrations in plant leaves are needed. This paper provides a review of studies of BC (i.e. soil-plant relationships) and leaf-age in relation to TE hyperaccumulation. The paper focuses of Ni and Mn accumulators and hyperaccumulators from New Caledonia who were previously overlooked until recent Ecocatalysis applications emerged for such species. Updated data on Mn hyperaccumulators and accumulators from New Caledonia are also presented and advocate further investigation of the hyperaccumulation of this element. Results show that leaf-age should be considered in the design of sample collection and allowed the reclassification of Grevillea meisneri known previously as a Mn accumulator to a Mn hyperaccumulator. PMID:25138558

  11. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties

    PubMed Central

    Sura-de Jong, Martina; Reynolds, Ray J. B.; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C.; Chocholata, Iva; Cappa, Jennifer J.; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T.; Lovecka, Petra; Pilon-Smits, Elizabeth A. H.

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5–1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  12. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties.

    PubMed

    Sura-de Jong, Martina; Reynolds, Ray J B; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C; Chocholata, Iva; Cappa, Jennifer J; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T; Lovecka, Petra; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5-1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  13. Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants.

    PubMed

    Luo, Jun; Zhang, Hao; Zhao, Fang-Jie; Davison, William

    2010-09-01

    This work set out to test the hypothesis that uptake of metals by hyperaccumulator (HA) plants is more likely to be diffusion limited than uptake by nonhyperaccumulator (NHA) plants. Two circumneutral soils, with different contents of organic matter (0.8 and 5.8%), were amended with Cd (0.5 to 5 mg kg(-1)) and Ni (10 to 100 mg kg(-1)). A Cd HA plant, Thlaspi caerulescens, was grown in pots containing the Cd amended soils, and a Ni HA, Thlaspi goesingense, was grown in pots containing the Ni amended soils. A NHA plant of the same family, Thlaspi arvense, was grown in the same soils. Metals were measured in both roots and shoots of all plants. Concentrations of Cd and Ni were measured in soil solution and using the technique of diffusive gradients in thin-films (DGT). The dependencies of metal measured by DGT, [M]DGT, and in soil solution, [M]ss, on the amended metal concentration, [M]add, were consistent with fast supply of Cd but a slower rate of release of Ni from solid phase to solution at lower [Ni]add. Detailed consideration of the dependence of Ni and Cd in shoots and roots on [M]add, [M]ss, and [M]DGT allowed assessment of the supply mechanism. The weight of evidence suggested that diffusion limitation applies for uptake of Cd by both HA and NHA plants and for uptake of Ni by the HA. However, uptake of Ni by the NHA is not limited by diffusion and the biotic ligand model is probably appropriate. PMID:20681510

  14. The impact of Ni on the physiology of a Mediterranean Ni-hyperaccumulating plant.

    PubMed

    Roccotiello, Enrica; Serrano, Helena Cristina; Mariotti, Mauro Giorgio; Branquinho, Cristina

    2016-06-01

    High nickel (Ni) levels exert toxic effects on plant growth and plant water content, thus affecting photosynthesis. In a pot experiment, we investigated the effect of the Ni concentration on the physiological characteristics of the Ni hyperaccumulator Alyssoides utriculata when grown on a vermiculite substrate in the presence of different external Ni concentrations (0-500 mg Ni L(-1)). The results showed that the Ni concentration was higher in leaves than in roots, as evidenced by a translocation factor = 3 and a bioconcentration factor = 10. At the highest concentration tested (500 mg Ni L(-1)), A. utriculata accumulated 1100 mg Ni per kilogram in its leaves, without an effects on its biomass. Plant water content increased significantly with Ni accumulation. Ni treatment did not, or only slightly, affected chlorophyll fluorescence parameters. The photosynthetic efficiency (FV/FM) of A. utriculata was stable between Ni treatments (always ≥ 0.8) and the photosynthetic performance of the plant under Ni stress remained high (performance index = 1.5). These findings support that A. utriculata has several mechanisms to avoid severe damage to its photosynthetic apparatus, confirming the tolerance of this species to Ni under hyperaccumulation. PMID:26983814

  15. Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations.

    PubMed

    van der Ent, Antony; Mulligan, David

    2015-04-01

    Information about multi-elemental concentrations in different plant parts of tropical Ni hyperaccumulator species has the potential to provide insight into their unusual metabolism relative to a range of essential and non-essential elements, but this information is scant in the literature. As Ni hyperaccumulation, and possibly co-accumulation of other toxic elements, has been hypothesized to provide herbivore (insect) protection, there is a need to quantify a range of these elements in plant tissues and transport fluids to at least verify the possibility of this explanation. In this study, multiple elements were analyzed in a range of different plant parts and transport fluids from Ni hyperaccumulator species collected from Sabah (Malaysia). The results show preferential accumulation of Ni in leaves over woody parts, but the highest concentrations were found in the phloem tissue (up to 7.9 % in Rinorea bengalensis) and phloem sap (up to 16.9 % in Phyllanthus balgooyi), visible by a bright green coloration in the field fresh material. The amount of Ni contained in one mature R. bengalensis tree was calculated at 4.77 kg. The high Ni concentration in the flowers of Phyllanthus securinegoides could affect insect floral visitors and pollination. High concentrations of Ni in the seeds of this species also could supply the seedling with Ni and aid in herbivory protection during the first stages of development. Foliar Ca and Ni in P. cf. securinegoides and R. bengalensis are positively correlated. Low accumulation of Ca is desirable for phytomining but concentrations of Ca are high in most Ni hyperaccumulators examined, and this could have consequences for the economic viability of Ni extraction from bio ore if these species were to be used as 'metal crops'. PMID:25921447

  16. Evaluation of hyperaccumulator plant species grown in metalliferous sites in Albania

    NASA Astrophysics Data System (ADS)

    Babani, F.; Civici, N.; Mullaj, A.; Kongjika, E.; Ylli, A.

    2007-04-01

    Heavy metal contamination of soils causes serious problems to our society. A small number of interesting plant species have been identified that can grow in soils containing high levels of heavy metals, and can also accumulate these metals to high concentrations in the shoot. The heavy metal contents in root, shoot, leaves and flowers of spontaneous plants grown in metalliferous sites in Albania together with the elemental composition of the native soils were determined by X-ray fluorescence spectrometry. Efficiency of photosynthetic apparatus of analyzed ecotypes was evaluated via chlorophyll fluorescence imaging during induction kinetics. Response of plant root system to the presence of metals, the available pools of metals to plants, effect of plant biomass to phytoextraction, photosynthetic pigment metabolism and chlorophyll fluorescence signature of leaves allowed to characterize hyperaccumulator properties and to detect the variation between selected ecotypes to heavy metal accumulation.

  17. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae).

    PubMed

    Xue, S G; Chen, Y X; Reeves, Roger D; Baker, Alan J M; Lin, Q; Fernando, Denise R

    2004-10-01

    The perennial herb Phytolacca acinosa Roxb. (Phytolaccaceae), which occurs in Southern China, has been found to be a new manganese hyperaccumulator by means of field surveys on Mn-rich soils and by glasshouse experiments. This species not only has remarkable tolerance to Mn but also has extraordinary uptake and accumulation capacity for this element. The maximum Mn concentration in the leaf dry matter was 19,300 microg/g on Xiangtan Mn tailings wastelands, with a mean of 14,480 microg/g. Under nutrient solution culture conditions, P. acinosa could grow normally with Mn supplied at a concentration of 8000 micromol/l, although with less biomass than in control samples supplied with Mn at 5 micromol/l. Manganese concentration in the shoots increased with increasing external Mn levels, but the total mass of Mn accumulated in the shoots first increased and then decreased. At an Mn concentration of 5000 micromol/l in the culture solution, the Mn accumulation in the shoot dry matter was highest (258 mg/plant). However, the Mn concentration in the leaves reached its highest value (36,380 microg/g) at an Mn supply level of 12,000 micromol/l. These results confirm that P. acinosa is an Mn hyperaccumulator which grows rapidly, has substantial biomass, wide distribution and a broad ecological amplitude. This species provides a new plant resource for exploring the mechanism of Mn hyperaccumulation, and has potential for use in the phytoremediation of Mn-contaminated soils. PMID:15261402

  18. Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum.

    PubMed

    Ingle, Robert A; Smith, J Andrew C; Sweetlove, Lee J

    2005-12-01

    A proteomic analysis of the Ni hyperaccumulator plant Alyssum lesbiacum was carried out to identify proteins that may play a role in the exceptional degree of Ni tolerance and accumulation characteristic of this metallophyte. Of the 816 polypeptides detected in root tissue by 2D SDS-PAGE, eleven increased and one decreased in abundance relative to total protein after 6-week-old plants were transferred from a standard nutrient solution containing trace concentrations of Ni to a moderately high Ni treatment (0.3 mM NiSO4) for 48 h. These polypeptides were identified by tandem mass spectrometry and the majority were found to be involved in sulphur metabolism (consistent with a re-allocation of sulphur towards cysteine and glutathione), protection against reactive oxygen species, or heat-shock response. In contrast, very few polypeptides were found to change in abundance in root or shoot tissue after plants were exposed for 28 days to 0.03 mM NiSO4, a concentration representing the optimum for growth of this species but sufficient to lead to hyperaccumulation of Ni in the shoot. Under these conditions, constitutively expressed genes in this highly Ni-tolerant species may be sufficient to allow for effective chelation and sequestration of Ni without the need for additional protein synthesis. PMID:16388402

  19. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants.

    PubMed

    Álvarez-López, V; Prieto-Fernández, Á; Cabello-Conejo, M I; Kidd, P S

    2016-04-01

    Ni phytomining is a promising technology for Ni recovery from low-grade ores such as ultramafic soils. Metal-hyperaccumulators are good candidates for phytomining due to their extraordinary capacity for Ni accumulation. However, many of these plants produce a low biomass, which makes the use of agronomic techniques for improving their growth necessary. In this study, the Ni hyperaccumulators Alyssum serpyllifolium ssp. lusitanicum, A. serpyllifolium ssp. malacitanum, Alyssum bertolonii and Noccaea goesingense were evaluated for their Ni phytoextraction efficiency from a Ni-rich serpentine soil. Effects of soil inorganic fertilisation (100:100:125kgNPKha(-1)) and soil organic amendment addition (2.5, 5 or 10% compost) on plant growth and Ni accumulation were determined. All soil treatments greatly improved plant growth, but the highest biomass production was generally found after addition of 2.5 or 5% compost (w/w). The most pronounced beneficial effects were observed for N. goesingense. Total Ni phytoextracted from soils was significantly improved using both soil treatments (inorganic and organic), despite the decrease observed in soil Ni availability and shoot Ni concentrations in compost-amended soils. The most promising results were found using intermediate amount of compost, indicating that these types of organic wastes can be incorporated into phytomining systems. PMID:26803735

  20. Constitutively High Expression of the Histidine Biosynthetic Pathway Contributes to Nickel Tolerance in Hyperaccumulator PlantsW⃞

    PubMed Central

    Ingle, Robert A.; Mugford, Sam T.; Rees, Jonathan D.; Campbell, Malcolm M.; Smith, J. Andrew C.

    2005-01-01

    Plants that hyperaccumulate Ni exhibit an exceptional degree of Ni tolerance and the ability to translocate Ni in large amounts from root to shoot. In hyperaccumulator plants in the genus Alyssum, free His is an important Ni binding ligand that increases in the xylem proportionately to root Ni uptake. To determine the molecular basis of the His response and its contribution to Ni tolerance, transcripts representing seven of the eight enzymes involved in His biosynthesis were investigated in the hyperaccumulator species Alyssum lesbiacum by RNA gel blot analysis. None of the transcripts changed in abundance in either root or shoot tissue when plants were exposed to Ni, but transcript levels were constitutively higher in A. lesbiacum than in the congeneric nonaccumulator A. montanum, especially for the first enzyme in the biosynthetic pathway, ATP-phosphoribosyltransferase (ATP-PRT). Comparison with the weak hyperaccumulator A. serpyllifolium revealed a close correlation between Ni tolerance, root His concentration, and ATP-PRT transcript abundance. Overexpression of an A. lesbiacum ATP-PRT cDNA in transgenic Arabidopsis thaliana increased the pool of free His up to 15-fold in shoot tissue, without affecting the concentration of any other amino acid. His-overproducing lines also displayed elevated tolerance to Ni but did not exhibit increased Ni concentrations in either xylem sap or shoot tissue, suggesting that additional factors are necessary to recapitulate the complete hyperaccumulator phenotype. These results suggest that ATP-PRT expression plays a major role in regulating the pool of free His and contributes to the exceptional Ni tolerance of hyperaccumulator Alyssum species. PMID:15923352

  1. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants

    SciTech Connect

    Huang, J.W.; Blaylock, M.J.; Kapulnik, Y.; Ensley, B.D.

    1998-07-01

    Uranium phytoextraction, the use of plants to extract U from contaminated soils, is an emerging technology. The authors report on the development of this technology for the cleanup of U-contaminated soils. In this research, they investigated the effects of various soil amendments on U desorption from soil to soil solution, studied the physiological characteristics of U uptake and accumulation in plants, and developed techniques to trigger U hyperaccumulation in plants. A key to the success of U phytoextraction is to increase soil U availability to plants. The authors have found that some organic acids can be added to soils to increase U desorption from soil to soil solution and to trigger a rapid U accumulation in plants. Of the organic acids (acetic acid, citric acid, and malic acid) tested, citric acid was the most effective in enhancing U accumulation in plants. Shoot U concentrations of Brassica juncea and Brassica chinensis grown in a U-contaminated soil increased from less than 5 mg kg{sup {minus}1} to more than 5,000 mg kg{sup {minus}1} in citric acid-treated soils. To their knowledge, this is the highest shoot U concentration reported for plants grown on U-contaminated soils. Using this U hyperaccumulation technique, they are now able to increase U accumulation in shoots of selected plant species grown in two U-contaminated soils by more than 1,000-fold within a few days. The results suggest that U phytoextraction may provide an environmentally friendly alternative for the cleanup of U-contaminated soils.

  2. Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii.

    PubMed

    Tian, Shengke; Lu, Lingli; Labavitch, John; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick

    2011-12-01

    Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 μg g(-1) were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii. PMID:22025609

  3. Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species Sedum alfredii1[C][W

    PubMed Central

    Tian, Shengke; Lu, Lingli; Labavitch, John; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick

    2011-01-01

    Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 μg g−1 were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii. PMID:22025609

  4. Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species Sedum alfredii

    SciTech Connect

    Tian, Shengke; Lu, Lingli; Labavitch, John M.; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick Hugh

    2012-07-23

    Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 {micro}g g{sup -1} were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii.

  5. Do High-nickel Leaves Shed by the Ni-hyperaccumulator Alyssum Murale Inhibit Seed Germination of Competing Plants?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elemental allelopathy suggests that nickel (Ni)-rich leaves shed by hyperaccumulators inhibit the germination and growth of nearby plant species. Here, the germination of eight herbaceous species following addition of Alyssum murale biomass or Ni(NO3)2, with the same Ni level added to soil, was ass...

  6. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China

    NASA Astrophysics Data System (ADS)

    Cui, Shuang; Zhou, Qixing; Chao, Lei

    2007-01-01

    The absorption and accumulation of Pb, Zn, Cu and Cd in some endurant weed plant species that survived in an old smeltery in Liaoning, China, were systematically investigated. Potential hyperaccumulative characteristics of these species were also discussed. The results showed that metal accumulation in plants differed with species, tissues and metals. Endurant weed plants growing in this contaminated site exhibited high metal adaptability. Both the metal exclusion and detoxification tolerance strategies were involved in the species studied. Seven species for Pb and four species for Cd were satisfied for the concentration time level standard for hyperaccumulator. Considering translocation factor (TF) values, one species for Pb, seven species for Zn, two species for Cu and five species for Cd possessed the characteristic of hyperaccumulator. Particularly, Abutilon theophrasti Medic, exhibited strong accumulative ability to four heavy metals. Although enrichment coefficients of all samples were lesser than 1 and the absolute concentrations didn’t reach the standard, species mentioned above were primarily believed to be potential hyperaccumulators.

  7. Spatial Imaging, Speciation, and Quantification of Selenium in theHyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata

    SciTech Connect

    Freeman, J.L.; Zhang, L.H.; Marcus, M.A.; Fakra, S.; McGrath,S.P.; Pilon-Smits, E.A.H.

    2006-09-01

    Astragalus bisulcatus and Stanleya pinnata hyperaccumulate selenium (Se) up to 1% of plant dry weight. In the field, Se was mostly present in the young leaves and reproductive tissues of both hyperaccumulators. Microfocused scanning x-ray fluorescence mapping revealed that Se was hyperaccumulated in trichomes in young leaves of A. bisulcatus. None of 10 other elements tested were accumulated in trichomes. Micro x-ray absorption spectroscopy and liquid chromatography-mass spectrometry showed that Se in trichomes was present in the organic forms methylselenocysteine (MeSeCys; 53%) and {gamma}-glutamyl-MeSeCys (47%). In the young leaf itself, there was 30% inorganic Se (selenate and selenite) in addition to 70% MeSeCys. In young S. pinnata leaves, Se was highly concentrated near the leaf edge and surface in globular structures that were shown by energy-dispersive x-ray microanalysis to be mainly in epidermal cells. Liquid chromatography-mass spectrometry revealed both MeSeCys (88%) and selenocystathionine (12%) inside leaf edges. In contrast, both the Se accumulator Brassica juncea and the nonaccumulator Arabidopsis thaliana accumulated Se in their leaf vascular tissues and mesophyll cells. Se in hyperaccumulators appears to be mobile in both the xylem and phloem because Se-treated S. pinnata was found to be highly toxic to phloem-feeding aphids, and MeSeCys was present in the vascular tissues of a S. pinnata young leaf petiole as well as in guttation fluid. The compartmentation of organic selenocompounds in specific storage areas in the plant periphery appears to be a unique property of Se hyperaccumulators. The high concentration of Se in the plant periphery may contribute to Se tolerance and may also serve as an elemental plant defense mechanism.

  8. How does an Al-hyperaccumulator plant respond to a natural field gradient of soil phytoavailable Al?

    PubMed

    Serrano, H C; Pinto, M J; Martins-Loução, M A; Branquinho, C

    2011-09-01

    The physiological ability of plants to cope with Al-toxicity has attracted considerable attention. In this study we used an endemic Al-hyperaccumulator plant, Plantago almogravensis, which is the only known representative of the Plantaginaceae with this trait growing under a field gradient of Al, to understand the root and shoot patterns of Al accumulation and tolerance in its natural environment. We analysed phytoavailable elements in the soil and their accumulation in the plant. For the first time under field conditions, the accumulation pattern of an Al-hyperaccumulator showed a saturation curve with a maximum accumulation capacity being reached (ca. 3.0 mg g(-1)). The Al toxicity was not associated with the expected reduction in the Ca and Mg uptake by the plant. Iron was accumulated in a more linear pattern. The magnitude and the proportion of the elements found in the apoplastic fraction of the root, compared to the soil and plant internal fractions, suggested that the control of uptake occurs at the rhizospheric level. Unlike the majority of the Al-hyperaccumulator plants that are found in tropical humid areas, this plant is described from a sub-arid Mediterranean climate, subject to drought conditions which give it a unique status that deserves to be studied further. PMID:21774964

  9. Phytomining of valuable metals from waste incineration residues using hyperaccumulator plants

    NASA Astrophysics Data System (ADS)

    Rosenkranz, Theresa; Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika; Puschenreiter, Markus

    2015-04-01

    Worldwide the availability of primary sources of certain economically important metals is decreasing, resulting in high supply risks and increasing prices for this materials. Therefore, an alternative way of retrieving these high valuable technical metals is the recycling and use of anthropogenic secondary sources, such as waste incineration residues. Phytomining offers an environmentally sound and cheap technology to recover such metals from secondary sources. Thus, the aim of our research work is to investigate the potential of phytomining from waste incineration slags by growing metal hyperaccumulating plants on this substrates and use the metal enriched biomass as a bio-ore. As a first stage, material from Vienna's waste incineration plants was sampled and analyzed. Residues from municipal wastes as well as residues from hazardous waste incineration and sewage sludge incineration were analyzed. In general, the slags can be characterized by a very high pH, high salinity and high heavy metal concentrations. Our work is targeting the so-called critical raw materials defined by the European Commission in 2014. Thus, the target metal species in our project are amongst others cobalt, chromium, antimony, tungsten, gallium, nickel and selected rare earth elements. This elements are present in the slags at moderate to low concentrations. In order to optimize the substrate for plant growth the high pH and salt content as well as the low nitrogen content in the slags need to be controlled. Thus, different combinations of amendments, mainly from the waste industry, as well as different acidifying agents were tested for conditioning the substrate. Washing the slags with diluted nitric acid turned out to be effective for lowering the pH. The acid treated substrate in combination with material from mechanical biological waste treatment and biochar, is currently under investigation in a greenhouse pot experiment. The experimental setup consists of a full factorial design

  10. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    PubMed

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. PMID:26592710

  11. Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia Yi; Li, Hong Bo; Liang, Shuang; Luo, Jun; Ma, Lena Q

    2014-11-01

    We investigated the effects of arsenic species on As accumulation, plant growth and rhizospheric changes in As-hyperaccumulator Pteris vittata (PV). PV was grown for 60-d in a soil spiked with 200 mg kg(-1) arsenate (AsV-soil) or arsenite (AsIII-soil). Diffusive gradients in thin-films technique (DGT) were used to monitor As uptake by PV. Interestingly AsIII-soil produced the highest PV biomass at 8.6 g plant(-1), 27% and 46% greater than AsV-soil and the control. Biomass increase was associated with As-induced P uptake by PV. Although AsIII was oxidized to AsV during the experiment, As species impacted As accumulation by PV, with 17.5% more As in AsIII-soil than AsV-soil (36 vs. 31 mg plant(-1)). As concentration in PV roots was 30% higher in AsV-soil whereas As concentration in PV fronds was 7.9% greater in AsIII-soil, suggesting more rapid translocation of AsIII than AsV. These findings were important to understand the mechanisms of As uptake, accumulation and translocation by PV. PMID:25103044

  12. [Uptake of radionuclides from soil to plant and the discovery of 226Ra, 232Th hyperaccumulator].

    PubMed

    Zhang, Zhi-Qiang; Chen, Di-Yun; Song, Gang; Yue, Yu-Mei

    2011-04-01

    11 sorts of plant samples and corresponding soil samples were collected in Conghua and Taishan, Pearl River Delta. The specific activity of 238U, 226Ra, 232Th and 40K of samples were investigated by using HPGe-gamma-ray spectra analysis. The results showed that the average specific activity of 238U, 226Ra, 232Th and 40K in soil samples were 151.8, 146.3, 226.6, 665.5 Bq/kg, which were higher than the average values of China and the world. The concentration of 238U in all sort of plants are very low and most of them are lower than detection limit, while the values of 226Ra, 232Th and 40K were high. The contents of 226Ra and 232Th in Dicranopteris dichotoma were the highest, whose average specific activity is 285.9, 986.2 Bq/kg respectively. The average bioconcentration factors (BFs)of 26Ra, 232Th of Dicranopteris dichotoma were 2.20, 4.23, respectively, the other 10 sort of plants have BFs of 2266Ra, 232Th were in the range of 10(-1)-10(-2). The bioconcentration factors and the translocation factors of 226Ra, 232Th of Dicranopteris dichotoma. were all bigger than 1, so Dicranopteris dichotoma can be defined as hyperaccumulator of 226Ra and 232Th. PMID:21717763

  13. Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case.

    PubMed

    Roosens, Nancy H; Leplae, Raphael; Bernard, Catherine; Verbruggen, Nathalie

    2005-11-01

    Plant metallothioneins (MTs) are extremely diverse and are thought to be involved in metal homeostasis or detoxification. Thlaspi caerulescens is a model Zn/Cd hyperaccumulator and thus constitutes an ideal system to study the variability of these MTs. Two T. caerulescens cDNAs (accession: 665511; accession: 665515), that are highly homologous to type 1 and type 2 Arabidopsis thaliana MTs, have been isolated using a functional screen for plant cDNAs that confer Cd tolerance to yeast. However, TcMT1 has a much shorter N-terminal domain than that of A. thaliana and so lacks Cys motifs conserved through all the plant MTs classified as type 1. A systematic search in plant databases allowed the detection of MT-related sequences. Sixty-four percent fulfil the criteria for MT classification described in Cobbett and Goldsbrough (2002) and further extend our knowledge about other conserved residues that might play an important role in plant MT structure. In addition, 34% of the total MT-related sequences cannot be classified strictly as they display modifications in the conserved residues according to the current plant MTs' classification. The significance of this variability in plant MT sequences is discussed. Functional complementation in yeast was used to assess whether these variations may alter the MTs' function in T. caerulescens. Regulation of the expression of MTs in T. caerulescens was also investigated. TcMT1 and TcMT2 display higher expression in T. caerulescens than in A. thaliana. Moreover, their differential expression patterns in organs and in response to metal exposure, suggest that the two types of MTs may have diverse roles and functions in T. caerulescens. PMID:16052319

  14. Co-Planting Cd Contaminated Field Using Hyperaccumulator Solanum Nigrum L. Through Interplant with Low Accumulation Welsh Onion.

    PubMed

    Wang, Siqi; Wei, Shuhe; Ji, Dandan; Bai, Jiayi

    2015-01-01

    Monoculture and intercrop of hyperaccumulator Solanum nigrum L. with low accumulation Welsh onion Renbentieganchongwang were conducted. The results showed that the remove ratio of S. nigrum to Cd was about 7% in intercrop plot when top soil (0-20 cm) Cd concentration was 0.45-0.62 mg kg(-1), which did not significantly impact the yield of low accumulation Welsh onion compared to the monoculture. The consistency of remove ratio in practice and theory indicated the remediation of S. nigrum to Cd was significant. The Cd concentration and yield of Welsh onion were not affected by the growth of S. nigrum either in intercrop plot. The Cd concentration in edible parts of Welsh onion was available either. In short, inter-planting hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit), which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future. PMID:25581317

  15. Effects of bacteria on cadmium bioaccumulation in the cadmium hyperaccumulator plant Beta vulgaris var. cicla L.

    PubMed

    Chen, Su; Chao, Lei; Sun, Lina; Sun, Tieheng

    2013-01-01

    To investigate the effects of two cadmium-tolerant bacteria, Staphylococcus pasteuri (S. pasteuri X1) and Agrobacterium tumefaciens (A. tumefaciens X2), on cadmium uptake by the cadmium hyperaccumulator plant Beta vulgaris var. cicla L., a pot experiment with artificially contaminated soil was conducted. The results demonstrated that both cadmium-tolerant bacteria enhanced the dry weight of Beta vulgaris var. cicla L. The total dry weights of plants in the control CK20, S. pasteuri X1 and A. tumefaciens X2 treatments were 0.85, 1.13, and 1.38 g/pot, respectively. Compared with the control CK20 findings, the total dry weight of plants was increased by 32.8 and 61.1% after inoculation with S. pasteuri X1 and A. tumefaciens X2, respectively, indicating that A. tumefaciens X2 more strongly promoted the growth of Beta vulgaris var. cicla L. than S. pasteuri X1. In addition, inoculation with S. pasteuri X1 and A. tumefaciens X2 significantly (p < 0.05) promoted cadmium uptake by plants and improved the bioaccumulation of cadmium by the plants from the soil. Moreover, the inoculation of S. pasteuri X1 and A. tumefaciens X2 effectively facilitated the transfer of cadmium in the soil from the Fe-Mn oxide and residual fractions to the soluble plus exchangeable and weakly specially adsorbed fractions in the rhizosphere soils of plants. The bacterial enhancement of cadmium phytoavailability might provide a potential and promising method to increase the efficiency of phytoextraction. PMID:23488173

  16. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant.

    PubMed

    Buendía-González, L; Orozco-Villafuerte, J; Cruz-Sosa, F; Barrera-Díaz, C E; Vernon-Carter, E J

    2010-08-01

    The bioaccumulation of Cr(VI) and Cd(II) in Prosopis laevigata and the effect of these heavy metals on plant growth were assessed. P. laevigata seeds were cultured during 50 days on modified Murashige-Skoog medium supplemented with four different concentrations of Cr(VI) (0-3.4mM) and Cd(II) (0-2.2mM), respectively. Heavy metals did not stop germination, but smaller plants with fewer leaves and secondary roots were produced. Seedlings showed an accumulation of 8176 and 21,437 mg Cd kg(-1) and of 5461 and 8090 mg Cr kg(-1) dry weight, in shoot and root, when cultured with 0.65 mM Cd(II) and 3.4mM Cr(VI), respectively. These results indicated that significant translocation from the roots unto aerial parts took place. A bioaccumulation factor greater than 100 for Cd and 24 for Cr was exhibited by the seedlings. P. laevigata can be considered as a potential hyperaccumulator of Cd(II) and Cr(VI) species and considered as a promising candidate for phytoremediation purposes. PMID:20347590

  17. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii.

    PubMed

    Li, W C; Ye, Z H; Wong, M H

    2007-01-01

    To investigate the effects of bacteria (Burkholderia cepacia) on metal uptake by the hyperaccumulating plant, Sedum alfredii, a hydroponic experiment with different concentrations of Cd and Zn was conducted. It was found that inoculation of bacteria on S. alfredii significantly enhanced plant growth (up to 110% with Zn treatment), P (up to 56.1% with Cd treatment), and metal uptake (up to 243% and 96.3% with Cd and Zn treatment, respectively) in shoots, tolerance index (up to 134% with Zn added treatment), and better translocation of metals (up to 296% and 135% with Cd and Zn treatment, respectively) from root to shoot. In the ampicillin added treatment with metal addition, stimulation of organic acid production (up to an increase of 133% of tartaric acid with Cd treatment) by roots of S. alfredii was observed. The secretion of organic acids appears to be a functional metal resistance mechanism that chelates the metal ions extracellularly, reducing their uptake and subsequent impacts on root physiological processes. PMID:18039737

  18. Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens.

    PubMed

    Hassinen, V H; Tervahauta, A I; Halimaa, P; Plessl, M; Peräniemi, S; Schat, H; Aarts, M G M; Servomaa, K; Kärenlampi, S O

    2007-03-01

    Several populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR. cDNA fragments from 16 Zn-responsive genes, including those encoding metallothionein (MT) type 2 and type 3, MRP-like transporter, pectin methylesterase (PME) and Ole e 1-like gene as well as several unknown genes, were eventually isolated. The full-length MT2 and MT3 sequences differ from those previously isolated from other Thlaspi accessions, possibly representing new alleles or isoforms. Besides the differential expression in Zn exposures, the gene expression was dependent on the accession. Thlaspi homologues of ClpP protease and MRP transporter were induced at high Zn concentrations. MT2 and PME were expressed at higher levels in the calaminous accession. The MTs and MRP transporter expressed in transgenic yeasts were capable of conferring Cu and Cd tolerance, whereas the Ole e 1-like gene enhanced toxicity to these metals. The MTs increased yeast intracellular Cd content. As no significant differences were found between Arabidopsis and Thlaspi MTs, they apparently do not differ in their capacity to bind metals. However, the higher levels of MT2 in the calaminous accession may contribute to the Zn-adapted phenotype. PMID:17013613

  19. Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant Sedum plumbizincicola.

    PubMed

    Cao, Dong; Zhang, Hongzheng; Wang, Yaodong; Zheng, Leina

    2014-08-01

    Accumulation and distribution of Zn and Cd in the hyperaccumulator plant Sedum plumbizincicola were investigated in a hydroponic experiment. Mean Cd and Zn concentrations in shoots (7,010 and 18,400 mg kg(-1)) were about sevenfold and fivefold higher than those in roots (840 and 3,000 mg kg(-1)) after exposure to 100 μM CdSO4 and 600 μM ZnSO4, respectively. Cd and Zn concentrations in young leaves (4,330 and 9,820 mg kg(-1)) were about sixfold and twofold higher than those in mature leaves (636 and 2,620 mg kg(-1)), respectively. MicroPIXE analysis showed that Zn was predominantly localized in epidermal cells in both young and mature leaves, but large amounts of Zn occurred in mesophyll cells in young leaves. Leaf tissue fractionation showed that soluble and cell wall fractions were different at the two stages of leaf growth. Young and mature leaves of S. plumbizincicola also showed different accumulation and distribution characteristics for Zn and Cd. PMID:24789526

  20. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar.

    PubMed

    Rees, Frédéric; Sterckeman, Thibault; Morel, Jean Louis

    2016-01-01

    Biochar may be used as an amendment in contaminated soils in phytoremediation processes. The mechanisms controlling plant metal uptake in biochar-amended soils remain however unclear. This work aimed at evaluating the influence of biochar on root development and its consequence on plant metal uptake, for two non-hyperaccumulating plants (Zea mays and Lolium perenne) and one hyperaccumulator of Cd and Zn (Noccaea caerulescens). We conducted rhizobox experiments using one acidic and one alkaline soil contaminated with Cd, Pb and Zn. Biochar was present either homogeneously in the whole soil profile or localized in specific zones. A phenomenon of root proliferation specific to biochar-amended zones was seen on the heterogeneous profiles of the acidic soil and interpreted by a decrease of soil phytotoxicity in these zones. Biochar amendments also favored root growth in the alkaline soil as a result of the lower availability of certain nutrients in the amended soil. This increase of root surface led to a higher accumulation of metals in roots of Z.mays in the acidic soil and in shoots of N. caerulescens in the alkaline soil. In conclusion, biochar can have antagonist effects on plant metal uptake by decreasing metal availability, on one hand, and by increasing root surface and inducing root proliferation, on the other hand. PMID:25912633

  1. Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana.

    PubMed

    Zhao, Le; Sun, Yong-Le; Cui, Su-Xia; Chen, Mei; Yang, Hao-Meng; Liu, Hui-Min; Chai, Tuan-Yao; Huang, Fang

    2011-09-01

    Cadmium (Cd) is highly toxic to all organisms. Soil contamination by Cd has become an increasing problem worldwide due to the intensive use of Cd-containing phosphate fertilizers and industrial zinc mining. Phytolacca americana L. is a Cd hyperaccumulator plant that can grow in Cd-polluted areas. However, the molecular basis for its remarkable Cd resistance is not known. In this study, the effects of Cd exposure on protein expression patterns in P.americana was investigated by 2-dimensional gel electrophoresis (2-DE). 2-DE profiles of leaf proteins from both control and Cd-treated (400μM, 48h) seedlings were compared quantitatively using ImageMaster software. In total, 32 differentially expressed protein spots were identified using MALDI-TOF/TOF mass spectrometry coupled to protein database search, corresponding to 25 unique gene products. Of those 14 were enhanced/induced while 11 reduced under Cd treatment. The alteration pattern of protein expression was verified for several key proteins involved in distinct metabolic pathways by immuno-blot analysis. Major changes were found for the proteins involved in photosynthetic pathways as well as in the sulfur- and GSH-related metabolisms. One-third of the up-regulated proteins were attributed to transcription, translation and molecular chaperones including a protein belonging to the calreticulin family. Other proteins include antioxidative enzymes such as 2-cys-peroxidase and oxidoreductases. The results of this proteomic analysis provide the first and primary information regarding the molecular basis of Cd hypertolerance in P. americana. PMID:21723586

  2. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    PubMed

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines. PMID:25263417

  3. Hyperaccumulator of Pb in native plants growing on Peruvian mine tailings

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Roca, Nuria; Boluda, Rafael; Tume, Pedro; Duran, Paola; Poma, Wilfredo; Sanchez, Isidoro

    2014-05-01

    samples were taken at four locations (CA1, CA2, CA3, CA4) with different levels of Pb. The Pb soil content (mean ± standard deviation) in mg•kg-1 is as follows: CA1 3992 ± 301; CA2 10128 ± 2247, CA3 14197 ± 895, CA4 16060 ± 810. The non-polluted value around the mine was Pb 124 mg•kg-1. Unusual elevated concentrations of Pb (over 1000 mg kg-1) and TF greater than one were detected in shoots of 6 different plants species (Ageratina sp., Achirodine alata, Cortaderia apalothica, Epilobium denticulatum, Taraxacum officinalis and Trifolium repens). The location CA4 has the maximum content of Pb in the shoots of Ageratina sp. (5045±77 mg•kg-1), C. apalothica (3367±188 mg•kg-1), E. denticulatum (13599±848 mg•kg-1), T. officinalis (2533±47 mg•kg-1) and T. repens (2839±231 mg•kg-1). However, the BF (Bioaccumulation Factor) was smaller than one. Despite the low BF index, the great TFs for Pb indicate that these plant species effectively translocate this metal (i.e., 2.4 for Ageratina sp., 2.3 for C. apalothica, 1.6 for T. repens, 1.5 for A. alata, 1.3 for T. officinalis and 1.2 for E. denticulatum). It seems that the BF is not a reliable index when the metal soil concentration is extremely large. Controlled-environment studies must be performed to definitively confirm the Pb hyperaccumulation character of cited plant species.

  4. Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant

    PubMed Central

    Afton, Scott E.; Catron, Brittany; Caruso, Joseph A.

    2009-01-01

    Although many studies have investigated the metabolism of selenium and arsenic in hyperaccumulating plants for phytoremediation purposes, few have explored non-hyperaccumulating plants as a model for general contaminant exposure to plants. In addition, the result of simultaneous supplementation with selenium and arsenic has not been investigated in plants. In this study, Chlorophytum comosum, commonly known as the spider plant, was used to investigate the metabolism of selenium and arsenic after single and simultaneous supplementation. Size exclusion and ion-pairing reversed phase liquid chromatography were coupled to an inductively coupled plasma mass spectrometer to obtain putative metabolic information of the selenium and arsenic species in C. comosum after a mild aqueous extraction. The chromatographic results depict that selenium and arsenic species were sequestered in the roots and generally conserved upon translocation to the leaves. The data suggest that selenium was directly absorbed by C. comosum roots when supplemented with SeVI, but a combination of passive and direct absorption occurred when supplemented with SeIV due to the partial oxidation of SeIV to SeVI in the rhizosphere. Higher molecular weight selenium species were more prevalent in the roots of plants supplemented with SeIV, but in the leaves of plants supplemented with SeVI due to an increased translocation rate. When supplemented as AsIII, arsenic is proposed to be passively absorbed as AsIII and partially oxidized to AsV in the plant root. Although total elemental analysis demonstrates a selenium and arsenic antagonism, a compound containing selenium and arsenic was not present in the general aqueous extract of the plant. PMID:19273464

  5. Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii.

    PubMed

    Lu, Lingli; Tian, Shengke; Zhang, Jie; Yang, Xiaoe; Labavitch, John M; Webb, Samuel M; Latimer, Matthew; Brown, Patrick H

    2013-05-01

    Sedum alfredii is one of a few species known to hyperaccumulate zinc (Zn) and cadmium (Cd). Xylem transport and phloem remobilization of Zn in hyperaccumulating (HP) and nonhyperaccumulating (NHP) populations of S. alfredii were compared. Micro-X-ray fluorescence (μ-XRF) images of Zn in the roots of the two S. alfredii populations suggested an efficient xylem loading of Zn in HP S. alfredii, confirmed by the seven-fold higher Zn concentrations detected in the xylem sap collected from HP, when compared with NHP, populations. Zn was predominantly transported as aqueous Zn (> 55.9%), with the remaining proportion (36.7-42.3%) associated with the predominant organic acid, citric acid, in the xylem sap of HP S. alfredii. The stable isotope (68)Zn was used to trace Zn remobilization from mature leaves to new growing leaves for both populations. Remobilization of (68)Zn was seven-fold higher in HP than in NHP S. alfredii. Subsequent analysis by μ-XRF, combined with LA-ICPMS (laser ablation-inductively coupled plasma mass spectrometry), confirmed the enhanced ability of HP S. alfredii to remobilize Zn and to preferentially distribute the metal to mesophyll cells surrounding phloem in the new leaves. The results suggest that Zn hyperaccumulation by HP S. alfredii is largely associated with enhanced xylem transport and phloem remobilization of the metal. To our knowledge, this report is the first to reveal enhanced remobilization of metal by phloem transport in hyperaccumulators. PMID:23421478

  6. NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum

    NASA Astrophysics Data System (ADS)

    Smart, K. E.; Kilburn, M. R.; Salter, C. J.; Smith, J. A. C.; Grovenor, C. R. M.

    2007-02-01

    Certain plants known as `metal hyperaccumulators' can accumulate exceptional concentrations of elements such as zinc, manganese, nickel, cobalt, copper, selenium, cadmium or arsenic in their above ground tissue. In members of the genus Alyssum, nickel concentrations can reach values as high as 3% of leaf dry biomass. These plants must possess very effective mechanisms for the transport, chelation and sequestration of such elements within their tissues to avoid the toxic effects of free metal ions. Evidence from a number of different techniques suggests that nickel is concentrated primarily in the outermost, epidermal tissue of leaves of Alyssum hyperaccumulators, but there is currently no consensus on the principal sites of nickel sequestration. In this study, high resolution secondary ion mass spectrometry (NanoSIMS) analysis has been performed on longitudinal sections of Alyssum lesbiacum leaves. Elemental maps were obtained which revealed the high concentrations of nickel in the peripheral regions of the large unicellular stellate leaf hairs (trichomes) and in the epidermal cell layer. Electron probe microanalysis (EPMA) was used to provide independent confirmation of elemental distribution in the specimens, but the superior spatial resolution and high chemical sensitivity of the NanoSIMS technique provided a more detailed image of elemental distribution in these biological specimens at the cellular level.

  7. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum

    NASA Astrophysics Data System (ADS)

    Krämer, U.; Grime, G. W.; Smith, J. A. C.; Hawes, C. R.; Baker, A. J. M.

    1997-07-01

    Certain terrestrial plants are able to accumulate metals such as zinc, manganese, nickel, cobalt, or copper in their above-ground biomass. The largest group of these so-called "metal hyperaccumulators" is to be found among certain species in the family Brassicaceae endemic to ultramafic soils. For example, nickel concentrations in members of the genus Alyssum can reach 3% of the leaf dry biomass. However, nickel levels in the root tissue of these plants are low, suggesting that hyperaccumulation is associated with effective metal translocation from root to shoot and sequestration of the metal in non-toxic form within the leaves. To investigate the sites of nickel localization within A. lesbiacum, leaf cross-sections were examined by nuclear microscopy using PIXE and RBS on the Oxford Scanning Proton Microprobe (SPM) with a spatial resolution of 1 μm. This paper describes the sample preparation and analysis methods and presents some preliminary results indicating that nickel is sequestered to a considerable degree within the epidermal trichomes on the leaf surface.

  8. Characterization of a selenium-tolerant rhizosphere strain from a novel Se-hyperaccumulating plant Cardamine hupingshanesis.

    PubMed

    Tong, Xinzhao; Yuan, Linxi; Luo, Lei; Yin, Xuebin

    2014-01-01

    A novel selenium- (Se-) hyperaccumulating plant, Cardamine hupingshanesis, accumulating Se as a form of SeCys2, was discovered in Enshi, Hubei, China, which could not be explained by present selenocysteine methyltransferase (SMT) theory. However, it is interesting to investigate if rhizosphere bacteria play some roles during SeCys2 accumulation. Here, one Se-tolerant rhizosphere strain, Microbacterium oxydans, was isolated from C. hupingshanesis. Phylogenetic analysis and 16S rRNA gene sequences determined the strain as a kind of Gram positive bacillus and belonged to the family Brevibacterium frigoritolerans. Furthermore, Se tolerance test indicated the strain could grow in extreme high Se level of 15.0 mg Se L(-1). When exposed to 1.5 mg Se L(-1), SeCys2 was the predominant Se species in the bacteria, consistent with the Se species in C. hupingshanesis. This coincidence might reveal that this strain played some positive effect in SeCys2 accumulation of C. hupingshanesis. Moreover, when exposed to 1.5 mg Se L(-1) or 15.0 mg Se L(-1), As absorption diminished in the logarithmic phase. In contrast, As absorption increased when exposed to 7.5 mg Se L(-1), indicating As metabolism processes could be affected by Se on this strain. The present study provided a sight on the role of rhizosphere bacteria during Se accumulation for Se-hyperaccumulating plant. PMID:25478582

  9. Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants.

    PubMed

    Zhang, Zhong-Chun; Chen, Bo-Xia; Qiu, Bao-Sheng

    2010-08-01

    Phytochelatin (PC) synthesis is considered necessary for Cd tolerance in non-resistant plants, but roles for PCs in hyper-accumulating species are currently unknown. In the present study, the relationship between PC synthesis and Cd accumulation was investigated in the Cd hyperaccumulator Sedum alfredii Hance. PCs were most abundant in leaves followed by stems, but hardly detected by the reversed-phase high-performance liquid chromatography (HPLC) in roots. Both PC synthesis and Cd accumulation were time-dependent and a linear correlation between the two was established with about 1:15 PCs : Cd stoichiometry in leaves. PCs were found in the elution fractions, which were responsible for Cd peaks in the anion exchange chromatograph assay. About 5% of the total Cd was detected in these elution fractions as PCs were found. Most Cd was observed in the cell wall and intercellular space of leaf vascular cells. These results suggest that PCs do not detoxify Cd in roots of S. alfredii. However, like in non-resistant plants, PCs might act as the major intracellular Cd detoxification mechanism in shoots of S. alfredii. PMID:20233337

  10. A native Zn/Cd transporting P1B ATPase from natural overexpression in a hyperaccumulator plant reveals post-translational processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TcHMA4 is a P1B-type ATPase that is highly expressed in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens and contains a C-terminal 9-histidine repeat. After isolation from roots, we purified TcHMA4 protein via metal affinity chromatography. The purified protein exhibited Cd- and Zn activated AT...

  11. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    NASA Astrophysics Data System (ADS)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    observed in so-called hyperaccumulating metalophytes, which are studied for its suitability to be incorporated in metal recovery processes of elements that diffusely occur in different waste streams. In a systematic series of tests under laboratory conditions the accumulation behaviour for many different elements including rare earth metals of a selection of candidate plants growing on sewage sludge, incineration residues and industrial leftovers was assessed (quantitavely and qualitatively). Growth performance of these plants as well as the most suitable substrate properties were evaluated. The results of this project provided the groundwork for further research and development steps that might bring to practical implementation a technological option with potentially huge benefits: The recovery of valuable metal resources from sewage sludge, incineration ashes and metal rich wastewaters by environmentally friendly and low energy means. Simultaneous decontamination of the input substrates from heavy metals, opening the possibility for these nutrient streams to be redirected to biological regeneration processes (for example use as fertilizers in agriculture) without fear of polluting soils with heavy metal loads. Generation of biomass on contaminated substrates can yield usable energy surplus through incineration during or after processing.

  12. Tonoplast- and Plasma Membrane-Localized Aquaporin-Family Transporters in Blue Hydrangea Sepals of Aluminum Hyperaccumulating Plant

    PubMed Central

    Negishi, Takashi; Oshima, Kenshiro; Hattori, Masahira; Kanai, Masatake; Mano, Shoji; Nishimura, Mikio; Yoshida, Kumi

    2012-01-01

    Hydrangea (Hydrangea macrophylla) is tolerant of acidic soils in which toxicity generally arises from the presence of the soluble aluminum (Al) ion. When hydrangea is cultivated in acidic soil, its resulting blue sepal color is caused by the Al complex formation of anthocyanin. The concentration of vacuolar Al in blue sepal cells can reach levels in excess of approximately 15 mM, suggesting the existence of an Al-transport and/or storage system. However, until now, no Al transporter has been identified in Al hyperaccumulating plants, animals or microorganisms. To identify the transporter being responsible for Al hyperaccumulation, we prepared a cDNA library from blue sepals according to the sepal maturation stage, and then selected candidate genes using a microarray analysis and an in silico study. Here, we identified the vacuolar and plasma membrane-localized Al transporters genes vacuolar Al transporter (VALT) and plasma membrane Al transporter 1 (PALT1), respectively, which are both members of the aquaporin family. The localization of each protein was confirmed by the transient co-expression of the genes. Reverse transcription-PCR and immunoblotting results indicated that VALT and PALT1 are highly expressed in sepal tissue. The overexpression of VALT and PALT1 in Arabidopsis thaliana conferred Al-tolerance and Al-sensitivity, respectively. PMID:22952644

  13. Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens.

    PubMed

    Tuomainen, Marjo; Ahonen, Viivi; Kärenlampi, Sirpa O; Schat, Henk; Paasela, Tanja; Svanys, Algirdas; Tuohimetsä, Saara; Peräniemi, Sirpa; Tervahauta, Arja

    2011-06-01

    Stress tolerance is currently one of the major research topics in plant biology because of the challenges posed by changing climate and increasing demand to grow crop plants in marginal soils. Increased Zn tolerance and accumulation has been reported in tobacco expressing the glyoxalase 1-encoding gene from Brassica juncea. Previous studies in our laboratory showed some Zn tolerance-correlated differences in the levels of glyoxalase 1-like protein among accessions of Zn hyperaccumulator Thlaspi caerulescens. We have now isolated the corresponding gene (named here TcGLX1), including ca. 570 bp of core and proximal promoter region. The predicted protein contains three glyoxalase 1 motifs and several putative sites for post-translational modification. In silico analysis predicted a number of cis-acting elements related to stress. The expression of TcGLX1 was not responsive to Zn. There was no correlation between the levels of TcGLX1 expression and the degrees of Zn tolerance or accumulation among T. caerulescens accessions nor was there co-segregation of TcGLX1 expression with Zn tolerance or Zn accumulation among F3 lines derived from crosses between plants from accessions with contrasting phenotypes for these properties. No phenotype was observed in an A. thaliana T-DNA insertion line for the closest A. thaliana homolog of TcGLX1, ATGLX1. These results suggest that glyoxalase 1 or at least the particular isoform studied here is not a major determinant of Zn tolerance in the Zn hyperaccumulator plant T. caerulescens. In addition, ATGLX1 is not essential for normal Zn tolerance in the non-tolerant, non-accumulator plant A. thaliana. Possible explanations for the apparent discrepancy between this and previous studies are discussed. PMID:21327818

  14. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    PubMed

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils. PMID:26874625

  15. Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense.

    PubMed

    Freeman, John L; Persans, Michael W; Nieman, Ken; Salt, David E

    2005-12-01

    The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-L-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel. PMID:16332856

  16. Nickel and Cobalt Resistance Engineered in Escherichia coli by Overexpression of Serine Acetyltransferase from the Nickel Hyperaccumulator Plant Thlaspi goesingense

    PubMed Central

    Freeman, John L.; Persans, Michael W.; Nieman, Ken; Salt, David E.

    2005-01-01

    The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-l-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel. PMID:16332856

  17. A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot District, Tak Province, Thailand: (1) Determination of Cd-hyperaccumulating plants.

    PubMed

    Khaokaew, Saengdao; Landrot, Gautier

    2015-11-01

    The cadmium (Cd) phytoremediation capabilities of Gynura pseudochina, Chromolaena odorata, Conyza sumatrensis, Crassocephalum crepidioides and Nicotiana tabacum were determined by conducting in-situ experiments in a highly Cd-contaminated agricultural field at Mae Sot District, Tak Province, Thailand. Most of these five plant species, which are commonly found in Thailand, previously demonstrated Cd-hyperaccumulating capacities under greenhouse conditions. This study represented an important initial step in determining if any of these plants could, under field-conditions, effectively remove Cd from the Mae Sot contaminated fields, which represent a health threat to thousands of local villagers. All plant species had at least a 95% survival rate on the final harvest day. Additionally, all plant species, except C. odorata, could hyperaccumulate the extractable Cd amounts present in the soil, based on their associated Bioaccumulation Factor (BAF), Translocation Factor (TF), and background Vegetation Factor (VF). Therefore, the four Cd-hyperaccumulating plant species identified in this study may successfully treat a majority of contaminated fields at Mae Sot, as it was previously reported that Cd amounts present in a number of these soils were mostly available. PMID:25454203

  18. Evidence for nickel/proton antiport activity at the tonoplast of the hyperaccumulator plant Alyssum lesbiacum.

    PubMed

    Ingle, R A; Fricker, M D; Smith, J A C

    2008-11-01

    The mechanism of nickel uptake into vacuoles isolated from leaf tissue of Alyssum lesbiacum was investigated to help understand the ability of this species to hyperaccumulate Ni. An imaging system was designed to monitor Ni uptake by single vacuoles using the metal-sensitive fluorescent dye, Newport Green. Nickel uptake into isolated vacuoles from leaf tissue of A. lesbiacum was enhanced by the presence of Mg/ATP, presumably via energisation of the vacuolar H(+)-ATPase (V-ATPase). This ATP-stimulated Ni uptake was abolished by bafilomycin (a diagnostic inhibitor of the V-ATPase) and by dissipation of the transmembrane pH difference with an uncoupler. These observations are consistent with Ni(2+)/nH(+) antiport activity at the tonoplast driven by a proton electrochemical gradient established by the V-ATPase, which would provide a mechanism for secondary active transport of Ni(2+) into the vacuole. This study provides insights into the molecular basis of Ni tolerance in Alyssum, and may aid in the identification of genes involved in Ni hyperaccumulation. PMID:18950432

  19. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China.

    PubMed

    Yanqun, Zu; Yuan, Li; Schvartz, Christian; Langlade, Laurent; Fan, Liu

    2004-06-01

    A field survey of higher terrestrial plants growing on Lanping lead-zinc mine, China were conducted to identify species accumulating exceptionally large concentrations of Pb, Cd, Cu and Zn of 20 samples of 17 plant species. Concentrations of Pb and Zn in soil and in plant were higher than that of Cu and Cd. Significant difference was observed among the average concentrations of four heavy metals in plants (except Cd and Cu) and in soil (except Pb and Zn) (P<0.05). For the enrichment coefficient of the four heavy metals in plant, the order of average was Pbtree>herbaceous, and herbaceous grew in soil with the highest concentrations of four heavy metals. In different areas, the concentrations of Pb, Cd, Cu and Zn in plants and soils and enrichment coefficient were different. Plants in Paomaping had more accumulating ability to Pb, Cd and Zn, and plants in Jinfeng River had more accumulating ability to Cu. Six plant species, i.e. S. cathayana, Lithocarpus dealbatus, L. plyneura, Fargesia dura, Arundinella yunnanensis and R. annae in Paomaping, had high accumulation capacity. R. annae in Paomaping had hyperaccumulating capacity to Pb, Cd and Zn, L. plyneura to Pb and Cd, and S. cathayana to Cd, respectively. PMID:15031017

  20. Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyperaccumulator plant Alyssum inflatum.

    PubMed

    Ghasemi, Rasoul; Ghaderian, S Majid; Krämer, Ute

    2009-11-01

    The divalent cations of several transition metal elements have similar chemical properties and, when present in excess, one metal can interfere with the homeostasis of another. To better understand the role of interactions between transition metals in the development of metal toxicity symptoms in plants, the effects of exposure to excess nickel (Ni) on copper (Cu) and iron (Fe) homeostasis in the Ni hyperaccumulator plant Alyssum inflatum were examined. Alyssum inflatum was hypertolerant to Ni, but not to Cu. Exposure to elevated subtoxic Ni concentrations increased Cu sensitivity, associated with enhanced Cu accumulation and enhanced root surface Cu(II)-specific reductase activity. Exposure to elevated Ni concentrations resulted in an inhibition of root-to-shoot translocation of Fe and concentration-dependent progressive Fe accumulation in root pericycle, endodermis and cortex cells of the differentiation zone. Shoot Fe concentrations, chlorophyll concentrations and Fe-dependent antioxidant enzyme activities were decreased in Ni-exposed plants when compared with unexposed controls. Foliar Fe spraying or increased Fe supply to roots ameliorated the chlorosis observed under exposure to high Ni concentrations. These results suggest that Ni interferes with Cu regulation and that the disruption of root-to-shoot Fe translocation is a major cause of nickel toxicity symptoms in A. inflatum. PMID:19691676

  1. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. PMID:26469935

  2. A native Zn/Cd pumping P(1B) ATPase from natural overexpression in a hyperaccumulator plant.

    PubMed

    Parameswaran, Aravind; Leitenmaier, Barbara; Yang, Mingjie; Kroneck, Peter M H; Welte, Wolfram; Lutz, Gabriela; Papoyan, Ashot; Kochian, Leon V; Küpper, Hendrik

    2007-11-01

    We report here the first purification of a P(1B) type ATPase, a group of transporters that occurs in bacteria, plants and animals incl. humans, from a eukaryotic organism in native state. TcHMA4 is a P(1B) type ATPase that is highly expressed in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens and contains a C-terminal 9-histidine repeat. After isolation from roots, we purified TcHMA4 protein via metal affinity chromatography. The purified protein exhibited Cd- and Zn-activated ATPase activity after reconstitution into lipid vesicles, showing that it was in its native state. Gels of crude root extract and of the purified protein revealed TcHMA4-specific bands of about 50 and 60kDa, respectively, while the TcHMA4 mRNA predicts a single protein with a size of 128kDa. This indicates the occurrence of post-translational processing; the properties of the two bands were characterised by their activity and binding properties. PMID:17826738

  3. Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii.

    PubMed

    Mengoni, A; Grassi, E; Barzanti, R; Biondi, E G; Gonnelli, C; Kim, C K; Bazzicalupo, M

    2004-08-01

    Serpentine soils are characterized by high levels of heavy metals (Ni, Co, Cr), and low levels of important plant nutrients (P, Ca, N). Because of these inhospitable edaphic conditions, serpentine soils are typically home to a very specialized flora including endemic species as the nickel hyperaccumulator Alyssum bertolonii. Although much is known about the serpentine flora, few researches have investigated the bacterial communities of serpentine areas. In the present study bacterial communities were sampled at various distances from A. bertolonii roots in three different serpentine areas and their genetic diversity was assessed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The obtained results indicated the occurrence of a high genetic diversity and heterogeneity of the bacterial communities present in the different serpentine areas. Moreover, TRFs (terminal restriction fragments) common to all the investigated A. bertolonii rhizosphere samples were found. A new cloning strategy was applied to 27 TRFs that were sequenced and taxonomically interpreted as mainly belonging to Gram-positive and alpha-Proteobacteria representatives. In particular, cloned TRFs which discriminated between rhizosphere and soil samples were mainly interpreted as belonging to Proteobacteria representatives. PMID:15546041

  4. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions.

    PubMed

    Tlustoš, Pavel; Břendová, Kateřina; Száková, Jiřina; Najmanová, Jana; Koubová, Kateřina

    2016-01-01

    Three Cd and Zn hyperaccumulating plant species Noccaea caerulescens Noccaea praecox and Arabidopsis halleri (Brassicacceae) were cultivated in seven subsequent vegetation seasons in both pot and field conditions in soil highly contaminated with Cd, Pb, and Zn. The results confirmed the hyperaccumulation ability of both plant species, although A. halleri showed lower Cd uptake compared to N. caerulescens. Conversely, Pb phytoextraction was negligible for both species in this case. Because of the high variability in plant yield and element contents in the aboveground biomass of plants, great variation in Cd and Zn accumulation was observed during the experiment. The extraction ability in field conditions varied in the case of Cd from 0.2 to 2.9 kg ha(-1) (N. caerulescens) and up to 0.15 kg ha(-1) (A. halleri), and in the case of Zn from 0.2 to 6.4 kg ha(-1) (N. caerulescens) and up to 13.8 kg.ha(-1) (A. halleri). Taking into account the 20 cm root zone of the soil, the plants were able to extract up to 4.1% Cd and 0.2% Zn in one season. However, cropping measures should be optimized to improve and stabilize the long-term phytoextraction potential of these plants. PMID:26280307

  5. Zinc Isotope Fractionation in the Hyperaccumulator Noccaea caerulescens and the Nonaccumulating Plant Thlaspi arvense at Low and High Zn Supply.

    PubMed

    Tang, Ye-Tao; Cloquet, Christophe; Deng, Teng-Hao-Bo; Sterckeman, Thibault; Echevarria, Guillaume; Yang, Wen-Jun; Morel, Jean-Louis; Qiu, Rong-Liang

    2016-08-01

    On the basis of our previous field survey, we postulate that the pattern and degree of zinc (Zn) isotope fractionation in the Zn hyperaccumulator Noccaea caerulescens (J. & C. Presl) F. K. Mey may reflect a relationship between Zn bioavailability and plant uptake strategies. Here, we investigated Zn isotope discrimination during Zn uptake and translocation in N. caerulescens and in a nonaccumulator Thlaspi arvense L. with a contrasting Zn accumulation ability in response to low (Zn-L) and high (Zn-H) Zn supplies. The average isotope fractionations of the N. caerulescens plant as a whole, relative to solution (Δ(66)Znplant-solution), were -0.06 and -0.12‰ at Zn-L-C and Zn-H-C, respectively, indicative of the predominance of a high-affinity (e.g., ZIP transporter proteins) transport across the root cell membrane. For T. arvense, plants were more enriched in light isotopes under Zn-H-A (Δ(66)Znplant-solution = -0.26‰) than under Zn-L-A and N. caerulescens plants, implying that a low-affinity (e.g., ion channel) transport might begin to function in the nonaccumulating plants when external Zn supply increases. Within the root tissues of both species, the apoplast fractions retained up to 30% of Zn mass under Zn-H. Moreover, the highest δ(66)Zn (0.75‰-0.86‰) was found in tightly bound apoplastic Zn, pointing to the strong sequestration in roots (e.g., binding to high-affinity ligands/precipitation with phosphate) when plants suffer from high Zn stress. During translocation, the magnitude of isotope fractionation was significantly greater at Zn-H (Δ(66)Znroot-shoot = 0.79‰) than at Zn-L, indicating that fractionation mechanisms associated with root-shoot translocation might be identical to the two plant species. Hence, we clearly demonstrated that Zn isotope fractionation could provide insight into the internal sequestration mechanisms of roots when plants respond to low and high Zn supplies. PMID:27359107

  6. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species.

    PubMed

    Boominathan, Rengasamy; Doran, Pauline M

    2003-03-01

    Heavy metal uptake and distribution were investigated in hairy roots of the Cd hyperaccumulator, Thlaspi caerulescens, and the Ni hyperaccumulator, Alyssum bertolonii. Hairy roots of both species contained high constitutive levels of citric, malic and malonic acids. After treatment with 20 ppm Cd or 25 ppm Ni, about 13% of the total Cd in T. caerulescens roots and 28% of the total Ni in A. bertolonii were associated with organic acids. T. caerulescens and A. bertolonii hairy roots remained healthy and grew well at high concentrations of Cd and Ni, respectively, whereas hairy roots of the non-hyperaccumulator, Nicotiana tabacum, did not. Most of the Cd in T. caerulescens and N. tabacum roots was localised in the cell walls. In contrast, 85-95% of the Ni in A. bertolonii and N. tabacum was associated with the symplasm. Growth of T. caerulescens and A. bertolonii hairy roots was severely reduced in the presence of diethylstilbestrol (DES), an inhibitor of plasma membrane H(+)-ATPase. Treatment with DES increased the concentration of Cd in the symplasm of T. caerulescens about 6-fold with retention of root viability, whereas viability and Ni transport across the plasma membrane were both reduced in A. bertolonii. These results suggest that the mechanisms of Cd tolerance and hyperaccumulation in T. caerulescens hairy roots are capable of withstanding the effects of plasma membrane depolarisation, whereas Ni tolerance and hyperaccumulation in A. bertolonii hairy roots are not. PMID:12568742

  7. Arsenic Induced Phytate Exudation, and Promoted FeAsO4 Dissolution and Plant Growth in As-Hyperaccumulator Pteris vittata.

    PubMed

    Liu, Xue; Fu, Jing-Wei; Guan, Dong-Xing; Cao, Yue; Luo, Jun; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2016-09-01

    Arsenic hyperaccumulator Pteris vittata (PV) is efficient in taking up As and nutrients from As-contaminated soils. We evaluated the mechanisms used by PV to mobilize As and Fe by examining the impacts of As and root exudates on FeAsO4 solubilization, and As and Fe uptake in four plants: As-hyperaccumulators PV and Pteris multifida (PM), nonhyperaccumulator Pteris ensiformis (PE), and angiosperm plant tomato (Solanum lycopersicum). Phytate and oxalate were dominant in fern plants (>93%), which were 50-83, 15-42, and 0-32 mg kg(-1) phytate and 10-15, 7-26, and 4-12 mg kg(-1) oxalate for PV, PM, and PE respectively, with higher As inducing greater phytate exudation and no phytate being detected in tomato exudates. PV treated with phytate+FeAsO4 had higher As and Fe contents and larger biomass than phytate or FeAsO4 treatment, which were 340 vs 20 and 130 mg kg(-1) As in the fronds and 7900 vs 1600 and 4100 mg kg(-1) Fe in the roots. We hypothesized that As-induced phytate exudation helped PV to take up Fe and As from insoluble FeAsO4 and promoted PV growth. Our study suggests that phytate exudation may be special to fern plants, which may play an important role in enhancing As and nutrient uptake by plants, thereby increasing their efficiency in phytoremediation of As-contaminated soils. PMID:27483027

  8. Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria.

    PubMed

    Han, Yong-He; Fu, Jing-Wei; Chen, Yanshan; Rathinasabapathi, Bala; Ma, Lena Q

    2016-02-01

    Bacteria-mediated arsenic (As) transformation and their impacts on As and P uptake and plant growth in As-hyperaccumulator Pteris vittata (PV) were investigated under sterile condition. All As-resistant bacteria (9 endophytic and 6 rhizospheric) were As-reducers except one As-oxidizer. After growing two months in media with 37.5 mg kg(-1) AsV, As concentrations in the fronds and roots were 3655-5389 (89-91% AsIII) and 971-1467 mg kg(-1) (41-73% AsIII), corresponding to 22-52% decrease in the As in the media. Bacterial inoculation enhanced As and P uptake by up to 47 and 69%, and PV growth by 20-74%, which may be related to elevated As and P in plants (r = 0.88-0.97, p < 0.05). Though AsV was supplied, 95% of the As in the bacteria-free media was AsIII, suggesting efficient efflux of AsIII by PV roots (120 µg g(-1) root fw). This was supported by the fact that no AsV was detected in media inoculated with As-reducers while 95% of AsV was detected with As-oxidizer. Our data showed that, under As-stress, PV reduced As toxicity by efficient AsIII efflux into media and AsIII translocation to the fronds, and bacteria benefited PV growth probably via enhanced As and P uptake. PMID:26547029

  9. MOLECULAR DISSECTION OF THE CELLULAR MECHANISMS INVOLVED IN NICKEL HYPERACCUMULATION IN PLANTS

    EPA Science Inventory

    Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites.A number of terrestrial plants are known to naturally accumulate high le...

  10. Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa.

    PubMed

    Benzarti, Saoussen; Mohri, Shino; Ono, Yoshiro

    2008-10-01

    Thlaspi caerulescens (alpine pennycress) is one of the best-known heavy metal (HM) hyperaccumulating plant species. It exhibits the ability to extract and accumulate various HM at extremely high concentrations. In this hydroponic study, the performance of T. caerulescens (ecotype Ganges) to accumulate Cd, Zn, and Cu was compared with that of three nonaccumulator plants: alfalfa (Medicago sativa), radish (Raphanus sativus), and lettuce (Lactuca sativa). Plants were exposed to the separately dissolved HM salts for 7 days at a wide range of increasing concentrations: 0 (control: 1/5 Hoagland nutrient solution), 0.1, 1, 10, 100, and 1000 microM. The comparative study combined chemical, physiological, and ecotoxicological assessments. Excessive concentrations of HM (100 and 1000 microM) affected plant growth, photosynthesis, and phytoaccumulation efficiency. Root exudation for all plant species was highly and significantly correlated to HM concentration in exposure solutions and proved its importance to counter effect toxicity. T. caerulescens resisted better the phytotoxic effects of Cd and Zn (at 1000 microM each), and translocated them significantly within tissues (366 and 1290 microg g(-1), respectively). At the same HM level, T. caerulescens exhibited lower performances in accumulating Cu when compared with the rest of plant species, mainly alfalfa (298 microg g(-1)). Root elongation inhibition test confirmed the selective aptitude of T. caerulescens to better cope with Cd and Zn toxicities. MetPLATE bioassay showed greater sensitivity to HM toxicity with much lower EC(50) values for beta-galactosidase activity in E. coli. Nevertheless, exaggerated HM concentrations coupled with relatively short exposure time did not allow for an efficient metal phytoextraction thus a significant reduction of ecotoxicity. PMID:18528911

  11. Prospecting for hyperaccumulators of trace elements: a review.

    PubMed

    Krzciuk, Karina; Gałuszka, Agnieszka

    2015-01-01

    Specific plant species that can take up and accumulate abnormally high concentrations of elements in their aboveground tissues are referred to as "hyperaccumulators". The use of this term is justified in the case of enormous element-binding capacity of plants growing in their natural habitats and showing no toxicity symptoms. An increasing interest in the study of hyperaccumulators results from their potential applications in environmental biotechnology (phytoremediation, phytomining) and their emerging role in nanotechnology. The highest number of plant species with confirmed hyperaccumulative properties has been reported for hyperaccumulators of nickel, cadmium, zinc, manganese, arsenic and selenium. More limited data exist for plants accumulating other elements, including common pollutants (chromium, lead and boron) or elements of commercial value, such as copper, gold and rare earth elements. Different approaches have been used for the study of hyperaccumulators - geobotanical, chemical, biochemical and genetic. The chemical approach is the most important in screening for new hyperaccumulators. This article presents and critically reviews current trends in new hyperaccumulator research, emphasizing analytical methodology that is applied in identification of new hyperaccumulators of trace elements and its future perspectives. PMID:24938121

  12. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel.

    PubMed

    Singer, Andrew C; Bell, Thomas; Heywood, Chloe A; Smith, J A C; Thompson, Ian P

    2007-05-01

    In this study we examine the effects of polycyclic aromatic hydrocarbons (PAHs) on the ability of the hyperaccumulator plant Alyssum lesbiacum to phytoextract nickel from co-contaminated soil. Planted and unplanted mesocosms containing the contaminated soils were repeatedly amended with sorbitan trioleate, salicylic acid and histidine in various combinations to enhance the degradation of two PAHs (phenanthrene and chrysene) and increase nickel phytoextraction. Plant growth was negatively affected by PAHs; however, there was no significant effect on the phytoextraction of Ni per unit biomass of shoot. Exogenous histidine did not increase nickel phytoextraction, but the histidine-extractable fraction of soil nickel showed a high correlation with phytoextractable nickel. These results indicate that Alyssum lesbiacum might be effective in phytoextracting nickel from marginally PAH-contaminated soils. In addition, we provide evidence for the broader applicability of histidine for quantifying and predicting Ni phytoavailability in soils. PMID:17084494

  13. Effective selenium detoxification in the seed proteins of a hyperaccumulator plant: the analysis of selenium-containing proteins of monkeypot nut (Lecythis minor) seeds.

    PubMed

    Németh, Anikó; Dernovics, Mihály

    2015-01-01

    A shotgun proteomic approach was applied to characterize the selenium (Se)-containing proteins of the selenium hyperaccumulator monkeypot nut (Lecythis minor) seeds. The exceptionally high Se content (>4,000 mg kg(-1)) of the sample enabled a straightforward procedure without the need for multiple preconcentration and fractionation steps. The proteins identified were sulfur-rich seed proteins, namely, 11S globulin (Q84ND2), 2S albumin (B6EU54), 2S sulfur-rich seed storage proteins (P04403 and P0C8Y8) and a 11S globulin-like protein (A0EM48). Database directed search for theoretically selenium-containing peptides was assisted by manual spectra evaluation to achieve around 25% coverage on sulfur analogues. Remarkable detoxification mechanisms on the proteome level were revealed in the form of multiple selenomethionine-methionine substitution and the lack of selenocysteine residues. The degree of selenomethionine substitution could be characterized by an exponential function that implies the inhibition of protein elongation by selenomethionine. Our results contribute to the deeper understanding of selenium detoxification procedures in hyperaccumulator plants. PMID:25373701

  14. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species, Quarterly technical progress report, December 20, 1995--March 20, 1995

    SciTech Connect

    Kochian, L.; Brady, D.; Last, M.; Ebbs, S.

    1995-12-01

    Although the period covered by this progress report began on December 20, 1994, which was the date that DOE approved the Interagency Agreement, the agreement was not approved by USDA until January 9, 1995 and the first scientists working on the project were not hired until February 1, 1995. The first goal of the research supported by the Interagency Agreement is to use hydroponic techniques to identify plant species and genotypes with potential for heavy metal hyperaccumulation for planting on a test site at Silverbow Creek and for radionuclide ({sup 90}Sr and {sup 137}Cs) accumulation on a test site at INEL, Idaho, later this year. The second goal of this research is to identify soil amendment procedures that will enhance the bioavailability of heavy metals and radionuclides in the soil without increasing the movement of the contaminants of concern (COC`s) into the groundwater. Our initial research covered in this report focuses on the first goal.

  15. The major parameters on biomass pyrolysis for hyperaccumulative plants--A review.

    PubMed

    Dilks, R T; Monette, F; Glaus, M

    2016-03-01

    Phytoextraction is one of the main phytoremediation techniques and it has often been described as a potentially feasible in situ soil decontamination method of large amounts of heavy metals, organic pollutants and explosive compounds. As this remediation technique is approaching extensive on-field experimentation and commercialization, research focus is on investigating new ways to achieve the valorisation of its by-products. Biomass pyrolysis represents a key step to numerous valorisation options and it is characterized by differential output products that are determined by the operating conditions of the process and the characteristics of the input. However, when used to valorise plants that have undergone significant metal uptake, this strategy involves some new aspects related to harvest, procedure and final product reutilization. This paper reviews the studies made on biomass pyrolysis of plants with emphasis on the differential quality and distribution of pyrolysis products in relation with the variables of the process and the metal-rich phytoextraction feedstock properties. By investigating these parameters, this survey provides indications on ways to optimize the valorisation of phytoremediation by-products through biomass pyrolysis. PMID:26741543

  16. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly technical progress report, March 20, 1997--June 19, 1997

    SciTech Connect

    Kochian, L.

    1997-11-01

    This laboratory has been involved in a collaborative project focusing on a range of issues related to the phytoremediation of heavy metal-and radionuclide- contaminated soils. While much of the research has been fundamental in nature, involving physiological and molecular characterizations of the mechanisms of hyperaccumulation in plants, the laboratory is also investigating more practical issues related to phytoremediation. A central issue in this latter research has been the identification of amendments capable of increasing the bioavailability and subsequent phytoextraction of radionuclides. The results described here detail these efforts for uranium and Cs-137. A study was also conducted on a Cs-137 contaminated site at Brookhaven National Laboratory (BNL), which allowed application of the laboratory and greenhouse results to a field setting.

  17. Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities.

    PubMed

    Mizuno, Takafumi; Usui, Koji; Horie, Kenji; Nosaka, Shiro; Mizuno, Naoharu; Obata, Hitoshi

    2005-08-01

    Ni homeostasis is essential for plant cell activity, but the mechanisms of Ni-transport and delivery are unknown. To elucidate the role of ZIP and NRAMP metal-transporters for Ni2+-transport and homeostasis, we cloned their homologous genes from the Ni hyperaccumulator Thlaspi japonicum, and investigated their Ni-transporting abilities by expression in yeast. The deduced amino acid sequences of the two Zip transporter genes (TjZnt1, TjZnt2) and one Nramp transporter gene cloned had high homologies with TcZNT1 and TcZNT2 of Thlaspi caerulescens and AtNRAMP4 of Arabidopsis thaliana, respectively, and were predicted as integral membrane proteins with 6 or 12 transmembrane domains. TjZNT1 and TjZNT2 had two long histidine-rich domains in the putative cytoplasmic domain between transmembrane domains III and IV. TjNRAMP4 conserved a consensus transporter motif between transmembrane domains VIII and IX. The yeast transformed with TjZNT1 or TjZNT2 showed a marked increase in Ni2+ tolerance with the gene expression. In contrast, the expression of TjNramp4 caused elevation of Ni2+ sensitivity and Ni2+ concentration. These data suggest that ZIP/NRAMP transporters participate in Ni2+ homeostasis of Ni hyperaccumulator plants. TjZNT1 had Zn2+-, Cd2+- and Mn2+-transporting abilities and TjZNT2 also had Zn2+- and Mn2+-transporting abilities, but TjNRAMP4 could transport Ni2+ but not Zn2+, Cd2+ or Mn2+. PMID:16198592

  18. Hyperaccumulative property comparison of 24 weed species to heavy metals using a pot culture experiment.

    PubMed

    Wei, Shuhe; Zhou, Qixing; Xiao, Hong; Yang, Chuanjie; Hu, Yahu; Ren, Liping

    2009-05-01

    The screening of hyperaccumulators is still very much needed for phytoremediation. With properties such as strong tolerance to adverse environment, fast growing and highly reproductive rate, weed species may be an ideal plant for phytoremediation. The objectives of this study were to examine the tolerance and hyperaccumulative characteristics of 24 species in 9 families to Cd, Pb, Cu and Zn by using the outdoor pot-culture experiment. In the screening experiment, only Conyza canadensis and Rorippa globosa displayed Cd-hyperaccumulative characteristics. In a further concentration gradient experiment, C. canadensis was affirmed that it is not a Cd hyperaccumulator. Only R. globosa, indicated all Cd hyperaccumulative characteristics, especially Cd concentration in its stems and leaves were higher than 100 mg/kg, the minimum Cd concentration what a Cd-hyperaccumulator should accumulate. Thus, R. globosa was further validated as a Cd-hyperaccumulator. PMID:18483772

  19. Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils.

    PubMed

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C C; Li, Baoqin; Long, Xinxian

    2014-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14-0.16 L/mg and n values were 1.51-2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K > or = 1.49 L/mg and n > or = 3.59. PMID:24912231

  20. Cadmium Sorption Characteristics of Soil Amendments and its Relationship with the Cadmium Uptake by Hyperaccumulator and Normal Plants in Amended Soils

    PubMed Central

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C.C.; Li, Baoqin; Long, Xinxian

    2013-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14–0.16 L/mg and n values were 1.51–2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K ≥ 1.49 L/mg and n ≥ 3.59. PMID:24912231

  1. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies.

    PubMed

    de la Rosa, Guadalupe; Peralta-Videa, Jose R; Montes, Milka; Parsons, Jason G; Cano-Aguilera, Irene; Gardea-Torresdey, Jorge L

    2004-06-01

    Cadmium is a heavy metal, which, even at low concentrations, can be highly toxic to the growth and development of both plants and animals. Plant species vary extensively in their tolerance to excess cadmium in a growth medium and very few cadmium-tolerant species have been identified. In this study, tumbleweed plants (Salsola kali) grown in an agar-based medium with 20 mgl(-1) of Cd(II) did not show phytotoxicity, and their roots had the most biomass (4.5 mg) (P < 0.05) compared to the control plants (2.7 mg) as well as other treated plants. These plants accumulated 2696, 2075, and 2016 mg Cd kg(-1) of dry roots, stems, and leaves, respectively. The results suggest that there is no restricted cadmium movement in tumbleweed plants. In addition, the amount of Cd found in the dry leaf tissue suggests that tumbleweed could be considered as potential cadmium hyperaccumulating species. X-ray absorption spectroscopy studies demonstrated that in roots, cadmium was bound to oxygen while in stems and leaves, the metal was attached to oxygen and sulfur groups. This might imply that some small organic acids are responsible for Cd transport from roots to stems and leaves. In addition, it might be possible that the plant synthesizes phytochelatins in the stems, later coordinating the absorbed cadmium for transport and storage in cell structures. Thus, it is possible that in the leaves, Cd either exists as a Cd-phytochelatin complex or bound to cell wall structures. Current studies are being performed in order to elucidate the proposed hypothesis. PMID:15081756

  2. Arabis gemmifera is a hyperaccumulator of Cd and Zn.

    PubMed

    Kubota, Hiroshi; Takenaka, Chisato

    2003-01-01

    Hyperaccumulators are essential for phytoremediation of heavy metals. In Europe and North America, many studies have been conducted to find more effective plants for phytoremediation of various pollutants. In Japan, this field of research has just recently come more into focus. A type of fern in Japan, Athyrium yokoscense, is well known as a hyperaccumulator of Cd and Zn. However, it is not suitable for phytoremediation because it is a summer green and grows slowly. Therefore, in order to find hyperaccumulators other than from A. yokoscense, we surveyed plants growing at polluted sites in Japan. We found that the Brassicae Arabis gemmifera is a hyperaccumulator of Cd and Zn, with phytoextraction capacities almost equal to Thlaspi caerulescens. PMID:14750427

  3. Fractionation of stable zinc isotopes in the field-grown zinc hyperaccumulator Noccaea caerulescens and the zinc-tolerant plant Silene vulgaris.

    PubMed

    Tang, Ye-Tao; Cloquet, Christophe; Sterckeman, Thibault; Echevarria, Guillaume; Carignan, Jean; Qiu, Rong-Liang; Morel, Jean-Louis

    2012-09-18

    Stable Zn isotope signatures offer a potential tool for tracing Zn uptake and transfer mechanisms within plant-soil systems. Zinc isotopic compositions were determined in the Zn hyperaccumulator Noccaea caerulescens collected at a Zn-contaminated site (Viviez), a serpentine site (Vosges), and a noncontaminated site (Sainte Eulalie) in France. Meanwhile, a Zn-tolerant plant ( Silene vulgaris ) was also collected at Viviez for comparison. While δ(66)Zn was substantially differentiated among N. caerulescens from the three localities, they all exhibited an enrichment in heavy Zn isotopes of 0.40-0.72‰ from soil to root, followed by a depletion in heavy Zn from root to shoot (-0.10 to -0.50‰). The enrichment of heavy Zn in roots is ascribed to the transport systems responsible for Zn absorption into root symplast and root-to-shoot translocation, while the depletion in heavy Zn in shoots is likely to be mediated by a diffusive process and an efficient translocation driven by energy-required transporters (e.g., NcHMA4). The mass balance yielded a bulk Zn isotopic composition between plant and soil (Δ(66)Zn(plant-soil)) of -0.01‰ to 0.63‰ in N. caerulescens , indicative of high- and/or low-affinity transport systems operating in the three ecotypes. In S. vulgaris , however, there was no significant isotope fractionation between whole plant and rhizosphere soil and between root and shoot, suggesting that this species appears to have a particular Zn homeostasis. We confirm that quantifying stable Zn isotopes is useful for understanding Zn accumulation mechanisms in plants. PMID:22891730

  4. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens

    PubMed Central

    de A Guimarães, Marcelo; Gustin, Jeffery L; Salt, David E

    2009-01-01

    The extreme phenotype of zinc (Zn) hyperaccumulation, which is found in several Brassicaceae species, is determined by mechanisms that promote elevated Zn tolerance and high Zn accumulation in shoots. We used reciprocal grafting between a Zn hyperaccumulator, Thlaspi caerulescens, and a Zn nonaccumulator, Thlaspi perfoliatum, to determine the relative importance of roots and shoots in Zn hyperaccumulation and hypertolerance. Leaves from plants with a T. perfoliatum rootstock and a T. caerulescens shoot scion did not hyperaccumulate Zn, whereas plants with a T. caerulescens rootstock and a T. perfoliatum shoot scion did hyperaccumulate Zn. However, although leaves from plants with a T. caerulescens rootstock and a T. perfoliatum shoot scion hyperaccumulated Zn, at high Zn loads these leaves showed significant symptoms of Zn toxicity, unlike leaves of self grafted T. caerulescens. Hyperaccumulation of Zn in leaves of the hyperaccumulator T. caerulescens is pri-marily dictated by root processes. Further, the mechanisms controlling Zn hypertolerance in the hyperaccumulator T. caerulescens are driven primarily by shoot processes. PMID:19656301

  5. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.

    PubMed

    Huang, Yi; Miyauchi, Keisuke; Inoue, Chihiro; Endo, Ginro

    2016-01-01

    In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50 μg/L, 500 μg/L, and 1000 μg/L) to lower than the detection limit (0.1 μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water. PMID:26549187

  6. Effects of arsenic on nitrogen metabolism in arsenic hyperaccumulator and non-hyperaccumulator ferns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of two four-month old fern plants, Pteris vittata, an arsenic-hyperaccumulator, and Pteris ensiformis, ...

  7. Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H.

    PubMed

    Wang, Yuyan; Yang, Xiaoe; Zhang, Xincheng; Dong, Lanxue; Zhang, Jie; Wei, Yanyan; Feng, Ying; Lu, Lingli

    2014-02-26

    This study is to investigate the possibility of zinc (Zn) biofortification in the grains of rice (Oryza sativa L.) by inoculation of endophytic strains isolated from a Zn hyperaccumulator, Sedum alfredii Hance. Five endophytic strains, Burkholderia sp. SaZR4, Burkholderia sp. SaMR10, Sphingomonas sp. SaMR12, Variovorax sp. SaNR1, and Enterobacter sp. SaCS20, isolated from S. alfredii, were inoculated in the roots of Japonica rice Nipponbare under hydroponic condition. Fluorescence images showed that endophytic strains successfully colonized rice roots after 72 h. Improved root morphology and plant growth of rice was observed after inoculation with endophytic strains especially SaMR12 and SaCS20. Under hydroponic conditions, endophytic inoculation with SaMR12 and SaCS20 increased Zn concentration by 44.4% and 51.1% in shoots, and by 73.6% and 83.4% in roots, respectively. Under soil conditions, endophytic inoculation with SaMR12 and SaCS20 resulted in an increase of grain yields and elevated Zn concentrations by 20.3% and 21.9% in brown rice and by 13.7% and 11.2% in polished rice, respectively. After inoculation of SaMR12 and SaCS20, rhizosphere soils of rice plants contained higher concentration of DTPA-Zn by 10.4% and 20.6%, respectively. In situ micro-X-ray fluorescence mapping of Zn confirmed the elevated Zn content in the rhizosphere zone of rice treated with SaMR12 as compared with the control. The above results suggested that endophytic microbes isolated from S. alfredii could successfully colonize rice roots, resulting in improved root morphology and plant growth, increased Zn bioavailability in rhizosphere soils, and elevated grain yields and Zn densities in grains. PMID:24447030

  8. Investigating Heavy-metal Hyperaccumulation using Thlaspi caerulescens as a Model System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperaccumulation was a term first coined by Brooks for plants that are endemic to metalliferous soils and are able to tolerate and accumulate large amounts of metals in their above ground tissues. Of the nearly 90 metal hyperaccumulating species in the Brassicaceae family, two species in particula...

  9. Using Chelator-Buffered Nutrient Solutions to Induce Ni-Deficiency in the Ni-Hyperaccumulator Alyssum murale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ni is essential for all plants due to its role in urease. Many Alyssum species are known to hyperaccumulate Ni to over 20 g kg-1 dry weight (DW) while normal plants require only about 0.1 mg kg-1 DW. As part of our research on Ni hyperaccumulation by plants, we conducted experiments to measure the...

  10. Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd-hyperaccumulator and As-excluder Bidens pilosa L.

    PubMed

    Sun, Yue-bing; Zhou, Qi-xing; Liu, Wei-tao; An, Jing; Xu, Zhi-qiang; Wang, Lin

    2009-06-15

    Joint effects of arsenic (As) and cadmium (Cd) on the growth of Bidens pilosa L. and its uptake and accumulation of As and Cd were investigated using the field pot-culture experiment. The results showed that single Cd (plant. The concentrations of As and Cd accumulated in tissues of the plant increased with an increase of As and Cd in soils. In particular, the levels of Cd in stems and leaves reached 103.0 and 110.0 mg kg(-1), respectively, when soil Cd was 10 mg kg(-1). Furthermore, the BF and TF values of Cd were greater than 1.0. However, the highest content of As in roots of the plant was only 13.5 mg kg(-1) when soil As was at a high level, i.e. 125 mg kg(-1), and the TF values of As were less than 0.1, indicating that B. pilosa can be considered as a potential Cd hyperaccumulator and As excluder. The presence of As had inhibitory effects on Cd absorption by the plant, in particular, the accumulation of Cd in stems, leaves and shoots decreased significantly, with 42.8-53.1, 49.3-66.4 and 37.6-59.5%, respectively, reduction when the level of soil As was up to 125 mg kg(-1) compared with that under no addition of As. Whereas, when Cd was added to soils, it could facilitate As accumulation in tissues of the plants and the As concentrations in shoots increased with increasing Cd spiked in soils. The interactive effects of Cd and As may be potential for phytoremediation of Cd and/or As contamination soils. PMID:19070954

  11. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

    PubMed

    Muehe, E Marie; Weigold, Pascal; Adaktylou, Irini J; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-03-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  12. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  13. Genetic and Molecular Dissection of Arsenic Hyperaccumulation in the fern Pteris vittata.

    SciTech Connect

    Jo Ann Banks; David Salt

    2008-04-04

    Pteris vittata is a fern that is extraordinary in its ability to tolerate hyperaccumulate high levels of arsenic (As). The goals of the proposed research, to identify the genes that are necessary for As hyperaccumulation in P. vittata using molecular and genetic approaches and to understand the physiology of arsenic uptake and distribution in the living plant, were accomplished during the funding period. The genes that have been identified may ultimately enable the engineering or selection of other plants capable of As hyperaccumulation. This is important for the phytoremediation of arsenic-contaminated soils in areas where P. vittata cannot grow.

  14. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana.

    PubMed

    Zhao, Huijun; Wu, Liangqi; Chai, Tuanyao; Zhang, Yuxiu; Tan, Jinjuan; Ma, Shengwen

    2012-09-01

    Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25 μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100 μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under

  15. Immunocytochemical analysis of the subcellular distribution of ferritin in Imperata cylindrica (L.) Raeuschel, an iron hyperaccumulator plant.

    PubMed

    de la Fuente, Vicenta; Rodríguez, Nuria; Amils, Ricardo

    2012-05-01

    Ferritin is of interest at the structural and functional level not only as storage for iron, a critical element, but also as a means to prevent cell damage produced by oxidative stress. The main objective of this work was to confirm by immunocytochemistry the presence and the subcellular distribution of the ferritin detected by Mösbauer spectroscopy in Imperata cylindrica, a plant which accumulates large amounts of iron. The localization of ferritin was performed in epidermal, parenchymal and vascular tissues of shoots and leaves of I. cylindrica. The highest density of immunolabeling in shoots appeared in the intracellular space of cell tissues, near the cell walls and in the cytoplasm. In leaves, ferritin was detected in the proximity of the dense network of the middle lamella of cell walls, following a similar path to that observed in shoots. Immunolabeling was also localized in chloroplasts. The abundance of immunogold labelling in mitochondria for I. cylindrica was rather low, probably because the study dealt with tissues from old plants. These results further expand the localization of ferritin in cell components other than chloroplasts and mitochondria in plants. PMID:21764425

  16. Investigating Heavy-metal Hyperaccumulation using Thlaspi caerulescens as a Model System

    PubMed Central

    Milner, Matthew J.; Kochian, Leon V.

    2008-01-01

    Background Metal-hyperaccumulating plant species are plants that are endemic to metalliferous soils and are able to tolerate and accumulate metals in their above-ground tissues to very high concentrations. One such hyperaccumulator, Thlaspi caerulescens, has been widely studied for its remarkable properties to tolerate toxic levels of zinc (Zn), cadmium (Cd) and sometimes nickel (Ni) in the soil, and accumulate these metals to very high levels in the shoot. The increased awareness regarding metal-hyperaccumulating plants by the plant biology community has helped spur interest in the possible use of plants to remove heavy metals from contaminated soils, a process known as phytoremediation. Hence, there has been a focus on understanding the mechanisms that metal-hyperaccumulator plant species such as Thlaspi caerulescens employ to absorb, detoxify and store metals in order to use this information to develop plants better suited for the phytoremediation of metal-contaminated soils. Scope In this review, an overview of the findings from recent research aimed at better understanding the physiological mechanisms of Thlaspi caerulescens heavy-metal hyperaccumulation as well as the underlying molecular and genetic determinants for this trait will be discussed. Progress has been made in understanding some of the fundamental Zn and Cd transport physiology in T. caerulescens. Furthermore, some interesting metal-related genes have been identified and characterized in this plant species, and regulation of the expression of some of these genes may be important for hyperaccumulation. Conclusions Thlaspi caerulescens is a fascinating and useful model system not only for studying metal hyperaccumulation, but also for better understanding micronutrient homeostasis and nutrition. Considerable future research is still needed to elucidate the molecular, genetic and physiological bases for the extreme metal tolerance and hyperaccumulation exhibited by plant species such as T

  17. Investigation of Ni hyperaccumulation by true elemental imaging

    NASA Astrophysics Data System (ADS)

    Przybyłowicz, W. J.; Pineda, C. A.; Prozesky, V. M.; Mesjasz-Przybyłowicz, J.

    1995-09-01

    The newly implemented Dynamic Analysis method for on-line elemental imaging was used to study Ni hyperaccumulation in Senecio coronatus (Thunb.) Harv. Asteraceae, one of only nine Ni hyperaccumulating plants found in the African continent. Elemental maps were obtained from samples with thicknesses varying from 0.4 to 5 mg/cm 2 by assuming cellulose (C 6H 10O 5) as constant matrix composition for the whole scanned area. The agreement between point analyses and results inferred from maps is good for small thickness variations within scanned regions. Maps of very inhomogeneous samples require a more time-consuming approach of thickness corrections in every pixel.

  18. Metal binding properties and structure of a type III metallothionein from the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fernandez, Lucia Rubio; Vandenbussche, Guy; Roosens, Nancy; Govaerts, Cédric; Goormaghtigh, Erik; Verbruggen, Nathalie

    2012-09-01

    Metallothioneins (MT) are low molecular weight proteins with cysteine-rich sequences that bind heavy metals with remarkably high affinities. Plant MTs differ from animal ones by a peculiar amino acid sequence organization consisting of two short Cys-rich terminal domains (containing from 4 to 8 Cys each) linked by a Cys free region of about 30 residues. In contrast with the current knowledge on the 3D structure of animal MTs, there is a striking lack of structural data on plant MTs. We have expressed and purified a type III MT from Noccaea caerulescens (previously Thlaspi caerulescens). This protein is able to bind a variety of cations including Cd(2+), Cu(2+), Zn(2+) and Pb(2+), with different stoichiometries as shown by mass spectrometry. The protein displays a complete absence of periodic secondary structures as measured by far-UV circular dichroism, infrared spectroscopy and hydrogen/deuterium exchange kinetics. When attached onto a BIA-ATR biosensor, no significant structural change was observed upon removing the metal ions. PMID:22668884

  19. Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: a potential hyperaccumulator plant.

    PubMed

    Manikandan, R; Sahi, S V; Venkatachalam, P

    2015-01-01

    The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment. PMID:25654134

  20. Impact Assessment of Mercury Accumulation and Biochemical and Molecular Response of Mentha arvensis: A Potential Hyperaccumulator Plant

    PubMed Central

    Manikandan, R.; Sahi, S. V.; Venkatachalam, P.

    2015-01-01

    The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment. PMID:25654134

  1. Improved Understanding of Hyperaccumulation Yields Commercial Phytoextraction and Phytomining Technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews progress in phytoextraction of soil elements and illustrates the key role of hyperaccumulator plant species in useful technologies. Much research has focused on elements which are not practically phytoextracted (Pb); on addition of chelating agents which cause unacceptable contam...

  2. Investigation of Heavy Metal Hyperaccumulation at the Cellular Level: Development and Characterization of Thlaspi caerulescens Suspension Cell Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of metal hyperaccumulator plant species to accumulate high concentrations of toxic heavy metals requires the coordinated uptake, transport and sequestration of these metals to avoid damage to photosynthetic mechanisms. A number of previous studies have examined how hyperaccumulating pla...

  3. Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: a popular ornamental plant and potential Cd hyperaccumulator.

    PubMed

    Wang, Youbao; Yan, Aolei; Dai, Jie; Wang, NanNan; Wu, Dan

    2012-01-01

    The effects on the growth, physiological indexes and the cadmium (Cd) accumulation in Chlorophytum comosum under Cd stress were examined by pot-planting. The results showed that the tolerance index (TI) of C. comosum were all above 100 in soil Cd concentration of 100 mg kg(-1). The O(2˙)⁻ production rate and electrical conductivity of C. comosum were significantly positively correlated to Cd adding-concentration while the MDA content increased and had significant differences with the control. The activities of SOD, CAT, and POD all rose significantly in lower Cd concentration and the Cd threshold of them were around 10, 50 and 20 mg kg(-1), respectively. The Cd in C. comosum root and aboveground part reached 1,522 and 865·5 mg kg(-1), respectively, in Cd concentration of soil up to 200 mg kg(-1). For the advantages of high tolerance, high accumulation, and high ornamental value, C. comosum may have tremendous application value in the treatment of Cd-contaminated soils. PMID:21625926

  4. Cd hyperaccumulative characteristics of Australia ecotype Solanum nigrum L. and its implication in screening hyperaccumulator.

    PubMed

    Wei, Shuhe; Clark, Gary; Doronila, Augustine Ignatius; Jin, Jian; Monsant, Alison Carol

    2013-01-01

    A pot culture experiment was used to determine the differences in uptake characteristics of a cadmium hyperaccumulator Solanum nigrum L. discovered in China, an ecotype from Melbourne, Australia and a non-hyperaccumulator Solanum melogena Australian ecotype was not significantly different to the China ecotype. In particular, Cd concentration in leaves and shoots of S. nigrum collected from Australia were 166.0 and 146.3 mg kg(-1) respectively when 20 mg kg(-1) Cd spiked, and were not significantly different to the ecotype imported from China which had 109.8 and 85.3 mg kg(-1) respectively, in the stems and leaves. In contrast, the tolerance of the eggplant to Cd was significantly less than the two S. nigrum ecotypes. Although some morphological properties of S. nigrum collected from Australia were different from that of the plants collected from China, Cd hyperaccumulator characteristics of two ecotypes were similar. The results suggested that the tolerance and uptake of Cd may be a constitutive trait of this species. PMID:23488006

  5. The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae.

    PubMed

    Kim, Donggiun; Gustin, Jeffery L; Lahner, Brett; Persans, Michael W; Baek, Dongwon; Yun, Dae-Jin; Salt, David E

    2004-07-01

    To avoid metal toxicity, organisms have evolved mechanisms including efflux of metal ions from cells and sequestration into internal cellular compartments. Members of the ubiquitous cation diffusion facilitator (CDF) family are known to play an important role in these processes. Overexpression of the plant CDF family member metal tolerance protein 1 (MTP1) from the Ni/Zn hyperaccumulator Thlaspi goesingense (TgMTP1), in the Saccharomyces cerevisiaeDelta zinc resistance conferring (zrc)1Delta cobalt transporter (cot)1 double mutant, suppressed the Zn sensitivity of this strain. T. goesingense was found to contain several allelic variants of TgMTP1, all of which confer similar resistance to Zn in Deltazrc1Deltacot1. Similarly, MTP1 from various hyperaccumulator and non-accumulator species also confer similar resistance to Zn. Deltazrc1Deltacot1 lacks the ability to accumulate Zn in the vacuole and has lower accumulation of Zn after either long- or short-term Zn exposure. Expression of TgMTP1 in Deltazrc1Deltacot1 leads to further lowering of Zn accumulation and an increase in Zn efflux from the cells. Expression of TgMTP1 in a V-type ATPase-deficient S. cerevisiae strain also confers increased Zn resistance. In vivo and in vitro immunological staining of hemagglutinin (HA)-tagged TgMTP1::HA reveals the protein to be localized in both the S. cerevisiae vacuolar and plasma membranes. Taken together, these data are consistent with MTP1 functioning to enhance plasma membrane Zn efflux, acting to confer Zn resistance independent of the vacuole in S. cerevisiae. Transient expression in Arabidopsis thaliana protoplasts also reveals that TgMTP1::green fluorescent protein (GFP) is localized at the plasma membrane, suggesting that TgMTP1 may also enhance Zn efflux in plants. PMID:15225288

  6. Microbeam methodologies as powerful tools in manganese hyperaccumulation research: present status and future directions

    PubMed Central

    Fernando, Denise R.; Marshall, Alan; Baker, Alan J. M.; Mizuno, Takafumi

    2013-01-01

    Microbeam studies over the past decade have garnered unique insight into manganese (Mn) homeostasis in plant species that hyperaccumulate this essential mineral micronutrient. Electron- and/or proton-probe methodologies employed to examine tissue elemental distributions have proven highly effective in illuminating excess foliar Mn disposal strategies, some apparently unique to Mn hyperaccumulating plants. When applied to samples prepared with minimal artefacts, these are powerful tools for extracting true ‘snapshot’ data of living systems. For a range of reasons, Mn hyperaccumulation is particularly suited to in vivo interrogation by this approach. Whilst microbeam investigation of metallophytes is well documented, certain methods originally intended for non-biological samples are now widely applied in biology. This review examines current knowledge about Mn hyperaccumulators with reference to microbeam methodologies, and discusses implications for future research into metal transporters. PMID:23970891

  7. Microbeam methodologies as powerful tools in manganese hyperaccumulation research: present status and future directions.

    PubMed

    Fernando, Denise R; Marshall, Alan; Baker, Alan J M; Mizuno, Takafumi

    2013-01-01

    Microbeam studies over the past decade have garnered unique insight into manganese (Mn) homeostasis in plant species that hyperaccumulate this essential mineral micronutrient. Electron- and/or proton-probe methodologies employed to examine tissue elemental distributions have proven highly effective in illuminating excess foliar Mn disposal strategies, some apparently unique to Mn hyperaccumulating plants. When applied to samples prepared with minimal artefacts, these are powerful tools for extracting true 'snapshot' data of living systems. For a range of reasons, Mn hyperaccumulation is particularly suited to in vivo interrogation by this approach. Whilst microbeam investigation of metallophytes is well documented, certain methods originally intended for non-biological samples are now widely applied in biology. This review examines current knowledge about Mn hyperaccumulators with reference to microbeam methodologies, and discusses implications for future research into metal transporters. PMID:23970891

  8. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale*

    PubMed Central

    Agrawal, Bhavana; Czymmek, Kirk J.; Sparks, Donald L.; Bais, Harsh P.

    2013-01-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation. PMID:23322782

  9. Enhanced cadmium efflux and root-to-shoot translocation are conserved in the hyperaccumulator Sedum alfredii (Crassulaceae family).

    PubMed

    Zhang, Zhongchun; Yu, Qi; Du, Hanying; Ai, Wenli; Yao, Xuan; Mendoza-Cózatl, David G; Qiu, Baosheng

    2016-06-01

    Investigation on the molecular mechanisms of cadmium hyperaccumulation has been mostly focused on members of the Brassicaceae family. Here, we show using hyperaccumulating (HP) and nonhyperaccumulating (NHP) populations of Sedum alfredii (Crassulaceae), that Cd hypertolerance correlates with higher Cd efflux rates and less cadmium accumulation in suspension cells and roots. The heavy metal ATPase HMA2, but not HMA4, was highly expressed in suspension cultures and roots from HP plants compared to NHP cells and plants. Reciprocal grafting also showed that Cd translocation is more efficient in HP plants. These results suggest that cadmium efflux is a conserved mechanism among natural cadmium hyperaccumulator species. PMID:27222256

  10. The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy

    PubMed Central

    Visioli, Giovanna; D'Egidio, Sara; Sanangelantoni, Anna M.

    2015-01-01

    Hyperaccumulators are plants that can extract heavy metal ions from the soil and translocate those ions to the shoots, where they are sequestered and detoxified. Hyperaccumulation depends not only on the availability of mobilized metal ions in the soil, but also on the enhanced activity of metal transporters and metal chelators which may be provided by the plant or its associated microbes. The rhizobiome is captured by plant root exudates from the complex microbial community in the soil, and may colonize the root surface or infiltrate the root cortex. This community can increase the root surface area by inducing hairy root proliferation. It may also increase the solubility of metals in the rhizosphere and promote the uptake of soluble metals by the plant. The bacterial rhizobiome, a subset of specialized microorganisms that colonize the plant rhizosphere and endosphere, makes an important contribution to the hyperaccumulator phenotype. In this review, we discuss classic and more recent tools that are used to study the interactions between hyperaccumulators and the bacterial rhizobiome, and consider future perspectives based on the use of omics analysis and microscopy to study plant metabolism in the context of metal accumulation. Recent data suggest that metal-resistant bacteria isolated from the hyperaccumulator rhizosphere and endosphere could be useful in applications such as phytoextraction and phytoremediation, although more research is required to determine whether such properties can be transferred successfully to non-accumulator species. PMID:25709609

  11. [Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics].

    PubMed

    Wei, Shu-he; Zhou, Qi-xing; Wang, Xin

    2005-05-01

    It is main groundwork and the first step of phytoextraction of its commercial application on a large scale to screen out a series of ideal hyperaccumulators that can effectively remedy contaminated soil by heavy metals, which is also difficult point and front field of contaminated environment phytoremediation. With the properties of strong endurance to adverse environment, fast growing and high reproduction, especially the characteristic of the biomass could increase sharply under feasible environmental factors, weed can supply a gap of discovered hyperaccumulating plants, so it is a kind of ideal remediative resource. A cadmium-hyperaccumulator Solanum nigrum L. (weed) was first discovered by using the pot-culture method arranged in outdoor and sampling-analyzing experiments carried out in heavy metal contaminated areas. The pot-culture experiments show that the average concentration of Cd in stems and leaves of S. nigrum growing in soil added with 25 mg/kg of Cd were all greater than the accepted critical concentration of 100 mg/kg what Cd hyperaccumulator should accumulate. The Cd concentration in its overground parts was higher than that in its roots, and the Cd accumulation coefficient in its overground parts was higher than 1 too. Compared with the control, the overground biomass of S. nigrum under the condition of 25 mg/kg (Cd) was not decreased significantly. Furthermore, it was also confirmed that S. nigrum had basic characteristics of Cd-hyperaccumulator by sample-analyze experiment in contaminated area with heavy metals. This kind of method of identifying hyper accumulators in a clean area is useful to the discovery of materials applied to the phytoremediation of contaminated soils with Cd. PMID:16124492

  12. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata.

    PubMed

    Sagner, S; Kneer, R; Wanner, G; Cosson, J P; Deus-Neumann, B; Zenk, M H

    1998-02-01

    The nickel content in different parts of the hyperaccumulating tree Sebertia acuminata was analysed by atomic absorption spectroscopy. Nickel was found to be mainly located in laticifers. The total nickel content of a single mature tree was estimated to be 37 kg. By gel filtration and NMR spectroscopy, citric acid was unequivocally identified as counter ion for about 40% of this metal present. Nitrate was assumed to be a further partner for a complete ionic balance. Phytochelatins were not found to be involved in nickel detoxification in Sebertia. The localization of nickel complexes inside the laticifers was demonstrated by light microscopy as well as by scanning electron microscopy in combination with an EDX system for the analysis of elements. A repellent effect of the plant sap was observed on the fruit fly Drosophila melanogaster indicating that in hyperaccumulating plants nickel functions as an agent to prevent predation. PMID:9433812

  13. Growth and metal accumulation of an Alyssum murale nickel hyperaccumulator ecotype co-cropped with Alyssum montanum or perennial ryegrass in serpentine soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than 400 plant species naturally accumulate high levels of metals such as Cd, Cu, Co, Mn, Ni, and Zn. The genus Alyssum (Brassicaceae) contains the greatest number of reported Ni hyperaccumulators (50), many of which can achieve 3 wt% Ni in dry leaves. Some Alyssum hyperaccumulators are viabl...

  14. FINAL REPORT. MOLECULAR DISSECTION OF THE CELLULAR MECHANISMS INVOLVED IN NICKEL HYPERACCUMULATION

    EPA Science Inventory

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advanta...

  15. PROGRESS REPORT. MOLECULAR DISSECTION OF THE CELLULAR MECHANISMS INVOLVED IN NICKEL HYPERACCUMULATION

    EPA Science Inventory

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advanta...

  16. MOLECULAR AND PHYSIOLOGICAL INVESTIGATIONS OF THLASPI CAERULESCENS, A ZN/CD HYPERACCUMULATOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain plant species have evolved specialized mechanisms that allow them to grow and thrive on metalliferous soils and accumulate high levels of heavy metals in the shoots that are toxic to normal plants. One such plant species is Thlaspi caerulescens, a Zn and Cd hyperaccumulator, and its metal h...

  17. Selenium-tolerant diamondback moth disarms hyperaccumulator plantdefense

    SciTech Connect

    Freeman, J.L.; Quinn, C.F.; Marcus, M.A.; Fakra, S.; Pilon-Smits,E.A.H.

    2006-11-20

    Background Some plants hyperaccumulate the toxic element selenium (Se) to extreme levels, up to 1% of dry weight. The function of this intriguing phenomenon is obscure. Results Here, we show that the Se in the hyperaccumulator prince's plume (Stanleya pinnata) protects it from caterpillar herbivory because of deterrence and toxicity. In its natural habitat, however, a newly discovered variety of the invasive diamondback moth (Plutella xylostella) has disarmed this elemental defense. It thrives on plants containing highly toxic Se levels and shows no oviposition or feeding deterrence, in contrast to related varieties. Interestingly, a Se-tolerant wasp (Diadegma insulare) was found to parasitize the tolerant moth. The insect's Se tolerance mechanism was revealed by X-ray absorption spectroscopy and liquid chromatography--mass spectroscopy, which showed that the Se-tolerant moth and its parasite both accumulate methylselenocysteine, the same form found in the hyperaccumulator plant, whereas related sensitive moths accumulate selenocysteine. The latter is toxic because of its nonspecific incorporation into proteins. Indeed, the Se-tolerant diamondback moth incorporated less Se into protein. Additionally, the tolerant variety sequestered Se in distinct abdominal areas, potentially involved in detoxification and larval defense to predators. Conclusions Although Se hyperaccumulation protects plants from herbivory by some invertebrates, it can give rise to the evolution of unique Se-tolerant herbivores and thus provide a portal for Se into the local ecosystem. In a broader context, this study provides insight into the possible ecological implications of using Se-enriched crops as a source of anti-carcinogenic selenocompounds and for the remediation of Se-polluted environments.

  18. The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii.

    PubMed

    Lu, Lingli; Tian, Shengke; Zhang, Min; Zhang, Jie; Yang, Xiaoe; Jiang, Hong

    2010-11-15

    Effect of Ca on plant growth, Cd uptake and translocation in the hyperaccumulator Sedum alfredii was investigated, as to reveal the possible pathway of Cd entry into the plants system. High Ca increased plant growth under Cd stress after 7 d, and significantly affected the total Cd influx and translocation rate. Short-term kinetics of (109)Cd influx performed using radiotracers confirmed a significant inhibition of (109)Cd influx into the roots induced by high Ca. Under exposure of 5.0 mM Ca, K(m) of (109)Cd influx into roots was 2-fold higher in the hyperaccumulator, although the V(max) value remained at similar level, when compared with the treatments of 0.5 mM Ca. Calcium concentrations in xylem sap of the hyperaccumulator decreased with the increasing Cd levels and significant negative correlationship between the two elements was observed. However, increased xylem loading of Cd was observed in the hyperaccumulator in response to the increasing exogenous Ca level from 0.5 to 4.0 mM, but reverse effect was observed when higher Ca levels (8-32 mM) were presented in the solutions. These results suggest that Cd uptake and translocation in the hyperaccumulator S. alfredii plants is positively associated with Ca pathway. PMID:20674155

  19. Molecular dissection of the cellular mechanisms involved in nickel hyperaccumulation. 1997 annual progress report

    SciTech Connect

    Salt, D.E.

    1997-10-28

    'Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites. A number of terrestrial plants are known to naturally accumulate high levels of metals in their shoots (1--2% dry weight), and these plants have been termed metal-hyperaccumulators. Clearly, the genetic traits that determine metal-hyperaccumulation offers the potential for the development of practical phytoremediation processes. The long-term objective is to rationally design and generate plants ideally suited for phytoremediation using this unique genetic material. Initially, the strategy will focus on isolating and characterizing the key genetic information needed for expression of the metal-hyperaccumulation phenotype. Recently, histidine has been shown to play a major role in Ni hyperaccumulation. Based on this information the authors propose to investigate, at the molecular level, the role of histidine biosynthesis in Ni hyperaccumuIation in Thlaspi goesingense, a Ni hyperaccumulator species.'

  20. Microbial Communities and Functional Genes Associated with Soil Arsenic Contamination and the Rhizosphere of the Arsenic-Hyperaccumulating Plant Pteris vittata L. ▿ †

    PubMed Central

    Xiong, Jinbo; Wu, Liyou; Tu, Shuxin; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Wang, Gejiao

    2010-01-01

    To understand how microbial communities and functional genes respond to arsenic contamination in the rhizosphere of Pteris vittata, five soil samples with different arsenic contamination levels were collected from the rhizosphere of P. vittata and nonrhizosphere areas and investigated by Biolog, geochemical, and functional gene microarray (GeoChip 3.0) analyses. Biolog analysis revealed that the uncontaminated soil harbored the greatest diversity of sole-carbon utilization abilities and that arsenic contamination decreased the metabolic diversity, while rhizosphere soils had higher metabolic diversities than did the nonrhizosphere soils. GeoChip 3.0 analysis showed low proportions of overlapping genes across the five soil samples (16.52% to 45.75%). The uncontaminated soil had a higher heterogeneity and more unique genes (48.09%) than did the arsenic-contaminated soils. Arsenic resistance, sulfur reduction, phosphorus utilization, and denitrification genes were remarkably distinct between P. vittata rhizosphere and nonrhizosphere soils, which provides evidence for a strong linkage among the level of arsenic contamination, the rhizosphere, and the functional gene distribution. Canonical correspondence analysis (CCA) revealed that arsenic is the main driver in reducing the soil functional gene diversity; however, organic matter and phosphorus also have significant effects on the soil microbial community structure. The results implied that rhizobacteria play an important role during soil arsenic uptake and hyperaccumulation processes of P. vittata. PMID:20833780

  1. Biochemical and biophysical characterisation yields insights into the mechanism of a Cd/Zn transporting ATPase purified from the hyperaccumulator plant Thlaspi caerulescens.

    PubMed

    Leitenmaier, Barbara; Witt, Annelie; Witzke, Annabell; Stemke, Anastasia; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Küpper, Hendrik

    2011-10-01

    TcHMA4 (GenBank no. AJ567384), a Cd/Zn transporting ATPase of the P(1B)-type (=CPx-type) was isolated and purified from roots of the Cd/Zn hyperaccumulator Thlaspi caerulescens. Optimisation of the purification protocol, based on binding of the natural C-terminal His-tag of the protein to a Ni-IDA metal affinity column, yielded pure, active TcHMA4 in quantities sufficient for its biochemical and biophysical characterisation with various techniques. TcHMA4 showed activity with Cu(2+), Zn(2+) and Cd(2+) under various concentrations (tested from 30nM to 10μM), and all three metal ions activated the ATPase at a concentration of 0.3μM. Notably, the enzyme worked best at rather high temperatures, with an activity optimum at 42°C. Arrhenius plots yielded interesting differences in activation energy. In the presence of zinc it remained constant (E(A)=38kJ⋅mol(-1)) over the whole concentration range while it increased from 17 to 42kJ⋅mol(-1) with rising copper concentration and decreased from 39 to 23kJ⋅mol(-1) with rising cadmium concentration. According to EXAFS the TcHMA4 appeared to bind Cd(2+) mainly by thiolate sulphur from cysteine, and not by imidazole nitrogen from histidine. PMID:21621506

  2. A Vacuolar Arsenite Transporter Necessary for Arsenic Tolerance in the Arsenic Hyperaccumulating Fern Pteris vittata Is Missing in Flowering Plants[W][OA

    PubMed Central

    Indriolo, Emily; Na, GunNam; Ellis, Danielle; Salt, David E.; Banks, Jo Ann

    2010-01-01

    The fern Pteris vittata tolerates and hyperaccumulates exceptionally high levels of the toxic metalloid arsenic, and this trait appears unique to the Pteridaceae. Once taken up by the root, arsenate is reduced to arsenite as it is transported to the lamina of the frond, where it is stored in cells as free arsenite. Here, we describe the isolation and characterization of two P. vittata genes, ACR3 and ACR3;1, which encode proteins similar to the ACR3 arsenite effluxer of yeast. Pv ACR3 is able to rescue the arsenic-sensitive phenotypes of yeast deficient for ACR3. ACR3 transcripts are upregulated by arsenic in sporophyte roots and gametophytes, tissues that directly contact soil, whereas ACR3;1 expression is unaffected by arsenic. Knocking down the expression of ACR3, but not ACR3;1, in the gametophyte results in an arsenite-sensitive phenotype, indicating that ACR3 plays a necessary role in arsenic tolerance in the gametophyte. We show that ACR3 localizes to the vacuolar membrane in gametophytes, indicating that it likely effluxes arsenite into the vacuole for sequestration. Whereas single-copy ACR3 genes are present in moss, lycophytes, other ferns, and gymnosperms, none are present in angiosperms. The duplication of ACR3 in P. vittata and the loss of ACR3 in angiosperms may explain arsenic tolerance in this unusual group of ferns while precluding the same trait in angiosperms. PMID:20530755

  3. The Metal Hyperaccumulator Alyssum murale Uses Nitrogen and Oxygen Donor Ligands for Ni Transport and Storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Kotodesh genotype of the nickel (Ni) hyperaccumulator Alyssum murale was examined to determine the compartmentalization and internal speciation of Ni, and other elements, in an effort to ascertain the mechanism used by this plant to tolerate extremely high shoot Ni concentrations. Plants were g...

  4. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens.

    PubMed

    Boominathan, Rengasamy; Doran, Pauline M

    2003-07-20

    Plant species capable of hyperaccumulating heavy metals are of considerable interest for phytoremediation and phytomining. This work aims to identify the role of antioxidative metabolism in heavy metal tolerance in the Cd hyperaccumulator, Thlaspi caerulescens. Hairy roots of T. caerulescens and the non-hyperaccumulator, Nicotiana tabacum (tobacco), were used to test the effects of high Cd environments. In the absence of Cd, endogenous activities of catalase were two to three orders of magnitude higher in T. caerulescens than in N. tabacum. T. caerulescens roots also contained significantly higher endogenous superoxide dismutase activity and glutathione concentrations. Exposure to 20 ppm (178 microM) Cd prevented growth of N. tabacum roots and increased hydrogen peroxide (H(2)O(2)) levels by a factor of five relative to cultures without Cd. In contrast, growth was maintained in T. caerulescens, and H(2)O(2) concentrations were controlled to low, nontoxic levels in association with a strong catalase induction response. Treatment of roots with the glutathione synthesis inhibitor, buthionine sulfoximine (BSO), exacerbated H(2)O(2) accumulation in Cd-treated N. tabacum, but had a relatively minor effect on H(2)O(2) levels and did not reduce Cd tolerance in T. caerulescens. Lipid peroxidation was increased by Cd treatment in both the hyperaccumulator and non-hyperaccumulator roots. This work demonstrates that metal-induced oxidative stress occurs in hyperaccumulator tissues even though growth is unaffected by the presence of heavy metals. It also suggests that superior antioxidative defenses, particularly catalase activity, may play an important role in the hyperaccumulator phenotype of T. caerulescens. PMID:12768621

  5. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance.

    PubMed

    Jin, Xiaofen; Yang, Xiaoe; Islam, Ejazul; Liu, Dan; Mahmood, Qaisar

    2008-08-15

    Plant growth, ultrastructural and antioxidant adaptations and glutathione biosynthesis in Cd-hyperaccumulating ecotype Sedum alfredii Hance (HE) countering high Cd environment were investigated and compared with its non Cd-hyperaccumulating ecotype (NHE). Cadmium exposure resulted in significant ultrastructural changes in root meristem and leaf mesophyll cells of S. alfredii, but damage was more pronounced in NHE even when Cd concentrations were one-tenth of those applied to HE. Cadmium stress damaged chloroplasts causing imbalanced lamellae formation coupled with early leaf senescence. Histochemical results revealed that glutathione (GSH) biosynthesis inhibition led to overproduction of hydrogen peroxide (H(2)O(2)) and superoxide radical (O(2)(*-)) in HE but not in NHE. Differences were noted in both HE and NHE for catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR) activities under various Cd stress levels. No relationship was found between antioxidative defense capacity including activities of superoxide dismutase (SOD), CAT, GPX, APX and GR as well as ascorbic acid (AsA) contents and Cd tolerance in the two ecotypes of S. alfredii. The GSH biosynthesis induction in root and shoot exposed to elevated Cd conditions may be involved in Cd tolerance and hyperaccumulation in HE of S. alfredii H. PMID:18242844

  6. Organic acids rather than histidine predominate in Ni chelation in Alyssum hyperaccumulator xylem exudate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of Ni uptake mechanisms by hyperaccumulator plants is necessary to improve Ni uptake efficiency for phytoremediation technologies i.e. phytomining. It is known that an important aspect of Ni translocation involves Ni chelation with organic ligands. However, it is still not cle...

  7. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator.

    PubMed

    Sun, Yuebing; Zhou, Qixing; Wang, Lin; Liu, Weitao

    2009-01-30

    Recently, researchers are becoming interested in using hyperaccumulators for decontamination of heavy metal polluted soils, whereas few species that hyperaccumulate cadmium (Cd) has been identified in the plant kingdom. In this study, the physiological mechanisms at the seedling stage and growth responses and Cd uptake and accumulation at flowering and mature stages of Bidens pilosa L. under Cd treatments were investigated. At the seedling stage, when soil Cd was lower than 16mgkg(-1), the plant did not show obvious symptom of phytoxicity, and the alterations of chlorophyll (CHL), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and soluble protein (SP) did not have significant differences when compared with the control. At the flowering and mature stages, under low Cd treatments (plant growth, resulting in 3.9-11.0% and 5.9-13.8%, respectively, increase in shoots dry biomass compared with the control. The Cd concentrations in stems, leaves and shoots exceeded 100mgkg(-1) when soil Cd was at 8mgkg(-1), and they were positively correlated with Cd concentration in soils, the bioaccumulation factor (BF) and translocation factor (TF) values were all greater than 1.0. Thus, it is clear that B. pilosa has the basic characteristics of a Cd-hyperaccumulator. All the results elementarily indicated that B. pilosa is a potential Cd-hyperaccumulating plant. PMID:18513866

  8. Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii.

    PubMed

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Li, Ting-qiang; He, Zhen-li

    2009-04-01

    Sedum alfredii is a well known cadmium (Cd) hyperaccumulator native to China; however, the mechanism behind its hyperaccumulation of Cd is not fully understood. Through several hydroponic experiments, characteristics of Cd uptake and translocation were investigated in the hyperaccumulating ecotype (HE) of S. alfredii in comparison with its non-hyperaccumulating ecotype (NHE). The results showed that at Cd level of 10 microM measured Cd uptake in HE was 3-4 times higher than the implied Cd uptake calculated from transpiration rate. Furthermore, inhibition of transpiration rate in the HE has no essential effect on Cd accumulation in shoots of the plants. Low temperature treatment (4 degrees C) significantly inhibited Cd uptake and reduced upward translocation of Cd to shoots for 9 times in HE plants, whereas no such effect was observed in NHE. Cadmium concentration was 3-4-fold higher in xylem sap of HE, as compared with that in external uptake solution, whereas opposite results were obtained for NHE. Cadmium concentration in xylem sap of HE was significantly reduced by the addition of metabolic inhibitors, carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), in the uptake solutions, whereas no such effect was noted in NHE. These results suggest that Cd uptake and translocation is an active process in plants of HE S. alfredii, symplastic pathway rather than apoplastic bypass contributes greatly to root uptake, xylem loading and translocation of Cd to the shoots of HE, in comparison with the NHE plants. PMID:18937997

  9. CHARACTERIZATION OF ZINC TOLERANCE GENES IN THE ZINC/CADMIUM HYPERACCUMULATOR, THLASPI CAERULESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens, a heavy metal hyperaccumulating plant species, accumulates up to 30,000 ppm zinc in the above ground biomass without exhibiting toxicity symptoms. Previous work in our lab has shown that altered regulation of micronutrient uptake, transport and sequestration in this species pla...

  10. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii.

    PubMed

    Sun, Qin; Ye, Zhi Hong; Wang, Xiao Rong; Wong, Ming Hung

    2007-11-01

    Sedum alfredii has been reported to be a cadmium (Cd) hyperaccumulator. Phytochelatins (PCs) and other thiol (SH)-containing compounds have been proposed to play an important role in the detoxification and tolerance of some heavy metals, but it is not clear whether PCs are responsible for Cd hyperaccumulation and tolerance in S. alfredii. In this study, two geographically isolated populations of S. alfredii were studied: one population grew on an old Pb/Zn mine site, while the other on a non-mine site. The mine population of this species exhibited a stronger heavy metal tolerance than in the other population. Root-to-shoot transport of Cd was higher in population located at the mine site than at the non-mine site. Considerable amounts of Cd were accumulated in leaves and stems of mine plants, while most Cd was distributed in roots of non-mine plants. Non-protein SH in plant tissues of two populations were further investigated by a HPLC pre-column derivatization system. Upon exposure to Cd, no PCs were detected in all tissues of mine population, while an appreciable amount of glutathione (GSH) was observed in the descending order of stem>root>leaf. The concentrations of GSH consistently increased with the increase of exogenous Cd concentrations and time. On the contrary, Cd exposure strongly induced the production of PCs (mainly PC(2) and PC(3)) and GSH in plant tissues of non-mine population, and the concentrations of GSH showed an initial drop over the duration of 7-d exposure. The present results provided strong evidence that PCs are not involved in Cd transport, hyperaccumulation and tolerance in mine population of S. alfredii. PMID:17207552

  11. The effect of plant cadmium and zinc status on root and shoot heavy metal accumulation in the heavy metal hyperaccumulator, Thlaspi caerulescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens is a plant species capable of tolerating and accumulating extremely high concentrations of the heavy metals, Zn and Cd, in the shoot. In this study, we investigated the impact of changes in plant heavy metal status (i.e. Zn and Cd) on the accumulation of heavy metals, including...

  12. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly technical progress report, March 20, 1995--June 20, 1995

    SciTech Connect

    Kochian, L.

    1995-12-01

    The biological accumulation of heavy metals and cesium, strontium, and uranium in plants is discussed. The role of nutrient deficiencies and foliar treatments of manganese and iron compounds is described.

  13. Successful micropropagation of the cadmium hyperaccumulator Viola baoshanensis (Violaceae).

    PubMed

    Li, Jin-Tian; Deng, Dong-Mei; Peng, Guang-Tian; Deng, Jin-Chuan; Zhang, Jun; Liao, Bin

    2010-01-01

    Viola baoshanensis is one of the most rare cadmium (Cd) hyperaccumulators, however, it is hard to propagate. Micropropagation has been applied to solve the problems with propagation of a few heavy metal hyperaccumulators. Therefore there is a high likelihood that micropropagation may offer a suitable method for large-scale propagation of V. baoshanensis To test this hypothesis, three types of explants were used for shoot regeneration and various combinations of four plant growth regulators were used to improve shoot regeneration efficiency from leaflet of V. baoshanensis. Best shoot regeneration efficiency was obtained by incubating leaflet in a 1/2 MS medium supplemented with 2.5 oM BA + 2.5 microM IBA, therein shoot regeneration rate was 70.9% and the number of shoots formation per explant was 22.4. Rooting was achieved from almost all regenerated shoot growing on 1/2 MS medium without plant growth regulator. Micropropagated seedlings were acclimatized under greenhouse conditions and 95% of them survived and showed no visible morphological variation compared to their donor plant. Furthermore, there were no significant differences between regenerated and seed-germinated V. baoshanensis in Cd tolerance and accumulation. These results suggested that an efficient and rapid micropropogation system was successfully developed for V. baoshanensis. PMID:21166346

  14. Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator.

    PubMed

    Leung, H M; Wu, F Y; Cheung, K C; Ye, Z H; Wong, M H

    2010-09-15

    The effects of arbuscular mycorrhizal (AM) fungi and phosphate rock on the phytorextraction efficiency of a hyperaccumulator (Pteris vittata) and a non-hyperaccumulator (Cynodon dactylon) plant were studied. Both seedlings were planted in As contaminated soil under different treatments [(1) control (contaminated soil only), (2) indigenous mycorrhizas (IM), (3) mixed AM inoculum [indigenous mycorrhiza + Glomus mosseae (IM/Gm)] and (4) IM/Gm + phosphate rock (P rock)] with varying intensities (40%, 70% and 100%) of water moisture content (WMC). Significant As reduction in soil (23.8% of soil As reduction), increase in plant biomass (17.8 g/pot) and As accumulation (2054 mg/kg DW) were observed for P. vittata treated with IM/Gm + PR at 100% WMC level. The overall results indicated that the synergistic effect of mycorrhiza and P rock affected As subcellular distribution of the hyperaccumulator and thereby altered its As removal efficiency under well-watered conditions. PMID:20541316

  15. Selenium Distribution and Speciation in the Hyperaccumulator Astragalus bisulcatus and Associated Ecological Partners1[W][OA

    PubMed Central

    Valdez Barillas, José R.; Quinn, Colin F.; Freeman, John L.; Lindblom, Stormy D.; Fakra, Sirine C.; Marcus, Matthew A.; Gilligan, Todd M.; Alford, Élan R.; Wangeline, Ami L.; Pilon-Smits, Elizabeth A.H.

    2012-01-01

    The goal of this study was to investigate how plant selenium (Se) hyperaccumulation may affect ecological interactions and whether associated partners may affect Se hyperaccumulation. The Se hyperaccumulator Astragalus bisulcatus was collected in its natural seleniferous habitat, and x-ray fluorescence mapping and x-ray absorption near-edge structure spectroscopy were used to characterize Se distribution and speciation in all organs as well as in encountered microbial symbionts and herbivores. Se was present at high levels (704–4,661 mg kg−1 dry weight) in all organs, mainly as organic C-Se-C compounds (i.e. Se bonded to two carbon atoms, e.g. methylselenocysteine). In nodule, root, and stem, up to 34% of Se was found as elemental Se, which was potentially due to microbial activity. In addition to a nitrogen-fixing symbiont, the plants harbored an endophytic fungus that produced elemental Se. Furthermore, two Se-resistant herbivorous moths were discovered on A. bisulcatus, one of which was parasitized by a wasp. Adult moths, larvae, and wasps all accumulated predominantly C-Se-C compounds. In conclusion, hyperaccumulators live in association with a variety of Se-resistant ecological partners. Among these partners, microbial endosymbionts may affect Se speciation in hyperaccumulators. Hyperaccumulators have been shown earlier to negatively affect Se-sensitive ecological partners while apparently offering a niche for Se-resistant partners. Through their positive and negative effects on different ecological partners, hyperaccumulators may influence species composition and Se cycling in seleniferous ecosystems. PMID:22645068

  16. Exogenous cytokinin treatments of a Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: Implications for phytoextraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of exogenous plant growth regulators was examined as a viable technique to increase the efficiency of plant metal phytoextraction from contaminated soils. The aim of this study was to investigate the alteration of Ni phytoextraction by Alyssum murale, a Ni hyperaccumulator, following the...

  17. Complexation and Toxicity of Copper in Higher Plants. II. Different Mechanisms for Copper versus Cadmium Detoxification in the Copper-Sensitive Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype)1[OA

    PubMed Central

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M.H.; Götz, Birgit; Küpper, Hendrik

    2009-01-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 μm Cu2+ remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the “sun reaction” type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

  18. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype).

    PubMed

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Götz, Birgit; Küpper, Hendrik

    2009-10-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 microm Cu(2+) remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the "sun reaction" type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

  19. A newly found manganese hyperaccumulator--Polygonum lapathifolium Linn.

    PubMed

    Liu, Kehui; Yu, Fangming; Chen, Menglin; Zhou, Zhenming; Chen, Chaoshu; Li, Ming Shun; Zhu, Jing

    2016-01-01

    In the present work, both field investigation and laboratory experiment were carried out to testify whether Polygonum lapathifolium L. is a potential manganese (Mn) hyperaccumulator. Results from field investigation showed that P. lapathifolium had great tolerance and accumulation to Mn. Mn concentrations in leaves were the highest, varied from 6889.2 mg kg-1 dry weight (DW) to 18841.7 mg kg(-1) DW with the average of 12180.6 mg kg(-1). The values of translocation factor (the concentrations of Mn in leaf to that in root) ranged from 5.72 to 9.53. Results from laboratory experiment illuminated that P. lapathifolium could grow well and show no toxic symptoms even under high Mn stress (16 mmol L(-1)). Although the changes of antioxidant enzymes activities were triggered under Mn stress, the alterations of pigments were not significant (P > 0.05) as compared with control. Total plant biomass and plant height increased with increasing Mn supply. Mn concentrations in leaves and stems were constantly greater than those in roots, the ratio of concentrations in leaves to that in roots were 2.58-6.72 and the corresponding values in stems to that in roots were 1.45-3.18. The results showed that P. lapathifolium is a Mn-hyperaccumulator. PMID:26514228

  20. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Kochian, L.

    1997-05-01

    Potential for phytoremediation of an aged radiocesium-contaminated soil from Brookhaven National Laboratory was investigated in three phases: (1) hydroponic screening for plant species capable of accumulating elevated levels of cesium in shoots, (2) amending contaminated soil to enhance {sup 137}Cs bioavailability, and (3) phytoextracting radiocesium with plant roots and its removal in harvested shoots. The bioaccumulation ratio of Cs in shoots of hydroponically grown plants ranged between 38 and 165. From solution, dicot species accumulated 2- to 4-fold more cesium in shoots than grasses. The effect of several chemical compounds on {sup 137}Cs desorption from the contaminated soil was investigated. Ammonium salts were the most effective at desorbing Cs from contaminated soil, but only 25% of radiocesium could be desorbed. Although release of radiocesium from the soil was concentration-dependent, this effect appeared to level off above 0.2 M ammonium in solution. In a pot study, from the soil contaminated with 400 pCi g{sup -1} soil, the greatest amount of {sup 137}Cs, 140 pCi, was removed in shoots of cabbage (Brassica oleracea var. capitata). {sup 137}Cs accumulation in shoots was significantly increased by the addition of 40 NH{sub 4}NO{sub 3} kg{sup -1} soil. Increasing NH{sub 4}NO{sub 3} application from 40 to 80 mmoles kg{sup -1} soil did not further increase radiocesium phytoextraction. The ability to accumulate radiocesium from soil in shoots was significantly different among species tested. This ability increased in order: reed Canary grass (Phalaris arundinacea) < Indian mustard (Brassica juncea) < tepary bean (Phaseolus acutifolius) < cabbage.

  1. Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE.

    PubMed

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Simcic, Jure; Pelicon, Primoz; Budnar, Milos; Povh, Bogdan; Regvar, Marjana

    2007-05-01

    Cd, Zn and Pb accumulation, spatial distribution within seeds and germinating seedlings, and seeds fitness of metal hyperaccumulating Thlaspi praecox were investigated in order to gain more knowledge on plant reproductive success at metal polluted sites. The seeds contained up to 1351 microg g-1 (dry weight) of Cd, 121 microg g-1 of Zn and 17 microg g-1 of Pb. Seed fitness was negatively influenced by seed Cd hyperaccumulation. Nevertheless, the viability of seeds was decreased by maximally 20%, indicating very efficient tolerance of the plant embryos to Cd. Localisation by micro-PIXE revealed preferential storage of most elements in the embryonic axis. Cd and Zn were preferentially localised in the epidermis of cotyledons. The restriction of seed Pb and Zn uptake and hyperaccumulation of Cd, accompanied by partitioning of Cd in the epidermal tissues of cotyledons, may enable the survival of T. praecox embryos and seedlings in Cd polluted environments. PMID:17070633

  2. Removal of Ni(II) and Cu(II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil.

    PubMed

    Bayramoglu, Gulay; Arica, M Yakup; Adiguzel, Nezaket

    2012-09-01

    Alyssum discolor biomass was collected from serpentine soil and was used for removal of metal ions. The plant species grown on serpentine soils are known to be rich with metals ions and thus have more capability for accumulating heavy metals. Native and acid-treated biomass of A. discolor (A. discolor) were utilized for the removal of Ni(II) and Cu(II) ions from aqueous solutions. The effects of contact time, initial concentration, and pH on the biosorption of Ni(II) and Cu(II) ions were investigated. Biosorption equilibrium was established in about 60 min. The surface properties of the biomass preparations were varied with pH, and the maximum amounts of Ni(II) and Cu(II) ions on both A. discolor biomass preparations were adsorbed at pH 5.0. The maximum biosorption capacities of the native, and acid-treated biomass preparations for Ni(II) were 13.1 and 34.7 mgg(-1) and for Cu(II) 6.15 and 17.8 mgg(-1) dry biomass, respectively. The biosorption of Ni(II) and Cu(II) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. When the heavy metal ions were in competition, the amounts of biosorbed metal ions on the acid treated plant biomass were found to be 0.542 mmolg(-1) for Ni(II) and 0.162 mmolg(-1) for Cu(II), the A. discolor biomass was significantly selective for Ni(II) ions. The information gained from these studies was expected to indicate whether the native, and acid-treated forms can have the potential to be used for the removal and recovery of Ni(II) ions from wastewaters. PMID:22608134

  3. Transcriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance

    PubMed Central

    Yang, Xiaoe; Liu, Jian-Xiang

    2013-01-01

    The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE) shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE) shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≧2.0) and down-regulated (Fold Change ≦0.5) by chronic Cd treatment in S. alfredii Hance (HE) at q-value cutoff of 0.005, respectively. Quantitative RT-PCR was employed to compare gene expression patterns between S. alfredii Hance (HE) and non-hyperaccumulating ecotype (NHE). Our results demonstrated that several genes involved in cell wall modification, metal translocation and remobilization were more induced or constitutively expressed at higher levels in HE shoots than that in NHE shoots in response to Cd exposure. Together, our study provides large-scale expressed sequence information and genome-wide transcriptome profiling of Cd responses in S. alfredii Hance (HE) shoots. PMID:23755133

  4. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance.

    PubMed

    Gao, Jun; Sun, Ling; Yang, Xiaoe; Liu, Jian-Xiang

    2014-01-01

    The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE) shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE) shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≥ 2.0) and down-regulated (Fold Change hyperaccumulating ecotype (NHE). Our results demonstrated that several genes involved in cell wall modification, metal translocation and remobilization were more induced or constitutively expressed at higher levels in HE shoots than that in NHE shoots in response to Cd exposure. Together, our study provides large-scale expressed sequence information and genome-wide transcriptome profiling of Cd responses in S. alfredii Hance (HE) shoots. PMID:23755133

  5. Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode.

    PubMed

    Jhee, Edward M; Boyd, Robert S; Eubanks, Micky D

    2005-11-01

    No study of a single nickel (Ni) hyperaccumulator species has investigated the impact of hyperaccumulation on herbivores representing a variety of feeding modes. Streptanthus polygaloides plants were grown on high- or low-Ni soils and a series of no-choice and choice feeding experiments was conducted using eight arthropod herbivores. Herbivores used were two leaf-chewing folivores (the grasshopper Melanoplus femurrubrum and the lepidopteran Evergestis rimosalis), a dipteran rhizovore (the cabbage maggot Delia radicum), a xylem-feeder (the spittlebug Philaenus spumarius), two phloem-feeders (the aphid, Lipaphis erysimi and the spidermite Trialeurodes vaporariorum) and two cell-disruptors (the bug Lygus lineolaris and the whitefly Tetranychus urticae). Hyperaccumulated Ni significantly decreased survival of the leaf-chewers and rhizovore, and significantly reduced population growth of the whitefly cell-disruptor. However, vascular tissue-feeding insects were unaffected by hyperaccumulated Ni, as was the bug cell-disruptor. We conclude that Ni can defend against tissue-chewing herbivores but is ineffective against vascular tissue-feeding herbivores. The effects of Ni on cell-disruptors varies, as a result of either variation of insect Ni sensitivity or the location of Ni in S. polygaloides cells and tissues. PMID:16219073

  6. Tissue fractions of cadmium in two hyperaccumulating Jerusalem artichoke genotypes.

    PubMed

    Long, Xiaohua; Ni, Ni; Liu, Zhaopu; Rengel, Zed; Jiang, Xin; Shao, Hongbo

    2014-01-01

    In order to investigate the mechanisms in two Jerusalem artichoke (Helianthus tuberosus L.) genotypes that hyperaccumulate Cd, a sand-culture experiment was carried out to characterize fractionation of Cd in tissue of Cd-hyperaccumulating genotypes NY2 and NY5. The sequential extractants were: 80% v/v ethanol (FE), deionized water (FW), 1 M NaCl (FNaCl), 2% v/v acetic acid (FAcet), and 0.6 M HCl (FHCl). After 20 days of treatments, NY5 had greater plant biomass and greater Cd accumulation in tissues than NY2. In both genotypes the FNaCl fraction was the highest in roots and stems, whereas the FAcet and FHCl fractions were the highest in leaves. With an increase in Cd concentration in the culture solution, the content of every Cd fraction also increased. The FW and FNaCl ratios in roots were lower in NY5 than in NY2, while the amount of other Cd forms was higher. It implied that, in high accumulator, namely, NY5, the complex of insoluble phosphate tends to be shaped more easily which was much better for Cd accumulation. Besides, translocation from plasma to vacuole after combination with protein may be one of the main mechanisms in Cd-accumulator Jerusalem artichoke genotypes. PMID:24883399

  7. Tissue Fractions of Cadmium in Two Hyperaccumulating Jerusalem Artichoke Genotypes

    PubMed Central

    Long, Xiaohua; Ni, Ni; Liu, Zhaopu; Rengel, Zed; Jiang, Xin; Shao, Hongbo

    2014-01-01

    In order to investigate the mechanisms in two Jerusalem artichoke (Helianthus tuberosus L.) genotypes that hyperaccumulate Cd, a sand-culture experiment was carried out to characterize fractionation of Cd in tissue of Cd-hyperaccumulating genotypes NY2 and NY5. The sequential extractants were: 80% v/v ethanol (FE), deionized water (FW), 1 M NaCl (FNaCl), 2% v/v acetic acid (FAcet), and 0.6 M HCl (FHCl). After 20 days of treatments, NY5 had greater plant biomass and greater Cd accumulation in tissues than NY2. In both genotypes the FNaCl fraction was the highest in roots and stems, whereas the FAcet and FHCl fractions were the highest in leaves. With an increase in Cd concentration in the culture solution, the content of every Cd fraction also increased. The FW and FNaCl ratios in roots were lower in NY5 than in NY2, while the amount of other Cd forms was higher. It implied that, in high accumulator, namely, NY5, the complex of insoluble phosphate tends to be shaped more easily which was much better for Cd accumulation. Besides, translocation from plasma to vacuole after combination with protein may be one of the main mechanisms in Cd-accumulator Jerusalem artichoke genotypes. PMID:24883399

  8. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator.

    PubMed

    Wang, Lin; Zhou, Qixing; Ding, Lingling; Sun, Yuebing

    2008-06-15

    Hyperaccumulators are ideal plant species used for phytoremediation of soils contaminated by heavy metals. A full understanding of metal tolerance mechanisms of hyperaccumulators will facilitate enhancing their phytoremediation efficiency. However, how Cd affects N metabolism and which role plays the response of N metabolism to Cd toxicity in the tolerance of hyperaccumulators are still unknown. To clarify these questions, this study investigated the effects of various soil Cd levels on the concentrations of N forms and the activity of key enzymes involved in N metabolism in leaves of the Cd hyperaccumulator, Solanum nigrum L. The results showed that its growth and all N metabolism indicators were normal at low Cd exposure (hyperaccumulator. PMID:18077088

  9. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens.

    PubMed

    Pence, N S; Larsen, P B; Ebbs, S D; Letham, D L; Lasat, M M; Garvin, D F; Eide, D; Kochian, L V

    2000-04-25

    An integrated molecular and physiological investigation of the fundamental mechanisms of heavy metal accumulation was conducted in Thlaspi caerulescens, a Zn/Cd-hyperaccumulating plant species. A heavy metal transporter cDNA, ZNT1, was cloned from T. caerulescens through functional complementation in yeast and was shown to mediate high-affinity Zn(2+) uptake as well as low-affinity Cd(2+) uptake. It was found that this transporter is expressed at very high levels in roots and shoots of the hyperaccumulator. A study of ZNT1 expression and high-affinity Zn(2+) uptake in roots of T. caerulescens and in a related nonaccumulator, Thlaspi arvense, showed that alteration in the regulation of ZNT1 gene expression by plant Zn status results in the overexpression of this transporter and in increased Zn influx in roots of the hyperaccumulating Thlaspi species. These findings yield insights into the molecular regulation and control of plant heavy metal and micronutrient accumulation and homeostasis, as well as provide information that will contribute to the advancement of phytoremediation by the future engineering of plants with improved heavy metal uptake and tolerance. PMID:10781104

  10. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens

    PubMed Central

    Pence, Nicole S.; Larsen, Paul B.; Ebbs, Stephen D.; Letham, Deborah L. D.; Lasat, Mitch M.; Garvin, David F.; Eide, David; Kochian, Leon V.

    2000-01-01

    An integrated molecular and physiological investigation of the fundamental mechanisms of heavy metal accumulation was conducted in Thlaspi caerulescens, a Zn/Cd-hyperaccumulating plant species. A heavy metal transporter cDNA, ZNT1, was cloned from T. caerulescens through functional complementation in yeast and was shown to mediate high-affinity Zn2+ uptake as well as low-affinity Cd2+ uptake. It was found that this transporter is expressed at very high levels in roots and shoots of the hyperaccumulator. A study of ZNT1 expression and high-affinity Zn2+ uptake in roots of T. caerulescens and in a related nonaccumulator, Thlaspi arvense, showed that alteration in the regulation of ZNT1 gene expression by plant Zn status results in the overexpression of this transporter and in increased Zn influx in roots of the hyperaccumulating Thlaspi species. These findings yield insights into the molecular regulation and control of plant heavy metal and micronutrient accumulation and homeostasis, as well as provide information that will contribute to the advancement of phytoremediation by the future engineering of plants with improved heavy metal uptake and tolerance. PMID:10781104

  11. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing Se content in food crops in Se-deficient regions of the world. In this study, we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with...

  12. HOST-SWITCHING DOES NOT CIRCUMVENT THE NI-BASED DEFENCE OF THE NI HYPERACCUMULATOR STREPTANTHUS POLYGALOIDES (BRASSICACEAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar concentration of heavy metals, such as nickel, may help defend metal --hyperaccumulating plants against both herbivores and pathogens. Host switching by generalist herbivores might be one strategy by which they can dilute lifetime consumption of toxic nickel. We examined the effects of host...

  13. Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator.

    PubMed

    Sun, Q; Ye, Z H; Wang, X R; Wong, M H

    2005-11-01

    Phytochelatins (PCs) have been induced in a large range of plant species, but their role in heavy metal tolerance is unclear. Sedum alfredii is a new zinc (Zn) hyperaccumulator and lead (Pb) accumulator found in an old Pb/Zn mine in the Zhejiang Province of China. Until now, the mechanisms of its hyperaccumulation/accumulation and tolerance were poorly understood. The aim of this work was to investigate whether PCs were differentially produced in mine populations of S. alfredii compared with a non-mine control of the same species. The results showed that plants from the mine site were more tolerant to increasing Zn and Pb concentrations than those from the control site. No PCs and cysteine (Cys) were detected by pre-column derivatization with HPLC fluorescence in any tissues of two populations at any treatment, which in turn indicated they were not responsible for Zn and Pb tolerance in the mine population. Instead, Zn and Pb treatments resulted in the increase of glutathione (GSH) for both populations in a tissue-dependent manner. Significant increases were observed in leaf, stem and root tissues of plants grown on the mine site. The results suggest that GSH, rather man PCs, may be involved in Zn and Pb transport, hyperaccumulation/accumulation and tolerance in mine population of S. alfredii. PMID:16225897

  14. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake.

    PubMed

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Regvar, Marjana

    2006-01-01

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. PMID:15998561

  15. SOIL MICROBIAL EFFECTS ON HEAVY METAL UPTAKE INTO HYPERACCUMULATORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uptake of heavy metals into hyperaccumulators is influenced by a number of chemical, physical and biological factors. Of these, recent evidence has shown that microbes living within the rhizosphere of hyperaccumulators may have a significant effect on metal uptake. Much is known about the role my...

  16. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance exhibited by a Cd-hyperaccumulating ecotype of Thlaspi caerulescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cadmium (Cd) is a highly toxic heavy metal for plants, but several unique Cd hyperaccumulating plant species are able to accumulate this metal to extraordinary concentrations in the above-ground tissues without showing any toxic symptoms. However, the molecular mechanisms underlying this hyper-tole...

  17. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance*

    PubMed Central

    Guo, Wei-dong; Liang, Jun; Yang, Xiao-e; Chao, Yue-en; Feng, Ying

    2009-01-01

    We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance. PMID:19353742

  18. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance.

    PubMed

    Guo, Wei-dong; Liang, Jun; Yang, Xiao-e; Chao, Yue-en; Feng, Ying

    2009-04-01

    We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance. PMID:19353742

  19. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation.

    PubMed

    Wei, Shuhe; Zhou, Qixing; Koval, Pavel V

    2006-10-01

    The Cd accumulation and biomass characteristics of a newly found Cd-hyperaccumulator Solanum nigrum L. were investigated at the flowering stage and the mature stage. The results showed that the concentration of Cd in the stems and leaves of S. nigrum harvested at the flowering stage was up to 83.1% and 85.5% of that at the mature stage, and the dry-weight sum of the stems and leaves of S. nigrum harvested at the flowering stage was 93.4% of that at its seed maturity. The Cd-removing ratio by the shoots of S. nigrum harvested at the flowering stage was 87.5% of that at the mature stage. It was also found by observing the growth duration of S. nigrum that the frostless period at the experimental site was at least twice as long as the growth duration from the seedling-transplanted phase to the flowering stage of the hyperaccumulator. Therefore, S. nigrum could be transplanted into contaminated soils twice in one year by harvesting the hyperaccumulator at its flowering stage based on climatic conditions of the site and traits of the plant growth. In particular, the extraction efficiency of Cd by harvesting the shoots of S. nigrum at its flowering stage twice in one year could increase 75.0% compared to that of at its single maturity. Thus, the method of multiple harvesting would be very important to increase phytoremediation efficiency in practice. PMID:16859734

  20. Application of rhizosphere interaction of hyperaccumulator Noccaea caerulescens to remediate cadmium-contaminated agricultural soil.

    PubMed

    Yang, Yong; Jiang, Rong-Feng; Wang, Wei; Li, Hua-Fen

    2011-10-01

    There is an urgent requirement for selecting appropriate technologies to solve food safety problems due to soil contamination. In this study, the hyperaccumulator Noccaea caerulescens and a high Cd accumulator pakchoi cultivar (Brassica rapa L. spp. Chinenesis cv.) were grown in a moderately Cd-contaminated soil with three planting systems (monocrop, inter-crop, and crop-rotation) and three growing durations (25, 50, and 75 days) to study the role of rhizosphere interaction of both species on the uptake of Cd. The Cd accumulations in the shoot of pakchoi were significantly reduced in the inter-crop treatment, also the decreased percentage increased with rhizosphere interaction between the two species. In the inter-crop systems of 75 days, the Cd concentration and amount in the shoot of pakchoi represented 54% and 83% reduction, respectively, while the total depletion of Cd decreased by approximate 19%. Although the Cd concentration and amount in the shoot of pakchoi were significantly reduced by 52% and 44%, respectively, in the crop-rotation treatment, the decreased percentage were markedly lower than in the inter-crop treatment. Therefore, the rhizosphere interaction of hyperaccumulator with non-hyperaccumulator may reduce the risk of vegetable contamination during making full use of or remediating the contaminated soil. PMID:21972514

  1. Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method.

    PubMed

    Lin, Lijin; Jin, Qian; Liu, Yingjie; Ning, Bo; Liao, Ming'an; Luo, Li

    2014-11-01

    A new method, the artificially high soil cadmium (Cd) concentration method, was used to screen for Cd hyperaccumulators among winter farmland weeds. Galinsoga parviflora was the most promising remedial plant among 5 Cd accumulators or hyperaccumulators. In Cd concentration gradient experiments, as soil Cd concentration increased, root and shoot biomass decreased, and their Cd contents increased. In additional concentration gradient experiments, superoxide dismutase and peroxidase activities increased with soil Cd concentrations up to 75 mg kg(-1) , while expression of their isoenzymes strengthened. Catalase (CAT) activity declined and CAT isoenzyme expression weakened at soil Cd concentrations less than 50 mg kg(-1) . The maxima of Cd contents in shoots and roots were 137.63 mg kg(-1) and 105.70 mg kg(-1) , respectively, at 100 mg kg(-1) Cd in soil. The root and shoot bioconcentration factors exceeded 1.0, as did the translocation factor. In a field experiment, total extraction of Cd by shoots was 1.35 mg m(-2) to 1.43 mg m(-2) at soil Cd levels of 2.04 mg kg(-1) to 2.89 mg kg(-1) . Therefore, the artificially high soil Cd concentration method was effective for screening Cd hyperaccumulators. Galinsoga parviflora is a Cd hyperaccumulator that could be used to efficiently remediate Cd-contaminated farmland soil. PMID:25053512

  2. Inoculation of Astragalus racemosus and Astragalus convallarius with selenium-hyperaccumulator rhizosphere fungi affects growth and selenium accumulation.

    PubMed

    Lindblom, Stormy Dawn; Fakra, Sirine C; Landon, Jessica; Schulz, Paige; Tracy, Benjamin; Pilon-Smits, Elizabeth A H

    2013-03-01

    Little is known about how fungi affect plant selenium (Se) accumulation. Here we investigate the effects of two fungi on Se accumulation, translocation, and chemical speciation in the hyperaccumulator Astragalus racemosus and the non-accumulator Astragalus convallarius. The fungi, Alternaria astragali (A3) and Fusarium acuminatum (F30), were previously isolated from Astragalus hyperaccumulator rhizosphere. A3-inoculation enhanced growth of A. racemosus yet inhibited growth of A. convallarius. Selenium treatment negated these effects. F30 reduced shoot-to-root Se translocation in A. racemosus. X-ray microprobe analysis showed no differences in Se speciation between inoculation groups. The Astragalus species differed in Se localization and speciation. A. racemosus root-Se was distributed throughout the taproot and lateral root and was 90 % organic in the lateral root. The related element sulfur (S) was present as a mixture of organic and inorganic forms in the hyperaccumulator. Astragalus convallarius root-Se was concentrated in the extreme periphery of the taproot. In the lateral root, Se was exclusively in the vascular core and was only 49 % organic. These findings indicate differences in Se assimilation between the two species and differences between Se and S speciation in the hyperaccumulator. The finding that fungi can affect translocation may have applications in phytoremediation and biofortification. PMID:23117393

  3. Quantitative micro-PIXE comparison of elemental distribution in Ni-hyperaccumulating and non-accumulating genotypes of Senecio coronatus

    NASA Astrophysics Data System (ADS)

    Mesjasz-Przybyłowicz, J.; Przybyłowicz, W. J.; Prozesky, V. M.; Pineda, C. A.

    1997-07-01

    The Ni hyperaccumulator, plant species Senecio coronatus (Thunb.) Harv., Asteraceae is an example of plant adaptation mechanisms to different ecological conditions. This widespread species can inter alia be found on serpentine outcrops and the genotypes growing in serpentine soils show different ways of adaptation. The populations from two distant localities take up and translocate Ni in concentrations which are normally phytotoxic, while plants growing on a different site, in the vicinity of another hyperaccumulating species, absorb amounts which are typical for most of the plants found on serpentine soils. The NAC nuclear microprobe was used to compare the distribution of Ni and other elements in selected organs and cells with simultaneous use of PIXE and proton BackScattering (BS). Quantitative maps of stems showed large differences in concentrations and distributions of major and trace elements. In hyperaccumulating genotypes Ni is present everywhere within stem tissues, but the highest concentrations were found in the epidermis, cortex and phloem. In non-accumulating plants Ni was concentrated in the phloem. In the leaf epidermis Ni was concentrated in the cell walls for both accumulating and non-accumulating plants. These results suggest that biochemical diversity is more than morphological, because investigated genotypes belong to the same taxon.

  4. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.

    PubMed

    Sun, Yuebing; Zhou, Qixing; Diao, Chunyan

    2008-03-01

    Remediation of heavy metal contaminated sites using hyperaccumulators presents a promising alternative to current environmental methodologies. In the pot-culture experiment, the effects of Cd, and Cd-As on the growth and its accumulation in the Cd-hyperaccumulator (Solanum nigrum L.) were determined. No reduction in plant height and shoot dry biomass was noted when the plants were grown at Cd concentration of 1.0. The plant can be classified as a Cd-hyperaccumulator. Growing in the presence of 10 mg/kg Cd and 50 mg/kg As, the plant height and shoot dry matter yields did not decrease significantly (p>0.05) compared to that at 10 mg/kg Cd, however the stem Cd content increased by 28%. It was also observed that S. nigrum used exclusion strategy to reduce As uptake in the roots and restricted translocation into the shoots, resulting in As contents of the plant being root>leaf>stem>seed. The Cd accumulation capacity coupled with its relatively high As tolerance ability could make it useful for phytoremediation of sites co-contaminated by Cd and As. PMID:17719774

  5. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-10-15

    Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5-50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola. PMID:23959253

  6. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    NASA Astrophysics Data System (ADS)

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-04-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of ‑0.70‰ to ‑0.22‰ in Ricinus communis and ‑0.51‰ to ‑0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology.

  7. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    PubMed Central

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-01-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of −0.70‰ to −0.22‰ in Ricinus communis and −0.51‰ to −0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology. PMID:27076359

  8. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum.

    PubMed

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-01-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ(114/110)Cdorgans-solution) of -0.70‰ to -0.22‰ in Ricinus communis and -0.51‰ to -0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology. PMID:27076359

  9. Transcriptional regulation of metal transport genes and mineral nutrition during acclimation to cadium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated changes in mineral nutrient uptake and cellular expression levels of metal transporter genes using the Cd/Zn hyperaccumulator Thlaspi caerulescens. We analyzed those changes genesis under different long-term (one year) treatments of the plants with zinc and cadmium using quantitative...

  10. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we conducted a detailed analysis of the ZIP family transporter, NcZNT1, in the Zn/Cd hyperaccumulating plant species, Noccaea caerulescens, formerly known as Thlaspi caerulescens. NcZNT1 was previously suggested to be the primary root Zn/Cd uptake transporter. Both a characterization ...

  11. Reactive oxygen species metabolism during the cadmium hyperaccumulation of a new hyperaccumulator Sedum alfredii (Crassulaceae).

    PubMed

    Zhang, Zhong-chun; Qiu, Bao-Sheng

    2007-01-01

    Sedum alfredii Hance, a newly discovered hyperaccumulator, could serve as a good material for phytoremediation of Cd polluted sites. Malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidases (catalase (CAT); superoxide dismutase (SOD); peroxidase (POD)) in the leaf were determined when S. alfredii was treated for 15 d with various CdCl2 concentrations ranging from 0 to 800 micromol/L. The results showed that the production rate of 2',7'-dichlorofluorescein (DCF), which is an indicator of ROS level, reached up to the maximum at 400 micromol/L CdCl2 and then declined with the increase of CdCl2 concentration, while MDA accumulation tended to increase. CAT activity was significantly inhibited at all tested CdCl2 concentrations and SOD activity was sharply suppressed at 800 micromol/L CdCl2. However, the enhancement of POD activity was observed when CdCl2 concentration was higher than 400 micromol/L. In addition, its activity increased when treated with 600 micromol/L CdCl2 for more than 5 d. When sodium benzoate, a free radical scavenger, was added, S. alfredii was a little more sensitive to Cd toxicity than that exposed to Cd alone, and the Cd accumulation tended to decline with the increase of sodium benzoate concentration. It came to the conclusions that POD played an important role during Cd hyperaccumulation, and the accumulation of ROS induced by Cd treatment might be involved in Cd hyperaccumulation. PMID:18232224

  12. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. PMID:24675367

  13. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray.

    PubMed

    Chiang, Huai-Chih; Lo, Jing-Chi; Yeh, Kuo-Chen

    2006-11-01

    To survive in variable soil conditions, plants possess homeostatic mechanisms to maintain a suitable concentration of essential heavy metal ions. Certain plants, inhabiting heavy metal-enriched or -contaminated soil, thus are named hyperaccumulators. Studying hyperaccumulators has great potential to provide information for phytoremediation. To better understand the hyperaccumulating mechanism, we used an Arabidopsis cDNA microarray to compare the gene expression of the Zn/Cd hyperaccumulator Arabidopsis halleri and a nonhyperaccumulator, Arabidopsis thaliana. By analyzing the expression of metal-chelators, antioxidation-related genes, and transporters, we revealed a few novel molecular features. We found that metallothionein 2b and 3, APX and MDAR4 in the ascorbate-glutathione pathway, and certain metal transporters in P(1B)-type ATPase, ZIP, Nramp, and CDF families, are expressed at higher levels in A. halleri than in A. thaliana. We further validated that the enzymatic activity of ascorbate peroxidase and class III peroxidases are highly elevated in A. halleri. This observation positively correlates with the higher ability of A. halleri to detoxify H2O2 produced by cadmium and paraquat treatments. We thus suggest that higher peroxidase activities contribute to the heavy metal tolerance in A. halleri by alleviating the ROS damage. We have revealed genes that could be candidates for the future engineering of plants with large biomass for use in phytoremediation. PMID:17144312

  14. Nickel, Zn and Cd localisation in seeds of metal hyperaccumulators using μ-PIXE spectroscopy

    NASA Astrophysics Data System (ADS)

    Kachenko, Anthony G.; Bhatia, Naveen P.; Siegele, Rainer; Walsh, Kerry B.; Singh, Balwant

    2009-06-01

    Metal hyperaccumulators are a rare group of plant species that accumulate exceptionally high concentrations of metals in above ground tissues without showing symptoms of phytotoxicity. Quantitative localisation of the accumulated metals in seed tissues is of considerable interest to help understand the eco-physiology of these unique plant species. We investigated the spatial localisation of metals within seeds of Ni hyperaccumulating Hybanthus floribundus subsp. adpressus, H. floribundus subsp. floribundus and Pimelea leptospermoides and dual-metal (Cd and Zn) hyperaccumulating Thlaspi caerulescens using quantitative micro-proton induced X-ray emission (μ-PIXE) spectroscopy. Intact seeds were hand-sectioned, sandwiched between Formvar films and irradiated using the 3 MeV high energy heavy ion microprobe at ANSTO. Elemental maps of whole H. floribundus subsp. adpressus seeds showed an average Ni concentration of 5.1 × 10 3 mg kg -1 dry weight (DW) with highest Ni concentration in cotyledonary tissues (7.6 × 10 3 mg kg -1 DW), followed by the embryonic axis (4.4 × 10 3 mg kg -1 DW). Nickel concentration in whole H. floribundus subsp. floribundus seeds was 3.5 × 10 2 mg kg -1 DW without a clear pattern of Ni localisation. The average Ni concentration in whole P. leptospermoides seeds was 2.6 × 10 2 mg kg -1 DW, and Ni was preferentially localised in the embryonic axis (4.3 × 10 2 mg kg -1 DW). In T. caerulescens, Cd concentrations were similar in cotyledon (4.5 × 10 3 mg kg -1 DW) and embryonic axis (3.3 × 10 3 mg kg -1 DW) tissues, whereas Zn was highest in cotyledonary tissues (1.5 × 10 3 mg kg -1 DW). In all species, the presence of the accumulated metal within the cotyledonary and embryonic axis tissues indicates that the accumulated metal was able to move apoplastically within the seed.

  15. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator--Lonicera japonica Thunb.

    PubMed

    Liu, Zhouli; He, Xingyuan; Chen, Wei; Yuan, Fenghui; Yan, Kun; Tao, Dali

    2009-09-30

    Phytoremediation using hyperaccumulators is a promising technique of removing soil pollutants. In the study, growth responses, cadmium (Cd) accumulation capability and physiological mechanisms of Lonicera japonica Thunb. under Cd stress were investigated. Exposed to 5 and 10 mg L(-1) Cd, the plants did not show any visual symptoms, furthermore, the height, dry biomass of leaves, roots and total and the chlorophyll (CHL) content were obtained different grade increase. When the concentration of Cd was up to 50 mg L(-1), the height, dry biomass of leaves and roots had not significant differences compared with the control. The indexes of tolerance (IT) were all above 0.8. The maintenance of high superoxide dismutase (SOD) and catalase (CAT) activities was observed along with the increased Cd concentration, suggesting strong internal detoxification mechanisms inside plant cells. After 21 days exposure to 25 mg L(-1) Cd, stem and shoot Cd concentrations reached 344.49+/-0.71 and 286.12+/-9.38 microg g(-1) DW, respectively and the plant had higher bioaccumulation coefficient (BC) and translocation factor (TF). According to these results, it was shown L. japonica had strong tolerance and accumulation capability to Cd, therefore it is a potential Cd-hyperaccumulator. PMID:19380199

  16. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens

    PubMed Central

    Visioli, Giovanna; Vamerali, Teofilo; Mattarozzi, Monica; Dramis, Lucia; Sanangelantoni, Anna M.

    2015-01-01

    This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM) and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest indole acetic acid production and 1-aminocyclopropane-1-carboxylic acid-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal, and translocation of Ni, together with that of Fe, Co, and Cu. Bacteria of both strains densely colonized the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass, and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials in multiple metal-contaminated sites, with possible extension to non-hyperaccumulator plants. PMID:26322074

  17. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil

    PubMed Central

    Broadhurst, Catherine L.; Chaney, Rufus L.

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg−1 Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg−1 Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg−1. A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  18. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil.

    PubMed

    Broadhurst, Catherine L; Chaney, Rufus L

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg(-1) Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg(-1) Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg(-1). A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  19. Manganese uptake and interactions with cadmium in the hyperaccumulator--Phytolacca Americana L.

    PubMed

    Peng, Kejian; Luo, Chunling; You, Wuxin; Lian, Chunlan; Li, Xiangdong; Shen, Zhenguo

    2008-06-15

    In the present study, the accumulation of Mn and other metals by Phytolacca Americana L. from contaminated soils in Hunan Province, South China, was investigated. Results showed that the average concentrations of Mn in the leaves and roots reached 2198 and 80.4 mg kg(-1) (dry weight), respectively, with a maximum 13,400 mg kg(-1) in the leaves. A significant correlation was found between Mn concentrations in the plant leaves and those in the corresponding soils. Hydroponic experiments were also conducted to study the Cd uptake ability and interactions between Mn and Cd in the plant. It was found that P. americana hyperaccumulated not only Mn, but also Cd in the leaves. In the presence of Cd, adding Mn to the solution significantly improved the plant growth and reduced the concentrations of Cd in all organs of the plant. PMID:18068296

  20. How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata.

    PubMed

    Du, Rui-Jun; He, Er-Kai; Tang, Ye-Tao; Hu, Peng-Jie; Ying, Rong-Rong; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-01-01

    In this paper, the effects of indole-3-acetic acid (IAA) and/or ethylenediaminetetraacetic acid (EDTA) on lead uptake by a Zn/Cd hyperaccumulator Picris divaricata were studied. P. divaricata responded to Pb by better root system and increased biomass in presence of phytohormone IAA, which was able to reduce the inhibiting effects of Pb on transpiration without reducing the uptake of Pb The application of 100 microM IAA increased plant transpiration rate by about 20% and Pb concentration in leaves by about 37.3% as compared to treatment exposed to Pb alone. The enhanced phytoextraction efficiency could be attributed to the mechanisms played by IAA through alleviating Pb toxicity, creating better root system and plant biomass, promoting a higher transpiration rate as well as regulating the level of nutrient elements. On the contrary, inefficiency of phytoextraction was found with EDTA or the combination of IAA and EDTA probably because most Pb was in the form of Pb-EDTA complex which blocked the uptake by P. divaricata. The present study demonstrated that IAA was able to enhance the phytoextraction of Pb by Zn/Cd hyperaccumulator P. divaricata, providing a feasible method for the phytoremediation of polymetallic contaminated soils. PMID:21972569

  1. Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo.

    PubMed

    Mesjasz-Przybylowicz, Jolanta; Przybylowicz, Wojciech; Barnabas, Alban; van der Ent, Antony

    2016-03-01

    Phyllanthus balgooyi (Phyllanthaceae), one of > 20 nickel (Ni) hyperaccumulator plant species known in Sabah (Malaysia) on the island of Borneo, is remarkable because it contains > 16 wt% Ni in its phloem sap, the second highest concentration of Ni in any living material in the world (after Pycnandra acuminata (Sapotaceae) from New Caledonia with 25 wt% Ni in latex). This study focused on the tissue-level distribution of Ni and other elements in the leaves, petioles and stem of P. balgooyi using nuclear microprobe imaging (micro-PIXE). The results show that in the stems and petioles of P. balgooyi Ni concentrations were very high in the phloem, while in the leaves there was significant enrichment of this element in the major vascular bundles. In the leaves, cobalt (Co) was codistributed with Ni, while the distribution of manganese (Mn) was different. The highest enrichment of calcium (Ca) in the stems was in the periderm, the epidermis and subepidermis of the petiole, and in the palisade mesophyll of the leaf. Preferential accumulation of Ni in the vascular tracts suggests that Ni is present in a metabolically active form. The elemental distribution of P. balgooyi differs from those of many other Ni hyperaccumulator plant species from around the world where Ni is preferentially accumulated in leaf epidermal cells. PMID:26508435

  2. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri.

    PubMed

    Sarret, Géraldine; Saumitou-Laprade, Pierre; Bert, Valérie; Proux, Olivier; Hazemann, Jean-Louis; Traverse, Agnès; Marcus, Matthew A; Manceau, Alain

    2002-12-01

    The chemical forms of zinc (Zn) in the Zn-tolerant and hyperaccumulator Arabidopsis halleri and in the non-tolerant and nonaccumulator Arabidopsis lyrata subsp. petraea were determined at the molecular level by combining chemical analyses, extended x-ray absorption spectroscopy (EXAFS), synchrotron-based x-ray microfluorescence, and muEXAFS. Plants were grown in hydroponics with various Zn concentrations, and A. halleri specimens growing naturally in a contaminated site were also collected. Zn speciation in A. halleri was independent of the origin of the plants (contaminated or non-contaminated) and Zn exposure. In aerial parts, Zn was predominantly octahedrally coordinated and complexed to malate. A secondary organic species was identified in the bases of the trichomes, which contained elevated Zn concentrations, and in which Zn was tetrahedrally coordinated and complexed to carboxyl and/or hydroxyl functional groups. This species was detected thanks to the good resolution and sensitivity of synchrotron-based x-ray microfluorescence and muEXAFS. In the roots of A. halleri grown in hydroponics, Zn phosphate was the only species detected, and is believed to result from chemical precipitation on the root surface. In the roots of A. halleri grown on the contaminated soil, Zn was distributed in Zn malate, Zn citrate, and Zn phosphate. Zn phosphate was present in both the roots and aerial part of A. lyrata subsp. petraea. This study illustrates the complementarity of bulk and spatially resolved techniques, allowing the identification of: (a) the predominant chemical forms of the metal, and (b) the minor forms present in particular cells, both types of information being essential for a better understanding of the bioaccumulation processes. PMID:12481065

  3. Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla.

    PubMed

    Song, Xueying; Hu, Xiaojun; Ji, Puhui; Li, Yushuang; Chi, Guangyu; Song, Yufang

    2012-04-01

    A field study was conducted to evaluate the phytoremediation efficiency of cadmium (Cd) contaminated soil utilizing the Cd hyperaccumulator Beta vulgaris L. var. cicla during one growing season (about 2 months) on farmland in Zhangshi Irrigation Area, the representative wastewater irrigation area in China. Results showed that B. vulgaris L. var. cicla is a promising plant in the phytoremediation of Cd contaminated farmland soil. The maximum of Cd phytoremediation efficiency by B. vulgaris L. var. cicla reached 144.6 mg/ha during one growing season. Planting density had a significant effect on the plant biomass and the overall Cd phytoremediation efficiency (p < 0.05). The amendment of organic manure promoted the biomass increase of B. vulgaris L. var. cicla (p < 0.05) but inhibited the Cd phytoremediation efficiency. PMID:22286610

  4. Characterization of Zinc and Cadmium Hyperaccumulation in Three Noccaea (Brassicaceae) Populations from Non-metalliferous Sites in the Eastern Pyrenees.

    PubMed

    Martos, Soledad; Gallego, Berta; Sáez, Llorenç; López-Alvarado, Javier; Cabot, Catalina; Poschenrieder, Charlotte

    2016-01-01

    The Southern slope of the Pyrenees is the meridional limit for the distribution of several Noccaea populations. However, the systematic description of these populations and their hyperaccumulation mechanisms are not well established. Morphological and genetic analysis (ITS and 3 chloroplast regions) were used to identify Noccaea populations localized on non-metallicolous soils during a survey in the Catalonian Pyrenees. Cd and Zn concentrations were analyzed in soils and plants both sampled in the field and grown hydroponically. The expression of selected metal transporter genes was assessed by quantitative PCR. The populations were identified as Noccaea brachypetala (Jord.) F.K. Mey by conspicuous morphological traits. Principal component analysis provided a clear separation among N. brachypetala, Noccaea caerulescens J. Presl & C. Presl and Noccaea occitanica (Jord.) F.K. Mey., three Noccaea species reported in the Pyrenees. Contrastingly, ITS and cpDNA analyses were unable to clearly differentiate these taxa. Differences in the expression of the metal transporter genes HMA3, HMA4, and MTP1 between N. caerulescens and N. brachypetala, and those amongst the N. brachypetala populations suggest differences in the strategies for handling enhanced Cd and Zn availability. This is the first report demonstrating Cd and Zn hyperaccumulation by N. brachypetala both in the field and in hydroponics. This comprehensive study based on taxonomic, molecular, and physiological data allows both the correct identification of this species and the characterization of population differences in hyperaccumulation and tolerance of Zn and Cd. PMID:26904085

  5. Characterization of Zinc and Cadmium Hyperaccumulation in Three Noccaea (Brassicaceae) Populations from Non-metalliferous Sites in the Eastern Pyrenees

    PubMed Central

    Martos, Soledad; Gallego, Berta; Sáez, Llorenç; López-Alvarado, Javier; Cabot, Catalina; Poschenrieder, Charlotte

    2016-01-01

    The Southern slope of the Pyrenees is the meridional limit for the distribution of several Noccaea populations. However, the systematic description of these populations and their hyperaccumulation mechanisms are not well established. Morphological and genetic analysis (ITS and 3 chloroplast regions) were used to identify Noccaea populations localized on non-metallicolous soils during a survey in the Catalonian Pyrenees. Cd and Zn concentrations were analyzed in soils and plants both sampled in the field and grown hydroponically. The expression of selected metal transporter genes was assessed by quantitative PCR. The populations were identified as Noccaea brachypetala (Jord.) F.K. Mey by conspicuous morphological traits. Principal component analysis provided a clear separation among N. brachypetala, Noccaea caerulescens J. Presl & C. Presl and Noccaea occitanica (Jord.) F.K. Mey., three Noccaea species reported in the Pyrenees. Contrastingly, ITS and cpDNA analyses were unable to clearly differentiate these taxa. Differences in the expression of the metal transporter genes HMA3, HMA4, and MTP1 between N. caerulescens and N. brachypetala, and those amongst the N. brachypetala populations suggest differences in the strategies for handling enhanced Cd and Zn availability. This is the first report demonstrating Cd and Zn hyperaccumulation by N. brachypetala both in the field and in hydroponics. This comprehensive study based on taxonomic, molecular, and physiological data allows both the correct identification of this species and the characterization of population differences in hyperaccumulation and tolerance of Zn and Cd. PMID:26904085

  6. Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments.

    PubMed

    Freeman, John L; Bañuelos, Gary S

    2011-11-15

    Genetic variation in salt (Na(2)SO(4), NaCl) and boron (B) tolerance among four ecotypes of the selenium (Se) hyperaccumulator Stanleya pinnata (Pursh) Britton was utilized to select tolerant genotypes capable of phytoremediating Se from salt, B, and Se-laden agricultural drainage sediment. The few individual salt/B tolerant genotypes were successfully selected from among a large population of highly salt/B sensitive seedlings. The distribution, hyperaccumulation, and volatilization of Se were then examined in selected plants capable of tolerating the high salt/B laden drainage sediment. Salt/B tolerant genotypes from each of the four ecotypes had mean Se concentrations ranging from 2510 ± 410 to 1740 ± 620 in leaves and 3180 ± 460 to 2500 ± 1060 in seeds (μg Se g(-1) DW ± SD), while average daily Se volatilization rates ranged from 722 ± 375 to 1182 ± 575 (μg Se m(-2) d(-1) ± SD). After two growing seasons (∼18 months), we estimated that hyperaccumulation and volatilization of Se by tolerant S. pinnata genotypes and their associated microbes can remove approximately 30% of the total soil Se in 0-30 cm sediment. The salt/B tolerant S. pinnata genotypes selected and characterized herein represent promising new tools for the successful phytoremediation of Se from salt/B and Se-laden agricultural drainage sediments. PMID:21988205

  7. Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method.

    PubMed

    Zhang, Xingfeng; Xia, Hanping; Li, Zhi'an; Zhuang, Ping; Gao, Bo

    2011-05-15

    A new method, soil seed bank-metal concentration gradient method was used to screen for heavy metal hyperaccumulators, and Solanum photeinocarpum was found to be a potential Cd-hyperaccumulator. The chlorophyll content and photosynthetic rate of S. photeinocarpum were not affected by Cd pollution, while leaf stomas and transpiration rate were significantly decreased by more than 60 mg kg(-1) Cd, and leaf water use efficiency and shoot water content were significantly increased by more than 60 or 100 mg kg(-1) Cd, respectively. In the seed bank-Cd concentration gradient experiment, the shoot biomass of S. photeinocarpum showed no significant reduction with soil Cd treatment as high as 100 mg kg(-1), but the root biomass was significantly reduced by more than 60 mg kg(-1) Cd contamination. Plant tissues accumulated 544, 132 and 158 mg kg(-1) Cd in roots, stems and leaves, respectively, and extracted 157 and 195 μg Cd plant(-1) in roots and shoots at 100 mg kg(-1) Cd in soil, respectively. In the transplanting-Cd concentration gradient experiment, plant shoot biomass and root biomass were unaffected by soil Cd as high as 60 mg kg(-1). Plant tissues accumulated 473, 215 and 251 mg kg(-1) Cd in roots, stems and leaves, respectively, and extracted 176 and 787 μg Cd plant(-1) in roots and shoots at 60 mg kg(-1) soil Cd, respectively. Soil seed bank-metal concentration gradient method could be an effective method for the screening of hyperaccumulators. PMID:21397392

  8. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens

    SciTech Connect

    Nedelkoska, T.V.; Doran, P.M.

    2000-03-05

    Hairy roots were used to investigate cadmium uptake by Thlaspi caerulescens, a metal hyperaccumulator plant with potential applications in phytoremediation and phytomining. Experiments were carried out in nutrient media under conditions supporting root growth. Accumulation of Cd in short-term (9-h) experiments varied with initial medium pH and increased after treating the roots with H{sup +}-ATPase inhibitor. The highest equilibrium Cd content measured in T. caerulescens roots was 62,800 {micro}g g{sup {minus}1} dry weight, or 6.3% dry weight, at a liquid Cd concentration of 3,710 ppm. Cd levels in live T. caerulescens roots were 1.5- to 1.7-fold those in hairy roots of nonhyperaccumulator species exposed to the same Cd concentration, but similar to the Cd content of auto-claved T. caerulescens roots. The ability to grow at Cd concentrations of up to 100 ppm clearly distinguished T. caerulescens hairy roots from the nonhyperaccumulators. The specific growth rate of T. caerulescens roots was essentially unaffected by 20 to 50 ppm Cd in the culture medium; in contrast, N. tabacum roots turned dark brown at 20 ppm and growth was negligible. Up to 10,600 {micro}g g{sup {minus}1} dry weight Cd was accumulated by growing T. caerulescens hairy roots. Measurement of Cd levels in while roots and in the cell wall fraction revealed significant differences in the responses of T. caerulescens and N. tabacum roots to 20 ppm Cd. Most metal was transported directly into the symplasm of N. tabacum roots within 3 days of exposure; in contrast, T. caerulescens roots stored virtually all of their Cd in the wall fraction for the first 7 to 10 days. This delay in transmembrane uptake may represent an important defensive strategy against Cd poisoning in T. caerulescens, allowing time for activation of intracellular mechanisms for heavy metal detoxification.

  9. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils.

    PubMed

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2015-01-01

    The ability of hyperaccumulator oilcake manure as compared to chelates was investigated by growing Calendula officinalis L for phytoremediation of cadmium and lead contaminated alluvial soil. The combinatorial treatment T6 [2.5 g kg(-1) oilcake manure+5 mmol kg(-1) EDDS] caused maximum cadmium accumulation in root, shoot and flower up to 5.46, 4.74 and 1.37 mg kg(-1) and lead accumulation up to 16.11, 13.44 and 3.17 mg kg(-1), respectively at Naini dump site, Allahabad (S3). The treatment showed maximum remediation efficiency for Cd (RR=0.676%) and Pb (RR=0.202%) at Mumfordganj contaminated site (S2). However, the above parameters were also observed at par with the treatment T5 [2.5 g kg(-1) oilcake manure +2 g kg(-1) humic acid]. Applied EDDS altered chlorophyll-a, chlorophyll-b, and carotene contents of plants while application of oilcake manure enhanced their contents in plant by 3.73-8.65%, 5.81-17.65%, and 7.04-17.19%, respectively. The authors conclude that Calendula officinalis L has potential to be safely grown in moderately Cd and Pb-contaminated soils and application of hyperaccumulator oilcake manure boosts the photosynthetic pigments of the plant, leading to enhanced clean-up of the cadmium and lead-contaminated soils. Hence, the hyperaccumulator oilcake manure should be preferred over chelates for sustainable phytoremediation through soil-plant rhizospheric process. PMID:25397984

  10. Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii.

    PubMed

    Liu, Wuxing; Zhang, Chengjun; Hu, Pengjie; Luo, Yongming; Wu, Longhua; Sale, Peter; Tang, Caixian

    2016-01-01

    Using hyperaccumulator plants is an important method to remove heavy metals from contaminated land. Carpobrotus rossii, a newly found Cd hyperaccumulator, has shown potential to remediate Cd-contaminated soils. This study examined the effect of nitrogen forms on Cd phytoextraction by C. rossii. The plants were grown for 78 days in an acid soil spiked with 20 mg Cd kg(-1) and supplied with (NH4)2SO4, Ca(NO3)2, urea, and chicken manure as nitrogen (N) fertilizers. Nitrification inhibitor dicyandiamide (DCD) was applied to maintain the ammonium (NH4(+)) form. Nitrogen fertilization increased shoot biomass but decreased root biomass with the highest shoot biomass occurring in the manure treatment. Compared to the no-N control, urea application did not affect shoot Cd concentration, but increased Cd content by 17% due to shoot biomass increase. Chicken manure significantly decreased CaCl2-extractable Cd in soil, and the Cd concentration and total Cd uptake in the plant. Rhizosphere pH was the highest in the manure treatment and the lowest in the NH4(+) treatments. The manure and nitrate (NO3(-)) treatments tended to have higher rhizosphere pH than their respective bulk soil pH, whereas the opposite was observed for urea and NH4(+) treatments. Furthermore, the concentrations of extractable Cd in soil and Cd in the plant correlated negatively with rhizosphere pH. The study concludes that urea significantly enhanced the Cd phytoaccumulation by C. rossii while chicken manure decreased Cd availability in soil and thus the phytoextraction efficiency. PMID:26358206

  11. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri.

    PubMed

    Zhao, F J; Jiang, R F; Dunham, S J; McGrath, S P

    2006-01-01

    Arabidopsis halleri is a well-known zinc (Zn) hyperaccumulator, but its status as a cadmium (Cd) hyperaccumulator is less certain. Here, we investigated whether A. halleri can hyperaccumulate Cd and whether Cd is transported via the Zn pathway. Growth and Cd and Zn uptake were determined in hydroponic experiments with different Cd and Zn concentrations. Short-term uptake and root-to-shoot transport were measured with radioactive 109Cd and 65Zn labelling. A. halleri accumulated > 1000 mg Cd kg(-1) in shoot dry weight at external Cd concentrations >or= 5 microm, but the short-term uptake rate of 109Cd was much lower than that of 65Zn. Zinc inhibited short-term 109Cd uptake kinetics and root-to-shoot translocation, as well as long-term Cd accumulation in shoots. Uptake of 109Cd and 65Zn were up-regulated, respectively, by low iron (Fe) or Zn status. A. halleri was much less tolerant to Cd than to Zn. We conclude that A. halleri is able to hyperaccumulate Cd partly, at least, through the Zn pathway, but the mechanisms responsible for cellular Zn tolerance cannot detoxify Cd effectively. PMID:17096791

  12. Lhcb2 gene expression analysis in two ecotypes of Sedum alfredii subjected to Zn/Cd treatments with functional analysis of SaLhcb2 isolated from a Zn/Cd hyperaccumulator.

    PubMed

    Zhang, Min; Senoura, Takeshi; Yang, Xiaoe; Chao, Yueen; Nishizawa, Naoko K

    2011-09-01

    The Lhcb2 gene from hyperaccumulator Sedum alfredii was up-regulated more than three-fold while the non-hyperaccumulator accumulated one or two-fold higher amount of the mRNA than control plants under different concentrations of Cd(2+) for 24 h. Lhcb2 expression was up-regulated more than five-fold in a non-hyperaccumulator S. alfredii when exposed to 2 μM Cd(2+) or 50 μM Zn(2+) for 8 d and the hyperaccumulator had over two-fold more mRNA abundance than the control plants. Over-expression of SaLhcb2 increased the shoot biomass by 14-41% and the root biomass by 21-57% without Cd(2+) treatment. Four transgenic tobacco lines (L5, L7, L10 and L11) possessed higher shoot biomass than WT plants with Cd(2+). Four transgenic lines (L7, L8, L10 and L11) accumulated 6-35% higher Cd(2+) amounts in shoots than the wild type plants. PMID:21516315

  13. A Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress

    PubMed Central

    Xie, Qingqing; Li, Zhenji; Yang, Limin; Lv, Jing; Jobe, Timothy O.; Wang, Qiuquan

    2015-01-01

    Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification. PMID:26327118

  14. Glucosinolate profiles change during the life cycle and mycorrhizal colonization in a Cd/Zn hyperaccumulator Thlaspi praecox (Brassicaceae).

    PubMed

    Pongrac, Paula; Vogel-Mikus, Katarina; Regvar, Marjana; Tolrà, Roser; Poschenrieder, Charlotte; Barceló, Juan

    2008-08-01

    Thlaspi praecox Wulfen (Brassicaceae) is a perennial Cd/Zn hyperaccumulating plant species that forms functional arbuscular mycorrhizal (AM) symbiosis. Glucosinolates (GS) were studied in different organs of field-collected T. praecox at differing plant developmental stages. Additionally, AM colonization was recorded. Total GS concentrations and profiles of nine individual GS varied during the plant life cycle. Novel individual GS that were related to specific developmental phases, mainly to flowering and seed production, were identified. The highest total GS and sinalbin concentrations in rosette leaves were found in the vegetative phase, possibly contributing to protection of young, palatable leaves. The lowest were found in roots during the flowering and the seeding phases. Increased total GS concentrations in roots and enhanced aliphatic GS, especially glucobrassicanapin, in the senescence phase may protect roots from herbivory during winter and early spring. The presence of glucotropaeolin and the absence of glucobrassicanapin in the flowering phase coincided with peak AM colonization. This is the first report on GS profiles in an AM and metal-hyperaccumulating plant. PMID:18584257

  15. Cadmium tolerance and accumulation of Althaea rosea Cav. and its potential as a hyperaccumulator under chemical enhancement.

    PubMed

    Liu, Jia Nv; Zhou, Qi Xing; Wang, Song; Sun, Ting

    2009-02-01

    The role of ornamental plants has drawn much attention as the urban pollution levels exacerbate. Althaea rosea Cav. had showed its strong tolerance and accumulation ability of Cd in our previous work, thus, the effects of ethylenediamine triacetic acid (EDTA), ethylenegluatarotriacetic acid (EGTA) and sodium dodecyl sulfate (SDS) on its Cd phytoremediation capacity were further investigated in this work. It reconfirmed that the species had strong tolerance and accumulation ability of Cd. Particularly, the species can be regarded as a potential Cd-hyperaccumulator through applying chemical agents. However, different chelators and surfactants had great differences in affecting hyperaccumulating characteristics of the species. EGTA and SDS could not only increase the dry biomass of the plants, but also promote Cd accumulation in shoots and roots. On the contrary, EDTA was toxic to the species by restraining the growth of plants, although it could promote Cd accumulation in shoots and roots of the plants to a certain extent. Thus, EGTA and SDS were effective in enhancing phytoremediation with Althaea rosea Cav. for Cd contaminated soils, while EDTA is ineffective in this regard. PMID:18259884

  16. Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead.

    PubMed

    Zhang, Zhongchun; Gao, Xiang; Qiu, Baosheng

    2008-02-01

    Phytochelatins (PCs) are known to play an essential role in the heavy metal detoxification of some higher plants and fungi by chelating heavy metals. However, three recent papers reported that no PCs could be detected in the hyperaccumulator Sedum alfredii Hance upon cadmium, lead or zinc treatment, respectively. In this paper, PC synthesis was assayed again in the mine population of S. alfredii with the help of reversed phase high-performance liquid chromatography (HPLC), HPLC-mass spectrometry, and HPLC-tandem mass spectrometry. Our data showed that PC formation could be induced in the leaf, stem and root tissues of S. alfredii upon exposure to 400 microM cadmium, and only in the stem and root when exposed to 700 microM lead. However, no PCs were found in any part of S. alfredii when it was subjected to exposure to 1600 microM zinc. PMID:18023461

  17. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens.

    PubMed

    Deniau, A X; Pieper, B; Ten Bookum, W M; Lindhout, P; Aarts, M G M; Schat, H

    2006-09-01

    Thlaspi caerulescens (Tc; 2n = 14) is a natural Zn, Cd and Ni hyperaccumulator species belonging to the Brassicaceae family. It shares 88% DNA identity in the coding regions with Arabidopsis thaliana (At) (Rigola et al. 2006). Although the physiology of heavy metal (hyper)accumulation has been intensively studied, the molecular genetics are still largely unexplored. We address this topic by constructing a genetic map based on AFLP markers and expressed sequence tags (ESTs). To establish a genetic map, an F(2) population of 129 individuals was generated from a cross between a plant from a Pb/Cd/Zn-contaminated site near La Calamine, Belgium, and a plant from a comparable site near Ganges (GA), France. These two accessions show different degrees of Zn and, particularly, Cd accumulation. We analyzed 181 AFLP markers (of which 4 co-dominant) and 13 co-dominant EST sequences-based markers and mapped them to seven linkage groups (LGs), presumably corresponding to the seven chromosomes of T. caerulescens. The total length of the genetic map is 496 cM with an average density of one marker every 2.5 cM. This map was used for Quantitative Trait Locus (QTL) mapping in the F(2). For Zn as well as Cd concentration in root we mapped two QTLs. Three QTLs and one QTL were mapped for Zn and Cd concentration in shoot, respectively. These QTLs explain 23.8-60.4% of the total variance of the traits measured. We found only one common locus (LG6) for Zn and Cd (concentration in root) and one common locus for shoot and root concentrations of Zn (LG1) and of Cd (LG3). For all QTLs, the GA allele increased the trait value except for two QTLs for Zn accumulation in shoot (LG1 and LG4) and one for Zn concentration in root (LG1). PMID:16850314

  18. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid* #

    PubMed Central

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of 109Cd increased significantly, and higher 109Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the 109Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  19. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid.

    PubMed

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-02-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of (109)Cd increased significantly, and higher (109)Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the (109)Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  20. Speciation and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence.

    PubMed

    Lu, Lingli; Liao, Xingcheng; Labavitch, John; Yang, Xiaoe; Nelson, Erik; Du, Yonghua; Brown, Patrick H; Tian, Shengke

    2014-11-01

    Differences in metal homeostasis among related plant species can give important information of metal hyperaccumulation mechanisms. Speciation and distribution of Zn were investigated in a hyperaccumulating population of Sedum alfredii by using extended X-ray absorption fine structure and micro-synchrotron X-ray fluorescence (μ-XRF), respectively. The hyperaccumulator uses complexation with oxygen donor ligands for Zn storage in leaves and stems, and variations in the Zn speciation was noted in different tissues. The dominant chemical form of Zn in leaves was most probably a complex with malate, the most prevalent organic acid in S. alfredii leaves. In stems, Zn was mainly associated with malate and cell walls, while Zn-citrate and Zn-cell wall complexes dominated in the roots. Two-dimensional μ-XRF images revealed age-dependent differences in Zn localization in S. alfredii stems and leaves. In old leaves of S. alfredii, Zn was high in the midrib, margin regions and the petiole, whereas distribution of Zn was essentially uniform in young leaves. Zinc was preferentially sequestered by cells near vascular bundles in young stems, but was highly localized to vascular bundles and the outer cortex layer of old stems. The results suggest that tissue- and age-dependent variations of Zn speciation and distribution occurred in the hyperaccumulator S. alfredii, with most of the Zn complexed with malate in the leaves, but a shift to cell wall- and citric acid-Zn complexes during transportation and storage in stems and roots. This implies that biotransformation in Zn complexation occurred during transportation and storage processes in the plants of S. alfredii. PMID:25306525

  1. Effect of microbial siderophore DFO-B on Cd accumulation by Thlaspi caerulescens hyperaccumulator in the presence of zeolite.

    PubMed

    Karimzadeh, Lotfollah; Heilmeier, Hermann; Merkel, Broder J

    2012-07-01

    Hyperaccumulators are grown in contaminated soil and water in order that contaminants are taken up and accumulated. Transport of metals from soil to plant is initially dependent on the solubility and mobility of metals in soil solution which is controlled by soil and metal properties and plant physiology. Complexation with organic and inorganic ligands may increase mobility and availability of metals for plants. In this work the influence of desferrioxamine-B (DFO-B), which naturally is produced in the rhizosphere, and zeolite on Cd accumulation in root and shoot of Thlaspi caerulescens (Cd hyperaccumulator) was investigated. Plants were grown in pots with clean quartz sand, amended with 1% zeolite; treatment solutions included 0, 10, and 100 μM Cd and 70 μM DFO-B. Addition of zeolite to the quartz sand significantly reduced Cd concentration in plant tissues and translocation from root to shoot. On contrary, DFO-B considerably enhanced Cd sorption by roots and translocation to aerial part of plants. Treating the plants with zeolite and DFO-B together at 10 μM Cd resulted in reduction of the bioaccumulation factor but enhancement of Cd translocation from root to shoot at the rate of 13%. In contrast, at 100 μM Cd in the solution both bioaccumulation and translocation factors decreased. Total metal accumulation as a key factor for evaluating the efficiency of phytoremediation was highly influenced by treatments. Presence of zeolite in pots significantly decreased total Cd accumulation by plants, whereas, DFO-B clearly enhanced it. PMID:22572166

  2. Non-invasive microelectrode cadmium flux measurements reveal the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii.

    PubMed

    Sun, Jian; Wang, Ruigang; Liu, Zhongqi; Ding, Yongzhen; Li, Tingqiang

    2013-02-15

    This study aims to determine the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator (HE) and non hyperaccumulator (NHE) ecotypes of Sedum alfredii using a non-invasive Cd-selective microelectrode. Compared with the NHE S. alfredii, the HE S. alfredii showed a higher Cd influx in the root apical region and root hair cells, as well as a significantly higher Cd efflux in the leaf petiole after root pre-treatment with cadmium chloride (CdCl(2)). Thus, HE S. alfredii has a higher capability for the translocation of absorbed Cd to the shoot. Moreover, the mesophyll tissues, isolated mesophyll protoplasts, and intact vacuoles from HE S. alfredii exhibited an instantaneous influx of Cd in response to CdCl(2) treatment with mean rates that are markedly higher than those from NHE S. alfredii. Therefore, the hyper-accumulating trait of HE S. alfredii is characterized by the rapid Cd uptake in specific root regions, including the apical region and root hair cells, as well as by the rapid root-to-shoot translocation and the highly efficient Cd-permeable transport system in the plasma membrane and mesophyll cell tonoplast. We suggest that the non-invasive Cd-selective microelectrode is an excellent method with a high degree of spatial resolution for the study of Cd transport at the tissue, cellular, and sub-cellular levels in plants. PMID:23261265

  3. Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils.

    PubMed

    Li, Tingqiang; Di, Zhenzhen; Yang, Xiaoe; Sparks, Donald L

    2011-09-15

    Pot experiments were conducted to investigate the changes of the dissolved organic matter (DOM) in the rhizosphere of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii and its effects on Zn and Cd sorption by soils. After planted with HE, soil pH in the rhizosphere reduced by 0.5-0.6 units which is consistent with the increase of DOM. The hydrophilic fractions (51%) in DOM from the rhizosphere of HE (HE-DOM) was much greater than NHE-DOM (35%). In the presence of HE-DOM, Zn and Cd sorption capacity decreased markedly in the following order: calcareous clay loam>neutral clay loam>acidic silty clay. The sorption isotherms could be well described by the Freundlich equation (R(2)>0.95), and the partition coefficient (K) in the presence of HE-DOM was decreased by 30.7-68.8% for Zn and 20.3-59.2% for Cd, as compared to NHE-DOM. An increase in HE-DOM concentration significantly reduced the sorption and increased the desorption of Zn and Cd by three soils. DOM derived from the rhizosphere of the hyperaccumulating ecotype of S. alfredii could significantly reduce metal sorption and increase its mobility through the formation of soluble DOM-metal complexes. PMID:21782330

  4. Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii.

    PubMed

    Qiu, Rong-Liang; Thangavel, Palaniswamy; Hu, Peng-Jie; Senthilkumar, Palaninaicker; Ying, Rong-Rong; Tang, Ye-Tao

    2011-02-28

    Potentilla griffithii Hook is a newly found hyperaccumulator plant capable of high tolerance and accumulation of Zn and Cd. We investigated the interactive effects between Cd and Zn on accumulation and vacuolar sequestration in P. griffithii. Stimulatory effect of growth was noted at 0.2 mM Cd and 1.25 and 2.5 mM Zn tested. Accumulation of Zn and Cd in roots, petioles and leaves were increased significantly with addition of these metals individually. However, the Zn supplement decreased root Cd accumulation but increased the concentration of Cd in petioles and leaves. The results from sub-cellular distribution showed that up to 94% and 70% of the total Zn and Cd in the leaves were present in the protoplasts, and more than 90% Cd and Zn in the protoplasts were localized in the vacuoles. Nearly, 88% and 85% of total Cd and Zn were extracted in the cell sap of the leaves suggesting that most of the Cd and Zn in the leaves were available in soluble form. The present results indicate that Zn supplement significantly enhanced the petiole accumulation of Cd and further vacuolar sequestration plays an important role in tolerance, detoxification and hyperaccumulation of these metals in P. griffithii. PMID:21211902

  5. Hormesis phenomena under Cd stress in a hyperaccumulator--Lonicera japonica Thunb.

    PubMed

    Jia, Lian; He, Xingyuan; Chen, Wei; Liu, Zhouli; Huang, Yanqing; Yu, Shuai

    2013-04-01

    A hydroponic experiment was carried out to investigate possible hormetic response induced by cadmium (Cd) in a potential hyperaccumulator-Lonicera japonica Thunb. The results showed that Cd at low concentrations induced a significant increase in plant growth, leaf water content and content of photosynthetic pigments in L. japonica, but decreased them at high concentrations, displayed inverted U-shaped dose response curves, confirming a typical biphasic hormetic response. The U-shaped dose response curves were displayed in malondialdehyde (MDA) and electrolyte leakage in leaves at low doses of Cd, indicating reduce oxidative stress and toxic effect. The increase of superoxide dismutase (SOD) and catalase (CAT) activities was observed along with the increased Cd concentration, indicative of increase in anti-oxidative capacity that ensures redox homeostasis is maintained. After 28 days exposure to 10 mg L(-1) Cd, stem and leaf Cd concentrations reached 502.96 ± 28.90 and 103.22 ± 5.62 mg kg(-1) DW, respectively and the plant had high bioaccumulation coefficient (BC) and translocation factor (TF'). Moreover, the maximum TF value was found at 2.5 mg L(-1) Cd treatment, implying that low Cd treatment improved the ability to transfer Cd from medium via roots to aerial structures. Taking together, L. japonica could be considered as a new plant to investigate the underlying mechanisms of hormesis and Cd tolerance. Our results suggest that hormetic effects should be taken into consideration in phytoremediation of Cd-contaminated soil. PMID:23359063

  6. Effects of grafting on the cadmium accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum.

    PubMed

    Lin, Lijin; Yang, Daiyu; Wang, Xun; Liao, Ming'an; Wang, Zhihui; Lv, Xiulan; Tang, Fuyi; Liang, Dong; Xia, Hui; Lai, Yunsong; Tang, Yi

    2016-02-01

    The effects of grafting on the cadmium (Cd) accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum were studied under Cd stress in our experiment. Four treatments were used in the experiment: ungrafted (UG), self-rooted grafting by the same S. photeinocarpum seedling (SG), self-rooted grafting by two different development stages of S. photeinocarpum seedlings (DG), and grafting on the rootstock of wild potato (PG). SG and DG decreased the root, scion stem, leaf, whole shoot, and whole plant biomasses compared with UG, but increased the rootstock stem biomass, while only PG increased the root and whole plant biomasses. SG and DG increased the Cd contents in the different organs of S. photeinocarpum compared with UG, while PG decreased the Cd content compared with UG. The Cd extraction by the whole plant of S. photeinocarpum was ranked as DG > SG > UG > PG. Additionally, the antioxidant enzyme activities in SG and DG were enhanced compared with UG, while that of PG was reduced compared with UG. The grafting increased the DNA methylation levels and changed the methylation patterns of S. photeinocarpum compared with UG. Therefore, SG and DG can increase the Cd accumulation in S. photeinocarpum, which can be used for the phytoremediation of Cd-contaminated soil. PMID:26739012

  7. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria.

    PubMed

    He, Lin-Yan; Chen, Zhao-Jin; Ren, Gai-Di; Zhang, Yan-Feng; Qian, Meng; Sheng, Xia-Fang

    2009-07-01

    Two cadmium (Cd)-resistant strains Pseudomonas sp. RJ10 and Bacillus sp. RJ16 were investigated for their effects on the soil Cd and lead (Pb) solubilization and promotion of plant growth and Cd and Pb uptakes of a Cd-hyperaccumulator tomato. In the heavy metal-contaminated inoculated soil, the CaCl(2)-extractable Cd and Pb were increased by 58-104% and 67-93%, respectively, compared to the uninoculation control. The bacteria produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Root elongation assay conducted on tomato under gnotobiotic conditions demonstrated increase in root elongation of inoculated tomato seedlings compared to the control plants. An increase in Cd and Pb contents of above-ground tissues varied from 92% to 113% and from 73% to 79% in inoculated plants growing in heavy metal-contaminated soil compared to the uninoculation control, respectively. These results show that the bacteria could be exploited for bacteria enhanced-phytoextraction of Cd- and Pb-polluted soils. PMID:19368973

  8. Effect of elevated CO2 concentration on photosynthetic characteristics of hyperaccumulator Sedum alfredii under cadmium stress.

    PubMed

    Li, Tingqiang; Tao, Qi; Di, Zhenzhen; Lu, Fan; Yang, Xiaoe

    2015-07-01

    The combined effects of elevated CO2 and cadmium (Cd) on photosynthetic rate, chlorophyll fluorescence and Cd accumulation in hyperaccumulator Sedum alfredii Hance were investigated to predict plant growth under Cd stress with rising atmospheric CO2 concentration. Both pot and hydroponic experiments were conducted and the plants were grown under ambient (350 µL L(-1)) or elevated (800 µL L(-1)) CO2 . Elevated CO2 significantly (P < 0.05) increased Pn (105%-149%), Pnmax (38.8%-63.0%) and AQY (20.0%-34.8%) of S. alfredii in all the Cd treatments, but reduced chlorophyll concentration, dark respiration and photorespiration. After 10 days growth in medium with 50 µM Cd under elevated CO2 , PSII activities were significantly enhanced (P < 0.05) with Pm, Fv/Fm, Φ(II) and qP increased by 66.1%, 7.5%, 19.5% and 16.4%, respectively, as compared with ambient-grown plants. Total Cd uptake in shoot of S. alfredii grown under elevated CO2 was increased by 44.1%-48.5%, which was positively correlated with the increase in Pn. These results indicate that elevated CO2 promoted the growth of S. alfredii due to increased photosynthetic carbon uptake rate and photosynthetic light-use efficiency, and showed great potential to improve the phytoextraction of Cd by S. alfredii. PMID:25370532

  9. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population).

    PubMed

    Küpper, Hendrik; Kochian, Leon V

    2010-01-01

    We investigated changes in mineral nutrient uptake and cellular expression levels for metal transporter genes in the cadmium (Cd)/zinc (Zn) hyperaccumulator, Thlaspi caerulescens during whole plant and leaf ontogenesis under different long-term treatments with Zn and Cd. Quantitative mRNA in situ hybridization (QISH) revealed that transporter gene expression changes not only dependent on metal nutrition/toxicity, but even more so during plant and leaf development. The main mRNA abundances found were: ZNT1, mature leaves of young plants; ZNT5, young leaves of young plants; MTP1 (= ZTP1 = ZAT), young leaves of both young and mature plants. Surprisingly different cellular expression patterns were found for ZNT1 and ZNT5, both belonging to the ZIP family of transition metal transporters: ZNT1, photosynthetic mesophyll and bundle sheath cells; ZNT5, nonphotosynthetic epidermal metal storage cells and bundle sheath cells. Thus, ZNT1 may function in micronutrient nutrition while ZNT5 may be involved in metal storage associated with hyperaccumulation. Cadmium inhibited the uptake of Zn, iron (Fe) and manganese (Mn), probably by competing for transporters or by interfering with the regulation of transporter gene expression. Cadmium-induced changes in cellular expression for ZNT1, ZNT5 and MTP1 could also be part of plant acclimatization to Cd toxicity. Defence against Cd toxicity involved enhanced uptake of magnesium (Mg), calcium (Ca) and sulphur (S). PMID:19843304

  10. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation.

    PubMed

    Luo, Shenglian; Wan, Yong; Xiao, Xiao; Guo, Hanjun; Chen, Liang; Xi, Qiang; Zeng, Guangming; Liu, Chengbin; Chen, Jueliang

    2011-03-01

    Valuable endophytic strains facilitating plants growth and detoxification of heavy metals are required because the application of plant-endophyte symbiotic system is a promising potential technique to improve efficiency of phytoremediation. In this study, endophytic bacterium LRE07 was isolated from cadmium hyperaccumulator Solanum nigrum L. It was identified as Serratia sp. by 16S rRNA sequence analysis. The endophytic bacterium LRE07 was resistant to the toxic effects of heavy metals, solubilized mineral phosphate, and produced indoleacetic acid and siderophore. The heavy metal detoxification was studied in growing LRE07 cells. The strain bound over 65% of cadmium and 35% of zinc in its growing cells from single metal solutions 72 h after inoculation. Besides the high removal efficiencies in single-ion system, an analogous removal phenomenon was also observed in multi-ions system, indicating that the endophyte possesses specific and remarkable heavy metal remediation abilities. PMID:20953602

  11. Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey.

    PubMed

    Bhatia, Naveen P; Walsh, Kerry B; Baker, Alan J M

    2005-05-01

    Field-collected, young plants of Ni hyperaccumulator Stackhousia tryonii, grown in a glasshouse for 20 weeks, were exposed to low- (available Ni concentration in the native serpentine soil, i.e. 60 microg g(-1) dry soil) and high- (external application of 1000 ppm) Ni concentrations in the substrate. Nickel concentration in the freeze-dried leaf tissues increased from 3700 microg g(-1) to 13 700 microg g(-1) with soil Ni supplementation, of which >60% was extracted with dilute acid (0.025 M HCl). Nickel supplementation also elicited a 575%, 211%, and 37% increase in the final concentrations of oxalic, citric, and malic acids, respectively, in leaf tissues. Malic acid was the dominant organic acid, followed by citric and oxalic acids. The molar ratio of Ni to malic acid was 1.0, consistent with a role for malate as a ligand for Ni in hyperaccumulating plants, supporting detoxification/transport and storage of this heavy metal in S. tryonii. The total amino acid concentrations in the xylem sap did not change with Ni supplementation (21.7+/-3.7 mM and 17.9+/-5 mM, respectively, for low- and high-nickel-treated plants). Glutamine was the major amino acid in both the low- and high-Ni-treated plants. The concentration of glutamine decreased by >60%, with a corresponding increase in alanine, aspartic acid, and glutamic acid, on exposure to high Ni. A role of amino acids in Ni complexation and transport in S. tryonii is not immediately apparent. PMID:15767321

  12. Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress.

    PubMed

    Campos, Naiara V; Araújo, Talita O; Arcanjo-Silva, Samara; Freitas-Silva, Larisse; Azevedo, Aristéa A; Nunes-Nesi, Adriano

    2016-06-01

    Arsenic (As) pollution is a major environmental concern due to its worldwide distribution and high toxicity to organisms. The fern Pityrogramma calomelanos is one of the few plant species known to be able to hyperaccumulate As, although the mechanisms involved are largely unknown. This study aimed to investigate the metabolic adjustments involved in the As-tolerance of P. calomelanos. For this purpose, ferns with five to seven fronds were exposed to a series of As concentrations. Young fronds were used for biochemical analysis and metabolite profiling using gas chromatography-mass spectrometry. As treatment increased the total concentration of proteins and soluble phenols, enhanced peroxidase activities, and promoted disturbances in nitrogen and carbon metabolism. The reduction of the glucose pool was one of the striking responses to As. Remarkable changes in amino acids levels were observed in As-treated plants, including those related to biosynthesis of glutathione and phenols, osmoregulation and two photorespiratory intermediates. In addition, increases in polyamines levels and antioxidant enzyme activities were observed. In summary, this study indicates that P. calomelanos tolerates high concentration of As due to its capacity to upregulate biosynthesis of amino acids and antioxidants, without greatly disturbing central carbon metabolism. At extremely high As concentrations, however, this protective mechanism fails to block reactive oxygen species production, leading to lipid peroxidation and leaf necrosis. PMID:26853807

  13. Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress.

    PubMed

    Zemanová, Veronika; Pavlík, Milan; Kyjaková, Pavlína; Pavlíková, Daniela

    2015-05-15

    Changes in the fatty acid (FAs) composition in response to the extent of Cd contamination of soils (0, 30, 60 and 90 mg Cd kg(-1)) differed between ecotypes of Noccaea caerulescens originating from France - Ganges, Slovenia - Mežica and Austria - Redlschlag. Mežica ecotype accumulated more Cd in aboveground biomass compared to Ganges and Redlschlag ecotypes. Hyperaccumulators contained saturated fatty acids (SFAs) rarely occurring in plants, as are cerotic (26:0), montanic (28:0), melissic (30:0) acids, and unusual unsaturated fatty acids (USFAs), as are 16:2, 16:3, 20:2 and 20:3. Typical USFAs occurring in the family Brassicaceae, such as erucic, oleic and arachidonic acids, were missing in tested plants. Our results clearly indicate a relationship between Cd accumulation and the FAs composition. The content of SFAs decreased and the content of USFAs increased in aboveground biomass of Ganges and Mežica ecotypes with increasing Cd concentration. Opposite trend of FAs content was determined in Redlschlag ecotype. Linoleic (18:2n-6), α-linolenic (18:3n-3) and palmitic (16:0) acids were found in all ecotypes. The results observed in N. caerulescens ecotypes, showed that mainly Mežica ecotype has an efficient defense strategies which can be related on changes in FAs composition, mainly in VLCFAs synthesis. The most significant effect of ecotype on FAs composition was confirmed using multivariate analysis of variance. PMID:25886397

  14. Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure.

    PubMed

    Zhang, Weihua; Cai, Yong

    2003-12-15

    Pteris vittata (Chinese brake fern) is the first reported arsenic hyperaccumulator. To investigate the arsenic tolerance mechanism in this plant, reversed-phase HPLC with postcolumn derivatization was used to analyze the thiols induced under arsenic exposure. A major thiol in the plant leaflets was found to be responsive to arsenic exposure. The arsenic-induced compound was purified on a large scale by combining covalent chromatography and preparative reversed-phase HPLC. About 2 mg of this compound was isolated from 1 kg of fresh leaflets. The purified arsenic-induced compound was characterized using electrospray ionization mass spectrometry. A molecular ion (M + 1) of 540 and fragments were obtained, which indicated that the arsenic-induced thiol was a phytochelatin with two subunits (PC(2)). Compared to the classical methods for purification of phytochelatins, this new method is more specific, simple, and rapid and is suitable for purification of PCs in a large scale as well as sample preparation for mass spectrometry analysis. PMID:14670068

  15. Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data

    PubMed Central

    Cecchi, Lorenzo; Gabbrielli, Roberto; Arnetoli, Miluscia; Gonnelli, Cristina; Hasko, Agim; Selvi, Federico

    2010-01-01

    Background and Aims Nickel (Ni) hyperaccumulation is a rare form of physiological specialization shared by a small number of angiosperms growing on ultramafic soils. The evolutionary patterns of this feature among European members of tribe Alysseae (Brassicaceae) are investigated using a phylogenetic approach to assess relationships among Ni hyperaccumulators at the genus, species and below-species level. Methods Internal transcribed spacer (ITS) sequences were generated for multiple accessions of Alysseae. Phylogenetic trees were obtained for the genera of the tribe and Alyssum sect. Odontarrhena. All accessions and additional herbarium material were tested for Ni hyperaccumulation with the dimethylglyoxime colorimetric method. Key Results Molecular data strongly support the poorly known hyperaccumulator endemic Leptoplax (Peltaria) emarginata as sister to hyperaccumulator species of Bornmuellera within Alysseae. This is contrary to current assumptions of affinity between L. emarginata and the non-hyperaccumulator Peltaria in Thlaspideae. The lineage Bornmuellera–Leptoplax is, in turn, sister to the two non-hyperaccumulator Mediterranean endemics Ptilotrichum rupestre and P. cyclocarpum. Low ITS sequence variation was found within the monophyletic Alyssum sect. Odontarrhena and especially in A. murale sensu lato. Nickel hyperaccumulation was not monophyletic in any of three main clades retrieved, each consisting of hyperaccumulators and non-hyperaccumulators of different geographical origin. Conclusions Nickel hyperaccumulation in Alysseae has a double origin, but it did not evolve in Thlaspideae. In Bornmuellera–Leptoplax it represents an early synapomorphy inherited from an ancestor shared with the calcicolous, sister clade of Mediterranean Ptilotrichum. In Alyssum sect. Odontarrhena it has multiple origins even within the three European clades recognized. Lack of geographical cohesion suggests that accumulation ability has been lost or gained over the

  16. Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved?

    PubMed

    Ferraz, Pedro; Fidalgo, Fernanda; Almeida, Agostinho; Teixeira, Jorge

    2012-08-01

    Some heavy metals (HM) are highly reactive and consequently can be toxic to living cells when present at high levels. Consequently, strategies for reducing HM toxicity in the environmental must be undertaken. This work focused on evaluating the Nickel (Ni) accumulation potential of the hyperaccumulator Solanum nigrum L., and the participation of metallothioneins (MT) in the plant Ni homeostasis. Metallothioneins (MT) are gene-encoded metal chelators that participate in the transport, sequestration and storage of metals. After different periods of exposure to different Ni concentrations, plant biometric and biochemical parameters were accessed to determine the effects caused by this pollutant. Semi-quantitative RT-PCR reactions were performed to investigate the specific accumulation of MT-related transcripts throughout the plant and in response to Ni exposure. The data obtained revealed that Ni induced toxicity symptoms and accumulated mostly in roots, where it caused membrane damage in the shock-treated plants, with a parallel increase of free proline content, suggesting that proline participates in protecting root cells from oxidative stress. The MT-specific mRNA accumulation analysis showed that MT2a- and MT2d-encoding genes are constitutively active, that Ni stimulated their transcript accumulation, and also that Ni induced the de novo accumulation of MT2c- and MT3-related transcripts in shoots, exerting no influence on MT1 mRNA accumulation. These results strongly suggest the involvement of MT2a, MT2c, MT2d and MT3 in S. nigrum Ni homeostasis and detoxification, this way contributing to the clarification of the roles the various types of MTs play in metal homeostasis and detoxification in plants. PMID:22763093

  17. Classification and identification of metal-accumulating plant species by cluster analysis.

    PubMed

    Yang, Wenhao; Li, He; Zhang, Taoxiang; Sen, Lin; Ni, Wuzhong

    2014-09-01

    Identification and classification of metal-accumulating plant species is essential for phytoextraction. Cluster analysis is used for classifying individuals based on measured characteristics. In this study, classification of plant species for metal accumulation was conducted using cluster analysis based on a practical survey. Forty plant samples belonging to 21 species were collected from an ancient silver-mining site. Five groups such as hyperaccumulator, potential hyperaccumulator, accumulator, potential accumulator, and normal accumulating plant were graded. For Cd accumulation, the ancient silver-mining ecotype of Sedum alfredii was treated as a Cd hyperaccumulator, and the others were normal Cd-accumulating plants. For Zn accumulation, S. alfredii was considered as a potential Zn hyperaccumulator, Conyza canadensis and Artemisia lavandulaefolia were Zn accumulators, and the others were normal Zn-accumulating plants. For Pb accumulation, S. alfredii and Elatostema lineolatum were potential Pb hyperaccumulators, Rubus hunanensis, Ajuga decumbens, and Erigeron annuus were Pb accumulators, C. canadensis and A. lavandulaefolia were potential Pb accumulators, and the others were normal Pb-accumulating plants. Plant species with the potential for phytoextraction were identified such as S. alfredii for Cd and Zn, C. canadensis and A. lavandulaefolia for Zn and Pb, and E. lineolatum, R. hunanensis, A. decumbens, and E. annuus for Pb. Cluster analysis is effective in the classification of plant species for metal accumulation and identification of potential species for phytoextraction. PMID:24888623

  18. High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata.

    PubMed

    Chen, Yanshan; Fu, Jing-Wei; Han, Yong-He; Rathinasabapathi, Bala; Ma, Lena Q

    2016-02-01

    Arsenite (AsIII) efflux is an important mechanism for arsenic (As) detoxification in plants. Low AsIII efflux has been observed in As-hyperaccumulator Pteris vittata, which may contribute to its highly efficient As translocation and accumulation; however, the results may be compromised by microbial AsIII oxidation, relatively low As concentration in the medium and short-term As exposure. Here, sterile P. vittata sporophytes were cultivated in sterile medium containing 10, 200 and 500 µM arsenate (AsV) for 28 d. Arsenite efflux to the growth medium and As speciation in P. vittata was investigated. Low AsIII efflux at 12% of AsV uptake was observed at 10 µM AsV, but high AsIII efflux (36-76%) was observed at 200 and 500 µM AsV, with 1987-2397 mg kg(-1) As being accumulated in the fronds. This is the first report to show efficient AsIII efflux in P. vittata. This study showed that P. vittata may use high AsIII efflux to cope with As toxicity under high As exposure, which may be necessary to sustain growth while accumulating As. PMID:26595313

  19. Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques.

    PubMed

    Isaure, Marie-Pierre; Huguet, Stéphanie; Meyer, Claire-Lise; Castillo-Michel, Hiram; Testemale, Denis; Vantelon, Delphine; Saumitou-Laprade, Pierre; Verbruggen, Nathalie; Sarret, Géraldine

    2015-06-01

    Arabidopsis halleri is a model plant for Zn and Cd hyperaccumulation. The objective of this study was to determine the relationship between the chemical forms of Cd, its distribution in leaves, and Cd accumulation and tolerance. An interspecific cross was carried out between A. halleri and the non-tolerant and non-hyperaccumulating relative A. lyrata providing progenies segregating for Cd tolerance and accumulation. Cd speciation and distribution were investigated using X-ray absorption spectroscopy and microfocused X-ray fluorescence. In A. lyrata and non-tolerant progenies, Cd was coordinated by S atoms only or with a small contribution of O groups. Interestingly, the proportion of O ligands increased in A. halleri and tolerant progenies, and they were predominant in most of them, while S ligands were still present. Therefore, the binding of Cd with O ligands was associated with Cd tolerance. In A. halleri, Cd was mainly located in the xylem, phloem, and mesophyll tissue, suggesting a reallocation process for Cd within the plant. The distribution of the metal at the cell level was further discussed. In A. lyrata, the vascular bundles were also Cd enriched, but the epidermis was richer in Cd as compared with the mesophyll. Cd was identified in trichomes of both species. This work demonstrated that both Cd speciation and localization were related to the tolerance character of the plant. PMID:25873676

  20. The Hyperaccumulator Alyssum murale uses Complexation with Nitrogen and Oxygen Donor Ligands for Ni Transport and Storage

    SciTech Connect

    McNear, Jr., D.; Chanay, R; Sparks, D

    2010-01-01

    The Kotodesh genotype of the nickel (Ni) hyperaccumulator Alyssum murale was examined to determine the compartmentalization and internal speciation of Ni, and other elements, in an effort to ascertain the mechanism used by this plant to tolerate extremely high shoot (stem and leaf) Ni concentrations. Plants were grown either hydroponically or in Ni enriched soils from an area surrounding an historic Ni refinery in Port Colborne, Ontario, Canada. Electron probe micro-analysis (EPMA) and synchrotron based micro X-ray fluorescence ({mu}-SXRF) spectroscopy were used to determine the metal distribution and co-localization and synchrotron X-ray and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopies were used to determine the Ni speciation in plant parts and extracted sap. Nickel is concentrated in the dermal leaf and stem tissues of A. murale bound primarily to malate along with other low molecular weight organic ligands and possibly counter anions (e.g., sulfate). Ni is present in the plant sap and vasculature bound to histidine, malate and other low molecular weight compounds. The data presented herein supports a model in which Ni is transported from the roots to the shoots complexed with histidine and stored within the plant leaf dermal tissues complexed with malate, and other low molecular weight organic acids or counter-ions.

  1. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    PubMed

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  2. TcOPT3, a Member of Oligopeptide Transporters from the Hyperaccumulator Thlaspi caerulescens, Is a Novel Fe/Zn/Cd/Cu Transporter

    PubMed Central

    Hu, Yi Ting; Ming, Feng; Chen, Wei Wei; Yan, Jing Ying; Xu, Zheng Yu; Li, Gui Xin; Xu, Chun Yan; Yang, Jian Li; Zheng, Shao Jian

    2012-01-01

    Background Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. Methodology/Principal Findings We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens. TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore, heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments demonstrated that TcOPT3 could transport Fe2+ and Zn2+. Moreover, expression of TcOPT3 in yeast increased metal (Fe, Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu). Conclusions Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate. This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the heavy metal hyperaccumulation. PMID:22761683

  3. Selection and Validation of Reference Genes for Real-Time Quantitative PCR in Hyperaccumulating Ecotype of Sedum alfredii under Different Heavy Metals Stresses

    PubMed Central

    Liu, Mingying; Qiao, Guirong; Jiang, Jing; Zhuo, Renying

    2013-01-01

    Real-time Quantitative PCR (RT-qPCR) has become an effective method for accurate analysis of gene expression in several biological systems as well as under different experimental conditions. Although with high sensitivity, specificity and broad dynamic range, this method requires suitable reference genes for transcript normalization in order to guarantee reproducible and meaningful results. In the present study, we evaluated five traditional housekeeping genes and five novel reference genes in Hyperaccumulating ecotype of Sedum alfredii, a well known hyperaccumulator for heavy metals phytoremediation, under Cd, Pb, Zn and Cu stresses of seven different durations. The expression stability of these ten candidates were determined with three programs - geNorm, NormFinder and BestKeeper. The results showed that all the selected reference genes except for SAND could be used for RT-qPCR normalization. Among them UBC9 and TUB were ranked as the most stable candidates across all samples by three programs together. For the least stable reference genes, however, BestKeeper produced different results compared with geNorm and NormFinder. Meanwhile, the expression profiles of PCS under Cd, Pb, Zn and Cu stresses were assessed using UBC9 and TUB respectively, and similar trends were obtained from the results of the two groups. The distinct expression patterns of PCS indicated that various strategies could be taken by plants in adaption to different heavy metals stresses. This study will provide appropriate reference genes for further gene expression quantification using RT-qPCR in Hyperaccumulator S. alfredii. PMID:24340067

  4. Uptake of antimonite and antimonate by arsenic hyperaccumulator Pteris vittata: Effects of chemical analogs and transporter inhibitor.

    PubMed

    Tisarum, Rujira; Chen, Yanshan; Dong, Xiaoling; Lessl, Jason T; Ma, Lena Q

    2015-11-01

    Antimonite (SbIII) is transported into plants via aquaglyceroporin channels but it is unknown in As-hyperaccumulator Ptreis vittata (PV). We tested the effects of SbIII analogs (arsenite-AsIII, glycerol, silicic acid-Si, and, glucose), antimonate (SbV) analog (phosphate-P), and aquaglyceroporin transporter inhibitor (silver, Ag) on the uptake of SbIII or SbV by PV gametophytes. PV gametophytes were grown in 20% Hoagland solution containing 65 μM SbIII or SbV and increasing concentrations of analogs at 65-6500 μM for 2 h or 4 h under sterile condition. After exposing to 65 μM Sb for 2 h, PV accumulated 767 mg/kg Sb in SbIII treatment and 419 mg/kg in SbV treatment. SbIII uptake by PV gametophytes was not impacted by glycerol or AsIII nor aquaglyceroporin inhibitor Ag during 2 h exposure. While Si increased SbIII uptake and glucose decreased SbIII uptake by PV gametophytes, the impact disappeared during 4 h exposure. Under P-sufficient condition, P increased SbIII uptake and decreased SbV uptake during 2 h exposure, but the effect again disappeared after 4 h. After being P-starved for 2 weeks, P decreased SbIII with no effect on SbV uptake during 2 h exposure. Our results indicated that: 1) PV gametophytes could serve as an efficient model to study Sb uptake, and 2) unique SbIII uptake by PV may be related to its trait of As hyperaccumulation. PMID:26142750

  5. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils.

    PubMed

    Mandáková, Terezie; Singh, Vasantika; Krämer, Ute; Lysak, Martin A

    2015-09-01

    Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descended from seven chromosomes of the ancestral proto-Calepineae Karyotype (n = 7) through an unusually high number of pericentric inversions. Genome analysis in two other related species, Noccaea jankae and Raparia bulbosa, showed that all three species, and thus probably the entire Coluteocarpeae tribe, have descended from the proto-Calepineae Karyotype. All three analyzed species share the chromosome structure of six out of seven chromosomes and an unusually high metal accumulation in leaves, which remains moderate in N. jankae and R. bulbosa and is extreme in N. caerulescens. Among these species, N. caerulescens has the most derived karyotype, with species-specific inversions on chromosome NC6, which grouped onto its bottom arm functionally related genes of zinc and iron metal homeostasis comprising the major candidate genes NICOTIANAMINE SYNTHASE2 and ZINC-INDUCED FACILITATOR-LIKE1. Concurrently, copper and organellar metal homeostasis genes, which are functionally unrelated to the extreme traits characteristic of N. caerulescens, were grouped onto the top arm of NC6. Compared with Arabidopsis thaliana, more distal chromosomal positions in N. caerulescens were enriched among more highly expressed metal homeostasis genes but not among other groups of genes. Thus, chromosome rearrangements could have facilitated the evolution of enhanced metal homeostasis gene expression, a known hallmark of metal hyperaccumulation. PMID:26195571

  6. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils1[OPEN

    PubMed Central

    Mandáková, Terezie; Singh, Vasantika; Krämer, Ute; Lysak, Martin A.

    2015-01-01

    Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descended from seven chromosomes of the ancestral proto-Calepineae Karyotype (n = 7) through an unusually high number of pericentric inversions. Genome analysis in two other related species, Noccaea jankae and Raparia bulbosa, showed that all three species, and thus probably the entire Coluteocarpeae tribe, have descended from the proto-Calepineae Karyotype. All three analyzed species share the chromosome structure of six out of seven chromosomes and an unusually high metal accumulation in leaves, which remains moderate in N. jankae and R. bulbosa and is extreme in N. caerulescens. Among these species, N. caerulescens has the most derived karyotype, with species-specific inversions on chromosome NC6, which grouped onto its bottom arm functionally related genes of zinc and iron metal homeostasis comprising the major candidate genes NICOTIANAMINE SYNTHASE2 and ZINC-INDUCED FACILITATOR-LIKE1. Concurrently, copper and organellar metal homeostasis genes, which are functionally unrelated to the extreme traits characteristic of N. caerulescens, were grouped onto the top arm of NC6. Compared with Arabidopsis thaliana, more distal chromosomal positions in N. caerulescens were enriched among more highly expressed metal homeostasis genes but not among other groups of genes. Thus, chromosome rearrangements could have facilitated the evolution of enhanced metal homeostasis gene expression, a known hallmark of metal hyperaccumulation. PMID:26195571

  7. Increased ecological risk due to the hyperaccumulation of As in Pteris cretica during the phytoremediation of an As-contaminated site.

    PubMed

    Jeong, Seulki; Moon, Hee Sun; Nam, Kyoungphile

    2015-03-01

    Ecological risk due to the hyperaccumulation of As in Pteris cretica during phytoremediation was evaluated at an abandoned As-contaminated site. Five receptor groups representing terrestrial invertebrates, avian insectivores, small mammals, herbivores, and omnivores were selected as potentially affected ecological receptors. Soil and food ingestion were considered as major exposure pathways. Phytoremediation was performed with P.cretica only and with both P.cretica and siderophores to enhance plant uptake of As. Ecological hazard index (EHI) values for the small mammal greatly exceeded 1.0 even after three weeks of growth regardless of siderophore application, probably due to its limited home range. For the mammalian herbivore, which mainly consumes plant foliage, the EHI values were greater than 5.73 after seven weeks without siderophore application, but the value increased sharply to 29.3 at seven weeks when siderophores were applied. This increased risk could be attributed to the facilitated translocation of As from roots to stems and leaves in P.cretica. Our results suggest that, when a phytoremediation strategy is considered for metals remediation, its ecological consequences should be taken into account to prevent the spread of hyperaccumulated heavy metals throughout the food chain of ecological receptors. Uncertainties involved in the ecological risk assessment process were also discussed. PMID:25441929

  8. Pb and Zn accumulation in a Cd-hyperaccumulator (Viola baoshanensis).

    PubMed

    Wu, Chuan; Liao, Bin; Wang, Sheng-Long; Zhang, Jun; Li, Jin-Tian

    2010-08-01

    Viola baoshanensis has been identified as a Cd-hyperaccumulator, however, its ability to accumulate Pb or Zn is less certain. Therefore, this study focused on determining whether or not V. baoshanensis can accumulate Pb or Zn, by means of field survey, hydroponic and pot experiments. In addition, we also tried to obtain further information on the Cd hyperaccumulating characteristics of this species. Under field conditions, V. baoshanensis accumulated on average 1090 mg Cd kg(-1), 1902 mg Pb kg(-1) and 3428 mg Zn kg(-1) in its shoots, respectively. In hydroponic and pot experiments, V. baoshanensis showed high tolerance to Cd, Pb, and Zn, as well as the ability to accumulate exceptionally high concentrations of the three elements in its shoots (> 2% Cd, > 1% Pb, and > 0.5% Zn on a dry matter basis). These results, taken together, suggested that V. baoshanensis is not only a Cd-hyperaccumulator, but also a strong accumulator of Pb and Zn. PMID:21166282

  9. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  10. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036