Science.gov

Sample records for hyperaccumulator thlaspi caerulescens1w

  1. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens

    PubMed Central

    de A Guimarães, Marcelo; Gustin, Jeffery L; Salt, David E

    2009-01-01

    The extreme phenotype of zinc (Zn) hyperaccumulation, which is found in several Brassicaceae species, is determined by mechanisms that promote elevated Zn tolerance and high Zn accumulation in shoots. We used reciprocal grafting between a Zn hyperaccumulator, Thlaspi caerulescens, and a Zn nonaccumulator, Thlaspi perfoliatum, to determine the relative importance of roots and shoots in Zn hyperaccumulation and hypertolerance. Leaves from plants with a T. perfoliatum rootstock and a T. caerulescens shoot scion did not hyperaccumulate Zn, whereas plants with a T. caerulescens rootstock and a T. perfoliatum shoot scion did hyperaccumulate Zn. However, although leaves from plants with a T. caerulescens rootstock and a T. perfoliatum shoot scion hyperaccumulated Zn, at high Zn loads these leaves showed significant symptoms of Zn toxicity, unlike leaves of self grafted T. caerulescens. Hyperaccumulation of Zn in leaves of the hyperaccumulator T. caerulescens is pri-marily dictated by root processes. Further, the mechanisms controlling Zn hypertolerance in the hyperaccumulator T. caerulescens are driven primarily by shoot processes. PMID:19656301

  2. Investigating Heavy-metal Hyperaccumulation using Thlaspi caerulescens as a Model System

    PubMed Central

    Milner, Matthew J.; Kochian, Leon V.

    2008-01-01

    Background Metal-hyperaccumulating plant species are plants that are endemic to metalliferous soils and are able to tolerate and accumulate metals in their above-ground tissues to very high concentrations. One such hyperaccumulator, Thlaspi caerulescens, has been widely studied for its remarkable properties to tolerate toxic levels of zinc (Zn), cadmium (Cd) and sometimes nickel (Ni) in the soil, and accumulate these metals to very high levels in the shoot. The increased awareness regarding metal-hyperaccumulating plants by the plant biology community has helped spur interest in the possible use of plants to remove heavy metals from contaminated soils, a process known as phytoremediation. Hence, there has been a focus on understanding the mechanisms that metal-hyperaccumulator plant species such as Thlaspi caerulescens employ to absorb, detoxify and store metals in order to use this information to develop plants better suited for the phytoremediation of metal-contaminated soils. Scope In this review, an overview of the findings from recent research aimed at better understanding the physiological mechanisms of Thlaspi caerulescens heavy-metal hyperaccumulation as well as the underlying molecular and genetic determinants for this trait will be discussed. Progress has been made in understanding some of the fundamental Zn and Cd transport physiology in T. caerulescens. Furthermore, some interesting metal-related genes have been identified and characterized in this plant species, and regulation of the expression of some of these genes may be important for hyperaccumulation. Conclusions Thlaspi caerulescens is a fascinating and useful model system not only for studying metal hyperaccumulation, but also for better understanding micronutrient homeostasis and nutrition. Considerable future research is still needed to elucidate the molecular, genetic and physiological bases for the extreme metal tolerance and hyperaccumulation exhibited by plant species such as T

  3. CHARACTERIZATION OF ZINC TOLERANCE GENES IN THE ZINC/CADMIUM HYPERACCUMULATOR, THLASPI CAERULESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens, a heavy metal hyperaccumulating plant species, accumulates up to 30,000 ppm zinc in the above ground biomass without exhibiting toxicity symptoms. Previous work in our lab has shown that altered regulation of micronutrient uptake, transport and sequestration in this species pla...

  4. MOLECULAR AND PHYSIOLOGICAL INVESTIGATIONS OF THLASPI CAERULESCENS, A ZN/CD HYPERACCUMULATOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain plant species have evolved specialized mechanisms that allow them to grow and thrive on metalliferous soils and accumulate high levels of heavy metals in the shoots that are toxic to normal plants. One such plant species is Thlaspi caerulescens, a Zn and Cd hyperaccumulator, and its metal h...

  5. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens

    SciTech Connect

    Nedelkoska, T.V.; Doran, P.M.

    2000-03-05

    Hairy roots were used to investigate cadmium uptake by Thlaspi caerulescens, a metal hyperaccumulator plant with potential applications in phytoremediation and phytomining. Experiments were carried out in nutrient media under conditions supporting root growth. Accumulation of Cd in short-term (9-h) experiments varied with initial medium pH and increased after treating the roots with H{sup +}-ATPase inhibitor. The highest equilibrium Cd content measured in T. caerulescens roots was 62,800 {micro}g g{sup {minus}1} dry weight, or 6.3% dry weight, at a liquid Cd concentration of 3,710 ppm. Cd levels in live T. caerulescens roots were 1.5- to 1.7-fold those in hairy roots of nonhyperaccumulator species exposed to the same Cd concentration, but similar to the Cd content of auto-claved T. caerulescens roots. The ability to grow at Cd concentrations of up to 100 ppm clearly distinguished T. caerulescens hairy roots from the nonhyperaccumulators. The specific growth rate of T. caerulescens roots was essentially unaffected by 20 to 50 ppm Cd in the culture medium; in contrast, N. tabacum roots turned dark brown at 20 ppm and growth was negligible. Up to 10,600 {micro}g g{sup {minus}1} dry weight Cd was accumulated by growing T. caerulescens hairy roots. Measurement of Cd levels in while roots and in the cell wall fraction revealed significant differences in the responses of T. caerulescens and N. tabacum roots to 20 ppm Cd. Most metal was transported directly into the symplasm of N. tabacum roots within 3 days of exposure; in contrast, T. caerulescens roots stored virtually all of their Cd in the wall fraction for the first 7 to 10 days. This delay in transmembrane uptake may represent an important defensive strategy against Cd poisoning in T. caerulescens, allowing time for activation of intracellular mechanisms for heavy metal detoxification.

  6. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens.

    PubMed

    Pence, N S; Larsen, P B; Ebbs, S D; Letham, D L; Lasat, M M; Garvin, D F; Eide, D; Kochian, L V

    2000-04-25

    An integrated molecular and physiological investigation of the fundamental mechanisms of heavy metal accumulation was conducted in Thlaspi caerulescens, a Zn/Cd-hyperaccumulating plant species. A heavy metal transporter cDNA, ZNT1, was cloned from T. caerulescens through functional complementation in yeast and was shown to mediate high-affinity Zn(2+) uptake as well as low-affinity Cd(2+) uptake. It was found that this transporter is expressed at very high levels in roots and shoots of the hyperaccumulator. A study of ZNT1 expression and high-affinity Zn(2+) uptake in roots of T. caerulescens and in a related nonaccumulator, Thlaspi arvense, showed that alteration in the regulation of ZNT1 gene expression by plant Zn status results in the overexpression of this transporter and in increased Zn influx in roots of the hyperaccumulating Thlaspi species. These findings yield insights into the molecular regulation and control of plant heavy metal and micronutrient accumulation and homeostasis, as well as provide information that will contribute to the advancement of phytoremediation by the future engineering of plants with improved heavy metal uptake and tolerance. PMID:10781104

  7. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens

    PubMed Central

    Pence, Nicole S.; Larsen, Paul B.; Ebbs, Stephen D.; Letham, Deborah L. D.; Lasat, Mitch M.; Garvin, David F.; Eide, David; Kochian, Leon V.

    2000-01-01

    An integrated molecular and physiological investigation of the fundamental mechanisms of heavy metal accumulation was conducted in Thlaspi caerulescens, a Zn/Cd-hyperaccumulating plant species. A heavy metal transporter cDNA, ZNT1, was cloned from T. caerulescens through functional complementation in yeast and was shown to mediate high-affinity Zn2+ uptake as well as low-affinity Cd2+ uptake. It was found that this transporter is expressed at very high levels in roots and shoots of the hyperaccumulator. A study of ZNT1 expression and high-affinity Zn2+ uptake in roots of T. caerulescens and in a related nonaccumulator, Thlaspi arvense, showed that alteration in the regulation of ZNT1 gene expression by plant Zn status results in the overexpression of this transporter and in increased Zn influx in roots of the hyperaccumulating Thlaspi species. These findings yield insights into the molecular regulation and control of plant heavy metal and micronutrient accumulation and homeostasis, as well as provide information that will contribute to the advancement of phytoremediation by the future engineering of plants with improved heavy metal uptake and tolerance. PMID:10781104

  8. Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens.

    PubMed

    Hassinen, V H; Tervahauta, A I; Halimaa, P; Plessl, M; Peräniemi, S; Schat, H; Aarts, M G M; Servomaa, K; Kärenlampi, S O

    2007-03-01

    Several populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR. cDNA fragments from 16 Zn-responsive genes, including those encoding metallothionein (MT) type 2 and type 3, MRP-like transporter, pectin methylesterase (PME) and Ole e 1-like gene as well as several unknown genes, were eventually isolated. The full-length MT2 and MT3 sequences differ from those previously isolated from other Thlaspi accessions, possibly representing new alleles or isoforms. Besides the differential expression in Zn exposures, the gene expression was dependent on the accession. Thlaspi homologues of ClpP protease and MRP transporter were induced at high Zn concentrations. MT2 and PME were expressed at higher levels in the calaminous accession. The MTs and MRP transporter expressed in transgenic yeasts were capable of conferring Cu and Cd tolerance, whereas the Ole e 1-like gene enhanced toxicity to these metals. The MTs increased yeast intracellular Cd content. As no significant differences were found between Arabidopsis and Thlaspi MTs, they apparently do not differ in their capacity to bind metals. However, the higher levels of MT2 in the calaminous accession may contribute to the Zn-adapted phenotype. PMID:17013613

  9. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens.

    PubMed

    Boominathan, Rengasamy; Doran, Pauline M

    2003-07-20

    Plant species capable of hyperaccumulating heavy metals are of considerable interest for phytoremediation and phytomining. This work aims to identify the role of antioxidative metabolism in heavy metal tolerance in the Cd hyperaccumulator, Thlaspi caerulescens. Hairy roots of T. caerulescens and the non-hyperaccumulator, Nicotiana tabacum (tobacco), were used to test the effects of high Cd environments. In the absence of Cd, endogenous activities of catalase were two to three orders of magnitude higher in T. caerulescens than in N. tabacum. T. caerulescens roots also contained significantly higher endogenous superoxide dismutase activity and glutathione concentrations. Exposure to 20 ppm (178 microM) Cd prevented growth of N. tabacum roots and increased hydrogen peroxide (H(2)O(2)) levels by a factor of five relative to cultures without Cd. In contrast, growth was maintained in T. caerulescens, and H(2)O(2) concentrations were controlled to low, nontoxic levels in association with a strong catalase induction response. Treatment of roots with the glutathione synthesis inhibitor, buthionine sulfoximine (BSO), exacerbated H(2)O(2) accumulation in Cd-treated N. tabacum, but had a relatively minor effect on H(2)O(2) levels and did not reduce Cd tolerance in T. caerulescens. Lipid peroxidation was increased by Cd treatment in both the hyperaccumulator and non-hyperaccumulator roots. This work demonstrates that metal-induced oxidative stress occurs in hyperaccumulator tissues even though growth is unaffected by the presence of heavy metals. It also suggests that superior antioxidative defenses, particularly catalase activity, may play an important role in the hyperaccumulator phenotype of T. caerulescens. PMID:12768621

  10. Cadmium leaching from micro-lysimeters planted with the hyperaccumulator Thlaspi caerulescens: experimental findings and modeling.

    PubMed

    Ingwersen, Joachim; Bücherl, Barbara; Neumann, Günter; Streck, Thilo

    2006-01-01

    The use of heavy metal hyperaccumulating plants has the potential to become a promising new technique to remediate contaminated sites. We investigated the role of metal mobilization in the Cd hyperaccumulation of Thlaspi caerulescens (J. & C. Presl, 'Ganges'). In a micro-lysimeter experiment we investigated the dynamics of Cd concentration of leachate as well as Cd removal by plant uptake in four treatments: (i) Control (bare soil), (ii) T. caerulescens, (iii) nonhyperaccumulator Brassica juncea (L.) Czern. ('PI 426308'), and (iv) co-cropping of the hyperaccumulator and nonhyperaccumulator. The experimental findings were analyzed using one- and two-site rate-limited desorption models. Co-cropping of T. caerulescens and B. juncea did not enhance metal uptake by B. juncea. Although Cd uptake of T. caerulescens was 10 times higher than that of B. juncea, the Cd concentration of leachate of the T. caerulescens treatment did not decrease below that of the B. juncea treatment. The Cd depletion in leachate was well reproduced by the two-site rate-limited desorption model. The optimized desorption coefficient was three orders of magnitude higher in the rhizosphere than in the bulk soil. Our results indicate that T. caerulescens accelerates the resupply of Cd from soil pointing to an important role of kinetic desorption in the hyperaccumulation by T. caerulescens. PMID:17071874

  11. Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens?

    PubMed

    Liu, Mei-Qing; Yanai, Junta; Jiang, Rong-Feng; Zhang, Fusuo; McGrath, Steve P; Zhao, Fang-Jie

    2008-04-01

    The southern French (Ganges) ecotype of Thlaspi caerulescens J & C Presl is able to hyperaccumulate several thousand mg Cd kg(-1) shoot dry weight without suffering from phytotoxicity. We investigated the effect of Cd on growth and the activity of carbonic anhydrase (CA), a typical Zn-requiring enzyme, of T. caerulescens in soil and hydroponic experiments. In one of the hydroponic experiments, T. caerulescens was compared to the non-accumulator Thlaspi ferganense N. Busch. In the soil experiment, additions of Cd at 5-500 mg kg(-1) soil increased the growth of T. caerulescens significantly. In the hydroponic experiments, exposure to Cd at 1-50 microM for three weeks had no significant effect on the growth of T. caerulescens, but decreased the growth of T. ferganense markedly even at the lowest concentration of Cd (1muM). Cadmium exposure significantly increased the CA activity in T. caerulescens, but decreased it in T. ferganense. The CA activity in T. caerulescens correlated positively with the Cd concentration in the shoots up to 6000 mg kg(-1), even though shoot Zn concentration was decreased by the Cd treatments. For comparison, Cd treatments had no consistent effect on the activity of superoxide dismutase in T. caerulescens. The results suggest that Cd may play a physiological role in the Cd-hyperaccumulating ecotype of T. caerulescens by enhancing the activities of some enzymes such as CA. Further research is needed to establish whether a Cd-requiring CA exists in T. caerulescens. PMID:18262587

  12. SHOOT BIOMASS AND ZINC/CADMIUM UPTAKE FOR HYPERACCUMULATOR AND NON-ACCUMULATOR THLASPI SPECIES IN RESPONSE TO GROWTH ON A ZINC-DEFICIENT CALCAREOUS SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, the Zn/Cd hyperaccumulator, Thlaspi caerulescens and a related non-accumulator, Thlaspi arvense, were used to study shoot growth (dry matter production) and Zn and Cd uptake from a severely Zn-deficient calcareous soil supplemented with increasing amounts of Zn and Cd. Shoot dry matte...

  13. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy

    SciTech Connect

    Salt, D.E.; Prince, R.C.; Baker, A.J.M.; Raskin, I.; Pickering, I.J.

    1999-03-01

    Using the noninvasive technique of X-ray absorption spectroscopy (XAS), the authors have been able to determine the ligand environment of Zn in different tissues of the Zn-hyperaccumulator Thlaspi caerulescens. The majority of intracellular Zn in roots of T. caerulescens was found to be coordinated with histidine. In the xylem sap Zn was found to be transported mainly as the free hydrated Zn{sup 2+} cation with a smaller proportion coordinated with organic acids. In the shoots, Zn coordination occurred mainly via organic acids, with a smaller proportion present as the hydrated cation and coordinated with histidine and the cell wall. Their data suggest that histidine plays an important role in Zn homeostasis in the roots, whereas organic acids are involved in xylem transport and Zn storage in shoots.

  14. Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE.

    PubMed

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Simcic, Jure; Pelicon, Primoz; Budnar, Milos; Povh, Bogdan; Regvar, Marjana

    2007-05-01

    Cd, Zn and Pb accumulation, spatial distribution within seeds and germinating seedlings, and seeds fitness of metal hyperaccumulating Thlaspi praecox were investigated in order to gain more knowledge on plant reproductive success at metal polluted sites. The seeds contained up to 1351 microg g-1 (dry weight) of Cd, 121 microg g-1 of Zn and 17 microg g-1 of Pb. Seed fitness was negatively influenced by seed Cd hyperaccumulation. Nevertheless, the viability of seeds was decreased by maximally 20%, indicating very efficient tolerance of the plant embryos to Cd. Localisation by micro-PIXE revealed preferential storage of most elements in the embryonic axis. Cd and Zn were preferentially localised in the epidermis of cotyledons. The restriction of seed Pb and Zn uptake and hyperaccumulation of Cd, accompanied by partitioning of Cd in the epidermal tissues of cotyledons, may enable the survival of T. praecox embryos and seedlings in Cd polluted environments. PMID:17070633

  15. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens.

    PubMed

    Deniau, A X; Pieper, B; Ten Bookum, W M; Lindhout, P; Aarts, M G M; Schat, H

    2006-09-01

    Thlaspi caerulescens (Tc; 2n = 14) is a natural Zn, Cd and Ni hyperaccumulator species belonging to the Brassicaceae family. It shares 88% DNA identity in the coding regions with Arabidopsis thaliana (At) (Rigola et al. 2006). Although the physiology of heavy metal (hyper)accumulation has been intensively studied, the molecular genetics are still largely unexplored. We address this topic by constructing a genetic map based on AFLP markers and expressed sequence tags (ESTs). To establish a genetic map, an F(2) population of 129 individuals was generated from a cross between a plant from a Pb/Cd/Zn-contaminated site near La Calamine, Belgium, and a plant from a comparable site near Ganges (GA), France. These two accessions show different degrees of Zn and, particularly, Cd accumulation. We analyzed 181 AFLP markers (of which 4 co-dominant) and 13 co-dominant EST sequences-based markers and mapped them to seven linkage groups (LGs), presumably corresponding to the seven chromosomes of T. caerulescens. The total length of the genetic map is 496 cM with an average density of one marker every 2.5 cM. This map was used for Quantitative Trait Locus (QTL) mapping in the F(2). For Zn as well as Cd concentration in root we mapped two QTLs. Three QTLs and one QTL were mapped for Zn and Cd concentration in shoot, respectively. These QTLs explain 23.8-60.4% of the total variance of the traits measured. We found only one common locus (LG6) for Zn and Cd (concentration in root) and one common locus for shoot and root concentrations of Zn (LG1) and of Cd (LG3). For all QTLs, the GA allele increased the trait value except for two QTLs for Zn accumulation in shoot (LG1 and LG4) and one for Zn concentration in root (LG1). PMID:16850314

  16. A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens.

    PubMed

    Bernard, Catherine; Roosens, Nancy; Czernic, Pierre; Lebrun, Michel; Verbruggen, Nathalie

    2004-07-01

    Thlaspi caerulescens exhibits a unique capacity for cadmium tolerance and accumulation. We investigated the molecular basis of this exceptional Cd(2+) tolerance by screening for T. caerulescens genes, which alleviate Cd(2+) toxicity upon expression in Saccharomyces cerevisiae. This allowed for the isolation of a cDNA encoding a peptide with homology to the C-terminal part of a heavy metal ATPase. The corresponding TcHMA4 full-length sequence was isolated from T. caerulescens and compared to its homolog from Arabidopsis thaliana (AtHMA4). Expression of TcHMA4 and AtHMA4 cDNAs conferred Cd sensitivity in yeast, while expression of TcHMA4-C and AtHMA4-C cDNAs encoding the C-termini of, respectively, TcHMA4 and AtHMA4 conferred Cd tolerance. Moreover, heterologous expression in yeast suggested a higher Cd binding capacity of TcHMA4-C compared to AtHMA4-C. In planta, both HMA4 genes were expressed at a higher level in roots than in shoots. However, TcHMA4 shows a much higher constitutive expression than AtHMA4. Our data indicate that HMA4 could be involved in Cd(2+) transport and possibly in the Cd hyperaccumulation character. PMID:15225623

  17. Transcriptional regulation of metal transport genes and mineral nutrition during acclimation to cadium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated changes in mineral nutrient uptake and cellular expression levels of metal transporter genes using the Cd/Zn hyperaccumulator Thlaspi caerulescens. We analyzed those changes genesis under different long-term (one year) treatments of the plants with zinc and cadmium using quantitative...

  18. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl).

    PubMed

    Ebbs, Stephen; Lau, Ingar; Ahner, Beth; Kochian, Leon

    2002-02-01

    Thlaspi caerulescens (J. & C. Presl, "Prayon") is a heavy-metal hyperaccumulator that accumulates Zn and Cd to high concentrations (40,000 and 4,000 mg kg DW-1 respectively) without phytotoxicity. The mechanism of Cd tolerance has not been characterized but reportedly involves vacuolar sequestration. The role of phytochelatins (PCs) in metal tolerance in T. caerulescens and the related non-accumulator T. arvense was examined. Although PCs were produced by both species in response to Cd, these peptides do not appear to be involved in metal tolerance in the hyperaccumulator. Leaf and root PC levels for both species showed a similar positive correlation with tissue Cd, but total PC levels in the hyperaccumulator were generally lower, despite correspondingly higher metal concentrations. The lack of a role for PCs in the hyperaccumulator's response to metal stress suggests that other mechanisms are responsible Cd tolerance. The lower level of leaf PCs in T. caerulescens also implies that Cd in the shoot is sequestered in a compartment or form that does not elicit a PC response. PMID:11925047

  19. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.

    PubMed

    Zhao, Fang-Jie; Hamon, Rebecca E; Lombi, Enzo; McLaughlin, Mike J; McGrath, Steve P

    2002-03-01

    Uptake of Cd and Zn by intact seedlings of two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens was characterized using radioactive tracers. Uptake of Cd and Zn at 2 degrees C was assumed to represent mainly apoplastic binding in the roots, whereas the difference in uptake between 22 degrees C and 2 degrees C represented metabolically dependent influx. There was no significant difference between the two ecotypes in the apoplastic binding of Cd or Zn. Metabolically dependent uptake of Cd was 4.5-fold higher in the high Cd-accumulating ecotype, Ganges, than in the low Cd-accumulating ecotype, Prayon. By contrast, there was only a 1.5-fold difference in the Zn uptake between the two ecotypes. For the Ganges ecotype, Cd uptake could be described by Michaelis-Menten kinetics with a V(max) of 143 nmol g(-1) root FW h(-1) and a K(m) of 0.45 microM. Uptake of Cd by the Ganges ecotype was not inhibited by La, Zn, Cu, Co, Mn, Ni or Fe(II), and neither by increasing the Ca concentration. By contrast, addition of La, Zn or Mn, or increasing the Ca concentration in the uptake solution decreased Cd uptake by Prayon. Uptake of Ca was larger in Prayon than in Ganges. The results suggest that Cd uptake by the low Cd-accumulating ecotype (Prayon) may be mediated partly via Ca channels or transporters for Zn and Mn. By contrast, there may exist a highly selective Cd transport system in the root cell membranes of the high Cd-accumulating ecotype (Ganges) of T. caerulescens. PMID:11847252

  20. Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case.

    PubMed

    Roosens, Nancy H; Leplae, Raphael; Bernard, Catherine; Verbruggen, Nathalie

    2005-11-01

    Plant metallothioneins (MTs) are extremely diverse and are thought to be involved in metal homeostasis or detoxification. Thlaspi caerulescens is a model Zn/Cd hyperaccumulator and thus constitutes an ideal system to study the variability of these MTs. Two T. caerulescens cDNAs (accession: 665511; accession: 665515), that are highly homologous to type 1 and type 2 Arabidopsis thaliana MTs, have been isolated using a functional screen for plant cDNAs that confer Cd tolerance to yeast. However, TcMT1 has a much shorter N-terminal domain than that of A. thaliana and so lacks Cys motifs conserved through all the plant MTs classified as type 1. A systematic search in plant databases allowed the detection of MT-related sequences. Sixty-four percent fulfil the criteria for MT classification described in Cobbett and Goldsbrough (2002) and further extend our knowledge about other conserved residues that might play an important role in plant MT structure. In addition, 34% of the total MT-related sequences cannot be classified strictly as they display modifications in the conserved residues according to the current plant MTs' classification. The significance of this variability in plant MT sequences is discussed. Functional complementation in yeast was used to assess whether these variations may alter the MTs' function in T. caerulescens. Regulation of the expression of MTs in T. caerulescens was also investigated. TcMT1 and TcMT2 display higher expression in T. caerulescens than in A. thaliana. Moreover, their differential expression patterns in organs and in response to metal exposure, suggest that the two types of MTs may have diverse roles and functions in T. caerulescens. PMID:16052319

  1. Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator Thlaspi caerulescens.

    PubMed

    Leitenmaier, Barbara; Küpper, Hendrik

    2011-02-01

    Hyperaccumulators store accumulated metals in the vacuoles of large leaf epidermal cells (storage cells). For investigating cadmium uptake, we incubated protoplasts obtained from leaves of Thlaspi caerulescens (Ganges ecotype) with a Cd-specific fluorescent dye. A fluorescence kinetic microscope was used for selectively measuring Cd-uptake and photosynthesis in different cell types, so that physical separation of cell types was not necessary. Few minutes after its addition, cadmium accumulated in the cytoplasm before its transport into the vacuole. This demonstrated that vacuolar sequestration is the rate-limiting step in cadmium uptake into protoplasts of all leaf cell types. During accumulation in the cytoplasm, Cd-rich vesicle-like structures were observed. Cd uptake rates into epidermal storage cells were higher than into standard-sized epidermal cells and mesophyll cells. This shows that the preferential heavy metal accumulation in epidermal storage cells, previously observed for several metals in intact leaves of various hyperaccumulator species, is due to differences in active metal transport and not differences in passive mechanisms like transpiration stream transport or cell wall adhesion. Combining this with previous studies, it seems likely that the transport steps over the plasma and tonoplast membranes of leaf epidermal storage cells are driving forces behind the hyperaccumulation phenotype. PMID:20880204

  2. Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense.

    PubMed

    Freeman, John L; Persans, Michael W; Nieman, Ken; Salt, David E

    2005-12-01

    The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-L-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel. PMID:16332856

  3. Nickel and Cobalt Resistance Engineered in Escherichia coli by Overexpression of Serine Acetyltransferase from the Nickel Hyperaccumulator Plant Thlaspi goesingense

    PubMed Central

    Freeman, John L.; Persans, Michael W.; Nieman, Ken; Salt, David E.

    2005-01-01

    The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-l-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel. PMID:16332856

  4. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens.

    PubMed

    Küpper, Hendrik; Parameswaran, Aravind; Leitenmaier, Barbara; Trtílek, Martin; Setlík, Ivan

    2007-01-01

    Acclimation of hyperaccumulators to heavy metal-induced stress is crucial for phytoremediation and was investigated using the hyperaccumulator Thlaspi caerulescens and the nonaccumulators T. fendleri and T. ochroleucum. Spatially and spectrally resolved kinetics of in vivo absorbance and fluorescence were measured with a novel fluorescence kinetic microscope. At the beginning of growth on cadmium (Cd), all species suffered from toxicity, but T. caerulescens subsequently recovered completely. During stress, a few mesophyll cells in T. caerulescens became more inhibited and accumulated more Cd than the majority; this heterogeneity disappeared during acclimation. Chlorophyll fluorescence parameters related to photochemistry were more strongly affected by Cd stress than nonphotochemical parameters, and only photochemistry showed acclimation. Cd acclimation in T. caerulescens shows that part of its Cd tolerance is inducible and involves transient physiological heterogeneity as an emergency defence mechanism. Differential effects of Cd stress on photochemical vs nonphotochemical parameters indicate that Cd inhibits the photosynthetic light reactions more than the Calvin-Benson cycle. Differential spectral distribution of Cd effects on photochemical vs nonphotochemical quenching shows that Cd inhibits at least two different targets in/around photosystem II (PSII). Spectrally homogeneous maximal PSII efficiency (F(v)/F(m)) suggests that in healthy T. caerulescens all chlorophylls fluorescing at room temperature are PSII-associated. PMID:17688582

  5. Glucosinolate profiles change during the life cycle and mycorrhizal colonization in a Cd/Zn hyperaccumulator Thlaspi praecox (Brassicaceae).

    PubMed

    Pongrac, Paula; Vogel-Mikus, Katarina; Regvar, Marjana; Tolrà, Roser; Poschenrieder, Charlotte; Barceló, Juan

    2008-08-01

    Thlaspi praecox Wulfen (Brassicaceae) is a perennial Cd/Zn hyperaccumulating plant species that forms functional arbuscular mycorrhizal (AM) symbiosis. Glucosinolates (GS) were studied in different organs of field-collected T. praecox at differing plant developmental stages. Additionally, AM colonization was recorded. Total GS concentrations and profiles of nine individual GS varied during the plant life cycle. Novel individual GS that were related to specific developmental phases, mainly to flowering and seed production, were identified. The highest total GS and sinalbin concentrations in rosette leaves were found in the vegetative phase, possibly contributing to protection of young, palatable leaves. The lowest were found in roots during the flowering and the seeding phases. Increased total GS concentrations in roots and enhanced aliphatic GS, especially glucobrassicanapin, in the senescence phase may protect roots from herbivory during winter and early spring. The presence of glucotropaeolin and the absence of glucobrassicanapin in the flowering phase coincided with peak AM colonization. This is the first report on GS profiles in an AM and metal-hyperaccumulating plant. PMID:18584257

  6. Investigating Heavy-metal Hyperaccumulation using Thlaspi caerulescens as a Model System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperaccumulation was a term first coined by Brooks for plants that are endemic to metalliferous soils and are able to tolerate and accumulate large amounts of metals in their above ground tissues. Of the nearly 90 metal hyperaccumulating species in the Brassicaceae family, two species in particula...

  7. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake.

    PubMed

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Regvar, Marjana

    2006-01-01

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. PMID:15998561

  8. Effect of microbial siderophore DFO-B on Cd accumulation by Thlaspi caerulescens hyperaccumulator in the presence of zeolite.

    PubMed

    Karimzadeh, Lotfollah; Heilmeier, Hermann; Merkel, Broder J

    2012-07-01

    Hyperaccumulators are grown in contaminated soil and water in order that contaminants are taken up and accumulated. Transport of metals from soil to plant is initially dependent on the solubility and mobility of metals in soil solution which is controlled by soil and metal properties and plant physiology. Complexation with organic and inorganic ligands may increase mobility and availability of metals for plants. In this work the influence of desferrioxamine-B (DFO-B), which naturally is produced in the rhizosphere, and zeolite on Cd accumulation in root and shoot of Thlaspi caerulescens (Cd hyperaccumulator) was investigated. Plants were grown in pots with clean quartz sand, amended with 1% zeolite; treatment solutions included 0, 10, and 100 μM Cd and 70 μM DFO-B. Addition of zeolite to the quartz sand significantly reduced Cd concentration in plant tissues and translocation from root to shoot. On contrary, DFO-B considerably enhanced Cd sorption by roots and translocation to aerial part of plants. Treating the plants with zeolite and DFO-B together at 10 μM Cd resulted in reduction of the bioaccumulation factor but enhancement of Cd translocation from root to shoot at the rate of 13%. In contrast, at 100 μM Cd in the solution both bioaccumulation and translocation factors decreased. Total metal accumulation as a key factor for evaluating the efficiency of phytoremediation was highly influenced by treatments. Presence of zeolite in pots significantly decreased total Cd accumulation by plants, whereas, DFO-B clearly enhanced it. PMID:22572166

  9. Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens.

    PubMed

    Tuomainen, Marjo; Ahonen, Viivi; Kärenlampi, Sirpa O; Schat, Henk; Paasela, Tanja; Svanys, Algirdas; Tuohimetsä, Saara; Peräniemi, Sirpa; Tervahauta, Arja

    2011-06-01

    Stress tolerance is currently one of the major research topics in plant biology because of the challenges posed by changing climate and increasing demand to grow crop plants in marginal soils. Increased Zn tolerance and accumulation has been reported in tobacco expressing the glyoxalase 1-encoding gene from Brassica juncea. Previous studies in our laboratory showed some Zn tolerance-correlated differences in the levels of glyoxalase 1-like protein among accessions of Zn hyperaccumulator Thlaspi caerulescens. We have now isolated the corresponding gene (named here TcGLX1), including ca. 570 bp of core and proximal promoter region. The predicted protein contains three glyoxalase 1 motifs and several putative sites for post-translational modification. In silico analysis predicted a number of cis-acting elements related to stress. The expression of TcGLX1 was not responsive to Zn. There was no correlation between the levels of TcGLX1 expression and the degrees of Zn tolerance or accumulation among T. caerulescens accessions nor was there co-segregation of TcGLX1 expression with Zn tolerance or Zn accumulation among F3 lines derived from crosses between plants from accessions with contrasting phenotypes for these properties. No phenotype was observed in an A. thaliana T-DNA insertion line for the closest A. thaliana homolog of TcGLX1, ATGLX1. These results suggest that glyoxalase 1 or at least the particular isoform studied here is not a major determinant of Zn tolerance in the Zn hyperaccumulator plant T. caerulescens. In addition, ATGLX1 is not essential for normal Zn tolerance in the non-tolerant, non-accumulator plant A. thaliana. Possible explanations for the apparent discrepancy between this and previous studies are discussed. PMID:21327818

  10. Influence of Iron Status on Cadmium and Zinc Uptake by Different Ecotypes of the Hyperaccumulator Thlaspi caerulescens1

    PubMed Central

    Lombi, Enzo; Tearall, Kathryn L.; Howarth, Jonathan R.; Zhao, Fang-Jie; Hawkesford, Malcolm J.; McGrath, Steve P.

    2002-01-01

    We have previously identified an ecotype of the hyperaccumulator Thlaspi caerulescens (Ganges), which is far superior to other ecotypes (including Prayon) in Cd uptake. In this study, we investigated the effect of Fe status on the uptake of Cd and Zn in the Ganges and Prayon ecotypes, and the kinetics of Cd and Zn influx using radioisotopes. Furthermore, the T. caerulescens ZIP (Zn-regulated transporter/Fe-regulated transporter-like protein) genes TcZNT1-G and TcIRT1-G were cloned from the Ganges ecotype and their expression under Fe-sufficient and -deficient conditions was analyzed. Both short- and long-term studies revealed that Cd uptake was significantly enhanced by Fe deficiency only in the Ganges ecotype. The concentration-dependent kinetics of Cd influx showed that the Vmax of Cd was 3 times greater in Fe-deficient Ganges plants compared with Fe-sufficient plants. In Prayon, Fe deficiency did not induce a significant increase in Vmax for Cd. Zn uptake was not influenced by the Fe status of the plants in either of the ecotypes. These results are in agreement with the gene expression study. The abundance of ZNT1-G mRNA was similar between the Fe treatments and between the two ecotypes. In contrast, abundance of the TcIRT1-G mRNA was greatly increased only in Ganges root tissue under Fe-deficient conditions. The present results indicate that the stimulatory effect of Fe deficiency on Cd uptake in Ganges may be related to an up-regulation in the expression of genes encoding for Fe2+ uptake, possibly TcIRT1-G. PMID:11950984

  11. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens.

    PubMed

    Lombi, Enzo; Tearall, Kathryn L; Howarth, Jonathan R; Zhao, Fang-Jie; Hawkesford, Malcolm J; McGrath, Steve P

    2002-04-01

    We have previously identified an ecotype of the hyperaccumulator Thlaspi caerulescens (Ganges), which is far superior to other ecotypes (including Prayon) in Cd uptake. In this study, we investigated the effect of Fe status on the uptake of Cd and Zn in the Ganges and Prayon ecotypes, and the kinetics of Cd and Zn influx using radioisotopes. Furthermore, the T. caerulescens ZIP (Zn-regulated transporter/Fe-regulated transporter-like protein) genes TcZNT1-G and TcIRT1-G were cloned from the Ganges ecotype and their expression under Fe-sufficient and -deficient conditions was analyzed. Both short- and long-term studies revealed that Cd uptake was significantly enhanced by Fe deficiency only in the Ganges ecotype. The concentration-dependent kinetics of Cd influx showed that the V(max) of Cd was 3 times greater in Fe-deficient Ganges plants compared with Fe-sufficient plants. In Prayon, Fe deficiency did not induce a significant increase in V(max) for Cd. Zn uptake was not influenced by the Fe status of the plants in either of the ecotypes. These results are in agreement with the gene expression study. The abundance of ZNT1-G mRNA was similar between the Fe treatments and between the two ecotypes. In contrast, abundance of the TcIRT1-G mRNA was greatly increased only in Ganges root tissue under Fe-deficient conditions. The present results indicate that the stimulatory effect of Fe deficiency on Cd uptake in Ganges may be related to an up-regulation in the expression of genes encoding for Fe(2+) uptake, possibly TcIRT1-G. PMID:11950984

  12. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens.

    PubMed

    Yanai, Junta; Zhao, Fang-Jie; McGrath, Steve P; Kosaki, Takashi

    2006-01-01

    The influence of soil characteristics on the phytoremediation potential of Thlaspi caerulescens is not well understood. We investigated the effect of soil pH and Cd concentration on plant Cd uptake on one soil type, and the variation in Cd uptake using a range of field contaminated soils. On soils with total Cd concentrations of 0.6-3.7 mg kg(-1), T. caerulescens (the Ganges ecotype) produced greater biomass in the pH range 5.1-7.6 than at pH 4.4. The highest plant Cd concentration (236 mg kg(-1)) and Cd uptake (228 microg pot(-1)) were observed at pH 5.1. On soils with total Cd concentrations of 2.6-314.8 mg kg(-1), shoot Cd concentrations were 10.9-1,196 mg kg(-1). Multiple regression analysis indicated that higher Cd in soil, low pH (within the range of >5) and coarser texture were associated with higher Cd concentration and Cd uptake by T. caerulescens. PMID:15998562

  13. Zinc Isotope Fractionation in the Hyperaccumulator Noccaea caerulescens and the Nonaccumulating Plant Thlaspi arvense at Low and High Zn Supply.

    PubMed

    Tang, Ye-Tao; Cloquet, Christophe; Deng, Teng-Hao-Bo; Sterckeman, Thibault; Echevarria, Guillaume; Yang, Wen-Jun; Morel, Jean-Louis; Qiu, Rong-Liang

    2016-08-01

    On the basis of our previous field survey, we postulate that the pattern and degree of zinc (Zn) isotope fractionation in the Zn hyperaccumulator Noccaea caerulescens (J. & C. Presl) F. K. Mey may reflect a relationship between Zn bioavailability and plant uptake strategies. Here, we investigated Zn isotope discrimination during Zn uptake and translocation in N. caerulescens and in a nonaccumulator Thlaspi arvense L. with a contrasting Zn accumulation ability in response to low (Zn-L) and high (Zn-H) Zn supplies. The average isotope fractionations of the N. caerulescens plant as a whole, relative to solution (Δ(66)Znplant-solution), were -0.06 and -0.12‰ at Zn-L-C and Zn-H-C, respectively, indicative of the predominance of a high-affinity (e.g., ZIP transporter proteins) transport across the root cell membrane. For T. arvense, plants were more enriched in light isotopes under Zn-H-A (Δ(66)Znplant-solution = -0.26‰) than under Zn-L-A and N. caerulescens plants, implying that a low-affinity (e.g., ion channel) transport might begin to function in the nonaccumulating plants when external Zn supply increases. Within the root tissues of both species, the apoplast fractions retained up to 30% of Zn mass under Zn-H. Moreover, the highest δ(66)Zn (0.75‰-0.86‰) was found in tightly bound apoplastic Zn, pointing to the strong sequestration in roots (e.g., binding to high-affinity ligands/precipitation with phosphate) when plants suffer from high Zn stress. During translocation, the magnitude of isotope fractionation was significantly greater at Zn-H (Δ(66)Znroot-shoot = 0.79‰) than at Zn-L, indicating that fractionation mechanisms associated with root-shoot translocation might be identical to the two plant species. Hence, we clearly demonstrated that Zn isotope fractionation could provide insight into the internal sequestration mechanisms of roots when plants respond to low and high Zn supplies. PMID:27359107

  14. Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities.

    PubMed

    Mizuno, Takafumi; Usui, Koji; Horie, Kenji; Nosaka, Shiro; Mizuno, Naoharu; Obata, Hitoshi

    2005-08-01

    Ni homeostasis is essential for plant cell activity, but the mechanisms of Ni-transport and delivery are unknown. To elucidate the role of ZIP and NRAMP metal-transporters for Ni2+-transport and homeostasis, we cloned their homologous genes from the Ni hyperaccumulator Thlaspi japonicum, and investigated their Ni-transporting abilities by expression in yeast. The deduced amino acid sequences of the two Zip transporter genes (TjZnt1, TjZnt2) and one Nramp transporter gene cloned had high homologies with TcZNT1 and TcZNT2 of Thlaspi caerulescens and AtNRAMP4 of Arabidopsis thaliana, respectively, and were predicted as integral membrane proteins with 6 or 12 transmembrane domains. TjZNT1 and TjZNT2 had two long histidine-rich domains in the putative cytoplasmic domain between transmembrane domains III and IV. TjNRAMP4 conserved a consensus transporter motif between transmembrane domains VIII and IX. The yeast transformed with TjZNT1 or TjZNT2 showed a marked increase in Ni2+ tolerance with the gene expression. In contrast, the expression of TjNramp4 caused elevation of Ni2+ sensitivity and Ni2+ concentration. These data suggest that ZIP/NRAMP transporters participate in Ni2+ homeostasis of Ni hyperaccumulator plants. TjZNT1 had Zn2+-, Cd2+- and Mn2+-transporting abilities and TjZNT2 also had Zn2+- and Mn2+-transporting abilities, but TjNRAMP4 could transport Ni2+ but not Zn2+, Cd2+ or Mn2+. PMID:16198592

  15. [Stoichiometry of multi-elements in the zinc-cadmium hyperaccumulator Thlaspi caerulescens grown hydroponically under different zinc concentrations determined by ICP-AES].

    PubMed

    Han, Wen-xuan; Xu, Yi-ming; Du, Wei; Tang, Ao-han; Jiang, Rong-feng

    2009-09-01

    Thlaspi caerulescens is commonly known as a zinc (Zn) and cadmium (Cd) hyperaccumulator, which can be used to clean up the Zn- and/or Cd-contaminated soil. However, it is unclear whether high soil Zn concentrations will stimulate undue accumulations of other elements to such an extent as to cause the nutrient unbalance in the soil. To address this question, the inductively coupled plasma-atomic emission spectrometry (ICP-AES) was employed to investigate the effect of Zn on the stoichiometry of Zn, Cd, K, P, Mg, Ca, Fe, Mn and Cu in T. caerulescens (Ganges ecotype) exposed to low, middle and high Zn concentrations (5, 50 and 500 micromol x L(-1), respectively) in a hydroponic experiment. The results showed that there were no significant variations in contents of Cd, K, P, Mg, Ca, Fe, Mn and Cu in the shoot of T. caerulescens, however, the Zn content in the shoot and root with 500 mciromol x L(-1) Zn treatment increased as much as 13 times higher than that with low Zn exposure, indicating that the plant is capable of Zn hyperaccumulating. The authors' study suggests that it is improbable to induce soil nutrient unbalance when T. caerulescensis (Ganges) is used for phytoremediation of Zn-contaminated soil, in that over-uptake of nutrient elements from the soil other than Zn was not observed, at least for the elements K, P, Mg, Ca, Fe, Mn and Cu. PMID:19950676

  16. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population).

    PubMed

    Küpper, Hendrik; Kochian, Leon V

    2010-01-01

    We investigated changes in mineral nutrient uptake and cellular expression levels for metal transporter genes in the cadmium (Cd)/zinc (Zn) hyperaccumulator, Thlaspi caerulescens during whole plant and leaf ontogenesis under different long-term treatments with Zn and Cd. Quantitative mRNA in situ hybridization (QISH) revealed that transporter gene expression changes not only dependent on metal nutrition/toxicity, but even more so during plant and leaf development. The main mRNA abundances found were: ZNT1, mature leaves of young plants; ZNT5, young leaves of young plants; MTP1 (= ZTP1 = ZAT), young leaves of both young and mature plants. Surprisingly different cellular expression patterns were found for ZNT1 and ZNT5, both belonging to the ZIP family of transition metal transporters: ZNT1, photosynthetic mesophyll and bundle sheath cells; ZNT5, nonphotosynthetic epidermal metal storage cells and bundle sheath cells. Thus, ZNT1 may function in micronutrient nutrition while ZNT5 may be involved in metal storage associated with hyperaccumulation. Cadmium inhibited the uptake of Zn, iron (Fe) and manganese (Mn), probably by competing for transporters or by interfering with the regulation of transporter gene expression. Cadmium-induced changes in cellular expression for ZNT1, ZNT5 and MTP1 could also be part of plant acclimatization to Cd toxicity. Defence against Cd toxicity involved enhanced uptake of magnesium (Mg), calcium (Ca) and sulphur (S). PMID:19843304

  17. TcOPT3, a Member of Oligopeptide Transporters from the Hyperaccumulator Thlaspi caerulescens, Is a Novel Fe/Zn/Cd/Cu Transporter

    PubMed Central

    Hu, Yi Ting; Ming, Feng; Chen, Wei Wei; Yan, Jing Ying; Xu, Zheng Yu; Li, Gui Xin; Xu, Chun Yan; Yang, Jian Li; Zheng, Shao Jian

    2012-01-01

    Background Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. Methodology/Principal Findings We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens. TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore, heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments demonstrated that TcOPT3 could transport Fe2+ and Zn2+. Moreover, expression of TcOPT3 in yeast increased metal (Fe, Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu). Conclusions Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate. This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the heavy metal hyperaccumulation. PMID:22761683

  18. Investigation of Heavy Metal Hyperaccumulation at the Cellular Level: Development and Characterization of Thlaspi caerulescens Suspension Cell Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of metal hyperaccumulator plant species to accumulate high concentrations of toxic heavy metals requires the coordinated uptake, transport and sequestration of these metals to avoid damage to photosynthetic mechanisms. A number of previous studies have examined how hyperaccumulating pla...

  19. Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE.

    PubMed

    Vogel-Mikus, Katarina; Simcic, Jure; Pelicon, Primoz; Budnar, Milos; Kump, Peter; Necemer, Marijan; Mesjasz-Przybyłowicz, Jolanta; Przybyłowicz, Wojciech J; Regvar, Marjana

    2008-10-01

    A detailed localization of elements in leaf tissues of the field-collected Cd/Zn hyperaccumulator Thlaspi praecox (Brassicaceae) growing at a highly metal-polluted site was determined by micro-proton-induced X-ray emission (micro-PIXE) in order to reveal and compare nutrient and non-essential element accumulation patterns in the case of multiple metal accumulation within particular leaf tissues, including the detailed distribution between apoplast and symplast regions. On the larger scans, the highest concentrations of metals were observed in the epidermis, S and Ca in the palisade mesophyll, Cl in the spongy mesophyll and vascular bundles, and P and K in the vascular bundles. On the more detailed scans, the highest Cd, Pb, Cl and K concentrations were observed in vascular bundle collenchyma. The relative element distribution (%) was calculated based on concentrations of elements in particular leaf tissues and their relative weight portions, indicating that most of the accumulated Zn was located in epidermises, while the majority of Cd and Pb was distributed within the mesophyll. Detailed scans of epidermal/mesophyll tissues revealed that Zn was mainly accumulated and detoxified in the symplast of large vacuolated epidermal cells, Cd in the mesophyll symplast, and Pb in the mesophyll symplast and apoplast. PMID:18643900

  20. Cadmium sorption, influx, and efflux at the mesophyll layer of leaves from ecotypes of the Zn/Cd hyperaccumulator Thlaspi caerulescens.

    PubMed

    Ebbs, Stephen D; Zambrano, M Clemencia; Spiller, Shawna M; Newville, Matthew

    2009-01-01

    Differential sorption and transport characteristics of the leaf mesophyll layer of the Prayon and Ganges ecotypes of the hyperaccumulator Thlaspi caerulescens were examined. (109)Cd influx and efflux experiments were conducted with leaf sections, and X-ray absorption near edge structure (XANES) data were collected from leaves as a general comparison of in vivo cadmium (Cd) coordination. There were modest differences in cell wall sorption of Cd between ecotypes. There were obvious differences in time- and concentration-dependent Cd influx, including a greater V(MAX) for Prayon but a lower K(M) for Ganges for concentration-dependent Cd uptake and a notably greater Cd uptake by Ganges leaf sections at 1000 microm Cd. Leaf sections of Prayon had a greater Cd efflux than Ganges. The XANES spectra from the two ecotypes suggested differences in Cd coordination. The fundamental differences observed between the two ecotypes may reflect differential activity and/or expression of plasma membrane and tonoplast transporters. More detailed study of these transporters and the in vivo coordination of Cd are needed to determine the contribution of these processes to metal homeostasis and tolerance. PMID:19054336

  1. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.

    PubMed

    van de Mortel, Judith E; Schat, Henk; Moerland, Perry D; Ver Loren van Themaat, Emiel; van der Ent, Sjoerd; Blankestijn, Hetty; Ghandilyan, Artak; Tsiatsiani, Styliani; Aarts, Mark G M

    2008-03-01

    Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis. PMID:18088336

  2. Biochemical and biophysical characterisation yields insights into the mechanism of a Cd/Zn transporting ATPase purified from the hyperaccumulator plant Thlaspi caerulescens.

    PubMed

    Leitenmaier, Barbara; Witt, Annelie; Witzke, Annabell; Stemke, Anastasia; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Küpper, Hendrik

    2011-10-01

    TcHMA4 (GenBank no. AJ567384), a Cd/Zn transporting ATPase of the P(1B)-type (=CPx-type) was isolated and purified from roots of the Cd/Zn hyperaccumulator Thlaspi caerulescens. Optimisation of the purification protocol, based on binding of the natural C-terminal His-tag of the protein to a Ni-IDA metal affinity column, yielded pure, active TcHMA4 in quantities sufficient for its biochemical and biophysical characterisation with various techniques. TcHMA4 showed activity with Cu(2+), Zn(2+) and Cd(2+) under various concentrations (tested from 30nM to 10μM), and all three metal ions activated the ATPase at a concentration of 0.3μM. Notably, the enzyme worked best at rather high temperatures, with an activity optimum at 42°C. Arrhenius plots yielded interesting differences in activation energy. In the presence of zinc it remained constant (E(A)=38kJ⋅mol(-1)) over the whole concentration range while it increased from 17 to 42kJ⋅mol(-1) with rising copper concentration and decreased from 39 to 23kJ⋅mol(-1) with rising cadmium concentration. According to EXAFS the TcHMA4 appeared to bind Cd(2+) mainly by thiolate sulphur from cysteine, and not by imidazole nitrogen from histidine. PMID:21621506

  3. Complexation and Toxicity of Copper in Higher Plants. II. Different Mechanisms for Copper versus Cadmium Detoxification in the Copper-Sensitive Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype)1[OA

    PubMed Central

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M.H.; Götz, Birgit; Küpper, Hendrik

    2009-01-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 μm Cu2+ remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the “sun reaction” type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

  4. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype).

    PubMed

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Götz, Birgit; Küpper, Hendrik

    2009-10-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 microm Cu(2+) remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the "sun reaction" type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

  5. Cd induced redistribution of elements within leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE

    NASA Astrophysics Data System (ADS)

    Pongrac, Paula; Vogel-Mikuš, Katarina; Vavpetič, Primož; Tratnik, Janja; Regvar, Marjana; Simčič, Jurij; Grlj, Nataša; Pelicon, Primož

    2010-06-01

    A detailed localisation of elements within leaf tissues of hydroponically grown Cd/Zn hyperaccumulator Thlaspi praecox (Brassicaceae) was determined by micro-PIXE at Jožef Stefan Institute (Ljubljana, Slovenia) in order to study accumulation patterns of Cd and other elements in the case of a single metal (Cd) pollution. Plants were treated with increasing concentrations of Cd in the solution (0 (control), 1, 10 and 100 μM). As expected, concentration of Cd in the leaves gradually increased with Cd concentration in the solution. In order to reveal the main Cd storage compartment space within the leaves a relative element distribution (pool) was calculated based on concentrations of elements in specific leaf tissues and their weight portions. Where present at detectable levels, Cd accumulated in the epidermal tissues (at 10 μM), but the contribution of epidermal pool decreased with increasing Cd concentration in solution (at 100 μM). The opposite was observed for the mesophyll pool. In addition, in Cd treated plants, a significant decrease in mesophyll Fe pool and an increase in the epidermal Fe pool were observed. Similar effect was seen for Mn pool at 100 μM Cd treatment accompanied by increasing Zn epidermal pool with increasing Cd in nutrient solution. Altogether these results indicate repartitioning of essential mesophyll cation pools (e.g., Fe, Mn and possibly Zn) when increasing Cd contents, that are instead more intensively stored in the epidermal cells. These results confirmed micro-PIXE as effective and powerful technique providing essential information on metal localisation, repartitioning and major elemental stores in plants on the tissue levels that were not accessible using classical analytical techniques and thus complementing our current understanding of plant metal tolerance mechanisms as a whole.

  6. Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa.

    PubMed

    Benzarti, Saoussen; Mohri, Shino; Ono, Yoshiro

    2008-10-01

    Thlaspi caerulescens (alpine pennycress) is one of the best-known heavy metal (HM) hyperaccumulating plant species. It exhibits the ability to extract and accumulate various HM at extremely high concentrations. In this hydroponic study, the performance of T. caerulescens (ecotype Ganges) to accumulate Cd, Zn, and Cu was compared with that of three nonaccumulator plants: alfalfa (Medicago sativa), radish (Raphanus sativus), and lettuce (Lactuca sativa). Plants were exposed to the separately dissolved HM salts for 7 days at a wide range of increasing concentrations: 0 (control: 1/5 Hoagland nutrient solution), 0.1, 1, 10, 100, and 1000 microM. The comparative study combined chemical, physiological, and ecotoxicological assessments. Excessive concentrations of HM (100 and 1000 microM) affected plant growth, photosynthesis, and phytoaccumulation efficiency. Root exudation for all plant species was highly and significantly correlated to HM concentration in exposure solutions and proved its importance to counter effect toxicity. T. caerulescens resisted better the phytotoxic effects of Cd and Zn (at 1000 microM each), and translocated them significantly within tissues (366 and 1290 microg g(-1), respectively). At the same HM level, T. caerulescens exhibited lower performances in accumulating Cu when compared with the rest of plant species, mainly alfalfa (298 microg g(-1)). Root elongation inhibition test confirmed the selective aptitude of T. caerulescens to better cope with Cd and Zn toxicities. MetPLATE bioassay showed greater sensitivity to HM toxicity with much lower EC(50) values for beta-galactosidase activity in E. coli. Nevertheless, exaggerated HM concentrations coupled with relatively short exposure time did not allow for an efficient metal phytoextraction thus a significant reduction of ecotoxicity. PMID:18528911

  7. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens

    PubMed Central

    Hassinen, V. H.; Tuomainen, M.; Peräniemi, S.; Schat, H.; Kärenlampi, S. O.; Tervahauta, A. I.

    2009-01-01

    To study the role of metallothioneins (MTs) in Zn accumulation, the expression of TcMT2a, TcMT2b, and TcMT3 was analysed in three accessions and 15 F3 families of two inter-accession crosses of the Cd/Zn hyperaccumulator Thlaspi caerulescens, with different degrees of Zn accumulation. The highest expression levels were found in the shoots of a superior metal-accumulating calamine accession from St Laurent le Minier, with >10-fold TcMT3 expression compared with another calamine accession and a non-metallicolous accession. Moreover, F3 sibling lines from the inter-accession crosses that harboured the MT2a or MT3 allele from St Laurent le Minier had higher expression levels. However, there was no co-segregation of TcMT2a or TcMT3 expression and Zn accumulation. To examine the functions of TcMTs in plants, TcMT2a and TcMT3 were ectopically expressed in Arabidopsis. The transformant lines had reduced root length in control medium but not at high metal concentrations, suggesting that the ectopically expressed proteins interfered with the physiological availability of essential metals under limited supply. The Arabidopsis transformant lines did not show increased tolerance to Cd, Cu, or Zn, nor increased Cd or Zn accumulation. Immunohistochemical analysis indicated that in roots, MT2 protein is localized in the epidermis and root hairs of both T. caerulescens and Arabidopsis thaliana. The results suggest that TcMT2a, TcMT2b, and TcMT3 are not primarily involved in Zn accumulation as such. However, the elevated expression levels in the metallicolous accessions suggests that they do contribute to the metal-adapted phenotype, possibly through improving Cu homeostasis at high Zn and Cd body burdens. Alternatively, they might function as hypostatic enhancers of Zn or Cd tolerance. PMID:19033549

  8. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by x-ray absorption spectroscopy.

    PubMed

    Küpper, Hendrik; Mijovilovich, Ana; Meyer-Klaucke, Wolfram; Kroneck, Peter M H

    2004-02-01

    Extended x-ray absorption fine structure measurements were performed on frozen hydrated samples of the cadmium (Cd)/zinc (Zn) hyperaccumulator Thlaspi caerulescens (Ganges ecotype) after 6 months of Zn(2+) treatment with and without addition of Cd(2+). Ligands depended on the metal and the function and age of the plant tissue. In mature and senescent leaves, oxygen ligands dominated. This result combined with earlier knowledge about metal compartmentation indicates that the plants prefer to detoxify hyperaccumulated metals by pumping them into vacuoles rather than to synthesize metal specific ligands. In young and mature tissues (leaves, petioles, and stems), a higher percentage of Cd was bound by sulfur (S) ligands (e.g. phytochelatins) than in senescent tissues. This may indicate that young tissues require strong ligands for metal detoxification in addition to the detoxification by sequestration in the epidermal vacuoles. Alternatively, it may reflect the known smaller proportion of epidermal metal sequestration in younger tissues, combined with a constant and high proportion of S ligands in the mesophyll. In stems, a higher proportion of Cd was coordinated by S ligands and of Zn by histidine, compared with leaves of the same age. This may suggest that metals are transported as stable complexes or that the vacuolar oxygen coordination of the metals is, like in leaves, mainly found in the epidermis. The epidermis constitutes a larger percentage of the total volume in leaves than in stems and petioles. Zn-S interaction was never observed, confirming earlier results that S ligands are not involved in Zn resistance of hyperaccumulator plants. PMID:14966248

  9. Tissue- and Age-Dependent Differences in the Complexation of Cadmium and Zinc in the Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) Revealed by X-Ray Absorption Spectroscopy1[w

    PubMed Central

    Küpper, Hendrik; Mijovilovich, Ana; Meyer-Klaucke, Wolfram; Kroneck, Peter M.H.

    2004-01-01

    Extended x-ray absorption fine structure measurements were performed on frozen hydrated samples of the cadmium (Cd)/zinc (Zn) hyperaccumulator Thlaspi caerulescens (Ganges ecotype) after 6 months of Zn2+ treatment with and without addition of Cd2+. Ligands depended on the metal and the function and age of the plant tissue. In mature and senescent leaves, oxygen ligands dominated. This result combined with earlier knowledge about metal compartmentation indicates that the plants prefer to detoxify hyperaccumulated metals by pumping them into vacuoles rather than to synthesize metal specific ligands. In young and mature tissues (leaves, petioles, and stems), a higher percentage of Cd was bound by sulfur (S) ligands (e.g. phytochelatins) than in senescent tissues. This may indicate that young tissues require strong ligands for metal detoxification in addition to the detoxification by sequestration in the epidermal vacuoles. Alternatively, it may reflect the known smaller proportion of epidermal metal sequestration in younger tissues, combined with a constant and high proportion of S ligands in the mesophyll. In stems, a higher proportion of Cd was coordinated by S ligands and of Zn by histidine, compared with leaves of the same age. This may suggest that metals are transported as stable complexes or that the vacuolar oxygen coordination of the metals is, like in leaves, mainly found in the epidermis. The epidermis constitutes a larger percentage of the total volume in leaves than in stems and petioles. Zn-S interaction was never observed, confirming earlier results that S ligands are not involved in Zn resistance of hyperaccumulator plants. PMID:14966248

  10. The effect of plant cadmium and zinc status on root and shoot heavy metal accumulation in the heavy metal hyperaccumulator, Thlaspi caerulescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens is a plant species capable of tolerating and accumulating extremely high concentrations of the heavy metals, Zn and Cd, in the shoot. In this study, we investigated the impact of changes in plant heavy metal status (i.e. Zn and Cd) on the accumulation of heavy metals, including...

  11. The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae.

    PubMed

    Kim, Donggiun; Gustin, Jeffery L; Lahner, Brett; Persans, Michael W; Baek, Dongwon; Yun, Dae-Jin; Salt, David E

    2004-07-01

    To avoid metal toxicity, organisms have evolved mechanisms including efflux of metal ions from cells and sequestration into internal cellular compartments. Members of the ubiquitous cation diffusion facilitator (CDF) family are known to play an important role in these processes. Overexpression of the plant CDF family member metal tolerance protein 1 (MTP1) from the Ni/Zn hyperaccumulator Thlaspi goesingense (TgMTP1), in the Saccharomyces cerevisiaeDelta zinc resistance conferring (zrc)1Delta cobalt transporter (cot)1 double mutant, suppressed the Zn sensitivity of this strain. T. goesingense was found to contain several allelic variants of TgMTP1, all of which confer similar resistance to Zn in Deltazrc1Deltacot1. Similarly, MTP1 from various hyperaccumulator and non-accumulator species also confer similar resistance to Zn. Deltazrc1Deltacot1 lacks the ability to accumulate Zn in the vacuole and has lower accumulation of Zn after either long- or short-term Zn exposure. Expression of TgMTP1 in Deltazrc1Deltacot1 leads to further lowering of Zn accumulation and an increase in Zn efflux from the cells. Expression of TgMTP1 in a V-type ATPase-deficient S. cerevisiae strain also confers increased Zn resistance. In vivo and in vitro immunological staining of hemagglutinin (HA)-tagged TgMTP1::HA reveals the protein to be localized in both the S. cerevisiae vacuolar and plasma membranes. Taken together, these data are consistent with MTP1 functioning to enhance plasma membrane Zn efflux, acting to confer Zn resistance independent of the vacuole in S. cerevisiae. Transient expression in Arabidopsis thaliana protoplasts also reveals that TgMTP1::green fluorescent protein (GFP) is localized at the plasma membrane, suggesting that TgMTP1 may also enhance Zn efflux in plants. PMID:15225288

  12. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance exhibited by a Cd-hyperaccumulating ecotype of Thlaspi caerulescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cadmium (Cd) is a highly toxic heavy metal for plants, but several unique Cd hyperaccumulating plant species are able to accumulate this metal to extraordinary concentrations in the above-ground tissues without showing any toxic symptoms. However, the molecular mechanisms underlying this hyper-tole...

  13. POTENTIAL FOR GENETIC IMPROVEMENT OF THLASPI CAERULESCENS FOR PHYTOREMEDIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens has excellent potential to be used for remediation of zinc and cadmium polluted soils. Although plants of this species have been found to consistently hyperaccumulate cadmium and zinc, the levels of cadmium and zinc that individual plants accumulate depend on their genotype and...

  14. DIFFERENCES IN WHOLE CELL AND SINGLE CHANNEL ION CURRENTS ACROSS THE PLASMA MEMBRANE OF MESOPHYLL CELLS FROM TWO CLOSELY RELATED THLASPI SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The patch clamp technique was used to study the physiology of ion transport in mesophyll cells from Thlaspi caerulescens, a heavy metal (Zn/Cd) hyperaccumulator species that can tolerate and accumulate very high levels of heavy metals in their leaf cells, and Thlaspi arvense, a related non-accumulat...

  15. Arabis gemmifera is a hyperaccumulator of Cd and Zn.

    PubMed

    Kubota, Hiroshi; Takenaka, Chisato

    2003-01-01

    Hyperaccumulators are essential for phytoremediation of heavy metals. In Europe and North America, many studies have been conducted to find more effective plants for phytoremediation of various pollutants. In Japan, this field of research has just recently come more into focus. A type of fern in Japan, Athyrium yokoscense, is well known as a hyperaccumulator of Cd and Zn. However, it is not suitable for phytoremediation because it is a summer green and grows slowly. Therefore, in order to find hyperaccumulators other than from A. yokoscense, we surveyed plants growing at polluted sites in Japan. We found that the Brassicae Arabis gemmifera is a hyperaccumulator of Cd and Zn, with phytoextraction capacities almost equal to Thlaspi caerulescens. PMID:14750427

  16. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we conducted a detailed analysis of the ZIP family transporter, NcZNT1, in the Zn/Cd hyperaccumulating plant species, Noccaea caerulescens, formerly known as Thlaspi caerulescens. NcZNT1 was previously suggested to be the primary root Zn/Cd uptake transporter. Both a characterization ...

  17. A native Zn/Cd transporting P1B ATPase from natural overexpression in a hyperaccumulator plant reveals post-translational processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TcHMA4 is a P1B-type ATPase that is highly expressed in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens and contains a C-terminal 9-histidine repeat. After isolation from roots, we purified TcHMA4 protein via metal affinity chromatography. The purified protein exhibited Cd- and Zn activated AT...

  18. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.

    PubMed

    Deng, Teng-Hao-Bo; Cloquet, Christophe; Tang, Ye-Tao; Sterckeman, Thibault; Echevarria, Guillaume; Estrade, Nicolas; Morel, Jean-Louis; Qiu, Rong-Liang

    2014-10-21

    Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 μM) and high (50 μM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes. PMID:25222693

  19. Molecular dissection of the cellular mechanisms involved in nickel hyperaccumulation. 1997 annual progress report

    SciTech Connect

    Salt, D.E.

    1997-10-28

    'Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites. A number of terrestrial plants are known to naturally accumulate high levels of metals in their shoots (1--2% dry weight), and these plants have been termed metal-hyperaccumulators. Clearly, the genetic traits that determine metal-hyperaccumulation offers the potential for the development of practical phytoremediation processes. The long-term objective is to rationally design and generate plants ideally suited for phytoremediation using this unique genetic material. Initially, the strategy will focus on isolating and characterizing the key genetic information needed for expression of the metal-hyperaccumulation phenotype. Recently, histidine has been shown to play a major role in Ni hyperaccumulation. Based on this information the authors propose to investigate, at the molecular level, the role of histidine biosynthesis in Ni hyperaccumuIation in Thlaspi goesingense, a Ni hyperaccumulator species.'

  20. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thalspi goesingense (Halacsy)

    SciTech Connect

    Persans, M.W.; Yan, X.; Patnoe, J.M.M.L.; Kraemer, U.; Salt, D.E.

    1999-12-01

    To understand the role of free histidine (His) in Ni hyperaccumulation in Thlaspi goesingense, the authors investigated the regulation of His biosynthesis at both the molecular and biochemical levels. Three T. goesingense cDNAs encoding the following His biosynthetic enzymes, ATP phosphoribosyltransferase, imidazoleglycerol phosphate dehydratase, and histidinol dehydrogenase, were isolated by functional complementation of Escherichia coli His autotrophs. Northern analysis of THJG1, THD1, and THB1 gene expression revealed that each gene is expressed in both roots and shoots, but at the concentrations and dosage times of Ni treatment used in this study, these genes failed to show any regulation by Ni. The authors were also unable to observe any increases in the concentration of free His in root, shoot, or xylem sap of T. goesingense in response to Ni exposure. X-ray absorption spectroscopy of root and shoot tissue from T. goesingense and the non-accumulator species Thlaspi reverse revealed no major differences in the coordination of Ni by His in these tissues. They therefore conclude that the Ni hyperaccumulation phenotype in T. goesingense is not determined by the overproduction of His in response to Ni.

  1. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species.

    PubMed

    Boominathan, Rengasamy; Doran, Pauline M

    2003-03-01

    Heavy metal uptake and distribution were investigated in hairy roots of the Cd hyperaccumulator, Thlaspi caerulescens, and the Ni hyperaccumulator, Alyssum bertolonii. Hairy roots of both species contained high constitutive levels of citric, malic and malonic acids. After treatment with 20 ppm Cd or 25 ppm Ni, about 13% of the total Cd in T. caerulescens roots and 28% of the total Ni in A. bertolonii were associated with organic acids. T. caerulescens and A. bertolonii hairy roots remained healthy and grew well at high concentrations of Cd and Ni, respectively, whereas hairy roots of the non-hyperaccumulator, Nicotiana tabacum, did not. Most of the Cd in T. caerulescens and N. tabacum roots was localised in the cell walls. In contrast, 85-95% of the Ni in A. bertolonii and N. tabacum was associated with the symplasm. Growth of T. caerulescens and A. bertolonii hairy roots was severely reduced in the presence of diethylstilbestrol (DES), an inhibitor of plasma membrane H(+)-ATPase. Treatment with DES increased the concentration of Cd in the symplasm of T. caerulescens about 6-fold with retention of root viability, whereas viability and Ni transport across the plasma membrane were both reduced in A. bertolonii. These results suggest that the mechanisms of Cd tolerance and hyperaccumulation in T. caerulescens hairy roots are capable of withstanding the effects of plasma membrane depolarisation, whereas Ni tolerance and hyperaccumulation in A. bertolonii hairy roots are not. PMID:12568742

  2. Thlaspi caerulescens (Brassicaceae) population genetics in western Switzerland: is the genetic structure affected by natural variation of soil heavy metal concentrations?

    PubMed

    Besnard, Guillaume; Basic, Nevena; Christin, Pascal-Antoine; Savova-Bianchi, Dessislava; Galland, Nicole

    2009-03-01

    Thlaspi caerulescens (Brassicaceae) is a promising plant model with which to study heavy metal hyperaccumulation. Population genetics studies are necessary for a better understanding of its history, which will be useful for further genomic studies on the evolution of heavy metal hyperaccumulation.The genetic structure of 24 natural Swiss locations was investigated using nuclear and plastid loci. Population genetics parameters were estimated and genetic pools were identified using Bayesian inference on eight putatively neutral nuclear loci.Finally, the effect of cadmium (Cd) and zinc (Zn) soil concentrations on genetic differentiation at loci located in genes putatively involved in heavy metal responses was examined using partial Mantel tests in Jura, western Switzerland.Four main genetic clusters were recognized based on nuclear and plastid loci,which gave mostly congruent signals. In Jura, genetic differentiation linked to heavy metal concentrations in soil was shown at some candidate loci, particularly for genes encoding metal transporters. This suggests that natural selection limits gene flow between metalliferous and non metalliferous locations at such loci.Strong historical factors explain the present genetic structure of Swiss T. caerulescens populations, which has to be considered in studies testing for relationships between environmental and genetic variations. Linking of genetic differentiation at candidate genes with soil characteristics offers new perspectives in the study of heavy metal hyperaccumulation. PMID:19076982

  3. Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants.

    PubMed

    Luo, Jun; Zhang, Hao; Zhao, Fang-Jie; Davison, William

    2010-09-01

    This work set out to test the hypothesis that uptake of metals by hyperaccumulator (HA) plants is more likely to be diffusion limited than uptake by nonhyperaccumulator (NHA) plants. Two circumneutral soils, with different contents of organic matter (0.8 and 5.8%), were amended with Cd (0.5 to 5 mg kg(-1)) and Ni (10 to 100 mg kg(-1)). A Cd HA plant, Thlaspi caerulescens, was grown in pots containing the Cd amended soils, and a Ni HA, Thlaspi goesingense, was grown in pots containing the Ni amended soils. A NHA plant of the same family, Thlaspi arvense, was grown in the same soils. Metals were measured in both roots and shoots of all plants. Concentrations of Cd and Ni were measured in soil solution and using the technique of diffusive gradients in thin-films (DGT). The dependencies of metal measured by DGT, [M]DGT, and in soil solution, [M]ss, on the amended metal concentration, [M]add, were consistent with fast supply of Cd but a slower rate of release of Ni from solid phase to solution at lower [Ni]add. Detailed consideration of the dependence of Ni and Cd in shoots and roots on [M]add, [M]ss, and [M]DGT allowed assessment of the supply mechanism. The weight of evidence suggested that diffusion limitation applies for uptake of Cd by both HA and NHA plants and for uptake of Ni by the HA. However, uptake of Ni by the NHA is not limited by diffusion and the biotic ligand model is probably appropriate. PMID:20681510

  4. Response of antioxidative enzymes and apoplastic bypass transport in Thlaspi caerulescens and Raphanus sativus to cadmium stress.

    PubMed

    Benzarti, Saoussen; Hamdi, Helmi; Mohri, Shino; Ono, Yoshiro

    2010-01-01

    A hydroponics experiment using hyperaccumulator Thlaspi caerulescens (alpine pennycress) and non-specific accumulator Raphanus sativus (common radish) was conducted to investigate the short-term effect of increasing Cd concentrations (0, 25, 50, 75, 100 microM) on metal uptake, chlorophyll content, antioxidative enzymes, and apoplastic bypass flow. As expected, T. caerulescens generally showed better resistance to metal stress, which was reflected by higher Cd accumulation within plant tissues with no signs of chlorosis, or wilt. Glutathione reductase (GR) and superoxide dismutase (SOD) activities in fresh leaves were monitored as the plant metal-detoxifying response. In general, both plant species exhibited an increase trend of GR activity before declining at 100 microM likely due to excessive levels of phytotoxic Cd. SOD activity exhibited almost a similar variation pattern to GR and decreased also at 100 microM Cd. For both plant species, fluorescent PTS uptake (8-hydroxy-1,3,6-pyrenetrisulphonic acid) increased significantly with metal level in exposure solutions indicating that Cd has a comparable effect to drought or salinity in terms of the gain of relative importance in apoplastic bypass transport under such stress conditions. PMID:21166344

  5. Nickel, Zn and Cd localisation in seeds of metal hyperaccumulators using μ-PIXE spectroscopy

    NASA Astrophysics Data System (ADS)

    Kachenko, Anthony G.; Bhatia, Naveen P.; Siegele, Rainer; Walsh, Kerry B.; Singh, Balwant

    2009-06-01

    Metal hyperaccumulators are a rare group of plant species that accumulate exceptionally high concentrations of metals in above ground tissues without showing symptoms of phytotoxicity. Quantitative localisation of the accumulated metals in seed tissues is of considerable interest to help understand the eco-physiology of these unique plant species. We investigated the spatial localisation of metals within seeds of Ni hyperaccumulating Hybanthus floribundus subsp. adpressus, H. floribundus subsp. floribundus and Pimelea leptospermoides and dual-metal (Cd and Zn) hyperaccumulating Thlaspi caerulescens using quantitative micro-proton induced X-ray emission (μ-PIXE) spectroscopy. Intact seeds were hand-sectioned, sandwiched between Formvar films and irradiated using the 3 MeV high energy heavy ion microprobe at ANSTO. Elemental maps of whole H. floribundus subsp. adpressus seeds showed an average Ni concentration of 5.1 × 10 3 mg kg -1 dry weight (DW) with highest Ni concentration in cotyledonary tissues (7.6 × 10 3 mg kg -1 DW), followed by the embryonic axis (4.4 × 10 3 mg kg -1 DW). Nickel concentration in whole H. floribundus subsp. floribundus seeds was 3.5 × 10 2 mg kg -1 DW without a clear pattern of Ni localisation. The average Ni concentration in whole P. leptospermoides seeds was 2.6 × 10 2 mg kg -1 DW, and Ni was preferentially localised in the embryonic axis (4.3 × 10 2 mg kg -1 DW). In T. caerulescens, Cd concentrations were similar in cotyledon (4.5 × 10 3 mg kg -1 DW) and embryonic axis (3.3 × 10 3 mg kg -1 DW) tissues, whereas Zn was highest in cotyledonary tissues (1.5 × 10 3 mg kg -1 DW). In all species, the presence of the accumulated metal within the cotyledonary and embryonic axis tissues indicates that the accumulated metal was able to move apoplastically within the seed.

  6. Using hyperaccumulator plants to phytoextract soil Ni and Cd.

    PubMed

    Chaney, Rufus L; Angle, J Scott; McIntosh, Marla S; Reeves, Roger D; Li, Yin-Ming; Brewer, Eric P; Chen, Kuang-Yu; Roseberg, Richard J; Perner, Henrike; Synkowski, Eva Claire; Broadhurst, C Leigh; Wang, S; Baker, Alan J M

    2005-01-01

    Two strategies of phytoextraction have been shown to have promise for practical soil remediation: domestication of natural hyperaccumulators and bioengineering plants with the genes that allow natural hyperaccumulators to achieve useful phytoextraction. Because different elements have different value, some can be phytomined for profit and others can be phytoremediated at lower cost than soil removal and replacement. Ni phytoextraction from contaminated or mineralized soils offers economic return greater than producing most crops, especially when considering the low fertility or phytotoxicity of Ni rich soils. Only soils that require remediation based on risk assessment will comprise the market for phytoremediation. Improved risk assessment has indicated that most Zn + Cd contaminated soils will not require Cd phytoextraction because the Zn limits practical risk from soil Cd. But rice and tobacco, and foods grown on soils with Cd contamination without corresponding 100-fold greater Zn contamination, allow Cd to readily enter food plants and diets. Clear evidence of human renal tubular dysfunction from soil Cd has only been obtained for subsistence rice farm families in Asia. Because of historic metal mining and smelting, Zn + Cd contaminated rice soils have been found in Japan, China, Korea, Vietnam and Thailand. Phytoextraction using southern France populations of Thlaspi caerulescens appears to be the only practical method to alleviate Cd risk without soil removal and replacement. The southern France plants accumulate 10-20-fold higher Cd in shoots than most T. caerulescens populations such as those from Belgium and the UK. Addition of fertilizers to maximize yield does not reduce Cd concentration in shoots; and soil management promotes annual Cd removal. The value of Cd in the plants is low, so the remediation service must pay the costs of Cd phytoextraction plus profits to the parties who conduct phytoextraction. Some other plants have been studied for Cd

  7. Compartmentation and complexation of metals in hyperaccumulator plants

    PubMed Central

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-01-01

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their “strange” behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs. PMID:24065978

  8. Compartmentation and complexation of metals in hyperaccumulator plants.

    PubMed

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-01-01

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their "strange" behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs. PMID:24065978

  9. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils1[OPEN

    PubMed Central

    Mandáková, Terezie; Singh, Vasantika; Krämer, Ute; Lysak, Martin A.

    2015-01-01

    Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descended from seven chromosomes of the ancestral proto-Calepineae Karyotype (n = 7) through an unusually high number of pericentric inversions. Genome analysis in two other related species, Noccaea jankae and Raparia bulbosa, showed that all three species, and thus probably the entire Coluteocarpeae tribe, have descended from the proto-Calepineae Karyotype. All three analyzed species share the chromosome structure of six out of seven chromosomes and an unusually high metal accumulation in leaves, which remains moderate in N. jankae and R. bulbosa and is extreme in N. caerulescens. Among these species, N. caerulescens has the most derived karyotype, with species-specific inversions on chromosome NC6, which grouped onto its bottom arm functionally related genes of zinc and iron metal homeostasis comprising the major candidate genes NICOTIANAMINE SYNTHASE2 and ZINC-INDUCED FACILITATOR-LIKE1. Concurrently, copper and organellar metal homeostasis genes, which are functionally unrelated to the extreme traits characteristic of N. caerulescens, were grouped onto the top arm of NC6. Compared with Arabidopsis thaliana, more distal chromosomal positions in N. caerulescens were enriched among more highly expressed metal homeostasis genes but not among other groups of genes. Thus, chromosome rearrangements could have facilitated the evolution of enhanced metal homeostasis gene expression, a known hallmark of metal hyperaccumulation. PMID:26195571

  10. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils.

    PubMed

    Mandáková, Terezie; Singh, Vasantika; Krämer, Ute; Lysak, Martin A

    2015-09-01

    Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descended from seven chromosomes of the ancestral proto-Calepineae Karyotype (n = 7) through an unusually high number of pericentric inversions. Genome analysis in two other related species, Noccaea jankae and Raparia bulbosa, showed that all three species, and thus probably the entire Coluteocarpeae tribe, have descended from the proto-Calepineae Karyotype. All three analyzed species share the chromosome structure of six out of seven chromosomes and an unusually high metal accumulation in leaves, which remains moderate in N. jankae and R. bulbosa and is extreme in N. caerulescens. Among these species, N. caerulescens has the most derived karyotype, with species-specific inversions on chromosome NC6, which grouped onto its bottom arm functionally related genes of zinc and iron metal homeostasis comprising the major candidate genes NICOTIANAMINE SYNTHASE2 and ZINC-INDUCED FACILITATOR-LIKE1. Concurrently, copper and organellar metal homeostasis genes, which are functionally unrelated to the extreme traits characteristic of N. caerulescens, were grouped onto the top arm of NC6. Compared with Arabidopsis thaliana, more distal chromosomal positions in N. caerulescens were enriched among more highly expressed metal homeostasis genes but not among other groups of genes. Thus, chromosome rearrangements could have facilitated the evolution of enhanced metal homeostasis gene expression, a known hallmark of metal hyperaccumulation. PMID:26195571

  11. Thermoinductive regulation of gibberellin metabolism in Thlaspi arvense L

    SciTech Connect

    Hazebroek, J.P.; Metzger, J.D. )

    1990-09-01

    Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous ({sup 2}H)-ent-kaurenoic acid (KA) and ({sup 14}C)-gibberellin A{sub 12}-aldehyde (GA{sub 12}-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of ({sup 2}H)-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. These results are consistent with the suggestion that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of ({sup 14}C)GA{sub 12}-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA{sub 12}-aldehyde.

  12. Field Pennycress (Thlaspi arvense L.) Oil: A Promising Source of Biodiesel.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L., FP) is a winter annual species of the mustard family (Brassicaceae) that is widely distributed throughout temperate North America and which can serve in a winter rotational cycle with conventional crops, thus not displacing existing agricultural production or ne...

  13. Composition and functional properties of protein recovered from pennycreess (Thlaspi arvense) press cake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense L.) seed oil is being considered as alternative feedstock for biodiesel production. If the pennycress-based biodiesel venture is successful, then the seed protein (more than 20% content) could become a major co-product of the process. This study compared two methods for e...

  14. Composition and Physical Properties of Cress (Lepidium sativum L.) and Field Pennycress (Thlaspi arvense L.) Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profile and tocopherol, and phytosterol contents of crude cress (Lepidium sativum L.) and field pennycress (Thlaspi arvense L.) oils are reported, along with yields from the corresponding seeds. The physical properties of these oils were also determined, which included oxidative stab...

  15. Enrichment of erucic acid from pennycress (Thlaspi arvense L.) seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense) is a winter annual that has a wide geographic distribution and a growth habitat that makes it suitable for an off-season rotation between corn and soybeans in much of the Midwestern United States. Pennycress seed contains 36% oil with 36.6% erucic acid content. There are...

  16. Production and Evaluation of Biodiesel from Field Pennycress (Thlaspi Arvense L.) Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L.) oil is evaluated for the first time as a potential feedstock for biodiesel production. Biodiesel was obtained in 82 wt % yield by a standard transesterification procedure with methanol and sodium methoxide catalyst at 60 deg C and an alcohol to oil ratio of 6:1...

  17. Extraction, composition and functional properties of pennycress (Thlaspi arvense L.) press cake protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared two methods for extracting the protein in pennycress (Thlaspi arvense L.) press cake and determined the composition and functional properties of the protein products. Proteins in pennycress press cake were extracted by using the conventional alkali solubilization-acid precipitati...

  18. Preparation, composition and functional properties of pennycress (Thlaspi arvense L.) seed protein isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated two methods, saline extraction (SE) and conventional acid precipitation (AP), to recover proteins from pennycress (Thlaspi arvense L.) seed meal. SE was done using 0.1 M NaCl at 50ºC while AP involved alkaline extraction (pH 10) first followed by protein precipitation at pH 4. C...

  19. A native Zn/Cd pumping P(1B) ATPase from natural overexpression in a hyperaccumulator plant.

    PubMed

    Parameswaran, Aravind; Leitenmaier, Barbara; Yang, Mingjie; Kroneck, Peter M H; Welte, Wolfram; Lutz, Gabriela; Papoyan, Ashot; Kochian, Leon V; Küpper, Hendrik

    2007-11-01

    We report here the first purification of a P(1B) type ATPase, a group of transporters that occurs in bacteria, plants and animals incl. humans, from a eukaryotic organism in native state. TcHMA4 is a P(1B) type ATPase that is highly expressed in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens and contains a C-terminal 9-histidine repeat. After isolation from roots, we purified TcHMA4 protein via metal affinity chromatography. The purified protein exhibited Cd- and Zn-activated ATPase activity after reconstitution into lipid vesicles, showing that it was in its native state. Gels of crude root extract and of the purified protein revealed TcHMA4-specific bands of about 50 and 60kDa, respectively, while the TcHMA4 mRNA predicts a single protein with a size of 128kDa. This indicates the occurrence of post-translational processing; the properties of the two bands were characterised by their activity and binding properties. PMID:17826738

  20. Biofumigant compounds released by field pennycress (Thlaspi arvense) seedmeal.

    PubMed

    Vaughn, Steven F; Isbell, Terry A; Weisleder, David; Berhow, Mark A

    2005-01-01

    Defatted field pennycress (Thlaspi arvense L.) seedmeal was found to completely inhibit seedling germination/emergence when added to a sandy loam soil containing wheat (Triticum aestivum L.) and arugula [Eruca vesicaria (L.) Cav. subsp. sativa (Mill.) Thell.] seeds at levels of 1.0% w/w or higher. Covering the pots with Petri dishes containing the soil-seedmeal mixture decreased germination of both species at the lowest application rate (0.5% w/w), suggesting that the some of the phytotoxins were volatile. CH2Cl2, MeOH, and water extracts of the wetted seedmeal were bioassayed against wheat and sicklepod (Senna obtusifolia (L.) H. S. Irwin & Barneby) radicle elongation. Only the CH2Cl2 extract was strongly inhibitory to both species. Fractionation of the CH2Cl2 extract yielded two major phytotoxins, identified by gas chromatography-mass spectrometry and NMR as 2-propen-1-yl (allyl) isothiocyanate (AITC) and allyl thiocyanate (ATC), which constituted 80.9 and 18.8%, respectively, of the active fraction. When seeds of wheat, arugula and sicklepod were exposed to volatilized AITC and ATC, germination of all three species was completely inhibited by both compounds at concentrations of 5 ppm or less. In field studies, where seedmeal was applied at 0.50, 1.25, and 2.50 kg/m2 and tarped with black plastic mulch, all of the treatments significantly reduced dry weight of bioassay plants compared to the tarped control, with the highest seedmeal rate decreasing dry matter to less than 10% of the control 30 d after seedmeal application. Field pennycress seedmeal appears to offer excellent potential as a biofumigant for high-value horticultural crops for both conventional and organic growers. PMID:15839488

  1. SOIL MICROBIAL EFFECTS ON HEAVY METAL UPTAKE INTO HYPERACCUMULATORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uptake of heavy metals into hyperaccumulators is influenced by a number of chemical, physical and biological factors. Of these, recent evidence has shown that microbes living within the rhizosphere of hyperaccumulators may have a significant effect on metal uptake. Much is known about the role my...

  2. Prospecting for hyperaccumulators of trace elements: a review.

    PubMed

    Krzciuk, Karina; Gałuszka, Agnieszka

    2015-01-01

    Specific plant species that can take up and accumulate abnormally high concentrations of elements in their aboveground tissues are referred to as "hyperaccumulators". The use of this term is justified in the case of enormous element-binding capacity of plants growing in their natural habitats and showing no toxicity symptoms. An increasing interest in the study of hyperaccumulators results from their potential applications in environmental biotechnology (phytoremediation, phytomining) and their emerging role in nanotechnology. The highest number of plant species with confirmed hyperaccumulative properties has been reported for hyperaccumulators of nickel, cadmium, zinc, manganese, arsenic and selenium. More limited data exist for plants accumulating other elements, including common pollutants (chromium, lead and boron) or elements of commercial value, such as copper, gold and rare earth elements. Different approaches have been used for the study of hyperaccumulators - geobotanical, chemical, biochemical and genetic. The chemical approach is the most important in screening for new hyperaccumulators. This article presents and critically reviews current trends in new hyperaccumulator research, emphasizing analytical methodology that is applied in identification of new hyperaccumulators of trace elements and its future perspectives. PMID:24938121

  3. Effects of arsenic on nitrogen metabolism in arsenic hyperaccumulator and non-hyperaccumulator ferns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of two four-month old fern plants, Pteris vittata, an arsenic-hyperaccumulator, and Pteris ensiformis, ...

  4. Reactive oxygen species metabolism during the cadmium hyperaccumulation of a new hyperaccumulator Sedum alfredii (Crassulaceae).

    PubMed

    Zhang, Zhong-chun; Qiu, Bao-Sheng

    2007-01-01

    Sedum alfredii Hance, a newly discovered hyperaccumulator, could serve as a good material for phytoremediation of Cd polluted sites. Malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidases (catalase (CAT); superoxide dismutase (SOD); peroxidase (POD)) in the leaf were determined when S. alfredii was treated for 15 d with various CdCl2 concentrations ranging from 0 to 800 micromol/L. The results showed that the production rate of 2',7'-dichlorofluorescein (DCF), which is an indicator of ROS level, reached up to the maximum at 400 micromol/L CdCl2 and then declined with the increase of CdCl2 concentration, while MDA accumulation tended to increase. CAT activity was significantly inhibited at all tested CdCl2 concentrations and SOD activity was sharply suppressed at 800 micromol/L CdCl2. However, the enhancement of POD activity was observed when CdCl2 concentration was higher than 400 micromol/L. In addition, its activity increased when treated with 600 micromol/L CdCl2 for more than 5 d. When sodium benzoate, a free radical scavenger, was added, S. alfredii was a little more sensitive to Cd toxicity than that exposed to Cd alone, and the Cd accumulation tended to decline with the increase of sodium benzoate concentration. It came to the conclusions that POD played an important role during Cd hyperaccumulation, and the accumulation of ROS induced by Cd treatment might be involved in Cd hyperaccumulation. PMID:18232224

  5. Cd hyperaccumulative characteristics of Australia ecotype Solanum nigrum L. and its implication in screening hyperaccumulator.

    PubMed

    Wei, Shuhe; Clark, Gary; Doronila, Augustine Ignatius; Jin, Jian; Monsant, Alison Carol

    2013-01-01

    A pot culture experiment was used to determine the differences in uptake characteristics of a cadmium hyperaccumulator Solanum nigrum L. discovered in China, an ecotype from Melbourne, Australia and a non-hyperaccumulator Solanum melogena Australian ecotype was not significantly different to the China ecotype. In particular, Cd concentration in leaves and shoots of S. nigrum collected from Australia were 166.0 and 146.3 mg kg(-1) respectively when 20 mg kg(-1) Cd spiked, and were not significantly different to the ecotype imported from China which had 109.8 and 85.3 mg kg(-1) respectively, in the stems and leaves. In contrast, the tolerance of the eggplant to Cd was significantly less than the two S. nigrum ecotypes. Although some morphological properties of S. nigrum collected from Australia were different from that of the plants collected from China, Cd hyperaccumulator characteristics of two ecotypes were similar. The results suggested that the tolerance and uptake of Cd may be a constitutive trait of this species. PMID:23488006

  6. Tolerance to cadmium in plants: the special case of hyperaccumulators.

    PubMed

    Verbruggen, Nathalie; Juraniec, Michal; Baliardini, Cecilia; Meyer, Claire-Lise

    2013-08-01

    On sols highly polluted by trace metallic elements the majority of plant species are excluders, limiting the entry and the root to shoot translocation of trace metals. However a rare class of plants called hyperaccumulators possess remarkable adaptation because those plants combine extremely high tolerance degrees and foliar accumulation of trace elements. Hyperaccumulators have recently gained considerable interest, because of their potential use in phytoremediation, phytomining and biofortification. On a more fundamental point of view hyperaccumulators of trace metals are case studies to understand metal homeostasis and detoxification mechanisms. Hyperaccumulation of trace metals usually depends on the enhancement of at least four processes, which are the absorption from the soil, the loading in the xylem in the roots and the unloading from the xylem in the leaves and the detoxification in the shoot. Cadmium is one of the most toxic trace metallic elements for living organisms and its accumulation in the environment is recognized as a worldwide concern. To date, only nine species have been recognized as Cd hyperaccumulators that is to say able to tolerate and accumulate more than 0.01 % Cd in shoot dry biomass. Among these species, four belong to the Brassicaceae family with Arabidopsis halleri and Noccaea caerulescens being considered as models. An update of our knowledge on the evolution of hyperaccumulators will be presented here. PMID:23881358

  7. Effects of oil extraction on functional properties of protein in pennycress (Thlaspi arvense) seed and press cake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current interest in pennycress (Thlaspi arvense) comes from its seed oil, which is being evaluated for biodiesel production. The seed also has notable protein content (33% db). The effects of oil processing conditions on functionality of pennycress seed proteins were determined to identify potential...

  8. Growth environment but not seed position on the parent plant affect seed germination of two Thlaspi arvense L. populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi arvense L. is a common weed found in most temperate regions throughout the world that also shows excellent potential for domestication as an oilseed crop. The complexity of T. arvense seed dormancy presently makes it difficult to manage as a weed or oilseed crop. Therefore, a better understa...

  9. Hyperaccumulative property comparison of 24 weed species to heavy metals using a pot culture experiment.

    PubMed

    Wei, Shuhe; Zhou, Qixing; Xiao, Hong; Yang, Chuanjie; Hu, Yahu; Ren, Liping

    2009-05-01

    The screening of hyperaccumulators is still very much needed for phytoremediation. With properties such as strong tolerance to adverse environment, fast growing and highly reproductive rate, weed species may be an ideal plant for phytoremediation. The objectives of this study were to examine the tolerance and hyperaccumulative characteristics of 24 species in 9 families to Cd, Pb, Cu and Zn by using the outdoor pot-culture experiment. In the screening experiment, only Conyza canadensis and Rorippa globosa displayed Cd-hyperaccumulative characteristics. In a further concentration gradient experiment, C. canadensis was affirmed that it is not a Cd hyperaccumulator. Only R. globosa, indicated all Cd hyperaccumulative characteristics, especially Cd concentration in its stems and leaves were higher than 100 mg/kg, the minimum Cd concentration what a Cd-hyperaccumulator should accumulate. Thus, R. globosa was further validated as a Cd-hyperaccumulator. PMID:18483772

  10. Investigation of Ni hyperaccumulation by true elemental imaging

    NASA Astrophysics Data System (ADS)

    Przybyłowicz, W. J.; Pineda, C. A.; Prozesky, V. M.; Mesjasz-Przybyłowicz, J.

    1995-09-01

    The newly implemented Dynamic Analysis method for on-line elemental imaging was used to study Ni hyperaccumulation in Senecio coronatus (Thunb.) Harv. Asteraceae, one of only nine Ni hyperaccumulating plants found in the African continent. Elemental maps were obtained from samples with thicknesses varying from 0.4 to 5 mg/cm 2 by assuming cellulose (C 6H 10O 5) as constant matrix composition for the whole scanned area. The agreement between point analyses and results inferred from maps is good for small thickness variations within scanned regions. Maps of very inhomogeneous samples require a more time-consuming approach of thickness corrections in every pixel.

  11. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri.

    PubMed

    Zhao, F J; Jiang, R F; Dunham, S J; McGrath, S P

    2006-01-01

    Arabidopsis halleri is a well-known zinc (Zn) hyperaccumulator, but its status as a cadmium (Cd) hyperaccumulator is less certain. Here, we investigated whether A. halleri can hyperaccumulate Cd and whether Cd is transported via the Zn pathway. Growth and Cd and Zn uptake were determined in hydroponic experiments with different Cd and Zn concentrations. Short-term uptake and root-to-shoot transport were measured with radioactive 109Cd and 65Zn labelling. A. halleri accumulated > 1000 mg Cd kg(-1) in shoot dry weight at external Cd concentrations >or= 5 microm, but the short-term uptake rate of 109Cd was much lower than that of 65Zn. Zinc inhibited short-term 109Cd uptake kinetics and root-to-shoot translocation, as well as long-term Cd accumulation in shoots. Uptake of 109Cd and 65Zn were up-regulated, respectively, by low iron (Fe) or Zn status. A. halleri was much less tolerant to Cd than to Zn. We conclude that A. halleri is able to hyperaccumulate Cd partly, at least, through the Zn pathway, but the mechanisms responsible for cellular Zn tolerance cannot detoxify Cd effectively. PMID:17096791

  12. Improved Understanding of Hyperaccumulation Yields Commercial Phytoextraction and Phytomining Technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews progress in phytoextraction of soil elements and illustrates the key role of hyperaccumulator plant species in useful technologies. Much research has focused on elements which are not practically phytoextracted (Pb); on addition of chelating agents which cause unacceptable contam...

  13. [Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics].

    PubMed

    Wei, Shu-he; Zhou, Qi-xing; Wang, Xin

    2005-05-01

    It is main groundwork and the first step of phytoextraction of its commercial application on a large scale to screen out a series of ideal hyperaccumulators that can effectively remedy contaminated soil by heavy metals, which is also difficult point and front field of contaminated environment phytoremediation. With the properties of strong endurance to adverse environment, fast growing and high reproduction, especially the characteristic of the biomass could increase sharply under feasible environmental factors, weed can supply a gap of discovered hyperaccumulating plants, so it is a kind of ideal remediative resource. A cadmium-hyperaccumulator Solanum nigrum L. (weed) was first discovered by using the pot-culture method arranged in outdoor and sampling-analyzing experiments carried out in heavy metal contaminated areas. The pot-culture experiments show that the average concentration of Cd in stems and leaves of S. nigrum growing in soil added with 25 mg/kg of Cd were all greater than the accepted critical concentration of 100 mg/kg what Cd hyperaccumulator should accumulate. The Cd concentration in its overground parts was higher than that in its roots, and the Cd accumulation coefficient in its overground parts was higher than 1 too. Compared with the control, the overground biomass of S. nigrum under the condition of 25 mg/kg (Cd) was not decreased significantly. Furthermore, it was also confirmed that S. nigrum had basic characteristics of Cd-hyperaccumulator by sample-analyze experiment in contaminated area with heavy metals. This kind of method of identifying hyper accumulators in a clean area is useful to the discovery of materials applied to the phytoremediation of contaminated soils with Cd. PMID:16124492

  14. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata.

    PubMed

    Sagner, S; Kneer, R; Wanner, G; Cosson, J P; Deus-Neumann, B; Zenk, M H

    1998-02-01

    The nickel content in different parts of the hyperaccumulating tree Sebertia acuminata was analysed by atomic absorption spectroscopy. Nickel was found to be mainly located in laticifers. The total nickel content of a single mature tree was estimated to be 37 kg. By gel filtration and NMR spectroscopy, citric acid was unequivocally identified as counter ion for about 40% of this metal present. Nitrate was assumed to be a further partner for a complete ionic balance. Phytochelatins were not found to be involved in nickel detoxification in Sebertia. The localization of nickel complexes inside the laticifers was demonstrated by light microscopy as well as by scanning electron microscopy in combination with an EDX system for the analysis of elements. A repellent effect of the plant sap was observed on the fruit fly Drosophila melanogaster indicating that in hyperaccumulating plants nickel functions as an agent to prevent predation. PMID:9433812

  15. Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens.

    PubMed

    Hernández-Allica, J; Garbisu, C; Becerril, J M; Barrutia, O; García-Plazaola, J I; Zhao, F J; Mcgrath, S P

    2006-07-01

    In this study, we investigated the accumulation of phytochelatins (PCs) and other low molecular weight (LMW) thiols in response to Cd exposure in two contrasting ecotypes differing in Cd accumulation. Using a root elongation test, we found that the highly accumulating ecotype Ganges was more tolerant to Cd than the low Cd-accumulation ecotype Prayon. L-buthionine-(S,R)-sulphoximine (BSO), a potent inhibitor of the gamma-glutamylcysteine synthetase gamma-ECS) (an enzyme involved in the PC biosynthetic pathway), increased the Cd sensitivity of Prayon, but had no effect on Ganges. Although PC accumulation increased in response to Cd exposure, no significant differences were observed between the two ecotypes. Cd exposure induced a dose-dependent accumulation of both Cys and a still unidentified LMW thiol in roots of both ecotypes. Root accumulation of Cys and this thiol was higher in Ganges than in Prayon; the ecotypic differences were more pronounced when the plants were treated with BSO. These findings suggest that PCs do not contribute to the Cd hypertolerance displayed by the Ganges ecotype of Thlaspi caerulescens, whereas Cys and other LMW thiols might be involved. PMID:17080963

  16. Selenium-tolerant diamondback moth disarms hyperaccumulator plantdefense

    SciTech Connect

    Freeman, J.L.; Quinn, C.F.; Marcus, M.A.; Fakra, S.; Pilon-Smits,E.A.H.

    2006-11-20

    Background Some plants hyperaccumulate the toxic element selenium (Se) to extreme levels, up to 1% of dry weight. The function of this intriguing phenomenon is obscure. Results Here, we show that the Se in the hyperaccumulator prince's plume (Stanleya pinnata) protects it from caterpillar herbivory because of deterrence and toxicity. In its natural habitat, however, a newly discovered variety of the invasive diamondback moth (Plutella xylostella) has disarmed this elemental defense. It thrives on plants containing highly toxic Se levels and shows no oviposition or feeding deterrence, in contrast to related varieties. Interestingly, a Se-tolerant wasp (Diadegma insulare) was found to parasitize the tolerant moth. The insect's Se tolerance mechanism was revealed by X-ray absorption spectroscopy and liquid chromatography--mass spectroscopy, which showed that the Se-tolerant moth and its parasite both accumulate methylselenocysteine, the same form found in the hyperaccumulator plant, whereas related sensitive moths accumulate selenocysteine. The latter is toxic because of its nonspecific incorporation into proteins. Indeed, the Se-tolerant diamondback moth incorporated less Se into protein. Additionally, the tolerant variety sequestered Se in distinct abdominal areas, potentially involved in detoxification and larval defense to predators. Conclusions Although Se hyperaccumulation protects plants from herbivory by some invertebrates, it can give rise to the evolution of unique Se-tolerant herbivores and thus provide a portal for Se into the local ecosystem. In a broader context, this study provides insight into the possible ecological implications of using Se-enriched crops as a source of anti-carcinogenic selenocompounds and for the remediation of Se-polluted environments.

  17. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance.

    PubMed

    Jin, Xiaofen; Yang, Xiaoe; Islam, Ejazul; Liu, Dan; Mahmood, Qaisar

    2008-08-15

    Plant growth, ultrastructural and antioxidant adaptations and glutathione biosynthesis in Cd-hyperaccumulating ecotype Sedum alfredii Hance (HE) countering high Cd environment were investigated and compared with its non Cd-hyperaccumulating ecotype (NHE). Cadmium exposure resulted in significant ultrastructural changes in root meristem and leaf mesophyll cells of S. alfredii, but damage was more pronounced in NHE even when Cd concentrations were one-tenth of those applied to HE. Cadmium stress damaged chloroplasts causing imbalanced lamellae formation coupled with early leaf senescence. Histochemical results revealed that glutathione (GSH) biosynthesis inhibition led to overproduction of hydrogen peroxide (H(2)O(2)) and superoxide radical (O(2)(*-)) in HE but not in NHE. Differences were noted in both HE and NHE for catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR) activities under various Cd stress levels. No relationship was found between antioxidative defense capacity including activities of superoxide dismutase (SOD), CAT, GPX, APX and GR as well as ascorbic acid (AsA) contents and Cd tolerance in the two ecotypes of S. alfredii. The GSH biosynthesis induction in root and shoot exposed to elevated Cd conditions may be involved in Cd tolerance and hyperaccumulation in HE of S. alfredii H. PMID:18242844

  18. Preparation and fuel properties of field pennycress (Thlaspi arvense) seed oil ethyl esters and blends with ultra-low sulfur diesel fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L.) is a widely distributed winter annual with high seed oil content (36%) and is suitable as an off-season rotational crop in the Midwestern U.S. Erucic [(13Z)-docosenoic] acid (36.2%) is the most abundant constituent in the oil, with unsaturated and very long chai...

  19. Effects of cold-pressing and seed cooking on functional properties of protein in pennycress (Thlaspi arvense L.) seed and press cakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current interest in pennycress (Thlaspi arvense L.) comes from its seed oil, which is being evaluated for biofuel production. The seed also has notable protein content (27% moisture-free, oil-free basis). The effects of oil processing conditions on functionality of pennycress seed proteins were dete...

  20. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    PubMed Central

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-01-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography–mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos. PMID:25711705

  1. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis.

    PubMed

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-07-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos. PMID:25711705

  2. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.

    PubMed

    Zhang, Xue-Hong; Liu, Jie; Huang, Hai-Tao; Chen, Jun; Zhu, Yi-Nian; Wang, Dun-Qiu

    2007-04-01

    Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water. PMID:17207838

  3. Genetic and Molecular Dissection of Arsenic Hyperaccumulation in the fern Pteris vittata.

    SciTech Connect

    Jo Ann Banks; David Salt

    2008-04-04

    Pteris vittata is a fern that is extraordinary in its ability to tolerate hyperaccumulate high levels of arsenic (As). The goals of the proposed research, to identify the genes that are necessary for As hyperaccumulation in P. vittata using molecular and genetic approaches and to understand the physiology of arsenic uptake and distribution in the living plant, were accomplished during the funding period. The genes that have been identified may ultimately enable the engineering or selection of other plants capable of As hyperaccumulation. This is important for the phytoremediation of arsenic-contaminated soils in areas where P. vittata cannot grow.

  4. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii.

    PubMed

    Sun, Qin; Ye, Zhi Hong; Wang, Xiao Rong; Wong, Ming Hung

    2007-11-01

    Sedum alfredii has been reported to be a cadmium (Cd) hyperaccumulator. Phytochelatins (PCs) and other thiol (SH)-containing compounds have been proposed to play an important role in the detoxification and tolerance of some heavy metals, but it is not clear whether PCs are responsible for Cd hyperaccumulation and tolerance in S. alfredii. In this study, two geographically isolated populations of S. alfredii were studied: one population grew on an old Pb/Zn mine site, while the other on a non-mine site. The mine population of this species exhibited a stronger heavy metal tolerance than in the other population. Root-to-shoot transport of Cd was higher in population located at the mine site than at the non-mine site. Considerable amounts of Cd were accumulated in leaves and stems of mine plants, while most Cd was distributed in roots of non-mine plants. Non-protein SH in plant tissues of two populations were further investigated by a HPLC pre-column derivatization system. Upon exposure to Cd, no PCs were detected in all tissues of mine population, while an appreciable amount of glutathione (GSH) was observed in the descending order of stem>root>leaf. The concentrations of GSH consistently increased with the increase of exogenous Cd concentrations and time. On the contrary, Cd exposure strongly induced the production of PCs (mainly PC(2) and PC(3)) and GSH in plant tissues of non-mine population, and the concentrations of GSH showed an initial drop over the duration of 7-d exposure. The present results provided strong evidence that PCs are not involved in Cd transport, hyperaccumulation and tolerance in mine population of S. alfredii. PMID:17207552

  5. Successful micropropagation of the cadmium hyperaccumulator Viola baoshanensis (Violaceae).

    PubMed

    Li, Jin-Tian; Deng, Dong-Mei; Peng, Guang-Tian; Deng, Jin-Chuan; Zhang, Jun; Liao, Bin

    2010-01-01

    Viola baoshanensis is one of the most rare cadmium (Cd) hyperaccumulators, however, it is hard to propagate. Micropropagation has been applied to solve the problems with propagation of a few heavy metal hyperaccumulators. Therefore there is a high likelihood that micropropagation may offer a suitable method for large-scale propagation of V. baoshanensis To test this hypothesis, three types of explants were used for shoot regeneration and various combinations of four plant growth regulators were used to improve shoot regeneration efficiency from leaflet of V. baoshanensis. Best shoot regeneration efficiency was obtained by incubating leaflet in a 1/2 MS medium supplemented with 2.5 oM BA + 2.5 microM IBA, therein shoot regeneration rate was 70.9% and the number of shoots formation per explant was 22.4. Rooting was achieved from almost all regenerated shoot growing on 1/2 MS medium without plant growth regulator. Micropropagated seedlings were acclimatized under greenhouse conditions and 95% of them survived and showed no visible morphological variation compared to their donor plant. Furthermore, there were no significant differences between regenerated and seed-germinated V. baoshanensis in Cd tolerance and accumulation. These results suggested that an efficient and rapid micropropogation system was successfully developed for V. baoshanensis. PMID:21166346

  6. Youngia erythrocarpa, a newly discovered cadmium hyperaccumulator plant.

    PubMed

    Lin, Lijin; Ning, Bo; Liao, Ming'an; Ren, Yajun; Wang, Zhihui; Liu, Yingjie; Cheng, Ji; Luo, Li

    2015-01-01

    The farmland weed Youngia erythrocarpa has been found to have the basic characteristics of a cadmium (Cd) hyperaccumulator. This study carried out preliminary and further Cd concentration gradient experiments and field experiment using Y. erythrocarpa to confirm this fact. The results showed that the biomass and resistance coefficient of Y. erythrocarpa decreased, but the root/shoot ratio and the Cd content in roots and shoots increased with the increase in soil Cd concentration. The Cd content in shoots of Y. erythrocarpa exceeded 100 mg/kg when the soil Cd concentration was 25 mg/kg in the two concentration gradient experiments, up to the maxima of 293.25 and 317.87 mg/kg at 100 mg/kg soil Cd. Both the bioconcentration factor of the shoots and the translocation factor exceeded 1 in all Cd treatments. In the field experiment, the total Cd extraction by shoots was 0.934-0.996 mg/m(2) at soil Cd levels of 2.04-2.89 mg/kg. Therefore, Y. erythrocarpa is a Cd hyperaccumulator that could be used to remediate Cd-contaminated farmland soil efficiently. PMID:25504193

  7. Tissue Fractions of Cadmium in Two Hyperaccumulating Jerusalem Artichoke Genotypes

    PubMed Central

    Long, Xiaohua; Ni, Ni; Liu, Zhaopu; Rengel, Zed; Jiang, Xin; Shao, Hongbo

    2014-01-01

    In order to investigate the mechanisms in two Jerusalem artichoke (Helianthus tuberosus L.) genotypes that hyperaccumulate Cd, a sand-culture experiment was carried out to characterize fractionation of Cd in tissue of Cd-hyperaccumulating genotypes NY2 and NY5. The sequential extractants were: 80% v/v ethanol (FE), deionized water (FW), 1 M NaCl (FNaCl), 2% v/v acetic acid (FAcet), and 0.6 M HCl (FHCl). After 20 days of treatments, NY5 had greater plant biomass and greater Cd accumulation in tissues than NY2. In both genotypes the FNaCl fraction was the highest in roots and stems, whereas the FAcet and FHCl fractions were the highest in leaves. With an increase in Cd concentration in the culture solution, the content of every Cd fraction also increased. The FW and FNaCl ratios in roots were lower in NY5 than in NY2, while the amount of other Cd forms was higher. It implied that, in high accumulator, namely, NY5, the complex of insoluble phosphate tends to be shaped more easily which was much better for Cd accumulation. Besides, translocation from plasma to vacuole after combination with protein may be one of the main mechanisms in Cd-accumulator Jerusalem artichoke genotypes. PMID:24883399

  8. A newly found manganese hyperaccumulator--Polygonum lapathifolium Linn.

    PubMed

    Liu, Kehui; Yu, Fangming; Chen, Menglin; Zhou, Zhenming; Chen, Chaoshu; Li, Ming Shun; Zhu, Jing

    2016-01-01

    In the present work, both field investigation and laboratory experiment were carried out to testify whether Polygonum lapathifolium L. is a potential manganese (Mn) hyperaccumulator. Results from field investigation showed that P. lapathifolium had great tolerance and accumulation to Mn. Mn concentrations in leaves were the highest, varied from 6889.2 mg kg-1 dry weight (DW) to 18841.7 mg kg(-1) DW with the average of 12180.6 mg kg(-1). The values of translocation factor (the concentrations of Mn in leaf to that in root) ranged from 5.72 to 9.53. Results from laboratory experiment illuminated that P. lapathifolium could grow well and show no toxic symptoms even under high Mn stress (16 mmol L(-1)). Although the changes of antioxidant enzymes activities were triggered under Mn stress, the alterations of pigments were not significant (P > 0.05) as compared with control. Total plant biomass and plant height increased with increasing Mn supply. Mn concentrations in leaves and stems were constantly greater than those in roots, the ratio of concentrations in leaves to that in roots were 2.58-6.72 and the corresponding values in stems to that in roots were 1.45-3.18. The results showed that P. lapathifolium is a Mn-hyperaccumulator. PMID:26514228

  9. Tissue fractions of cadmium in two hyperaccumulating Jerusalem artichoke genotypes.

    PubMed

    Long, Xiaohua; Ni, Ni; Liu, Zhaopu; Rengel, Zed; Jiang, Xin; Shao, Hongbo

    2014-01-01

    In order to investigate the mechanisms in two Jerusalem artichoke (Helianthus tuberosus L.) genotypes that hyperaccumulate Cd, a sand-culture experiment was carried out to characterize fractionation of Cd in tissue of Cd-hyperaccumulating genotypes NY2 and NY5. The sequential extractants were: 80% v/v ethanol (FE), deionized water (FW), 1 M NaCl (FNaCl), 2% v/v acetic acid (FAcet), and 0.6 M HCl (FHCl). After 20 days of treatments, NY5 had greater plant biomass and greater Cd accumulation in tissues than NY2. In both genotypes the FNaCl fraction was the highest in roots and stems, whereas the FAcet and FHCl fractions were the highest in leaves. With an increase in Cd concentration in the culture solution, the content of every Cd fraction also increased. The FW and FNaCl ratios in roots were lower in NY5 than in NY2, while the amount of other Cd forms was higher. It implied that, in high accumulator, namely, NY5, the complex of insoluble phosphate tends to be shaped more easily which was much better for Cd accumulation. Besides, translocation from plasma to vacuole after combination with protein may be one of the main mechanisms in Cd-accumulator Jerusalem artichoke genotypes. PMID:24883399

  10. Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant.

    PubMed

    Adki, Vinayak S; Jadhav, Jyoti P; Bapat, Vishwas A

    2013-02-01

    Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant's hyperaccumulation capacity. Plants showed tolerance up to 100 μM K(2)Cr(2)O(7) without any significant changes in root growth after 16 days treatment; whereas, chlorophyll content in plants treated with 1 and 10 μM K(2)Cr(2)O(7) were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p < 0.01) with increasing concentration of chromium. Exposures of N. cochenillifera to lower concentrations of K(2)Cr(2)O(7) (≤ 10 μM) induced catalase (CAT) and superoxide dismutase (SOD) significantly (p < 0.001) but higher concentrations of K(2)Cr(2)O(7) (>100 μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396 ± 1,722.672 mg Cr Kg(-1) dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714 ± 32.324 mg Cr Kg(-1) DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes. PMID:22914913

  11. Microbeam methodologies as powerful tools in manganese hyperaccumulation research: present status and future directions.

    PubMed

    Fernando, Denise R; Marshall, Alan; Baker, Alan J M; Mizuno, Takafumi

    2013-01-01

    Microbeam studies over the past decade have garnered unique insight into manganese (Mn) homeostasis in plant species that hyperaccumulate this essential mineral micronutrient. Electron- and/or proton-probe methodologies employed to examine tissue elemental distributions have proven highly effective in illuminating excess foliar Mn disposal strategies, some apparently unique to Mn hyperaccumulating plants. When applied to samples prepared with minimal artefacts, these are powerful tools for extracting true 'snapshot' data of living systems. For a range of reasons, Mn hyperaccumulation is particularly suited to in vivo interrogation by this approach. Whilst microbeam investigation of metallophytes is well documented, certain methods originally intended for non-biological samples are now widely applied in biology. This review examines current knowledge about Mn hyperaccumulators with reference to microbeam methodologies, and discusses implications for future research into metal transporters. PMID:23970891

  12. Microbeam methodologies as powerful tools in manganese hyperaccumulation research: present status and future directions

    PubMed Central

    Fernando, Denise R.; Marshall, Alan; Baker, Alan J. M.; Mizuno, Takafumi

    2013-01-01

    Microbeam studies over the past decade have garnered unique insight into manganese (Mn) homeostasis in plant species that hyperaccumulate this essential mineral micronutrient. Electron- and/or proton-probe methodologies employed to examine tissue elemental distributions have proven highly effective in illuminating excess foliar Mn disposal strategies, some apparently unique to Mn hyperaccumulating plants. When applied to samples prepared with minimal artefacts, these are powerful tools for extracting true ‘snapshot’ data of living systems. For a range of reasons, Mn hyperaccumulation is particularly suited to in vivo interrogation by this approach. Whilst microbeam investigation of metallophytes is well documented, certain methods originally intended for non-biological samples are now widely applied in biology. This review examines current knowledge about Mn hyperaccumulators with reference to microbeam methodologies, and discusses implications for future research into metal transporters. PMID:23970891

  13. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants

    SciTech Connect

    David E. Salt

    2002-04-08

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants.

  14. Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data

    PubMed Central

    Cecchi, Lorenzo; Gabbrielli, Roberto; Arnetoli, Miluscia; Gonnelli, Cristina; Hasko, Agim; Selvi, Federico

    2010-01-01

    Background and Aims Nickel (Ni) hyperaccumulation is a rare form of physiological specialization shared by a small number of angiosperms growing on ultramafic soils. The evolutionary patterns of this feature among European members of tribe Alysseae (Brassicaceae) are investigated using a phylogenetic approach to assess relationships among Ni hyperaccumulators at the genus, species and below-species level. Methods Internal transcribed spacer (ITS) sequences were generated for multiple accessions of Alysseae. Phylogenetic trees were obtained for the genera of the tribe and Alyssum sect. Odontarrhena. All accessions and additional herbarium material were tested for Ni hyperaccumulation with the dimethylglyoxime colorimetric method. Key Results Molecular data strongly support the poorly known hyperaccumulator endemic Leptoplax (Peltaria) emarginata as sister to hyperaccumulator species of Bornmuellera within Alysseae. This is contrary to current assumptions of affinity between L. emarginata and the non-hyperaccumulator Peltaria in Thlaspideae. The lineage Bornmuellera–Leptoplax is, in turn, sister to the two non-hyperaccumulator Mediterranean endemics Ptilotrichum rupestre and P. cyclocarpum. Low ITS sequence variation was found within the monophyletic Alyssum sect. Odontarrhena and especially in A. murale sensu lato. Nickel hyperaccumulation was not monophyletic in any of three main clades retrieved, each consisting of hyperaccumulators and non-hyperaccumulators of different geographical origin. Conclusions Nickel hyperaccumulation in Alysseae has a double origin, but it did not evolve in Thlaspideae. In Bornmuellera–Leptoplax it represents an early synapomorphy inherited from an ancestor shared with the calcicolous, sister clade of Mediterranean Ptilotrichum. In Alyssum sect. Odontarrhena it has multiple origins even within the three European clades recognized. Lack of geographical cohesion suggests that accumulation ability has been lost or gained over the

  15. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans.

    PubMed

    Dhir, B; Srivastava, S

    2013-06-01

    Metal tolerance capacity of Salvinia natans, a metal hyperaccumulator, was evaluated. Plants were exposed to 10, 30 and 50 mg L⁻¹ of Zn, Cd, Co, Cr, Fe, Cu, Pb, and Ni. Plant biomass, photosynthetic efficiency, quantum yield, photochemical quenching, electron transport rate and elemental (%C, H and N) constitution remained unaffected in Salvinia exposed to 30 mg L⁻¹ of heavy metals, except for Cu and Zn exposed plants, where significant reductions were noted in some of the measured parameters. However, a significant decline was noted in most of the measured parameters in plants exposed to 50 mg L⁻¹ of metal concentration. Results suggest that Salvinia has fairly high levels of tolerance to all the metals tested, but the level of tolerance varied from metal to metal. PMID:23553503

  16. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons(PAHs) co-contaminated s...

  17. THE EFFECT OF THE PH OF PH BUFFERED NUTRIENT SOLUTIONS ON NICKEL HYPERACCUMULATION BY ALYSSUM CORSICUM AND BERKHEYA CODDII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is hypothesized that plant hyperaccumulation of Ni evolved as a defense mechanism against diseases and insects. Two hyperaccumulators, Alyssum corsicum and Berkheya coddii, were compared to cabbage (Brassica oleracea) grown in MES-HEPES buffered nutrient solutions and maintained at four pH levels...

  18. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale*

    PubMed Central

    Agrawal, Bhavana; Czymmek, Kirk J.; Sparks, Donald L.; Bais, Harsh P.

    2013-01-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation. PMID:23322782

  19. Using Chelator-Buffered Nutrient Solutions to Induce Ni-Deficiency in the Ni-Hyperaccumulator Alyssum murale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ni is essential for all plants due to its role in urease. Many Alyssum species are known to hyperaccumulate Ni to over 20 g kg-1 dry weight (DW) while normal plants require only about 0.1 mg kg-1 DW. As part of our research on Ni hyperaccumulation by plants, we conducted experiments to measure the...

  20. Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics

    PubMed Central

    DalCorso, Giovanni; Fasani, Elisa; Furini, Antonella

    2013-01-01

    Hyperaccumulator/hypertolerant plant species have evolved strategies allowing them to grow in metal-contaminated soils, where they accumulate high concentrations of heavy metals in their shoots without signs of toxicity. The mechanisms that allow enhanced metal uptake, root-to-shoot translocation and detoxification in these species are not fully understood. Complementary approaches such as transcriptomic-based DNA microarrays and proteomics have recently been used to gain insight into the molecular pathways evolved by metal hyperaccumulator/hypertolerant species. Proteomics has the advantage of focusing on the translated portion of the genome and it allows to analyze complex networks of proteins. This review discusses the recent analysis of metal hyperaccumulator/hypertolerant plant species using proteomics. Changes in photosynthetic proteins, sulfur, and glutathione metabolism, transport, biotic and xenobiotic defenses as well as the differential regulation of proteins involved in signaling and secondary metabolism are discussed in relation to metal hyperaccumulation. We also consider the potential contribution of several proteins to the hyperaccumulation phenotype. PMID:23898342

  1. The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii.

    PubMed

    Lu, Lingli; Tian, Shengke; Zhang, Min; Zhang, Jie; Yang, Xiaoe; Jiang, Hong

    2010-11-15

    Effect of Ca on plant growth, Cd uptake and translocation in the hyperaccumulator Sedum alfredii was investigated, as to reveal the possible pathway of Cd entry into the plants system. High Ca increased plant growth under Cd stress after 7 d, and significantly affected the total Cd influx and translocation rate. Short-term kinetics of (109)Cd influx performed using radiotracers confirmed a significant inhibition of (109)Cd influx into the roots induced by high Ca. Under exposure of 5.0 mM Ca, K(m) of (109)Cd influx into roots was 2-fold higher in the hyperaccumulator, although the V(max) value remained at similar level, when compared with the treatments of 0.5 mM Ca. Calcium concentrations in xylem sap of the hyperaccumulator decreased with the increasing Cd levels and significant negative correlationship between the two elements was observed. However, increased xylem loading of Cd was observed in the hyperaccumulator in response to the increasing exogenous Ca level from 0.5 to 4.0 mM, but reverse effect was observed when higher Ca levels (8-32 mM) were presented in the solutions. These results suggest that Cd uptake and translocation in the hyperaccumulator S. alfredii plants is positively associated with Ca pathway. PMID:20674155

  2. The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy

    PubMed Central

    Visioli, Giovanna; D'Egidio, Sara; Sanangelantoni, Anna M.

    2015-01-01

    Hyperaccumulators are plants that can extract heavy metal ions from the soil and translocate those ions to the shoots, where they are sequestered and detoxified. Hyperaccumulation depends not only on the availability of mobilized metal ions in the soil, but also on the enhanced activity of metal transporters and metal chelators which may be provided by the plant or its associated microbes. The rhizobiome is captured by plant root exudates from the complex microbial community in the soil, and may colonize the root surface or infiltrate the root cortex. This community can increase the root surface area by inducing hairy root proliferation. It may also increase the solubility of metals in the rhizosphere and promote the uptake of soluble metals by the plant. The bacterial rhizobiome, a subset of specialized microorganisms that colonize the plant rhizosphere and endosphere, makes an important contribution to the hyperaccumulator phenotype. In this review, we discuss classic and more recent tools that are used to study the interactions between hyperaccumulators and the bacterial rhizobiome, and consider future perspectives based on the use of omics analysis and microscopy to study plant metabolism in the context of metal accumulation. Recent data suggest that metal-resistant bacteria isolated from the hyperaccumulator rhizosphere and endosphere could be useful in applications such as phytoextraction and phytoremediation, although more research is required to determine whether such properties can be transferred successfully to non-accumulator species. PMID:25709609

  3. Pb and Zn accumulation in a Cd-hyperaccumulator (Viola baoshanensis).

    PubMed

    Wu, Chuan; Liao, Bin; Wang, Sheng-Long; Zhang, Jun; Li, Jin-Tian

    2010-08-01

    Viola baoshanensis has been identified as a Cd-hyperaccumulator, however, its ability to accumulate Pb or Zn is less certain. Therefore, this study focused on determining whether or not V. baoshanensis can accumulate Pb or Zn, by means of field survey, hydroponic and pot experiments. In addition, we also tried to obtain further information on the Cd hyperaccumulating characteristics of this species. Under field conditions, V. baoshanensis accumulated on average 1090 mg Cd kg(-1), 1902 mg Pb kg(-1) and 3428 mg Zn kg(-1) in its shoots, respectively. In hydroponic and pot experiments, V. baoshanensis showed high tolerance to Cd, Pb, and Zn, as well as the ability to accumulate exceptionally high concentrations of the three elements in its shoots (> 2% Cd, > 1% Pb, and > 0.5% Zn on a dry matter basis). These results, taken together, suggested that V. baoshanensis is not only a Cd-hyperaccumulator, but also a strong accumulator of Pb and Zn. PMID:21166282

  4. Feasibility of using hyperaccumulating plants to bioremediate metal-contaminated soil

    SciTech Connect

    Kelly, R.J.; Guerin, T.F.

    1995-12-31

    A feasibility study was carried out to determine whether selected plants were capable of hyperaccumulating anthropogenic sources of metals found in soils from three contaminated sites. A trial was conducted using the previously reported hyperaccumulators, Armeria maritima (thrift), Impatiens balsamina (balsam), Alyssum saxatile (gold dust), and the control species, Brassica oleracea (cabbage). Although none of these plants showed any substantial hyperaccumulation of Cu, Zn, Pb, and Cd, it was established that there is an optimum period in the life-cycle of these plants in which the metal concentration reaches a maximum. This period was dependent on the metal, soil, and plant type. The current paper describes the data obtained for Zn and Cu uptake by thrift.

  5. A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop.

    PubMed

    Dorn, Kevin M; Fankhauser, Johnathon D; Wyse, Donald L; Marks, M David

    2015-04-01

    Field pennycress (Thlaspi arvense L.) is being domesticated as a new winter cover crop and biofuel species for the Midwestern United States that can be double-cropped between corn and soybeans. A genome sequence will enable the use of new technologies to make improvements in pennycress. To generate a draft genome, a hybrid sequencing approach was used to generate 47 Gb of DNA sequencing reads from both the Illumina and PacBio platforms. These reads were used to assemble 6,768 genomic scaffolds. The draft genome was annotated using the MAKER pipeline, which identified 27,390 predicted protein-coding genes, with almost all of these predicted peptides having significant sequence similarity to Arabidopsis proteins. A comprehensive analysis of pennycress gene homologues involved in glucosinolate biosynthesis, metabolism, and transport pathways revealed high sequence conservation compared with other Brassicaceae species, and helps validate the assembly of the pennycress gene space in this draft genome. Additional comparative genomic analyses indicate that the knowledge gained from years of basic Brassicaceae research will serve as a powerful tool for identifying gene targets whose manipulation can be predicted to result in improvements for pennycress. PMID:25632110

  6. Phylogeography of Thlaspi arvense (Brassicaceae) in China Inferred from Chloroplast and Nuclear DNA Sequences and Ecological Niche Modeling

    PubMed Central

    An, Miao; Zeng, Liyan; Zhang, Ticao; Zhong, Yang

    2015-01-01

    Thlaspi arvense is a well-known annual farmland weed with worldwide distribution, which can be found from sea level to above 4000 m high on the Qinghai-Tibetan Plateau (QTP). In this paper, a phylogeographic history of T. arvense including 19 populations from China was inferred by using three chloroplast (cp) DNA segments (trnL-trnF, rpl32-trnL and rps16) and one nuclear (n) DNA segment (Fe-regulated transporter-like protein, ZIP). A total of 11 chloroplast haplotypes and six nuclear alleles were identified, and haplotypes unique to the QTP were recognized (C4, C5, C7 and N4). On the basis of molecular dating, haplotypes C4, C5 and C7 have separated from others around 1.58 Ma for cpDNA, which corresponds to the QTP uplift. In addition, this article suggests that the T. arvense populations in China are a mixture of diverged subpopulations as inferred by hT/vT test (hT ≤ vT, cpDNA) and positive Tajima’s D values (1.87, 0.05 < p < 0.10 for cpDNA and 3.37, p < 0.01 for nDNA). Multimodality mismatch distribution curves and a relatively large shared area of suitable environmental conditions between the Last Glacial Maximum (LGM) as well as the present time recognized by MaxEnt software reject the sudden expansion population model. PMID:26110380

  7. A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop

    PubMed Central

    Dorn, Kevin M.; Fankhauser, Johnathon D.; Wyse, Donald L.; Marks, M. David

    2015-01-01

    Field pennycress (Thlaspi arvense L.) is being domesticated as a new winter cover crop and biofuel species for the Midwestern United States that can be double-cropped between corn and soybeans. A genome sequence will enable the use of new technologies to make improvements in pennycress. To generate a draft genome, a hybrid sequencing approach was used to generate 47 Gb of DNA sequencing reads from both the Illumina and PacBio platforms. These reads were used to assemble 6,768 genomic scaffolds. The draft genome was annotated using the MAKER pipeline, which identified 27,390 predicted protein-coding genes, with almost all of these predicted peptides having significant sequence similarity to Arabidopsis proteins. A comprehensive analysis of pennycress gene homologues involved in glucosinolate biosynthesis, metabolism, and transport pathways revealed high sequence conservation compared with other Brassicaceae species, and helps validate the assembly of the pennycress gene space in this draft genome. Additional comparative genomic analyses indicate that the knowledge gained from years of basic Brassicaceae research will serve as a powerful tool for identifying gene targets whose manipulation can be predicted to result in improvements for pennycress. PMID:25632110

  8. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.

    PubMed

    Gumz, Frauke; Krausze, Joern; Eisenschmidt, Daniela; Backenköhler, Anita; Barleben, Leif; Brandt, Wolfgang; Wittstock, Ute

    2015-09-01

    Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade β-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants. PMID:26260516

  9. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  10. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  11. Enhanced cadmium efflux and root-to-shoot translocation are conserved in the hyperaccumulator Sedum alfredii (Crassulaceae family).

    PubMed

    Zhang, Zhongchun; Yu, Qi; Du, Hanying; Ai, Wenli; Yao, Xuan; Mendoza-Cózatl, David G; Qiu, Baosheng

    2016-06-01

    Investigation on the molecular mechanisms of cadmium hyperaccumulation has been mostly focused on members of the Brassicaceae family. Here, we show using hyperaccumulating (HP) and nonhyperaccumulating (NHP) populations of Sedum alfredii (Crassulaceae), that Cd hypertolerance correlates with higher Cd efflux rates and less cadmium accumulation in suspension cells and roots. The heavy metal ATPase HMA2, but not HMA4, was highly expressed in suspension cultures and roots from HP plants compared to NHP cells and plants. Reciprocal grafting also showed that Cd translocation is more efficient in HP plants. These results suggest that cadmium efflux is a conserved mechanism among natural cadmium hyperaccumulator species. PMID:27222256

  12. Transcriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance

    PubMed Central

    Yang, Xiaoe; Liu, Jian-Xiang

    2013-01-01

    The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE) shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE) shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≧2.0) and down-regulated (Fold Change ≦0.5) by chronic Cd treatment in S. alfredii Hance (HE) at q-value cutoff of 0.005, respectively. Quantitative RT-PCR was employed to compare gene expression patterns between S. alfredii Hance (HE) and non-hyperaccumulating ecotype (NHE). Our results demonstrated that several genes involved in cell wall modification, metal translocation and remobilization were more induced or constitutively expressed at higher levels in HE shoots than that in NHE shoots in response to Cd exposure. Together, our study provides large-scale expressed sequence information and genome-wide transcriptome profiling of Cd responses in S. alfredii Hance (HE) shoots. PMID:23755133

  13. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance.

    PubMed

    Gao, Jun; Sun, Ling; Yang, Xiaoe; Liu, Jian-Xiang

    2014-01-01

    The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE) shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE) shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≥ 2.0) and down-regulated (Fold Change hyperaccumulating ecotype (NHE). Our results demonstrated that several genes involved in cell wall modification, metal translocation and remobilization were more induced or constitutively expressed at higher levels in HE shoots than that in NHE shoots in response to Cd exposure. Together, our study provides large-scale expressed sequence information and genome-wide transcriptome profiling of Cd responses in S. alfredii Hance (HE) shoots. PMID:23755133

  14. Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii.

    PubMed

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Li, Ting-qiang; He, Zhen-li

    2009-04-01

    Sedum alfredii is a well known cadmium (Cd) hyperaccumulator native to China; however, the mechanism behind its hyperaccumulation of Cd is not fully understood. Through several hydroponic experiments, characteristics of Cd uptake and translocation were investigated in the hyperaccumulating ecotype (HE) of S. alfredii in comparison with its non-hyperaccumulating ecotype (NHE). The results showed that at Cd level of 10 microM measured Cd uptake in HE was 3-4 times higher than the implied Cd uptake calculated from transpiration rate. Furthermore, inhibition of transpiration rate in the HE has no essential effect on Cd accumulation in shoots of the plants. Low temperature treatment (4 degrees C) significantly inhibited Cd uptake and reduced upward translocation of Cd to shoots for 9 times in HE plants, whereas no such effect was observed in NHE. Cadmium concentration was 3-4-fold higher in xylem sap of HE, as compared with that in external uptake solution, whereas opposite results were obtained for NHE. Cadmium concentration in xylem sap of HE was significantly reduced by the addition of metabolic inhibitors, carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), in the uptake solutions, whereas no such effect was noted in NHE. These results suggest that Cd uptake and translocation is an active process in plants of HE S. alfredii, symplastic pathway rather than apoplastic bypass contributes greatly to root uptake, xylem loading and translocation of Cd to the shoots of HE, in comparison with the NHE plants. PMID:18937997

  15. The Metal Hyperaccumulator Alyssum murale Uses Nitrogen and Oxygen Donor Ligands for Ni Transport and Storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Kotodesh genotype of the nickel (Ni) hyperaccumulator Alyssum murale was examined to determine the compartmentalization and internal speciation of Ni, and other elements, in an effort to ascertain the mechanism used by this plant to tolerate extremely high shoot Ni concentrations. Plants were g...

  16. Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode.

    PubMed

    Jhee, Edward M; Boyd, Robert S; Eubanks, Micky D

    2005-11-01

    No study of a single nickel (Ni) hyperaccumulator species has investigated the impact of hyperaccumulation on herbivores representing a variety of feeding modes. Streptanthus polygaloides plants were grown on high- or low-Ni soils and a series of no-choice and choice feeding experiments was conducted using eight arthropod herbivores. Herbivores used were two leaf-chewing folivores (the grasshopper Melanoplus femurrubrum and the lepidopteran Evergestis rimosalis), a dipteran rhizovore (the cabbage maggot Delia radicum), a xylem-feeder (the spittlebug Philaenus spumarius), two phloem-feeders (the aphid, Lipaphis erysimi and the spidermite Trialeurodes vaporariorum) and two cell-disruptors (the bug Lygus lineolaris and the whitefly Tetranychus urticae). Hyperaccumulated Ni significantly decreased survival of the leaf-chewers and rhizovore, and significantly reduced population growth of the whitefly cell-disruptor. However, vascular tissue-feeding insects were unaffected by hyperaccumulated Ni, as was the bug cell-disruptor. We conclude that Ni can defend against tissue-chewing herbivores but is ineffective against vascular tissue-feeding herbivores. The effects of Ni on cell-disruptors varies, as a result of either variation of insect Ni sensitivity or the location of Ni in S. polygaloides cells and tissues. PMID:16219073

  17. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources.

    PubMed

    Grison, Claire M; Mazel, Marine; Sellini, Amandine; Escande, Vincent; Biton, Jacques; Grison, Claude

    2015-04-01

    Anthyllis vulneraria was highlighted here as a Zn-hyperaccumulator for the development of a pilot phytoextraction process in the mine site of Les Avinières in the district of Saint-Laurent-Le-Minier. A. vulneraria appeared to hyperaccumulate the highest concentration of Zn in shoots with a better metal selectivity relative to Cd and Pb than the reference Zn-hyperaccumulator Noccea caerulescens. A bigger biomass production associated to a higher Zn concentration conducted A. vulneraria to the highest total zinc gain per hectare per year. As a legume, A. vulneraria was infected by rhizobia symbionts. Inoculation of A. vulneraria seeds showed a positive impact on Zn hyperaccumulation. A large-scale culture process of symbiotic rhizobia of A. vulneraria was investigated and optimized to allow large-scale inoculation process. Contaminated shoots of A. vulneraria were not considered as wastes and were recovered as Eco-Zn catalyst in particular, examples of organic synthesis, electrophilic aromatic substitution. Eco-Zn catalyst was much more efficient than conventional catalysts and allowed greener chemical processes. PMID:25253057

  18. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator.

    PubMed

    Sun, Yuebing; Zhou, Qixing; Wang, Lin; Liu, Weitao

    2009-01-30

    Recently, researchers are becoming interested in using hyperaccumulators for decontamination of heavy metal polluted soils, whereas few species that hyperaccumulate cadmium (Cd) has been identified in the plant kingdom. In this study, the physiological mechanisms at the seedling stage and growth responses and Cd uptake and accumulation at flowering and mature stages of Bidens pilosa L. under Cd treatments were investigated. At the seedling stage, when soil Cd was lower than 16mgkg(-1), the plant did not show obvious symptom of phytoxicity, and the alterations of chlorophyll (CHL), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and soluble protein (SP) did not have significant differences when compared with the control. At the flowering and mature stages, under low Cd treatments (hyperaccumulator. All the results elementarily indicated that B. pilosa is a potential Cd-hyperaccumulating plant. PMID:18513866

  19. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants

    PubMed Central

    Jaffré, Tanguy; Pillon, Yohan; Thomine, Sébastien; Merlot, Sylvain

    2013-01-01

    While an excess of metals such as zinc, cadmium or nickel (Ni) is toxic for most plants, about 500 plant species called hyperaccumulators are able to accumulate high amounts of these metals. These plants and the underlying mechanisms are receiving an increasing interest because of their potential use in sustainable biotechnologies such as biofortification, phytoremediation, and phytomining. Among hyperaccumulators, about 400 species scattered in 40 families accumulate Ni. Despite this wide diversity, our current knowledge of the mechanisms involved in Ni accumulation is still limited and mostly restricted to temperate herbaceous Brassicaceae. New Caledonia is an archipelago of the tropical southwest pacific with a third of its surface (5500 km2) covered by Ni-rich soils originating from ultramafic rocks. The rich New Caledonia flora contains 2145 species adapted to these soils, among which 65 are Ni hyperaccumulators, including lianas, shrubs or trees, mostly belonging to the orders Celastrales, Oxalidales, Malpighiales, and Gentianales. We present here our current knowledge on Ni hyperaccumulators from New Caledonia and the latest molecular studies developed to better understand the mechanisms of Ni accumulation in these plants. PMID:23898341

  20. Hyperaccumulator Alyssum Murale Relies on a Different Metal Storage Mechanism for Cobalt than for Nickel.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nickel hyperaccumulator Alyssum murale has been developed as a commercial crop for phytoremediation/phytomining Ni-enriched soils (anthropogenic/geogenic) containing elevated concentrations of other metals. Metal co-tolerance, accumulation, and localization were investigated for Alyssum exposed to c...

  1. FINAL REPORT. MOLECULAR DISSECTION OF THE CELLULAR MECHANISMS INVOLVED IN NICKEL HYPERACCUMULATION

    EPA Science Inventory

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advanta...

  2. PROGRESS REPORT. MOLECULAR DISSECTION OF THE CELLULAR MECHANISMS INVOLVED IN NICKEL HYPERACCUMULATION

    EPA Science Inventory

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advanta...

  3. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, Helen N; Eyles, Chris J; Bennett, Mark H; Smith, J Andrew C; Preston, Gail M

    2013-09-01

    The metal hyperaccumulator plant Noccaea caerulescens is protected from disease by the accumulation of high concentrations of metals in its aerial tissues, which are toxic to many pathogens. As these metals can lead to the production of damaging reactive oxygen species (ROS), metal hyperaccumulator plants have developed highly effective ROS tolerance mechanisms, which might quench ROS-based signals. We therefore investigated whether metal accumulation alters defence signalling via ROS in this plant. We studied the effect of zinc (Zn) accumulation by N. caerulescens on pathogen-induced ROS production, salicylic acid accumulation and downstream defence responses, such as callose deposition and pathogenesis-related (PR) gene expression, to the bacterial pathogen Pseudomonas syringae pv. maculicola. The accumulation of Zn caused increased superoxide production in N. caerulescens, but inoculation with P. syringae did not elicit the defensive oxidative burst typical of most plants. Defences dependent on signalling through ROS (callose and PR gene expression) were also modified or absent in N. caerulescens, whereas salicylic acid production in response to infection was retained. These observations suggest that metal hyperaccumulation is incompatible with defence signalling through ROS and that, as metal hyperaccumulation became effective as a form of elemental defence, normal defence responses became progressively uncoupled from ROS signalling in N. caerulescens. PMID:23758201

  4. Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii.

    PubMed

    Lu, Lingli; Tian, Shengke; Zhang, Jie; Yang, Xiaoe; Labavitch, John M; Webb, Samuel M; Latimer, Matthew; Brown, Patrick H

    2013-05-01

    Sedum alfredii is one of a few species known to hyperaccumulate zinc (Zn) and cadmium (Cd). Xylem transport and phloem remobilization of Zn in hyperaccumulating (HP) and nonhyperaccumulating (NHP) populations of S. alfredii were compared. Micro-X-ray fluorescence (μ-XRF) images of Zn in the roots of the two S. alfredii populations suggested an efficient xylem loading of Zn in HP S. alfredii, confirmed by the seven-fold higher Zn concentrations detected in the xylem sap collected from HP, when compared with NHP, populations. Zn was predominantly transported as aqueous Zn (> 55.9%), with the remaining proportion (36.7-42.3%) associated with the predominant organic acid, citric acid, in the xylem sap of HP S. alfredii. The stable isotope (68)Zn was used to trace Zn remobilization from mature leaves to new growing leaves for both populations. Remobilization of (68)Zn was seven-fold higher in HP than in NHP S. alfredii. Subsequent analysis by μ-XRF, combined with LA-ICPMS (laser ablation-inductively coupled plasma mass spectrometry), confirmed the enhanced ability of HP S. alfredii to remobilize Zn and to preferentially distribute the metal to mesophyll cells surrounding phloem in the new leaves. The results suggest that Zn hyperaccumulation by HP S. alfredii is largely associated with enhanced xylem transport and phloem remobilization of the metal. To our knowledge, this report is the first to reveal enhanced remobilization of metal by phloem transport in hyperaccumulators. PMID:23421478

  5. Organic acids rather than histidine predominate in Ni chelation in Alyssum hyperaccumulator xylem exudate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of Ni uptake mechanisms by hyperaccumulator plants is necessary to improve Ni uptake efficiency for phytoremediation technologies i.e. phytomining. It is known that an important aspect of Ni translocation involves Ni chelation with organic ligands. However, it is still not cle...

  6. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri.

    PubMed

    Sarret, Géraldine; Saumitou-Laprade, Pierre; Bert, Valérie; Proux, Olivier; Hazemann, Jean-Louis; Traverse, Agnès; Marcus, Matthew A; Manceau, Alain

    2002-12-01

    The chemical forms of zinc (Zn) in the Zn-tolerant and hyperaccumulator Arabidopsis halleri and in the non-tolerant and nonaccumulator Arabidopsis lyrata subsp. petraea were determined at the molecular level by combining chemical analyses, extended x-ray absorption spectroscopy (EXAFS), synchrotron-based x-ray microfluorescence, and muEXAFS. Plants were grown in hydroponics with various Zn concentrations, and A. halleri specimens growing naturally in a contaminated site were also collected. Zn speciation in A. halleri was independent of the origin of the plants (contaminated or non-contaminated) and Zn exposure. In aerial parts, Zn was predominantly octahedrally coordinated and complexed to malate. A secondary organic species was identified in the bases of the trichomes, which contained elevated Zn concentrations, and in which Zn was tetrahedrally coordinated and complexed to carboxyl and/or hydroxyl functional groups. This species was detected thanks to the good resolution and sensitivity of synchrotron-based x-ray microfluorescence and muEXAFS. In the roots of A. halleri grown in hydroponics, Zn phosphate was the only species detected, and is believed to result from chemical precipitation on the root surface. In the roots of A. halleri grown on the contaminated soil, Zn was distributed in Zn malate, Zn citrate, and Zn phosphate. Zn phosphate was present in both the roots and aerial part of A. lyrata subsp. petraea. This study illustrates the complementarity of bulk and spatially resolved techniques, allowing the identification of: (a) the predominant chemical forms of the metal, and (b) the minor forms present in particular cells, both types of information being essential for a better understanding of the bioaccumulation processes. PMID:12481065

  7. Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Wang, S. L.; Liao, W. B.; Yu, F. Q.; Liao, B.; Shu, W. S.

    2009-08-01

    A field survey was conducted to identify potential hyperaccumulators of Pb, Zn or Cd in the Beichang Pb/Zn mine outcrop in Yunnan Province, China. The average total concentrations of Pb, Zn, and Cd in the soils were up to 28,438, 5,109, and 52 mg kg-1, respectively. A total of 68 plant species belonging to 60 genera of 37 families naturally colonizing the outcrop were recorded. According to metal accumulation in the plants and translocation factor (TF), Silene viscidula was identified as potential hyperaccumulator of Pb, Zn, and Cd with mean shoot concentrations of 3,938 mg kg-1 of Pb (TF = 1.2), 11,155 mg kg-1 of Zn (TF = 1.8) and 236 mg kg-1 of Cd (TF = 1.1), respectively; S. gracilicanlis (Pb 3,617 mg kg-1, TF = 1.2) and Onosma paniculatum (Pb 1,837 mg kg-1, TF = 1.9) were potential Pb hyperaccumulators. Potentilla griffithii (Zn 8,748 mg kg-1, TF = 1.5) and Gentiana sp. (Zn 19,710 mg kg-1, TF = 2.7) were potential Zn hyperaccumulators. Lysimachia deltoides (Cd 212 mg kg-1, TF = 3.2) was a potential Cd hyperaccumulator. These new plant resources could be used to explore the mechanisms of Pb, Zn and/or Cd hyperaccumulation, and the findings could be applied for the phytoremediation of Pb, Zn and/or Cd-contaminated soils.

  8. Do selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-Ray Microprobe Analysis.

    PubMed

    El Mehdawi, Ali F; Lindblom, Stormy D; Cappa, Jennifer J; Fakra, Sirine C; Pilon-Smits, Elizabeth A H

    2015-01-01

    Neighbors of Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus were found earlier to have elevated Se levels. Here we investigate whether Se hyperaccumulators affect Se localization and speciation in surrounding soil and neighboring plants. X-ray fluorescence mapping and X-ray absorption near-edge structure spectroscopy were used to analyze Se localization and speciation in leaves of Artemisia ludoviciana, Symphyotrichum ericoides and Chenopodium album growing next to Se hyperaccumulators or non-accumulators at a seleniferous site. Regardless of neighbors, A. ludoviciana, S. ericoides and C. album accumulated predominantly (73-92%) reduced selenocompounds with XANES spectra similar to the C-Se-C compounds selenomethionine and methyl-selenocysteine. Preliminary data indicate that the largest Se fraction (65-75%), both in soil next to hyperaccumulator S. pinnata and next to nonaccumulator species was reduced Se with spectra similar to C-Se-C standards. These same C-Se-C forms are found in hyperaccumulators. Thus, hyperaccumulator litter may be a source of organic soil Se, but soil microorganisms may also contribute. These findings are relevant for phytoremediation and biofortification since organic Se is more readily accumulated by plants, and more effective for dietary Se supplementation. PMID:26030363

  9. Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines.

    PubMed

    Fernando, Edwino S; Quimado, Marilyn O; Doronila, Augustine I

    2014-01-01

    A new, nickel-hyperaccumulating species of Rinorea (Violaceae), Rinorea niccolifera Fernando, from Luzon Island, Philippines, is described and illustrated. This species is most similar to the widespread Rinorea bengalensis by its fasciculate inflorescences and smooth subglobose fruits with 3 seeds, but it differs by its glabrous ovary with shorter style (5 mm long), the summit of the staminal tube sinuate to entire and the outer surface smooth, generally smaller leaves (3-8 cm long × 2-3 cm wide), and smaller fruits (0.6-0.8 cm diameter). Rinorea niccolifera accumulates to >18,000 µg g(-1) of nickel in its leaf tissues and is thus regarded as a Ni hyperaccumulator. PMID:24843295

  10. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii.

    PubMed

    Barzanti, Rita; Ozino, Francesca; Bazzicalupo, Marco; Gabbrielli, Roberto; Galardi, Francesca; Gonnelli, Cristina; Mengoni, Alessio

    2007-02-01

    We report the isolation and characterization of endophytic bacteria, endemic to serpentine outcrops of Central Italy, from a nickel hyperaccumulator plant, Alyssum bertolonii Desv. (Brassicaceae). Eighty-three endophytic bacteria were isolated from roots, stems, and leaves of A. bertolonii and classified by restriction analysis of 16S rDNA (ARDRA) and partial 16S rDNA sequencing in 23 different taxonomic groups. All isolates were then screened for siderophore production and for resistance to heavy metals. One isolate representative of each ARDRA group was then tested for plant tissue colonization ability in sterile culture. Obtained results pointed out that, despite the high concentration of heavy metals present in its tissues, A. bertolonii harbors an endophytic bacterial flora showing a high genetic diversity as well as a high level of resistance to heavy metals that could potentially help plant growth and Ni hyperaccumulation. PMID:17264998

  11. Response to cytosolic nickel of Slow Vacuolar channels in the hyperaccumulator plant Alyssum bertolonii.

    PubMed

    Corem, Shira; Carpaneto, Armando; Soliani, Paolo; Cornara, Laura; Gambale, Franco; Scholz-Starke, Joachim

    2009-04-01

    We applied the patch-clamp technique to investigate the transport properties of the Slow Vacuolar (SV) channel identified in leaf vacuoles of Alyssum bertolonii Desv., a nickel hyperaccumulator plant growing in serpentine soil of the northern Apennines (Italy). SV currents recorded in vacuoles from adult plants collected in their natural habitat showed high sensitivity towards cytosolic nickel. Dose-response analyses indicated half-maximal current inhibition at submicromolar concentrations, i.e. up to three orders of magnitude lower than previously reported values from other plant species. The voltage-dependent increase of residual currents at saturating nickel concentrations could be interpreted as relief of channel block by nickel permeation at high positive membrane potentials. Including young plants of A. bertolonii into the study, we found that SV channels from these plants did not display elevated nickel sensitivity. This difference may be related to age-dependent changes in nickel hyperaccumulation of A. bertolonii leaf cells. PMID:19165480

  12. Selenium Distribution and Speciation in the Hyperaccumulator Astragalus bisulcatus and Associated Ecological Partners1[W][OA

    PubMed Central

    Valdez Barillas, José R.; Quinn, Colin F.; Freeman, John L.; Lindblom, Stormy D.; Fakra, Sirine C.; Marcus, Matthew A.; Gilligan, Todd M.; Alford, Élan R.; Wangeline, Ami L.; Pilon-Smits, Elizabeth A.H.

    2012-01-01

    The goal of this study was to investigate how plant selenium (Se) hyperaccumulation may affect ecological interactions and whether associated partners may affect Se hyperaccumulation. The Se hyperaccumulator Astragalus bisulcatus was collected in its natural seleniferous habitat, and x-ray fluorescence mapping and x-ray absorption near-edge structure spectroscopy were used to characterize Se distribution and speciation in all organs as well as in encountered microbial symbionts and herbivores. Se was present at high levels (704–4,661 mg kg−1 dry weight) in all organs, mainly as organic C-Se-C compounds (i.e. Se bonded to two carbon atoms, e.g. methylselenocysteine). In nodule, root, and stem, up to 34% of Se was found as elemental Se, which was potentially due to microbial activity. In addition to a nitrogen-fixing symbiont, the plants harbored an endophytic fungus that produced elemental Se. Furthermore, two Se-resistant herbivorous moths were discovered on A. bisulcatus, one of which was parasitized by a wasp. Adult moths, larvae, and wasps all accumulated predominantly C-Se-C compounds. In conclusion, hyperaccumulators live in association with a variety of Se-resistant ecological partners. Among these partners, microbial endosymbionts may affect Se speciation in hyperaccumulators. Hyperaccumulators have been shown earlier to negatively affect Se-sensitive ecological partners while apparently offering a niche for Se-resistant partners. Through their positive and negative effects on different ecological partners, hyperaccumulators may influence species composition and Se cycling in seleniferous ecosystems. PMID:22645068

  13. Effects of elevated CO₂ on rhizosphere characteristics of Cd/Zn hyperaccumulator Sedum alfredii.

    PubMed

    Li, Tingqiang; Tao, Qi; Han, Xuan; Yang, Xiaoe

    2013-06-01

    The effects of elevated CO2 on the metal bioavailability and the rhizosphere characteristics of hyperaccumulator are not well understood. In this study, soil pot experiment was carried out to contrast the effects of elevated CO2 on rhizosphere characteristics between a hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350 μL L(-1)) or elevated (800 μL L(-1)) CO2. Elevated CO2 facilitated the growth of both ecotypes of S. alfredii, but the promotion in the HE was much greater than in the NHE. No significant (P<0.05) changes in soil pH, dissolved organic matter (DOM) and microbial biomass (Cmic) were observed in the rhizosphere of NHE under both CO2 level. For HE, however, elevated CO2 reduced soil pH by 0.3 units, increased DOM (especially for hydrophilic acid (HiA) fractions) by 19.2% and Cmic by 19%, as compared to ambient CO2. Mobile Cd and Zn (extractable with 1M NH4NO3) in the rhizosphere of HE decreased considerably, but the decreases were greater under ambient CO2 than under elevated CO2. Phytoextraction efficiency of Cd and Zn by HE was increased significantly by elevated CO2 (P<0.05). The results suggest that elevated CO2 can change soil microenvironment, increase bioavailability of Cd and Zn and thus facilitate metal uptake by the HE. This work highlights that elevated CO2 may be a useful way to improve phytoremediation efficiency of Cd/Zn-contaminated soil by hyperaccumulating ecotype S. alfredii. PMID:23567171

  14. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance*

    PubMed Central

    Guo, Wei-dong; Liang, Jun; Yang, Xiao-e; Chao, Yue-en; Feng, Ying

    2009-01-01

    We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance. PMID:19353742

  15. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance.

    PubMed

    Guo, Wei-dong; Liang, Jun; Yang, Xiao-e; Chao, Yue-en; Feng, Ying

    2009-04-01

    We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance. PMID:19353742

  16. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation.

    PubMed

    Wei, Shuhe; Zhou, Qixing; Koval, Pavel V

    2006-10-01

    The Cd accumulation and biomass characteristics of a newly found Cd-hyperaccumulator Solanum nigrum L. were investigated at the flowering stage and the mature stage. The results showed that the concentration of Cd in the stems and leaves of S. nigrum harvested at the flowering stage was up to 83.1% and 85.5% of that at the mature stage, and the dry-weight sum of the stems and leaves of S. nigrum harvested at the flowering stage was 93.4% of that at its seed maturity. The Cd-removing ratio by the shoots of S. nigrum harvested at the flowering stage was 87.5% of that at the mature stage. It was also found by observing the growth duration of S. nigrum that the frostless period at the experimental site was at least twice as long as the growth duration from the seedling-transplanted phase to the flowering stage of the hyperaccumulator. Therefore, S. nigrum could be transplanted into contaminated soils twice in one year by harvesting the hyperaccumulator at its flowering stage based on climatic conditions of the site and traits of the plant growth. In particular, the extraction efficiency of Cd by harvesting the shoots of S. nigrum at its flowering stage twice in one year could increase 75.0% compared to that of at its single maturity. Thus, the method of multiple harvesting would be very important to increase phytoremediation efficiency in practice. PMID:16859734

  17. Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator.

    PubMed

    Sun, Q; Ye, Z H; Wang, X R; Wong, M H

    2005-11-01

    Phytochelatins (PCs) have been induced in a large range of plant species, but their role in heavy metal tolerance is unclear. Sedum alfredii is a new zinc (Zn) hyperaccumulator and lead (Pb) accumulator found in an old Pb/Zn mine in the Zhejiang Province of China. Until now, the mechanisms of its hyperaccumulation/accumulation and tolerance were poorly understood. The aim of this work was to investigate whether PCs were differentially produced in mine populations of S. alfredii compared with a non-mine control of the same species. The results showed that plants from the mine site were more tolerant to increasing Zn and Pb concentrations than those from the control site. No PCs and cysteine (Cys) were detected by pre-column derivatization with HPLC fluorescence in any tissues of two populations at any treatment, which in turn indicated they were not responsible for Zn and Pb tolerance in the mine population. Instead, Zn and Pb treatments resulted in the increase of glutathione (GSH) for both populations in a tissue-dependent manner. Significant increases were observed in leaf, stem and root tissues of plants grown on the mine site. The results suggest that GSH, rather man PCs, may be involved in Zn and Pb transport, hyperaccumulation/accumulation and tolerance in mine population of S. alfredii. PMID:16225897

  18. Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn-hyperaccumulating plant species.

    PubMed

    Liu, Jie; Shang, Weiwei; Zhang, Xuehong; Zhu, Yinian; Yu, Ke

    2014-02-28

    Identifying a hyperaccumulator is an important groundwork for the phytoextraction of heavy metal-contaminated soil. Celosia argentea Linn., which grew on a Mn tailing wasteland, was found to hyperaccumulate Mn (14 362mgkg(-1) in leaf dry matter) in this study. To investigate Mn tolerance and accumulation in C. argentea, a hydroponic culture experiment was conducted in a greenhouse. Results showed that the biomass and the relative growth rate of C. argentea were insignificantly different (p>0.05) at the Mn supply level ranging from 2.5mgL(-1) (control) to 400mgL(-1). Manganese concentrations in leaves, stems, and roots reached maxima of 20228, 8872, and 2823mgkg(-1) at 600mgMnL(-1), respectively. The relative rate of Mn accumulation increased by 91.2% at 400mgMnL(-1). Over 95% of the total Mn taken up by C. argentea was translocated to shoots. Thus, C. argentea exhibits the basic characteristics of a Mn-hyperaccumulator. This species has great potential to remediate Mn-contaminated soil cheaply and can also aid the studies of Mn uptake, translocation, speciation, distribution and detoxification in plants. PMID:24444455

  19. Hyperaccumulator Alyssum murale Relies on a Different Metal Storage Mechanism for Cobalt than for Nickel

    SciTech Connect

    Tappero, R.; Peltier, E; Grafe, M; Heidel, K; Ginder-Vogel, M; Livi, K; Rivers, M; Marcus, M; Chaney, R; Sparks, D

    2007-01-01

    The nickel (Ni) hyperaccumulator Alyssum murale has been developed as a commercial crop for phytoremediation/phytomining Ni from metal-enriched soils. Here, metal co-tolerance, accumulation and localization were investigated for A. murale exposed to metal co-contaminants. A. murale was irrigated with Ni-enriched nutrient solutions containing basal or elevated concentrations of cobalt (Co) or zinc (Zn). Metal localization and elemental associations were investigated in situ with synchrotron X-ray microfluorescence (SXRF) and computed-microtomography (CMT). A. murale hyperaccumulated Ni and Co (> 1000 {micro}g g{sup -1} dry weight) from mixed-metal systems. Zinc was not hyperaccumulated. Elevated Co or Zn concentrations did not alter Ni accumulation or localization. SXRF images showed uniform Ni distribution in leaves and preferential localization of Co near leaf tips/margins. CMT images revealed that leaf epidermal tissue was enriched with Ni but devoid of Co, that Co was localized in the apoplasm of leaf ground tissue and that Co was sequestered on leaf surfaces near the tips/margins. Cobalt-rich mineral precipitate(s) form on leaves of Co-treated A. murale. Specialized biochemical processes linked with Ni (hyper)tolerance in A. murale do not confer (hyper)tolerance to Co. A. murale relies on a different metal storage mechanism for Co (exocellular sequestration) than for Ni (vacuolar sequestration).

  20. Thermal Characteristics of Hyperaccumulator and Fate of Heavy Metals during Thermal Treatment of Sedum plumbizincicola.

    PubMed

    Zhong, Daoxu; Zhong, Zhaoping; Wu, Longhua; Xue, Hui; Song, Zuwei; Luo, Yongming

    2015-01-01

    Thermal treatment is one of the most promising disposal techniques for heavy metal- (HM)-enriched hyperaccumulators. However, the thermal characteristics and fate of HMs during thermal treatment of hyperaccumulator biomass need to be known in detail. A horizontal tube furnace was used to analyze the disposal process of hyperaccumulator biomass derived from a phyto-extracted field in which the soil was moderately contaminated with heavy metals. Different operational conditions regarding temperature and gas composition were tested. A thermo-dynamic analysis by advanced system for process engineering was performed to predict HM speciation during thermal disposal and SEM-EDS, XRD and sequential chemical extraction were used to characterize the heavy metals. The recovery of Zn, Pb and Cd in bottom ash decreased with increasing temperature but recovery increased in the fly ash. Recovery of Zn, Pb and Cd fluctuated with increasing air flow rate and the metal recovery rates were higher in the fly ash than the bottom ash. Most Cl, S, Fe, Al and SiO2 were found as alkali oxides, SO2, Fe2(SO4)3, iron oxide, Ca3Al2O6, K2SiO3 and SiO2 instead of reacting with HMs. Thus, the HMs were found to occur as the pure metals and their oxides during the combustion process and as the sulfides during the reducing process. PMID:26030364

  1. Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators.

    PubMed

    Lu, Shengyong; Du, Yingzhe; Zhong, Daoxu; Zhao, Bing; Li, Xiaodong; Xu, Mengxia; Li, Zhu; Luo, Yongming; Yan, Jianhua; Wu, Longhua

    2012-05-01

    Phytoextraction has become one of the most promising remediation techniques for heavy metal (HM) contaminated soils. However, the technique invariably produces large amounts of HM-enriched hyperaccumulators, which need further safe disposal. In this study, two different thermal treatment methods are investigated as potential options for evaporative separation of HMs from the residues. A horizontal tube furnace and a vertical entrained flow tube furnace were used for testing the disposal of grounded hyperaccumulators. The release characteristics of HMs (Cd, Cu, Pb, and Zn) into flue gas and residues were investigated for thermal treatment of the Cd and Zn hyperaccumulators Sedum plumbizincicola and Sedum alfredii. In a horizontal tube furnace, incineration favors the volatilization of Cu and Cd in contrast to pyrolysis. The percentages of HMs in residues after incineration are lower than those after pyrolysis, especially for Cd, Pb, and Zn. However, in an entrained flow tube furnace, Zn content in flue gas increases with increasing temperature, but Cu and Cd contents are fluctuated. In addition, a higher incineration temperature enhances the Cu content in residues. PMID:22458922

  2. Application of rhizosphere interaction of hyperaccumulator Noccaea caerulescens to remediate cadmium-contaminated agricultural soil.

    PubMed

    Yang, Yong; Jiang, Rong-Feng; Wang, Wei; Li, Hua-Fen

    2011-10-01

    There is an urgent requirement for selecting appropriate technologies to solve food safety problems due to soil contamination. In this study, the hyperaccumulator Noccaea caerulescens and a high Cd accumulator pakchoi cultivar (Brassica rapa L. spp. Chinenesis cv.) were grown in a moderately Cd-contaminated soil with three planting systems (monocrop, inter-crop, and crop-rotation) and three growing durations (25, 50, and 75 days) to study the role of rhizosphere interaction of both species on the uptake of Cd. The Cd accumulations in the shoot of pakchoi were significantly reduced in the inter-crop treatment, also the decreased percentage increased with rhizosphere interaction between the two species. In the inter-crop systems of 75 days, the Cd concentration and amount in the shoot of pakchoi represented 54% and 83% reduction, respectively, while the total depletion of Cd decreased by approximate 19%. Although the Cd concentration and amount in the shoot of pakchoi were significantly reduced by 52% and 44%, respectively, in the crop-rotation treatment, the decreased percentage were markedly lower than in the inter-crop treatment. Therefore, the rhizosphere interaction of hyperaccumulator with non-hyperaccumulator may reduce the risk of vegetable contamination during making full use of or remediating the contaminated soil. PMID:21972514

  3. Growth and metal accumulation of an Alyssum murale nickel hyperaccumulator ecotype co-cropped with Alyssum montanum or perennial ryegrass in serpentine soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than 400 plant species naturally accumulate high levels of metals such as Cd, Cu, Co, Mn, Ni, and Zn. The genus Alyssum (Brassicaceae) contains the greatest number of reported Ni hyperaccumulators (50), many of which can achieve 3 wt% Ni in dry leaves. Some Alyssum hyperaccumulators are viabl...

  4. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Zn/Cd hyperaccumulator, Noccaea caerulescens, has been studied extensively for its ability to accumulate Zn and Cd in its leaves to extremely high levels. Previous studies have indicated that the Zn and Cd hyperaccumulation trait exhibited by this species involves different transport and toleran...

  5. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator.

    PubMed

    Wang, Lin; Zhou, Qixing; Ding, Lingling; Sun, Yuebing

    2008-06-15

    Hyperaccumulators are ideal plant species used for phytoremediation of soils contaminated by heavy metals. A full understanding of metal tolerance mechanisms of hyperaccumulators will facilitate enhancing their phytoremediation efficiency. However, how Cd affects N metabolism and which role plays the response of N metabolism to Cd toxicity in the tolerance of hyperaccumulators are still unknown. To clarify these questions, this study investigated the effects of various soil Cd levels on the concentrations of N forms and the activity of key enzymes involved in N metabolism in leaves of the Cd hyperaccumulator, Solanum nigrum L. The results showed that its growth and all N metabolism indicators were normal at low Cd exposure (hyperaccumulator. PMID:18077088

  6. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, H N; McCurrach, H; Mithani, A; Smith, J A C; Preston, G M

    2016-05-11

    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant-pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. PMID:27170725

  7. Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator.

    PubMed

    Leung, H M; Wu, F Y; Cheung, K C; Ye, Z H; Wong, M H

    2010-09-15

    The effects of arbuscular mycorrhizal (AM) fungi and phosphate rock on the phytorextraction efficiency of a hyperaccumulator (Pteris vittata) and a non-hyperaccumulator (Cynodon dactylon) plant were studied. Both seedlings were planted in As contaminated soil under different treatments [(1) control (contaminated soil only), (2) indigenous mycorrhizas (IM), (3) mixed AM inoculum [indigenous mycorrhiza + Glomus mosseae (IM/Gm)] and (4) IM/Gm + phosphate rock (P rock)] with varying intensities (40%, 70% and 100%) of water moisture content (WMC). Significant As reduction in soil (23.8% of soil As reduction), increase in plant biomass (17.8 g/pot) and As accumulation (2054 mg/kg DW) were observed for P. vittata treated with IM/Gm + PR at 100% WMC level. The overall results indicated that the synergistic effect of mycorrhiza and P rock affected As subcellular distribution of the hyperaccumulator and thereby altered its As removal efficiency under well-watered conditions. PMID:20541316

  8. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties

    PubMed Central

    Sura-de Jong, Martina; Reynolds, Ray J. B.; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C.; Chocholata, Iva; Cappa, Jennifer J.; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T.; Lovecka, Petra; Pilon-Smits, Elizabeth A. H.

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5–1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  9. Constitutively High Expression of the Histidine Biosynthetic Pathway Contributes to Nickel Tolerance in Hyperaccumulator PlantsW⃞

    PubMed Central

    Ingle, Robert A.; Mugford, Sam T.; Rees, Jonathan D.; Campbell, Malcolm M.; Smith, J. Andrew C.

    2005-01-01

    Plants that hyperaccumulate Ni exhibit an exceptional degree of Ni tolerance and the ability to translocate Ni in large amounts from root to shoot. In hyperaccumulator plants in the genus Alyssum, free His is an important Ni binding ligand that increases in the xylem proportionately to root Ni uptake. To determine the molecular basis of the His response and its contribution to Ni tolerance, transcripts representing seven of the eight enzymes involved in His biosynthesis were investigated in the hyperaccumulator species Alyssum lesbiacum by RNA gel blot analysis. None of the transcripts changed in abundance in either root or shoot tissue when plants were exposed to Ni, but transcript levels were constitutively higher in A. lesbiacum than in the congeneric nonaccumulator A. montanum, especially for the first enzyme in the biosynthetic pathway, ATP-phosphoribosyltransferase (ATP-PRT). Comparison with the weak hyperaccumulator A. serpyllifolium revealed a close correlation between Ni tolerance, root His concentration, and ATP-PRT transcript abundance. Overexpression of an A. lesbiacum ATP-PRT cDNA in transgenic Arabidopsis thaliana increased the pool of free His up to 15-fold in shoot tissue, without affecting the concentration of any other amino acid. His-overproducing lines also displayed elevated tolerance to Ni but did not exhibit increased Ni concentrations in either xylem sap or shoot tissue, suggesting that additional factors are necessary to recapitulate the complete hyperaccumulator phenotype. These results suggest that ATP-PRT expression plays a major role in regulating the pool of free His and contributes to the exceptional Ni tolerance of hyperaccumulator Alyssum species. PMID:15923352

  10. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties.

    PubMed

    Sura-de Jong, Martina; Reynolds, Ray J B; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C; Chocholata, Iva; Cappa, Jennifer J; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T; Lovecka, Petra; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5-1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  11. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance.

    PubMed

    Xing, Yan; Peng, Hong-yun; Li, Xia; Zhang, Meng-xi; Gao, Ling-ling; Yang, Xiao-e

    2012-10-01

    The active metabolite in the post-harvested biomass of zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China. The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S. alfredii biomass by means of sonication/ethanol extraction and macroporous resin column (AB-8 type) isolation. The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards. PMID:23024051

  12. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance*

    PubMed Central

    Xing, Yan; Peng, Hong-yun; Li, Xia; Zhang, Meng-xi; Gao, Ling-ling; Yang, Xiao-e

    2012-01-01

    The active metabolite in the post-harvested biomass of zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China. The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S. alfredii biomass by means of sonication/ethanol extraction and macroporous resin column (AB-8 type) isolation. The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards. PMID:23024051

  13. Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii.

    PubMed

    Li, Tingqiang; Liang, Chengfeng; Han, Xuan; Yang, Xiaoe

    2013-05-01

    Pot experiments were conducted to investigate the role of dissolved organic matter (DOM) in the Cd speciation in the rhizosphere of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii and its effects on Cd mobility. After growing HE S. alfredii, the rhizosphere soil solution pH of heavily polluted soil (HPS) and slightly polluted soil (SPS) was reduced by 0.49 and 0.40 units, respectively, due to enhanced DOC derived from root exudation. The total Cd concentration in soil solution decreased significantly but the decrease accounted for less than 1% of the total Cd uptake in the shoots of HE S. alfredii. Visual MINTEQ speciation predicted that Cd-DOM complexes were the dominant Cd species in soil solutions after the growth of S. alfredii for both soils, followed by the free metal Cd(2+) species. However, Cd-DOM complexes fraction in the rhizosphere soil solution of HE S. alfredii (89.1% and 74.6% for HPS and SPS, respectively) were much greater than NHE S. alfredii (82.8% and 64.7% for HPS and SPS, respectively). Resin equilibration experiment results indicated that DOM from the rhizosphere (R-DOM) of both ecotypes of S. alfredii had the ability to form complexes with Cd, whereas the degree of complexation was significantly higher for HE-R-DOM (79-89%) than NHE-R-DOM (63-74%) in the undiluted sample. The addition of HE-R-DOM significantly (P<0.05) increased the solubility of four Cd minerals while NHE-R-DOM was not as effective at the same concentration. It was concluded that DOM in the rhizosphere of hyperaccumulating ecotype of S. alfredii could significantly increase Cd mobility through the formation of soluble DOM-metal complexes. PMID:23466273

  14. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri.

    PubMed

    Küpper, H; Lombi, E; Zhao, F J; McGrath, S P

    2000-12-01

    The cellular compartmentation of elements was analysed in the Zn hyperaccumulator Arabidopsis halleri (L.) O'Kane & Al-Shehbaz (=Cardaminopsis halleri) using energy-dispersive X-ray microanalysis of frozen-hydrated tissues. Quantitative data were obtained using oxygen as an internal standard in the analyses of vacuoles, whereas a peak/background ratio method was used for quantification of elements in pollen and dehydrated trichomes. Arabidopsis halleri was found to hyperaccumulate not only Zn but also Cd in the shoot biomass. While large concentrations of Zn and Cd were found in the leaves and roots, flowers contained very little. In roots grown hydroponically, Zn and Cd accumulated in the cell wall of the rhizodermis (root epidermis), mainly due to precipitation of Zn/Cd phosphates. In leaves, the trichomes had by far the largest concentrations of Zn and Cd. Inside the trichomes there was a striking sub-cellular compartmentation, with almost all the Zn and Cd being accumulated in a narrow ring in the trichome base. This distribution pattern was very different from that for Ca and P. The epidermal cells other than trichomes were very small and contained lower concentrations of Zn and Cd than mesophyll cells. In particular, the concentrations of Cd and Zn in the mesophyll cells increased markedly in response to increasing Zn and Cd concentrations in the nutrient solution. This indicates that the mesophyll cells in the leaves of A. halleri are the major storage site for Zn and Cd, and play an important role in their hyperaccumulation. PMID:11219586

  15. Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens.

    PubMed

    Ó Lochlainn, Seosamh; Bowen, Helen C; Fray, Rupert G; Hammond, John P; King, Graham J; White, Philip J; Graham, Neil S; Broadley, Martin R

    2011-01-01

    Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea.A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones with insert sizes ∼20-40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs.Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter β-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue.This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae. PMID:21423774

  16. Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens

    PubMed Central

    Ó Lochlainn, Seosamh; Bowen, Helen C.; Fray, Rupert G.; Hammond, John P.; King, Graham J.; White, Philip J.; Graham, Neil S.; Broadley, Martin R.

    2011-01-01

    Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones with insert sizes ∼20–40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs. Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter β-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue. This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae. PMID:21423774

  17. Molecular Mechanisms of Selenium Tolerance and Hyperaccumulation in Stanleya pinnata1[W][OA

    PubMed Central

    Freeman, John L.; Tamaoki, Masanori; Stushnoff, Cecil; Quinn, Colin F.; Cappa, Jennifer J.; Devonshire, Jean; Fakra, Sirine C.; Marcus, Matthew A.; McGrath, Steve P.; Van Hoewyk, Doug; Pilon-Smits, Elizabeth A.H.

    2010-01-01

    The molecular mechanisms responsible for selenium (Se) tolerance and hyperaccumulation were studied in the Se hyperaccumulator Stanleya pinnata (Brassicaceae) by comparing it with the related secondary Se accumulator Stanleya albescens using a combination of physiological, structural, genomic, and biochemical approaches. S. pinnata accumulated 3.6-fold more Se and was tolerant to 20 μm selenate, while S. albescens suffered reduced growth, chlorosis and necrosis, impaired photosynthesis, and high levels of reactive oxygen species. Levels of ascorbic acid, glutathione, total sulfur, and nonprotein thiols were higher in S. pinnata, suggesting that Se tolerance may in part be due to increased antioxidants and up-regulated sulfur assimilation. S. pinnata had higher selenocysteine methyltransferase protein levels and, judged from liquid chromatography-mass spectrometry, mainly accumulated the free amino acid methylselenocysteine, while S. albescens accumulated mainly the free amino acid selenocystathionine. S. albescens leaf x-ray absorption near-edge structure scans mainly detected a carbon-Se-carbon compound (presumably selenocystathionine) in addition to some selenocysteine and selenate. Thus, S. albescens may accumulate more toxic forms of Se in its leaves than S. pinnata. The species also showed different leaf Se sequestration patterns: while S. albescens showed a diffuse pattern, S. pinnata sequestered Se in localized epidermal cell clusters along leaf margins and tips, concentrated inside of epidermal cells. Transcript analyses of S. pinnata showed a constitutively higher expression of genes involved in sulfur assimilation, antioxidant activities, defense, and response to (methyl)jasmonic acid, salicylic acid, or ethylene. The levels of some of these hormones were constitutively elevated in S. pinnata compared with S. albescens, and leaf Se accumulation was slightly enhanced in both species when these hormones were supplied. Thus, defense-related phytohormones

  18. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae).

    PubMed

    Xue, S G; Chen, Y X; Reeves, Roger D; Baker, Alan J M; Lin, Q; Fernando, Denise R

    2004-10-01

    The perennial herb Phytolacca acinosa Roxb. (Phytolaccaceae), which occurs in Southern China, has been found to be a new manganese hyperaccumulator by means of field surveys on Mn-rich soils and by glasshouse experiments. This species not only has remarkable tolerance to Mn but also has extraordinary uptake and accumulation capacity for this element. The maximum Mn concentration in the leaf dry matter was 19,300 microg/g on Xiangtan Mn tailings wastelands, with a mean of 14,480 microg/g. Under nutrient solution culture conditions, P. acinosa could grow normally with Mn supplied at a concentration of 8000 micromol/l, although with less biomass than in control samples supplied with Mn at 5 micromol/l. Manganese concentration in the shoots increased with increasing external Mn levels, but the total mass of Mn accumulated in the shoots first increased and then decreased. At an Mn concentration of 5000 micromol/l in the culture solution, the Mn accumulation in the shoot dry matter was highest (258 mg/plant). However, the Mn concentration in the leaves reached its highest value (36,380 microg/g) at an Mn supply level of 12,000 micromol/l. These results confirm that P. acinosa is an Mn hyperaccumulator which grows rapidly, has substantial biomass, wide distribution and a broad ecological amplitude. This species provides a new plant resource for exploring the mechanism of Mn hyperaccumulation, and has potential for use in the phytoremediation of Mn-contaminated soils. PMID:15261402

  19. Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method.

    PubMed

    Lin, Lijin; Jin, Qian; Liu, Yingjie; Ning, Bo; Liao, Ming'an; Luo, Li

    2014-11-01

    A new method, the artificially high soil cadmium (Cd) concentration method, was used to screen for Cd hyperaccumulators among winter farmland weeds. Galinsoga parviflora was the most promising remedial plant among 5 Cd accumulators or hyperaccumulators. In Cd concentration gradient experiments, as soil Cd concentration increased, root and shoot biomass decreased, and their Cd contents increased. In additional concentration gradient experiments, superoxide dismutase and peroxidase activities increased with soil Cd concentrations up to 75 mg kg(-1) , while expression of their isoenzymes strengthened. Catalase (CAT) activity declined and CAT isoenzyme expression weakened at soil Cd concentrations less than 50 mg kg(-1) . The maxima of Cd contents in shoots and roots were 137.63 mg kg(-1) and 105.70 mg kg(-1) , respectively, at 100 mg kg(-1) Cd in soil. The root and shoot bioconcentration factors exceeded 1.0, as did the translocation factor. In a field experiment, total extraction of Cd by shoots was 1.35 mg m(-2) to 1.43 mg m(-2) at soil Cd levels of 2.04 mg kg(-1) to 2.89 mg kg(-1) . Therefore, the artificially high soil Cd concentration method was effective for screening Cd hyperaccumulators. Galinsoga parviflora is a Cd hyperaccumulator that could be used to efficiently remediate Cd-contaminated farmland soil. PMID:25053512

  20. Nickel and Manganese Accumulation, Interaction and Localization in Leaves of the Ni Hyperaccumulators Alyssum murale and Alyssum corsicum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Alyssum contains >50 Ni hyperaccumulator species; many can achieve 3% Ni in dry leaf. In soils with normal Mn levels, Alyssum trichome bases were observed previously to accumulate Ni and Mn to high levels. Here we report concentration and localization patterns in A. murale and A. corsicum...

  1. Inoculation of Astragalus racemosus and Astragalus convallarius with selenium-hyperaccumulator rhizosphere fungi affects growth and selenium accumulation.

    PubMed

    Lindblom, Stormy Dawn; Fakra, Sirine C; Landon, Jessica; Schulz, Paige; Tracy, Benjamin; Pilon-Smits, Elizabeth A H

    2013-03-01

    Little is known about how fungi affect plant selenium (Se) accumulation. Here we investigate the effects of two fungi on Se accumulation, translocation, and chemical speciation in the hyperaccumulator Astragalus racemosus and the non-accumulator Astragalus convallarius. The fungi, Alternaria astragali (A3) and Fusarium acuminatum (F30), were previously isolated from Astragalus hyperaccumulator rhizosphere. A3-inoculation enhanced growth of A. racemosus yet inhibited growth of A. convallarius. Selenium treatment negated these effects. F30 reduced shoot-to-root Se translocation in A. racemosus. X-ray microprobe analysis showed no differences in Se speciation between inoculation groups. The Astragalus species differed in Se localization and speciation. A. racemosus root-Se was distributed throughout the taproot and lateral root and was 90 % organic in the lateral root. The related element sulfur (S) was present as a mixture of organic and inorganic forms in the hyperaccumulator. Astragalus convallarius root-Se was concentrated in the extreme periphery of the taproot. In the lateral root, Se was exclusively in the vascular core and was only 49 % organic. These findings indicate differences in Se assimilation between the two species and differences between Se and S speciation in the hyperaccumulator. The finding that fungi can affect translocation may have applications in phytoremediation and biofortification. PMID:23117393

  2. Do High-nickel Leaves Shed by the Ni-hyperaccumulator Alyssum Murale Inhibit Seed Germination of Competing Plants?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elemental allelopathy suggests that nickel (Ni)-rich leaves shed by hyperaccumulators inhibit the germination and growth of nearby plant species. Here, the germination of eight herbaceous species following addition of Alyssum murale biomass or Ni(NO3)2, with the same Ni level added to soil, was ass...

  3. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing Se content in food crops in Se-deficient regions of the world. In this study, we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with...

  4. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China

    NASA Astrophysics Data System (ADS)

    Cui, Shuang; Zhou, Qixing; Chao, Lei

    2007-01-01

    The absorption and accumulation of Pb, Zn, Cu and Cd in some endurant weed plant species that survived in an old smeltery in Liaoning, China, were systematically investigated. Potential hyperaccumulative characteristics of these species were also discussed. The results showed that metal accumulation in plants differed with species, tissues and metals. Endurant weed plants growing in this contaminated site exhibited high metal adaptability. Both the metal exclusion and detoxification tolerance strategies were involved in the species studied. Seven species for Pb and four species for Cd were satisfied for the concentration time level standard for hyperaccumulator. Considering translocation factor (TF) values, one species for Pb, seven species for Zn, two species for Cu and five species for Cd possessed the characteristic of hyperaccumulator. Particularly, Abutilon theophrasti Medic, exhibited strong accumulative ability to four heavy metals. Although enrichment coefficients of all samples were lesser than 1 and the absolute concentrations didn’t reach the standard, species mentioned above were primarily believed to be potential hyperaccumulators.

  5. HOST-SWITCHING DOES NOT CIRCUMVENT THE NI-BASED DEFENCE OF THE NI HYPERACCUMULATOR STREPTANTHUS POLYGALOIDES (BRASSICACEAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar concentration of heavy metals, such as nickel, may help defend metal --hyperaccumulating plants against both herbivores and pathogens. Host switching by generalist herbivores might be one strategy by which they can dilute lifetime consumption of toxic nickel. We examined the effects of host...

  6. Exogenous cytokinin treatments of a Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: Implications for phytoextraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of exogenous plant growth regulators was examined as a viable technique to increase the efficiency of plant metal phytoextraction from contaminated soils. The aim of this study was to investigate the alteration of Ni phytoextraction by Alyssum murale, a Ni hyperaccumulator, following the...

  7. Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii.

    PubMed

    Tian, Shengke; Lu, Lingli; Labavitch, John; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick

    2011-12-01

    Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 μg g(-1) were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii. PMID:22025609

  8. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator--Lonicera japonica Thunb.

    PubMed

    Liu, Zhouli; He, Xingyuan; Chen, Wei; Yuan, Fenghui; Yan, Kun; Tao, Dali

    2009-09-30

    Phytoremediation using hyperaccumulators is a promising technique of removing soil pollutants. In the study, growth responses, cadmium (Cd) accumulation capability and physiological mechanisms of Lonicera japonica Thunb. under Cd stress were investigated. Exposed to 5 and 10 mg L(-1) Cd, the plants did not show any visual symptoms, furthermore, the height, dry biomass of leaves, roots and total and the chlorophyll (CHL) content were obtained different grade increase. When the concentration of Cd was up to 50 mg L(-1), the height, dry biomass of leaves and roots had not significant differences compared with the control. The indexes of tolerance (IT) were all above 0.8. The maintenance of high superoxide dismutase (SOD) and catalase (CAT) activities was observed along with the increased Cd concentration, suggesting strong internal detoxification mechanisms inside plant cells. After 21 days exposure to 25 mg L(-1) Cd, stem and shoot Cd concentrations reached 344.49+/-0.71 and 286.12+/-9.38 microg g(-1) DW, respectively and the plant had higher bioaccumulation coefficient (BC) and translocation factor (TF). According to these results, it was shown L. japonica had strong tolerance and accumulation capability to Cd, therefore it is a potential Cd-hyperaccumulator. PMID:19380199

  9. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum.

    PubMed

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-01-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ(114/110)Cdorgans-solution) of -0.70‰ to -0.22‰ in Ricinus communis and -0.51‰ to -0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology. PMID:27076359

  10. Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species Sedum alfredii1[C][W

    PubMed Central

    Tian, Shengke; Lu, Lingli; Labavitch, John; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick

    2011-01-01

    Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 μg g−1 were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii. PMID:22025609

  11. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens

    PubMed Central

    Visioli, Giovanna; Vamerali, Teofilo; Mattarozzi, Monica; Dramis, Lucia; Sanangelantoni, Anna M.

    2015-01-01

    This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM) and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest indole acetic acid production and 1-aminocyclopropane-1-carboxylic acid-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal, and translocation of Ni, together with that of Fe, Co, and Cu. Bacteria of both strains densely colonized the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass, and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials in multiple metal-contaminated sites, with possible extension to non-hyperaccumulator plants. PMID:26322074

  12. How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata.

    PubMed

    Du, Rui-Jun; He, Er-Kai; Tang, Ye-Tao; Hu, Peng-Jie; Ying, Rong-Rong; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-01-01

    In this paper, the effects of indole-3-acetic acid (IAA) and/or ethylenediaminetetraacetic acid (EDTA) on lead uptake by a Zn/Cd hyperaccumulator Picris divaricata were studied. P. divaricata responded to Pb by better root system and increased biomass in presence of phytohormone IAA, which was able to reduce the inhibiting effects of Pb on transpiration without reducing the uptake of Pb The application of 100 microM IAA increased plant transpiration rate by about 20% and Pb concentration in leaves by about 37.3% as compared to treatment exposed to Pb alone. The enhanced phytoextraction efficiency could be attributed to the mechanisms played by IAA through alleviating Pb toxicity, creating better root system and plant biomass, promoting a higher transpiration rate as well as regulating the level of nutrient elements. On the contrary, inefficiency of phytoextraction was found with EDTA or the combination of IAA and EDTA probably because most Pb was in the form of Pb-EDTA complex which blocked the uptake by P. divaricata. The present study demonstrated that IAA was able to enhance the phytoextraction of Pb by Zn/Cd hyperaccumulator P. divaricata, providing a feasible method for the phytoremediation of polymetallic contaminated soils. PMID:21972569

  13. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    NASA Astrophysics Data System (ADS)

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-04-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of ‑0.70‰ to ‑0.22‰ in Ricinus communis and ‑0.51‰ to ‑0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology.

  14. The impact of Ni on the physiology of a Mediterranean Ni-hyperaccumulating plant.

    PubMed

    Roccotiello, Enrica; Serrano, Helena Cristina; Mariotti, Mauro Giorgio; Branquinho, Cristina

    2016-06-01

    High nickel (Ni) levels exert toxic effects on plant growth and plant water content, thus affecting photosynthesis. In a pot experiment, we investigated the effect of the Ni concentration on the physiological characteristics of the Ni hyperaccumulator Alyssoides utriculata when grown on a vermiculite substrate in the presence of different external Ni concentrations (0-500 mg Ni L(-1)). The results showed that the Ni concentration was higher in leaves than in roots, as evidenced by a translocation factor = 3 and a bioconcentration factor = 10. At the highest concentration tested (500 mg Ni L(-1)), A. utriculata accumulated 1100 mg Ni per kilogram in its leaves, without an effects on its biomass. Plant water content increased significantly with Ni accumulation. Ni treatment did not, or only slightly, affected chlorophyll fluorescence parameters. The photosynthetic efficiency (FV/FM) of A. utriculata was stable between Ni treatments (always ≥ 0.8) and the photosynthetic performance of the plant under Ni stress remained high (performance index = 1.5). These findings support that A. utriculata has several mechanisms to avoid severe damage to its photosynthetic apparatus, confirming the tolerance of this species to Ni under hyperaccumulation. PMID:26983814

  15. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    PubMed Central

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-01-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of −0.70‰ to −0.22‰ in Ricinus communis and −0.51‰ to −0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology. PMID:27076359

  16. Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species Sedum alfredii

    SciTech Connect

    Tian, Shengke; Lu, Lingli; Labavitch, John M.; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick Hugh

    2012-07-23

    Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 {micro}g g{sup -1} were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii.

  17. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants.

    PubMed

    Álvarez-López, V; Prieto-Fernández, Á; Cabello-Conejo, M I; Kidd, P S

    2016-04-01

    Ni phytomining is a promising technology for Ni recovery from low-grade ores such as ultramafic soils. Metal-hyperaccumulators are good candidates for phytomining due to their extraordinary capacity for Ni accumulation. However, many of these plants produce a low biomass, which makes the use of agronomic techniques for improving their growth necessary. In this study, the Ni hyperaccumulators Alyssum serpyllifolium ssp. lusitanicum, A. serpyllifolium ssp. malacitanum, Alyssum bertolonii and Noccaea goesingense were evaluated for their Ni phytoextraction efficiency from a Ni-rich serpentine soil. Effects of soil inorganic fertilisation (100:100:125kgNPKha(-1)) and soil organic amendment addition (2.5, 5 or 10% compost) on plant growth and Ni accumulation were determined. All soil treatments greatly improved plant growth, but the highest biomass production was generally found after addition of 2.5 or 5% compost (w/w). The most pronounced beneficial effects were observed for N. goesingense. Total Ni phytoextracted from soils was significantly improved using both soil treatments (inorganic and organic), despite the decrease observed in soil Ni availability and shoot Ni concentrations in compost-amended soils. The most promising results were found using intermediate amount of compost, indicating that these types of organic wastes can be incorporated into phytomining systems. PMID:26803735

  18. Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum.

    PubMed

    Ingle, Robert A; Smith, J Andrew C; Sweetlove, Lee J

    2005-12-01

    A proteomic analysis of the Ni hyperaccumulator plant Alyssum lesbiacum was carried out to identify proteins that may play a role in the exceptional degree of Ni tolerance and accumulation characteristic of this metallophyte. Of the 816 polypeptides detected in root tissue by 2D SDS-PAGE, eleven increased and one decreased in abundance relative to total protein after 6-week-old plants were transferred from a standard nutrient solution containing trace concentrations of Ni to a moderately high Ni treatment (0.3 mM NiSO4) for 48 h. These polypeptides were identified by tandem mass spectrometry and the majority were found to be involved in sulphur metabolism (consistent with a re-allocation of sulphur towards cysteine and glutathione), protection against reactive oxygen species, or heat-shock response. In contrast, very few polypeptides were found to change in abundance in root or shoot tissue after plants were exposed for 28 days to 0.03 mM NiSO4, a concentration representing the optimum for growth of this species but sufficient to lead to hyperaccumulation of Ni in the shoot. Under these conditions, constitutively expressed genes in this highly Ni-tolerant species may be sufficient to allow for effective chelation and sequestration of Ni without the need for additional protein synthesis. PMID:16388402

  19. Evidence for nickel/proton antiport activity at the tonoplast of the hyperaccumulator plant Alyssum lesbiacum.

    PubMed

    Ingle, R A; Fricker, M D; Smith, J A C

    2008-11-01

    The mechanism of nickel uptake into vacuoles isolated from leaf tissue of Alyssum lesbiacum was investigated to help understand the ability of this species to hyperaccumulate Ni. An imaging system was designed to monitor Ni uptake by single vacuoles using the metal-sensitive fluorescent dye, Newport Green. Nickel uptake into isolated vacuoles from leaf tissue of A. lesbiacum was enhanced by the presence of Mg/ATP, presumably via energisation of the vacuolar H(+)-ATPase (V-ATPase). This ATP-stimulated Ni uptake was abolished by bafilomycin (a diagnostic inhibitor of the V-ATPase) and by dissipation of the transmembrane pH difference with an uncoupler. These observations are consistent with Ni(2+)/nH(+) antiport activity at the tonoplast driven by a proton electrochemical gradient established by the V-ATPase, which would provide a mechanism for secondary active transport of Ni(2+) into the vacuole. This study provides insights into the molecular basis of Ni tolerance in Alyssum, and may aid in the identification of genes involved in Ni hyperaccumulation. PMID:18950432

  20. Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo.

    PubMed

    Mesjasz-Przybylowicz, Jolanta; Przybylowicz, Wojciech; Barnabas, Alban; van der Ent, Antony

    2016-03-01

    Phyllanthus balgooyi (Phyllanthaceae), one of > 20 nickel (Ni) hyperaccumulator plant species known in Sabah (Malaysia) on the island of Borneo, is remarkable because it contains > 16 wt% Ni in its phloem sap, the second highest concentration of Ni in any living material in the world (after Pycnandra acuminata (Sapotaceae) from New Caledonia with 25 wt% Ni in latex). This study focused on the tissue-level distribution of Ni and other elements in the leaves, petioles and stem of P. balgooyi using nuclear microprobe imaging (micro-PIXE). The results show that in the stems and petioles of P. balgooyi Ni concentrations were very high in the phloem, while in the leaves there was significant enrichment of this element in the major vascular bundles. In the leaves, cobalt (Co) was codistributed with Ni, while the distribution of manganese (Mn) was different. The highest enrichment of calcium (Ca) in the stems was in the periderm, the epidermis and subepidermis of the petiole, and in the palisade mesophyll of the leaf. Preferential accumulation of Ni in the vascular tracts suggests that Ni is present in a metabolically active form. The elemental distribution of P. balgooyi differs from those of many other Ni hyperaccumulator plant species from around the world where Ni is preferentially accumulated in leaf epidermal cells. PMID:26508435

  1. Spatial Imaging, Speciation, and Quantification of Selenium in theHyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata

    SciTech Connect

    Freeman, J.L.; Zhang, L.H.; Marcus, M.A.; Fakra, S.; McGrath,S.P.; Pilon-Smits, E.A.H.

    2006-09-01

    Astragalus bisulcatus and Stanleya pinnata hyperaccumulate selenium (Se) up to 1% of plant dry weight. In the field, Se was mostly present in the young leaves and reproductive tissues of both hyperaccumulators. Microfocused scanning x-ray fluorescence mapping revealed that Se was hyperaccumulated in trichomes in young leaves of A. bisulcatus. None of 10 other elements tested were accumulated in trichomes. Micro x-ray absorption spectroscopy and liquid chromatography-mass spectrometry showed that Se in trichomes was present in the organic forms methylselenocysteine (MeSeCys; 53%) and {gamma}-glutamyl-MeSeCys (47%). In the young leaf itself, there was 30% inorganic Se (selenate and selenite) in addition to 70% MeSeCys. In young S. pinnata leaves, Se was highly concentrated near the leaf edge and surface in globular structures that were shown by energy-dispersive x-ray microanalysis to be mainly in epidermal cells. Liquid chromatography-mass spectrometry revealed both MeSeCys (88%) and selenocystathionine (12%) inside leaf edges. In contrast, both the Se accumulator Brassica juncea and the nonaccumulator Arabidopsis thaliana accumulated Se in their leaf vascular tissues and mesophyll cells. Se in hyperaccumulators appears to be mobile in both the xylem and phloem because Se-treated S. pinnata was found to be highly toxic to phloem-feeding aphids, and MeSeCys was present in the vascular tissues of a S. pinnata young leaf petiole as well as in guttation fluid. The compartmentation of organic selenocompounds in specific storage areas in the plant periphery appears to be a unique property of Se hyperaccumulators. The high concentration of Se in the plant periphery may contribute to Se tolerance and may also serve as an elemental plant defense mechanism.

  2. Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications.

    PubMed

    Losfeld, Guillaume; L'Huillier, Laurent; Fogliani, Bruno; Mc Coy, Stéphane; Grison, Claude; Jaffré, Tanguy

    2015-04-01

    Relationships between the trace-elements (TE) content of plants and associated soil have been widely investigated especially to understand the ecology of TE hyperaccumulating species to develop applications using TE phytoextraction. Many studies have focused on the possibility of quantifying the soil TE fraction available to plants, and used bioconcentration (BC) as a measure of the plants ability to absorb TE. However, BC only offers a static view of the dynamic phenomenon of TE accumulation. Accumulation kinetics are required to fully account for TE distributions in plants. They are also crucial to design applications where maximum TE concentrations in plant leaves are needed. This paper provides a review of studies of BC (i.e. soil-plant relationships) and leaf-age in relation to TE hyperaccumulation. The paper focuses of Ni and Mn accumulators and hyperaccumulators from New Caledonia who were previously overlooked until recent Ecocatalysis applications emerged for such species. Updated data on Mn hyperaccumulators and accumulators from New Caledonia are also presented and advocate further investigation of the hyperaccumulation of this element. Results show that leaf-age should be considered in the design of sample collection and allowed the reclassification of Grevillea meisneri known previously as a Mn accumulator to a Mn hyperaccumulator. PMID:25138558

  3. Cadmium(II) removal by a hyperaccumulator fungus Phoma sp. F2 isolated from blende soil.

    PubMed

    Yuan, HonGli; Li, ZhiJian; Ying, JiaoYan; Wang, EnTao

    2007-09-01

    A cadmium(II)-resistant fungus, strain F2, isolated from blende soil was identified as Phoma sp. by morphological study and internal transcribed spacer sequencing. This strain could accumulate 280 mg of Cd(II)/g dry weight mycelium. In liquid medium containing 163.8 mg Cd(II)/L, 96% of Cd(II) was removed by the actively growing mycelium. In addition, both oven-dried and lyophilized mycelium could effectively adsorb Cd(II). There were removed 91% and 46.2% of Cd(II) from 51.6 mg Cd(II)/L solution by lyophilized biomass and oven-dried biomass respectively. Transmission electron microscopy and energy-dispersive X-ray analysis showed the accumulation of Cd(II) in the mycelium cell walls. Our results demonstrated that Phoma sp. F2 was a hyperaccumulator for the removal of Cd(II) from contaminated soil and water. PMID:17657529

  4. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. PMID:24675367

  5. Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla.

    PubMed

    Song, Xueying; Hu, Xiaojun; Ji, Puhui; Li, Yushuang; Chi, Guangyu; Song, Yufang

    2012-04-01

    A field study was conducted to evaluate the phytoremediation efficiency of cadmium (Cd) contaminated soil utilizing the Cd hyperaccumulator Beta vulgaris L. var. cicla during one growing season (about 2 months) on farmland in Zhangshi Irrigation Area, the representative wastewater irrigation area in China. Results showed that B. vulgaris L. var. cicla is a promising plant in the phytoremediation of Cd contaminated farmland soil. The maximum of Cd phytoremediation efficiency by B. vulgaris L. var. cicla reached 144.6 mg/ha during one growing season. Planting density had a significant effect on the plant biomass and the overall Cd phytoremediation efficiency (p < 0.05). The amendment of organic manure promoted the biomass increase of B. vulgaris L. var. cicla (p < 0.05) but inhibited the Cd phytoremediation efficiency. PMID:22286610

  6. Manganese uptake and interactions with cadmium in the hyperaccumulator--Phytolacca Americana L.

    PubMed

    Peng, Kejian; Luo, Chunling; You, Wuxin; Lian, Chunlan; Li, Xiangdong; Shen, Zhenguo

    2008-06-15

    In the present study, the accumulation of Mn and other metals by Phytolacca Americana L. from contaminated soils in Hunan Province, South China, was investigated. Results showed that the average concentrations of Mn in the leaves and roots reached 2198 and 80.4 mg kg(-1) (dry weight), respectively, with a maximum 13,400 mg kg(-1) in the leaves. A significant correlation was found between Mn concentrations in the plant leaves and those in the corresponding soils. Hydroponic experiments were also conducted to study the Cd uptake ability and interactions between Mn and Cd in the plant. It was found that P. americana hyperaccumulated not only Mn, but also Cd in the leaves. In the presence of Cd, adding Mn to the solution significantly improved the plant growth and reduced the concentrations of Cd in all organs of the plant. PMID:18068296

  7. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L.

    PubMed

    Xu, Jin; Yin, HengXia; Li, Xia

    2009-02-01

    Solanum nigrum is a newly discovered Cd-hyperaccumulator. In the present study, the protective effects of proline against cadmium toxicity of callus and regenerated shoots of S. nigrum are investigated based on a high frequency in vitro shoot regeneration system. Proline pretreatment reduces the reactive oxygen species levels and protects the plasma membrane integrity of callus under cadmium stress, and therefore improves the cadmium tolerance in S. nigrum. Inductively coupled plasma mass spectroscopy analysis shows that exogenous proline increases the cadmium accumulation in callus and regenerated shoots of S. nigrum. Further analysis indicates that the improvement of cadmium tolerance caused by proline pretreatment is correlated with an increase of superoxide dismutase and catalase activity and intracellular total glutathione content. The interaction between proline and enzymic or non-enzymic antioxidants is discussed. PMID:19043719

  8. Root responses to soil Ni heterogeneity in a hyperaccumulator and a non-accumulator species.

    PubMed

    Moradi, Ahmad B; Conesa, Héctor M; Robinson, Brett H; Lehmann, Eberhard; Kaestner, Anders; Schulin, Rainer

    2009-01-01

    We compared root responses of the Ni-hyperaccumulator plant Berkheya coddii Rossler with the non-accumulator plant Cicer arietinum L. to Ni heterogeneity in soil. We grew plants in growth containers filled with control soil, homogeneously spiked, and heterogeneously spiked soil with Ni concentrations of 62 and 125 mg kg(-1). Neutron radiography (NR) was used to observe the root distribution and the obtained images were analysed to reveal the root volumes in the spiked and unspiked segments of the growth container. There was no significant difference in root distribution pattern of B. coddii among different concentrations of Ni. Unlike B. coddii, the roots of C. arietinum initially grew into the spiked segments. However, the later developing roots did not penetrate the spiked segment suggesting an avoidance strategy. Our results indicate that, B. coddii does not forage towards the Ni-rich patches, although presence of Ni in soil changes its root morphology. PMID:19427726

  9. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations. PMID:23535542

  10. Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead.

    PubMed

    Zhang, Zhongchun; Gao, Xiang; Qiu, Baosheng

    2008-02-01

    Phytochelatins (PCs) are known to play an essential role in the heavy metal detoxification of some higher plants and fungi by chelating heavy metals. However, three recent papers reported that no PCs could be detected in the hyperaccumulator Sedum alfredii Hance upon cadmium, lead or zinc treatment, respectively. In this paper, PC synthesis was assayed again in the mine population of S. alfredii with the help of reversed phase high-performance liquid chromatography (HPLC), HPLC-mass spectrometry, and HPLC-tandem mass spectrometry. Our data showed that PC formation could be induced in the leaf, stem and root tissues of S. alfredii upon exposure to 400 microM cadmium, and only in the stem and root when exposed to 700 microM lead. However, no PCs were found in any part of S. alfredii when it was subjected to exposure to 1600 microM zinc. PMID:18023461

  11. Development of eight polymorphic microsatellites for a Zn/Cd hyperaccumulator Sedum alfredii Hance (Crassulaceae).

    PubMed

    Huang, Hui-Run; Shu, Wen-Sheng; Mao, Zhi-Bin; Ge, Xue-Jun

    2008-09-01

    Sedum alfredii is a Zn/Cd hyperaccumulator distributed in East Asia. A total of eight polymorphic microsatellite markers were developed. These loci were screened in 25 individuals from one heavy metal-tolerant population and one nontolerant population, respectively. The average allele number of these markers was 5.25 per locus, ranging from two to nine. Population-specific alleles were found at each locus. The observed and expected heterozygosities ranged from 0.000 to 0.640 and from 0.451 to 0.819. Significant deviation from Hardy-Weinberg equilibrium was detected at both the species and the population level. No significant linkage disequilibrium was detected at population level. PMID:21585968

  12. Evaluation of hyperaccumulator plant species grown in metalliferous sites in Albania

    NASA Astrophysics Data System (ADS)

    Babani, F.; Civici, N.; Mullaj, A.; Kongjika, E.; Ylli, A.

    2007-04-01

    Heavy metal contamination of soils causes serious problems to our society. A small number of interesting plant species have been identified that can grow in soils containing high levels of heavy metals, and can also accumulate these metals to high concentrations in the shoot. The heavy metal contents in root, shoot, leaves and flowers of spontaneous plants grown in metalliferous sites in Albania together with the elemental composition of the native soils were determined by X-ray fluorescence spectrometry. Efficiency of photosynthetic apparatus of analyzed ecotypes was evaluated via chlorophyll fluorescence imaging during induction kinetics. Response of plant root system to the presence of metals, the available pools of metals to plants, effect of plant biomass to phytoextraction, photosynthetic pigment metabolism and chlorophyll fluorescence signature of leaves allowed to characterize hyperaccumulator properties and to detect the variation between selected ecotypes to heavy metal accumulation.

  13. Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii.

    PubMed

    Liu, Wuxing; Zhang, Chengjun; Hu, Pengjie; Luo, Yongming; Wu, Longhua; Sale, Peter; Tang, Caixian

    2016-01-01

    Using hyperaccumulator plants is an important method to remove heavy metals from contaminated land. Carpobrotus rossii, a newly found Cd hyperaccumulator, has shown potential to remediate Cd-contaminated soils. This study examined the effect of nitrogen forms on Cd phytoextraction by C. rossii. The plants were grown for 78 days in an acid soil spiked with 20 mg Cd kg(-1) and supplied with (NH4)2SO4, Ca(NO3)2, urea, and chicken manure as nitrogen (N) fertilizers. Nitrification inhibitor dicyandiamide (DCD) was applied to maintain the ammonium (NH4(+)) form. Nitrogen fertilization increased shoot biomass but decreased root biomass with the highest shoot biomass occurring in the manure treatment. Compared to the no-N control, urea application did not affect shoot Cd concentration, but increased Cd content by 17% due to shoot biomass increase. Chicken manure significantly decreased CaCl2-extractable Cd in soil, and the Cd concentration and total Cd uptake in the plant. Rhizosphere pH was the highest in the manure treatment and the lowest in the NH4(+) treatments. The manure and nitrate (NO3(-)) treatments tended to have higher rhizosphere pH than their respective bulk soil pH, whereas the opposite was observed for urea and NH4(+) treatments. Furthermore, the concentrations of extractable Cd in soil and Cd in the plant correlated negatively with rhizosphere pH. The study concludes that urea significantly enhanced the Cd phytoaccumulation by C. rossii while chicken manure decreased Cd availability in soil and thus the phytoextraction efficiency. PMID:26358206

  14. Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation1

    PubMed Central

    Wang, Junru; Zhao, Fang-Jie; Meharg, Andrew A.; Raab, Andrea; Feldmann, Joerg; McGrath, Steve P.

    2002-01-01

    The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg−1 dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III). PMID:12428020

  15. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants

    SciTech Connect

    Huang, J.W.; Blaylock, M.J.; Kapulnik, Y.; Ensley, B.D.

    1998-07-01

    Uranium phytoextraction, the use of plants to extract U from contaminated soils, is an emerging technology. The authors report on the development of this technology for the cleanup of U-contaminated soils. In this research, they investigated the effects of various soil amendments on U desorption from soil to soil solution, studied the physiological characteristics of U uptake and accumulation in plants, and developed techniques to trigger U hyperaccumulation in plants. A key to the success of U phytoextraction is to increase soil U availability to plants. The authors have found that some organic acids can be added to soils to increase U desorption from soil to soil solution and to trigger a rapid U accumulation in plants. Of the organic acids (acetic acid, citric acid, and malic acid) tested, citric acid was the most effective in enhancing U accumulation in plants. Shoot U concentrations of Brassica juncea and Brassica chinensis grown in a U-contaminated soil increased from less than 5 mg kg{sup {minus}1} to more than 5,000 mg kg{sup {minus}1} in citric acid-treated soils. To their knowledge, this is the highest shoot U concentration reported for plants grown on U-contaminated soils. Using this U hyperaccumulation technique, they are now able to increase U accumulation in shoots of selected plant species grown in two U-contaminated soils by more than 1,000-fold within a few days. The results suggest that U phytoextraction may provide an environmentally friendly alternative for the cleanup of U-contaminated soils.

  16. A Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress

    PubMed Central

    Xie, Qingqing; Li, Zhenji; Yang, Limin; Lv, Jing; Jobe, Timothy O.; Wang, Qiuquan

    2015-01-01

    Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification. PMID:26327118

  17. Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining.

    PubMed

    Boominathan, Rengasamy; Saha-Chaudhury, N M; Sahajwalla, Veena; Doran, Pauline M

    2004-05-01

    An important step in phytomining operations is the recovery of metal from harvested plant material. In this work, a laboratory-scale horizontal tube furnace was used to generate Ni-enriched bio-ore from the dried biomass of Ni hyperaccumulator plants. Prior to furnace treatment, hairy roots of Alyssum bertolonii were exposed to Ni in liquid medium to give biomass Ni concentrations of 1.9% to 7.7% dry weight; whole plants of Berkheya coddii were grown in Ni-containing soil to produce above-ground Ni levels of up to 0.49% dry weight. The concentration of Ca in the Ni-treated B. coddii biomass was about 15 times greater than in A. bertolonii. After furnace treatment at 1200 degrees C under air, Ni-bearing residues with crystalline morphology and containing up to 82% Ni were generated from A. bertolonii. The net weight loss in the furnace and the degree of concentration of Ni were significantly reduced when the furnace was purged with nitrogen, reflecting the importance of oxidative processes in Ni enrichment. Ni in the B. coddii biomass was concentrated by a factor of about 17 to yield a residue containing 8.6% Ni; this bio-ore Ni content is substantially higher than the 1% to 2% Ni typically found in mined ore. However, the B. coddii samples after furnace treatment also contained about 34% Ca, mainly in the form of hydroxyapatite Ca(5)(PO(4))(3)OH. Such high Ca levels may present significant challenges for further metallurgical processing. This work demonstrates the feasibility of furnace treatment for generating Ni-rich bio-ore from hyperaccumulator plants. The results also suggest that minimizing the uptake of Ca and/or reducing the Ca content of the biomass prior to furnace treatment would be a worthwhile strategy for improving the quality of Ni bio-ore produced in phytomining operations. PMID:15083504

  18. Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L.

    PubMed

    Xiao, Xiao; Luo, Shenglian; Zeng, Guangming; Wei, Wanzhi; Wan, Yong; Chen, Liang; Guo, Hanjun; Cao, Zhe; Yang, Lixia; Chen, Jueliang; Xi, Qiang

    2010-03-01

    A novel technology to obtain highly efficient biosorbent from the endophytes of a hyperaccumulator is reported. This technology is more convenient than the traditional method of obtaining biosorbents by experimentally screening many types of biomass by trial and error. Using this technology, endophytic fungus (EF) LSE10 was isolated from the cadmium hyperaccumulator Solanum nigrum L. It was identified as Microsphaeropsis sp. When cultured in vitro, the biomass yield of this EF was more than twice that of none-endophytic fungus (NEF) Rhizopus cohnii. Subsequently, it was used as a biosorbent for biosorption of cadmium from the aqueous solution. The results showed that the maximum biosorption capacity was 247.5mg/g (2.2 mmol/g) which was much higher than those of other adsorbents, including biosorbents and activated carbon. Carboxyl, amino, sulphonate and hydroxyl groups on EF LSE10 surface were responsible for the biosorption of cadmium. PMID:19854641

  19. Co-Planting Cd Contaminated Field Using Hyperaccumulator Solanum Nigrum L. Through Interplant with Low Accumulation Welsh Onion.

    PubMed

    Wang, Siqi; Wei, Shuhe; Ji, Dandan; Bai, Jiayi

    2015-01-01

    Monoculture and intercrop of hyperaccumulator Solanum nigrum L. with low accumulation Welsh onion Renbentieganchongwang were conducted. The results showed that the remove ratio of S. nigrum to Cd was about 7% in intercrop plot when top soil (0-20 cm) Cd concentration was 0.45-0.62 mg kg(-1), which did not significantly impact the yield of low accumulation Welsh onion compared to the monoculture. The consistency of remove ratio in practice and theory indicated the remediation of S. nigrum to Cd was significant. The Cd concentration and yield of Welsh onion were not affected by the growth of S. nigrum either in intercrop plot. The Cd concentration in edible parts of Welsh onion was available either. In short, inter-planting hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit), which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future. PMID:25581317

  20. Remediation and Safe Production of cd Contaminated Soil Via Multiple Cropping Hyperaccumulator Solanum nigrum L. and Low Accumulation Chinese Cabbage.

    PubMed

    Niu, Mingfen; Wei, Shuhe; Bai, Jiayi; Wang, Siqi; Ji, Dandan

    2015-01-01

    Multiple crop experiment of hyperaccumulator Solanum nigrum L. with low accumulation Chinese cabbage Fenyuanxin 3 were conducted in a cadmium (Cd) contaminated vegetable field. In the first round, the average removal rate of S. nigrum to Cd was about 10% without assisted phytoextraction reagent addition for the top soil (0-20 cm) with Cd concentration at 0.53-0.97 mg kg(-1) after its grew 90 days. As for assisted phytoextraction reagent added plots, efficiency of Cd remediation might reach at 20%. However, in the second round, Cd concentration in Chinese cabbage was edible, even in the plots with assisted phytoextraction reagent added. Thus, multiple cropping hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit) in one year, which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future. PMID:25976879

  1. Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations.

    PubMed

    van der Ent, Antony; Mulligan, David

    2015-04-01

    Information about multi-elemental concentrations in different plant parts of tropical Ni hyperaccumulator species has the potential to provide insight into their unusual metabolism relative to a range of essential and non-essential elements, but this information is scant in the literature. As Ni hyperaccumulation, and possibly co-accumulation of other toxic elements, has been hypothesized to provide herbivore (insect) protection, there is a need to quantify a range of these elements in plant tissues and transport fluids to at least verify the possibility of this explanation. In this study, multiple elements were analyzed in a range of different plant parts and transport fluids from Ni hyperaccumulator species collected from Sabah (Malaysia). The results show preferential accumulation of Ni in leaves over woody parts, but the highest concentrations were found in the phloem tissue (up to 7.9 % in Rinorea bengalensis) and phloem sap (up to 16.9 % in Phyllanthus balgooyi), visible by a bright green coloration in the field fresh material. The amount of Ni contained in one mature R. bengalensis tree was calculated at 4.77 kg. The high Ni concentration in the flowers of Phyllanthus securinegoides could affect insect floral visitors and pollination. High concentrations of Ni in the seeds of this species also could supply the seedling with Ni and aid in herbivory protection during the first stages of development. Foliar Ca and Ni in P. cf. securinegoides and R. bengalensis are positively correlated. Low accumulation of Ca is desirable for phytomining but concentrations of Ca are high in most Ni hyperaccumulators examined, and this could have consequences for the economic viability of Ni extraction from bio ore if these species were to be used as 'metal crops'. PMID:25921447

  2. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-10-15

    Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5-50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola. PMID:23959253

  3. [Relationships between cadmium accumulation and organic acids in leaves of Solanum nigrum L. as a cadmium-hyperaccumulator].

    PubMed

    Sun, Rui-lian; Zhou, Qi-xing; Wang, Xin

    2006-04-01

    The influence of different cadmium concentrations on the organic acid level in leaves of the Cd hyperaccumulator, Solanum nigrum L., in particular, the relationship of organic acids with Cd accumulation in S. nigrum was investigated based on the pot-culture experiment. The results showed that the Cd concentration in S. nigrum leaves exceeded 100 microg x g(-1), the threshold value used to define Cd-hyperaccumulators, and the bioaccumulation coefficient of cadmium in shoots of S. nigrum was higher than 1 when Cd concentration in soil was 25 microg x g(-1). The level of organic acids in leaves of S. nigrum had significant differences between the seedling stage and the mature stage. At the seedling stage, the sequence of organic acids in leaves of S. nigrum was acetic acid> tartaric acid> malic acid> citric acid. On the contrary, the accumulation of organic acids in S. nigrum at the mature stage was approximately in the following sequence malic acid> tartaric acid, acetic acid> citric acid. The significant positive correlation between Cd accumulation in leaves of S. nigrum and the concentration of tartaric acid in leaves of S. nigrum was observed at the seedling stage, whereas there was a significant positive correlation between Cd accumulation in leaves of S. nigrum and both acetic and citric acid concentrations at the mature stage. These results indicated that tartaric, acetic and citric acids in leaves of S. nigrum might act as the indication of Cd hyperaccumulation. PMID:16768003

  4. Characterization of Zinc and Cadmium Hyperaccumulation in Three Noccaea (Brassicaceae) Populations from Non-metalliferous Sites in the Eastern Pyrenees.

    PubMed

    Martos, Soledad; Gallego, Berta; Sáez, Llorenç; López-Alvarado, Javier; Cabot, Catalina; Poschenrieder, Charlotte

    2016-01-01

    The Southern slope of the Pyrenees is the meridional limit for the distribution of several Noccaea populations. However, the systematic description of these populations and their hyperaccumulation mechanisms are not well established. Morphological and genetic analysis (ITS and 3 chloroplast regions) were used to identify Noccaea populations localized on non-metallicolous soils during a survey in the Catalonian Pyrenees. Cd and Zn concentrations were analyzed in soils and plants both sampled in the field and grown hydroponically. The expression of selected metal transporter genes was assessed by quantitative PCR. The populations were identified as Noccaea brachypetala (Jord.) F.K. Mey by conspicuous morphological traits. Principal component analysis provided a clear separation among N. brachypetala, Noccaea caerulescens J. Presl & C. Presl and Noccaea occitanica (Jord.) F.K. Mey., three Noccaea species reported in the Pyrenees. Contrastingly, ITS and cpDNA analyses were unable to clearly differentiate these taxa. Differences in the expression of the metal transporter genes HMA3, HMA4, and MTP1 between N. caerulescens and N. brachypetala, and those amongst the N. brachypetala populations suggest differences in the strategies for handling enhanced Cd and Zn availability. This is the first report demonstrating Cd and Zn hyperaccumulation by N. brachypetala both in the field and in hydroponics. This comprehensive study based on taxonomic, molecular, and physiological data allows both the correct identification of this species and the characterization of population differences in hyperaccumulation and tolerance of Zn and Cd. PMID:26904085

  5. Characterization of Zinc and Cadmium Hyperaccumulation in Three Noccaea (Brassicaceae) Populations from Non-metalliferous Sites in the Eastern Pyrenees

    PubMed Central

    Martos, Soledad; Gallego, Berta; Sáez, Llorenç; López-Alvarado, Javier; Cabot, Catalina; Poschenrieder, Charlotte

    2016-01-01

    The Southern slope of the Pyrenees is the meridional limit for the distribution of several Noccaea populations. However, the systematic description of these populations and their hyperaccumulation mechanisms are not well established. Morphological and genetic analysis (ITS and 3 chloroplast regions) were used to identify Noccaea populations localized on non-metallicolous soils during a survey in the Catalonian Pyrenees. Cd and Zn concentrations were analyzed in soils and plants both sampled in the field and grown hydroponically. The expression of selected metal transporter genes was assessed by quantitative PCR. The populations were identified as Noccaea brachypetala (Jord.) F.K. Mey by conspicuous morphological traits. Principal component analysis provided a clear separation among N. brachypetala, Noccaea caerulescens J. Presl & C. Presl and Noccaea occitanica (Jord.) F.K. Mey., three Noccaea species reported in the Pyrenees. Contrastingly, ITS and cpDNA analyses were unable to clearly differentiate these taxa. Differences in the expression of the metal transporter genes HMA3, HMA4, and MTP1 between N. caerulescens and N. brachypetala, and those amongst the N. brachypetala populations suggest differences in the strategies for handling enhanced Cd and Zn availability. This is the first report demonstrating Cd and Zn hyperaccumulation by N. brachypetala both in the field and in hydroponics. This comprehensive study based on taxonomic, molecular, and physiological data allows both the correct identification of this species and the characterization of population differences in hyperaccumulation and tolerance of Zn and Cd. PMID:26904085

  6. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.

    PubMed

    Sun, Yuebing; Zhou, Qixing; Diao, Chunyan

    2008-03-01

    Remediation of heavy metal contaminated sites using hyperaccumulators presents a promising alternative to current environmental methodologies. In the pot-culture experiment, the effects of Cd, and Cd-As on the growth and its accumulation in the Cd-hyperaccumulator (Solanum nigrum L.) were determined. No reduction in plant height and shoot dry biomass was noted when the plants were grown at Cd concentration of 1.0. The plant can be classified as a Cd-hyperaccumulator. Growing in the presence of 10 mg/kg Cd and 50 mg/kg As, the plant height and shoot dry matter yields did not decrease significantly (p>0.05) compared to that at 10 mg/kg Cd, however the stem Cd content increased by 28%. It was also observed that S. nigrum used exclusion strategy to reduce As uptake in the roots and restricted translocation into the shoots, resulting in As contents of the plant being root>leaf>stem>seed. The Cd accumulation capacity coupled with its relatively high As tolerance ability could make it useful for phytoremediation of sites co-contaminated by Cd and As. PMID:17719774

  7. Quantitative micro-PIXE comparison of elemental distribution in Ni-hyperaccumulating and non-accumulating genotypes of Senecio coronatus

    NASA Astrophysics Data System (ADS)

    Mesjasz-Przybyłowicz, J.; Przybyłowicz, W. J.; Prozesky, V. M.; Pineda, C. A.

    1997-07-01

    The Ni hyperaccumulator, plant species Senecio coronatus (Thunb.) Harv., Asteraceae is an example of plant adaptation mechanisms to different ecological conditions. This widespread species can inter alia be found on serpentine outcrops and the genotypes growing in serpentine soils show different ways of adaptation. The populations from two distant localities take up and translocate Ni in concentrations which are normally phytotoxic, while plants growing on a different site, in the vicinity of another hyperaccumulating species, absorb amounts which are typical for most of the plants found on serpentine soils. The NAC nuclear microprobe was used to compare the distribution of Ni and other elements in selected organs and cells with simultaneous use of PIXE and proton BackScattering (BS). Quantitative maps of stems showed large differences in concentrations and distributions of major and trace elements. In hyperaccumulating genotypes Ni is present everywhere within stem tissues, but the highest concentrations were found in the epidermis, cortex and phloem. In non-accumulating plants Ni was concentrated in the phloem. In the leaf epidermis Ni was concentrated in the cell walls for both accumulating and non-accumulating plants. These results suggest that biochemical diversity is more than morphological, because investigated genotypes belong to the same taxon.

  8. Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments.

    PubMed

    Freeman, John L; Bañuelos, Gary S

    2011-11-15

    Genetic variation in salt (Na(2)SO(4), NaCl) and boron (B) tolerance among four ecotypes of the selenium (Se) hyperaccumulator Stanleya pinnata (Pursh) Britton was utilized to select tolerant genotypes capable of phytoremediating Se from salt, B, and Se-laden agricultural drainage sediment. The few individual salt/B tolerant genotypes were successfully selected from among a large population of highly salt/B sensitive seedlings. The distribution, hyperaccumulation, and volatilization of Se were then examined in selected plants capable of tolerating the high salt/B laden drainage sediment. Salt/B tolerant genotypes from each of the four ecotypes had mean Se concentrations ranging from 2510 ± 410 to 1740 ± 620 in leaves and 3180 ± 460 to 2500 ± 1060 in seeds (μg Se g(-1) DW ± SD), while average daily Se volatilization rates ranged from 722 ± 375 to 1182 ± 575 (μg Se m(-2) d(-1) ± SD). After two growing seasons (∼18 months), we estimated that hyperaccumulation and volatilization of Se by tolerant S. pinnata genotypes and their associated microbes can remove approximately 30% of the total soil Se in 0-30 cm sediment. The salt/B tolerant S. pinnata genotypes selected and characterized herein represent promising new tools for the successful phytoremediation of Se from salt/B and Se-laden agricultural drainage sediments. PMID:21988205

  9. How does an Al-hyperaccumulator plant respond to a natural field gradient of soil phytoavailable Al?

    PubMed

    Serrano, H C; Pinto, M J; Martins-Loução, M A; Branquinho, C

    2011-09-01

    The physiological ability of plants to cope with Al-toxicity has attracted considerable attention. In this study we used an endemic Al-hyperaccumulator plant, Plantago almogravensis, which is the only known representative of the Plantaginaceae with this trait growing under a field gradient of Al, to understand the root and shoot patterns of Al accumulation and tolerance in its natural environment. We analysed phytoavailable elements in the soil and their accumulation in the plant. For the first time under field conditions, the accumulation pattern of an Al-hyperaccumulator showed a saturation curve with a maximum accumulation capacity being reached (ca. 3.0 mg g(-1)). The Al toxicity was not associated with the expected reduction in the Ca and Mg uptake by the plant. Iron was accumulated in a more linear pattern. The magnitude and the proportion of the elements found in the apoplastic fraction of the root, compared to the soil and plant internal fractions, suggested that the control of uptake occurs at the rhizospheric level. Unlike the majority of the Al-hyperaccumulator plants that are found in tropical humid areas, this plant is described from a sub-arid Mediterranean climate, subject to drought conditions which give it a unique status that deserves to be studied further. PMID:21774964

  10. Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii Desv.

    PubMed

    Mengoni, Alessio; Pini, Francesco; Huang, Li-Nan; Shu, Wen-Sheng; Bazzicalupo, Marco

    2009-10-01

    Bacteria associated with tissues of metal-hyperaccumulating plants are of great interest due to the multiple roles they may play with respect to plant growth and resistance to heavy metals. The variability of bacterial communities associated with plant tissues of three populations of Alyssum bertolonii, a Ni hyperaccumulator endemic of serpentine outcrops of Central Italy, was investigated. Terminal-restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes was applied to DNA extracted from leaf tissues of 30 individual plants from three geographically separated serpentine outcrops. Moreover, T-RFLP fingerprinting was also performed on DNA extracted from the same soils from which the plants were collected. Fifty-nine unique terminal-restriction fragments (TRFs) were identified, with more than half of the taxonomically interpreted TRFs assigned to Alpha- and Gamma-Proteobacteria and Clostridia. Data were then used to define the extent of variation of bacterial communities due to single plants or to plant populations. Results indicated a very high plant-by-plant variation of leaf-associated community (more than 93% of total variance observed). However, a core (numerically small) of plant-specific TRFs was found. This work demonstrates that plant-associated bacterial communities represent a large reservoir of biodiversity and that the high variability existing between plants, even from the same population, should be taken into account in future studies on association between bacteria and metal-hyperaccumulating plants. PMID:19479304

  11. Effect of different nitrogenous nutrients on the cadmium hyperaccumulation efficiency of Rorippa globosa (Turcz.) Thell.

    PubMed

    Wei, Shuhe; Ji, Dandan; Twardowska, Irena; Li, Yunmeng; Zhu, Jiangong

    2015-02-01

    This experiment was used to explore whether the 11 nitrogenous nutrients affect the hyperaccumulation of Rorippa globosa (Turcz.) Thell. to Cd. Pot culture experiments using soil spiked with Cd as CdCl2·2.5H2O and 11 nitrogen-containing chemicals were conducted to determine the efficiency of the accumulation of Cd by R. globosa. Application of all 11 nitrogenous nutrients significantly (p < 0.05) enhanced Cd accumulation by R. globosa (Turcz.) Thell. Two major modes of Cd accumulation were observed: (i) through increase of biomass yield without reduction of Cd uptake and (ii) through increase of Cd uptake efficiency in parallel with increase of biomass yield. Bicarbonate > phosphate > chloride compounds of NH4 enhanced the biomass yield to the greatest extent, while oxalate > nitrate > chloride > and bicarbonate caused a significant increase of Cd uptake by R. globosa. Competition between N and Cd translocation caused either significant reduction of Cd translocation factor or decrease of biomass yield. Of studied nutrients, ammonium bicarbonate NH4HCO3 and ammonium chloride NH4Cl exerted the best joint effect of these two processes on the efficiency of R. globosa as a Cd hyperaccumulator. Application of these chemicals caused increase of Cd concentrations in roots of R. globosa by 35.1 and 41.1 %, and in shoots by 13.9 and 56.4 %, while biomasses of roots increased by 5.8- and 3.8-fold and in shoots by 7.4-fold, and 6.4-fold, respectively, compared to the control. As a result, accumulated load (μg pot(-1)) of Cd in roots increased by 8.2- and 5.8-fold and in shoots by 8.6- and 10.6-fold in both pots. Consequently, chemicals (NH4HCO3 and NH4Cl) that enhanced both Cd enrichment and biomass yield had the greatest effect on the bioaccumulation capacity of R. globosa. PMID:25167813

  12. Phytomining of valuable metals from waste incineration residues using hyperaccumulator plants

    NASA Astrophysics Data System (ADS)

    Rosenkranz, Theresa; Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika; Puschenreiter, Markus

    2015-04-01

    Worldwide the availability of primary sources of certain economically important metals is decreasing, resulting in high supply risks and increasing prices for this materials. Therefore, an alternative way of retrieving these high valuable technical metals is the recycling and use of anthropogenic secondary sources, such as waste incineration residues. Phytomining offers an environmentally sound and cheap technology to recover such metals from secondary sources. Thus, the aim of our research work is to investigate the potential of phytomining from waste incineration slags by growing metal hyperaccumulating plants on this substrates and use the metal enriched biomass as a bio-ore. As a first stage, material from Vienna's waste incineration plants was sampled and analyzed. Residues from municipal wastes as well as residues from hazardous waste incineration and sewage sludge incineration were analyzed. In general, the slags can be characterized by a very high pH, high salinity and high heavy metal concentrations. Our work is targeting the so-called critical raw materials defined by the European Commission in 2014. Thus, the target metal species in our project are amongst others cobalt, chromium, antimony, tungsten, gallium, nickel and selected rare earth elements. This elements are present in the slags at moderate to low concentrations. In order to optimize the substrate for plant growth the high pH and salt content as well as the low nitrogen content in the slags need to be controlled. Thus, different combinations of amendments, mainly from the waste industry, as well as different acidifying agents were tested for conditioning the substrate. Washing the slags with diluted nitric acid turned out to be effective for lowering the pH. The acid treated substrate in combination with material from mechanical biological waste treatment and biochar, is currently under investigation in a greenhouse pot experiment. The experimental setup consists of a full factorial design

  13. The Variation of Root Exudates from the Hyperaccumulator Sedum alfredii under Cadmium Stress: Metabonomics Analysis

    PubMed Central

    Luo, Qing; Sun, Lina; Hu, Xiaomin; Zhou, Ruiren

    2014-01-01

    Hydroponic experiments were conducted to investigate the variation of root exudates from the hyperaccumulator Sedum alfredii under the stress of cadmium (Cd). S. alfredii was cultured for 4 days in the nutrient solution spiked with CdCl2 at concentrations of 0, 5, 10, 40, and 400 µM Cd after the pre-culture. The root exudates were collected and analyzed by GC-MS, and 62 compounds were identified. Of these compounds, the orthogonal partial least-squares discrimination analysis (OPLS-DA) showed that there were a distinct difference among the root exudates with different Cd treatments and 20 compounds resulting in this difference were found out. Changing tendencies in the relative content of these 20 compounds under the different Cd treatments were analyzed. These results indicated that trehalose, erythritol, naphthalene, d-pinitol and n-octacosane might be closely related to the Cd stabilization, phosphoric acid, tetradecanoic acid, oxalic acid, threonic acid and glycine could be attributed to the Cd mobilization, and mannitol, oleic acid, 3-hydroxybutanoic acid, fructose, octacosanol and ribitol could copy well with the Cd stress. PMID:25545686

  14. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria.

    PubMed

    He, Lin-Yan; Chen, Zhao-Jin; Ren, Gai-Di; Zhang, Yan-Feng; Qian, Meng; Sheng, Xia-Fang

    2009-07-01

    Two cadmium (Cd)-resistant strains Pseudomonas sp. RJ10 and Bacillus sp. RJ16 were investigated for their effects on the soil Cd and lead (Pb) solubilization and promotion of plant growth and Cd and Pb uptakes of a Cd-hyperaccumulator tomato. In the heavy metal-contaminated inoculated soil, the CaCl(2)-extractable Cd and Pb were increased by 58-104% and 67-93%, respectively, compared to the uninoculation control. The bacteria produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Root elongation assay conducted on tomato under gnotobiotic conditions demonstrated increase in root elongation of inoculated tomato seedlings compared to the control plants. An increase in Cd and Pb contents of above-ground tissues varied from 92% to 113% and from 73% to 79% in inoculated plants growing in heavy metal-contaminated soil compared to the uninoculation control, respectively. These results show that the bacteria could be exploited for bacteria enhanced-phytoextraction of Cd- and Pb-polluted soils. PMID:19368973

  15. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant.

    PubMed

    Buendía-González, L; Orozco-Villafuerte, J; Cruz-Sosa, F; Barrera-Díaz, C E; Vernon-Carter, E J

    2010-08-01

    The bioaccumulation of Cr(VI) and Cd(II) in Prosopis laevigata and the effect of these heavy metals on plant growth were assessed. P. laevigata seeds were cultured during 50 days on modified Murashige-Skoog medium supplemented with four different concentrations of Cr(VI) (0-3.4mM) and Cd(II) (0-2.2mM), respectively. Heavy metals did not stop germination, but smaller plants with fewer leaves and secondary roots were produced. Seedlings showed an accumulation of 8176 and 21,437 mg Cd kg(-1) and of 5461 and 8090 mg Cr kg(-1) dry weight, in shoot and root, when cultured with 0.65 mM Cd(II) and 3.4mM Cr(VI), respectively. These results indicated that significant translocation from the roots unto aerial parts took place. A bioaccumulation factor greater than 100 for Cd and 24 for Cr was exhibited by the seedlings. P. laevigata can be considered as a potential hyperaccumulator of Cd(II) and Cr(VI) species and considered as a promising candidate for phytoremediation purposes. PMID:20347590

  16. Effect of elevated CO2 concentration on photosynthetic characteristics of hyperaccumulator Sedum alfredii under cadmium stress.

    PubMed

    Li, Tingqiang; Tao, Qi; Di, Zhenzhen; Lu, Fan; Yang, Xiaoe

    2015-07-01

    The combined effects of elevated CO2 and cadmium (Cd) on photosynthetic rate, chlorophyll fluorescence and Cd accumulation in hyperaccumulator Sedum alfredii Hance were investigated to predict plant growth under Cd stress with rising atmospheric CO2 concentration. Both pot and hydroponic experiments were conducted and the plants were grown under ambient (350 µL L(-1)) or elevated (800 µL L(-1)) CO2 . Elevated CO2 significantly (P < 0.05) increased Pn (105%-149%), Pnmax (38.8%-63.0%) and AQY (20.0%-34.8%) of S. alfredii in all the Cd treatments, but reduced chlorophyll concentration, dark respiration and photorespiration. After 10 days growth in medium with 50 µM Cd under elevated CO2 , PSII activities were significantly enhanced (P < 0.05) with Pm, Fv/Fm, Φ(II) and qP increased by 66.1%, 7.5%, 19.5% and 16.4%, respectively, as compared with ambient-grown plants. Total Cd uptake in shoot of S. alfredii grown under elevated CO2 was increased by 44.1%-48.5%, which was positively correlated with the increase in Pn. These results indicate that elevated CO2 promoted the growth of S. alfredii due to increased photosynthetic carbon uptake rate and photosynthetic light-use efficiency, and showed great potential to improve the phytoextraction of Cd by S. alfredii. PMID:25370532

  17. Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress.

    PubMed

    Zemanová, Veronika; Pavlík, Milan; Kyjaková, Pavlína; Pavlíková, Daniela

    2015-05-15

    Changes in the fatty acid (FAs) composition in response to the extent of Cd contamination of soils (0, 30, 60 and 90 mg Cd kg(-1)) differed between ecotypes of Noccaea caerulescens originating from France - Ganges, Slovenia - Mežica and Austria - Redlschlag. Mežica ecotype accumulated more Cd in aboveground biomass compared to Ganges and Redlschlag ecotypes. Hyperaccumulators contained saturated fatty acids (SFAs) rarely occurring in plants, as are cerotic (26:0), montanic (28:0), melissic (30:0) acids, and unusual unsaturated fatty acids (USFAs), as are 16:2, 16:3, 20:2 and 20:3. Typical USFAs occurring in the family Brassicaceae, such as erucic, oleic and arachidonic acids, were missing in tested plants. Our results clearly indicate a relationship between Cd accumulation and the FAs composition. The content of SFAs decreased and the content of USFAs increased in aboveground biomass of Ganges and Mežica ecotypes with increasing Cd concentration. Opposite trend of FAs content was determined in Redlschlag ecotype. Linoleic (18:2n-6), α-linolenic (18:3n-3) and palmitic (16:0) acids were found in all ecotypes. The results observed in N. caerulescens ecotypes, showed that mainly Mežica ecotype has an efficient defense strategies which can be related on changes in FAs composition, mainly in VLCFAs synthesis. The most significant effect of ecotype on FAs composition was confirmed using multivariate analysis of variance. PMID:25886397

  18. The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis.

    PubMed

    Luo, Qing; Sun, Lina; Hu, Xiaomin; Zhou, Ruiren

    2014-01-01

    Hydroponic experiments were conducted to investigate the variation of root exudates from the hyperaccumulator Sedum alfredii under the stress of cadmium (Cd). S. alfredii was cultured for 4 days in the nutrient solution spiked with CdCl2 at concentrations of 0, 5, 10, 40, and 400 µM Cd after the pre-culture. The root exudates were collected and analyzed by GC-MS, and 62 compounds were identified. Of these compounds, the orthogonal partial least-squares discrimination analysis (OPLS-DA) showed that there were a distinct difference among the root exudates with different Cd treatments and 20 compounds resulting in this difference were found out. Changing tendencies in the relative content of these 20 compounds under the different Cd treatments were analyzed. These results indicated that trehalose, erythritol, naphthalene, d-pinitol and n-octacosane might be closely related to the Cd stabilization, phosphoric acid, tetradecanoic acid, oxalic acid, threonic acid and glycine could be attributed to the Cd mobilization, and mannitol, oleic acid, 3-hydroxybutanoic acid, fructose, octacosanol and ribitol could copy well with the Cd stress. PMID:25545686

  19. Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant Sedum plumbizincicola.

    PubMed

    Cao, Dong; Zhang, Hongzheng; Wang, Yaodong; Zheng, Leina

    2014-08-01

    Accumulation and distribution of Zn and Cd in the hyperaccumulator plant Sedum plumbizincicola were investigated in a hydroponic experiment. Mean Cd and Zn concentrations in shoots (7,010 and 18,400 mg kg(-1)) were about sevenfold and fivefold higher than those in roots (840 and 3,000 mg kg(-1)) after exposure to 100 μM CdSO4 and 600 μM ZnSO4, respectively. Cd and Zn concentrations in young leaves (4,330 and 9,820 mg kg(-1)) were about sixfold and twofold higher than those in mature leaves (636 and 2,620 mg kg(-1)), respectively. MicroPIXE analysis showed that Zn was predominantly localized in epidermal cells in both young and mature leaves, but large amounts of Zn occurred in mesophyll cells in young leaves. Leaf tissue fractionation showed that soluble and cell wall fractions were different at the two stages of leaf growth. Young and mature leaves of S. plumbizincicola also showed different accumulation and distribution characteristics for Zn and Cd. PMID:24789526

  20. High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata.

    PubMed

    Chen, Yanshan; Fu, Jing-Wei; Han, Yong-He; Rathinasabapathi, Bala; Ma, Lena Q

    2016-02-01

    Arsenite (AsIII) efflux is an important mechanism for arsenic (As) detoxification in plants. Low AsIII efflux has been observed in As-hyperaccumulator Pteris vittata, which may contribute to its highly efficient As translocation and accumulation; however, the results may be compromised by microbial AsIII oxidation, relatively low As concentration in the medium and short-term As exposure. Here, sterile P. vittata sporophytes were cultivated in sterile medium containing 10, 200 and 500 µM arsenate (AsV) for 28 d. Arsenite efflux to the growth medium and As speciation in P. vittata was investigated. Low AsIII efflux at 12% of AsV uptake was observed at 10 µM AsV, but high AsIII efflux (36-76%) was observed at 200 and 500 µM AsV, with 1987-2397 mg kg(-1) As being accumulated in the fronds. This is the first report to show efficient AsIII efflux in P. vittata. This study showed that P. vittata may use high AsIII efflux to cope with As toxicity under high As exposure, which may be necessary to sustain growth while accumulating As. PMID:26595313

  1. Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure.

    PubMed

    Zhang, Weihua; Cai, Yong

    2003-12-15

    Pteris vittata (Chinese brake fern) is the first reported arsenic hyperaccumulator. To investigate the arsenic tolerance mechanism in this plant, reversed-phase HPLC with postcolumn derivatization was used to analyze the thiols induced under arsenic exposure. A major thiol in the plant leaflets was found to be responsive to arsenic exposure. The arsenic-induced compound was purified on a large scale by combining covalent chromatography and preparative reversed-phase HPLC. About 2 mg of this compound was isolated from 1 kg of fresh leaflets. The purified arsenic-induced compound was characterized using electrospray ionization mass spectrometry. A molecular ion (M + 1) of 540 and fragments were obtained, which indicated that the arsenic-induced thiol was a phytochelatin with two subunits (PC(2)). Compared to the classical methods for purification of phytochelatins, this new method is more specific, simple, and rapid and is suitable for purification of PCs in a large scale as well as sample preparation for mass spectrometry analysis. PMID:14670068

  2. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii.

    PubMed

    Li, W C; Ye, Z H; Wong, M H

    2007-01-01

    To investigate the effects of bacteria (Burkholderia cepacia) on metal uptake by the hyperaccumulating plant, Sedum alfredii, a hydroponic experiment with different concentrations of Cd and Zn was conducted. It was found that inoculation of bacteria on S. alfredii significantly enhanced plant growth (up to 110% with Zn treatment), P (up to 56.1% with Cd treatment), and metal uptake (up to 243% and 96.3% with Cd and Zn treatment, respectively) in shoots, tolerance index (up to 134% with Zn added treatment), and better translocation of metals (up to 296% and 135% with Cd and Zn treatment, respectively) from root to shoot. In the ampicillin added treatment with metal addition, stimulation of organic acid production (up to an increase of 133% of tartaric acid with Cd treatment) by roots of S. alfredii was observed. The secretion of organic acids appears to be a functional metal resistance mechanism that chelates the metal ions extracellularly, reducing their uptake and subsequent impacts on root physiological processes. PMID:18039737

  3. Hormesis phenomena under Cd stress in a hyperaccumulator--Lonicera japonica Thunb.

    PubMed

    Jia, Lian; He, Xingyuan; Chen, Wei; Liu, Zhouli; Huang, Yanqing; Yu, Shuai

    2013-04-01

    A hydroponic experiment was carried out to investigate possible hormetic response induced by cadmium (Cd) in a potential hyperaccumulator-Lonicera japonica Thunb. The results showed that Cd at low concentrations induced a significant increase in plant growth, leaf water content and content of photosynthetic pigments in L. japonica, but decreased them at high concentrations, displayed inverted U-shaped dose response curves, confirming a typical biphasic hormetic response. The U-shaped dose response curves were displayed in malondialdehyde (MDA) and electrolyte leakage in leaves at low doses of Cd, indicating reduce oxidative stress and toxic effect. The increase of superoxide dismutase (SOD) and catalase (CAT) activities was observed along with the increased Cd concentration, indicative of increase in anti-oxidative capacity that ensures redox homeostasis is maintained. After 28 days exposure to 10 mg L(-1) Cd, stem and leaf Cd concentrations reached 502.96 ± 28.90 and 103.22 ± 5.62 mg kg(-1) DW, respectively and the plant had high bioaccumulation coefficient (BC) and translocation factor (TF'). Moreover, the maximum TF value was found at 2.5 mg L(-1) Cd treatment, implying that low Cd treatment improved the ability to transfer Cd from medium via roots to aerial structures. Taking together, L. japonica could be considered as a new plant to investigate the underlying mechanisms of hormesis and Cd tolerance. Our results suggest that hormetic effects should be taken into consideration in phytoremediation of Cd-contaminated soil. PMID:23359063

  4. Effects of grafting on the cadmium accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum.

    PubMed

    Lin, Lijin; Yang, Daiyu; Wang, Xun; Liao, Ming'an; Wang, Zhihui; Lv, Xiulan; Tang, Fuyi; Liang, Dong; Xia, Hui; Lai, Yunsong; Tang, Yi

    2016-02-01

    The effects of grafting on the cadmium (Cd) accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum were studied under Cd stress in our experiment. Four treatments were used in the experiment: ungrafted (UG), self-rooted grafting by the same S. photeinocarpum seedling (SG), self-rooted grafting by two different development stages of S. photeinocarpum seedlings (DG), and grafting on the rootstock of wild potato (PG). SG and DG decreased the root, scion stem, leaf, whole shoot, and whole plant biomasses compared with UG, but increased the rootstock stem biomass, while only PG increased the root and whole plant biomasses. SG and DG increased the Cd contents in the different organs of S. photeinocarpum compared with UG, while PG decreased the Cd content compared with UG. The Cd extraction by the whole plant of S. photeinocarpum was ranked as DG > SG > UG > PG. Additionally, the antioxidant enzyme activities in SG and DG were enhanced compared with UG, while that of PG was reduced compared with UG. The grafting increased the DNA methylation levels and changed the methylation patterns of S. photeinocarpum compared with UG. Therefore, SG and DG can increase the Cd accumulation in S. photeinocarpum, which can be used for the phytoremediation of Cd-contaminated soil. PMID:26739012

  5. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum.

    PubMed

    Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Andrades-Moreno, Luis

    2010-12-15

    The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l(-1) on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg(-1). The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l(-1) Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P(N)). Reductions in P(N) could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites. PMID:20832167

  6. Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids

    PubMed Central

    Vonlanthen, Sofie; Dauvillée, David; Purton, Saul

    2015-01-01

    When green algae are exposed to physiological stresses such as nutrient deprivation, growth is arrested and the cells channel fixed carbon instead into storage compounds, accumulating first starch granules and then lipid bodies containing triacylglycerides. In recent years there has been significant interest in the commercial exploitation of algal lipids as a sustainable source of biodiesel. Since starch and lipid biosynthesis involves the same C3 precursor pool, it has been proposed that mutations blocking starch accumulation should result in increased lipid yields, and indeed several studies have supported this. The fast-growing, thermotolerant alga Chlorella sorokiniana represents an attractive strain for industrial cultivation. We have therefore generated and characterized starch-deficient mutants of C. sorokiniana and determined whether lipid levels are increased in these strains under stress conditions. One mutant (ST68) is shown to lack isoamylase, whilst two others (ST3 and ST12) are defective in starch phosphorylase. However, we find no significant change in the accumulation or profile of fatty acids in these mutants compared to the wild-type, suggesting that a failure to accumulate starch per se is not sufficient for the hyper-accumulation of lipid, and that more subtle regulatory steps underlie the partitioning of carbon to the two storage products. PMID:26865991

  7. Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress.

    PubMed

    Campos, Naiara V; Araújo, Talita O; Arcanjo-Silva, Samara; Freitas-Silva, Larisse; Azevedo, Aristéa A; Nunes-Nesi, Adriano

    2016-06-01

    Arsenic (As) pollution is a major environmental concern due to its worldwide distribution and high toxicity to organisms. The fern Pityrogramma calomelanos is one of the few plant species known to be able to hyperaccumulate As, although the mechanisms involved are largely unknown. This study aimed to investigate the metabolic adjustments involved in the As-tolerance of P. calomelanos. For this purpose, ferns with five to seven fronds were exposed to a series of As concentrations. Young fronds were used for biochemical analysis and metabolite profiling using gas chromatography-mass spectrometry. As treatment increased the total concentration of proteins and soluble phenols, enhanced peroxidase activities, and promoted disturbances in nitrogen and carbon metabolism. The reduction of the glucose pool was one of the striking responses to As. Remarkable changes in amino acids levels were observed in As-treated plants, including those related to biosynthesis of glutathione and phenols, osmoregulation and two photorespiratory intermediates. In addition, increases in polyamines levels and antioxidant enzyme activities were observed. In summary, this study indicates that P. calomelanos tolerates high concentration of As due to its capacity to upregulate biosynthesis of amino acids and antioxidants, without greatly disturbing central carbon metabolism. At extremely high As concentrations, however, this protective mechanism fails to block reactive oxygen species production, leading to lipid peroxidation and leaf necrosis. PMID:26853807

  8. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    PubMed

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. PMID:26592710

  9. Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia Yi; Li, Hong Bo; Liang, Shuang; Luo, Jun; Ma, Lena Q

    2014-11-01

    We investigated the effects of arsenic species on As accumulation, plant growth and rhizospheric changes in As-hyperaccumulator Pteris vittata (PV). PV was grown for 60-d in a soil spiked with 200 mg kg(-1) arsenate (AsV-soil) or arsenite (AsIII-soil). Diffusive gradients in thin-films technique (DGT) were used to monitor As uptake by PV. Interestingly AsIII-soil produced the highest PV biomass at 8.6 g plant(-1), 27% and 46% greater than AsV-soil and the control. Biomass increase was associated with As-induced P uptake by PV. Although AsIII was oxidized to AsV during the experiment, As species impacted As accumulation by PV, with 17.5% more As in AsIII-soil than AsV-soil (36 vs. 31 mg plant(-1)). As concentration in PV roots was 30% higher in AsV-soil whereas As concentration in PV fronds was 7.9% greater in AsIII-soil, suggesting more rapid translocation of AsIII than AsV. These findings were important to understand the mechanisms of As uptake, accumulation and translocation by PV. PMID:25103044

  10. [Uptake of radionuclides from soil to plant and the discovery of 226Ra, 232Th hyperaccumulator].

    PubMed

    Zhang, Zhi-Qiang; Chen, Di-Yun; Song, Gang; Yue, Yu-Mei

    2011-04-01

    11 sorts of plant samples and corresponding soil samples were collected in Conghua and Taishan, Pearl River Delta. The specific activity of 238U, 226Ra, 232Th and 40K of samples were investigated by using HPGe-gamma-ray spectra analysis. The results showed that the average specific activity of 238U, 226Ra, 232Th and 40K in soil samples were 151.8, 146.3, 226.6, 665.5 Bq/kg, which were higher than the average values of China and the world. The concentration of 238U in all sort of plants are very low and most of them are lower than detection limit, while the values of 226Ra, 232Th and 40K were high. The contents of 226Ra and 232Th in Dicranopteris dichotoma were the highest, whose average specific activity is 285.9, 986.2 Bq/kg respectively. The average bioconcentration factors (BFs)of 26Ra, 232Th of Dicranopteris dichotoma were 2.20, 4.23, respectively, the other 10 sort of plants have BFs of 2266Ra, 232Th were in the range of 10(-1)-10(-2). The bioconcentration factors and the translocation factors of 226Ra, 232Th of Dicranopteris dichotoma. were all bigger than 1, so Dicranopteris dichotoma can be defined as hyperaccumulator of 226Ra and 232Th. PMID:21717763

  11. Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler.

    PubMed

    Orłowska, Elżbieta; Przybyłowicz, Wojciech; Orlowski, Dariusz; Mongwaketsi, Nametso P; Turnau, Katarzyna; Mesjasz-Przybyłowicz, Jolanta

    2013-04-01

    The effect of arbuscular mycorrhizal fungi (AMF) on the distribution and concentration of elements in roots of Ni-hyperaccumulating plant Berkheya coddii was studied. Micro-PIXE (particle-induced X-ray emission) analysis revealed significant differences between AMF-inoculated and non-inoculated plants as well as between main and lateral roots. The accumulation of P, K, Mn and Zn in the cortical layer of lateral roots of inoculated plants confirmed the important role of AMF in uptake and accumulation of these elements. Higher concentration of P, K, Fe, Ni, Cu and Zn in the vascular stele in roots of AMF-inoculated plants than in the non-inoculated ones indicates more efficient translocation of these elements to the aboveground parts of the plant. These findings indicate the necessity of including the influence of AMF in studies on the uptake of elements by plants and in industrial use of B. coddii for Ni extraction from polluted soils. PMID:23369753

  12. Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method.

    PubMed

    Zhang, Xingfeng; Xia, Hanping; Li, Zhi'an; Zhuang, Ping; Gao, Bo

    2011-05-15

    A new method, soil seed bank-metal concentration gradient method was used to screen for heavy metal hyperaccumulators, and Solanum photeinocarpum was found to be a potential Cd-hyperaccumulator. The chlorophyll content and photosynthetic rate of S. photeinocarpum were not affected by Cd pollution, while leaf stomas and transpiration rate were significantly decreased by more than 60 mg kg(-1) Cd, and leaf water use efficiency and shoot water content were significantly increased by more than 60 or 100 mg kg(-1) Cd, respectively. In the seed bank-Cd concentration gradient experiment, the shoot biomass of S. photeinocarpum showed no significant reduction with soil Cd treatment as high as 100 mg kg(-1), but the root biomass was significantly reduced by more than 60 mg kg(-1) Cd contamination. Plant tissues accumulated 544, 132 and 158 mg kg(-1) Cd in roots, stems and leaves, respectively, and extracted 157 and 195 μg Cd plant(-1) in roots and shoots at 100 mg kg(-1) Cd in soil, respectively. In the transplanting-Cd concentration gradient experiment, plant shoot biomass and root biomass were unaffected by soil Cd as high as 60 mg kg(-1). Plant tissues accumulated 473, 215 and 251 mg kg(-1) Cd in roots, stems and leaves, respectively, and extracted 176 and 787 μg Cd plant(-1) in roots and shoots at 60 mg kg(-1) soil Cd, respectively. Soil seed bank-metal concentration gradient method could be an effective method for the screening of hyperaccumulators. PMID:21397392

  13. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils.

    PubMed

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2015-01-01

    The ability of hyperaccumulator oilcake manure as compared to chelates was investigated by growing Calendula officinalis L for phytoremediation of cadmium and lead contaminated alluvial soil. The combinatorial treatment T6 [2.5 g kg(-1) oilcake manure+5 mmol kg(-1) EDDS] caused maximum cadmium accumulation in root, shoot and flower up to 5.46, 4.74 and 1.37 mg kg(-1) and lead accumulation up to 16.11, 13.44 and 3.17 mg kg(-1), respectively at Naini dump site, Allahabad (S3). The treatment showed maximum remediation efficiency for Cd (RR=0.676%) and Pb (RR=0.202%) at Mumfordganj contaminated site (S2). However, the above parameters were also observed at par with the treatment T5 [2.5 g kg(-1) oilcake manure +2 g kg(-1) humic acid]. Applied EDDS altered chlorophyll-a, chlorophyll-b, and carotene contents of plants while application of oilcake manure enhanced their contents in plant by 3.73-8.65%, 5.81-17.65%, and 7.04-17.19%, respectively. The authors conclude that Calendula officinalis L has potential to be safely grown in moderately Cd and Pb-contaminated soils and application of hyperaccumulator oilcake manure boosts the photosynthetic pigments of the plant, leading to enhanced clean-up of the cadmium and lead-contaminated soils. Hence, the hyperaccumulator oilcake manure should be preferred over chelates for sustainable phytoremediation through soil-plant rhizospheric process. PMID:25397984

  14. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray.

    PubMed

    Chiang, Huai-Chih; Lo, Jing-Chi; Yeh, Kuo-Chen

    2006-11-01

    To survive in variable soil conditions, plants possess homeostatic mechanisms to maintain a suitable concentration of essential heavy metal ions. Certain plants, inhabiting heavy metal-enriched or -contaminated soil, thus are named hyperaccumulators. Studying hyperaccumulators has great potential to provide information for phytoremediation. To better understand the hyperaccumulating mechanism, we used an Arabidopsis cDNA microarray to compare the gene expression of the Zn/Cd hyperaccumulator Arabidopsis halleri and a nonhyperaccumulator, Arabidopsis thaliana. By analyzing the expression of metal-chelators, antioxidation-related genes, and transporters, we revealed a few novel molecular features. We found that metallothionein 2b and 3, APX and MDAR4 in the ascorbate-glutathione pathway, and certain metal transporters in P(1B)-type ATPase, ZIP, Nramp, and CDF families, are expressed at higher levels in A. halleri than in A. thaliana. We further validated that the enzymatic activity of ascorbate peroxidase and class III peroxidases are highly elevated in A. halleri. This observation positively correlates with the higher ability of A. halleri to detoxify H2O2 produced by cadmium and paraquat treatments. We thus suggest that higher peroxidase activities contribute to the heavy metal tolerance in A. halleri by alleviating the ROS damage. We have revealed genes that could be candidates for the future engineering of plants with large biomass for use in phytoremediation. PMID:17144312

  15. Effects of bacteria on cadmium bioaccumulation in the cadmium hyperaccumulator plant Beta vulgaris var. cicla L.

    PubMed

    Chen, Su; Chao, Lei; Sun, Lina; Sun, Tieheng

    2013-01-01

    To investigate the effects of two cadmium-tolerant bacteria, Staphylococcus pasteuri (S. pasteuri X1) and Agrobacterium tumefaciens (A. tumefaciens X2), on cadmium uptake by the cadmium hyperaccumulator plant Beta vulgaris var. cicla L., a pot experiment with artificially contaminated soil was conducted. The results demonstrated that both cadmium-tolerant bacteria enhanced the dry weight of Beta vulgaris var. cicla L. The total dry weights of plants in the control CK20, S. pasteuri X1 and A. tumefaciens X2 treatments were 0.85, 1.13, and 1.38 g/pot, respectively. Compared with the control CK20 findings, the total dry weight of plants was increased by 32.8 and 61.1% after inoculation with S. pasteuri X1 and A. tumefaciens X2, respectively, indicating that A. tumefaciens X2 more strongly promoted the growth of Beta vulgaris var. cicla L. than S. pasteuri X1. In addition, inoculation with S. pasteuri X1 and A. tumefaciens X2 significantly (p < 0.05) promoted cadmium uptake by plants and improved the bioaccumulation of cadmium by the plants from the soil. Moreover, the inoculation of S. pasteuri X1 and A. tumefaciens X2 effectively facilitated the transfer of cadmium in the soil from the Fe-Mn oxide and residual fractions to the soluble plus exchangeable and weakly specially adsorbed fractions in the rhizosphere soils of plants. The bacterial enhancement of cadmium phytoavailability might provide a potential and promising method to increase the efficiency of phytoextraction. PMID:23488173

  16. Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved?

    PubMed

    Ferraz, Pedro; Fidalgo, Fernanda; Almeida, Agostinho; Teixeira, Jorge

    2012-08-01

    Some heavy metals (HM) are highly reactive and consequently can be toxic to living cells when present at high levels. Consequently, strategies for reducing HM toxicity in the environmental must be undertaken. This work focused on evaluating the Nickel (Ni) accumulation potential of the hyperaccumulator Solanum nigrum L., and the participation of metallothioneins (MT) in the plant Ni homeostasis. Metallothioneins (MT) are gene-encoded metal chelators that participate in the transport, sequestration and storage of metals. After different periods of exposure to different Ni concentrations, plant biometric and biochemical parameters were accessed to determine the effects caused by this pollutant. Semi-quantitative RT-PCR reactions were performed to investigate the specific accumulation of MT-related transcripts throughout the plant and in response to Ni exposure. The data obtained revealed that Ni induced toxicity symptoms and accumulated mostly in roots, where it caused membrane damage in the shock-treated plants, with a parallel increase of free proline content, suggesting that proline participates in protecting root cells from oxidative stress. The MT-specific mRNA accumulation analysis showed that MT2a- and MT2d-encoding genes are constitutively active, that Ni stimulated their transcript accumulation, and also that Ni induced the de novo accumulation of MT2c- and MT3-related transcripts in shoots, exerting no influence on MT1 mRNA accumulation. These results strongly suggest the involvement of MT2a, MT2c, MT2d and MT3 in S. nigrum Ni homeostasis and detoxification, this way contributing to the clarification of the roles the various types of MTs play in metal homeostasis and detoxification in plants. PMID:22763093

  17. Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana.

    PubMed

    Zhao, Le; Sun, Yong-Le; Cui, Su-Xia; Chen, Mei; Yang, Hao-Meng; Liu, Hui-Min; Chai, Tuan-Yao; Huang, Fang

    2011-09-01

    Cadmium (Cd) is highly toxic to all organisms. Soil contamination by Cd has become an increasing problem worldwide due to the intensive use of Cd-containing phosphate fertilizers and industrial zinc mining. Phytolacca americana L. is a Cd hyperaccumulator plant that can grow in Cd-polluted areas. However, the molecular basis for its remarkable Cd resistance is not known. In this study, the effects of Cd exposure on protein expression patterns in P.americana was investigated by 2-dimensional gel electrophoresis (2-DE). 2-DE profiles of leaf proteins from both control and Cd-treated (400μM, 48h) seedlings were compared quantitatively using ImageMaster software. In total, 32 differentially expressed protein spots were identified using MALDI-TOF/TOF mass spectrometry coupled to protein database search, corresponding to 25 unique gene products. Of those 14 were enhanced/induced while 11 reduced under Cd treatment. The alteration pattern of protein expression was verified for several key proteins involved in distinct metabolic pathways by immuno-blot analysis. Major changes were found for the proteins involved in photosynthetic pathways as well as in the sulfur- and GSH-related metabolisms. One-third of the up-regulated proteins were attributed to transcription, translation and molecular chaperones including a protein belonging to the calreticulin family. Other proteins include antioxidative enzymes such as 2-cys-peroxidase and oxidoreductases. The results of this proteomic analysis provide the first and primary information regarding the molecular basis of Cd hypertolerance in P. americana. PMID:21723586

  18. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata.

    PubMed

    Ying, Rong-Rong; Qiu, Rong-Liang; Tang, Ye-Tao; Hu, Peng-Jie; Qiu, Hao; Chen, Hong-Ru; Shi, Tai-Hong; Morel, Jean-Louis

    2010-01-15

    To better understand the photosynthesis under stress, the effect of cadmium on carbon assimilation and chloroplast ultrastructure of a newly found Zn/Cd hyperaccumulator Picris divaricata in China was investigated in solution culture. The shoot and root Cd concentrations increased with increase in Cd supply, reaching maxima of 1109 and 5604mgkg(-1) dry weight at 75microM Cd, respectively. As Cd supply to P. divaricata increased, the shoot and root dry weight, leaf water content (except 75microM Cd), concentrations of chlorophyll a and b, chlorophyll a/b ratio and the concentration of carotenoids were not depressed at high Cd. However, the stomatal conductance, transpiration rate, net photosynthetic rate and intercellular CO(2) concentration were significantly affected when the Cd concentration reached 10, 10, 25 and 75microM, respectively. Meanwhile, carbonic anhydrase (CA; EC 4.2.1.1) activity and Rubisco (EC 4.1.1.39) content reached maxima in the presence of 50 and 5microM Cd, respectively. In addition, CA activity correlated positively with shoot Cd in plants treated with Cd at a range of 0-50microM. Moreover, the activities of NADP(+)-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13), Rubisco and fructose-1, 6-bisphosphatase (EC 3.1.3.11) were not significantly suppressed by increased Cd supply. Although the mesophyll cell size was reduced, chloroplast ultrastructure remained intact at the highest Cd treatment. Our finding revealed that P. divaricata chloroplast and the enzymes of carbon assimilation tolerate high levels of Cd, demonstrating its potential in possible application in phytoremediation. PMID:19683362

  19. Physiological and biochemical mechanisms preventing Cd-toxicity in the hyperaccumulator Atriplex halimus L.

    PubMed

    Mesnoua, Mohammed; Mateos-Naranjo, Enrique; Barcia-Piedras, José María; Pérez-Romero, Jesús Alberto; Lotmani, Brahim; Redondo-Gómez, Susana

    2016-09-01

    The xero-halophyte Atriplex halimus L., recently described as Cd-hyperaccumulator, was examined to determine Cd toxicity threshold and the physiological mechanisms involved in Cd tolerance. An experiment was conducted to investigate the effect of cadmium from 0 to 1350 μM on chlorophyll fluorescence parameters, gas exchange, photosynthetic pigment concentrations and antioxidative enzyme activities of A. halimus. Cadmium, calcium, iron, manganese, magnesium, potassium, phosphorous, sodium and zinc concentrations were also analyzed. Plants of A. halimus were not able to survive at 1350 μM Cd and the upper tolerance limit was recorded at 650 μM Cd; although chlorosis was observed from 200 μM Cd. Cadmium accumulation increased with increase in Cd supply, reaching maxima of 0.77 and 4.65 mg g(-1) dry weight in shoots and roots, respectively, at 650 μM Cd. Dry mass, shoot length, specific leaf area, relative growth rate, net photosynthetic rate, stomatal conductance, pigments contents and chlorophyll fluorescence were significantly reduced by increasing Cd concentration. However, the activities of superoxide dismutase (SOD; EC1.15.1.1), catalase (CAT; EC1.11.1.6) and guaiacol peroxidase (GPx; EC1.11.1.7) were significantly induced by Cd. Exposures to Cd caused also a significant decrease in P contents in roots, Mg and Mn contents in shoots and Fe and K contents in roots and shoots and had no effect on Ca, Na and Zn contents. The tolerance of A. halimus to Cd stress might be related with its capacity to avoid the translocation of great amounts of Cd in its aboveground tissues and higher activities of enzymatic antioxidants in the leaf. PMID:27135816

  20. Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri.

    PubMed

    Nouet, Cécile; Charlier, Jean-Benoit; Carnol, Monique; Bosman, Bernard; Farnir, Frédéric; Motte, Patrick; Hanikenne, Marc

    2015-09-01

    In Arabidopsis halleri, the HMA4 gene has an essential function in Zn/Cd hypertolerance and hyperaccumulation by mediating root-to-shoot translocation of metals. Constitutive high expression of AhHMA4 results from a tandem triplication and cis-activation of the promoter of all three copies. The three AhHMA4 copies possess divergent promoter sequences, but highly conserved coding sequences, and display identical expression profiles in the root and shoot vascular system. Here, an AhHMA4::GFP fusion was expressed under the control of each of the three A. halleri HMA4 promoters in a hma2hma4 double mutant of A. thaliana to individually examine the function of each AhHMA4 copy. The protein showed non-polar localization at the plasma membrane of the root pericycle cells of both A. thaliana and A. halleri. The expression of each AhHMA4::GFP copy complemented the severe Zn-deficiency phenotype of the hma2hma4 mutant by restoring root-to-shoot translocation of Zn. However, each copy had a different impact on metal homeostasis in the A. thaliana genetic background: AhHMA4 copies 2 and 3 were more highly expressed and provided higher Zn tolerance in roots and accumulation in shoots than copy 1, and AhHMA4 copy 3 also increased Cd tolerance in roots. These data suggest a certain extent of functional differentiation among the three A. halleri HMA4 copies, stemming from differences in expression levels rather than in expression profile. HMA4 is a key node of the Zn homeostasis network and small changes in expression level can have a major impact on Zn allocation to root or shoot tissues. PMID:26044091

  1. Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides

    PubMed Central

    Chukkapalli, Vineela; Berger, Kristi L.; Kelly, Sean M.; Thomas, Meryl; Deiters, Alexander; Randall, Glenn

    2014-01-01

    Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies are HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A-PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation. PMID:25546252

  2. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    PubMed

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines. PMID:25263417

  3. Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri

    PubMed Central

    Nouet, Cécile; Charlier, Jean-Benoit; Carnol, Monique; Bosman, Bernard; Farnir, Frédéric; Motte, Patrick; Hanikenne, Marc

    2015-01-01

    In Arabidopsis halleri, the HMA4 gene has an essential function in Zn/Cd hypertolerance and hyperaccumulation by mediating root-to-shoot translocation of metals. Constitutive high expression of AhHMA4 results from a tandem triplication and cis-activation of the promoter of all three copies. The three AhHMA4 copies possess divergent promoter sequences, but highly conserved coding sequences, and display identical expression profiles in the root and shoot vascular system. Here, an AhHMA4::GFP fusion was expressed under the control of each of the three A. halleri HMA4 promoters in a hma2hma4 double mutant of A. thaliana to individually examine the function of each AhHMA4 copy. The protein showed non-polar localization at the plasma membrane of the root pericycle cells of both A. thaliana and A. halleri. The expression of each AhHMA4::GFP copy complemented the severe Zn-deficiency phenotype of the hma2hma4 mutant by restoring root-to-shoot translocation of Zn. However, each copy had a different impact on metal homeostasis in the A. thaliana genetic background: AhHMA4 copies 2 and 3 were more highly expressed and provided higher Zn tolerance in roots and accumulation in shoots than copy 1, and AhHMA4 copy 3 also increased Cd tolerance in roots. These data suggest a certain extent of functional differentiation among the three A. halleri HMA4 copies, stemming from differences in expression levels rather than in expression profile. HMA4 is a key node of the Zn homeostasis network and small changes in expression level can have a major impact on Zn allocation to root or shoot tissues. PMID:26044091

  4. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis.

    PubMed

    Hložková, Kateřina; Matěnová, Michaela; Žáčková, Petra; Strnad, Hynek; Hršelová, Hana; Hroudová, Miluše; Kotrba, Pavel

    2016-03-01

    Mechanisms evolved in eukaryotes to handle heavy metals involve cytosolic, metal-binding metallothioneins (MTs). We have previously documented that the sequestration of silver (Ag) in the Ag-hyperaccumulating Amanita strobiliformis is dominated by 34-amino-acid (AA) AsMT1a, 1b, and 1c isoforms. Here we show that in addition to AsMT1a, 1b, and 1c isogenes, the fungus has two other MT genes: AsMT2 encoding a 34-AA AsMT2 similar to MTs known from other species, but unrelated to AsMT1s; AsMT3 coding for a 62-AA AsMT3 that shares substantial identity with as-yet-uncharacterized conserved peptides predicted in agaricomycetes. Transcription of AsMT1s and AsMT3 in the A. strobiliformis mycelium was specifically inducible by treatments with Ag or copper (Cu) and zinc (Zn) or cadmium (Cd), respectively; AsMT2 showed a moderate upregulation in the presence of Cd. Expression of AsMTs in the metal-sensitive Saccharomyces cerevisiae revealed that all AsMTs confer increased Cd tolerance (AsMT3 proved the most effective) and that, unlike AsMT1 and AsMT2, AsMT3 can protect the yeasts against Zn toxicity. The highest level of Cu tolerance was observed with yeasts expressing AsMT1a. Our data indicate that A. strobiliformis can specifically employ different MT genes for functions in the cellular handling of Ag and Cu (AsMT1s) and Zn (AsMT3). PMID:26895864

  5. Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii.

    PubMed

    Qiu, Rong-Liang; Thangavel, Palaniswamy; Hu, Peng-Jie; Senthilkumar, Palaninaicker; Ying, Rong-Rong; Tang, Ye-Tao

    2011-02-28

    Potentilla griffithii Hook is a newly found hyperaccumulator plant capable of high tolerance and accumulation of Zn and Cd. We investigated the interactive effects between Cd and Zn on accumulation and vacuolar sequestration in P. griffithii. Stimulatory effect of growth was noted at 0.2 mM Cd and 1.25 and 2.5 mM Zn tested. Accumulation of Zn and Cd in roots, petioles and leaves were increased significantly with addition of these metals individually. However, the Zn supplement decreased root Cd accumulation but increased the concentration of Cd in petioles and leaves. The results from sub-cellular distribution showed that up to 94% and 70% of the total Zn and Cd in the leaves were present in the protoplasts, and more than 90% Cd and Zn in the protoplasts were localized in the vacuoles. Nearly, 88% and 85% of total Cd and Zn were extracted in the cell sap of the leaves suggesting that most of the Cd and Zn in the leaves were available in soluble form. The present results indicate that Zn supplement significantly enhanced the petiole accumulation of Cd and further vacuolar sequestration plays an important role in tolerance, detoxification and hyperaccumulation of these metals in P. griffithii. PMID:21211902

  6. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid* #

    PubMed Central

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of 109Cd increased significantly, and higher 109Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the 109Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  7. Cadmium tolerance and accumulation of Althaea rosea Cav. and its potential as a hyperaccumulator under chemical enhancement.

    PubMed

    Liu, Jia Nv; Zhou, Qi Xing; Wang, Song; Sun, Ting

    2009-02-01

    The role of ornamental plants has drawn much attention as the urban pollution levels exacerbate. Althaea rosea Cav. had showed its strong tolerance and accumulation ability of Cd in our previous work, thus, the effects of ethylenediamine triacetic acid (EDTA), ethylenegluatarotriacetic acid (EGTA) and sodium dodecyl sulfate (SDS) on its Cd phytoremediation capacity were further investigated in this work. It reconfirmed that the species had strong tolerance and accumulation ability of Cd. Particularly, the species can be regarded as a potential Cd-hyperaccumulator through applying chemical agents. However, different chelators and surfactants had great differences in affecting hyperaccumulating characteristics of the species. EGTA and SDS could not only increase the dry biomass of the plants, but also promote Cd accumulation in shoots and roots. On the contrary, EDTA was toxic to the species by restraining the growth of plants, although it could promote Cd accumulation in shoots and roots of the plants to a certain extent. Thus, EGTA and SDS were effective in enhancing phytoremediation with Althaea rosea Cav. for Cd contaminated soils, while EDTA is ineffective in this regard. PMID:18259884

  8. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid.

    PubMed

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-02-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of (109)Cd increased significantly, and higher (109)Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the (109)Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  9. Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants.

    PubMed

    Zhang, Zhong-Chun; Chen, Bo-Xia; Qiu, Bao-Sheng

    2010-08-01

    Phytochelatin (PC) synthesis is considered necessary for Cd tolerance in non-resistant plants, but roles for PCs in hyper-accumulating species are currently unknown. In the present study, the relationship between PC synthesis and Cd accumulation was investigated in the Cd hyperaccumulator Sedum alfredii Hance. PCs were most abundant in leaves followed by stems, but hardly detected by the reversed-phase high-performance liquid chromatography (HPLC) in roots. Both PC synthesis and Cd accumulation were time-dependent and a linear correlation between the two was established with about 1:15 PCs : Cd stoichiometry in leaves. PCs were found in the elution fractions, which were responsible for Cd peaks in the anion exchange chromatograph assay. About 5% of the total Cd was detected in these elution fractions as PCs were found. Most Cd was observed in the cell wall and intercellular space of leaf vascular cells. These results suggest that PCs do not detoxify Cd in roots of S. alfredii. However, like in non-resistant plants, PCs might act as the major intracellular Cd detoxification mechanism in shoots of S. alfredii. PMID:20233337

  10. Tonoplast- and Plasma Membrane-Localized Aquaporin-Family Transporters in Blue Hydrangea Sepals of Aluminum Hyperaccumulating Plant

    PubMed Central

    Negishi, Takashi; Oshima, Kenshiro; Hattori, Masahira; Kanai, Masatake; Mano, Shoji; Nishimura, Mikio; Yoshida, Kumi

    2012-01-01

    Hydrangea (Hydrangea macrophylla) is tolerant of acidic soils in which toxicity generally arises from the presence of the soluble aluminum (Al) ion. When hydrangea is cultivated in acidic soil, its resulting blue sepal color is caused by the Al complex formation of anthocyanin. The concentration of vacuolar Al in blue sepal cells can reach levels in excess of approximately 15 mM, suggesting the existence of an Al-transport and/or storage system. However, until now, no Al transporter has been identified in Al hyperaccumulating plants, animals or microorganisms. To identify the transporter being responsible for Al hyperaccumulation, we prepared a cDNA library from blue sepals according to the sepal maturation stage, and then selected candidate genes using a microarray analysis and an in silico study. Here, we identified the vacuolar and plasma membrane-localized Al transporters genes vacuolar Al transporter (VALT) and plasma membrane Al transporter 1 (PALT1), respectively, which are both members of the aquaporin family. The localization of each protein was confirmed by the transient co-expression of the genes. Reverse transcription-PCR and immunoblotting results indicated that VALT and PALT1 are highly expressed in sepal tissue. The overexpression of VALT and PALT1 in Arabidopsis thaliana conferred Al-tolerance and Al-sensitivity, respectively. PMID:22952644

  11. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar.

    PubMed

    Rees, Frédéric; Sterckeman, Thibault; Morel, Jean Louis

    2016-01-01

    Biochar may be used as an amendment in contaminated soils in phytoremediation processes. The mechanisms controlling plant metal uptake in biochar-amended soils remain however unclear. This work aimed at evaluating the influence of biochar on root development and its consequence on plant metal uptake, for two non-hyperaccumulating plants (Zea mays and Lolium perenne) and one hyperaccumulator of Cd and Zn (Noccaea caerulescens). We conducted rhizobox experiments using one acidic and one alkaline soil contaminated with Cd, Pb and Zn. Biochar was present either homogeneously in the whole soil profile or localized in specific zones. A phenomenon of root proliferation specific to biochar-amended zones was seen on the heterogeneous profiles of the acidic soil and interpreted by a decrease of soil phytotoxicity in these zones. Biochar amendments also favored root growth in the alkaline soil as a result of the lower availability of certain nutrients in the amended soil. This increase of root surface led to a higher accumulation of metals in roots of Z.mays in the acidic soil and in shoots of N. caerulescens in the alkaline soil. In conclusion, biochar can have antagonist effects on plant metal uptake by decreasing metal availability, on one hand, and by increasing root surface and inducing root proliferation, on the other hand. PMID:25912633

  12. Interaction of Nickel and Manganese in Accumulation and Localization in Leaves of the Ni Hyperaccumulators Alyssum murale and Alyssum corsicum

    SciTech Connect

    Broadhurst, C.; Tappero, R; Maugel, T; Erbe, E; Sparks, D; Chaney, R

    2009-01-01

    The genus Alyssum contains >50 Ni hyperaccumulator species; many can achieve >2.5% Ni in dry leaf. In soils with normal Mn levels, Alyssum trichome bases were previously observed to accumulate Ni and Mn to high levels. Here we report concentration and localization patterns in A. murale and A. corsicum grown in soils with nonphytotoxic factorial additions of Ni and Mn salts. Four leaf type subsets based on size and age accumulated Ni and Mn similarly. The greatest Mn accumulation (10 times control) was observed in A. corsicum with 40 mmol Mn kg-1 and 40 mmol Ni kg-1 added to potting soil. Whole leaf Ni concentrations decreased as Mn increased. Synchrotron X-ray fluorescence mapping of whole fresh leaves showed localized in distinct high-concentration Mn spots associated with trichomes, Ni and Mn distributions were strongly spatially correlated. Standard X-ray fluorescence point analysis/mapping of cryofractured and freeze-dried samples found that Ni and Mn were co-located and strongly concentrated only in trichome bases and in cells adjacent to trichomes. Nickel concentration was also strongly spatially correlated with sulfur. Results indicate that maximum Ni phytoextraction by Alyssum may be reduced in soils with higher phytoavailable Mn, and suggest that Ni hyperaccumulation in Alyssum species may have developed from a Mn handling system.

  13. NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum

    NASA Astrophysics Data System (ADS)

    Smart, K. E.; Kilburn, M. R.; Salter, C. J.; Smith, J. A. C.; Grovenor, C. R. M.

    2007-02-01

    Certain plants known as `metal hyperaccumulators' can accumulate exceptional concentrations of elements such as zinc, manganese, nickel, cobalt, copper, selenium, cadmium or arsenic in their above ground tissue. In members of the genus Alyssum, nickel concentrations can reach values as high as 3% of leaf dry biomass. These plants must possess very effective mechanisms for the transport, chelation and sequestration of such elements within their tissues to avoid the toxic effects of free metal ions. Evidence from a number of different techniques suggests that nickel is concentrated primarily in the outermost, epidermal tissue of leaves of Alyssum hyperaccumulators, but there is currently no consensus on the principal sites of nickel sequestration. In this study, high resolution secondary ion mass spectrometry (NanoSIMS) analysis has been performed on longitudinal sections of Alyssum lesbiacum leaves. Elemental maps were obtained which revealed the high concentrations of nickel in the peripheral regions of the large unicellular stellate leaf hairs (trichomes) and in the epidermal cell layer. Electron probe microanalysis (EPMA) was used to provide independent confirmation of elemental distribution in the specimens, but the superior spatial resolution and high chemical sensitivity of the NanoSIMS technique provided a more detailed image of elemental distribution in these biological specimens at the cellular level.

  14. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum

    NASA Astrophysics Data System (ADS)

    Krämer, U.; Grime, G. W.; Smith, J. A. C.; Hawes, C. R.; Baker, A. J. M.

    1997-07-01

    Certain terrestrial plants are able to accumulate metals such as zinc, manganese, nickel, cobalt, or copper in their above-ground biomass. The largest group of these so-called "metal hyperaccumulators" is to be found among certain species in the family Brassicaceae endemic to ultramafic soils. For example, nickel concentrations in members of the genus Alyssum can reach 3% of the leaf dry biomass. However, nickel levels in the root tissue of these plants are low, suggesting that hyperaccumulation is associated with effective metal translocation from root to shoot and sequestration of the metal in non-toxic form within the leaves. To investigate the sites of nickel localization within A. lesbiacum, leaf cross-sections were examined by nuclear microscopy using PIXE and RBS on the Oxford Scanning Proton Microprobe (SPM) with a spatial resolution of 1 μm. This paper describes the sample preparation and analysis methods and presents some preliminary results indicating that nickel is sequestered to a considerable degree within the epidermal trichomes on the leaf surface.

  15. Characterization of a selenium-tolerant rhizosphere strain from a novel Se-hyperaccumulating plant Cardamine hupingshanesis.

    PubMed

    Tong, Xinzhao; Yuan, Linxi; Luo, Lei; Yin, Xuebin

    2014-01-01

    A novel selenium- (Se-) hyperaccumulating plant, Cardamine hupingshanesis, accumulating Se as a form of SeCys2, was discovered in Enshi, Hubei, China, which could not be explained by present selenocysteine methyltransferase (SMT) theory. However, it is interesting to investigate if rhizosphere bacteria play some roles during SeCys2 accumulation. Here, one Se-tolerant rhizosphere strain, Microbacterium oxydans, was isolated from C. hupingshanesis. Phylogenetic analysis and 16S rRNA gene sequences determined the strain as a kind of Gram positive bacillus and belonged to the family Brevibacterium frigoritolerans. Furthermore, Se tolerance test indicated the strain could grow in extreme high Se level of 15.0 mg Se L(-1). When exposed to 1.5 mg Se L(-1), SeCys2 was the predominant Se species in the bacteria, consistent with the Se species in C. hupingshanesis. This coincidence might reveal that this strain played some positive effect in SeCys2 accumulation of C. hupingshanesis. Moreover, when exposed to 1.5 mg Se L(-1) or 15.0 mg Se L(-1), As absorption diminished in the logarithmic phase. In contrast, As absorption increased when exposed to 7.5 mg Se L(-1), indicating As metabolism processes could be affected by Se on this strain. The present study provided a sight on the role of rhizosphere bacteria during Se accumulation for Se-hyperaccumulating plant. PMID:25478582

  16. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil

    PubMed Central

    Broadhurst, Catherine L.; Chaney, Rufus L.

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg−1 Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg−1 Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg−1. A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  17. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil.

    PubMed

    Broadhurst, Catherine L; Chaney, Rufus L

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg(-1) Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg(-1) Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg(-1). A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  18. Metal binding properties and structure of a type III metallothionein from the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fernandez, Lucia Rubio; Vandenbussche, Guy; Roosens, Nancy; Govaerts, Cédric; Goormaghtigh, Erik; Verbruggen, Nathalie

    2012-09-01

    Metallothioneins (MT) are low molecular weight proteins with cysteine-rich sequences that bind heavy metals with remarkably high affinities. Plant MTs differ from animal ones by a peculiar amino acid sequence organization consisting of two short Cys-rich terminal domains (containing from 4 to 8 Cys each) linked by a Cys free region of about 30 residues. In contrast with the current knowledge on the 3D structure of animal MTs, there is a striking lack of structural data on plant MTs. We have expressed and purified a type III MT from Noccaea caerulescens (previously Thlaspi caerulescens). This protein is able to bind a variety of cations including Cd(2+), Cu(2+), Zn(2+) and Pb(2+), with different stoichiometries as shown by mass spectrometry. The protein displays a complete absence of periodic secondary structures as measured by far-UV circular dichroism, infrared spectroscopy and hydrogen/deuterium exchange kinetics. When attached onto a BIA-ATR biosensor, no significant structural change was observed upon removing the metal ions. PMID:22668884

  19. Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola.

    PubMed

    Hu, Pengjie; Yin, Yong-Gen; Ishikawa, Satoru; Suzui, Nobuo; Kawachi, Naoki; Fujimaki, Shu; Igura, Masato; Yuan, Cheng; Huang, Jiexue; Li, Zhu; Makino, Tomoyuki; Luo, Yongming; Christie, Peter; Wu, Longhua

    2013-09-01

    The aims of this study are to investigate whether and how the nitrogen form (nitrate (NO3 (-)) versus ammonium (NH4 (+))) influences cadmium (Cd) uptake and translocation and subsequent Cd phytoextraction by the hyperaccumulator species Sedum plumbizincicola. Plants were grown hydroponically with N supplied as either NO3 (-) or NH4 (+). Short-term (36 h) Cd uptake and translocation were determined innovatively and quantitatively using a positron-emitting (107)Cd tracer and positron-emitting tracer imaging system. The results show that the rates of Cd uptake by roots and transport to the shoots in the NO3 (-) treatment were more rapid than in the NH4 (+) treatment. After uptake for 36 h, 5.6 (0.056 μM) and 29.0 % (0.290 μM) of total Cd in the solution was non-absorbable in the NO3 (-) and NH4 (+) treatments, respectively. The local velocity of Cd transport was approximately 1.5-fold higher in roots (3.30 cm h(-1)) and 3.7-fold higher in shoots (10.10 cm h(-1)) of NO3 (-)- than NH4 (+)-fed plants. Autoradiographic analysis of (109)Cd reveals that NO3 (-) nutrition enhanced Cd transportation from the main stem to branches and young leaves. Moreover, NO3 (-) treatment increased Cd, Ca and K concentrations but inhibited Fe and P in the xylem sap. In a 21-day hydroponic culture, shoot biomass and Cd concentration were 1.51 and 2.63 times higher in NO3 (-)- than in NH4 (+)-fed plants. We conclude that compared with NH4 (+), NO3 (-) promoted the major steps in the transport route followed by Cd from solution to shoots in S. plumbizincicola, namely its uptake by roots, xylem loading, root-to-shoot translocation in the xylem and uploading to the leaves. S. plumbizincicola prefers NO3 (-) nutrition to NH4 (+) for Cd phytoextraction. PMID:23589260

  20. Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulator Pteris vittata.

    PubMed

    de Oliveira, Letúzia M; Gress, Julia; De, Jaysankar; Rathinasabapathi, Bala; Marchi, Giuliano; Chen, Yanshan; Ma, Lena Q

    2016-03-01

    We investigated the effects of chromate (CrVI) and sulfate on their uptake and translocation in As-hyperaccumulator Pteris vittata. Plants were exposed to 1) 0.1 mM CrVI and 0, 0.25, 1.25 or 2.5 mM sulfate or 2) 0.25 mM sulfate and 0, 0.5, 2.5 or 5.0 mM CrVI for 1 d in hydroponics. P. vittata accumulated 26 and 1261 mg kg(-1) Cr in the fronds and roots at CrVI0.1, and 2197 and 1589 mg kg(-1) S in the fronds and roots at S0.25. Increasing sulfate concentrations increased Cr root concentrations by 16-66% and helped CrVI reduction to CrIII whereas increasing CrVI concentrations increased frond sulfate concentrations by 3-27%. Increasing sulfate concentrations enhanced TBARS concentrations in the biomass, indicating oxidative stress caused lipid peroxidation in plant cell membranes. However, addition of 0.25-2.5 mM sulfate alleviated CrVI's toxic effects and decreased TBARS from 23.5 to 9.46-12.3 μmol g(-1) FW. Though CrVI was supplied, 78-96% of CrIII was in the biomass, indicating efficient CrVI reduction to CrIII by P. vittata. The data indicated the amazing ability of P. vittata in Cr uptake at 289 mg kg(-1) h(-1) with little translocation to the fronds. These results indicated that P. vittata had potential in Cr phytoremediation in contaminated sites but further studies are needed to evaluate this potential. The facts that CrVI and sulfate helped each other in uptake by P. vittata suggest that CrVI was not competing with sulfate uptake in P. vittata. However, the mechanisms of how sulfate and CrVI enhance each other's accumulation in P. vittata need further investigation. PMID:26761595

  1. Elevated CO2 concentration increase the mobility of Cd and Zn in the rhizosphere of hyperaccumulator Sedum alfredii.

    PubMed

    Li, Tingqiang; Tao, Qi; Liang, Chengfeng; Yang, Xiaoe

    2014-05-01

    The effects of elevated CO2 on metal species and mobility in the rhizosphere of hyperaccumulator are not well understood. We report an experiment designed to compare the effects of elevated CO2 on Cd/Zn speciation and mobility in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350 μl l(-1)) or elevated (800 μl l(-1)) CO2 conditions. No difference in solution pH of NHE was observed between ambient and elevated CO2 treatments. For HE, however, elevated CO2 reduced soil solution pH by 0.22 unit, as compared to ambient CO2 conditions. Elevated CO2 increased dissolved organic carbon (DOC) and organic acid levels in soil solution of both ecotypes, but the increase in HE solution was much greater than in NHE solution. After the growth of HE, the concentrations of Cd and Zn in soil solution decreased significantly regardless of CO2 level. The visual MINTEQ speciation model predicted that Cd/Zn-DOM complexes were the dominant species in soil solutions, followed by free Cd(2+) and Zn(2+) species for both ecotypes. However, Cd/Zn-DOM complexes fraction in soil solution of HE was increased by the elevated CO2 treatment (by 8.01 % for Cd and 8.47 % for Zn, respectively). Resin equilibration experiment results indicated that DOM derived from the rhizosphere of HE under elevated CO2 (HE-DOM-E) (90 % for Cd and 73 % for Zn, respectively) showed greater ability to form complexes with Cd and Zn than those under ambient CO2 (HE-DOM-A) (82 % for Cd and 61 % for Zn, respectively) in the undiluted sample. HE-DOM-E showed greater ability to extract Cd and Zn from soil than HE-DOM-A. It was concluded that elevated CO2 could increase the mobility of Cd and Zn due to the enhanced formation of DOM-metal complexes in the rhizosphere of HE S. alfredii. PMID:24453019

  2. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation.

    PubMed

    Luo, Shenglian; Wan, Yong; Xiao, Xiao; Guo, Hanjun; Chen, Liang; Xi, Qiang; Zeng, Guangming; Liu, Chengbin; Chen, Jueliang

    2011-03-01

    Valuable endophytic strains facilitating plants growth and detoxification of heavy metals are required because the application of plant-endophyte symbiotic system is a promising potential technique to improve efficiency of phytoremediation. In this study, endophytic bacterium LRE07 was isolated from cadmium hyperaccumulator Solanum nigrum L. It was identified as Serratia sp. by 16S rRNA sequence analysis. The endophytic bacterium LRE07 was resistant to the toxic effects of heavy metals, solubilized mineral phosphate, and produced indoleacetic acid and siderophore. The heavy metal detoxification was studied in growing LRE07 cells. The strain bound over 65% of cadmium and 35% of zinc in its growing cells from single metal solutions 72 h after inoculation. Besides the high removal efficiencies in single-ion system, an analogous removal phenomenon was also observed in multi-ions system, indicating that the endophyte possesses specific and remarkable heavy metal remediation abilities. PMID:20953602

  3. Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey.

    PubMed

    Bhatia, Naveen P; Walsh, Kerry B; Baker, Alan J M

    2005-05-01

    Field-collected, young plants of Ni hyperaccumulator Stackhousia tryonii, grown in a glasshouse for 20 weeks, were exposed to low- (available Ni concentration in the native serpentine soil, i.e. 60 microg g(-1) dry soil) and high- (external application of 1000 ppm) Ni concentrations in the substrate. Nickel concentration in the freeze-dried leaf tissues increased from 3700 microg g(-1) to 13 700 microg g(-1) with soil Ni supplementation, of which >60% was extracted with dilute acid (0.025 M HCl). Nickel supplementation also elicited a 575%, 211%, and 37% increase in the final concentrations of oxalic, citric, and malic acids, respectively, in leaf tissues. Malic acid was the dominant organic acid, followed by citric and oxalic acids. The molar ratio of Ni to malic acid was 1.0, consistent with a role for malate as a ligand for Ni in hyperaccumulating plants, supporting detoxification/transport and storage of this heavy metal in S. tryonii. The total amino acid concentrations in the xylem sap did not change with Ni supplementation (21.7+/-3.7 mM and 17.9+/-5 mM, respectively, for low- and high-nickel-treated plants). Glutamine was the major amino acid in both the low- and high-Ni-treated plants. The concentration of glutamine decreased by >60%, with a corresponding increase in alanine, aspartic acid, and glutamic acid, on exposure to high Ni. A role of amino acids in Ni complexation and transport in S. tryonii is not immediately apparent. PMID:15767321

  4. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions.

    PubMed

    Long, Xin-Xian; Zhang, Yu-Gang; Jun, Dai; Zhou, Qixing

    2009-04-01

    A field survey was conducted to study the characteristics of zinc, cadmium, and lead accumulation and rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance growing natively on an old lead/zinc mining site. We found significant hyperaccumulation of zinc and cadmium in field samples of S. alfredii, with maximal shoot concentrations of 9.10-19.61 g kg(-1) zinc and 0.12-1.23 g kg(-1) cadmium, shoot/root ratios ranging from 1.75 to 3.19 (average 2.54) for zinc, 3.36 to 4.43 (average 3.85) for cadmium, shoot bioaccumulation factors of zinc and cadmium being 1.46-4.84 and 7.35-17.41, respectively. While most of lead was retained in roots, thus indicating exclusion as a tolerance strategy for lead. Compared to the non-rhizosphere soil, organic matter and total nitrogen and phosphorus content, CEC and water extractable zinc, cadmium, and lead concentration were significantly higher, but pH was smaller in rhizosphere soil. The rhizosphere soil of S. alfredii harbored a wide variety of microorganism. In general, significantly higher numbers of culturable bacteria, actinomycetes, and fungi were found in the rhizosphere compared to bulk soil, confirming the stimulatory effect of the S. alfredii rhizosphere on microbial growth and proliferation. Analyses of BIOLOG data also showed that the growth of S. alfredii resulted in observable changes in BIOLOG metabolic profiles, utilization ability of different carbon substrates of microbial communities in the rhizosphere soil were also higher than the non-rhizosphere, confirming a functional effect of the rhizosphere of S. alfredii on bacterial population. PMID:19183820

  5. Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant

    PubMed Central

    Afton, Scott E.; Catron, Brittany; Caruso, Joseph A.

    2009-01-01

    Although many studies have investigated the metabolism of selenium and arsenic in hyperaccumulating plants for phytoremediation purposes, few have explored non-hyperaccumulating plants as a model for general contaminant exposure to plants. In addition, the result of simultaneous supplementation with selenium and arsenic has not been investigated in plants. In this study, Chlorophytum comosum, commonly known as the spider plant, was used to investigate the metabolism of selenium and arsenic after single and simultaneous supplementation. Size exclusion and ion-pairing reversed phase liquid chromatography were coupled to an inductively coupled plasma mass spectrometer to obtain putative metabolic information of the selenium and arsenic species in C. comosum after a mild aqueous extraction. The chromatographic results depict that selenium and arsenic species were sequestered in the roots and generally conserved upon translocation to the leaves. The data suggest that selenium was directly absorbed by C. comosum roots when supplemented with SeVI, but a combination of passive and direct absorption occurred when supplemented with SeIV due to the partial oxidation of SeIV to SeVI in the rhizosphere. Higher molecular weight selenium species were more prevalent in the roots of plants supplemented with SeIV, but in the leaves of plants supplemented with SeVI due to an increased translocation rate. When supplemented as AsIII, arsenic is proposed to be passively absorbed as AsIII and partially oxidized to AsV in the plant root. Although total elemental analysis demonstrates a selenium and arsenic antagonism, a compound containing selenium and arsenic was not present in the general aqueous extract of the plant. PMID:19273464

  6. Uptake of antimonite and antimonate by arsenic hyperaccumulator Pteris vittata: Effects of chemical analogs and transporter inhibitor.

    PubMed

    Tisarum, Rujira; Chen, Yanshan; Dong, Xiaoling; Lessl, Jason T; Ma, Lena Q

    2015-11-01

    Antimonite (SbIII) is transported into plants via aquaglyceroporin channels but it is unknown in As-hyperaccumulator Ptreis vittata (PV). We tested the effects of SbIII analogs (arsenite-AsIII, glycerol, silicic acid-Si, and, glucose), antimonate (SbV) analog (phosphate-P), and aquaglyceroporin transporter inhibitor (silver, Ag) on the uptake of SbIII or SbV by PV gametophytes. PV gametophytes were grown in 20% Hoagland solution containing 65 μM SbIII or SbV and increasing concentrations of analogs at 65-6500 μM for 2 h or 4 h under sterile condition. After exposing to 65 μM Sb for 2 h, PV accumulated 767 mg/kg Sb in SbIII treatment and 419 mg/kg in SbV treatment. SbIII uptake by PV gametophytes was not impacted by glycerol or AsIII nor aquaglyceroporin inhibitor Ag during 2 h exposure. While Si increased SbIII uptake and glucose decreased SbIII uptake by PV gametophytes, the impact disappeared during 4 h exposure. Under P-sufficient condition, P increased SbIII uptake and decreased SbV uptake during 2 h exposure, but the effect again disappeared after 4 h. After being P-starved for 2 weeks, P decreased SbIII with no effect on SbV uptake during 2 h exposure. Our results indicated that: 1) PV gametophytes could serve as an efficient model to study Sb uptake, and 2) unique SbIII uptake by PV may be related to its trait of As hyperaccumulation. PMID:26142750

  7. Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation.

    PubMed

    Han, Xiaojiao; Yin, Hengfu; Song, Xixi; Zhang, Yunxing; Liu, Mingying; Sang, Jiang; Jiang, Jing; Li, Jihong; Zhuo, Renying

    2016-06-01

    The hyperaccumulating ecotype of Sedum alfredii Hance is a cadmium (Cd)/zinc/lead co-hyperaccumulating species of Crassulaceae. It is a promising phytoremediation candidate accumulating substantial heavy metal ions without obvious signs of poisoning. However, few studies have focused on the regulatory roles of miRNAs and their targets in the hyperaccumulating ecotype of S. alfredii. Here, we combined analyses of the transcriptomics, sRNAs and the degradome to generate a comprehensive resource focused on identifying key regulatory miRNA-target circuits under Cd stress. A total of 87 721 unigenes and 356 miRNAs were identified by deep sequencing, and 79 miRNAs were differentially expressed under Cd stress. Furthermore, 754 target genes of 194 miRNAs were validated by degradome sequencing. A gene ontology (GO) enrichment analysis of differential miRNA targets revealed that auxin, redox-related secondary metabolism and metal transport pathways responded to Cd stress. An integrated analysis uncovered 39 pairs of miRNA targets that displayed negatively correlated expression profiles. Ten miRNA-target pairs also exhibited negative correlations according to a real-time quantitative PCR analysis. Moreover, a coexpression regulatory network was constructed based on profiles of differentially expressed genes. Two hub genes, ARF4 (auxin response factor 4) and AAP3 (amino acid permease 3), which might play central roles in the regulation of Cd-responsive genes, were uncovered. These results suggest that comprehensive analyses of the transcriptomics, sRNAs and the degradome provided a useful platform for investigating Cd hyperaccumulation in S. alfredii, and may provide new insights into the genetic engineering of phytoremediation. PMID:26801211

  8. Elemental distribution in reproductive and neural organs of the Epilachna nylanderi (Coleoptera: Coccinellidae), a phytophage of nickel hyperaccumulator Berkheya coddii (Asterales: Asteraceae) by micro-PIXE.

    PubMed

    Mesjasz-Przybyłowicz, Jolanta; Orłowska, Elżbieta; Augustyniak, Maria; Nakonieczny, Mirosław; Tarnawska, Monika; Przybyłowicz, Wojciech; Migula, Paweł

    2014-01-01

    The phenomenon of metal hyperaccumulation by plants is often explained by a pathogen or herbivore defense hypothesis. However, some insects feeding on metal hyperaccumulating plants are adapted to the high level of metals in plant tissues. Former studies on species that feed on the leaves of Berkheya coddii Roessler 1958 (Asteraceae), a nickel-hyperaccumulating plant, demonstrated several protective mechanisms involved in internal distribution, immobilization, and elimination of Ni from the midgut and Malpighian tubules. These species are mainly coleopterans, including the lady beetle, Epilachna nylanderi (Mulsant 1850) (Coleoptera: Coccinellidae), collected from the ultramafic ecosystem near Barberton in South Africa. By performing particle-induced X-ray emission microanalysis elemental microanalysis (PIXE), this study examined whether Ni may be harmful to internal body systems that decide on insect reactivity (central nervous system [CNS]), their reproduction, and the relationships between Ni and other micronutrients. Data on elemental distribution of nine selected elements in target organs of E. nylanderi were compared with the existing data for other insect species adapted to the excess of metals. Micro-PIXE maps of seven regions of the CNS showed Ni mainly in the neural connectives, while cerebral ganglia were better protected. Concentrations of other bivalent metals were lower than those of Ni. Testis, compared with other reproductive organs, showed low amounts of Ni. Zn was effectively regulated at physiological dietary levels. In insects exposed to excess dietary Zn, it was also accumulated in the reproductive organs. Comparison of E. nylanderii with other insects that ingest hyperaccumulating plants, especially chrysomelid Chrysolina clathrata (Clark) (Coleoptera: Chrysomelidae), showed lower protection of the CNS and reproductive organs. PMID:25399425

  9. Speciation and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence.

    PubMed

    Lu, Lingli; Liao, Xingcheng; Labavitch, John; Yang, Xiaoe; Nelson, Erik; Du, Yonghua; Brown, Patrick H; Tian, Shengke

    2014-11-01

    Differences in metal homeostasis among related plant species can give important information of metal hyperaccumulation mechanisms. Speciation and distribution of Zn were investigated in a hyperaccumulating population of Sedum alfredii by using extended X-ray absorption fine structure and micro-synchrotron X-ray fluorescence (μ-XRF), respectively. The hyperaccumulator uses complexation with oxygen donor ligands for Zn storage in leaves and stems, and variations in the Zn speciation was noted in different tissues. The dominant chemical form of Zn in leaves was most probably a complex with malate, the most prevalent organic acid in S. alfredii leaves. In stems, Zn was mainly associated with malate and cell walls, while Zn-citrate and Zn-cell wall complexes dominated in the roots. Two-dimensional μ-XRF images revealed age-dependent differences in Zn localization in S. alfredii stems and leaves. In old leaves of S. alfredii, Zn was high in the midrib, margin regions and the petiole, whereas distribution of Zn was essentially uniform in young leaves. Zinc was preferentially sequestered by cells near vascular bundles in young stems, but was highly localized to vascular bundles and the outer cortex layer of old stems. The results suggest that tissue- and age-dependent variations of Zn speciation and distribution occurred in the hyperaccumulator S. alfredii, with most of the Zn complexed with malate in the leaves, but a shift to cell wall- and citric acid-Zn complexes during transportation and storage in stems and roots. This implies that biotransformation in Zn complexation occurred during transportation and storage processes in the plants of S. alfredii. PMID:25306525

  10. Hyperaccumulator of Pb in native plants growing on Peruvian mine tailings

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Roca, Nuria; Boluda, Rafael; Tume, Pedro; Duran, Paola; Poma, Wilfredo; Sanchez, Isidoro

    2014-05-01

    samples were taken at four locations (CA1, CA2, CA3, CA4) with different levels of Pb. The Pb soil content (mean ± standard deviation) in mg•kg-1 is as follows: CA1 3992 ± 301; CA2 10128 ± 2247, CA3 14197 ± 895, CA4 16060 ± 810. The non-polluted value around the mine was Pb 124 mg•kg-1. Unusual elevated concentrations of Pb (over 1000 mg kg-1) and TF greater than one were detected in shoots of 6 different plants species (Ageratina sp., Achirodine alata, Cortaderia apalothica, Epilobium denticulatum, Taraxacum officinalis and Trifolium repens). The location CA4 has the maximum content of Pb in the shoots of Ageratina sp. (5045±77 mg•kg-1), C. apalothica (3367±188 mg•kg-1), E. denticulatum (13599±848 mg•kg-1), T. officinalis (2533±47 mg•kg-1) and T. repens (2839±231 mg•kg-1). However, the BF (Bioaccumulation Factor) was smaller than one. Despite the low BF index, the great TFs for Pb indicate that these plant species effectively translocate this metal (i.e., 2.4 for Ageratina sp., 2.3 for C. apalothica, 1.6 for T. repens, 1.5 for A. alata, 1.3 for T. officinalis and 1.2 for E. denticulatum). It seems that the BF is not a reliable index when the metal soil concentration is extremely large. Controlled-environment studies must be performed to definitively confirm the Pb hyperaccumulation character of cited plant species.

  11. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    NASA Astrophysics Data System (ADS)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    observed in so-called hyperaccumulating metalophytes, which are studied for its suitability to be incorporated in metal recovery processes of elements that diffusely occur in different waste streams. In a systematic series of tests under laboratory conditions the accumulation behaviour for many different elements including rare earth metals of a selection of candidate plants growing on sewage sludge, incineration residues and industrial leftovers was assessed (quantitavely and qualitatively). Growth performance of these plants as well as the most suitable substrate properties were evaluated. The results of this project provided the groundwork for further research and development steps that might bring to practical implementation a technological option with potentially huge benefits: The recovery of valuable metal resources from sewage sludge, incineration ashes and metal rich wastewaters by environmentally friendly and low energy means. Simultaneous decontamination of the input substrates from heavy metals, opening the possibility for these nutrient streams to be redirected to biological regeneration processes (for example use as fertilizers in agriculture) without fear of polluting soils with heavy metal loads. Generation of biomass on contaminated substrates can yield usable energy surplus through incineration during or after processing.

  12. Non-invasive microelectrode cadmium flux measurements reveal the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii.

    PubMed

    Sun, Jian; Wang, Ruigang; Liu, Zhongqi; Ding, Yongzhen; Li, Tingqiang

    2013-02-15

    This study aims to determine the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator (HE) and non hyperaccumulator (NHE) ecotypes of Sedum alfredii using a non-invasive Cd-selective microelectrode. Compared with the NHE S. alfredii, the HE S. alfredii showed a higher Cd influx in the root apical region and root hair cells, as well as a significantly higher Cd efflux in the leaf petiole after root pre-treatment with cadmium chloride (CdCl(2)). Thus, HE S. alfredii has a higher capability for the translocation of absorbed Cd to the shoot. Moreover, the mesophyll tissues, isolated mesophyll protoplasts, and intact vacuoles from HE S. alfredii exhibited an instantaneous influx of Cd in response to CdCl(2) treatment with mean rates that are markedly higher than those from NHE S. alfredii. Therefore, the hyper-accumulating trait of HE S. alfredii is characterized by the rapid Cd uptake in specific root regions, including the apical region and root hair cells, as well as by the rapid root-to-shoot translocation and the highly efficient Cd-permeable transport system in the plasma membrane and mesophyll cell tonoplast. We suggest that the non-invasive Cd-selective microelectrode is an excellent method with a high degree of spatial resolution for the study of Cd transport at the tissue, cellular, and sub-cellular levels in plants. PMID:23261265

  13. Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils.

    PubMed

    Li, Tingqiang; Di, Zhenzhen; Yang, Xiaoe; Sparks, Donald L

    2011-09-15

    Pot experiments were conducted to investigate the changes of the dissolved organic matter (DOM) in the rhizosphere of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii and its effects on Zn and Cd sorption by soils. After planted with HE, soil pH in the rhizosphere reduced by 0.5-0.6 units which is consistent with the increase of DOM. The hydrophilic fractions (51%) in DOM from the rhizosphere of HE (HE-DOM) was much greater than NHE-DOM (35%). In the presence of HE-DOM, Zn and Cd sorption capacity decreased markedly in the following order: calcareous clay loam>neutral clay loam>acidic silty clay. The sorption isotherms could be well described by the Freundlich equation (R(2)>0.95), and the partition coefficient (K) in the presence of HE-DOM was decreased by 30.7-68.8% for Zn and 20.3-59.2% for Cd, as compared to NHE-DOM. An increase in HE-DOM concentration significantly reduced the sorption and increased the desorption of Zn and Cd by three soils. DOM derived from the rhizosphere of the hyperaccumulating ecotype of S. alfredii could significantly reduce metal sorption and increase its mobility through the formation of soluble DOM-metal complexes. PMID:21782330

  14. A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot District, Tak Province, Thailand: (1) Determination of Cd-hyperaccumulating plants.

    PubMed

    Khaokaew, Saengdao; Landrot, Gautier

    2015-11-01

    The cadmium (Cd) phytoremediation capabilities of Gynura pseudochina, Chromolaena odorata, Conyza sumatrensis, Crassocephalum crepidioides and Nicotiana tabacum were determined by conducting in-situ experiments in a highly Cd-contaminated agricultural field at Mae Sot District, Tak Province, Thailand. Most of these five plant species, which are commonly found in Thailand, previously demonstrated Cd-hyperaccumulating capacities under greenhouse conditions. This study represented an important initial step in determining if any of these plants could, under field-conditions, effectively remove Cd from the Mae Sot contaminated fields, which represent a health threat to thousands of local villagers. All plant species had at least a 95% survival rate on the final harvest day. Additionally, all plant species, except C. odorata, could hyperaccumulate the extractable Cd amounts present in the soil, based on their associated Bioaccumulation Factor (BAF), Translocation Factor (TF), and background Vegetation Factor (VF). Therefore, the four Cd-hyperaccumulating plant species identified in this study may successfully treat a majority of contaminated fields at Mae Sot, as it was previously reported that Cd amounts present in a number of these soils were mostly available. PMID:25454203

  15. Response of antioxidant enzymes, ascorbate and glutathione metabolism towards cadmium in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii H.

    PubMed

    Jin, Xiaofen; Yang, Xiaoe; Mahmood, Qaisar; Islam, Ejazul; Liu, Dan; Li, Hong

    2008-08-01

    Hydroponics studies were conducted to investigate the antioxidant adaptations, ascorbate and glutathione metabolism in hyperaccumulating ecotype of Sedum alfredii (HE) exposed to high Cd environment, when compared with its nonhyperaccumulating ecotype (NHE). Exposure to Cd induced a burst of oxidative stress in both ecotypes which was evident by the sharp increase in hydrogen peroxide (H(2)O(2)) contents and lipid peroxidation. Buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, did not affect H(2)O(2) concentrations as well as growth of both ecotypes in the absence of Cd. However, compared with Cd application alone, BSO combined with Cd treatment caused a substantial augmentation of H(2)O(2) accumulation accompanied by a reduction in Cd concentrations in roots and leaves of HE at the end of treatment, which may rule out the possibility that GSH biosynthesis may play an important role as a signal of the stress regulation. No efficient and superior enzymatic antioxidant defense mechanisms against Cd-imposed oxidative stress existed in both NHE and HE, but the essential nonenzymatic components like ascorbic acid (AsA) and GSH played a prominent role in tolerance against Cd. Cadmium stimulated a notable rise in AsA concentration in both ecotypes soon after the application of treatment. A preferential Cd-stress response in HE was suggested to changes in the GSH pool, where acclimation was marked by increased GSH concentrations. PMID:18214940

  16. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.

    PubMed

    Huang, Yi; Miyauchi, Keisuke; Inoue, Chihiro; Endo, Ginro

    2016-01-01

    In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50 μg/L, 500 μg/L, and 1000 μg/L) to lower than the detection limit (0.1 μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water. PMID:26549187

  17. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L.

    PubMed

    Wei, Shuhe; Li, Yunmeng; Zhou, Qixing; Srivastava, Mrittunjai; Chiu, Siuwai; Zhan, Jie; Wu, Zhijie; Sun, Tieheng

    2010-04-15

    Phytoremediation is a cost-effective, simple and sustainable beneficiary technique to purify the polluted environment. Solanum nigrum L., a newly found cadmium (Cd) hyperaccumulator, has shown the potential to remediate Cd-contaminated soils. Present study investigated the effects of fertilizer amendments on the Cd uptake by S. nigrum. Chicken manure and urea are usual agricultural fertilizers and more environmental friendly. The results showed that Cd concentrations in shoots of S. nigrum were significantly decreased (p<0.05) by 28.2-34.6%, as compared to that of without the addition of chicken manure, but not the case for urea treatment. However, Cd extraction capacities (microg pot(-1)) in shoot biomass of S. nigrum were significantly increased (p<0.05) due to increased shoot biomass. In addition, available Cd concentration in soil significantly decreased due to addition of chicken manure. Thus, urea might be a better fertilizer for strengthening phytoextraction rate of S. nigrum to Cd, and chicken manure may be a better fertilizer for phytostabilization. PMID:19951826

  18. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri.

    PubMed

    Ueno, Daisei; Iwashita, Takashi; Zhao, Fang-Jie; Ma, Jian Feng

    2008-04-01

    Arabidopsis halleri is a Cd hyperaccumulator; however, the mechanisms involved in the root to shoot translocation of Cd are not well understood. In this study, we characterized Cd transfer from the root medium to xylem in this species. Arabidopsis halleri accumulated 1,500 mg kg(-1) Cd in the shoot without growth inhibition. A time-course experiment showed that the release of Cd into the xylem was very rapid; by 2 h exposure to Cd, Cd concentration in the xylem sap was 5-fold higher than that in the external solution. The concentration of Cd in the xylem sap increased linearly with increasing Cd concentration in the external solution. Cd transfer to the xylem was completely inhibited by the metabolic inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Cd concentration in the xylem sap was decreased by increasing the concentration of external Zn, but enhanced by Fe deficiency treatment. Analysis with 113Cd-nuclear magnetic resonance (NMR) showed that the chemical shift of 113Cd in the xylem sap was the same as that of Cd(NO3)2. Metal speciation with Geochem-PC also showed that Cd occurred mainly in the free ionic form in the xylem sap. These results suggest that Cd transfer from the root medium to the xylem in A. halleri is an energy-dependent process that is partly shared with Zn and/or Fe transport. Furthermore, Cd is translocated from roots to shoots in inorganic forms. PMID:18281325

  19. The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch. in response to Zn and Cd.

    PubMed

    Zeng, Xiao-Wen; Qiu, Rong-Liang; Ying, Rong-Rong; Tang, Ye-Tao; Tang, Lu; Fang, Xiao-Hang

    2011-01-01

    The Zn/Cd hyperaccumulator Arabis paniculata is able to tolerate high level of Zn and Cd. To clarify the molecular basis of Zn and Cd tolerance, proteomic approaches were applied to identify proteins involved in Zn and Cd stress response in A. paniculata. Plants were exposed to both low and high Zn or Cd levels for 10 d. Proteins of leaves in each treatment were separated by 2-DE (two-dimensional electrophoresis). Nineteen differentially-expressed proteins upon Zn treatments and 18 proteins upon Cd treatments were observed. Seventeen out of 19 of Zn-responsive proteins and 16 out of 18 of Cd-responsive proteins were identified using MALDI-TOF/TOF-MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry). The most of identified proteins were known to function in energy metabolism, xenobiotic/antioxidant defense, cellular metabolism, protein metabolism, suggesting the responses of A. paniculata to Zn and Cd share similar pathway to certain extend. However, the different metal defense was also revealed between Zn and Cd treatment in A. paniculata. These results indicated that A. paniculata against to Zn stress mainly by enhancement of energy metabolism including auxin biosynthesis and protein metabolism to maintain plant growth and correct misfolded proteins. In the case of Cd, plants adopted antioxidative/xenobiotic defense and cellular metabolism to keep cellular redox homeostasis and metal-transportation under Cd stress. PMID:21074242

  20. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.

    PubMed

    Tang, Lu; Ying, Rong-Rong; Jiang, Dan; Zeng, Xiao-Wen; Morel, Jean-Louis; Tang, Ye-Tao; Qiu, Rong-Liang

    2013-12-01

    Mechanisms of cadmium (Cd)-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata were investigated using photosynthesis limitation analysis. P. divaricata seedlings were grown in nutrient solution containing 0, 5, 10, 25, 50, or 75 μM Cd for 2 weeks. Total limitations to photosynthesis (TL) increased from 0% at 5 μM Cd to 68.8% at 75 μM Cd. CO2 diffusional limitation (DL) made the largest contribution to TL, accounting for 93-98% of TL in the three highest Cd treatments, compared to just 2-7% of TL attributable to biochemical limitation (BL). Microscopic imaging revealed significantly decreased stomatal density and mesophyll thickness in the three highest Cd treatments. Chlorophyll fluorescence parameters related to photosynthetic biochemistry (Fv/Fm, NPQ, ΦPSII, and qP) were not significantly decreased by increased Cd supply. Our results suggest that increased DL in leaves is the main cause of Cd-induced inhibition of photosynthesis in P. divaricata, possibly due to suppressed function of mesophyll and stomata. Analysis of chlorophyll fluorescence showed that Cd supply had little effect on photochemistry parameters, suggesting that the PSII reaction centers are not a main target of Cd inhibition of photosynthesis in P. divaricata. PMID:24077231

  1. The Hyperaccumulator Alyssum murale uses Complexation with Nitrogen and Oxygen Donor Ligands for Ni Transport and Storage

    SciTech Connect

    McNear, Jr., D.; Chanay, R; Sparks, D

    2010-01-01

    The Kotodesh genotype of the nickel (Ni) hyperaccumulator Alyssum murale was examined to determine the compartmentalization and internal speciation of Ni, and other elements, in an effort to ascertain the mechanism used by this plant to tolerate extremely high shoot (stem and leaf) Ni concentrations. Plants were grown either hydroponically or in Ni enriched soils from an area surrounding an historic Ni refinery in Port Colborne, Ontario, Canada. Electron probe micro-analysis (EPMA) and synchrotron based micro X-ray fluorescence ({mu}-SXRF) spectroscopy were used to determine the metal distribution and co-localization and synchrotron X-ray and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopies were used to determine the Ni speciation in plant parts and extracted sap. Nickel is concentrated in the dermal leaf and stem tissues of A. murale bound primarily to malate along with other low molecular weight organic ligands and possibly counter anions (e.g., sulfate). Ni is present in the plant sap and vasculature bound to histidine, malate and other low molecular weight compounds. The data presented herein supports a model in which Ni is transported from the roots to the shoots complexed with histidine and stored within the plant leaf dermal tissues complexed with malate, and other low molecular weight organic acids or counter-ions.

  2. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.

    PubMed

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2011-10-01

    The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO₄ and AlAsO₄ minerals (from < 5 μg L⁻¹ to 5.04-7.37 mg L⁻¹ As) and enhanced plant arsenic uptake (from 18.1-21.9 to 35.3-236 mg kg⁻¹ As in the fronds). Production of (1) pyochelin-type siderophores by ARB (fluorescent under ultraviolet illumination and characterized with thin layer chromatography) and (2) root exudate (dissolved organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata. PMID:21840210

  3. Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyperaccumulator plant Alyssum inflatum.

    PubMed

    Ghasemi, Rasoul; Ghaderian, S Majid; Krämer, Ute

    2009-11-01

    The divalent cations of several transition metal elements have similar chemical properties and, when present in excess, one metal can interfere with the homeostasis of another. To better understand the role of interactions between transition metals in the development of metal toxicity symptoms in plants, the effects of exposure to excess nickel (Ni) on copper (Cu) and iron (Fe) homeostasis in the Ni hyperaccumulator plant Alyssum inflatum were examined. Alyssum inflatum was hypertolerant to Ni, but not to Cu. Exposure to elevated subtoxic Ni concentrations increased Cu sensitivity, associated with enhanced Cu accumulation and enhanced root surface Cu(II)-specific reductase activity. Exposure to elevated Ni concentrations resulted in an inhibition of root-to-shoot translocation of Fe and concentration-dependent progressive Fe accumulation in root pericycle, endodermis and cortex cells of the differentiation zone. Shoot Fe concentrations, chlorophyll concentrations and Fe-dependent antioxidant enzyme activities were decreased in Ni-exposed plants when compared with unexposed controls. Foliar Fe spraying or increased Fe supply to roots ameliorated the chlorosis observed under exposure to high Ni concentrations. These results suggest that Ni interferes with Cu regulation and that the disruption of root-to-shoot Fe translocation is a major cause of nickel toxicity symptoms in A. inflatum. PMID:19691676

  4. Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii.

    PubMed

    Mengoni, A; Grassi, E; Barzanti, R; Biondi, E G; Gonnelli, C; Kim, C K; Bazzicalupo, M

    2004-08-01

    Serpentine soils are characterized by high levels of heavy metals (Ni, Co, Cr), and low levels of important plant nutrients (P, Ca, N). Because of these inhospitable edaphic conditions, serpentine soils are typically home to a very specialized flora including endemic species as the nickel hyperaccumulator Alyssum bertolonii. Although much is known about the serpentine flora, few researches have investigated the bacterial communities of serpentine areas. In the present study bacterial communities were sampled at various distances from A. bertolonii roots in three different serpentine areas and their genetic diversity was assessed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The obtained results indicated the occurrence of a high genetic diversity and heterogeneity of the bacterial communities present in the different serpentine areas. Moreover, TRFs (terminal restriction fragments) common to all the investigated A. bertolonii rhizosphere samples were found. A new cloning strategy was applied to 27 TRFs that were sequenced and taxonomically interpreted as mainly belonging to Gram-positive and alpha-Proteobacteria representatives. In particular, cloned TRFs which discriminated between rhizosphere and soil samples were mainly interpreted as belonging to Proteobacteria representatives. PMID:15546041

  5. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. PMID:26469935

  6. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    PubMed

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils. PMID:26874625

  7. Selection and Validation of Reference Genes for Real-Time Quantitative PCR in Hyperaccumulating Ecotype of Sedum alfredii under Different Heavy Metals Stresses

    PubMed Central

    Liu, Mingying; Qiao, Guirong; Jiang, Jing; Zhuo, Renying

    2013-01-01

    Real-time Quantitative PCR (RT-qPCR) has become an effective method for accurate analysis of gene expression in several biological systems as well as under different experimental conditions. Although with high sensitivity, specificity and broad dynamic range, this method requires suitable reference genes for transcript normalization in order to guarantee reproducible and meaningful results. In the present study, we evaluated five traditional housekeeping genes and five novel reference genes in Hyperaccumulating ecotype of Sedum alfredii, a well known hyperaccumulator for heavy metals phytoremediation, under Cd, Pb, Zn and Cu stresses of seven different durations. The expression stability of these ten candidates were determined with three programs - geNorm, NormFinder and BestKeeper. The results showed that all the selected reference genes except for SAND could be used for RT-qPCR normalization. Among them UBC9 and TUB were ranked as the most stable candidates across all samples by three programs together. For the least stable reference genes, however, BestKeeper produced different results compared with geNorm and NormFinder. Meanwhile, the expression profiles of PCS under Cd, Pb, Zn and Cu stresses were assessed using UBC9 and TUB respectively, and similar trends were obtained from the results of the two groups. The distinct expression patterns of PCS indicated that various strategies could be taken by plants in adaption to different heavy metals stresses. This study will provide appropriate reference genes for further gene expression quantification using RT-qPCR in Hyperaccumulator S. alfredii. PMID:24340067

  8. Lhcb2 gene expression analysis in two ecotypes of Sedum alfredii subjected to Zn/Cd treatments with functional analysis of SaLhcb2 isolated from a Zn/Cd hyperaccumulator.

    PubMed

    Zhang, Min; Senoura, Takeshi; Yang, Xiaoe; Chao, Yueen; Nishizawa, Naoko K

    2011-09-01

    The Lhcb2 gene from hyperaccumulator Sedum alfredii was up-regulated more than three-fold while the non-hyperaccumulator accumulated one or two-fold higher amount of the mRNA than control plants under different concentrations of Cd(2+) for 24 h. Lhcb2 expression was up-regulated more than five-fold in a non-hyperaccumulator S. alfredii when exposed to 2 μM Cd(2+) or 50 μM Zn(2+) for 8 d and the hyperaccumulator had over two-fold more mRNA abundance than the control plants. Over-expression of SaLhcb2 increased the shoot biomass by 14-41% and the root biomass by 21-57% without Cd(2+) treatment. Four transgenic tobacco lines (L5, L7, L10 and L11) possessed higher shoot biomass than WT plants with Cd(2+). Four transgenic lines (L7, L8, L10 and L11) accumulated 6-35% higher Cd(2+) amounts in shoots than the wild type plants. PMID:21516315

  9. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China.

    PubMed

    Yanqun, Zu; Yuan, Li; Schvartz, Christian; Langlade, Laurent; Fan, Liu

    2004-06-01

    A field survey of higher terrestrial plants growing on Lanping lead-zinc mine, China were conducted to identify species accumulating exceptionally large concentrations of Pb, Cd, Cu and Zn of 20 samples of 17 plant species. Concentrations of Pb and Zn in soil and in plant were higher than that of Cu and Cd. Significant difference was observed among the average concentrations of four heavy metals in plants (except Cd and Cu) and in soil (except Pb and Zn) (P<0.05). For the enrichment coefficient of the four heavy metals in plant, the order of average was Pbtree>herbaceous, and herbaceous grew in soil with the highest concentrations of four heavy metals. In different areas, the concentrations of Pb, Cd, Cu and Zn in plants and soils and enrichment coefficient were different. Plants in Paomaping had more accumulating ability to Pb, Cd and Zn, and plants in Jinfeng River had more accumulating ability to Cu. Six plant species, i.e. S. cathayana, Lithocarpus dealbatus, L. plyneura, Fargesia dura, Arundinella yunnanensis and R. annae in Paomaping, had high accumulation capacity. R. annae in Paomaping had hyperaccumulating capacity to Pb, Cd and Zn, L. plyneura to Pb and Cd, and S. cathayana to Cd, respectively. PMID:15031017

  10. Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria.

    PubMed

    Han, Yong-He; Fu, Jing-Wei; Chen, Yanshan; Rathinasabapathi, Bala; Ma, Lena Q

    2016-02-01

    Bacteria-mediated arsenic (As) transformation and their impacts on As and P uptake and plant growth in As-hyperaccumulator Pteris vittata (PV) were investigated under sterile condition. All As-resistant bacteria (9 endophytic and 6 rhizospheric) were As-reducers except one As-oxidizer. After growing two months in media with 37.5 mg kg(-1) AsV, As concentrations in the fronds and roots were 3655-5389 (89-91% AsIII) and 971-1467 mg kg(-1) (41-73% AsIII), corresponding to 22-52% decrease in the As in the media. Bacterial inoculation enhanced As and P uptake by up to 47 and 69%, and PV growth by 20-74%, which may be related to elevated As and P in plants (r = 0.88-0.97, p < 0.05). Though AsV was supplied, 95% of the As in the bacteria-free media was AsIII, suggesting efficient efflux of AsIII by PV roots (120 µg g(-1) root fw). This was supported by the fact that no AsV was detected in media inoculated with As-reducers while 95% of AsV was detected with As-oxidizer. Our data showed that, under As-stress, PV reduced As toxicity by efficient AsIII efflux into media and AsIII translocation to the fronds, and bacteria benefited PV growth probably via enhanced As and P uptake. PMID:26547029

  11. Arsenic Induced Phytate Exudation, and Promoted FeAsO4 Dissolution and Plant Growth in As-Hyperaccumulator Pteris vittata.

    PubMed

    Liu, Xue; Fu, Jing-Wei; Guan, Dong-Xing; Cao, Yue; Luo, Jun; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2016-09-01

    Arsenic hyperaccumulator Pteris vittata (PV) is efficient in taking up As and nutrients from As-contaminated soils. We evaluated the mechanisms used by PV to mobilize As and Fe by examining the impacts of As and root exudates on FeAsO4 solubilization, and As and Fe uptake in four plants: As-hyperaccumulators PV and Pteris multifida (PM), nonhyperaccumulator Pteris ensiformis (PE), and angiosperm plant tomato (Solanum lycopersicum). Phytate and oxalate were dominant in fern plants (>93%), which were 50-83, 15-42, and 0-32 mg kg(-1) phytate and 10-15, 7-26, and 4-12 mg kg(-1) oxalate for PV, PM, and PE respectively, with higher As inducing greater phytate exudation and no phytate being detected in tomato exudates. PV treated with phytate+FeAsO4 had higher As and Fe contents and larger biomass than phytate or FeAsO4 treatment, which were 340 vs 20 and 130 mg kg(-1) As in the fronds and 7900 vs 1600 and 4100 mg kg(-1) Fe in the roots. We hypothesized that As-induced phytate exudation helped PV to take up Fe and As from insoluble FeAsO4 and promoted PV growth. Our study suggests that phytate exudation may be special to fern plants, which may play an important role in enhancing As and nutrient uptake by plants, thereby increasing their efficiency in phytoremediation of As-contaminated soils. PMID:27483027

  12. Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques.

    PubMed

    Isaure, Marie-Pierre; Huguet, Stéphanie; Meyer, Claire-Lise; Castillo-Michel, Hiram; Testemale, Denis; Vantelon, Delphine; Saumitou-Laprade, Pierre; Verbruggen, Nathalie; Sarret, Géraldine

    2015-06-01

    Arabidopsis halleri is a model plant for Zn and Cd hyperaccumulation. The objective of this study was to determine the relationship between the chemical forms of Cd, its distribution in leaves, and Cd accumulation and tolerance. An interspecific cross was carried out between A. halleri and the non-tolerant and non-hyperaccumulating relative A. lyrata providing progenies segregating for Cd tolerance and accumulation. Cd speciation and distribution were investigated using X-ray absorption spectroscopy and microfocused X-ray fluorescence. In A. lyrata and non-tolerant progenies, Cd was coordinated by S atoms only or with a small contribution of O groups. Interestingly, the proportion of O ligands increased in A. halleri and tolerant progenies, and they were predominant in most of them, while S ligands were still present. Therefore, the binding of Cd with O ligands was associated with Cd tolerance. In A. halleri, Cd was mainly located in the xylem, phloem, and mesophyll tissue, suggesting a reallocation process for Cd within the plant. The distribution of the metal at the cell level was further discussed. In A. lyrata, the vascular bundles were also Cd enriched, but the epidermis was richer in Cd as compared with the mesophyll. Cd was identified in trichomes of both species. This work demonstrated that both Cd speciation and localization were related to the tolerance character of the plant. PMID:25873676

  13. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions.

    PubMed

    Tlustoš, Pavel; Břendová, Kateřina; Száková, Jiřina; Najmanová, Jana; Koubová, Kateřina

    2016-01-01

    Three Cd and Zn hyperaccumulating plant species Noccaea caerulescens Noccaea praecox and Arabidopsis halleri (Brassicacceae) were cultivated in seven subsequent vegetation seasons in both pot and field conditions in soil highly contaminated with Cd, Pb, and Zn. The results confirmed the hyperaccumulation ability of both plant species, although A. halleri showed lower Cd uptake compared to N. caerulescens. Conversely, Pb phytoextraction was negligible for both species in this case. Because of the high variability in plant yield and element contents in the aboveground biomass of plants, great variation in Cd and Zn accumulation was observed during the experiment. The extraction ability in field conditions varied in the case of Cd from 0.2 to 2.9 kg ha(-1) (N. caerulescens) and up to 0.15 kg ha(-1) (A. halleri), and in the case of Zn from 0.2 to 6.4 kg ha(-1) (N. caerulescens) and up to 13.8 kg.ha(-1) (A. halleri). Taking into account the 20 cm root zone of the soil, the plants were able to extract up to 4.1% Cd and 0.2% Zn in one season. However, cropping measures should be optimized to improve and stabilize the long-term phytoextraction potential of these plants. PMID:26280307

  14. Effective selenium detoxification in the seed proteins of a hyperaccumulator plant: the analysis of selenium-containing proteins of monkeypot nut (Lecythis minor) seeds.

    PubMed

    Németh, Anikó; Dernovics, Mihály

    2015-01-01

    A shotgun proteomic approach was applied to characterize the selenium (Se)-containing proteins of the selenium hyperaccumulator monkeypot nut (Lecythis minor) seeds. The exceptionally high Se content (>4,000 mg kg(-1)) of the sample enabled a straightforward procedure without the need for multiple preconcentration and fractionation steps. The proteins identified were sulfur-rich seed proteins, namely, 11S globulin (Q84ND2), 2S albumin (B6EU54), 2S sulfur-rich seed storage proteins (P04403 and P0C8Y8) and a 11S globulin-like protein (A0EM48). Database directed search for theoretically selenium-containing peptides was assisted by manual spectra evaluation to achieve around 25% coverage on sulfur analogues. Remarkable detoxification mechanisms on the proteome level were revealed in the form of multiple selenomethionine-methionine substitution and the lack of selenocysteine residues. The degree of selenomethionine substitution could be characterized by an exponential function that implies the inhibition of protein elongation by selenomethionine. Our results contribute to the deeper understanding of selenium detoxification procedures in hyperaccumulator plants. PMID:25373701

  15. Increased ecological risk due to the hyperaccumulation of As in Pteris cretica during the phytoremediation of an As-contaminated site.

    PubMed

    Jeong, Seulki; Moon, Hee Sun; Nam, Kyoungphile

    2015-03-01

    Ecological risk due to the hyperaccumulation of As in Pteris cretica during phytoremediation was evaluated at an abandoned As-contaminated site. Five receptor groups representing terrestrial invertebrates, avian insectivores, small mammals, herbivores, and omnivores were selected as potentially affected ecological receptors. Soil and food ingestion were considered as major exposure pathways. Phytoremediation was performed with P.cretica only and with both P.cretica and siderophores to enhance plant uptake of As. Ecological hazard index (EHI) values for the small mammal greatly exceeded 1.0 even after three weeks of growth regardless of siderophore application, probably due to its limited home range. For the mammalian herbivore, which mainly consumes plant foliage, the EHI values were greater than 5.73 after seven weeks without siderophore application, but the value increased sharply to 29.3 at seven weeks when siderophores were applied. This increased risk could be attributed to the facilitated translocation of As from roots to stems and leaves in P.cretica. Our results suggest that, when a phytoremediation strategy is considered for metals remediation, its ecological consequences should be taken into account to prevent the spread of hyperaccumulated heavy metals throughout the food chain of ecological receptors. Uncertainties involved in the ecological risk assessment process were also discussed. PMID:25441929

  16. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator.

    PubMed

    Grison, Claire M; Jackson, Stephen; Merlot, Sylvain; Dobson, Alan; Grison, Claude

    2015-05-01

    A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (ChimEc512(T)) was isolated from 56 host seedlings of the hyperaccumulating Anthyllis vulneraria legume, which was on an old zinc mining site at Les Avinières, Saint-Laurent-Le-Minier, Gard, South of France. On the basis of 16S rRNA gene sequence similarities, strain ChimEc512(T) was shown to belong to the genus Rhizobium and to be most closely related to Rhizobium endophyticum CCGE 2052(T) (98.4%), Rhizobium tibeticum CCBAU 85039(T) (98.1%), Rhizobium grahamii CCGE 502(T) (98.0%) and Rhizobium mesoamericanum CCGE 501(T) (98.0%). The phylogenetic relationships of ChimEc512(T) were confirmed by sequencing and analyses of recA and atpD genes. DNA-DNA relatedness values of strain ChimEc512(T) with R. endophyticum CCGE 2052(T), R. tibeticum CCBAU 85039(T), R. mesoamericanum CCGE 52(T), Rhizobium grahamii CCGE 502(T), Rhizobium etli CCBAU 85039(T) and Rhizobium radiobacter KL09-16-8-2(T) were 27, 22, 16, 18, 19 and 11%, respectively. The DNA G+C content of strain ChimEc512(T) was 58.9 mol%. The major cellular fatty acid was C18 : 1ω7c, characteristic of the genus Rhizobium . The polar lipid profile included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and moderate amounts of aminolipids, phospholipid and sulfoquinovosyl diacylglycerol. Although ChimEc512(T) was able to nodulate A. vulneraria, the nodC and nifH genes were not detected by PCR. The rhizobial strain was tolerant to high concentrations of heavy metals: up to 35 mM Zn and up to 0.5 mM Cd and its growth kinetics was not impacted by Zn. The results of DNA-DNA hybridizations and physiological tests allowed genotypic and phenotypic differentiation of strain ChimEc512(T) from species of the genus Rhizobium with validly published names. Strain ChimEc512(T), therefore, represents a novel species, for which the name Rhizobium metallidurans sp. nov. is proposed, with the type strain

  17. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

    PubMed

    Lin, Ya-Fen; Hassan, Zeshan; Talukdar, Sangita; Schat, Henk; Aarts, Mark G M

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473

  18. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana

    PubMed Central

    Schat, Henk; Aarts, Mark G. M.

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5’ deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473

  19. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    PubMed

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  20. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species, Quarterly technical progress report, December 20, 1995--March 20, 1995

    SciTech Connect

    Kochian, L.; Brady, D.; Last, M.; Ebbs, S.

    1995-12-01

    Although the period covered by this progress report began on December 20, 1994, which was the date that DOE approved the Interagency Agreement, the agreement was not approved by USDA until January 9, 1995 and the first scientists working on the project were not hired until February 1, 1995. The first goal of the research supported by the Interagency Agreement is to use hydroponic techniques to identify plant species and genotypes with potential for heavy metal hyperaccumulation for planting on a test site at Silverbow Creek and for radionuclide ({sup 90}Sr and {sup 137}Cs) accumulation on a test site at INEL, Idaho, later this year. The second goal of this research is to identify soil amendment procedures that will enhance the bioavailability of heavy metals and radionuclides in the soil without increasing the movement of the contaminants of concern (COC`s) into the groundwater. Our initial research covered in this report focuses on the first goal.

  1. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly technical progress report, March 20, 1997--June 19, 1997

    SciTech Connect

    Kochian, L.

    1997-11-01

    This laboratory has been involved in a collaborative project focusing on a range of issues related to the phytoremediation of heavy metal-and radionuclide- contaminated soils. While much of the research has been fundamental in nature, involving physiological and molecular characterizations of the mechanisms of hyperaccumulation in plants, the laboratory is also investigating more practical issues related to phytoremediation. A central issue in this latter research has been the identification of amendments capable of increasing the bioavailability and subsequent phytoextraction of radionuclides. The results described here detail these efforts for uranium and Cs-137. A study was also conducted on a Cs-137 contaminated site at Brookhaven National Laboratory (BNL), which allowed application of the laboratory and greenhouse results to a field setting.

  2. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel.

    PubMed

    Singer, Andrew C; Bell, Thomas; Heywood, Chloe A; Smith, J A C; Thompson, Ian P

    2007-05-01

    In this study we examine the effects of polycyclic aromatic hydrocarbons (PAHs) on the ability of the hyperaccumulator plant Alyssum lesbiacum to phytoextract nickel from co-contaminated soil. Planted and unplanted mesocosms containing the contaminated soils were repeatedly amended with sorbitan trioleate, salicylic acid and histidine in various combinations to enhance the degradation of two PAHs (phenanthrene and chrysene) and increase nickel phytoextraction. Plant growth was negatively affected by PAHs; however, there was no significant effect on the phytoextraction of Ni per unit biomass of shoot. Exogenous histidine did not increase nickel phytoextraction, but the histidine-extractable fraction of soil nickel showed a high correlation with phytoextractable nickel. These results indicate that Alyssum lesbiacum might be effective in phytoextracting nickel from marginally PAH-contaminated soils. In addition, we provide evidence for the broader applicability of histidine for quantifying and predicting Ni phytoavailability in soils. PMID:17084494

  3. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-02-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. PMID:26650084

  4. "Towards practical cadmium phytoextraction with Thlaspi caerulescens"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During 2005-2007, a series of field trials were conducted to investigate the potential of Thlapsi caerulescens ecotypes derived from southern France to phytoextract localized Cd/Zn contamination in Thailand. Soil treatments included pH variation and fertilization level. T. caerulescens ecotypes w...

  5. Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (J.F. Gmel) S.F Blake as a hyperaccumulator.

    PubMed

    Islam, Md Shariful; Ueno, Yasuyuki; Sikder, Md Tajuddin; Kurasaki, Masaaki

    2013-01-01

    Arsenic (As) and cadmium (Cd) pollution in water is an important global issue. Phytofiltration is an eco-friendly technology that helps clean up pollutants using ornamental plants, such as Micranthemum umbrosum (J.F. Gmel) S.F. Blake. After a seven-day hydroponic experiment, M. umbrosum removed 79.3-89.5% As and 60-73.1% Cd from 0 to 1.0 microg As mL(-1) and 0.3 to 30.0 microg Cd mL(-1) solutions, respectively. For As treatment, root to stem and stem to leaf translocation factors greater than 1.0 indicated that accumulation of As in leaves was large compared to that in stem and roots. However, the accumulation of Cd in roots was higher than that in the leaves and stem. In addition, M. umbrosum completely removed Cd within three days from 0.38 to around 0 microg mL(-1) Cd in the solution when the plant was exchanged daily. Bio-concentration factors (2350 for As and 3027 for Cd) for M. umbrosum were higher than for other As and Cd phytoremediators. The results show that M. umbrosum can be an effective accumulator of Cd and a hyper-accumulator of As, as it can lower As toxicity to a level close to the limit recommended by the World Health Organization (0.01 microg As mL(-1)). PMID:23819292

  6. Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils.

    PubMed

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C C; Li, Baoqin; Long, Xinxian

    2014-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14-0.16 L/mg and n values were 1.51-2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K > or = 1.49 L/mg and n > or = 3.59. PMID:24912231

  7. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.

    PubMed

    Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan

    2015-04-01

    Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. PMID:25545296

  8. Cadmium Sorption Characteristics of Soil Amendments and its Relationship with the Cadmium Uptake by Hyperaccumulator and Normal Plants in Amended Soils

    PubMed Central

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C.C.; Li, Baoqin; Long, Xinxian

    2013-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14–0.16 L/mg and n values were 1.51–2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K ≥ 1.49 L/mg and n ≥ 3.59. PMID:24912231

  9. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma.

    PubMed

    Shin, Mi-Na; Shim, Jaehong; You, Youngnam; Myung, Hyun; Bang, Keuk-Soo; Cho, Min; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2012-01-15

    The aim of this study was to isolate and characterize endophytic bacteria from the roots of the metal hyperaccumulator plant Alnus firma. A total of 14 bacterial endophytes were isolated from root samples and assayed for tolerance to heavy metals. Isolate MN3-4 exhibited maximum bioremoval of Pb and was subsequently identified as Bacillus sp. based on 16S rRNA sequences. The pH and initial metal concentration highly influenced the Pb bioremoval rate. The growth of isolate MN3-4 was moderately altered in the presence of metals. Scanning electron microscopy, energy dispersive spectroscopy, biological-transmission electron microscopy, and Fourier transform infrared spectroscopy studies revealed that isolate MN3-4 had extracellularly sequestered the Pb molecules with little intracellular accumulation. Isolate MN3-4 did not harbor pbrA and pbrT genes. Moreover, isolate MN3-4 had the capacity to produce siderophores and indoleacetic acid. A root elongation assay demonstrated an increase (46.25%) in the root elongation of inoculated Brassica napus seedlings compared to that of the control plants. Obtained results pointed out that isolate MN3-4 could potentially reduce heavy metal phytotoxicity and increase Pb accumulation in A. firma plants. PMID:22133352

  10. Microbial Communities and Functional Genes Associated with Soil Arsenic Contamination and the Rhizosphere of the Arsenic-Hyperaccumulating Plant Pteris vittata L. ▿ †

    PubMed Central

    Xiong, Jinbo; Wu, Liyou; Tu, Shuxin; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Wang, Gejiao

    2010-01-01

    To understand how microbial communities and functional genes respond to arsenic contamination in the rhizosphere of Pteris vittata, five soil samples with different arsenic contamination levels were collected from the rhizosphere of P. vittata and nonrhizosphere areas and investigated by Biolog, geochemical, and functional gene microarray (GeoChip 3.0) analyses. Biolog analysis revealed that the uncontaminated soil harbored the greatest diversity of sole-carbon utilization abilities and that arsenic contamination decreased the metabolic diversity, while rhizosphere soils had higher metabolic diversities than did the nonrhizosphere soils. GeoChip 3.0 analysis showed low proportions of overlapping genes across the five soil samples (16.52% to 45.75%). The uncontaminated soil had a higher heterogeneity and more unique genes (48.09%) than did the arsenic-contaminated soils. Arsenic resistance, sulfur reduction, phosphorus utilization, and denitrification genes were remarkably distinct between P. vittata rhizosphere and nonrhizosphere soils, which provides evidence for a strong linkage among the level of arsenic contamination, the rhizosphere, and the functional gene distribution. Canonical correspondence analysis (CCA) revealed that arsenic is the main driver in reducing the soil functional gene diversity; however, organic matter and phosphorus also have significant effects on the soil microbial community structure. The results implied that rhizobacteria play an important role during soil arsenic uptake and hyperaccumulation processes of P. vittata. PMID:20833780

  11. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes.

    PubMed

    Zhu, Zhi-qiang; Yang, Xiao-e; Wang, Kai; Huang, Hua-gang; Zhang, Xincheng; Fang, Hua; Li, Ting-qiang; Alva, A K; He, Zhen-li

    2012-10-15

    The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE) and 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (DDT, DDE, and DDD are collectively called DDs) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1 was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by 32.1-40.3% and 33.9-37.6%, respectively, in a pot experiment over 18 months compared to 3.25% and 3.76% decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by 31.1% and 53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils. PMID:22868749

  12. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation.

    PubMed

    Luo, Sheng-lian; Chen, Liang; Chen, Jue-liang; Xiao, Xiao; Xu, Tao-ying; Wan, Yong; Rao, Chan; Liu, Cheng-bin; Liu, Yu-tang; Lai, Cui; Zeng, Guang-ming

    2011-11-01

    This study investigates the heavy metal-resistant bacterial endophytes of Cd-hyperaccumulator Solanum nigrum L. grown on a mine tailing by using cultivation-dependent technique. Thirty Cd-tolerant bacterial endophytes were isolated from roots, stems, and leaves of S. nigrum L. and classified by amplified ribosomal DNA-restriction analysis into 18 different types. Phylogenetic analysis based on 16S rDNA sequences showed that these isolates belonged to four groups: Actinobacteria (43%), Proteobacteria (23%), Bacteroidetes (27%) and Firmicutes (7%). All the isolates were then characterized for their plant growth promoting traits as well as their resistances to different heavy metals; and the actual plant growth promotion and colonization ability were also assessed. Four isolates were re-introduced into S. nigrum L. under Cd stress and resulted in Cd phytotoxicity decrease, as dry weights of roots increased from 55% to 143% and dry weights of above-ground from 64% to 100% compared to the uninoculated ones. The total Cd accumulation of inoculated plants increased from 66% to 135% (roots) and from 22% to 64% (above-ground) compared to the uninoculated ones. Our research suggests that bacterial endophytes are a most promising resource and may be the excellent candidates of bio-inoculants for enhancing the phytoremediation efficiency. PMID:21868057

  13. Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata

    PubMed Central

    Shi, Bo; Huang, Zekun; Xiang, Xu; Huang, Miaoqin; Wang, Wen-Xiong; Ke, Caihuan

    2015-01-01

    One paradigm of oysters as the hyper-accumulators of many toxic metals is the inter-individual variation of metals, but the molecular mechanisms remain very elusive. A comprehensive analysis of the transcriptome of Crassostrea angulata was conducted to reveal the relationship between gene expression and differential Cu body burden in oysters. Gene ontology analysis for the differentially expressed genes showed that the neurotransmitter transporter might affect the oyster behavior, which in turn led to difference in Cu accumulation. The ATP-binding cassette transporters superfamily played an important role in the maintenance of cell Cu homeostasis, vitellogenin and apolipophorin transport, and elimination of excess Cu. Gill and mantle Cu concentrations were significantly reduced after silencing the GABA transporter 2 (GAT2) gene, but increased after the injection of GABA receptor antagonists, suggesting that the function of GABA transporter 2 gene was strongly related to Cu accumulation. These findings demonstrated that GABA transporter can control the action of transmitter GABA in the nervous system, thereby affecting the Cu accumulation in the gills and mantles. PMID:26648252

  14. Effect of metal stress on photosynthetic pigments in the Cu-hyperaccumulating lichens Cladonia humilis and Stereocaulon japonicum growing in Cu-polluted sites in Japan.

    PubMed

    Nakajima, Hiromitsu; Yamamoto, Yoshikazu; Yoshitani, Azusa; Itoh, Kiminori

    2013-11-01

    To understand the ecology and physiology of metal-accumulating lichens growing in Cu-polluted sites, we investigated lichens near temple and shrine buildings with Cu roofs in Japan and found that Stereocaulon japonicum Th. Fr. and Cladonia humilis (With.) J. R. Laundon grow in Cu-polluted sites. Metal concentrations in the lichen samples collected at some of these sites were determined by inductively coupled plasma mass spectroscopy (ICP-MS). UV-vis absorption spectra of pigments extracted from the lichen samples were measured, and the pigment concentrations were estimated from the spectral data using equations from the literature. Secondary metabolites extracted from the lichen samples were analyzed by high-performance liquid chromatography (HPLC) with a photodiode array detector. We found that S. japonicum and C. humilis are Cu-hyperaccumulating lichens. Differences in pigment concentrations and their absorption spectra were observed between the Cu-polluted and control samples of the 2 lichens. However, no correlation was found between Cu and pigment concentrations. We observed a positive correlation between Al and Fe concentrations and unexpectedly found high negative correlations between Al and pigment concentrations. This suggests that Al stress reduces pigment concentrations. The concentrations of secondary metabolites in C. humilis growing in the Cu-polluted sites agreed with those in C. humilis growing in the control sites. This indicates that the metabolite concentrations are independent of Cu stress. PMID:23953993

  15. A Vacuolar Arsenite Transporter Necessary for Arsenic Tolerance in the Arsenic Hyperaccumulating Fern Pteris vittata Is Missing in Flowering Plants[W][OA

    PubMed Central

    Indriolo, Emily; Na, GunNam; Ellis, Danielle; Salt, David E.; Banks, Jo Ann

    2010-01-01

    The fern Pteris vittata tolerates and hyperaccumulates exceptionally high levels of the toxic metalloid arsenic, and this trait appears unique to the Pteridaceae. Once taken up by the root, arsenate is reduced to arsenite as it is transported to the lamina of the frond, where it is stored in cells as free arsenite. Here, we describe the isolation and characterization of two P. vittata genes, ACR3 and ACR3;1, which encode proteins similar to the ACR3 arsenite effluxer of yeast. Pv ACR3 is able to rescue the arsenic-sensitive phenotypes of yeast deficient for ACR3. ACR3 transcripts are upregulated by arsenic in sporophyte roots and gametophytes, tissues that directly contact soil, whereas ACR3;1 expression is unaffected by arsenic. Knocking down the expression of ACR3, but not ACR3;1, in the gametophyte results in an arsenite-sensitive phenotype, indicating that ACR3 plays a necessary role in arsenic tolerance in the gametophyte. We show that ACR3 localizes to the vacuolar membrane in gametophytes, indicating that it likely effluxes arsenite into the vacuole for sequestration. Whereas single-copy ACR3 genes are present in moss, lycophytes, other ferns, and gymnosperms, none are present in angiosperms. The duplication of ACR3 in P. vittata and the loss of ACR3 in angiosperms may explain arsenic tolerance in this unusual group of ferns while precluding the same trait in angiosperms. PMID:20530755

  16. Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata

    NASA Astrophysics Data System (ADS)

    Shi, Bo; Huang, Zekun; Xiang, Xu; Huang, Miaoqin; Wang, Wen-Xiong; Ke, Caihuan

    2015-12-01

    One paradigm of oysters as the hyper-accumulators of many toxic metals is the inter-individual variation of metals, but the molecular mechanisms remain very elusive. A comprehensive analysis of the transcriptome of Crassostrea angulata was conducted to reveal the relationship between gene expression and differential Cu body burden in oysters. Gene ontology analysis for the differentially expressed genes showed that the neurotransmitter transporter might affect the oyster behavior, which in turn led to difference in Cu accumulation. The ATP-binding cassette transporters superfamily played an important role in the maintenance of cell Cu homeostasis, vitellogenin and apolipophorin transport, and elimination of excess Cu. Gill and mantle Cu concentrations were significantly reduced after silencing the GABA transporter 2 (GAT2) gene, but increased after the injection of GABA receptor antagonists, suggesting that the function of GABA transporter 2 gene was strongly related to Cu accumulation. These findings demonstrated that GABA transporter can control the action of transmitter GABA in the nervous system, thereby affecting the Cu accumulation in the gills and mantles.

  17. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.

    PubMed

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-09-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium(2+)/hydrogen(+) antiporter, cation/hydrogen(+) exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  18. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.1[OPEN

    PubMed Central

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-01-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium2+/hydrogen+ antiporter, cation/hydrogen+ exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  19. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains.

    PubMed

    Xiao, Wendan; Wang, Huan; Li, Tingqiang; Zhu, Zhiqiang; Zhang, Jie; He, Zhenli; Yang, Xiaoe

    2013-01-01

    The objective of this study was to develop a bioremediation strategy for cadmium (Cd) and carbendazim co-contaminated soil using a hyperaccumulator plant (Sedum alfredii) combined with carbendazim-degrading bacterial strains (Bacillus subtilis, Paracoccus sp., Flavobacterium and Pseudomonas sp.). A pot experiment was conducted under greenhouse conditions for 180 days with S. alfredii and/or carbendazim-degrading strains grown in soil artificially polluted with two levels of contaminants (low level, 1 mg kg(-1) Cd and 21 mg kg(-1) carbendazim; high level, 6 mg kg(-1) Cd and 117 mg kg(-1) carbendazim). Cd removal efficiencies were 32.3-35.1 % and 7.8-8.2 % for the low and high contaminant level, respectively. Inoculation with carbendazim-degrading bacterial strains significantly (P < 0.05) increased Cd removal efficiencies at the low level. The carbendazim removal efficiencies increased by 32.1-42.5 % by the association of S. alfredii with carbendazim-degrading bacterial strains, as compared to control, regardless of contaminant level. Cultivation with S. alfredii and inoculation of carbendazim-degrading bacterial strains increased soil microbial biomass, dehydrogenase activities and microbial diversities by 46.2-121.3 %, 64.2-143.4 %, and 2.4-24.7 %, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that S. alfredii stimulated the activities of Flavobacteria and Bradyrhizobiaceae. The association of S. alfredii with carbendazim-degrading bacterial strains enhanced the degradation of carbendazim by changing microbial activity and community structure in the soil. The results demonstrated that association of S. alfredii with carbendazim-degrading bacterial strains is promising for remediation of Cd and carbendazim co-contaminated soil. PMID:22529002

  20. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies.

    PubMed

    de la Rosa, Guadalupe; Peralta-Videa, Jose R; Montes, Milka; Parsons, Jason G; Cano-Aguilera, Irene; Gardea-Torresdey, Jorge L

    2004-06-01

    Cadmium is a heavy metal, which, even at low concentrations, can be highly toxic to the growth and development of both plants and animals. Plant species vary extensively in their tolerance to excess cadmium in a growth medium and very few cadmium-tolerant species have been identified. In this study, tumbleweed plants (Salsola kali) grown in an agar-based medium with 20 mgl(-1) of Cd(II) did not show phytotoxicity, and their roots had the most biomass (4.5 mg) (P < 0.05) compared to the control plants (2.7 mg) as well as other treated plants. These plants accumulated 2696, 2075, and 2016 mg Cd kg(-1) of dry roots, stems, and leaves, respectively. The results suggest that there is no restricted cadmium movement in tumbleweed plants. In addition, the amount of Cd found in the dry leaf tissue suggests that tumbleweed could be considered as potential cadmium hyperaccumulating species. X-ray absorption spectroscopy studies demonstrated that in roots, cadmium was bound to oxygen while in stems and leaves, the metal was attached to oxygen and sulfur groups. This might imply that some small organic acids are responsible for Cd transport from roots to stems and leaves. In addition, it might be possible that the plant synthesizes phytochelatins in the stems, later coordinating the absorbed cadmium for transport and storage in cell structures. Thus, it is possible that in the leaves, Cd either exists as a Cd-phytochelatin complex or bound to cell wall structures. Current studies are being performed in order to elucidate the proposed hypothesis. PMID:15081756

  1. Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca americana and their impact on Mn accumulation of hybrid penisetum.

    PubMed

    Zhang, Wen-Hui; Chen, Wei; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2015-10-01

    Three hundred Mn-resistant endophytic bacteria were isolated from the Mn-hyperaccumulator, Phytolacca americana, grown at different levels of Mn (0, 1, and 10mM) stress. Under no Mn stress, 90%, 92%, and 11% of the bacteria produced indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, respectively. Under Mn stress, 68-94%, 91-92%, and 21-81% of the bacteria produced IAA, siderophore, and ACC deaminase, respectively. Greater percentages of ACC deaminase-producing bacteria were found in the Mn-treated P. americana. Furthermore, the ratios of IAA- and siderophore-producing bacteria were significantly higher in the Mn treated plant leaves, while the ratio of ACC deaminase-producing bacteria was significantly higher in the Mn treated-roots. Based on 16S rRNA gene sequence analysis, Mn-resistant bacteria were affiliated with 10 genera. In experiments involving hybrid penisetum grown in soils treated with 0 and 1000mgkg(-1) of Mn, inoculation with strain 1Y31 was found to increase the root (ranging from 6.4% to 18.3%) and above-ground tissue (ranging from 19.3% to 70.2%) mass and total Mn uptake of above-ground tissues (64%) compared to the control. Furthermore, inoculation with strain 1Y31 was found to increase the ratio of IAA-producing bacteria in the rhizosphere and bulk soils of hybrid penisetum grown in Mn-added soils. The results showed the effect of Mn stress on the ratio of the plant growth-promoting factor-producing endophytic bacteria of P. americana and highlighted the potential of endophytic bacterium as an inoculum for enhanced phytoremediation of Mn-polluted soils by hybrid penisetum plants. PMID:26114256

  2. Effect of copper stress on cup lichens Cladonia humilis and C. subconistea growing on copper-hyperaccumulating moss Scopelophila cataractae at copper-polluted sites in Japan.

    PubMed

    Nakajima, Hiromitsu; Fujimoto, Kenjiro; Yoshitani, Azusa; Yamamoto, Yoshikazu; Sakurai, Haruka; Itoh, Kiminori

    2012-10-01

    We investigated lichen species in the habitats of the copper (Cu)-hyperaccumulating moss Scopelophila cataractae and found that the cup lichens Cladonia subconistea and C. humilis grow on this moss. We performed X-ray fluorescence and inductively coupled plasma mass (ICP-MS) analysis of lichen samples and measured the visible absorption spectra of the pigments extracted from the samples to assess the effect of Cu stress on the cup lichens. The chlorophyll a/b ratio and degradation of chlorophyll a to pheophytin a were calculated from the spectral data. X-ray fluorescence analysis indicated that Cu concentrations in cup lichens growing on S. cataractae were much higher than those in control samples growing on non-polluted soil. Moreover, Cu microanalysis showed that Cu concentrations in parts of podetia of C. subconistea growing on S. cataractae increased as the substrate (S. cataractae) was approached, whereas those of C. humilis growing on S. cataractae decreased as the substrate was approached. This reflects the difference in the route of Cu ions from the source to the podetia. Furthermore, ICP-MS analysis confirmed that C. subconistea growing on S. cataractae was heavily contaminated with Cu, indicating that this lichen is Cu tolerant. We found a significant difference between the visible absorption spectra of pigments extracted from the Cu-contaminated and control samples. Hence, the spectra could be used to determine whether a cup lichen is contaminated with Cu. Chlorophyll analysis showed that cup lichens growing on S. cataractae were affected by Cu stress. However, it also suggested that the areas of dead moss under cup lichens were a suitable substrate for the growth of the lichen. Moreover, it suggested that cup lichens had allolepathic effects on S. cataractae; it is likely that secondary metabolites produced by cup lichens inhibited moss growth. PMID:22906716

  3. Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H.

    PubMed

    Wang, Yuyan; Yang, Xiaoe; Zhang, Xincheng; Dong, Lanxue; Zhang, Jie; Wei, Yanyan; Feng, Ying; Lu, Lingli

    2014-02-26

    This study is to investigate the possibility of zinc (Zn) biofortification in the grains of rice (Oryza sativa L.) by inoculation of endophytic strains isolated from a Zn hyperaccumulator, Sedum alfredii Hance. Five endophytic strains, Burkholderia sp. SaZR4, Burkholderia sp. SaMR10, Sphingomonas sp. SaMR12, Variovorax sp. SaNR1, and Enterobacter sp. SaCS20, isolated from S. alfredii, were inoculated in the roots of Japonica rice Nipponbare under hydroponic condition. Fluorescence images showed that endophytic strains successfully colonized rice roots after 72 h. Improved root morphology and plant growth of rice was observed after inoculation with endophytic strains especially SaMR12 and SaCS20. Under hydroponic conditions, endophytic inoculation with SaMR12 and SaCS20 increased Zn concentration by 44.4% and 51.1% in shoots, and by 73.6% and 83.4% in roots, respectively. Under soil conditions, endophytic inoculation with SaMR12 and SaCS20 resulted in an increase of grain yields and elevated Zn concentrations by 20.3% and 21.9% in brown rice and by 13.7% and 11.2% in polished rice, respectively. After inoculation of SaMR12 and SaCS20, rhizosphere soils of rice plants contained higher concentration of DTPA-Zn by 10.4% and 20.6%, respectively. In situ micro-X-ray fluorescence mapping of Zn confirmed the elevated Zn content in the rhizosphere zone of rice treated with SaMR12 as compared with the control. The above results suggested that endophytic microbes isolated from S. alfredii could successfully colonize rice roots, resulting in improved root morphology and plant growth, increased Zn bioavailability in rhizosphere soils, and elevated grain yields and Zn densities in grains. PMID:24447030

  4. Fractionation of stable zinc isotopes in the field-grown zinc hyperaccumulator Noccaea caerulescens and the zinc-tolerant plant Silene vulgaris.

    PubMed

    Tang, Ye-Tao; Cloquet, Christophe; Sterckeman, Thibault; Echevarria, Guillaume; Carignan, Jean; Qiu, Rong-Liang; Morel, Jean-Louis

    2012-09-18

    Stable Zn isotope signatures offer a potential tool for tracing Zn uptake and transfer mechanisms within plant-soil systems. Zinc isotopic compositions were determined in the Zn hyperaccumulator Noccaea caerulescens collected at a Zn-contaminated site (Viviez), a serpentine site (Vosges), and a noncontaminated site (Sainte Eulalie) in France. Meanwhile, a Zn-tolerant plant ( Silene vulgaris ) was also collected at Viviez for comparison. While δ(66)Zn was substantially differentiated among N. caerulescens from the three localities, they all exhibited an enrichment in heavy Zn isotopes of 0.40-0.72‰ from soil to root, followed by a depletion in heavy Zn from root to shoot (-0.10 to -0.50‰). The enrichment of heavy Zn in roots is ascribed to the transport systems responsible for Zn absorption into root symplast and root-to-shoot translocation, while the depletion in heavy Zn in shoots is likely to be mediated by a diffusive process and an efficient translocation driven by energy-required transporters (e.g., NcHMA4). The mass balance yielded a bulk Zn isotopic composition between plant and soil (Δ(66)Zn(plant-soil)) of -0.01‰ to 0.63‰ in N. caerulescens , indicative of high- and/or low-affinity transport systems operating in the three ecotypes. In S. vulgaris , however, there was no significant isotope fractionation between whole plant and rhizosphere soil and between root and shoot, suggesting that this species appears to have a particular Zn homeostasis. We confirm that quantifying stable Zn isotopes is useful for understanding Zn accumulation mechanisms in plants. PMID:22891730

  5. Aluminium Uptake and Translocation in Al Hyperaccumulator Rumex obtusifolius Is Affected by Low-Molecular-Weight Organic Acids Content and Soil pH

    PubMed Central

    Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel

    2015-01-01

    Background and Aims High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. Methods We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Results Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of “oxalate plants.” The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. Conclusions In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids. PMID:25880431

  6. LC-MS and GC-MS metabolite profiling of nickel(II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel(II) ligand.

    PubMed

    Callahan, Damien L; Roessner, Ute; Dumontet, Vincent; Perrier, Nicolas; Wedd, Anthony G; O'Hair, Richard A J; Baker, Alan J M; Kolev, Spas D

    2008-01-01

    Targeted liquid chromatography-mass spectrometry (LC-MS) technology using size exclusion chromatography and metabolite profiling based on gas chromatography-mass spectrometry (GC-MS) were used to study the nickel-rich latex of the hyperaccumulating tree Sebertia acuminata. More than 120 compounds were detected, 57 of these were subsequently identified. A methylated aldaric acid (2,4,5-trihydroxy-3-methoxy-1,6-hexan-dioic acid) was identified for the first time in biological extracts and its structure was confirmed by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. After citric acid, it appears to be one of the most abundant small organic molecules present in the latex studied. Nickel(II) complexes of stoichiometry NiII:acid=1:2 were detected for these two acids as well as for malic, itaconic, erythronic, galacturonic, tartaric, aconitic and saccharic acids. These results provide further evidence that organic acids may play an important role in the transport and possibly in the storage of metal ions in hyperaccumulating plants. PMID:17765935

  7. Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd-hyperaccumulator and As-excluder Bidens pilosa L.

    PubMed

    Sun, Yue-bing; Zhou, Qi-xing; Liu, Wei-tao; An, Jing; Xu, Zhi-qiang; Wang, Lin

    2009-06-15

    Joint effects of arsenic (As) and cadmium (Cd) on the growth of Bidens pilosa L. and its uptake and accumulation of As and Cd were investigated using the field pot-culture experiment. The results showed that single Cd (hyperaccumulator and As excluder. The presence of As had inhibitory effects on Cd absorption by the plant, in particular, the accumulation of Cd in stems, leaves and shoots decreased significantly, with 42.8-53.1, 49.3-66.4 and 37.6-59.5%, respectively, reduction when the level of soil As was up to 125 mg kg(-1) compared with that under no addition of As. Whereas, when Cd was added to soils, it could facilitate As accumulation in tissues of the plants and the As concentrations in shoots increased with increasing Cd spiked in soils. The interactive effects of Cd and As may be potential for phytoremediation of Cd and/or As contamination soils. PMID:19070954

  8. Selective uptake, distribution, and redistribution of (109)Cd, (57)Co, (65)Zn, (63)Ni, and (134)Cs via xylem and phloem in the heavy metal hyperaccumulator Solanum nigrum L.

    PubMed

    Wei, Shuhe; Anders, Iwona; Feller, Urs

    2014-06-01

    The focus of this article was to explore the translocation of (109)Cd, (57)Co, (65)Zn, (63)Ni, and (134)Cs via xylem and phloem in the newly found hyperaccumulator Solanum nigrum L. Two experiments with the uptake via the roots and transport of (109)Cd, (57)Co, and (65)Zn labeled by roots, and the redistribution of (109)Cd, (65)Zn, (57)Co, (63)Ni, and (134)Cs using flap label in S. nigrum in a hydroponic culture with a standard nutrient solution were conducted. The results showed that (109)Cd added for 24 h to the nutrient medium of young plants was rapidly taken up, transferred to the shoot, and accumulated in the cotyledons and the oldest leaves but was not efficiently redistributed within the shoot afterward leading to a rather low content in the fruits. In contrast, (57)Co was more slowly taken up and released to the shoot, but afterward, this element was redistributed from older leaves to younger leaves and maturing fruits. (65)Zn was rapidly taken up and transferred to the shoot (mainly to the youngest leaves and not to the cotyledons). Afterward, this radionuclide was redistributed within the shoot to the youngest organs and finally accumulated in the maturing fruits. After flap labeling, all five heavy metals tested ((109)Cd, (57)Co, (65)Zn, (63)Ni, (134)Cs) were exported from the labeled leaf and redistributed within the plant. The accumulation in the fruits was most pronounced for (63)Ni and (65)Zn, while a relatively high percentage of (57)Co was finally found in the roots. (134)Cs was roughly in the middle of them. The transport of (109)Cd differed from that previously reported for wheat or lupin and might be important for the potential of S. nigrum to hyperaccumulate cadmium. PMID:24604268

  9. Amino Acid Features of P1B-ATPase Heavy Metal Transporters Enabling Small Numbers of Organisms to Cope with Heavy Metal Pollution

    PubMed Central

    Ashrafi, E.; Alemzadeh, A.; Ebrahimi, M.; Ebrahimie, E.; Dadkhodaei, N.; Ebrahimi, M.

    2011-01-01

    Phytoremediation refers to the use of plants for extraction and detoxification of pollutants, providing a new and powerful weapon against a polluted environment. In some plants, such as Thlaspi spp, heavy metal ATPases are involved in overall metal ion homeostasis and hyperaccumulation. P1B-ATPases pump a wide range of cations, especially heavy metals, across membranes against their electrochemical gradients. Determination of the protein characteristics of P1B-ATPases in hyperaccumulator plants provides a new opportuntity for engineering of phytoremediating plants. In this study, using diverse weighting and modeling approaches, 2644 protein characteristics of primary, secondary, and tertiary structures of P1B-ATPases in hyperaccumulator and nonhyperaccumulator plants were extracted and compared to identify differences between proteins in hyperaccumulator and nonhyperaccumulator pumps. Although the protein characteristics were variable in their weighting, tree and rule induction models; glycine count, frequency of glutamine-valine, and valine-phenylalanine count were the most important attributes highlighted by 10, five, and four models, respectively. In addition, a precise model was built to discriminate P1B-ATPases in different organisms based on their structural protein features. Moreover, reliable models for prediction of the hyperaccumulating activity of unknown P1B-ATPase pumps were developed. Uncovering important structural features of hyperaccumulator pumps in this study has provided the knowledge required for future modification and engineering of these pumps by techniques such as site-directed mutagenesis. PMID:21573033

  10. Inoculation with endophytic Bacillus megaterium 1Y31 increases Mn accumulation and induces the growth and energy metabolism-related differentially-expressed proteome in Mn hyperaccumulator hybrid pennisetum.

    PubMed

    Zhang, Wen-hui; He, Lin-yan; Wang, Qi; Sheng, Xia-Fang

    2015-12-30

    In this study, a hydroponic culture experiment was conducted in a greenhouse to investigate the molecular and microbial mechanisms involved in the endophytic Bacillus megaterium 1Y31-enhanced Mn tolerance and accumulation in Mn hyperaccumulator hybrid pennisetum. Strain 1Y31 significantly increased the dry weights (ranging from 28% to 94%) and total Mn uptake (ranging from 23% to 112%) of hybrid pennisetum treated with 0, 2, and 10mM Mn compared to the control. Total 98 leaf differentially expressed proteins were identified between the live and dead bacterial inoculated hybrid pennisetum. The major leaf differentially expressed proteins were involved in energy generation, photosynthesis, response to stimulus, metabolisms, and unknown function. Furthermore, most of the energy generation and photosynthesis-related proteins were up-regulated, whereas most of the response to stimulus and metabolism-related proteins were down-regulated under Mn stress. Notably, the proportion of indole-3-acetic acid (IAA)-producing endophytic bacteria was significantly higher in the bacterial inoculated plants under Mn stress. The results suggested that strain 1Y31 increased the growth and Mn uptake of hybrid pennisetum through increasing the efficiency of photosynthesis and energy metabolism as well as the proportion of plant growth-promoting endophytic bacteria in the plants. PMID:26241871

  11. Thlaspi arvense (Pennycress) germination, bolting and mechanical harvest seed loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  12. Expression of HMA4 cDNAs of the zinc hyperaccumulator Noccaea caerulescens from endogenous NcHMA4 promoters does not complement the zinc-deficiency phenotype of the Arabidopsis thaliana hma2hma4 double mutant

    PubMed Central

    Iqbal, Mazhar; Nawaz, Ismat; Hassan, Zeshan; Hakvoort, Henk W. J.; Bliek, Mattijs; Aarts, Mark G.M.; Schat, Henk

    2013-01-01

    Noccaea caerulescens (Nc) exhibits a very high constitutive expression of the heavy metal transporting ATPase, HMA4, as compared to the non-hyperaccumulator Arabidopsis thaliana (At), due to copy number expansion and altered cis-regulation. We screened a BAC library for HMA4 and found that HMA4 is triplicated in the genome of a N. caerulescens accession from a former Zn mine near La Calamine (LC), Belgium. We amplified multiple HMA4 promoter sequences from three calamine N. caerulescens accessions, and expressed AtHMA4 and different NcHMA4 cDNAs under At and Nc HMA4 promoters in the A. thaliana (Col) hma2hma4 double mutant. Transgenic lines expressing HMA4 under the At promoter were always fully complemented for root-to-shoot Zn translocation and developed normally at a 2-μM Zn supply, whereas the lines expressing HMA4 under Nc promoters usually showed only slightly enhanced root to shoot Zn translocation rates in comparison with the double mutant, probably owing to ectopic expression in the roots, respectively. When expression of the Zn deficiency responsive marker gene ZIP4 was tested, the transgenic lines expressing AtHMA4 under an NcHMA4-1-LC promoter showed on average a 7-fold higher expression in the leaves, in comparison with the double hma2hma4 mutant, showing that this construct aggravated, rather than alleviated the severity of foliar Zn deficiency in the mutant, possible owing to expression in the leaf mesophyll. PMID:24187545

  13. Identification and validation of heavy metal and radionuclide accumulating terrestrial plant species. Quarterly technical progress report, June 21, 1995--September 20, 1995

    SciTech Connect

    Kochian, L.

    1995-12-31

    This quarterly report describes experiments on uptake of a variety of heavy metals by plants. Titles of report sections are (1) Alleviation of heavy-metal induced micronutrient deficiency through foliar fertilization, (2) Second screen for Zn, Cu, and Cd accumulation, (3) Characterization of the root Zn hyperaccumulation by Thlaspi caerulescens, (4) Comparison of commercial Brassica accessions obtained from the Iowa seed bank, (5) Second screening experiment for the accumulation of Cs and Sr by plants, (6) Effect of Ca on Cs and Sr accumulation by selected dicot species, and (7) Preliminary investigations into the forms of uranium taken up by plants.

  14. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives*

    PubMed Central

    Lone, Mohammad Iqbal; He, Zhen-li; Stoffella, Peter J.; Yang, Xiao-e

    2008-01-01

    Environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. Phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources. PMID:18357623

  15. Phytoremediation of heavy metal polluted soils and water: progresses and perspectives.

    PubMed

    Lone, Mohammad Iqbal; He, Zhen-li; Stoffella, Peter J; Yang, Xiao-e

    2008-03-01

    Environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. Phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources. PMID:18357623

  16. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species have adapted on such stress. The aim of this study is to investigate the behaviour of copper in plants and to assess its potential effect on the surrounding environment. To detect copper in biological samples electrochemical methods were employed particularly differential pulse voltammetry (DPV). Copper gave signals at 0.02 V measured by DPV. The obtained calibration dependence was linear (R2 = 0.995). Further, this method was utilized for determination of copper in real soil samples obtained from previously mentioned heavy-metal-polluted mining area. The content varied within range from tens to hundreds of mg of copper per kg of the soil. Moreover, we focused on investigation of copper influence on seedlings of Norway spruce. The seedlings were treated with copper (0, 0.1, 10 and 100 mM) for four weeks. We observed anatomical-morphological changes and other biochemical parameters in plants. We determined that seedlings synthesized more than 48 % protective thiols (glutathione and phytochelatins) compared to control ones. We investigated copper distribution in plant tissues by diphenylcarbazide staining. We found out that copper is highly accumulated in parenchymal stalk cells. In needles, change in auto-fluorescence of parenchymal cells of mesoderm similarly to endodermis cells. Besides, we analyzed samples of plants from the polluted area (spruce, pin, birch). The data obtained well correlated with previously mentioned. Acknowledgement The work on this experiment was supported by grant: INCHEMBIOL MSM0021622412.

  17. Genetic and Molecular Dissection of Arsenic Hyperaccumulation

    SciTech Connect

    Banks, Jo Ann

    2005-06-01

    We have constructed cDNA libraries from RNA isolated from arsenic treated gametophytes of the fern Pteris vittata. This library was made in a manner that allows each cDNA clone to be expressed in yeast. We have introduced this library into yeast cells, both wild type and arsensic sensitive mutants, and selected transformed yeast colonies with increased arsenic tolerance compared to the parental strains. From these screens we have identified putative homologs of the yeast ACR2 and ACR3 genes from Pteris vittata and, for the past year, have focused on characterizing the function of the ACR2 gene. In yeast, ACR2 is an arsenate reductase that is essential for arsenate tolerance. We refer to the Pteris vittata ACR2 gene as PvACR2. The deduced amino acid sequence of PvACR2 is highly similar to the yeast ACR2 and other related phosphatases.

  18. Isolation and enrichment of the erucic acid from Thlaspi Arvense (Pennycress) oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  19. Thlaspi arvense (Pennycress): An off-season energy crop within the corn-soybean rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  20. Thlaspi arvense (Pennycress) as a biodiesel in a one year-two crop rotation with soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for energy has generated renewed interest in the development of oilseed crops. The short term answer to biodiesel has always been soybean. Unfortunately, soybean oil has several shortcomings in its effort to supply the U.S. market. First, and foremost, is the fact that if all curr...

  1. Development of a non-dormant germplasm from Thlaspi Arvense (Pennycress)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  2. Extraction of pennycress (Thlaspi arvense L.) seed oil by full pressing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is currently being developed as an oilseed crop for biofuel production. Pennycress seeds harvested from a field near Peoria, IL, provided our first opportunity to conduct an oil extraction study on a pilot scale. The goals of this study were to determine the effects of seed moisture and c...

  3. IN VIVO SYNCHROTRON INVESTIGATION OF THALLIUM HYPERACCUMULATION - I

    EPA Science Inventory

    Thallium (TI) is a metal of great toxicological concern and its prevalence in the natural environment has steadily increased as a result of manufacturing and combustion practices. Due to its low natural abundance and the increasing demand, TI recovery and reuse could be a profita...

  4. Growth and cadmium uptake of Swiss chard, Thlaspi caerulescens and corn in pH adjusted biosolids amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Before regulations were established, some biosolids applications added higher Cd levels than presently permitted. Cadmium phytoextraction from such soils would alleviate constraints on land use. Unamended farm soil, and biosolids amended farm soil and mine soil were obtained from Fulton County, Il...

  5. Remediation of cadmium contaminated irrigation and drinking water: a large scale approach.

    PubMed

    Bandara, J M R S; Wijewardena, H V P; Seneviratne, H M M S

    2010-09-15

    Cadmium is one of the most troublesome toxic heavy metals. It accumulates in the water reservoirs and agricultural soil as a result of intensive use of Cd contaminated phosphate fertilizers, e.g. in agriculture in the North Central Province (NCP) of Sri Lanka. The hyper-accumulator Thlaspi caerulescens, accumulates up to 1000 ppm Cd in shoots without exhibiting toxicity symptoms. The storage rhizomes of year old Nelumbo nucifera (lotus) natural vegetation in water reservoirs in NCP accumulated 253+/-12 mg Cd/kg. Seedlings of lotus grown in 5% Hoagland's solution at 0.75, 1.0 and 1.25 ppm cadmium sulphate showed a significant increase in Cd removal of 0.0334-0.121 ppm/week. However the removal rate of Cd from water failed to increase any further at higher concentrations of Cd in water. The slow growth rate and low rate of phytoextraction demands a more effective but an affordable method of remediation in order to combat the prevailing elevated cadmium levels in NCP that causes chronic renal failure (CRF). We have developed a large scale filtering device using rice husk. We have achieved successful results in sequestering Cd using raw rice husk as well as amorphous silica derived from rice husk. PMID:20466045

  6. Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction.

    PubMed

    Keller, Catherine; Ludwig, Christian; Davoli, Frédéric; Wochele, Jörg

    2005-05-01

    Phytoextraction is an environmentally sound method for cleaning up sites that are contaminated with toxic heavy metals. However, the method has been questioned because it produces a biomass-rich secondary waste containing the extracted metals. Therefore, further treatment of this biomass is necessary. In this study, we investigated whether thermal treatment could be a feasible option for evaporatively separating metals from the plant residues. We used a laboratory scale reactor designed to simulate the volatilization behavior of heavy metals in a grate furnace. The evaporation of alkali and heavy metals from plant samples was investigated online, using a thermo-desorption spectrometer (TDS). Experiments were performed in the temperature range of 25-950 degrees C with leaves of the Cd and Zn hyperaccumulator Thlaspi caerulescens and of the high biomass plant Salix viminalis (willow), both grown on contaminated soils. Gasification (i.e., pyrolysis), which occurs under reducing conditions, was a better method than incineration under oxidizing conditions to increase volatilization and, hence subsequently recovery, of Cd and Zn from plants. It would also allow the recycling of the bottom ash as fertilizer. Thus, our investigations confirmed that incineration (or co-incineration) is a viable option for the treatment of the heavy metal-enriched plants. PMID:15926590

  7. Generation of nonvernal-obligate, faster-cycling Noccaea caerulescens lines through fast neutron mutagenesis.

    PubMed

    Lochlainn, Seosamh O; Fray, Rupert G; Hammond, John P; King, Graham J; White, Philip J; Young, Scott D; Broadley, Martin R

    2011-01-01

    Noccaea caerulescens (formerly Thlaspi caerulescens) is a widely studied metal hyperaccumulator. However, molecular genetic studies are challenging in this species because of its vernal-obligate biennial life cycle of 7-9months. Here, we describe the development of genetically stable, faster cycling lines of N. caerulescens which are nonvernal-obligate. A total of 5500 M(0) seeds from Saint Laurent Le Minier (France) were subjected to fast neutron mutagenesis. Following vernalization of young plants, 79% of plants survived to maturity. In all, 80,000 M(2) lines were screened for flowering in the absence of vernalization. Floral initials were observed in 35 lines, with nine flowering in <12wk. Two lines (A2 and A7) were selfed to the M(4) generation. Floral initials were observed 66 and 87d after sowing (DAS) in A2 and A7, respectively. Silicle development occurred for all A2 and for most A7 at 92 and 123 DAS, respectively. Floral or silicle development was not observed in wild-type (WT) plants. Leaf zinc (Zn) concentration was similar in WT, A2 and A7 lines. These lines should facilitate future genetic studies of this remarkable species. Seed is publicly available through the European Arabidopsis Stock Centre (NASC). PMID:21058953

  8. Transcriptional activation and localization of expression of Brassica juncea putative metal transport protein BjMTP1

    PubMed Central

    Muthukumar, Balasubramaniam; Yakubov, Bakhtiyor; Salt, David E

    2007-01-01

    Background Metal hyperaccumulators, including various Thlaspi species, constitutively express the putative metal transporter MTP1 to high levels in shoots. Here we present data on the transcriptional regulation and localization of expression of the homologous gene BjMTP1 in Brassica juncea. Though B. juncea lacks the ability to hyperaccumulate metals, its relatively high biomass, rapid growth and relatedness to true metal hyperaccumulating plants makes it a promising starting point for the development of plants for phytoremediation. Our goal in this study is to determine the transcriptional regulation of MTP1 in order to start to better understanding the physiological role of MTP1 in B. juncea. Results Steady-state mRNA levels of BjMTP1 were found to be enhanced 8.8, 5.9, and 1.6-fold in five-day-old B. juncea seedlings after exposure to Ni2+, Cd2+ or Zn2+, respectively. This was also reflected in enhanced GUS activity in B. juncea seedlings transformed with BjMTP1 promoter::GUSPlus after exposure to these metals over a similar range of toxicities from mild to severe. However, no increase in GUS activity was observed after exposure of seedlings to cold or heat stress, NaCl or hydrogen peroxide. GUS expression in Ni2+ treated seedlings was localized in roots, particularly in the root-shoot transition zone. In four- week- old transgenic plants BjMTP1 promoter activity also primarily increased in roots in response to Ni2+ or Cd2+ in plants transformed with either GUS or mRFP1 as reporter genes, and expression was localized to the secondary xylem parenchyma. In leaves, BjMTP1 promoter activity in response to Ni2+ or Cd2+ spiked after 24 h then decreased. In shoots GUS expression was prominently present in the vasculature of leaves, and floral parts. Conclusion Our studies establish that a 983 bp DNA fragment upstream of the BjMTP1 translational start site is sufficient for the specific activation by Ni2+ and Cd2+ of BjMTP1 expression primarily in roots. Activation of

  9. MOLECULAR DISSECTION OF THE CELLULAR MECHANISMS INVOLVED IN NICKEL HYPERACCUMULATION IN PLANTS

    EPA Science Inventory

    Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites.A number of terrestrial plants are known to naturally accumulate high le...

  10. The major parameters on biomass pyrolysis for hyperaccumulative plants--A review.

    PubMed

    Dilks, R T; Monette, F; Glaus, M

    2016-03-01

    Phytoextraction is one of the main phytoremediation techniques and it has often been described as a potentially feasible in situ soil decontamination method of large amounts of heavy metals, organic pollutants and explosive compounds. As this remediation technique is approaching extensive on-field experimentation and commercialization, research focus is on investigating new ways to achieve the valorisation of its by-products. Biomass pyrolysis represents a key step to numerous valorisation options and it is characterized by differential output products that are determined by the operating conditions of the process and the characteristics of the input. However, when used to valorise plants that have undergone significant metal uptake, this strategy involves some new aspects related to harvest, procedure and final product reutilization. This paper reviews the studies made on biomass pyrolysis of plants with emphasis on the differential quality and distribution of pyrolysis products in relation with the variables of the process and the metal-rich phytoextraction feedstock properties. By investigating these parameters, this survey provides indications on ways to optimize the valorisation of phytoremediation by-products through biomass pyrolysis. PMID:26741543

  11. Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation.

    PubMed

    Cheng, Miaomiao; Wang, Peng; Kopittke, Peter M; Wang, Anan; Sale, Peter W G; Tang, Caixian

    2016-09-01

    Nitrogen fertilization could improve the efficiency of Cd phytoextraction in contaminated soil and thus shorten the remediation time. However, limited information is available on the effect of N form on Cd phytoextraction and associated mechanisms in plants. This study examined the effect of N form on Cd accumulation, translocation, and speciation in Carpobrotus rossii and Solanum nigrum Plants were grown in nutrient solution with 5-15 μM Cd in the presence of 1000 µM NH4 (+) or NO3 (-) Plant growth and Cd uptake were measured, and Cd speciation was analyzed using synchrotron-based X-ray absorption spectroscopy. Shoot Cd accumulation was 30% greater with NH4 (+) than NO3 (-) supply. Carpobrotus rossii accumulated three times more Cd than S. nigrum. However, Cd speciation in the plants was not influenced by N form, but it did vary with species and tissues. In C. rossii, up to 91% of Cd was bound to S-containing ligands in all tissues except the xylem sap where 87-95% were Cd-OH complexes. Furthermore, the proportion of Cd-S in shoots was substantially lower in S. nigrum (44-69%) than in C. rossii (60-91%). It is concluded that the application of NH4 (+) (instead of NO3 (-)) increased shoot Cd accumulation by increasing uptake and translocation, rather than changing Cd speciation, and is potentially an effective approach for increasing Cd phytoextraction. PMID:27385767

  12. Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation

    PubMed Central

    Cheng, Miaomiao; Wang, Peng; Kopittke, Peter M.; Wang, Anan; Sale, Peter W.G.

    2016-01-01

    Nitrogen fertilization could improve the efficiency of Cd phytoextraction in contaminated soil and thus shorten the remediation time. However, limited information is available on the effect of N form on Cd phytoextraction and associated mechanisms in plants. This study examined the effect of N form on Cd accumulation, translocation, and speciation in Carpobrotus rossii and Solanum nigrum. Plants were grown in nutrient solution with 5–15 μM Cd in the presence of 1000 µM NH4 + or NO3 −. Plant growth and Cd uptake were measured, and Cd speciation was analyzed using synchrotron-based X-ray absorption spectroscopy. Shoot Cd accumulation was 30% greater with NH4 + than NO3 − supply. Carpobrotus rossii accumulated three times more Cd than S. nigrum. However, Cd speciation in the plants was not influenced by N form, but it did vary with species and tissues. In C. rossii, up to 91% of Cd was bound to S-containing ligands in all tissues except the xylem sap where 87–95% were Cd-OH complexes. Furthermore, the proportion of Cd-S in shoots was substantially lower in S. nigrum (44–69%) than in C. rossii (60–91%). It is concluded that the application of NH4 + (instead of NO3 −) increased shoot Cd accumulation by increasing uptake and translocation, rather than changing Cd speciation, and is potentially an effective approach for increasing Cd phytoextraction. PMID:27385767

  13. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F.

    PubMed

    Qiu, Rong-Liang; Zhao, Xuan; Tang, Ye-Tao; Yu, Fang-Ming; Hu, Peng-Jie

    2008-12-01

    A hydroponic experiment was carried out to study the effect of cadmium (Cd) on growth, Cd accumulation, lipid peroxidation, reactive oxygen species (ROS) content and antioxidative enzymes in leaves and roots of Arabis paniculata F., a new Cd hyperaccumuator found in China. The results showed that 22-89 microM Cd in solution enhanced the growth of A. paniculata after three weeks, with 21-27% biomass increase compared to the control. Cd concentrations in shoots and roots increased with increasing Cd supply levels, and reached a maximum of 1662 and 8670 mg kg(-1) Cd dry weight at 178 microM Cd treatment, respectively. In roots, 22-89 microM Cd reduced the content of malondialdehyde (MDA), superoxide (O(2)(-1)) and H(2)O(2) as well as the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR). In leaves, the contents of MDA, O(2)(-1) and H(2)O(2) remained unaffected by 22-89 microM Cd, while 178 microM Cd treatment significantly increased the MDA content, 69.5% higher than that of the control; generally, the activities of SOD, catalase (CAT), GPX and APX showed an increasing pattern with increasing Cd supply levels. Our present work concluded that A. paniculata has a great capability of Cd tolerance and accumulation. Moderate Cd treatment (22-89 microM Cd) alleviated the oxidative stress in roots, while higher level of Cd addition (178 microM) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system. PMID:18992910

  14. Bioenergy crops grown for hyperaccumulation of phosphorous in the Delmarva Peninsula and their biofuels potential.

    PubMed

    Boateng, Akwasi A; Serapiglia, Michelle J; Mullen, Charles A; Dien, Bruce S; Hashem, Fawzy M; Dadson, Robert B

    2015-03-01

    Herbaceous bioenergy crops, including sorghum, switchgrass, and miscanthus, were evaluated for their potential as phytoremediators for the uptake of phosphorus in the Delmarva Peninsula and their subsequent conversion to biofuel intermediates (bio-oil) by fast pyrolysis using pyrolysis-gas chromatography/mass spectroscopy. Four cultivars of sorghum, five cultivars of switchgrass and one miscanthus (Miscanthus × giganteus) were grown in soils with two different levels of poultry manure (PM) applications. Little variation was seen in phosphorus uptake in the two different soils indicating that the levels of available phosphorus in the soil already saturated the uptake ability of the plants. However, all plants regardless of trial took up more phosphorus than that measured for the non- PM treated control. Sorghum accumulated greater levels of nutrients including phosphorus and potassium compared to switchgrass and miscanthus. The levels of these nutrients in the biomass did not have an effect on carbohydrate contents. However, the potential yield and composition of bio-oil from fast pyrolysis were affected by both agronomics and differences in mineral concentrations. PMID:25460422

  15. Bioenergy crops grown for hyperaccumulation of phosphorus in the delmarva peninsula and their biofuels potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous bioenergy crops, including sorghum, switchgrass, and miscanthus, were evaluated for their potential as phytoremedators for the uptake of phosphorus in the Delmarva Peninsula and their subsequent conversion to biofuel intermediates (bio-oil) by fast pyrolysis using pyrolysis-gas chromatogr...

  16. Zinc Hyperaccumulation in Squirrelfish (Holocentrus adscenscionis) and Its Role in Embryo Viability

    PubMed Central

    Glover, Chris N.; Capo, Tom; Walsh, Patrick J.; Hogstrand, Christer

    2012-01-01

    Female squirrelfish (Fam. Holocentridae) can accumulate and temporarily sequester copious amounts of zinc (Zn) in their livers. There, it is initially compartmentalized before a subsequent, estrogen-triggered redistribution to the ovaries. Here we show that cellular uptake of Zn is also influenced by estrogen signaling, and that estrogen increases concentrations of the plasma Zn-binding protein vitellogenin (VTG). However, estrogen-mediated increases in VTG are not sufficient to accommodate the magnitude of hepato-ovarian Zn transfer in female squirrelfish (Holocentrus adscensionis). These findings suggest that holocentrids have acquired the ability to use hormonal cues to drive hepatic uptake and storage of Zn, signal for its physiological redistribution, and influence the capacity for systemic transport of Zn beyond the mediation of increased plasma VTG concentrations. Such specific adaptations suggest an advantage for the oocyte, which is corroborated in further studies where we determined that oocyte Zn concentrations are positively correlated with egg viability in captive-spawned squirrelfish. The novel nature of these findings underlies the importance of Zn in squirrelfish reproductive biology. PMID:23056248

  17. Mechanisms of nickel uptake, and hyperaccumulation by plants and implications to soil remediation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil contamination by heavy metals like Ni was originally restricted to metalliferous soils but in recent years it has become a general problem due to the increasingly frequent anthropogenic activities. Because of the characteristics of cost-effectiveness, environmental friendliness, and fewer side...

  18. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic.

    PubMed

    Shelmerdine, Paula A; Black, Colin R; McGrath, Steve P; Young, Scott D

    2009-05-01

    Pteris vittata plants were grown on twenty-one UK soils contaminated with arsenic (As) from a wide range of natural and anthropogenic sources. Arsenic concentration was measured in fern fronds, soil and soil pore water collected with Rhizon samplers. Isotopically exchangeable soil arsenate was determined by equilibration with (73)As(V). Removal of As from the 21 soils by three sequential crops of P. vittata ranged between 0.1 and 13% of total soil As. Ferns grown on a soil subjected to long-term sewage sludge application showed reduced uptake of As because of high available phosphate concentrations. A combined solubility-uptake model was parameterised to enable prediction of phytoremediation success from estimates of soil As, 'As-lability' and soil pH. The model was used to demonstrate the remediation potential of P. vittata under different soil conditions and with contrasting assumptions regarding re-supply of the labile As pool from unavailable forms. PMID:19171413

  19. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  20. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  1. Are plants growing at abandoned mine sites suitable for phytoremediation of contaminated soils?

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Buffa, Gabriella; Fontana, Silvia; Wahsha, Mohammad

    2013-04-01

    Plants growing on abandoned mine sites are of particular interest in the perspective to remediate contaminated soils by phytoremediation, a low cost and environmental friendly technique which uses metal-accumulator plants to clean up moderately contaminated areas. The choice of plants is a crucial aspect for the practical use of this technique, given the ability to accumulate metals in their tissues, being genetically tolerant to high metal concentrations. Up today, more than 400 native plants that hyperaccumulate metals are reported, Brassicaceae being the family with the largest number of hyperaccumulator species. For example, Alyssum bertoloni is well known as Ni accumulator, as well as Thlaspi caerulescens for Zn and Brassica napus for Pb. However, metal hyperaccumulation is not a common phenomenon in terrestrial higher plants, and many of the European hyperaccumulator plants are of small biomass, and have a slow growth rate. Therefore, there is an urgent need for surveying and screening of plants with ability to accumulate metals in their tissues and a relatively high biomass. In recent years, a survey of soils and plants growing on contaminated areas at several abandoned sulphide mines in Italy was carried out by working groups of the Universities of Florence, Siena, Cagliari, Bologna, Udine and Venice, in order to evaluate the ability of these plants to colonize mine waste and to accumulate metals, in the perspective of an ecological restoration of contaminated sites. We investigated the heavy metal concentration of the waste material, and the soils developed from, in order to determine the extent of heavy metal dispersion, and the uptake by plants, and deserved attention to wild plants growing at that sites, to find out new metal-tolerant species to utilize in soil remediation. Current results of these investigations, with particular emphasis on the Tuscan areas, are reported here. All the studied profiles are strongly enriched in metals; their

  2. Identifying root exudates in field contaminated soil systems

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Martinez, C. E.

    2012-12-01

    Carbon (C) compounds exuded from plant roots comprise a significant and reactive fraction of belowground C pools. These exudates substantially alter the soil directly surrounding plant roots and play a vital role in the global C cycle, soil ecology, and ecosystem mobility of both nutrients and contaminants. In soils, the solubility and bioavailability of metals such as iron, zinc, and cadmium are intricately linked to the quantity and chemical characteristics of the C compounds allocated to the soil by plants. Cadmium (Cd), a toxic heavy metal, forms stronger bonds with reduced S- and N-containing compounds than with carboxylic acids, which may influence exudate composition in hyperaccumulator and tolerant plants grown in Cd contaminated soils. We hypothesize that hyperaccumulator plants will exude a larger quantity of aromatic N and chelating di- and tri-carboxylic acid molecules, while plants that exclude heavy metals from uptake will exude a larger proportion of reduced S containing molecules. This study examines how a variety of techniques can measure the low concentrations of complex organic mixtures exuded by hyperaccumulator and non-hyperaccumulator plants grown in Cd-contaminated soils. Two congeneric plants, Thlaspi caerulescens (Ganges ecotype), and T. caerulescens (Prayon ecotype) were grown in 0.5 kg pots filled with Cd-contaminated field soils from Chicago, IL. Field soils were contaminated as a result of the application of contaminated biosolids in the 1960's and 1970's. Pots were fitted for rhizon soil moisture samplers, micro-lysimeters developed for in situ collection of small volumes in unsaturated soils, prior to planting. Plants were grown for 8 weeks before exudate collection. After the 8 weeks of growth, a pulse-chase isotope tracer method using the C stable isotope, 13C, was employed to differentiate plant-derived compounds from background soil and microbial-derived compounds. Plants were placed in a CO2 impermeable chamber, and the soil

  3. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks.

    PubMed

    Chaney, Rufus L; Reeves, Philip G; Ryan, James A; Simmons, Robert W; Welch, Ross M; Angle, J Scott

    2004-10-01

    We believe greater consideration should be given the agronomic and nutritional/bioavailability factors that influence risk from Cd-contaminated soils. We have argued that the ability of rice to accumulate soil Cd in grain while excluding Fe, Zn and Ca (even though the soil contains 100-times more Zn than Cd) was important in adverse effects of soil Cd is farm families in Asia. Further, polished rice grain is deficient in Fe, Zn and Ca for humans, which promotes Cd absorption into duodenal cells. New kinetic studies clarified that dietary Cd is absorbed into duodenum enterocytes; 109Cd from a single meal remained in the duodenum for up to 16 days; part of the turnover pool 109Cd moved to the liver and kidneys by the end of the 64-day 'chase' period. Thus malnutrition induced by subsistence rice diets caused a higher absorption of dietary Cd and much higher potential risk from soil Cd than other crops. Because rice-induced Fe-Zn-Ca-malnutrition is so important in soil Cd risk, it seems evident that providing nutritional supplements to populations of exposed subsistence rice farmers could protect them against soil Cd during a period of soil remediation. In the long term, high Cd rice soils need to be remediated. Remediation by removal and replacement of contaminated soil is very expensive (on the order of $3 million/ha); while phytoextraction using the high Cd accumulating ecotypes of the Zn-Cd hyperaccumulator, Thlaspi caerulescens, should provide low cost soil Cd remediation. PMID:15688862

  4. Chelant-assisted phytoextraction and accumulation of Zn by Zea mays.

    PubMed

    Gheju, M; Stelescu, I

    2013-10-15

    Zea mays plants were exposed to soils with concentrations of Zn ranging from 64 to 1800 mg kg(-1) dw, and the efficiency of three selected chelating agents (trisodium citrate (CI), disodium oxalate (OX) and disodium dihydrogen ethylene-diamine-tetraacetate (EDTA)) in enhancing metal phytoextraction was compared. Zn concentration in plant tissues increased in conjunction with the metal concentration of the soil. EDTA was found to be the most efficient chelating amendment, increasing concentrations of Zn in shoots from 88 mg kg(-1) dw, at 64 mg kg(-1) dw soil, to 8026 mg kg(-1) dw at 1800 mg kg(-1) dw soil. The overall orders of BCFs and TFs which resulted from this study are: EDTA > H2O > OX > CI, and EDTANa2 > OX > CI > H2O, respectively. The more effective uptake of Zn by plants for the control treatment (distilled water only) than for CI and OX was attributed to the neutral or slightly alkaline pH of the two chelant irrigation solutions. Instead, EDTA had a favorable effect on Zn uptake from soil due to its additive chelating and acidifying properties. Among the three chelants, only EDTA significantly increased the Zn phytoextraction potential of Z. mays, while CI and OX induced a low metal uptake from soil by plants. Although Z. mays has a lower Zn accumulation capacity than the hyperaccumulator Thlaspi caerulescens, it could be considered as a potential phytoremediator of soils with elevated Zn concentrations, especially when metal pollution extends to depths greater than 20 cm. PMID:23845956

  5. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri

    PubMed Central

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-01-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration. PMID:25873677

  6. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri.

    PubMed

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-06-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration. PMID:25873677

  7. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L.

    PubMed

    Wan, Yong; Luo, Shenglian; Chen, Jueliang; Xiao, Xiao; Chen, Liang; Zeng, Guangming; Liu, Chengbin; He, Yejuan

    2012-10-01

    The aim of this work was to evaluate effects of endophytic bacterium inoculation on plant growth and assess the possible mechanism of endophyte in heavy metal phytoremediation. Seeds of Solanum nigrum L. were inoculated with endophyte Serratia nematodiphila LRE07 and were subjected to Cd in the growing medium. Cd produced a significant inhibition on plant growth and a reduction in the content of photosynthetic pigments. The inoculation of endophytic bacterium alleviated the Cd-induced changes, resulting in more biomass production and higher photosynthetic pigments content of leaves compared with non-symbiotic ones. The beneficial effect was more obvious at relatively low Cd concentration (10 μM). Based on the alteration of nutrient uptake and activated oxygen metabolism in infected plants, the possible mechanisms of endophytic bacterium in Cd phytotoxicity reduction can be concluded as uptake enhancement of essential mineral nutrition and improvement in the antioxidative enzymes activities in infected plant. PMID:22858258

  8. Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: a popular ornamental plant and potential Cd hyperaccumulator.

    PubMed

    Wang, Youbao; Yan, Aolei; Dai, Jie; Wang, NanNan; Wu, Dan

    2012-01-01

    The effects on the growth, physiological indexes and the cadmium (Cd) accumulation in Chlorophytum comosum under Cd stress were examined by pot-planting. The results showed that the tolerance index (TI) of C. comosum were all above 100 in soil Cd concentration of 100 mg kg(-1). The O(2˙)⁻ production rate and electrical conductivity of C. comosum were significantly positively correlated to Cd adding-concentration while the MDA content increased and had significant differences with the control. The activities of SOD, CAT, and POD all rose significantly in lower Cd concentration and the Cd threshold of them were around 10, 50 and 20 mg kg(-1), respectively. The Cd in C. comosum root and aboveground part reached 1,522 and 865·5 mg kg(-1), respectively, in Cd concentration of soil up to 200 mg kg(-1). For the advantages of high tolerance, high accumulation, and high ornamental value, C. comosum may have tremendous application value in the treatment of Cd-contaminated soils. PMID:21625926

  9. Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator.

    PubMed

    Li, Ning Yu; Fu, Qing Lin; Zhuang, Ping; Guo, Bing; Zou, Bi; Li, Zhi An

    2012-02-01

    In a greenhouse pot experiment, we assessed the phytoextraction potential for Cd of three amaranth cultivars (Amaranthus hypochondriacus L. Cvs. K112, R104, and K472) and the effect of application of N, NP, and NPK fertilizer on Cd uptake of the three cultivars from soil contaminated with 5 mg kg(-1) Cd. All three amaranth cultivars had high levels of Cd concentration in their tissues, which ranged from 95.1 to 179.1 mg kg(-1) in leaves, 58.9 to 95.4 mg kg(-1) in stems, and 62.4 to 107.2 mg kg(-1) in roots, resulting in average bioaccumulation factors ranging from 17.7 to 29.7. Application of N, NP, or NPK fertilizers usually increased Cd content in leaves but decreased Cd content in stem and root. Fertilizers of N or NP combined did not substantially increase dry biomass of the 3 cultivars, leading to a limited increment of Cd accumulation. NPK fertilizer greatly increased dry biomass, by a factor of 2.7-3.8, resulting in a large increment of Cd accumulation. Amaranth cultivars (K112, R104, and K472) have great potential in phytoextraction of Cd contaminated soil. They have the merits of high Cd content in tissues, high biomass, easy cultivation and little effect on Cd uptake by fertilization. PMID:22567702

  10. Refeeding-induced brown adipose tissue glycogen hyper-accumulation in mice is mediated by insulin and catecholamines.

    PubMed

    Carmean, Christopher M; Bobe, Alexandria M; Yu, Justin C; Volden, Paul A; Brady, Matthew J

    2013-01-01

    Brown adipose tissue (BAT) generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT) glycogen levels within 4-12 hours (hr) of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT). Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology. PMID:23861810

  11. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

    PubMed

    Muehe, E Marie; Weigold, Pascal; Adaktylou, Irini J; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-03-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  12. Immunocytochemical analysis of the subcellular distribution of ferritin in Imperata cylindrica (L.) Raeuschel, an iron hyperaccumulator plant.

    PubMed

    de la Fuente, Vicenta; Rodríguez, Nuria; Amils, Ricardo

    2012-05-01

    Ferritin is of interest at the structural and functional level not only as storage for iron, a critical element, but also as a means to prevent cell damage produced by oxidative stress. The main objective of this work was to confirm by immunocytochemistry the presence and the subcellular distribution of the ferritin detected by Mösbauer spectroscopy in Imperata cylindrica, a plant which accumulates large amounts of iron. The localization of ferritin was performed in epidermal, parenchymal and vascular tissues of shoots and leaves of I. cylindrica. The highest density of immunolabeling in shoots appeared in the intracellular space of cell tissues, near the cell walls and in the cytoplasm. In leaves, ferritin was detected in the proximity of the dense network of the middle lamella of cell walls, following a similar path to that observed in shoots. Immunolabeling was also localized in chloroplasts. The abundance of immunogold labelling in mitochondria for I. cylindrica was rather low, probably because the study dealt with tissues from old plants. These results further expand the localization of ferritin in cell components other than chloroplasts and mitochondria in plants. PMID:21764425

  13. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana.

    PubMed

    Zhao, Huijun; Wu, Liangqi; Chai, Tuanyao; Zhang, Yuxiu; Tan, Jinjuan; Ma, Shengwen

    2012-09-01

    Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25 μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100 μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under excess Mn. PMID:22796009

  14. Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: a potential hyperaccumulator plant.

    PubMed

    Manikandan, R; Sahi, S V; Venkatachalam, P

    2015-01-01

    The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment. PMID:25654134

  15. Impact Assessment of Mercury Accumulation and Biochemical and Molecular Response of Mentha arvensis: A Potential Hyperaccumulator Plant

    PubMed Central

    Manikandan, R.; Sahi, S. V.; Venkatachalam, P.

    2015-01-01

    The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment. PMID:25654134

  16. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  17. Phytoremediation of Soil Trace Elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytoremediation includes several distinct approaches to using plants to achieve soil remediation goals. Phytoextraction uses rare hyperaccumulator plants to accumulate in their shoots enough metals per year to achieve decontamination goals. Phytomining uses hyperaccumulators and biomass burn to pro...

  18. Biodiesel From Alternative Oilseed Feedstocks: Production and Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl esters were prepared and evaluated as potential biodiesel fuels from several alternative oilseed feedstocks, which included camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field mustard (Brassica juncea L.), field pennycress (Thlaspi arvense L.), and meadowfoam (L...

  19. Classification of specialty seed meals from NIR reflectance spectra

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance spectroscopy was used to identify alternative seed meals proposed for food and feed formulations. Spectra were collected from cold pressed Camelina (Camelina sativa), Coriander (Coriandrum sativum), and Pennycress (Thlaspi arvense) meals. Additional spectra were collected ...

  20. Survey of alternative feedstocks for biodiesel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  1. A gain-of-function mutation in Msl10 triggers cell death and wound-induced hyperaccumulation of jasmonic acid in Arabidopsis.

    PubMed

    Zou, Yan; Chintamanani, Satya; He, Ping; Fukushige, Hirotada; Yu, Liping; Shao, Meiyu; Zhu, Lihuang; Hildebrand, David F; Tang, Xiaoyan; Zhou, Jian-Min

    2016-06-01

    Jasmonates (JAs) are rapidly induced after wounding and act as key regulators for wound induced signaling pathway. However, what perceives the wound signal and how that triggers JA biosynthesis remains poorly understood. To identify components involved in Arabidopsis wound and JA signaling pathway, we screened for mutants with abnormal expression of a luciferase reporter, which is under the control of a wound-responsive promoter of an ethylene response factor (ERF) transcription factor gene, RAP2.6 (Related to APetala 2.6). The rea1 (RAP2.6 expresser in shoot apex) mutant constitutively expressed the RAP2.6-LUC reporter gene in young leaves. Along with the typical JA phenotypes including shorter petioles, loss of apical dominance, accumulation of anthocyanin pigments and constitutive expression of JA response gene, rea1 plants also displayed cell death and accumulated high levels of JA in response to wounding. The phenotype of rea1 mutant is caused by a gain-of-function mutation in the C-terminus of a mechanosensitive ion channel MscS-like 10 (MSL10). MSL10 is localized in the plasma membrane and is expressed predominantly in root tip, shoot apex and vascular tissues. These results suggest that MSL10 is involved in the wound-triggered early signal transduction pathway and possibly in regulating the positive feedback synthesis of JA. PMID:26356550

  2. Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea.

    PubMed

    Craciun, Adrian Radu; Courbot, Mikael; Bourgis, Fabienne; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2006-01-01

    Cadmium (Cd) tolerance seems to be a constitutive species-level trait in Arabidopsis halleri. In order to identify genes potentially implicated in Cd tolerance, a backcross (BC1) segregating population was produced from crosses between A. halleri ssp. halleri and its closest non-tolerant relative A. lyrata ssp. petraea. The most sensitive and tolerant genotypes of the BC1 were analysed on a transcriptome-wide scale by cDNA-amplified fragment length polymorphism (AFLP). A hundred and thirty-four genes expressed more in the root of tolerant genotypes than in sensitive genotypes were identified. Most of the identified genes showed no regulation in their expression when exposed to Cd in a hydroponic culture medium and belonged to diverse functional classes, including reactive oxygen species (ROS) detoxification, cellular repair, metal sequestration, water transport, signal transduction, transcription regulation, and protein degradation, which are discussed. PMID:16916885

  3. The influence of different growth stages and dosage of EDTA on Cd uptake and accumulation in Cd-hyperaccumulator (Solanum nigrum L.).

    PubMed

    Sun, Yuebing; Zhou, Qixing; Wang, Lin; Liu, Weitao

    2009-03-01

    Application of synthetic chelates such as ethylene diamine tetraacetic acid (EDTA) has been proposed as an alternative technology for phytoextraction of contaminated soils. In a pot experiment, the effects of EDTA application at three growing stages on growth and Cd uptake and accumulation of Solanum nigrum L. were investigated. The results showed that the 0.1 g/kg EDTA treatment was the most effective treatment, in which the concentrations of Cd in stems and leaves increased significantly compared with the control (Cd only), and the accumulation of Cd in shoots increased by 51.6%, 61.1% and 35.9% at the seedling, flowering and mature stages, respectively. Moreover, at the flowering stage, the height, dry shoot biomass and Cd accumulation in the plants reached the maximum, which were 18.9 cm, 1.8 g/plant and 292.8 microg/pot, respectively. However, higher rate of EDTA (0.5 g/kg) could reduce the plant biomass and the total amount of Cd removed. The results indicated that moderate rate of EDTA applied at the flowering stage would be important to enhance phytoremediation efficiency in practice. PMID:19002363

  4. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure.

    PubMed

    Leal-Alvarado, Daniel A; Espadas-Gil, Francisco; Sáenz-Carbonell, Luis; Talavera-May, Carlos; Santamaría, Jorge M

    2016-02-01

    Salvinia minima Baker accumulates a fair amount of lead in its tissues; however, no studies have investigated the effect of lead on the physiological processes that affect photosynthesis in this species. The objective of the present study was to assess whether the high amounts of lead accumulated by S. minima can affect its photosynthetic apparatus. The physiological changes in the roots and leaves in response to lead accumulation were analyzed. An exposure to 40 μM Pb(NO3)2 for 24 h (first stage) was sufficient to reduce the photosynthetic rate (Pn) by 44%. This reduction in Pn was apparently the result of processes at various levels, including damage to the cell membranes (mainly in roots). Interestingly, although the plants were transferred to fresh medium without lead for an additional 24 h (second stage), Pn not only remained low, but was reduced even further, which was apparently related to stomatal closure, and may have led to reduced CO2 availability. Therefore, it can be concluded that lead exposure first decreases the photosynthetic rate by damaging the root membrane and then induces stomatal closure, resulting in decreased CO2 availability. PMID:26742090

  5. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation ...

  6. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Kochian, L.

    1997-05-01

    Potential for phytoremediation of an aged radiocesium-contaminated soil from Brookhaven National Laboratory was investigated in three phases: (1) hydroponic screening for plant species capable of accumulating elevated levels of cesium in shoots, (2) amending contaminated soil to enhance {sup 137}Cs bioavailability, and (3) phytoextracting radiocesium with plant roots and its removal in harvested shoots. The bioaccumulation ratio of Cs in shoots of hydroponically grown plants ranged between 38 and 165. From solution, dicot species accumulated 2- to 4-fold more cesium in shoots than grasses. The effect of several chemical compounds on {sup 137}Cs desorption from the contaminated soil was investigated. Ammonium salts were the most effective at desorbing Cs from contaminated soil, but only 25% of radiocesium could be desorbed. Although release of radiocesium from the soil was concentration-dependent, this effect appeared to level off above 0.2 M ammonium in solution. In a pot study, from the soil contaminated with 400 pCi g{sup -1} soil, the greatest amount of {sup 137}Cs, 140 pCi, was removed in shoots of cabbage (Brassica oleracea var. capitata). {sup 137}Cs accumulation in shoots was significantly increased by the addition of 40 NH{sub 4}NO{sub 3} kg{sup -1} soil. Increasing NH{sub 4}NO{sub 3} application from 40 to 80 mmoles kg{sup -1} soil did not further increase radiocesium phytoextraction. The ability to accumulate radiocesium from soil in shoots was significantly different among species tested. This ability increased in order: reed Canary grass (Phalaris arundinacea) < Indian mustard (Brassica juncea) < tepary bean (Phaseolus acutifolius) < cabbage.

  7. [Effects of different forms of P fertilizers on phytoremediation for As-contaminated soils using As-hyperaccumulator Pteris vittata L].

    PubMed

    Liao, Xiao-Yong; Chen, Tong-Bin; Yan, Xiu-Lan; Xie, Hua; Xiao, Xi-Yuan; Zhai, Li-Mei

    2008-10-01

    Fertilization has become one of the essential measures for enhancing efficiency of phytoremediating contaminated soils with heavy metal. In order to screen optimal P fertilizer for As-phytoremediation, a greenhouse study was conducted on the growth, As-accumulation and uptake of N, P and K by Pteris vittata L. in As-contaminated soils with different forms of P fertilizers. The results indicated that the biomass of plant with As addition decreased compared to no As-addition treatments except fused calcium magnesium phosphate (CaMg-P) treatment. The plants in As addition soils with CaMg-P, calcium dihydrogen phosphate (CDP) and di-ammonium phosphate (DAP) had higher biomass than those with other P fertilizer and control (0.83 g/pot). The As accumulations of plant aboveground in As addition soils are in order of CDP > CaMg-P> DAP> Potassium Phosphate Monobasic > Monosodium phosphate > control > Calcium superphosphate. The efficiency of As removal from As addition soils with CDP was the highest, 7.28%. Thus it can be seen the ability of phytoremediation using P. vittata could be improved by P fertilization, which CDP should be recommended preferentially and CaMg-P and DAP is considered as replaceable fertilizer for sake of pH, N, P and available As in phytoremediated soils. PMID:19143393

  8. Bioaccessibility versus bioavailability of essential (Cu, Fe, Mn, and Zn) and toxic (Pb) elements from phyto hyperaccumulator Pistia stratiotes: potential risk of dietary intake.

    PubMed

    Čadková, Zuzana; Száková, Jiřina; Miholová, Daniela; Horáková, Barbora; Kopecký, Oldřich; Křivská, Daniela; Langrová, Iva; Tlustoš, Pavel

    2015-03-01

    Aquatic weeds are widely used as animal feed in developing countries. However, information about element bioavailability from these plants is lacking. A combination of an in vitro method [physiologically based extraction test (PBET)] and an in vivo feeding trial was used in this study to investigate potential element bioaccessibility and estimated bioavailability of Pistia stratiotes (PS). Cu, Fe, Mn, Zn, and Pb concentrations in PS biomass, artificial gastrointestinal fluids, and rat tissues were determined using atomic absorption spectrometry with electrothermal atomization and inductively coupled plasma-atomic emission spectrometry. PS exhibited elevated Fe, Mn, and Pb levels. The PBET revealed high bioaccessibility of all monitored elements from PS biomass. The results of the in vivo trial were inconsistent with those of the PBET, because animals fed PS exhibited low levels of essential elements in the tissues. The consumption of a PS-supplemented diet significantly decreased total Fe levels and increased the total level of accumulation of Pb in exposed animals. Significantly reduced amounts of essential elements in the intestinal walls indicated a potential disruption in nutrient gastrointestinal absorption in animals fed PS. PMID:25664561

  9. Removal of Ni(II) and Cu(II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil.

    PubMed

    Bayramoglu, Gulay; Arica, M Yakup; Adiguzel, Nezaket

    2012-09-01

    Alyssum discolor biomass was collected from serpentine soil and was used for removal of metal ions. The plant species grown on serpentine soils are known to be rich with metals ions and thus have more capability for accumulating heavy metals. Native and acid-treated biomass of A. discolor (A. discolor) were utilized for the removal of Ni(II) and Cu(II) ions from aqueous solutions. The effects of contact time, initial concentration, and pH on the biosorption of Ni(II) and Cu(II) ions were investigated. Biosorption equilibrium was established in about 60 min. The surface properties of the biomass preparations were varied with pH, and the maximum amounts of Ni(II) and Cu(II) ions on both A. discolor biomass preparations were adsorbed at pH 5.0. The maximum biosorption capacities of the native, and acid-treated biomass preparations for Ni(II) were 13.1 and 34.7 mgg(-1) and for Cu(II) 6.15 and 17.8 mgg(-1) dry biomass, respectively. The biosorption of Ni(II) and Cu(II) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. When the heavy metal ions were in competition, the amounts of biosorbed metal ions on the acid treated plant biomass were found to be 0.542 mmolg(-1) for Ni(II) and 0.162 mmolg(-1) for Cu(II), the A. discolor biomass was significantly selective for Ni(II) ions. The information gained from these studies was expected to indicate whether the native, and acid-treated forms can have the potential to be used for the removal and recovery of Ni(II) ions from wastewaters. PMID:22608134

  10. Zn-bis-glutathionate is the best co-substrate of the monomeric phytochelatin synthase from the photosynthetic heavy metal-hyperaccumulator Euglena gracilis.

    PubMed

    García-García, Jorge D; Girard, Lourdes; Hernández, Georgina; Saavedra, Emma; Pardo, Juan P; Rodríguez-Zavala, José S; Encalada, Rusely; Reyes-Prieto, Adrián; Mendoza-Cózatl, David G; Moreno-Sánchez, Rafael

    2014-03-01

    The phytochelatin synthase from photosynthetic Euglena gracilis (EgPCS) was analyzed at the transcriptional, kinetic, functional, and phylogenetic levels. Recombinant EgPCS was a monomeric enzyme able to synthesize, in the presence of Zn(2+) or Cd(2+), phytochelatin2-phytochelatin4 (PC2-PC4) using GSH or S-methyl-GS (S-methyl-glutathione), but not γ-glutamylcysteine or PC2 as a substrate. Kinetic analysis of EgPCS firmly established a two-substrate reaction mechanism for PC2 synthesis with Km values of 14-22 mM for GSH and 1.6-2.5 μM for metal-bis-glutathionate (Me-GS2). EgPCS showed the highest Vmax and catalytic efficiency with Zn-(GS)2, and was inactivated by peroxides. The EgPCS N-terminal domain showed high similarity to that of other PCSases, in which the typical catalytic core (Cys-70, His-179 and Asp-197) was identified. In contrast, the C-terminal domain showed no similarity to other PCSases. An EgPCS mutant comprising only the N-terminal 235 amino acid residues was inactive, suggesting that the C-terminal domain is essential for activity/stability. EgPCS transcription in Euglena cells was not modified by Cd(2+), whereas its heterologous expression in ycf-1 yeast cells provided resistance to Cd(2+) stress. Phylogenetic analysis of the N-terminal domain showed that EgPCS is distant from plants and other photosynthetic organisms, suggesting that it evolved independently. Although EgPCS showed typical features of PCSases (constitutive expression; conserved N-terminal domain; kinetic mechanism), it also exhibited distinct characteristics such as preference for Zn-(GS)2 over Cd-(GS)2 as a co-substrate, a monomeric structure, and ability to solely synthesize short-chain PCs, which may be involved in conferring enhanced heavy-metal resistance. PMID:24464102

  11. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly technical progress report, March 20, 1995--June 20, 1995

    SciTech Connect

    Kochian, L.

    1995-12-01

    The biological accumulation of heavy metals and cesium, strontium, and uranium in plants is discussed. The role of nutrient deficiencies and foliar treatments of manganese and iron compounds is described.

  12. Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This project has identified two large gene families, HMA and ZIP, in poplar that have been greatly expanded by the latest Salicoid genome duplication in poplar. In other species, these two families have been shown to be central in both hyperaccumulators and non-hyperaccumulators In poplar, many of t...

  13. DEVELOPMENT OF BIO-BASED MOLECULAR TECHNOLOGIES FOR REMOVAL AND REAL-TIME MONITORING OF TOXIC METALS

    EPA Science Inventory

    Transformation of heavy-metal related genes from a hyper-accumulator to a high-biomass species is expected to promote a zinc hyper-accumulating phenotype in the normally non-hyper-accumulating poplar. Coupling fluorescence with heavy metal proteins is anticipated to allow ...

  14. Bacterial Inoculants Affecting Nickel Uptake by Alyssum murale From Low, Moderate and High Ni Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metal hyperaccumulator plants like Alyssum murale have a remarkable ability to hyperaccumulate Ni from soils containing mostly insoluble Ni. We have shown some rhizobacteria increase the phytoavailability of Ni in soils, thus enhancing Ni accumulation by A. murale. Nine bacterial strains, originally...

  15. Seed oil development of pennycress under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi sp) has been targeted as a potential oilseed for the biofuels industry. Its seeds contain ~36% oil, where erucic acid is the major fatty acid presented with 38.1%. Additionally, the physical proprieties of the methyl esters are in the range to satisfy the needs of the biodiesel m...

  16. Field pennycress: A new oilseed crop for the production of biofuels, lubricants, and high-quality proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L.) has numerous positive attributes that make it a very promising industrial oilseed crop. Its short growing season makes it suitable as an off-season crop between corn and soybean production in most of the upper Midwestern U.S. Fall planting of pennycress may also...

  17. Effects of planting depth on field establishment of pennycress and light conditions on seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense), is a promising oilseed (36% oil) with potential for biofuels and another industrial uses. A winter annual, it may be feasible for use in Midwestern double cropping systems. However, agronomic and biological issues should be studied in order to understand and overcome pr...

  18. Comparison of the emergence of three Brassicaceae species of different origins grown in Spain and USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi arvense, Camelina sativa, C. microcarpa and Neslia paniculata are four Brassicaceae family species that are becoming rare in North-Eastern Spain. Conversely, both T. arvense and C. sativa are being investigated as oilseed crops in North America for industrial/biofuel purposes. C. microcarpa ...

  19. Synthesis and physical properties of pennycress estolide 2-ethylhexyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense L.) is a new crop that is currently being developed as an off-season rotation crop between annual corn and soybean production in Central Illinois by USDA-NCAUR. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an other...

  20. Biodiesel Prepared From Field Pennycress Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L., FP) is a winter annual species of the mustard family (Brassicaceae) which is widely distributed throughout temperate North America that can serve as a winter rotational crop for conventional crops, thus not displacing farm land or negatively impacting the food s...

  1. Collecting field pennycress germplasm in Colorado and characterization of oil and root variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense) has been identified as a possible source of biodiesel that may perform better in colder climates than other biodiesel fuels. A germplasm collection of the species is being maintained by the U.S. Department of Agriculture for use in research, education, and crop imp...

  2. Extraction of proteins from pennycress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense L.)has recently been found to have value as a source of biodiesel. Not only does it provide a high yield of quality oil, but perhaps more importantly, it can be planted after the harvest of traditional crops. It will grow through the winter (on days warmer than 0 C) and...

  3. Trends in literature on new oilseed crops and related species: Seeking evidence of increasing or waning interest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bibliographic records on eight new crop species Camelina, Crambe, Cuphea, Physaria, Limnanthes, Stokesia, Thlaspi, and Vernonia from Agricola, CAB Abstracts, Scopus, and Web of Science were analyzed for historical and recent trends in the areas of research, author distribution, and quantity and impa...

  4. Metallophytes for organic synthesis: towards new bio-based selective protection/deprotection procedures.

    PubMed

    Grison, Claire M; Velati, Alicia; Escande, Vincent; Grison, Claude

    2015-04-01

    We propose for the first time using metal hyperaccumulating plants for the construction of a repertoire of protection and deprotection conditions in a concept of orthogonal sets. Protection of alcohol, carbonyl, carboxyl, and amino groups are considered. The ecocatalysts derived from metal-rich plants allow selective, mild, eco-friendly, and efficient protection or deprotection reactions. The selectivity is controlled by the choice of the metal, which is hyperaccumulated by the metallophyte. PMID:25226830

  5. The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils.

    PubMed

    Claire-Lise, Meyer; Nathalie, Verbruggen

    2012-11-15

    Phytoremediation consists in treating environmental pollutions through the use of plants and their associated microbes. Phytoremediation can be used for pollutant stabilization, extraction, degradation or volatilization. Cadmium is one of the most toxic trace metallic elements for living organisms and its accumulation in the environment is recognized as a worldwide concern. Plants suitable for efficient pollutant extraction from the soil should combine different characteristics like fast growth, high biomass, high tolerance and high accumulation capacities in harvestable parts. A rare class of plants called hyperaccumulators combines extremely high tolerance degrees and foliar accumulation of trace elements. With regard to cadmium, none of the Cd hyperaccumulators identified has met the criteria for efficient phytoextraction so far. By virtue of genetic engineering it is possible to transfer genes involved in Cd tolerance or accumulation in high biomass plants. Nevertheless, the genetic determinants of Cd hyperaccumulation are far from being understood. It is thus indispensable to acquire more knowledge about these processes. Among Cd hyperaccumulators, Arabidopsis halleri (some populations can hyperaccumulate Cd) is considered as a model species for the study of metal homeostasis and detoxification. This review will summarize our knowledge about Cd tolerance and accumulation acquired in A. halleri and how this knowledge may be used in phytoextraction. PMID:22850245

  6. Classification and identification of metal-accumulating plant species by cluster analysis.

    PubMed

    Yang, Wenhao; Li, He; Zhang, Taoxiang; Sen, Lin; Ni, Wuzhong

    2014-09-01

    Identification and classification of metal-accumulating plant species is essential for phytoextraction. Cluster analysis is used for classifying individuals based on measured characteristics. In this study, classification of plant species for metal accumulation was conducted using cluster analysis based on a practical survey. Forty plant samples belonging to 21 species were collected from an ancient silver-mining site. Five groups such as hyperaccumulator, potential hyperaccumulator, accumulator, potential accumulator, and normal accumulating plant were graded. For Cd accumulation, the ancient silver-mining ecotype of Sedum alfredii was treated as a Cd hyperaccumulator, and the others were normal Cd-accumulating plants. For Zn accumulation, S. alfredii was considered as a potential Zn hyperaccumulator, Conyza canadensis and Artemisia lavandulaefolia were Zn accumulators, and the others were normal Zn-accumulating plants. For Pb accumulation, S. alfredii and Elatostema lineolatum were potential Pb hyperaccumulators, Rubus hunanensis, Ajuga decumbens, and Erigeron annuus were Pb accumulators, C. canadensis and A. lavandulaefolia were potential Pb accumulators, and the others were normal Pb-accumulating plants. Plant species with the potential for phytoextraction were identified such as S. alfredii for Cd and Zn, C. canadensis and A. lavandulaefolia for Zn and Pb, and E. lineolatum, R. hunanensis, A. decumbens, and E. annuus for Pb. Cluster analysis is effective in the classification of plant species for metal accumulation and identification of potential species for phytoextraction. PMID:24888623

  7. Symphyotrichum ericoides populations from seleniferous and nonseleniferous soil display striking variation in selenium accumulation.

    PubMed

    El Mehdawi, Ali F; Paschke, Mark W; Pilon-Smits, Elizabeth A H

    2015-04-01

    Symphyotrichum ericoides (Asteraceae) from naturally seleniferous habitat (Pine Ridge) was shown previously to have selenium (Se) hyperaccumulator properties in field and glasshouse studies, and to benefit from Se through protection from herbivory. To investigate whether Se hyperaccumulation is ubiquitous in S. ericoides or restricted to seleniferous soils, the S. ericoides Pine Ridge (PR) population was compared with the nearby Cloudy Pass (CP) population from nonseleniferous soil. The S. ericoidesPR and CP populations were strikingly physiologically different: in a common garden experiment, PR plants accumulated up to 40-fold higher Se concentrations than CP plants and had 10-fold higher Se : sulfur (S) ratios. Moreover, roots of S. ericoidesPR plants showed directional growth toward selenate, while CP roots did not. Growth of both accessions responded positively to Se. Each accession grew best on its own soil. Rhizosphere soil inoculum from the S. ericoidesPR population stimulated plant growth and Se accumulation in both S. ericoidesPR and S. ericoidesCP plants, on both PR and CP soils. While the S. ericoidesPR population hyperaccumulates Se, the nearby CP population does not. The capacity of S. ericoidesPR plants to hyperaccumulate Se appears to be a local phenomenon that is restricted to seleniferous soil. Mutualistic rhizosphere microbes of the S. ericoidesPR population may contribute to the hyperaccumulation phenotype. PMID:25406635

  8. Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in Noccaea caerulescens

    PubMed Central

    Kozhevnikova, Anna D; Seregin, Ilya V; Verweij, Rudo; Schat, Henk

    2014-01-01

    Histidine is known to be involved in Ni hyperaccumulation. Recently, histidine-dependent xylem loading of Ni and Zn has been demonstrated in the Zn/Ni/Cd hyperaccumulator, Noccaea caerulescens. Here we tested the hypothesis whether Cd xylem loading is histidine-dependent, too. In contrast to that of Ni and Zn, the xylem loading of Cd was not affected by exogenous histidine. Histidine accumulation in root cells appears to facilitate the radial transport of Ni and Zn, but not Cd, across the roots. This may be due to the relatively high preference of Cd for coordination with sulfur over coordination with nitrogen, in comparison with Ni and Zn. PMID:25763695

  9. Pint-sized plants pack a punch in fight against heavy metals

    SciTech Connect

    Boyd, V.

    1996-05-01

    USDA researchers are experimenting with plants that naturally scavenge heavy metals such as cadmium and zinc from the soil. Known as hyperaccumulators, the plants can store up to 2.5% of their dry weight in heavy metals in leaves without yield reductions. They can be grown, harvested, and dried. The dried material is then burned, and the metal ore can be recovered. As well as discussing the history of hyperaccumulators, this article focuses on the plant pennycress and work on improving its metal uptake.

  10. Replication and encapsidation of the viroid-like satellite RNA of lucerne transient streak virus are supported in divergent hosts by cocksfoot mottle virus and turnip rosette virus.

    PubMed

    Sehgal, O P; Sinha, R C; Gellatly, D L; Ivanov, I; AbouHaidar, M G

    1993-04-01

    Cocksfoot mottle sobemovirus supports replication and encapsidation of the viroid-like satellite RNA (sat-RNA) of lucerne transient streak virus (LTSV) in two monocotyledonous species, Triticum aestivum and Dactylis glomerata. Additionally, LTSV sat-RNA replicates effectively in the presence of turnip rosette sobemovirus in Brassica rapa, Raphanus raphanistrum and Sinapsis arvensis, but not in Thlaspi arvense or Nicotiana bigelovii, indicating that host species markedly influence this interaction. Previous reports of the association between LTSV sat-RNA and helper sobemoviruses were limited to dicotyledonous hosts. Our results demonstrate that the biological interaction between these two entities spans divergent dicotyledonous and monocotyledonous species. PMID:7682254

  11. What about the rare-earth elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is insufficient understanding of the nutritional physiology of pecan trees and orchards; thus, affecting nutmeat yield and quality, disease resistance and alternate bearing. An analysis of the rare-earth element composition of pecan and related hickory cousins found that they hyperaccumulate ...

  12. Current status and challenges in developing Ni phytomining: An agronomic perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review examines the current status, progress and challenges in Ni phytomining agronomy undertaken since the first field trial two decades ago. To date, over 400 Ni hyperaccumulators have been documented (of which >30% are in Cuba) including approximately 50 species with potential for use in Ni ...

  13. Chelator-buffered nutrient solution is ineffective in extracting Ni from seeds of Alyssum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperaccumulator species of the genera Alyssum can accumulate 100 times more Ni than normal crops and are therefore used for phytomining and phytoextraction of nickel contaminated soils. Basic studies on the physiology and metal uptake mechanisms of these plants are needed to increase efficiency and...

  14. NiO(s) (Bunsenite) is not Available to Alyssum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AIMS: To determine if the Ni-hyperaccumulator Alyssum corsicum can absorb Ni from the kinetically inert crystalline mineral NiO(s) (bunsenite). METHODS: A. corsicum and A. montanum plants were grown for 30 days in a serpentine Hoagland solution. NiO was provided at 0 or 0.1 g L-1 (1.34 mmol L-1) ...

  15. DEGRADATION OF ALYSSUM BIOMASS IN SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reasons for Ni hyperaccumulation remain unproven; however, elemental allelopathy has been suggested as a possible reason for this unusual trait. It has been suggested that continual transport of Ni from soil to leaves, then shedding of leaves to fall on the soil surface, may create a Ni toxic zo...

  16. Identification of a Cd accumulator Conyza canadensis.

    PubMed

    Wei, Shuhe; Zhou, Qixing; Saha, Uttam Kumar; Xiao, Hong; Hu, Yahu; Ren, Liping; Ping, Gu

    2009-04-15

    One of key steps of phytoremediating heavy metal contaminated soils is still the identification of hyperaccumulator and accumulator. In a former published article, Conyza canadensis L. Cronq. expressed some basic properties of Cd-hyperaccumulators. In this study, concentration gradient experiment and two sample-analyzing experiments were used to identify whether this plant is a Cd-hyperaccumulator. When grown on soil spiked with Cd at the rate of 10 and 25 mg kg(-1) in concentration gradient experiment, C. canadensis had both Cd enrichment factor (EF) and Cd translocation factor (TF) greater than 1, while the shoot biomass did not differ significantly as compared to the control. On the other hand, with Cd-spiking rates of 10 and 25 mg kg(-1), the Cd concentration in the shoot did not exceed 100 mg kg(-1), which is considered as the minimum shoot Cd concentration to qualify as a hyperaccumulator. In the sample-analysis experiments from a Pb-Zn mine area and wastewater irrigation region, C. canadensis also showed Cd-accumulator characteristics. Based on the results accomplished, we propose C. canadensis as a Cd-accumulator. PMID:18653276

  17. The Engineered Phytoremediation of Ionic and Methylmercury Pollution

    SciTech Connect

    Richard Meagher; Sarah Marshburn; Andrew Heaton; Anne Marie Zimer; Raoufa Rahman

    2003-06-24

    Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, and above ground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in above ground tissues for later harvest.

  18. Selenium Accumulation in Flowers and its Effects on Pollination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium, both an essential micronutrient and a potential toxin, is hyperaccumulated by some plants up to 1% of dry weight. The functional significance of this rare phenomenon may be an elemental defense against herbivores and pathogens. In this first of its kind study, we investigate Se distributio...

  19. SYNCHROTRON X-RAY ABSORPTION-EDGE COMPUTED MICROTOMOGRAPHY IMAGING OF THALLIUM COMPARTMENTALIZATION IN IBERIS INTERMEDIA

    EPA Science Inventory

    Thallium (TI) is an extremely toxic metal which, due to its similarities to K, is readily taken up by plants. Thallium is efficiently hyperaccumulated in Iberis intermedia as TI(I). Distribution and compartmentalization of TI in I. intermedia is highes...

  20. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly plant Zn uptake and homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain a better understanding of the regulation of Zn homeostasis in plants and the degree of conservation of Zn homeostasis between plants and yeast, a cDNA library from the Zn/Cd hyperaccumulating plant species, Nocceae caerulescens, was screened for its ability to restore growth under Zn limitin...

  1. Expression of an "Arabidopsis" Ca(2+)/H(+) antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytoremediation is a cost-effective and minimally invasive technology to cleanse soils contaminated with heavy metals. However, few plant species are suitable for phytoremediation of metals such as cadmium (Cd). Genetic engineering offers a powerful tool to generate plants that can hyperaccumulate ...

  2. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities.

    PubMed

    Wu, Gang; Kang, Hubiao; Zhang, Xiaoyang; Shao, Hongbo; Chu, Liye; Ruan, Chengjiang

    2010-02-15

    Mechanism of four methods for removing hazardous heavy metal are detailed and compared-chemical/physical remediation, animal remediation, phytoremediation and microremediation with emphasis on bio-removal aspects. The latter two, namely the use of plants and microbes, are preferred because of their cost-effectiveness, environmental friendliness and fewer side effects. Also the obvious disadvantages of other alternatives are listed. In the future the application of genetic engineering or cell engineering to create an expected and ideal species would become popular and necessary. However, a concomitant and latent danger of genetic pollution is realized by a few persons. To cope with this potential harm, several suggestions are put forward including choosing self-pollinated plants, creating infertile polyploid species and carefully selecting easy-controlled microbe species. Bravely, the authors point out that current investigation of noncrop hyperaccumulators is of little significance in application. Pragmatic development in the future should be crop hyperaccumulators (newly termed as "cropaccumulators") by transgenic or symbiotic approach. Considering no effective plan has been put forward by others about concrete steps of applying a hyperaccumulator to practice, the authors bring forward a set of universal procedures, which is novel, tentative and adaptive to evaluate hyperaccumulators' feasibility before large-scale commercialization. PMID:19864055

  3. NiO (bunsenite) is not available to Alyssum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some species of the genus Alyssum are capable of accumulating up to 30 g kg-1 DW Ni in their leaves when grown on serpentine soils where these species are endemic. The unique ability of Alyssum species to hyperaccumulate high concentration of Ni stimulated basic research toward a better understandi...

  4. Accumulation of zinc and cadmium and localization of zinc in Picris divaricata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Picris divaricata Vant., native to subtropical China, was recently identified as the first Cd/Zn hyper-accumulator from Asteraceae. Wild collected seed of P. divaricata was grown in a series of pH buffered test soils with Zn levels 00-7000 gkg-1 and Cd levels 00-150 gkg-1 for four months. Plants d...

  5. Xylem exudate composition and root-to-shoot nickel translocation in Alyssum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An improved understanding of Ni root-to-shoot translocation mechanism in hyperaccumulators is necessary to increase Ni uptake efficiency for phytoextraction technologies. It is presumed that an important aspect of Ni translocation and storage involves chelation with organic ligands. It has been re...

  6. Effects of Cadmium on Nickel Tolerance and Accumulation in Alyssum species and Cabbage Grown in Nutrient Solution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nickel phytoextraction using hyperaccumulator plant species to accumulate Ni from mineralized and contaminated soils rich in Ni is an emerging technology. Serpentinite derived soils which contain Ni ore value have a very low ratio of Ca:Mg among soils due the nature of the parent rock. In crop plant...

  7. Wounding of Arabidopsis halleri leaves enhances cadmium accumulation that acts as a defense against herbivory.

    PubMed

    Plaza, Sonia; Weber, Johann; Pajonk, Simone; Thomas, Jérôme; Talke, Ina N; Schellenberg, Maja; Pradervand, Sylvain; Burla, Bo; Geisler, Markus; Martinoia, Enrico; Krämer, Ute

    2015-06-01

    Approximately 0.2% of all angiosperms are classified as metal hyperaccumulators based on their extraordinarily high leaf metal contents, for example >1% zinc, >0.1% nickel or >0.01% cadmium (Cd) in dry biomass. So far, metal hyperaccumulation has been considered to be a taxon-wide, constitutively expressed trait, the extent of which depends solely on available metal concentrations in the soil. Here we show that in the facultative metallophyte Arabidopsis halleri, both insect herbivory and mechanical wounding of leaves trigger an increase specifically in leaf Cd accumulation. Moreover, the Cd concentrations accumulated in leaves can serve as an elemental defense against herbivory by larvae of the Brassicaceae specialist small white (Pieris rapae), thus allowing the plant to take advantage of this non-essential trace element and toxin. Metal homeostasis genes are overrepresented in the systemic transcriptional response of roots to the wounding of leaves in A. halleri, supporting that leaf Cd accumulation is preceded by systemic signaling events. A similar, but quantitatively less pronounced transcriptional response was observed in A. thaliana, suggesting that the systemically regulated modulation of metal homeostasis in response to leaf wounding also occurs in non-hyperaccumulator plants. This is the first report of an environmental stimulus influencing metal hyperaccumulation. PMID:25753945

  8. Effects of arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system.

    PubMed

    Fayiga, A O; Ma, L Q; Santos, Jorge; Rathinasabapathi, B; Stamps, B; Littell, R C

    2005-01-01

    Two hydroponic experiments were conducted to evaluate factors affecting plant arsenic (As) hyperaccumulation. In the first experiment; two As hyperaccumulators (Pteris vittata and P. cretica mayii) were exposed to 1 and 10 mg L(-1) arsenite (AsIII) and monomethyl arsenic acid (MMA) for 4 wk. Total As concentrations in plants (fronds and roots) and solution were determined In the second experiment P. vittata and Nephrolepis exaltata (a non-As hyperaccumulator) were exposed to 5 mgL(-1) arsenate (AsV) and 20 mgL(-1) AsIIIfor 1 and 15 d. Total As and AsIII concentrations in plants were determined Compared to P. cretica mayii, P. vittata was more efficient in arsenic accumulation (1075-1666 vs. 249-627mg kg(-1) As in the fronds) partially because it is more efficient in As translocation. As translocation factor (As concentration ratio in fronds to roots) was 3.0-5.6 for P. vittata compared to 0.1 to 4.8 for P. cretica. Compared to N. exaltata, P. vittata was significantly more efficient in arsenic accumulation (38-542 vs. 4.8-71 mg kg(-1) As in thefronds) as well asAs translocation (1.3-5.6 vs. 0.2-0.5). In addition, P. vittata was much more efficient in As reduction from AsV to AsIII (83-84 vs. 13-24% AsIII in the fronds). Little As reduction occurred after 1-d exposure to AsV in both species indicates that As reduction was not instantaneous even in an As hyperaccumulator. Our data were consistent with the hypothesis that both As translocation and As reduction are important for plant As hyperaccumulation. PMID:16285413

  9. Preliminary characterization of a light-rare-earth-element-binding peptide of a natural perennial fern Dicranopteris dichotoma.

    PubMed

    Wang, Haiou; Shan, Xiao-Quan; Zhang, Shuzhen; Wen, Bei

    2003-05-01

    A light-rare-earth-element (LREE)-binding peptide was isolated from LREE hyperaccumulator Dicranopteris dichotomaleaves and characterized in terms of molecular weight and ultraviolet absorption spectrum. The molecular weight of the LREE-binding peptide was determined to be 2208 Da by matrix-assisted laser-desorption ionization-time of flight mass spectrometry (MALDI-TOFMS). The characteristic ultraviolet absorption spectrum of the peptide was observed at 220-300 nm, suggesting that the peptide chain contained aromatic amino acids. Compared to the unique features of the phytochelatins with a low absorption at 280 nm, the LREE-binding peptide is unlikely to be a typical phytochelatin. The present study suggests that the LREE-binding peptide is probably a natural peptide in D. dichotoma, and it may play an important role in hyperaccumulation of LREEs. PMID:12734617

  10. Enhancement of phosphate absorption by garden plants by genetic engineering: a new tool for phytoremediation.

    PubMed

    Matsui, Keisuke; Togami, Junichi; Mason, John G; Chandler, Stephen F; Tanaka, Yoshikazu

    2013-01-01

    Although phosphorus is an essential factor for proper plant growth in natural environments, an excess of phosphate in water sources causes serious pollution. In this paper we describe transgenic plants which hyperaccumulate inorganic phosphate (Pi) and which may be used to reduce environmental water pollution by phytoremediation. AtPHR1, a transcription factor for a key regulator of the Pi starvation response in Arabidopsis thaliana, was overexpressed in the ornamental garden plants Torenia, Petunia, and Verbena. The transgenic plants showed hyperaccumulation of Pi in leaves and accelerated Pi absorption rates from hydroponic solutions. Large-scale hydroponic experiments indicated that the enhanced ability to absorb Pi in transgenic torenia (AtPHR1) was comparable to water hyacinth a plant that though is used for phytoremediation causes overgrowth problems. PMID:23984322

  11. Enhancement of Phosphate Absorption by Garden Plants by Genetic Engineering: A New Tool for Phytoremediation

    PubMed Central

    Togami, Junichi; Mason, John G.; Chandler, Stephen F.; Tanaka, Yoshikazu

    2013-01-01

    Although phosphorus is an essential factor for proper plant growth in natural environments, an excess of phosphate in water sources causes serious pollution. In this paper we describe transgenic plants which hyperaccumulate inorganic phosphate (Pi) and which may be used to reduce environmental water pollution by phytoremediation. AtPHR1, a transcription factor for a key regulator of the Pi starvation response in Arabidopsis thaliana, was overexpressed in the ornamental garden plants Torenia, Petunia, and Verbena. The transgenic plants showed hyperaccumulation of Pi in leaves and accelerated Pi absorption rates from hydroponic solutions. Large-scale hydroponic experiments indicated that the enhanced ability to absorb Pi in transgenic torenia (AtPHR1) was comparable to water hyacinth a plant that though is used for phytoremediation causes overgrowth problems. PMID:23984322

  12. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil.

    PubMed

    Cui, Shuang; Zhang, Tingan; Zhao, Shanlin; Li, Ping; Zhou, Qixing; Zhang, Qianru; Han, Qing

    2013-01-01

    Characteristics of accumulation and tolerance of lead (Pb) in Quamolit pennata, Antirrhinum majus L. and Celosia cristata pyramidalis were investigated to identify Pb-accumulating plants. In this study, pot culture experiment was conducted to assess whether these plants are Pb-hyperaccumulators or accumulators. The results indicated that the Pb enrichment factor (concentration in plant/soil) and Pb translocation factor (concentration in shoot/root) of these plants were principally <1 in pot culture and concentration gradient experiments. However, the Pb concentration in Celosia cristata pyramidalis shoots was higher than 1000 mg kg(-1), the threshold concentration for a Pb-hyperaccumulator. Shoot biomass of Celosia cristata pyramidalis had no significantly (p < 0.05) variation compared to the control. Based on these results, only Celosia cristata pyramidalis could be identified as a Pb-accumulator. PMID:23487996

  13. The relationship of selenium tolerance and speciation in Lecythidaceae species.

    PubMed

    Németh, Anikó; García Reyes, Juan Francisco; Kosáry, Judit; Dernovics, Mihály

    2013-12-01

    Comparative study of selenium (Se) speciation in hyperaccumulator plants offers an interesting challenge from the analytical point of view. In our study the application of a sophisticated sample clean-up procedure and the combination of elemental and molecular mass spectrometric methods led to the identification of several new selenocompounds. The difference between the Se speciation of the primary accumulator Lecythis minor and the secondary accumulator Bertholletia excelsa confirmed the current opinion that the speciation pattern in hyperaccumulator plants is principally related to the mechanism of accumulation and not to taxonomy. The most abundant new selenocompounds were found to be the derivatives of selenohomocysteine (SeHCy) and selenomethionine (SeMet), including fatty acid metabolism related compounds. A series of SeHCy derived species containing multiple Se atoms (>2) was also detected and their structures were validated by the synthesis of their S-Se analogues. PMID:24136350

  14. Phytoremediation of ionic and methylmercury pollution

    SciTech Connect

    Meagher, Richard B

    2010-04-28

    Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and sequester the toxic elemental pollutants, like the heavy metal mercury. Our current working hypothesis is that transgenic plants controlling the transport, chemical speciation, electrochemical state. volatilization, and aboveground binding of mercury will: a) tolerate mercury and grow rapidly in mercury contaminated environments; b) prevent methylmercury from entering the food chain; c) remove mercury from polluted soil and . water; and d) hyperaccumulate mercury in aboveground tissues for later harvest. Progress toward these specific aims is reported: to increase the transport of mercury into roots and to aboveground vegetative organs; to increase biochemical sinks and storage for mercury in leaves; to increase leaf cell vacuolar storage of mercury; and to demonstrate that several stacked transgenes, when functioning in concert, enhance mercury resistance and hyperaccumulation to high levels.

  15. Impact of heavy metal toxicity and constructed wetland system as a tool in remediation.

    PubMed

    Usharani, B; Vasudevan, N

    2016-01-01

    The objective of this review is to throw light upon the global concern of heavy metal-contaminated sites and their remediation through an ecofriendly approach. Accumulated heavy metals in soil and water bodies gain entry through the food chain and pose serious threat to all forms of life. This has engendered interest in phytoremediation techniques where hyperaccumulators are used. Constructed wetland has a pivotal role and is a cost-effective technique in the remediation of heavy metals. Metal availability and mobility are influenced by the addition of chelating agents, which enhance the availability of metal uptake. This review helps in identifying the critical knowledge gaps and areas to enhance research in the future to develop strategies such as genetically engineered hyperaccumulators to attain an environment devoid of heavy metal contamination. PMID:25454352

  16. Shining light on metals in the environment

    SciTech Connect

    McNear, Jr., D.H.; Tappero, R.; Sparks, D.L.

    2010-07-20

    Elucidating the speciation of heavy metals in the environment is paramount to understanding their potential mobility and bioavailability. Cutting-edge synchrotron-based techniques such as microfocused X-ray absorption fine-structure (XAFS) and X-ray fluorescence (XRF) spectroscopy and microtomography have revolutionized the way metal reactions and processes in natural systems are studied. In this article, we apply these intense-light tools to decipher metal forms (species) and associations in contaminated soils and metal-hyperaccumulating plants.

  17. Use of synchrotron radiation to characterize metals in plants: the case of Cd in the hyperacumulator Arabidopsis halleri

    NASA Astrophysics Data System (ADS)

    Isaure, M.; Sarret, G.; Verbruggen, N.

    2010-12-01

    Phytoremediation uses plants to extract (phytoextraction) or stabilize (phytostabilization) metals accumulated in soils, and can be an alternative to invasive physico-chemical remediation techniques. Its development requires the knowledge of the mechanisms involved in metal tolerance and accumulation in plants, and particularly the way that plants transfer and store metals. In that context, synchrotron radiation based techniques such as micro-focused X-Ray Fluorescence (µXRF), and micro-focused X-ray Absorption Spectroscopy, including Extended X-ray Absorption Fine Structure and X-ray Absorption Near Edge Structure, are particularly suited to determine the localization and the chemical forms of metals in the different tissues, cells and sub-cellular compartments. Arabidopsis halleri is a Zn, Cd hyperaccumulating plant, naturally growing on contaminated sites, and is a model plant to investigate metal hyperaccumulation. This work presents the application of µXRF and Cd µXANES to determine the distribution and speciation of Cd in this species. Results showed that Cd was mainly located in the mesophyll and veins of leaves. It is bound to S ligands in some leaves and to O/N ligands in other ones, and the observed variations may be related to the age of the leaves. Cd speciation seems to differ from other metals, and particularly Zn, generally encountered in hyperaccumulators. High local Cd concentrations were also detected at the base of trichomes, epidermal hairs of leaves, associated to O/N ligands, probably to the cell wall. This phenomenon was also observed on non-hyperaccumulators and is clearly not the major sink for Cd, but trichomes might play a role in the detoxification process. This study illustrates the suitability of synchrotron radiation based techniques to investigate metal distribution and speciation in plants.

  18. EDTA-assisted Pb phytoextraction.

    PubMed

    Saifullah; Meers, E; Qadir, M; de Caritat, P; Tack, F M G; Du Laing, G; Zia, M H

    2009-03-01

    Pb is one of the most widespread and metal pollutants in soil. It is generally concentrated in surface layers with only a minor portion of the total metal found in soil solution. Phytoextraction has been proposed as an inexpensive, sustainable, in situ plant-based technology that makes use of natural hyperaccumulators as well as high biomass producing crops to help rehabilitate soils contaminated with heavy metals without destructive effects on soil properties. The success of phytoextraction is determined by the amount of biomass, concentration of heavy metals in plant, and bioavailable fraction of heavy metals in the rooting medium. In general, metal hyperaccumulators are low biomass, slow growing plant species that are highly metal specific. For some metals such as Pb, there are no hyperaccumulator plant species known to date. Although high biomass-yielding non-hyperaccumulator plants lack an inherent ability to accumulate unusual concentrations of Pb, soil application of chelating agents such as EDTA has been proposed to enhance the metal concentration in above-ground harvestable plant parts through enhancing the metal solubility and translocation from roots to shoots. Leaching of metals due to enhanced mobility during EDTA-assisted phytoextraction has been demonstrated as one of the potential hazards associated with this technology. Due to environmental persistence of EDTA in combination with its strong chelating abilities, the scientific community is moving away from the use of EDTA in phytoextraction and is turning to less aggressive alternative strategies such as the use of organic acids or more degradable APCAs (aminopolycarboxylic acids). We have therefore arrived at a point in phytoremediation research history in which we need to distance ourselves from EDTA as a proposed soil amendment within the context of phytoextraction. However, valuable lessons are to be learned from over a decade of EDTA-assisted phytoremediation research when considering the

  19. Analysis of Sulfur And Selenium Assimilation in 'Astragalus' Plants With Varying Capacities to Accumulate Selenium

    SciTech Connect

    Sors, T.G.; Ellis, D.R.; Na, G.Nam.; Lahner, B.; Lee, S.; Leustek, T.; Pickering, I.J.; Salt, D.E.; /Purdue U. /Rutgers U., Piscataway /Saskatchewan U.

    2007-08-08

    Several Astragalus species have the ability to hyperaccumulate selenium (Se) when growing in their native habitat. Given that the biochemical properties of Se parallel those of sulfur (S), we examined the activity of key S assimilatory enzymes ATP sulfurylase (ATPS), APS reductase (APR), and serine acetyltransferase (SAT), as well as selenocysteine methyltransferase (SMT), in eight Astragalus species with varying abilities to accumulate Se. Se hyperaccumulation was found to positively correlate with shoot accumulation of S-methylcysteine (MeCys) and Se-methylselenocysteine (MeSeCys), in addition to the level of SMT enzymatic activity. However, no correlation was observed between Se hyperaccumulation and ATPS, APR, and SAT activities in shoot tissue. Transgenic Arabidopsis thaliana overexpressing both ATPS and APR had a significant enhancement of selenate reduction as a proportion of total Se, whereas SAT overexpression resulted in only a slight increase in selenate reduction to organic forms. In general, total Se accumulation in shoots was lower in the transgenic plants overexpressing ATPS, PaAPR, and SAT. Root growth was adversely affected by selenate treatment in both ATPS and SAT overexpressors and less so in the PaAPR transgenic plants. Such observations support our conclusions that ATPS and APR are major contributors of selenate reduction in planta. However, Se hyperaccumulation in Astragalus is not driven by an overall increase in the capacity of these enzymes, but rather by either an increased Se flux through the S assimilatory pathway, generated by the biosynthesis of the sink metabolites MeCys or MeSeCys, or through an as yet unidentified Se assimilation pathway.

  20. Cloning and expression of Brassica napus beta-carbonic anhydrase cDNA.

    PubMed

    Deng, Qiu-Hong; Li, Mao-Teng; Yu, Long-Jiang

    2009-01-01

    A new full-length beta-carbonic anhydrase cDNA was obtained from Brassica napus by homologous cloning. The cDNA has an open-reading frame of 996 nucleotides, encoding 331 amino acids with a calculated molecular weight of 35,692 Da and an estimated pI value of 5.459. The deduced amino acid sequence of beta-carbonic anhydrase from Brassica napus shared significant identity with beta-carbonic anhydrases from Brassica carinata, Arabidopsis thaliana, and Thlaspi caerulescens (97.9%, 94%, and 93.5% identity, respectively). This cDNA was expressed in Escherichia coli BL21 (DE3) using the expression vector pET-32a(+). The expression band corresponded to the calculated mass plus the N-terminal fusion protein derived from the vector. PMID:20158161

  1. Bioavailability assessment and accumulation by five garden flower species grown in artificially cadmium-contaminated soils.

    PubMed

    Lin, Chun-Chun; Lai, Hung-Yu; Chen, Zueng-Sang

    2010-07-01

    Many studies have been conducted on phytoextraction; however, non-native hyperaccumulator species are not suitable for the natural environment of Taiwan in many cases. Drawing upon previous results, the growth and heavy metal accumulation in artificially cadmium-contaminated soils were compared for five local garden flower species. The treatments included a control (CK), 9.73 +/- 0.05 mg kg(-1) (Cd-10), and 17.6 +/- 0.8 mg kg(-1) (Cd-20). All plants were harvested at 35 days after transplanting and analyzed for Cd content. Cd accumulation in the shoot of French marigold (Tagetes patula L.) and Impatiens (Impatiens walleriana Hook. f.) grown in Cd-20 treatment were 66.3 +/- 6.5 and 100 +/- 11 mg kg(-1), which equated to a removal of 0.80 +/- 0.11 and 0.60 +/- 0.37 mg Cd plant(-1), respectively. The maximum Cd accumulation of Impatiens reached the threshold value (100 mg kg(-1)) characteristic of a Cd hyperaccumulator and its bioconcentration factor (BCF) and translocation factor (TF) were greater than one. Impatiens therefore has the potential to hyperaccumulate Cd from Cd-contaminated soils. With the exception of Garden verbena, significant relationships were found between Cd concentrations in soil extracted by 0.05 M EDTA, 0.005 M DTPA, and 0.01 M CaCl2 and the concentration of Cd in the shoots of the tested garden flowers. PMID:21166288

  2. Lithium, Vanadium and Chromium Uptake Ability of Brassica juncea from Lithium Mine Tailings.

    PubMed

    Elektorowicz, M; Keropian, Z

    2015-01-01

    The potential for phytoremediation and phytostabilization of lithium in lieu with vanadium and chromium on a formulated acidic heterogeneous growth media engineered around lithium mine tailings, was investigated in four phases: (1) overall efficiency of the removal of the three metals, (2) bioaccumulation ratios of the three metals, (3) overall relative growth rate, and (4) translocation index of the three metals in the physiology of the hyperaccumulator plant. A pot study was conducted to assess the suitability of Brassica juncea (Indian mustard) in a phytoremediation process whereby it was lingered for eighty-six days under homogeneous growth conditions and irrigated bidaily with organic fertilizer amended with LiCl. A post harvest data analysis was achieved through ashing and the implementation of cold digestion procedure in a concentrated hydrochloric acidic matrix. In physiological efficiency parameters, the hyperaccumulator plant was twice as able to phytostabilize chromium and four times was able to phytostabilize vanadium in comparison to lithium. Moreover, it was extremely efficient in translocating and accumulating lithium inside its upper physiological sites, more so than chromium and vanadium, thereby demonstrating Indian mustard, as a hyperaccumulator plant, for phytoextraction and phytostabilization in an acidic heterogeneous rhizosphere, with an extremely low relative growth rate. PMID:25747238

  3. Exploring lower limits of plant elemental defense by cobalt, copper, nickel, and zinc.

    PubMed

    Cheruiyot, Dorothy J; Boyd, Robert S; Moar, William J

    2013-05-01

    Elemental defense is a relatively newly recognized phenomenon in which plants use elements present in their tissue to reduce damage by herbivores or pathogens. In the present study, neonates of the generalist herbivore, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), were fed artificial diets amended with varying concentrations of Co, Cu, Ni, and Zn that are hyperaccumulated by plants to determine minimum lethal concentrations (MLC) and minimum sublethal concentrations (MSC) for each metal. MLC values (dry mass) for Co (45 μg/g), Ni (230 μg/g), and Zn (280 μg/g) were below published minimum hyperaccumulator levels. MSC levels (dry mass) for Co (15 μg/g), Ni (140 μg/g), and Zn (200 μg/g) were at concentrations lower than published minimum accumulator levels. Furthermore, both MLC and MSC values for Zn were within normal tissue concentrations. These results indicate that elemental defense for Co, Ni, and Zn may be effective at concentrations lower than hyperaccumulator levels and so may be more widespread than previously believed. PMID:23584612

  4. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site.

    PubMed

    Eid, Ebrahem M; Shaltout, Kamal H

    2016-11-01

    In the present study, nine native plant species were collected to determine their potential to clean up nine heavy metals from soil of a sewage sludge dump site. Almost all nine plant species grown at sewage sludge dump site showed multifold higher concentrations of heavy metals as compared to plants grown at the reference site. All the investigated species were characterized by a bioaccumulation factor (BF) > 1.0 for some heavy metals. BF was generally higher for Cd, followed by Pb, Co, Cr, Cu, Ni, Mn, Zn, and Fe. The translocation factor (TF) varied among plant species, and among heavy metals. For most studied heavy metals, TFs were <1.0. The present study proved that the concentrations of all heavy metals (except Cd, Co, and Pb) in most studied species were positively correlated with those in soil. Such correlations indicate that these species reflect the cumulative effects of environmental pollution from soil, and thereby suggesting their potential use in the biomonitoring of most heavy metals examined. In conclusion, all tissues of nine plant species could act as bioindicators, biomonitors, and remediates of most examined heavy metals. Moreover, Bassia indica, Solanum nigrum, and Pluchea dioscoridis are considered hyperaccumulators of Fe; Amaranthus viridis and Bassia indica are considered hyperaccumulators of Pb; and Portulaca oleracea is considered hyperaccumulator of Mn. PMID:27184987

  5. The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system.

    PubMed

    Pérez-Sampietro, María; Serra-Cardona, Albert; Canadell, David; Casas, Celia; Ariño, Joaquín; Herrero, Enrique

    2016-01-01

    The yeast Saccharomyces cerevisiae is employed as a model to study the cellular mechanisms of toxicity and defense against selenite, the most frequent environmental selenium form. We show that yeast cells lacking Aft2, a transcription factor that together with Aft1 regulates iron homeostasis, are highly sensitive to selenite but, in contrast to aft1 mutants, this is not rescued by iron supplementation. The absence of Aft2 strongly potentiates the transcriptional responses to selenite, particularly for DNA damage- and oxidative stress-responsive genes, and results in intracellular hyperaccumulation of selenium. Overexpression of PHO4, the transcriptional activator of the PHO regulon under low phosphate conditions, partially reverses sensitivity and hyperaccumulation of selenite in a way that requires the presence of Spl2, a Pho4-controlled protein responsible for post-transcriptional downregulation of the low-affinity phosphate transporters Pho87 and Pho90. SPL2 expression is strongly downregulated in aft2 cells, especially upon selenite treatment. Selenite hypersensitivity of aft2 cells is fully rescued by deletion of PHO90, suggesting a major role for Pho90 in selenite uptake. We propose that the absence of Aft2 leads to enhanced Pho90 function, involving both Spl2-dependent and independent events and resulting in selenite hyperaccumulation and toxicity. PMID:27618952

  6. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants.

    PubMed

    Sharma, Shanti S; Dietz, Karl-Josef; Mimura, Tetsuro

    2016-05-01

    Plant cells orchestrate an array of molecular mechanisms for maintaining plasmatic concentrations of essential heavy metal (HM) ions, for example, iron, zinc and copper, within the optimal functional range. In parallel, concentrations of non-essential HMs and metalloids, for example, cadmium, mercury and arsenic, should be kept below their toxicity threshold levels. Vacuolar compartmentalization is central to HM homeostasis. It depends on two vacuolar pumps (V-ATPase and V-PPase) and a set of tonoplast transporters, which are directly driven by proton motive force, and primary ATP-dependent pumps. While HM non-hyperaccumulator plants largely sequester toxic HMs in root vacuoles, HM hyperaccumulators usually sequester them in leaf cell vacuoles following efficient long-distance translocation. The distinct strategies evolved as a consequence of organ-specific differences particularly in vacuolar transporters and in addition to distinct features in long-distance transport. Recent molecular and functional characterization of tonoplast HM transporters has advanced our understanding of their contribution to HM homeostasis, tolerance and hyperaccumulation. Another important part of the dynamic vacuolar sequestration syndrome involves enhanced vacuolation. It involves vesicular trafficking in HM detoxification. The present review provides an updated account of molecular aspects that contribute to the vacuolar compartmentalization of HMs. PMID:26729300

  7. Advancing our understanding of plant adaptation to metal polluted environments - new insights from Biscutella laevigata

    NASA Astrophysics Data System (ADS)

    Babst-Kostecka, Alicja; Waldmann, Patrik; Frérot, Hélène; Vollenweider, Pierre

    2016-04-01

    The legacy of industrial pollution alters ecosystems, particularly at post-mining sites where metal trace elements have created toxic conditions that trigger rapid plant adaptation. Apart from the purely scientific merits, in-depth knowledge of the mechanisms underlying plant adaptation to metal contamination is beneficial for the economic and societal sectors because of its application in bioengineering (e.g. phytoremediation or biofortification). An important process is the evolution and/or enhancement of metal tolerance, a trait that has predominantly been studied by applying acute metal stress on species that allocate large quantities of certain metals to their foliage (so-called hyperaccumulators). As the vast majority of vascular plants does not hyperaccumulate metals, more efforts are needed to investigate non-hyperaccumulating species and thereby broaden understanding of biological mechanisms underlying metal tolerance. The pseudometallophyte Biscutella laevigata has shown potential in this respect, but its characteristics are insufficiently understood. We determined the zinc tolerance level and various plant responses to environmentally relevant zinc concentrations in ten metallicolous and non-metallicolous B. laevigata populations. In a two-phase hydroponic experiment, we scored multiple morphological and physiological traits (e.g. biomass, visible stress symptoms, element content in foliage) and assessed phenotypic variability within plant families. The structure of these quantitative traits was compared to that of neutral molecular markers to test, whether natural selection caused population differentiation in zinc tolerance. While all genotypes were tolerant compared to a zinc sensitive reference species, we found congruent trends toward higher tolerance in metallicolous compared to non-metallicolous plants. We identified the most indicative parameters for these differences and find that enhanced zinc tolerance in metallicolous populations is driven by

  8. Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China.

    PubMed

    Li, Guang-yue; Hu, Nan; Ding, De-xin; Zheng, Ji-fang; Liu, Yu-long; Wang, Yong-dong; Nie, Xiao-qin

    2011-06-01

    The concentrations of uranium, thorium, barium, nickel, strontium and lead in the samples of the tailings and plant species collected from a uranium mill tailings repository in South China were analyzed. Then, the removal capability of a plant for a target element was assessed. It was found that Phragmites australis had the greatest removal capabilities for uranium (820 μg), thorium (103 μg) and lead (1,870 μg). Miscanthus floridulus had the greatest removal capabilities for barium (3,730 μg) and nickel (667 μg), and Parthenocissus quinquefolia had the greatest removal capability for strontium (3,920 μg). In this study, a novel coefficient, termed as phytoremediation factor (PF), was proposed, for the first time, to assess the potential of a plant to be used in phytoremediation of a target element contaminated soil. Phragmites australis has the highest PFs for uranium (16.6), thorium (8.68), barium (10.0) and lead (10.5). Miscanthus floridulus has the highest PF for Ni (25.0). Broussonetia papyrifera and Parthenocissus quinquefolia have the relatively high PFs for strontium (28.1 and 25.4, respectively). On the basis of the definition for a hyperaccumulator, only Cyperus iria and Parthenocissus quinquefolia satisfied the criteria for hyperaccumulator of uranium (36.4 μg/g) and strontium (190 μg/g), and could be the candidates for phytoremediation of uranium and strontium contaminated soils. The results show that the PF has advantage over the hyperaccumulator in reflecting the removal capabilities of a plant for a target element, and is more adequate for assessing the potential of a plant to be used in phytoremediation than conventional method. PMID:21523506

  9. Ecophysiology of nickel phytoaccumulation: a simplified biophysical approach.

    PubMed

    Coinchelin, David; Bartoli, François; Robin, Christophe; Echevarria, Guillaume

    2012-10-01

    Solute active transport or exclusion by plants can be identified by the values of the Transpiration Stream Concentration Factor (TSCF=xylem:solution solute concentration ratio). The aim of this study was to estimate this parameter for Ni uptake by the Ni-hyperaccumulator Leptoplax emarginata or the Ni-excluder Triticum aestivum cultivar 'Fidel'. The Intact Plant TSCF for nickel (IPTSCF(Ni)) was calculated as the ratio between the nickel mass accumulation in the leaves and the nickel concentration in solution per volume of water transpired. Predominantly, Ni active transport occurred for L. emarginata, with IPTSCF(Ni) values of 4.7-7.2 and convective component proportions of the root Ni uptake flow of only 15-20% for a range of Ni concentrations in solutions of 2-16 µmol Ni l(-1), regardless of the growth period and the time of Ni uptake. Hyperaccumulator roots were permeable to both water and nickel (mean reflection coefficient for Ni, σ(Ni), of 0.06), which was mainly attributed to an absence of exodermis. Results provide a new view of the mechanisms of Ni hyperaccumulation. By contrast, the wheat excluder was characterized by an extremely low mean IPTSCF(Ni) value of 0.006, characterizing a predominantly Ni sequestration in roots. From a methodological viewpoint, the 'microscopic' TSCF(Ni), measured directly on excised plants was 2.4 times larger than its recommended 'macroscopic' IPTSCF(Ni) counterpart. Overall, IPTSCF and σ determined on intact transpiring plants appeared to be very useful biophysical parameters in the study of the mechanisms involved in metal uptake and accumulation by plants, and in their modelling. PMID:22987839

  10. Nickel accumulation by Streptanthus polygaloides (Brassicaceae) reduces floral visitation rate.

    PubMed

    Meindl, George A; Ashman, Tia-Lynn

    2014-02-01

    Hyperaccumulation is the phenomenon whereby plants take up and sequester in high concentrations elements that generally are excluded from above-ground tissues. It largely is unknown whether the metals taken up by these plants are transferred to floral rewards (i.e., nectar and pollen) and, if so, whether floral visitation is affected. We grew Streptanthus polygaloides, a nickel (Ni) hyperaccumulator, in short-term Ni supplemented soils and control soils to determine whether Ni is accumulated in floral rewards and whether floral visitation is affected by growth in Ni-rich soils. We found that while supplementation of soils with Ni did not alter floral morphology or reward quantity (i.e., anther size or nectar volume), Ni did accumulate in the nectar and pollen-filled anthers-providing the first demonstration that Ni is accumulated in pollinator rewards. Further, S. polygaloides grown in Ni-supplemented soils received fewer visits per flower per hour from both bees and flies (both naïve to Ni-rich floral resources in the study area) relative to plants grown in control soils, although the probability a plant was visited initially was unaffected by Ni treatment. Our findings show that while Ni-rich floral rewards decrease floral visitation, floral visitors are not completely deterred, so some floral visitors may collect and ingest potentially toxic resources from metal-hyperaccumulating plants. In addition to broadening our understanding of the effects of metal accumulation on ecological interactions in natural populations, these results have implications for the use of insect-pollinated plants in phytoremediation. PMID:24477333

  11. Utilization of a Model for Uptake of Cadmium by Plants as a Phytoremediation Assessment Tool

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Furbish, D. J.; Clarke, J.

    2008-12-01

    Some traditional methods of environmental remediation, such as removal and disposal of contaminated soil, are loosing economic favor and public acceptance, while others, such as in situ phytoremediation, are being carefully examined because of their attractiveness as environmentally friendly, low-cost solutions to site clean-up. The success of phytoremediation strategies, however, hinges on the ability of selected plants, or plant communities, to effectively uptake, accumulate and tolerate targeted contaminants. Heavy metals, specifically cadmium (Cd), are not essential nutrients to plants. However, chemically similar zinc (Zn) is a micronutrient and is actively taken up by hyperaccumulators. For this reason, the mechanisms involved in uptake of Cd parallel those of Zn. Ideally, Cd would be allocated to the stem, leaf, and/or flower, where it becomes harvestable. Our modeling work simulates the uptake and the storage of Cd in a growing hyperaccumulator. After uptake, Cd is partitioned between adsorption to plant tissue and upward movement to leaves driven by transpiration. Uptake, adsorption and transport are also regulated by phytotoxicity. Simulations suggest that a young plant with small biomass can quickly reach phytotoxicity, which shuts down the normal operation of the plant. Conversely, mature plants on a mildly contaminated site, if harvested before the plants die due to phytotoxicity or natural cause, not only survive but may occasionally thrive. The immediate aim is to estimate the effectiveness and limitations of Cd uptake by hyperaccumulators. The eventual goal of this study is to expand the model in spatial and temporal scales, from individual plants to the community scale, and from one harvest interval to several generations. Understanding the interface between physical and biological processes, specifically the uptake and release of contaminants, provides scientists and engineers tools to assess whether phytoremediation is a reasonable strategy for a

  12. [Cd Runoff Load and Soil Profile Movement After Implementation of Some Typical Contaminated Agricultural Soil Remediation Strategies].

    PubMed

    Liu, Xiao-li; Zeng, Zhao-xia; Tie, Bai-qing; Chen, Qiu-wen; Wei, Xiang-dong

    2016-02-15

    Owing to the strong ability to immobilize and hyperaccumulate some toxic heavy metals in contaminated soils, the biochar, lime and such as hyperaccumulator ramie received increasing interests from crops and environment safety in recent years. Outdoor pot experiment was conducted to compare the impacts of lime and biochar addition in paddy rice treatment, hyperaccumulator ramie and ramie combined with EDTA of plant Phytoremediation methods on soil available Cd dynamics in rainfall runoff and the mobility along soil profile, under both natural acid precipitation and acid soil conditions. The results showed that, biochar addition at a 2% mass ratio application amount significantly increased soil pH, while ramie with EDTA application obviously decreased soil pH compared to ramie monoculture. Within the same rainfall events, water soluble Cd concentration in surface runoff of ramie treatments was significantly higher than those of waterlogged rice treatments, and Cd concentration in runoff was obviously increased after EDTA addition, whereas lime at a 0.3% mass ratio application amount as additive had no obvious impact on soil pH and Cd speciation change, which may be due to the low application amount. During the whole experimental period , water soluble Cd concentration of rainfall runoff in spring was higher than that in summer, showing the same seasonal characteristics in all treatments. Biochar addition could significantly decrease available Cd content in 0-20 cm soil layer and with certain preferable persistency effects, whereas EDTA addition treatment obviously increased available Cd of 0-20 cm soil layer compared to other treatments, and obvious Cd element activation phenomenon in 20-40 cm soil layer was observed after EDTA addition. In conclusion, lime and biochar as environmental and friendly alkaline Cd immobilization materials showed lower environment risk to surface and ground receiving water, but attention should be paid to phytoremediation enhanced with

  13. Cd and Zn accumulation in plants from the Padaeng zinc mine area.

    PubMed

    Phaenark, C; Pokethitiyook, P; Kruatrachue, M; Ngernsansaruay, C

    2009-07-01

    Significant cadmium (Cd) contamination In soil and rice has been discovered in Mae Sot, Tak province, Thailand where the rice-based agricultural systems are established in the vicinity of a zinc mine. The prolonged consumption of Cd contaminated rice has potential risks to public health and health impacts of Cd exposed populations in Mae Sot have been demonstrated. The Thai government has prohibited rice cultivation in the area as an effort to prevent further exposure. Phytoextraction, the use of plants to remove contaminants from soil, is a potential option to manage Cd-contaminated areas. However, successful phytoextraction depends on first identifying effective hyperaccumulator plants appropriate for local climatic conditions. Five sampling sites at Padaeng Zinc mine, Tak province were selected to collect plant and soil samples. Total Cd and Zn concentrations in sediments or soils were approximately 596 and 20,673 mg kg(-1) in tailing pond area, 543 and 20,272 mg kg(-1) in open pit area, 894 and 31,319 mg kg(-1) in stockpile area, 1458 and 57,012 mg kg(-1) in forest area and 64 and 2733 mg kg(-1) in Cd contaminated rice field. Among a total of 36 plant species from 16 families, four species (Chromolaena odoratum, Gynura pseudochina, Impatiens violaeflora and Justicia procumbens) could be considered as Cd hyperaccumulators since their shoot Cd concentrations exceeded 100 mg Cd kg(-1) dry mass and they showed a translocation factor >1. Only Justicia procumbens could be considered as a Zn hyperaccumulator (Zn concentration in its shoot more than 10,000 mg Zn kg(-1) dry mass with the translocation factor >1). PMID:19810350

  14. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.

    PubMed

    Rajkumar, Mani; Vara Prasad, Majeti Narasimha; Freitas, Helena; Ae, Noriharu

    2009-01-01

    Serpentine or ultramafic soils are produced by weathering and pedogenesis of ultramafic rocks that are characterized by high levels of Ni, Cr, and sometimes Co, but contain low levels of essential nutrients such as N, P, K, and Ca. A number of plant species endemic to serpentine soils are capable of accumulating exceptionally high concentrations of Ni, Zn, and Co. These plants are known as metal "hyperaccumulators." The function of hyperaccumulation depends not only on the plant, but also on the interaction of the plant roots with rhizosphere microbes and the concentrations of bioavailable metals in the soil. The rhizosphere provides a complex and dynamic microenvironment where microorganisms, in association with roots, form unique communities that have considerable potential for the detoxification of hazardous materials. The rhizosphere bacteria play a significant role on plant growth in serpentine soils by various mechanisms, namely, fixation of atmospheric nitrogen, utilization of 1-aminocyclopropane-1-carboxylic acid (ACC) as the sole N source, production of siderophores, or production of plant growth regulators (hormones). Further, many microorganisms in serpentine soil are able to solubilize "unavailable" forms of heavy metal-bearing minerals by excreting organic acids. In addition, the metal-resistant serpentine isolates increase the efficiency of phytoextraction directly by enhancing the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass of hyperaccumulators. Hence, isolation of the indigenous and stress-adapted beneficial bacteria serve as a potential biotechnological tool for inoculation of plants for the successful restoration of metal-contaminated ecosystems. In this study, we highlight the diversity and beneficial features of serpentine bacteria and discuss their potential in phytoremediation of serpentine and anthropogenically metal-contaminated soils. PMID:19514893

  15. Mitigation of arsenic contamination in irrigated paddy soils in South and South-East Asia.

    PubMed

    Brammer, Hugh

    2009-08-01

    It has recently become apparent that arsenic-contaminated groundwater used for irrigation in several countries of South and South-east Asia is adding arsenic to soils and rice, thus posing a serious threat to sustainable agricultural production and to the health and livelihoods of affected people in those countries. This paper describes the many environmental, agricultural and social factors that determine practical mitigation strategies and research needs, and describes possible mitigation measures that need to be tested. These measures include providing alternative irrigation sources, various agronomic measures, use of soil amendments, growing hyperaccumulator plants, removing contaminated soil and using alternative cooking methods. PMID:19394085

  16. Agromining: farming for metals in the future?

    PubMed

    van der Ent, Antony; Baker, Alan J M; Reeves, Roger D; Chaney, Rufus L; Anderson, Christopher W N; Meech, John A; Erskine, Peter D; Simonnot, Marie-Odile; Vaughan, James; Morel, Jean Louis; Echevarria, Guillaume; Fogliani, Bruno; Rongliang, Qiu; Mulligan, David R

    2015-04-21

    Phytomining technology employs hyperaccumulator plants to take up metal in harvestable plant biomass. Harvesting, drying and incineration of the biomass generates a high-grade bio-ore. We propose that "agromining" (a variant of phytomining) could provide local communities with an alternative type of agriculture on degraded lands; farming not for food crops, but for metals such as nickel (Ni). However, two decades after its inception and numerous successful experiments, commercial phytomining has not yet become a reality. To build the case for the minerals industry, a large-scale demonstration is needed to identify operational risks and provide "real-life" evidence for profitability. PMID:25700109

  17. Mutations and environmental factors affecting regulation of riboflavin synthesis and iron assimilation also cause oxidative stress in the yeast Pichia guilliermondii.

    PubMed

    Boretsky, Yuriy R; Protchenko, Olga V; Prokopiv, Tetiana M; Mukalov, Igor O; Fedorovych, Daria V; Sibirny, Andriy A

    2007-10-01

    Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. However, the mechanisms of such regulation are not known. We found that mutations causing riboflavin overproduction and iron hyperaccumulation (rib80, rib81 and hit1), as well as cobalt excess or iron deficiency all provoke oxidative stress in the Pichia guilliermondii yeast. Iron content in the cells, production both of riboflavin and malondialdehyde by P. guilliermondii wild type and hit1 mutant strains depend on a type of carbon source used in cultivation media. The data suggest that the regulation of riboflavin biosynthesis and iron assimilation in P. guilliermondii are linked with cellular oxidative state. PMID:17910100

  18. Autophagy controls carbon, nitrogen, and redox homeostasis in plants.

    PubMed

    Masclaux-Daubresse, C

    2016-05-01

    During leaf senescence, autophagy is essential for nutrient recycling and remobilization, and for plant productivity. Metabolome and transcriptome studies performed on autophagy mutants revealed major disorders in nitrogen, carbon, and redox metabolisms. Analysis showed that autophagy mutants are depleted of antioxidant anthocyanin molecules. Transcriptome analysis revealed that the depletion of anthocyanin is due to the downregulation of the master genes encoding the enzymes and regulatory proteins involved in the flavonoid pathway. The hyperaccumulation of salicylic acid and the depletion of anthocyanin in autophagy mutants might result from the rerouting of carbon resources in the phenylpropanoid pathway and amplify oxidative stress in autophagy mutants. PMID:25484096

  19. Composition, speciation and distribution of iron minerals in Imperata cylindrica.

    PubMed

    Amils, Ricardo; de la Fuente, Vicenta; Rodríguez, Nuria; Zuluaga, Javier; Menéndez, Nieves; Tornero, Jesús

    2007-05-01

    A comparative study of the roots, rhizomes and leaves of an iron hyperaccumulator plant, Imperata cylindrica, isolated from the banks of an extreme acidic environment, using complementary techniques: Mösbauer spectroscopy (MS), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy-dispersive X-ray microanalysis (EDAX) and transmission electron microscopy (TEM), has shown that two main biominerals, jarosite and ferrihydrate-ferritin, accumulate in the different tissues. Jarosite accumulates mainly in roots and rhizomes, while ferritin has been detected in all the structures. A model of iron management in I. cylindrica is presented. PMID:17502153

  20. Effect of zinc and glucosinolates on nutritional quality of Noccaea caerulescens and infestation by Aleyrodes proletella.

    PubMed

    Asad, Saeed Ahmad; Young, Scott D; West, Helen M

    2015-04-01

    The Zn hyperaccumulating plant, Noccaea caerulescens, was grown under controlled conditions at a range of Zn concentrations (0-1000 mg kg(-1) dwt. soil) to determine the effectiveness of hyperaccumulation in deterring the cabbage whitefly, Aleyrodes proletella, and to establish the relationship between levels of foliar Zn and glucosinolates (organic defence compounds). Two weeks after introducing A. proletella adults to the plants, next generation nymphs were quantified. This sucking insect caused minimal damage to plant tissue and did not affect foliar glucosinolate levels. Foliar Zn concentrations increased with increasing soil Zn application and reached a maximum of ~7000 mg kg(-1). More whitefly nymphs were observed on plants as the foliar Zn concentration increased (up to ~3000 mg kg(-1)) after which numbers declined. Zn was an explanatory variable in accumulated generalised linear regression after the variation in the data due to C/N ratio had been accounted for. Nymph numbers declined with increasing C/N ratio and increased with increasing N concentration. The highest glucosinolate concentrations were in shoots with the lowest Zn concentrations; this is consistent with the 'trade-off' hypothesis which states that elemental defence mechanisms allow for lowered organic defences. PMID:25525711

  1. Chemically Induced Conditional Rescue of the Reduced Epidermal Fluorescence8 Mutant of Arabidopsis Reveals Rapid Restoration of Growth and Selective Turnover of Secondary Metabolite Pools1[C][OPEN

    PubMed Central

    Kim, Jeong Im; Ciesielski, Peter N.; Donohoe, Bryon S.; Chapple, Clint; Li, Xu

    2014-01-01

    The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3′-hydroxylase (C3′H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3′H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3′H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant’s growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant. PMID:24381065

  2. Mechanisms of lichen resistance to metallic pollution

    SciTech Connect

    Sarret, C.; Manceau, A.; Eybert-Berard, L.; Cuny, D.; Haluwyn, C. van; Deruelle, S.; Hazemann, J.L.; Menthonnex, J.J. |; Soldo, Y.

    1998-11-01

    Some lichens have a unique ability to grow in heavily contaminated areas due to the development of adaptative mechanisms allowing a high tolerance to metals. Here the authors report on the chemical forms of Pb and Zn in the metal hyperaccumulator Diploschistes muscorum and of Pb in the metal tolerant lichen Xanthoria parietina. The speciation of Zn and Pb has been investigated by powder X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy using the advanced third-generation synchrotron radiation source of the European synchrotron radiation facility (ESRF in Grenoble). This study reveals that in both lichens cells are protected from toxicity by complexation of heavy metals, but the strategies differ: in D. muscorum, Pb and Zn are accumulated through an enhanced synthesis of oxalate, which precipitates toxic elements as insoluble salts, whereas in X. parietina, Pb is complexed to carboxylic groups of the fungal cell walls. The authors conclude that hyperaccumulation of metals results from a reactive mechanism of organic acid production, whereas metallo-tolerance is achieved by a passive complexation to existing functional groups.

  3. Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives

    PubMed Central

    Charlier, Jean-Benoit; Polese, Catherine; Nouet, Cécile; Carnol, Monique; Bosman, Bernard; Krämer, Ute; Motte, Patrick; Hanikenne, Marc

    2015-01-01

    In Arabidopsis thaliana, FRD3 (FERRIC CHELATE REDUCTASE DEFECTIVE 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary processes underlying the evolution of hyperaccumulation in A. halleri. We combined gene expression studies with the use of β-glucuronidase and green fluorescent protein reporter constructs to compare the expression profile and transcriptional and post-transcriptional regulation of FRD3 in both species. The AtFRD3 and AhFRD3 genes displayed a conserved expression profile. In A. thaliana, alternative transcription initiation sites from two promoters determined transcript variants that were differentially regulated by zinc supply in roots and shoots to favour the most highly translated variant under zinc-excess conditions. In A. halleri, a single transcript variant with higher transcript stability and enhanced translation has been maintained. The FRD3 gene thus undergoes complex transcriptional and post-transcriptional regulation in Arabidopsis relatives. Our study reveals that a diverse set of mechanisms underlie increased gene dosage in the A. halleri lineage and illustrates how an environmental challenge can alter gene regulation. PMID:25900619

  4. A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in Populus × canescens1[C][W

    PubMed Central

    He, Jiali; Li, Hong; Luo, Jie; Ma, Chaofeng; Li, Shaojun; Qu, Long; Gai, Ying; Jiang, Xiangning; Janz, Dennis; Polle, Andrea; Tyree, Melvin; Luo, Zhi-Bin

    2013-01-01

    Bark tissue of Populus × canescens can hyperaccumulate cadmium, but microstructural, transcriptomic, and physiological response mechanisms are poorly understood. Histochemical assays, transmission electron microscopic observations, energy-dispersive x-ray microanalysis, and transcriptomic and physiological analyses have been performed to enhance our understanding of cadmium accumulation and detoxification in P. × canescens. Cadmium was allocated to the phloem of the bark, and subcellular cadmium compartmentalization occurred mainly in vacuoles of phloem cells. Transcripts involved in microstructural alteration, changes in nutrition and primary metabolism, and stimulation of stress responses showed significantly differential expression in the bark of P. × canescens exposed to cadmium. About 48% of the differentially regulated transcripts formed a coregulation network in which 43 hub genes played a central role both in cross talk among distinct biological processes and in coordinating the transcriptomic regulation in the bark of P. × canescens in response to cadmium. The cadmium transcriptome in the bark of P. × canescens was mirrored by physiological readouts. Cadmium accumulation led to decreased total nitrogen, phosphorus, and calcium and increased sulfur in the bark. Cadmium inhibited photosynthesis, resulting in decreased carbohydrate levels. Cadmium induced oxidative stress and antioxidants, including free proline, soluble phenolics, ascorbate, and thiol compounds. These results suggest that orchestrated microstructural, transcriptomic, and physiological regulation may sustain cadmium hyperaccumulation in P. × canescens bark and provide new insights into engineering woody plants for phytoremediation. PMID:23530184

  5. Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata.

    PubMed

    Prins, Christine N; Hantzis, Laura J; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-11-01

    Selenium (Se) is an essential micronutrient for many organisms, but is also a toxin and environmental pollutant at elevated levels. Due to its chemical similarity to sulphur, most plants readily take up and assimilate Se. Se accumulators such as Brassica juncea can accumulate Se between 0.01% and 0.1% of dry weight (DW), and Se hyperaccumulators such as Stanleya pinnata (Brassicaeae) contain between 0.1% and 1.5% DW of Se. While Se accumulation offers the plant a variety of ecological benefits, particularly protection from herbivory, its potential costs are still unexplored. This study examines the effects of plant Se levels on reproductive functions. In B. juncea, Se concentrations >0.05-0.1% caused decreases in biomass, pollen germination, individual seed and total seed weight, number of seeds produced, and seed germination. In S. pinnata there was no negative effect of increased Se concentration on pollen germination. In cross-pollination of B. juncea plants with different Se levels, both the maternal and paternal Se level affected reproduction, but the maternal Se concentration had the most pronounced effect. Interestingly, high-Se maternal plants were most efficiently pollinated by Se-treated paternal plants. These data provide novel insights into the potential reproductive costs of Se accumulation, interactive effects of Se in pollen grains and in the pistil, and the apparent evolution of physiological tolerance mechanisms in hyperaccumulators to avoid reproductive repercussions. PMID:21841173

  6. Selenium accumulation in flowers and its effects on pollination.

    PubMed

    Quinn, Colin F; Prins, Christine N; Freeman, John L; Gross, Amanda M; Hantzis, Laura J; Reynolds, Ray J B; Yang, Soo in; Covey, Paul A; Bañuelos, Gary S; Pickering, Ingrid J; Fakra, Sirine C; Marcus, Matthew A; Arathi, H S; Pilon-Smits, Elizabeth A H

    2011-11-01

    • Selenium (Se) hyperaccumulation has a profound effect on plant-arthropod interactions. Here, we investigated floral Se distribution and speciation in flowers and the effects of floral Se on pollen quality and plant-pollinator interactions. • Floral Se distribution and speciation were compared in Stanleya pinnata, an Se hyperaccumulator, and Brassica juncea, a comparable nonhyperaccumulator. Pollen germination was measured from plants grown with varying concentrations of Se and floral visitation was compared between plants with high and low Se. • Stanleya pinnata preferentially allocated Se to flowers, as nontoxic methyl-selenocysteine (MeSeCys). Brassica juncea had higher Se concentrations in leaves than flowers, and a lower fraction of MeSeCys. For B. juncea, high floral Se concentration impaired pollen germination; in S. pinnata Se had no effect on pollen germination. Floral visitors collected from Se-rich S. pinnata contained up to 270 μg g(-1), concentrations toxic to many herbivores. Indeed, floral visitors showed no visitation preference between high- and low-Se plants. Honey from seleniferous areas contained 0.4-1 μg Se g(-1), concentrations that could provide human health benefits. • This study is the first to shed light on the possible evolutionary cost, through decreased pollen germination in B. juncea, of Se accumulation and has implications for the management of seleniferous areas. PMID:21793829

  7. Phenotypic and molecular consequences of overexpression of metal-homeostasis genes

    PubMed Central

    Antosiewicz, Danuta M.; Barabasz, Anna; Siemianowski, Oskar

    2014-01-01

    Metal hyperaccumulating plants are able to store very large amounts of metals in their shoots. There are a number of reasons why it is important to be able to introduce metal hyperaccumulation traits into non-accumulating species (e.g., phytoremediation or biofortification in minerals) and to engineer a desired level of accumulation and distribution of metals. Metal homeostasis genes have therefore been used for these purposes. Engineered accumulation levels, however, have often been far from expected, and transgenic plants frequently display phenotypic features not related to the physiological function of the introduced gene. In this review, we focus on an aspect often neglected in research on plants expressing metal homeostasis genes: the specific regulation of endogenous metal homeostasis genes of the host plant in response to the transgene-induced imbalance of the metal status. These modifications constitute one of the major mechanisms involved in the generation of the plant's phenotype, including unexpected characteristics. Interestingly, activation of so-called “metal cross-homeostasis” has emerged as a factor of primary importance. PMID:24639682

  8. The molecular mechanism of zinc and cadmium stress response in plants.

    PubMed

    Lin, Ya-Fen; Aarts, Mark G M

    2012-10-01

    When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and metal-hypertolerant hyperaccumulator species, each having different molecular mechanisms to accomplish their resistance/tolerance to metal stress or reduce the negative consequences of metal toxicity. Plant responses to heavy metals are molecularly regulated in a process called metal homeostasis, which also includes regulation of the metal-induced reactive oxygen species (ROS) signaling pathway. ROS generation and signaling plays an important duel role in heavy metal detoxification and tolerance. In this review, we will compare the different molecular mechanisms of nutritional (Zn) and non-nutritional (Cd) metal homeostasis between metal-sensitive and metal-adapted species. We will also include the role of metal-induced ROS signal transduction in this comparison, with the aim to provide a comprehensive overview on how plants cope with Zn/Cd stress at the molecular level. PMID:22903262

  9. Molecular Genetics of Metal Detoxification: Prospects for Phytoremediation

    SciTech Connect

    Ow, David W. ow@pgec.ams.usda.gov

    2000-09-01

    Unlike compounds that can be broken down, the remediation of most heavy metals and radionuclides requires physical extraction from contaminated sources. Plants can extract inorganics, but effective phytoextraction requires plants that produce high biomass, grow rapidly and possess high capacity-uptake for the inorganic substance. Either hyperaccumulator plants must be bred for increased growth and biomass or hyperaccumulation traits must be engineered into fast growing, high biomass plants. This latter approach requires fundamental knowledge of the molecular mechanisms in the uptake and storage of inorganics. Much has been learned in recent years on how plants and certain fungi chelate and transport selected heavy metals. This progress has been facilitated by the use of Schizosaccharomyces pombe as a model system. The use of a model organism for study permits rapid characterization of the molecular process. As target genes are identified in a model organism, their sequences can be modified for expression in a heterologous host or aid in the search of homologous genes in more complex organisms. Moreover, as plant nutrient uptake is intrinsically linked to the association with rhizospheric fungi, elucidating metal sequestration in this fungus permits additional opportunities for engineering rhizospheric microbes to assist in phytoextraction.

  10. Induction of phytochelatins in hydrilla verticillata (l.f.) Royle under cadmium stress

    SciTech Connect

    Tripathi, R.D.; Rai, U.N.; Gupta, M.

    1996-03-01

    Plants tolerate Cd by sequestering them through synthesizing phytochelatins with the general structure (t-Glu-cys)n-gly where n= 2-11 depending upon the species from which these peptides are isolated. Recent biochemical evidence suggests that these peptides are synthesized via posttranslationally activated, metal-dependent enzymatic pathways from the precursor glutathione. However, most of these studies are confined to terrestrial species and only a few studies have been made on higher aquatic plants. Recently H. verticillata and other aquatic higher plants have been reported to be hyperaccumulators of Cd and have demonstrated the ability to remove many toxic metals, including Cd, from wastewater. It is hypothesized that cadmium hyperaccumulating ability of the macrophyte is associated with induction of the metal chelating peptides, the phytochelatins (PCs), to copeup with high cellular Cd levels. In view of this, it was considered worthwhile to examine the induction of phytochelatins and changes in levels of glutathione and related metabolites in H. verticillata under Cd stress.

  11. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam.

    PubMed

    Nguyen, Thi Hoang Ha; Sakakibara, Masayuki; Sano, Sakae; Mai, Trong Nhuan

    2011-02-28

    This study was conducted to evaluate the phytoremediation and phytomining potential of 10 plant species growing naturally at one of the largest lead-zinc mines in Northern Vietnam. Total concentrations of heavy metals and arsenic were determined in the plant and in associated soil and water in and outside of the mine area. The results indicate that hyperaccumulation levels (mg kg(-1) dry weight) were obtained in Houttuynia cordata Thunb. (1140) and Pteris vittata L. (3750) for arsenic, and in Ageratum houstonianum Mill. (1130), Potamogeton oxyphyllus Miq. (4210), and P. vittata (1020) for lead. To the best of our knowledge, the present paper is the first report on metal accumulation and hyperaccumulation by H. cordata, A. houstonianum, and P. oxyphyllus. Based on the obtained concentrations of metals, bioconcentration and translocation factors, as well as the biomass of these plants, the two latter species and P. vittata are good candidates for phytoremediation of sites contaminated with arsenic and multi-metals. None of the collected plants was suitable for phytomining, given their low concentrations of useful metals (e.g., silver, gallium, and indium). PMID:21227580

  12. Metabolic phenotypes of Saccharomyces cerevisiae mutants with altered trehalose 6-phosphate dynamics.

    PubMed

    Walther, Thomas; Mtimet, Narjes; Alkim, Ceren; Vax, Amélie; Loret, Marie-Odile; Ullah, Azmat; Gancedo, Carlos; Smits, Gertien J; François, Jean Marie

    2013-09-01

    In Saccharomyces cerevisiae, synthesis of T6P (trehalose 6-phosphate) is essential for growth on most fermentable carbon sources. In the present study, the metabolic response to glucose was analysed in mutants with different capacities to accumulate T6P. A mutant carrying a deletion in the T6P synthase encoding gene, TPS1, which had no measurable T6P, exhibited impaired ethanol production, showed diminished plasma membrane H⁺-ATPase activation, and became rapidly depleted of nearly all adenine nucleotides which were irreversibly converted into inosine. Deletion of the AMP deaminase encoding gene, AMD1, in the tps1 strain prevented inosine formation, but did not rescue energy balance or growth on glucose. Neither the 90%-reduced T6P content observed in a tps1 mutant expressing the Tps1 protein from Yarrowia lipolytica, nor the hyperaccumulation of T6P in the tps2 mutant had significant effects on fermentation rates, growth on fermentable carbon sources or plasma membrane H⁺-ATPase activation. However, intracellular metabolite dynamics and pH homoeostasis were strongly affected by changes in T6P concentrations. Hyperaccumulation of T6P in the tps2 mutant caused an increase in cytosolic pH and strongly reduced growth rates on non-fermentable carbon sources, emphasizing the crucial role of the trehalose pathway in the regulation of respiratory and fermentative metabolism. PMID:23763276

  13. Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich.

    PubMed

    Gong, Xiaomin; Liu, Yunguo; Huang, Danlian; Zeng, Guangming; Liu, Shaobo; Tang, Hui; Zhou, Lu; Hu, Xi; Zhou, Yaoyu; Tan, Xiaofei

    2016-05-01

    Cadmium (Cd) is a detrimental metal in the environment and it is easily taken up by plants, thus entering the food chain and posing a severe threat to human health. Phytoremediation being low cost, highly stable, and environmentally friendly has been considered as a promising green technology for Cd remediation. The addition of exogenous substances to the culture media has been recognized as an efficient strategy to improve plant phytoremediation capability. Pot trials were conducted to investigate the combined effects of exogenous calcium (Ca) and spermidine (Spd) on Cd-induced toxicity in Boehmeria nivea (L.) Gaudich. (ramie). Results showed that the application of 5-mM exogenous Ca significantly alleviated Cd toxicity in ramie by reducing Cd accumulation, depressing H2O2 and malondialdehyde contents, increasing plants dry weights and chlorophyll concentrations, as well as altering the activities of total superoxide dismutase and guaiacol peroxidase. Furthermore, as a non-Cd hyperaccumulator plant, ramie hyperaccumulated Cd and suffered more severe toxic effects of Cd by the treatment of 1 mM Ca/Cd. The aggravated Cd toxicity could be compensated by the addition of exogenous Spd via the promotion of plant growth and the reduction of the oxidative stress. Overall, the combination effects of 1 mM Ca and Spd appeared to be more superior compared to other treatments in the plants under Cd stress with a higher Cd accumulation ability and the evaluated Cd stress tolerance. PMID:26801927

  14. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.

    PubMed

    Sainger, Poonam Ahlawat; Dhankhar, Rajesh; Sainger, Manish; Kaushik, Anubha; Singh, Rana Pratap

    2011-11-01

    Heavy metals concentrations of (Cr, Zn, Fe, Cu and Ni) were determined in plants and soils contaminated with electroplating industrial effluent. The ranges of total soil Cr, Zn, Fe, Cu and Ni concentrations were found to be 1443-3240, 1376-3112, 683-2228, 263-374 and 234-335 mg kg⁻¹, respectively. Metal accumulation, along with hyperaccumulative characteristics of the screened plants was investigated. Present study highlighted that metal accumulation in different plants varied with species, tissues and metals. Only one plant (Amaranthus viridis) accumulated Fe concentrations over 1000 mg kg⁻¹. On the basis of TF, eight plant species for Zn and Fe, three plant species for Cu and two plant species for Ni, could be used in phytoextraction technology. Although BAF of all plant species was lesser than one, these species exhibited high metal adaptability and could be considered as potential hyperaccumulators. Phytoremediation potential of these plants can be used to remediate metal contaminated soils, though further investigation is still needed. PMID:21820739

  15. Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies

    PubMed Central

    Ricachenevsky, Felipe K.; Menguer, Paloma K.; Sperotto, Raul A.; Williams, Lorraine E.; Fett, Janette P.

    2013-01-01

    Zinc (Zn) is an essential micronutrient for plants, playing catalytic or structural roles in enzymes, transcription factors, ribosomes, and membranes. In humans, Zn deficiency is the second most common mineral nutritional disorder, affecting around 30% of the world's population. People living in poverty usually have diets based on milled cereals, which contain low Zn concentrations. Biofortification of crops is an attractive cost-effective solution for low mineral dietary intake. In order to increase the amounts of bioavailable Zn in crop edible portions, it is necessary to understand how plants take up, distribute, and store Zn within their tissues, as well as to characterize potential candidate genes for biotechnological manipulation. The metal tolerance proteins (MTP) were described as metal efflux transporters from the cytoplasm, transporting mainly Zn2+ but also Mn2+, Fe2+, Cd2+, Co2+, and Ni2+. Substrate specificity appears to be conserved in phylogenetically related proteins. MTPs characterized so far in plants have a role in general Zn homeostasis and tolerance to Zn excess; in tolerance to excess Mn and also in the response to iron (Fe) deficiency. More recently, the first MTPs in crop species have been functionally characterized. In Zn hyperaccumulator plants, the MTP1 protein is related to hypertolerance to elevated Zn concentrations. Here, we review the current knowledge on this protein family, as well as biochemical functions and physiological roles of MTP transporters in Zn hyperaccumulators and non-accumulators. The potential applications of MTP transporters in biofortification efforts are discussed. PMID:23717323

  16. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    PubMed

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-01

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. PMID:27322905

  17. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance.

    PubMed

    Goswami, Sunayana; Das, Suchismita

    2016-04-01

    Cu phytoremediation potential of an ornamental plant, Calandula officinalis, was explored in terms of growth responses, photosynthetic activities and antioxidant enzymes such as SOD, CAT and GPX. The results showed that this plant had high Cu tolerance of up to 400 mg/kg, which is far above the phytotoxic range for non hyperaccumulators. It grew normally in soils at all the doses (150-400 mg/kg) without showing external signs of phytotoxicity. At 150 mg/kg, flowering was augmented; root and shoot biomass, root lengths and leaf soluble protein contents remained same as that of the control. However, chlorophyll and carotenoid pigment contents declined significantly along with significant elevations in lipid peroxidation, at all the doses. Elevations of antioxidant enzymes reflected stress as well as probable mitigation of reactive oxygen species due to Cu stress. Except for the highest conc. (400 mg/kg), leaf accumulation of Cu was higher than root accumulations. The Cu accumulation peaked at 300 mg/kg Cu in soil, with leaf and root accumulations to be respectively, 4675 and 3995 µg/g dry wt., far more than the minimum of 1000 µg/g dry wt. for a Cu hyperaccumulator. The plant root at all the doses tolerated Cu, with the tolerance index ranging from 94-62.7. The soil to plant metal uptake capacity, indicated by extraction coefficient and the root to shoot translocation, indicated by translocation factor, at all the doses of Cu were >1, pointed towards efficient phytoremediation potential. PMID:26773830

  18. Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation

    PubMed Central

    Panigati, Monica; Furini, Antonella

    2011-01-01

    The effects of plant–microbe interactions between the hyperaccumulator Arabidopsis halleri and eight bacterial strains, isolated from the rhizosphere of A. halleri plants grown in a cadmium- and zinc-contaminated site, were analysed for shoot metal accumulation, shoot proteome, and the transcription of genes involved in plant metal homeostasis and hyperaccumulation. Cadmium and zinc concentrations were lower in the shoots of plants cultivated in the presence of these metals plus the selected bacterial strains compared with plants grown solely with these metals or, as previously reported, with plants grown with these metals plus the autochthonous rhizosphere-derived microorganisms. The shoot proteome of plants cultivated in the presence of these selected bacterial strains plus metals, showed an increased abundance of photosynthesis- and abiotic stress-related proteins (e.g. subunits of the photosynthetic complexes, Rubisco, superoxide dismutase, and malate dehydrogenase) counteracted by a decreased amount of plant defence-related proteins (e.g. endochitinases, vegetative storage proteins, and β-glucosidase). The transcription of several homeostasis genes was modulated by the microbial communities and by Cd and Zn content in the shoot. Altogether these results highlight the importance of plant-microbe interactions in plant protein expression and metal accumulation and emphasize the possibility of exploiting microbial consortia for increasing or decreasing shoot metal content. PMID:21357773

  19. Enhanced phytoremediation of cadmium polluted water through two aquatic plants Veronica anagallis-aquatica and Epilobium laxum.

    PubMed

    Ahmad, Ayaz; Hadi, Fazal; Ali, Nasir; Jan, Amin Ullah

    2016-09-01

    Toxic metal-contaminated water is a major threat to sustainable agriculture and environment. Plants have the natural ability to absorb and concentrate essential elements in its tissues from water solution, and this ability of plants can be exploited to remove heavy/toxic metals from the contaminated water. For this purpose, two plants Veronica anagallis-aquatica and Epilobium laxum were hydroponically studied. The effect of different fertilizers (NPK) and plant growth regulators (GA3 and IAA) were evaluated on growth, biomass, free proline, phenolics, and chlorophyll contents, and their role in Cd phytoaccumulation was investigated. Results showed that in both plants, fertilizer addition to media (treatment T4) produced the highest significant increase in growth, biomass (fresh and dry), cadmium concentration, proline, phenolics, and chlorophyll concentrations. The significant effect of GA3 in combination with NPK foliar spray (treatment T12) was observed on most of the growth parameters, Cd concentration, and proline and phenolic contents of the plants. The free proline and total phenolics showed positive correlation with cadmium concentration within plant tissues. Proline showed significantly positive correlation with phenolic contents of root and shoot. Veronica plant demonstrated the hyperaccumulator potential for cadmium as bioconcentration factor (BCF >1) which was much higher than 1, while Epilobium plant showed non-hyperaccumulator potential. It is recommended for further study to investigate the role of Veronica plant for other metals and to study the role of phenolics and proline contents in heavy metal phytoextraction by various plant species. PMID:27246561

  20. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.