Science.gov

Sample records for hyperaccumulator thlaspi caerulescens1w

  1. Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens1[W

    PubMed Central

    van de Mortel, Judith E.; Almar Villanueva, Laia; Schat, Henk; Kwekkeboom, Jeroen; Coughlan, Sean; Moerland, Perry D.; Ver Loren van Themaat, Emiel; Koornneef, Maarten; Aarts, Mark G.M.

    2006-01-01

    The micronutrient zinc has an essential role in physiological and metabolic processes in plants as a cofactor or structural element in 300 catalytic and noncatalytic proteins, but it is very toxic when available in elevated amounts. Plants tightly regulate their internal zinc concentrations in a process called zinc homeostasis. The exceptional zinc hyperaccumulator species Thlaspi caerulescens can accumulate up to 3% of zinc, but also high amounts of nickel and cadmium, without any sign of toxicity. This should have drastic effects on the zinc homeostasis mechanism. We examined in detail the transcription profiles of roots of Arabidopsis thaliana and T. caerulescens plants grown under deficient, sufficient, and excess supply of zinc. A total of 608 zinc-responsive genes with at least a 3-fold difference in expression level were detected in A. thaliana and 352 in T. caerulescens in response to changes in zinc supply. Only 14% of these genes were also zinc responsive in A. thaliana. When comparing A. thaliana with T. caerulescens at each zinc exposure, more than 2,200 genes were significantly differentially expressed (≥5-fold and false discovery rate < 0.05). While a large fraction of these genes are of yet unknown function, many genes with a different expression between A. thaliana and T. caerulescens appear to function in metal homeostasis, in abiotic stress response, and in lignin biosynthesis. The high expression of lignin biosynthesis genes corresponds to the deposition of lignin in the endodermis, of which there are two layers in T. caerulescens roots and only one in A. thaliana. PMID:16998091

  2. CHARACTERIZATION OF ZINC TOLERANCE GENES IN THE ZINC/CADMIUM HYPERACCUMULATOR, THLASPI CAERULESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens, a heavy metal hyperaccumulating plant species, accumulates up to 30,000 ppm zinc in the above ground biomass without exhibiting toxicity symptoms. Previous work in our lab has shown that altered regulation of micronutrient uptake, transport and sequestration in this species pla...

  3. MOLECULAR AND PHYSIOLOGICAL INVESTIGATIONS OF THLASPI CAERULESCENS, A ZN/CD HYPERACCUMULATOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain plant species have evolved specialized mechanisms that allow them to grow and thrive on metalliferous soils and accumulate high levels of heavy metals in the shoots that are toxic to normal plants. One such plant species is Thlaspi caerulescens, a Zn and Cd hyperaccumulator, and its metal h...

  4. ECOTYPIC VARIATION IN THE TRANSPORT, COMPARTMENTATION, AND COORDINATION OF CD BETWEEN POPULATIONS OF THE METAL HYPERACCUMULATOR, THLASPI CAERULESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hyperaccumulator Thlaspi caerulescens is known for its ability to hyperaccumulate and tolerate cadmium and zinc. This species is found in isolated, often small, populations across Great Britain, France, Belgium, and other European countries. While T. caerulescens populations from these different...

  5. IDENTIFICATION AND CHARACTERIZATION OF A HEAVY METAL TRANSPORTING P-TYPE ATPASE FROM THE METAL HYPERACCUMULATING PLANT SPECIES, THLASPI CAERULESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens is a Zn/Cd-hyperaccumulating plant species that can accumulate and tolerate up to30,000 ppm Zn and 4,000 ppm Cd in the shoots without exhibiting toxicity symptoms. As part of an overall program aimed at elucidating the molecular and physiological mechanisms of heavy metal hypera...

  6. Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions.

    PubMed

    Tuomainen, Marjo H; Nunan, Naoise; Lehesranta, Satu J; Tervahauta, Arja I; Hassinen, Viivi H; Schat, Henk; Koistinen, Kaisa M; Auriola, Seppo; McNicol, Jim; Kärenlampi, Sirpa O

    2006-06-01

    Thlaspi caerulescens is increasingly acknowledged as one of the best models for studying metal hyperaccumulation in plants. In order to study the mechanisms underlying metal hyperaccumulation, we used proteomic profiling to identify differences in protein intensities among three T. caerulescens accessions with pronounced differences in tolerance, uptake and root to shoot translocation of Zn and Cd. Proteins were separated using two-dimensional electrophoresis and stained with SYPRO Orange. Intensity values and quality scores were obtained for each spot by using PDQuest software. Principal component analysis was used to test the separation of the protein profiles of the three plant accessions at various metal exposures, and to detect groups of proteins responsible for the differences. Spot sets representing individual proteins were analysed with the analysis of variance and non-parametric Kruskal-Wallis test. Clearest differences were seen among the Thlaspi accessions, while the effects of metal exposures were less pronounced. The 48 tentatively identified spots represent core metabolic functions (e.g. photosynthesis, nitrogen assimilation, carbohydrate metabolism) as well as putative signalling and regulatory functions. The possible roles of some of the proteins in heavy metal accumulation and tolerance are discussed. PMID:16691554

  7. SHOOT BIOMASS AND ZINC/CADMIUM UPTAKE FOR HYPERACCUMULATOR AND NON-ACCUMULATOR THLASPI SPECIES IN RESPONSE TO GROWTH ON A ZINC-DEFICIENT CALCAREOUS SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, the Zn/Cd hyperaccumulator, Thlaspi caerulescens and a related non-accumulator, Thlaspi arvense, were used to study shoot growth (dry matter production) and Zn and Cd uptake from a severely Zn-deficient calcareous soil supplemented with increasing amounts of Zn and Cd. Shoot dry matte...

  8. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy

    SciTech Connect

    Salt, D.E.; Prince, R.C.; Baker, A.J.M.; Raskin, I.; Pickering, I.J.

    1999-03-01

    Using the noninvasive technique of X-ray absorption spectroscopy (XAS), the authors have been able to determine the ligand environment of Zn in different tissues of the Zn-hyperaccumulator Thlaspi caerulescens. The majority of intracellular Zn in roots of T. caerulescens was found to be coordinated with histidine. In the xylem sap Zn was found to be transported mainly as the free hydrated Zn{sup 2+} cation with a smaller proportion coordinated with organic acids. In the shoots, Zn coordination occurred mainly via organic acids, with a smaller proportion present as the hydrated cation and coordinated with histidine and the cell wall. Their data suggest that histidine plays an important role in Zn homeostasis in the roots, whereas organic acids are involved in xylem transport and Zn storage in shoots.

  9. Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi goesingense

    PubMed Central

    Idris, Rughia; Trifonova, Radoslava; Puschenreiter, Markus; Wenzel, Walter W.; Sessitsch, Angela

    2004-01-01

    Thlaspi goesingense is able to hyperaccumulate extremely high concentrations of Ni when grown in ultramafic soils. Recently it has been shown that rhizosphere bacteria may increase the heavy metal concentrations in hyperaccumulator plants significantly, whereas the role of endophytes has not been investigated yet. In this study the rhizosphere and shoot-associated (endophytic) bacteria colonizing T. goesingense were characterized in detail by using both cultivation and cultivation-independent techniques. Bacteria were identified by 16S rRNA sequence analysis, and isolates were further characterized regarding characteristics that may be relevant for a beneficial plant-microbe interaction—Ni tolerance, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and siderophore production. In the rhizosphere a high percentage of bacteria belonging to the Holophaga/Acidobacterium division and α-Proteobacteria were found. In addition, high-G+C gram-positive bacteria, Verrucomicrobia, and microbes of the Cytophaga/Flexibacter/Bacteroides division colonized the rhizosphere. The community structure of shoot-associated bacteria was highly different. The majority of clones affiliated with the Proteobacteria, but also bacteria belonging to the Cytophaga/Flexibacter/Bacteroides division, the Holophaga/Acidobacterium division, and the low-G+C gram-positive bacteria, were frequently found. A high number of highly related Sphingomonas 16S rRNA gene sequences were detected, which were also obtained by the cultivation of endophytes. Rhizosphere isolates belonged mainly to the genera Methylobacterium, Rhodococcus, and Okibacterium, whereas the majority of endophytes showed high levels of similarity to Methylobacterium mesophilicum. Additionally, Sphingomonas spp. were abundant. Isolates were resistant to Ni concentrations between 5 and 12 mM; however, endophytes generally tolerated higher Ni levels than rhizosphere bacteria. Almost all bacteria were able to produce siderophores. Various strains, particularly endophytes, were able to grow on ACC as the sole nitrogen source. PMID:15128517

  10. Transcriptional regulation of metal transport genes and mineral nutrition during acclimation to cadium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated changes in mineral nutrient uptake and cellular expression levels of metal transporter genes using the Cd/Zn hyperaccumulator Thlaspi caerulescens. We analyzed those changes genesis under different long-term (one year) treatments of the plants with zinc and cadmium using quantitative...

  11. Investigating Heavy-metal Hyperaccumulation using Thlaspi caerulescens as a Model System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperaccumulation was a term first coined by Brooks for plants that are endemic to metalliferous soils and are able to tolerate and accumulate large amounts of metals in their above ground tissues. Of the nearly 90 metal hyperaccumulating species in the Brassicaceae family, two species in particula...

  12. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake.

    PubMed

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Regvar, Marjana

    2006-01-01

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. PMID:15998561

  13. Influence of Iron Status on Cadmium and Zinc Uptake by Different Ecotypes of the Hyperaccumulator Thlaspi caerulescens1

    PubMed Central

    Lombi, Enzo; Tearall, Kathryn L.; Howarth, Jonathan R.; Zhao, Fang-Jie; Hawkesford, Malcolm J.; McGrath, Steve P.

    2002-01-01

    We have previously identified an ecotype of the hyperaccumulator Thlaspi caerulescens (Ganges), which is far superior to other ecotypes (including Prayon) in Cd uptake. In this study, we investigated the effect of Fe status on the uptake of Cd and Zn in the Ganges and Prayon ecotypes, and the kinetics of Cd and Zn influx using radioisotopes. Furthermore, the T. caerulescens ZIP (Zn-regulated transporter/Fe-regulated transporter-like protein) genes TcZNT1-G and TcIRT1-G were cloned from the Ganges ecotype and their expression under Fe-sufficient and -deficient conditions was analyzed. Both short- and long-term studies revealed that Cd uptake was significantly enhanced by Fe deficiency only in the Ganges ecotype. The concentration-dependent kinetics of Cd influx showed that the Vmax of Cd was 3 times greater in Fe-deficient Ganges plants compared with Fe-sufficient plants. In Prayon, Fe deficiency did not induce a significant increase in Vmax for Cd. Zn uptake was not influenced by the Fe status of the plants in either of the ecotypes. These results are in agreement with the gene expression study. The abundance of ZNT1-G mRNA was similar between the Fe treatments and between the two ecotypes. In contrast, abundance of the TcIRT1-G mRNA was greatly increased only in Ganges root tissue under Fe-deficient conditions. The present results indicate that the stimulatory effect of Fe deficiency on Cd uptake in Ganges may be related to an up-regulation in the expression of genes encoding for Fe2+ uptake, possibly TcIRT1-G. PMID:11950984

  14. Investigation of Heavy Metal Hyperaccumulation at the Cellular Level: Development and Characterization of Thlaspi caerulescens Suspension Cell Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of metal hyperaccumulator plant species to accumulate high concentrations of toxic heavy metals requires the coordinated uptake, transport and sequestration of these metals to avoid damage to photosynthetic mechanisms. A number of previous studies have examined how hyperaccumulating pla...

  15. TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter.

    PubMed

    Gendre, Delphine; Czernic, Pierre; Conéjéro, Geneviève; Pianelli, Katia; Briat, Jean-François; Lebrun, Michel; Mari, Stéphane

    2007-01-01

    The two main features of plant hyper-accumulator species are the massive translocation of heavy metal ions to the aerial parts and their tolerance to such high metal concentrations. Recently, several lines of evidence have indicated a role for nicotianamine (NA) in metal homeostasis, through the chelation and transport of NA-metal complexes. The function of transport of NA-metal chelates, required for the loading and unloading of vessels, has been assigned to the Yellow Stripe 1 (YSL)-Like family of proteins. We have characterized three YSL genes in Thlaspi caerulescens in the context of hyper-accumulation. The three YSL genes are expressed at high rates compared with their Arabidopsis thaliana homologs but with distinct patterns. While TcYSL7 was highly expressed in the flowers, TcYSL5 was more highly expressed in the shoots, and the expression of TcYSL3 was equivalent in all the organs tested. In situ hybridizations have shown that TcYSL7 and TcYSL5 are expressed around the vasculature of the shoots and in the central cylinder in the roots. The exposure to heavy metals (Zn, Cd, Ni) does not affect the high and constitutive expression of the TcYSL genes. Finally, we have demonstrated by mutant yeast complementation and uptake measurements that TcYSL3 is an Fe/Ni-NA influx transporter. This work provides therefore molecular, histological and biochemical evidence supporting a role for YSL transporters in the overall scheme of NA and NA-metal, particularly NA-Ni, circulation in a metal hyper-accumulator plant. PMID:17144893

  16. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype).

    PubMed

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Götz, Birgit; Küpper, Hendrik

    2009-10-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 microm Cu(2+) remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the "sun reaction" type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

  17. Complexation and Toxicity of Copper in Higher Plants. II. Different Mechanisms for Copper versus Cadmium Detoxification in the Copper-Sensitive Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype)1[OA

    PubMed Central

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M.H.; Götz, Birgit; Küpper, Hendrik

    2009-01-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 μm Cu2+ remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the “sun reaction” type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

  18. Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa.

    PubMed

    Benzarti, Saoussen; Mohri, Shino; Ono, Yoshiro

    2008-10-01

    Thlaspi caerulescens (alpine pennycress) is one of the best-known heavy metal (HM) hyperaccumulating plant species. It exhibits the ability to extract and accumulate various HM at extremely high concentrations. In this hydroponic study, the performance of T. caerulescens (ecotype Ganges) to accumulate Cd, Zn, and Cu was compared with that of three nonaccumulator plants: alfalfa (Medicago sativa), radish (Raphanus sativus), and lettuce (Lactuca sativa). Plants were exposed to the separately dissolved HM salts for 7 days at a wide range of increasing concentrations: 0 (control: 1/5 Hoagland nutrient solution), 0.1, 1, 10, 100, and 1000 microM. The comparative study combined chemical, physiological, and ecotoxicological assessments. Excessive concentrations of HM (100 and 1000 microM) affected plant growth, photosynthesis, and phytoaccumulation efficiency. Root exudation for all plant species was highly and significantly correlated to HM concentration in exposure solutions and proved its importance to counter effect toxicity. T. caerulescens resisted better the phytotoxic effects of Cd and Zn (at 1000 microM each), and translocated them significantly within tissues (366 and 1290 microg g(-1), respectively). At the same HM level, T. caerulescens exhibited lower performances in accumulating Cu when compared with the rest of plant species, mainly alfalfa (298 microg g(-1)). Root elongation inhibition test confirmed the selective aptitude of T. caerulescens to better cope with Cd and Zn toxicities. MetPLATE bioassay showed greater sensitivity to HM toxicity with much lower EC(50) values for beta-galactosidase activity in E. coli. Nevertheless, exaggerated HM concentrations coupled with relatively short exposure time did not allow for an efficient metal phytoextraction thus a significant reduction of ecotoxicity. PMID:18528911

  19. CREATION AND CHARACTERIZATION OF THLASPI CAERULESCENS AND THLASPI ARVENSE SUSPENSION CELL LINES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens is a zinc and cadmium hyperaccumulator, capable of storing up to 30,000 ppm Zn or 10,000 ppm Cd in the shoots without exhibiting toxicity symptoms. Previous research demonstrates the heavy metal hyperaccumulation seen in T. caerulescens is due to altered regulation of uptake, tr...

  20. The effect of plant cadmium and zinc status on root and shoot heavy metal accumulation in the heavy metal hyperaccumulator, Thlaspi caerulescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens is a plant species capable of tolerating and accumulating extremely high concentrations of the heavy metals, Zn and Cd, in the shoot. In this study, we investigated the impact of changes in plant heavy metal status (i.e. Zn and Cd) on the accumulation of heavy metals, including...

  1. Potential use of metal hyperaccumulators

    SciTech Connect

    Chaney, R.; Li, Yin-Ming; Green, C.

    1996-12-31

    Experiments involving biological accumulation of metal contaminants are summarized in the article. The focus is on identification of hyperaccumulating plant species for cadmium and zinc. Two of the studies examined Thlaspi caerulescens (alpine pennycress) as a bioadsorbent; the third study compared different species of Thlaspi. The T. caerulescens accumulated both metals, but with low yields. Other plant species were identified which adsorbed cadmium or zinc, but not both metals.

  2. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance exhibited by a Cd-hyperaccumulating ecotype of Thlaspi caerulescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cadmium (Cd) is a highly toxic heavy metal for plants, but several unique Cd hyperaccumulating plant species are able to accumulate this metal to extraordinary concentrations in the above-ground tissues without showing any toxic symptoms. However, the molecular mechanisms underlying this hyper-tole...

  3. POTENTIAL FOR GENETIC IMPROVEMENT OF THLASPI CAERULESCENS FOR PHYTOREMEDIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens has excellent potential to be used for remediation of zinc and cadmium polluted soils. Although plants of this species have been found to consistently hyperaccumulate cadmium and zinc, the levels of cadmium and zinc that individual plants accumulate depend on their genotype and...

  4. DIFFERENCES IN WHOLE CELL AND SINGLE CHANNEL ION CURRENTS ACROSS THE PLASMA MEMBRANE OF MESOPHYLL CELLS FROM TWO CLOSELY RELATED THLASPI SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The patch clamp technique was used to study the physiology of ion transport in mesophyll cells from Thlaspi caerulescens, a heavy metal (Zn/Cd) hyperaccumulator species that can tolerate and accumulate very high levels of heavy metals in their leaf cells, and Thlaspi arvense, a related non-accumulat...

  5. EXPRESSION PROFILING OF ZN AND OTHER METAL RELATED GENES IN THLASPI CAERULESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research has shown that Thlaspi caerulescens is able to hyperaccumulate as much as 30,000 ppm zinc and 10,000 ppm cadmium in its shoots. In an attempt to better understand the ability of this plant to tolerate and accumulate such high levels of toxic metals, we looked at the expression of g...

  6. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.

    PubMed

    Liang, Hong-Ming; Lin, Ting-Hsiang; Chiou, Jeng-Min; Yeh, Kuo-Chen

    2009-06-01

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup. PMID:19268408

  7. Molecular dissection of the cellular mechanisms involved in nickel hyperaccumulation in plants. 1998 annual progress report

    SciTech Connect

    Salt, D.

    1998-06-01

    'Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites. A number of terrestrial plants are known to naturally accumulate high levels of metals in their shoots (1--2% dry weight), and these plants have been termed metal-hyperaccumulators. Clearly, the genetic traits that determine metal-hyperaccumulation offers the potential for the development of practical phytoremediation processes. The long-term objective is to rationally design and generate plants ideally suited for phytoremediation using this unique genetic material. Initially, the strategy will focus on isolating and characterizing the key genetic information needed for expression of the metal-hyperaccumulation phenotype. Recently, histidine has been shown to play a major role in Ni hyperaccumulation. Based on this information the authors propose to investigate, at the molecular level, the role of histidine biosynthesis in Ni hyperaccumulation in Thlaspi goesingense, a Ni hyperaccumulator species.'

  8. Metal Hyperaccumulation Armors Plants against Disease

    PubMed Central

    Fones, Helen; Davis, Calum A. R.; Rico, Arantza; Fang, Fang; Smith, J. Andrew C.; Preston, Gail M.

    2010-01-01

    Metal hyperaccumulation, in which plants store exceptional concentrations of metals in their shoots, is an unusual trait whose evolutionary and ecological significance has prompted extensive debate. Hyperaccumulator plants are usually found on metalliferous soils, and it has been proposed that hyperaccumulation provides a defense against herbivores and pathogens, an idea termed the elemental defense hypothesis. We have investigated this hypothesis using the crucifer Thlaspi caerulescens, a hyperaccumulator of zinc, nickel, and cadmium, and the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm). Using leaf inoculation assays, we have shown that hyperaccumulation of any of the three metals inhibits growth of Psm in planta. Metal concentrations in the bulk leaf and in the apoplast, through which the pathogen invades the leaf, were shown to be sufficient to account for the defensive effect by comparison with in vitro doseresponse curves. Further, mutants of Psm with increased and decreased zinc tolerance created by transposon insertion had either enhanced or reduced ability, respectively, to grow in high-zinc plants, indicating that the metal affects the pathogen directly. Finally, we have shown that bacteria naturally colonizing T. caerulescens leaves at the site of a former leadzinc mine have high zinc tolerance compared with bacteria isolated from non-accumulating plants, suggesting local adaptation to high metal. These results demonstrate that the disease resistance observed in metal-exposed T. caerulescens can be attributed to a direct effect of metal hyperaccumulation, which may thus be functionally analogous to the resistance conferred by antimicrobial metabolites in non-accumulating plants. PMID:20838462

  9. Molecular Dissection of the Cellular Mechanisms Involved in Nickel Hyperaccumulation in Plants

    SciTech Connect

    Salt, David E.

    1999-06-01

    Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites. A number of terrestrial plants are known to naturally accumulate high levels of metals in their shoots (1-2% dry weight), and these plants have been termed metal-hyperaccumulators. Clearly, the genetic traits that determines metal-hyperaccumulation offers the potential for the development of practical phytoremediation processes. Our long-term objective is to rationally design and generate plants ideally suited for phytoremediation using this unique genetic material. Initially, our strategy will focus on isolating and characterizing the key genetic information needed for expression of the metal-hyperaccumulation phenotype. Recently, histidine has been shown to play a major role in Ni hyperaccumulation. Based on this information we propose to investigate, at the molecular level, the role of histidine biosynthesis in Ni hyperaccumulation in Thlaspi goesingense, a Ni hyperaccumulator species. We will clone key genes involved in histidine biosynthesis. We will characterize their transcriptional and post transcriptional regulation by histidine, Ni. We will determine if any of these genes are essential and sufficient for Ni hyperaccumulation by their expression in the non-hyperaccumulator Arabidopsis thaliana.

  10. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we conducted a detailed analysis of the ZIP family transporter, NcZNT1, in the Zn/Cd hyperaccumulating plant species, Noccaea caerulescens, formerly known as Thlaspi caerulescens. NcZNT1 was previously suggested to be the primary root Zn/Cd uptake transporter. Both a characterization ...

  11. A native Zn/Cd transporting P1B ATPase from natural overexpression in a hyperaccumulator plant reveals post-translational processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TcHMA4 is a P1B-type ATPase that is highly expressed in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens and contains a C-terminal 9-histidine repeat. After isolation from roots, we purified TcHMA4 protein via metal affinity chromatography. The purified protein exhibited Cd- and Zn activated AT...

  12. Proteomics of Thlaspi caerulescens accessions and an inter-accession cross segregating for zinc accumulation

    PubMed Central

    Tuomainen, Marjo; Tervahauta, Arja; Hassinen, Viivi; Schat, Henk; Koistinen, Kaisa M.; Lehesranta, Satu; Rantalainen, Kimmo; Häyrinen, Jukka; Auriola, Seppo; Anttonen, Mikko; Kärenlampi, Sirpa

    2010-01-01

    Metal hyperaccumulator plants have previously been characterized by transcriptomics, but reports on other profiling techniques are scarce. Protein profiles of Thlaspi caerulescens accessions La Calamine (LC) and Lellingen (LE) and lines derived from an LC×LE cross were examined here to determine the co-segregation of protein expression with the level of zinc (Zn) hyperaccumulation. Although hydrophobic proteins such as membrane transporters are not disclosed, this approach has the potential to reveal other proteins important for the Zn hyperaccumulation trait. Plants were exposed to metals. Proteins were separated using two-dimensional electrophoresis and those showing differences among accessions, lines or metal exposures were subjected to mass-spectrometric analysis for identification. Crossing decreased the number of different proteins in the lines compared with the parents, more so in the shoots than in the roots, but the frequencies of Zn-responsive proteins were about the same in the accessions and the selection lines. This supports the finding that the Zn accumulation traits are mainly determined by the root and that Zn accumulation itself is not the reason for the co-segregation. This study demonstrates that crossing accessions with contrasting Zn accumulation traits is a potent tool to investigate the mechanisms behind metal hyperaccumulation. Four tentatively identified root proteins showed co-segregation with high or low Zn accumulation: manganese superoxide dismutase, glutathione S-transferase, S-formyl glutathione hydrolase, and translation elongation factor 5A-2. However, these proteins may not be the direct determinants of Zn accumulation. The role of these and other tentatively identified proteins in Zn accumulation and tolerance is discussed. PMID:20048332

  13. Molecular dissection of the cellular mechanisms involved in nickel hyperaccumulation. 1997 annual progress report

    SciTech Connect

    Salt, D.E.

    1997-10-28

    'Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites. A number of terrestrial plants are known to naturally accumulate high levels of metals in their shoots (1--2% dry weight), and these plants have been termed metal-hyperaccumulators. Clearly, the genetic traits that determine metal-hyperaccumulation offers the potential for the development of practical phytoremediation processes. The long-term objective is to rationally design and generate plants ideally suited for phytoremediation using this unique genetic material. Initially, the strategy will focus on isolating and characterizing the key genetic information needed for expression of the metal-hyperaccumulation phenotype. Recently, histidine has been shown to play a major role in Ni hyperaccumulation. Based on this information the authors propose to investigate, at the molecular level, the role of histidine biosynthesis in Ni hyperaccumuIation in Thlaspi goesingense, a Ni hyperaccumulator species.'

  14. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thalspi goesingense (Halacsy)

    SciTech Connect

    Persans, M.W.; Yan, X.; Patnoe, J.M.M.L.; Kraemer, U.; Salt, D.E.

    1999-12-01

    To understand the role of free histidine (His) in Ni hyperaccumulation in Thlaspi goesingense, the authors investigated the regulation of His biosynthesis at both the molecular and biochemical levels. Three T. goesingense cDNAs encoding the following His biosynthetic enzymes, ATP phosphoribosyltransferase, imidazoleglycerol phosphate dehydratase, and histidinol dehydrogenase, were isolated by functional complementation of Escherichia coli His autotrophs. Northern analysis of THJG1, THD1, and THB1 gene expression revealed that each gene is expressed in both roots and shoots, but at the concentrations and dosage times of Ni treatment used in this study, these genes failed to show any regulation by Ni. The authors were also unable to observe any increases in the concentration of free His in root, shoot, or xylem sap of T. goesingense in response to Ni exposure. X-ray absorption spectroscopy of root and shoot tissue from T. goesingense and the non-accumulator species Thlaspi reverse revealed no major differences in the coordination of Ni by His in these tissues. They therefore conclude that the Ni hyperaccumulation phenotype in T. goesingense is not determined by the overproduction of His in response to Ni.

  15. MODE OF POLLINATION IN TWO THLASPI CAERULESCENS POPULATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens, formerly known as T. alpestre, has been reported to be self-pollinated. Among T. alpestre plants, Riley (1956) found only 5.25 % outcrossing, whereas Holmgren (1971) found a range of 5-35% outcrossing. These studies suggest that T. caerulescens plants are predominantly self-p...

  16. Nickel, Zn and Cd localisation in seeds of metal hyperaccumulators using ?-PIXE spectroscopy

    NASA Astrophysics Data System (ADS)

    Kachenko, Anthony G.; Bhatia, Naveen P.; Siegele, Rainer; Walsh, Kerry B.; Singh, Balwant

    2009-06-01

    Metal hyperaccumulators are a rare group of plant species that accumulate exceptionally high concentrations of metals in above ground tissues without showing symptoms of phytotoxicity. Quantitative localisation of the accumulated metals in seed tissues is of considerable interest to help understand the eco-physiology of these unique plant species. We investigated the spatial localisation of metals within seeds of Ni hyperaccumulating Hybanthus floribundus subsp. adpressus, H. floribundus subsp. floribundus and Pimelea leptospermoides and dual-metal (Cd and Zn) hyperaccumulating Thlaspi caerulescens using quantitative micro-proton induced X-ray emission (?-PIXE) spectroscopy. Intact seeds were hand-sectioned, sandwiched between Formvar films and irradiated using the 3 MeV high energy heavy ion microprobe at ANSTO. Elemental maps of whole H. floribundus subsp. adpressus seeds showed an average Ni concentration of 5.1 10 3 mg kg -1 dry weight (DW) with highest Ni concentration in cotyledonary tissues (7.6 10 3 mg kg -1 DW), followed by the embryonic axis (4.4 10 3 mg kg -1 DW). Nickel concentration in whole H. floribundus subsp. floribundus seeds was 3.5 10 2 mg kg -1 DW without a clear pattern of Ni localisation. The average Ni concentration in whole P. leptospermoides seeds was 2.6 10 2 mg kg -1 DW, and Ni was preferentially localised in the embryonic axis (4.3 10 2 mg kg -1 DW). In T. caerulescens, Cd concentrations were similar in cotyledon (4.5 10 3 mg kg -1 DW) and embryonic axis (3.3 10 3 mg kg -1 DW) tissues, whereas Zn was highest in cotyledonary tissues (1.5 10 3 mg kg -1 DW). In all species, the presence of the accumulated metal within the cotyledonary and embryonic axis tissues indicates that the accumulated metal was able to move apoplastically within the seed.

  17. Response of antioxidative enzymes and apoplastic bypass transport in Thlaspi caerulescens and Raphanus sativus to cadmium stress.

    PubMed

    Benzarti, Saoussen; Hamdi, Helmi; Mohri, Shino; Ono, Yoshiro

    2010-01-01

    A hydroponics experiment using hyperaccumulator Thlaspi caerulescens (alpine pennycress) and non-specific accumulator Raphanus sativus (common radish) was conducted to investigate the short-term effect of increasing Cd concentrations (0, 25, 50, 75, 100 microM) on metal uptake, chlorophyll content, antioxidative enzymes, and apoplastic bypass flow. As expected, T. caerulescens generally showed better resistance to metal stress, which was reflected by higher Cd accumulation within plant tissues with no signs of chlorosis, or wilt. Glutathione reductase (GR) and superoxide dismutase (SOD) activities in fresh leaves were monitored as the plant metal-detoxifying response. In general, both plant species exhibited an increase trend of GR activity before declining at 100 microM likely due to excessive levels of phytotoxic Cd. SOD activity exhibited almost a similar variation pattern to GR and decreased also at 100 microM Cd. For both plant species, fluorescent PTS uptake (8-hydroxy-1,3,6-pyrenetrisulphonic acid) increased significantly with metal level in exposure solutions indicating that Cd has a comparable effect to drought or salinity in terms of the gain of relative importance in apoplastic bypass transport under such stress conditions. PMID:21166344

  18. ENDEMISM VS INVASIBILITY IN NICKEL HYPERACCUMULATORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several species of nickel hyperaccumulators in the genus Alyssum are found on serpentine (ultramafic) soils throughout southern and eastern Europe and Asia, and some are endemic to serpentine substrates. This study examines the extent to which physiological factors restrict nickel hyperaccumulators ...

  19. Ecological aspects of plant selenium hyperaccumulation.

    PubMed

    El Mehdawi, A F; Pilon-Smits, E A H

    2012-01-01

    Hyperaccumulators are plants that accumulate toxic elements to extraordinary levels. Selenium (Se) hyperaccumulators can contain 0.1-1.5% of their dry weight as Se, levels toxic to most other organisms. In this review we summarise what is known about the ecological functions and implications of Se (hyper)accumulation by plants. Selenium promotes hyperaccumulator growth and also offers a plant several ecological advantages through negative effects on Se-sensitive partners. High tissue Se levels reduce herbivory and pathogen infection, and high-Se litter deposition can inhibit neighbouring plants. There is no evidence for a cost of hyperaccumulation in terms of reproductive functions or pollinator visitation. Hyperaccumulators offer a niche for Se-tolerant herbivores, pollinators, microbes and neighbouring plants. They may even facilitate these partners through Se enrichment: neighbouring plants with elevated Se levels enjoy enhanced growth and reduced herbivory. Through combined negative and positive effects on ecological partners, Se hyperaccumulators likely affect local plant, microbial and animal species composition and richness, favouring Se-tolerant species at different trophic levels. By locally concentrating Se and altering its chemical form, Se hyperaccumulators likely play an important role in Se entry into, and Se cycling through, seleniferous ecosystems. These findings are of significance since they provide insight into the ecological reverberations of Se hyperaccumulation, and shed light on the possible selection pressures that have led to the evolution of this fascinating phenomenon. Better ecological insight will also help in the management of seleniferous areas and the agricultural production of Se-rich crops for phytoremediation or biofortification. PMID:22132825

  20. Compartmentation and complexation of metals in hyperaccumulator plants

    PubMed Central

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-01-01

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their “strange” behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs. PMID:24065978

  1. Aerobic methane emissions from stinkweed (Thlaspi arvense) capsules.

    PubMed

    Qaderi, Mirwais M; Reid, David M

    2014-01-01

    Aerobic methane (CH4) emission from plant vegetative parts has been confirmed by many studies. However, the origin of aerobic CH4 from plants and its emission from reproductive parts have not been well documented. We determined the effects of developmental stages (early, mid, late) and incubation conditions (darkness, dim light, bright light) on CH4 emissions from stinkweed (Thlaspi arvense) capsules. We found that CH4 emissions from capsules varied with developmental stage and incubation light. Methane emission was highest for the late harvested capsules and for those incubated under lower (dim) light condition. Our results also showed a significant negative correlation between CH4 emission and capsule moisture content. We conclude that CH4 emissions vary with capsule age and diurnal light environment. PMID:25482797

  2. PHYTOEXTRACTION OF HEAVY METALS WITH HYPERACCUMULATOR PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When soils contain metals at high enough levels to comprise risk thru food-chain or soil ingestion, some methods must be applied to alleviate the risk, or the land use must be constrained. One approach to remediate risks from some metals is phytoextraction using hyperaccumulator plants. These remark...

  3. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils1[OPEN

    PubMed Central

    Mandáková, Terezie; Singh, Vasantika; Krämer, Ute; Lysak, Martin A.

    2015-01-01

    Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descended from seven chromosomes of the ancestral proto-Calepineae Karyotype (n = 7) through an unusually high number of pericentric inversions. Genome analysis in two other related species, Noccaea jankae and Raparia bulbosa, showed that all three species, and thus probably the entire Coluteocarpeae tribe, have descended from the proto-Calepineae Karyotype. All three analyzed species share the chromosome structure of six out of seven chromosomes and an unusually high metal accumulation in leaves, which remains moderate in N. jankae and R. bulbosa and is extreme in N. caerulescens. Among these species, N. caerulescens has the most derived karyotype, with species-specific inversions on chromosome NC6, which grouped onto its bottom arm functionally related genes of zinc and iron metal homeostasis comprising the major candidate genes NICOTIANAMINE SYNTHASE2 and ZINC-INDUCED FACILITATOR-LIKE1. Concurrently, copper and organellar metal homeostasis genes, which are functionally unrelated to the extreme traits characteristic of N. caerulescens, were grouped onto the top arm of NC6. Compared with Arabidopsis thaliana, more distal chromosomal positions in N. caerulescens were enriched among more highly expressed metal homeostasis genes but not among other groups of genes. Thus, chromosome rearrangements could have facilitated the evolution of enhanced metal homeostasis gene expression, a known hallmark of metal hyperaccumulation. PMID:26195571

  4. Thermoinductive regulation of gibberellin metabolism in Thlaspi arvense L

    SciTech Connect

    Hazebroek, J.P.; Metzger, J.D. )

    1990-09-01

    Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous ({sup 2}H)-ent-kaurenoic acid (KA) and ({sup 14}C)-gibberellin A{sub 12}-aldehyde (GA{sub 12}-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of ({sup 2}H)-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. These results are consistent with the suggestion that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of ({sup 14}C)GA{sub 12}-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA{sub 12}-aldehyde.

  5. Preparation, composition and functional properties of pennycress (Thlaspi arvense L.) seed protein isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated two methods, saline extraction (SE) and conventional acid precipitation (AP), to recover proteins from pennycress (Thlaspi arvense L.) seed meal. SE was done using 0.1 M NaCl at 50ºC while AP involved alkaline extraction (pH 10) first followed by protein precipitation at pH 4. C...

  6. Emergence of field pennycress (Thlaspi arvense L.): Comparison of two accessions and modelling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many weed species are becoming rare due to intense agricultural management, which leads to a decrease of biodiversity in agroecosystems. Cultivating some of these species for their oilseed content may help preserve them while profiting agronomically. Thlaspi arvense is one of these species with pote...

  7. Composition and functional properties of protein recovered from pennycreess (Thlaspi arvense) press cake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense L.) seed oil is being considered as alternative feedstock for biodiesel production. If the pennycress-based biodiesel venture is successful, then the seed protein (more than 20% content) could become a major co-product of the process. This study compared two methods for e...

  8. Registration of Katelyn Thlaspi arvense L. (Pennycress) with improved nondormant traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Katelyn (Reg. No. GP-35, PI 673443) pennycress (Thlaspi arvense L.) was publicly released by the USDA-ARS in 2014 as part of a new crop improvement program. Katelyn was developed by two generations of mass selection based on the germination response of freshly harvested pennycress seeds. The origina...

  9. Composition and Physical Properties of Cress (Lepidium sativum L.) and Field Pennycress (Thlaspi arvense L.) Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profile and tocopherol, and phytosterol contents of crude cress (Lepidium sativum L.) and field pennycress (Thlaspi arvense L.) oils are reported, along with yields from the corresponding seeds. The physical properties of these oils were also determined, which included oxidative stab...

  10. Extraction, composition and functional properties of pennycress (Thlaspi arvense L.) press cake protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared two methods for extracting the protein in pennycress (Thlaspi arvense L.) press cake and determined the composition and functional properties of the protein products. Proteins in pennycress press cake were extracted by using the conventional alkali solubilization-acid precipitati...

  11. Enrichment of erucic acid from pennycress (Thlaspi arvense L.) seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense) is a winter annual that has a wide geographic distribution and a growth habitat that makes it suitable for an off-season rotation between corn and soybeans in much of the Midwestern United States. Pennycress seed contains 36% oil with 36.6% erucic acid content. There are...

  12. Field Pennycress (Thlaspi arvense L.) Oil: A Promising Source of Biodiesel.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L., FP) is a winter annual species of the mustard family (Brassicaceae) that is widely distributed throughout temperate North America and which can serve in a winter rotational cycle with conventional crops, thus not displacing existing agricultural production or ne...

  13. Production and Evaluation of Biodiesel from Field Pennycress (Thlaspi Arvense L.) Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L.) oil is evaluated for the first time as a potential feedstock for biodiesel production. Biodiesel was obtained in 82 wt % yield by a standard transesterification procedure with methanol and sodium methoxide catalyst at 60 deg C and an alcohol to oil ratio of 6:1...

  14. Thermoinductive Regulation of Gibberellin Metabolism in Thlaspi arvense L. 1

    PubMed Central

    Hazebroek, Jan P.; Metzger, James D.

    1990-01-01

    Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous [2H]-ent-kaurenoic acid (KA) and [14C]-gibberellin A12-aldehyde (GA12-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of [2H]-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. Moreover, there was 47 times more endogenous KA in noninduced than in thermoinduced shoot tips as determined by combined gas chromatography-mass spectrometry (GC-MS). The major metabolite of [2H]-KA in thermoinduced shoot tips was a monohydroxylated derivative of KA, while in noninduced shoot tips, the glucose ester of the hydroxy KA metabolite was the main product. Gibberellin A9 (GA9) was the only GA in which the incorporation of deuterium was detected by GC-MS, and this was observed only in thermoinduced shoot tips. The amount of incorporation was small as indicated by the large dilution by endogenous GA9. In contrast, thermo- and noninduced leaves metabolized exogenous [2H]-KA into GA20 equally well, although the amount of conversion was also limited. These results are consistent with the suggestion (JD Metzger [1990] Plant Physiol 94: 000-000) that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of [14C]-GA12-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA12-aldehyde. PMID:16667682

  15. SOIL MICROBIAL EFFECTS ON HEAVY METAL UPTAKE INTO HYPERACCUMULATORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uptake of heavy metals into hyperaccumulators is influenced by a number of chemical, physical and biological factors. Of these, recent evidence has shown that microbes living within the rhizosphere of hyperaccumulators may have a significant effect on metal uptake. Much is known about the role my...

  16. Prospecting for hyperaccumulators of trace elements: a review.

    PubMed

    Krzciuk, Karina; Gałuszka, Agnieszka

    2015-01-01

    Specific plant species that can take up and accumulate abnormally high concentrations of elements in their aboveground tissues are referred to as "hyperaccumulators". The use of this term is justified in the case of enormous element-binding capacity of plants growing in their natural habitats and showing no toxicity symptoms. An increasing interest in the study of hyperaccumulators results from their potential applications in environmental biotechnology (phytoremediation, phytomining) and their emerging role in nanotechnology. The highest number of plant species with confirmed hyperaccumulative properties has been reported for hyperaccumulators of nickel, cadmium, zinc, manganese, arsenic and selenium. More limited data exist for plants accumulating other elements, including common pollutants (chromium, lead and boron) or elements of commercial value, such as copper, gold and rare earth elements. Different approaches have been used for the study of hyperaccumulators - geobotanical, chemical, biochemical and genetic. The chemical approach is the most important in screening for new hyperaccumulators. This article presents and critically reviews current trends in new hyperaccumulator research, emphasizing analytical methodology that is applied in identification of new hyperaccumulators of trace elements and its future perspectives. PMID:24938121

  17. Effects of arsenic on nitrogen metabolism in arsenic hyperaccumulator and non-hyperaccumulator ferns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of two four-month old fern plants, Pteris vittata, an arsenic-hyperaccumulator, and Pteris ensiformis, ...

  18. Effects of oil extraction on functional properties of protein in pennycress (Thlaspi arvense) seed and press cake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current interest in pennycress (Thlaspi arvense) comes from its seed oil, which is being evaluated for biodiesel production. The seed also has notable protein content (33% db). The effects of oil processing conditions on functionality of pennycress seed proteins were determined to identify potential...

  19. Hyperaccumulative property comparison of 24 weed species to heavy metals using a pot culture experiment.

    PubMed

    Wei, Shuhe; Zhou, Qixing; Xiao, Hong; Yang, Chuanjie; Hu, Yahu; Ren, Liping

    2009-05-01

    The screening of hyperaccumulators is still very much needed for phytoremediation. With properties such as strong tolerance to adverse environment, fast growing and highly reproductive rate, weed species may be an ideal plant for phytoremediation. The objectives of this study were to examine the tolerance and hyperaccumulative characteristics of 24 species in 9 families to Cd, Pb, Cu and Zn by using the outdoor pot-culture experiment. In the screening experiment, only Conyza canadensis and Rorippa globosa displayed Cd-hyperaccumulative characteristics. In a further concentration gradient experiment, C. canadensis was affirmed that it is not a Cd hyperaccumulator. Only R. globosa, indicated all Cd hyperaccumulative characteristics, especially Cd concentration in its stems and leaves were higher than 100 mg/kg, the minimum Cd concentration what a Cd-hyperaccumulator should accumulate. Thus, R. globosa was further validated as a Cd-hyperaccumulator. PMID:18483772

  20. Improved Understanding of Hyperaccumulation Yields Commercial Phytoextraction and Phytomining Technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews progress in phytoextraction of soil elements and illustrates the key role of hyperaccumulator plant species in useful technologies. Much research has focused on elements which are not practically phytoextracted (Pb); on addition of chelating agents which cause unacceptable contam...

  1. Selenium hyperaccumulation offers protection from cell disruptor herbivores

    PubMed Central

    2010-01-01

    Background Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se) hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus against two cell disrupting herbivores, the western flower thrips (Frankliniella occidentalis) and the two-spotted spider mite (Tetranychus urticae). Results Astragalus bisulcatus and S. pinnata with high Se concentrations (greater than 650 mg Se kg-1) were less subject to thrips herbivory than plants with low Se levels (less than 150 mg Se kg-1). Furthermore, in plants containing elevated Se levels, leaves with higher concentrations of Se suffered less herbivory than leaves with less Se. Spider mites also preferred to feed on low-Se A. bisulcatus and S. pinnata plants rather than high-Se plants. Spider mite populations on A. bisulcatus decreased after plants were given a higher concentration of Se. Interestingly, spider mites could colonize A. bisulcatus plants containing up to 200 mg Se kg-1 dry weight, concentrations which are toxic to many other herbivores. Selenium distribution and speciation studies using micro-focused X-ray fluorescence (μXRF) mapping and Se K-edge X-ray absorption spectroscopy revealed that the spider mites accumulated primarily methylselenocysteine, the relatively non-toxic form of Se that is also the predominant form of Se in hyperaccumulators. Conclusions This is the first reported study investigating the protective effect of hyperaccumulated Se against cell-disrupting herbivores. The finding that Se protected the two hyperaccumulator species from both cell disruptors lends further support to the elemental defense hypothesis and increases the number of herbivores and feeding modes against which Se has shown a protective effect. Because western flower thrips and two-spotted spider mites are widespread and economically important herbivores, the results from this study also have potential applications in agriculture or horticulture, and implications for the management of Se-rich crops. PMID:20799959

  2. Selenium-tolerant diamondback moth disarms hyperaccumulator plantdefense

    SciTech Connect

    Freeman, J.L.; Quinn, C.F.; Marcus, M.A.; Fakra, S.; Pilon-Smits,E.A.H.

    2006-11-20

    Background Some plants hyperaccumulate the toxic element selenium (Se) to extreme levels, up to 1% of dry weight. The function of this intriguing phenomenon is obscure. Results Here, we show that the Se in the hyperaccumulator prince's plume (Stanleya pinnata) protects it from caterpillar herbivory because of deterrence and toxicity. In its natural habitat, however, a newly discovered variety of the invasive diamondback moth (Plutella xylostella) has disarmed this elemental defense. It thrives on plants containing highly toxic Se levels and shows no oviposition or feeding deterrence, in contrast to related varieties. Interestingly, a Se-tolerant wasp (Diadegma insulare) was found to parasitize the tolerant moth. The insect's Se tolerance mechanism was revealed by X-ray absorption spectroscopy and liquid chromatography--mass spectroscopy, which showed that the Se-tolerant moth and its parasite both accumulate methylselenocysteine, the same form found in the hyperaccumulator plant, whereas related sensitive moths accumulate selenocysteine. The latter is toxic because of its nonspecific incorporation into proteins. Indeed, the Se-tolerant diamondback moth incorporated less Se into protein. Additionally, the tolerant variety sequestered Se in distinct abdominal areas, potentially involved in detoxification and larval defense to predators. Conclusions Although Se hyperaccumulation protects plants from herbivory by some invertebrates, it can give rise to the evolution of unique Se-tolerant herbivores and thus provide a portal for Se into the local ecosystem. In a broader context, this study provides insight into the possible ecological implications of using Se-enriched crops as a source of anti-carcinogenic selenocompounds and for the remediation of Se-polluted environments.

  3. Molybdenum accumulation, tolerance and molybdenum-selenium-sulfur interactions in Astragalus selenium hyperaccumulator and nonaccumulator species.

    PubMed

    DeTar, Rachael Ann; Alford, Élan R; Pilon-Smits, Elizabeth A H

    2015-07-01

    Some species hyperaccumulate selenium (Se) upwards of 0.1% of dry weight. This study addressed whether Se hyperaccumulators also accumulate and tolerate more molybdenum (Mo). A field survey revealed on average 2-fold higher Mo levels in three hyperaccumulator Astragali compared to three nonaccumulator Astragali, which were not significantly different. Next, a controlled study was performed where hyperaccumulators Astragalus racemosus and Astragalus bisulcatus were compared with nonaccumulators Astragalus drummondii and Astragalus convallarius for Mo accumulation and tolerance, alone or in the presence of Se. When grown on agar media with 0, 12, 24 or 48 mg L(-1) molybdate and/or 0, 1.6 or 3.2 mg L(-1) selenate, all species decreased in biomass with increasing Mo supply. Selenium did not impact biomass at the supplied levels. All Astragali accumulated Mo upwards of 0.1% of dry weight. Selenium levels were up to 0.08% in Astragalus racemosus and 0.04% Se in the other species. Overall, there was no correlation between Se hyperaccumulation and Mo accumulation capacity. However, the hyperaccumulators and nonaccumulators differed in some respects. While none of the species had a higher tissue Mo to sulfur (S) ratio than the growth medium, nonaccumulators had a higher Mo/S ratio than hyperaccumulators. Also, while molybdate and selenate reduced S accumulation in nonaccumulators, it did not in hyperaccumulators. Furthermore, A. racemosus had a higher Se/S ratio than its medium, while the other species did not. Additionally, Mo and Se treatment affected S levels in nonaccumulators, but not in hyperaccumulators. In conclusion, there is no evidence of a link between Se and Mo accumulation and tolerance in Astragalus. Sulfate transporters in hyperaccumulating Astragali appear to have higher sulfate specificity over other oxyanions, compared to nonaccumulators, and A. racemosus may have a transporter with enhanced selenate specificity relative to sulfate or molybdate. PMID:26074355

  4. Effects of cold-pressing and seed cooking on functional properties of protein in pennycress (Thlaspi arvense L.) seed and press cakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current interest in pennycress (Thlaspi arvense L.) comes from its seed oil, which is being evaluated for biofuel production. The seed also has notable protein content (27% moisture-free, oil-free basis). The effects of oil processing conditions on functionality of pennycress seed proteins were dete...

  5. A newly found manganese hyperaccumulator-Polygonum lapathifolium Linn.

    PubMed

    Liu, Kehui; Yu, Fangming; Chen, Menglin; Zhou, Zhenming; Chen, Chaoshu; Li, Ming Shun; Zhu, Jing

    2016-04-01

    In the present work, both field investigation and laboratory experiment were carried out to testify whether Polygonum lapathifolium L. is a potential manganese (Mn) hyperaccumulator. Results from field investigation showed that P. lapathifolium had great tolerance and accumulation to Mn. Mn concentrations in leaves were the highest, varied from 6889.2 mg kg-1 dry weight (DW) to18841.7 mg kg(-1) DW with the average of 12180.6 mg kg(-1). The values of translocation factor (the concentrations of Mn in leaf to that in root) ranged from 5.72 to 9.53. Results from laboratory experiment illuminated that P. lapathifolium could grow well and show no toxic symptoms even under high Mn stress (16 mmol L(-1)). Although the changes of antioxidant enzymes activities were triggered under Mn stress, the alterations of pigments were not significant (P > 0.05) as compared with control. Total plant biomass and plant height increased with increasing Mn supply. Mn concentrations in leaves and stems were constantly greater than those in roots, the ratio of concentrations in leaves to that in roots were 2.58-6.72 and the corresponding values in stems to that in roots were 1.45-3.18. The results showed that P. lapathifolium is a Mn-hyperaccumulator. PMID:26514228

  6. Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant.

    PubMed

    Adki, Vinayak S; Jadhav, Jyoti P; Bapat, Vishwas A

    2013-02-01

    Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant's hyperaccumulation capacity. Plants showed tolerance up to 100 μM K(2)Cr(2)O(7) without any significant changes in root growth after 16 days treatment; whereas, chlorophyll content in plants treated with 1 and 10 μM K(2)Cr(2)O(7) were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p < 0.01) with increasing concentration of chromium. Exposures of N. cochenillifera to lower concentrations of K(2)Cr(2)O(7) (≤ 10 μM) induced catalase (CAT) and superoxide dismutase (SOD) significantly (p < 0.001) but higher concentrations of K(2)Cr(2)O(7) (>100 μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396 ± 1,722.672 mg Cr Kg(-1) dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714 ± 32.324 mg Cr Kg(-1) DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes. PMID:22914913

  7. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis.

    PubMed

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-07-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos. PMID:25711705

  8. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    PubMed Central

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-01-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography–mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos. PMID:25711705

  9. Genetic and Molecular Dissection of Arsenic Hyperaccumulation in the fern Pteris vittata.

    SciTech Connect

    Jo Ann Banks; David Salt

    2008-04-04

    Pteris vittata is a fern that is extraordinary in its ability to tolerate hyperaccumulate high levels of arsenic (As). The goals of the proposed research, to identify the genes that are necessary for As hyperaccumulation in P. vittata using molecular and genetic approaches and to understand the physiology of arsenic uptake and distribution in the living plant, were accomplished during the funding period. The genes that have been identified may ultimately enable the engineering or selection of other plants capable of As hyperaccumulation. This is important for the phytoremediation of arsenic-contaminated soils in areas where P. vittata cannot grow.

  10. Sulfur-selenium-molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae).

    PubMed

    Harris, Jonathan; Schneberg, Kathryn A; Pilon-Smits, Elizabeth A H

    2014-02-01

    Long-term sulfate, selenate and molybdate accumulation and translocation were investigated in two ecotypes of Stanleya pinnata and non-hyperaccumulator Brassica juncea under different levels of applied sulfate and selenate. Morphological differences were observed between the ecotypes of S. pinnata, but few differences in selenium (Se) and sulfur (S) accumulation were measured. Se-to-S ratios were nearly identical between the ecotypes under all treatments. When compared with B. juncea, several unique trends were observed in the hyperaccumulators. While both S. pinnata ecotypes showed no significant effect on Se content of young leaves when the supplied sulfate in the growth medium was increased tenfold (from 0.5 to 5 mM), the Se levels in B. juncea decreased 4- to 12-fold with increased sulfate in the growth medium. Furthermore, S. pinnatas S levels decreased slightly with high levels of supplied Se, suggesting competitive inhibition of uptake, while B. juncea showed higher S levels with increasing Se, possibly due to up-regulation of sulfate transporters. Both ecotypes of S. pinnata showed much larger Se concentrations in young leaves, while B. juncea showed slightly higher levels of Se in older leaves relative to young. Molybdenum (Mo) levels significantly decreased in S. pinnata with increasing sulfate and selenate in the medium; B. juncea did not show the same trends. These findings support the hypothesis that S. pinnata contains a modified sulfate transporter with a higher specificity for selenate. PMID:24233101

  11. Microbeam methodologies as powerful tools in manganese hyperaccumulation research: present status and future directions

    PubMed Central

    Fernando, Denise R.; Marshall, Alan; Baker, Alan J. M.; Mizuno, Takafumi

    2013-01-01

    Microbeam studies over the past decade have garnered unique insight into manganese (Mn) homeostasis in plant species that hyperaccumulate this essential mineral micronutrient. Electron- and/or proton-probe methodologies employed to examine tissue elemental distributions have proven highly effective in illuminating excess foliar Mn disposal strategies, some apparently unique to Mn hyperaccumulating plants. When applied to samples prepared with minimal artefacts, these are powerful tools for extracting true snapshot data of living systems. For a range of reasons, Mn hyperaccumulation is particularly suited to in vivo interrogation by this approach. Whilst microbeam investigation of metallophytes is well documented, certain methods originally intended for non-biological samples are now widely applied in biology. This review examines current knowledge about Mn hyperaccumulators with reference to microbeam methodologies, and discusses implications for future research into metal transporters. PMID:23970891

  12. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants

    SciTech Connect

    David E. Salt

    2002-04-08

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants.

  13. Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data

    PubMed Central

    Cecchi, Lorenzo; Gabbrielli, Roberto; Arnetoli, Miluscia; Gonnelli, Cristina; Hasko, Agim; Selvi, Federico

    2010-01-01

    Background and Aims Nickel (Ni) hyperaccumulation is a rare form of physiological specialization shared by a small number of angiosperms growing on ultramafic soils. The evolutionary patterns of this feature among European members of tribe Alysseae (Brassicaceae) are investigated using a phylogenetic approach to assess relationships among Ni hyperaccumulators at the genus, species and below-species level. Methods Internal transcribed spacer (ITS) sequences were generated for multiple accessions of Alysseae. Phylogenetic trees were obtained for the genera of the tribe and Alyssum sect. Odontarrhena. All accessions and additional herbarium material were tested for Ni hyperaccumulation with the dimethylglyoxime colorimetric method. Key Results Molecular data strongly support the poorly known hyperaccumulator endemic Leptoplax (Peltaria) emarginata as sister to hyperaccumulator species of Bornmuellera within Alysseae. This is contrary to current assumptions of affinity between L. emarginata and the non-hyperaccumulator Peltaria in Thlaspideae. The lineage Bornmuellera–Leptoplax is, in turn, sister to the two non-hyperaccumulator Mediterranean endemics Ptilotrichum rupestre and P. cyclocarpum. Low ITS sequence variation was found within the monophyletic Alyssum sect. Odontarrhena and especially in A. murale sensu lato. Nickel hyperaccumulation was not monophyletic in any of three main clades retrieved, each consisting of hyperaccumulators and non-hyperaccumulators of different geographical origin. Conclusions Nickel hyperaccumulation in Alysseae has a double origin, but it did not evolve in Thlaspideae. In Bornmuellera–Leptoplax it represents an early synapomorphy inherited from an ancestor shared with the calcicolous, sister clade of Mediterranean Ptilotrichum. In Alyssum sect. Odontarrhena it has multiple origins even within the three European clades recognized. Lack of geographical cohesion suggests that accumulation ability has been lost or gained over the different serpentine areas of south Europe through independent events of microevolutionary adaptation and selection. Genetic continuity and strong phenotypic plasticity in the A. murale complex call for a reduction of the number of Ni hyperaccumulator taxa formally recognized. PMID:20724306

  14. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans.

    PubMed

    Dhir, B; Srivastava, S

    2013-06-01

    Metal tolerance capacity of Salvinia natans, a metal hyperaccumulator, was evaluated. Plants were exposed to 10, 30 and 50 mg L? of Zn, Cd, Co, Cr, Fe, Cu, Pb, and Ni. Plant biomass, photosynthetic efficiency, quantum yield, photochemical quenching, electron transport rate and elemental (%C, H and N) constitution remained unaffected in Salvinia exposed to 30 mg L? of heavy metals, except for Cu and Zn exposed plants, where significant reductions were noted in some of the measured parameters. However, a significant decline was noted in most of the measured parameters in plants exposed to 50 mg L? of metal concentration. Results suggest that Salvinia has fairly high levels of tolerance to all the metals tested, but the level of tolerance varied from metal to metal. PMID:23553503

  15. Analysis of selenium accumulation, speciation and tolerance of potential selenium hyperaccumulator Symphyotrichum ericoides.

    PubMed

    El Mehdawi, Ali F; Reynolds, Ray Jason B; Prins, Christine N; Lindblom, Stormy D; Cappa, Jennifer J; Fakra, Sirine C; Pilon-Smits, Elizabeth A H

    2014-09-01

    Symphyotrichum ericoides was shown earlier to contain hyperaccumulator levels of selenium (Se) in the field (>1000 mg kg(-1) dry weight (DW)), but only when growing next to other Se hyperaccumulators. It was also twofold larger next to hyperaccumulators and suffered less herbivory. This raised two questions: whether S. ericoides is capable of hyperaccumulation without neighbor assistance, and whether its Se-derived benefit is merely ecological or also physiological. Here, in a comparative greenhouse study, Se accumulation and tolerance of S. ericoides were analyzed in parallel with hyperaccumulator Astragalus bisulcatus, Se accumulator Brassica juncea and related Asteraceae Machaeranthera tanacetifolia. Symphyotrichum ericoides and M. tanacetifolia accumulated Se up to 3000 and 1500 mg Se kg(-1) DW, respectively. They were completely tolerant to these Se levels and even grew 1.5- to 2.5-fold larger with Se. Symphyotrichum ericoides showed very high leaf Se/sulfur (S) and shoot/root Se concentration ratios, similar to A. bisulcatus and higher than M. tanacetifolia and B. juncea. Se X-ray absorption near-edge structure spectroscopy showed that S. ericoides accumulated Se predominantly (86%) as C-Se-C compounds indistinguishable from methyl-selenocysteine, which may explain its Se tolerance. Machaeranthera tanacetifolia accumulated 55% of its Se as C-Se-C compounds; the remainder was inorganic Se. Thus, in this greenhouse study S. ericoides displayed all of the characteristics of a hyperaccumulator. The larger size of S. ericoides when growing next to hyperaccumulators may be explained by a physiological benefit, in addition to the ecological benefit demonstrated earlier. PMID:24423113

  16. Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics

    PubMed Central

    DalCorso, Giovanni; Fasani, Elisa; Furini, Antonella

    2013-01-01

    Hyperaccumulator/hypertolerant plant species have evolved strategies allowing them to grow in metal-contaminated soils, where they accumulate high concentrations of heavy metals in their shoots without signs of toxicity. The mechanisms that allow enhanced metal uptake, root-to-shoot translocation and detoxification in these species are not fully understood. Complementary approaches such as transcriptomic-based DNA microarrays and proteomics have recently been used to gain insight into the molecular pathways evolved by metal hyperaccumulator/hypertolerant species. Proteomics has the advantage of focusing on the translated portion of the genome and it allows to analyze complex networks of proteins. This review discusses the recent analysis of metal hyperaccumulator/hypertolerant plant species using proteomics. Changes in photosynthetic proteins, sulfur, and glutathione metabolism, transport, biotic and xenobiotic defenses as well as the differential regulation of proteins involved in signaling and secondary metabolism are discussed in relation to metal hyperaccumulation. We also consider the potential contribution of several proteins to the hyperaccumulation phenotype. PMID:23898342

  17. The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy

    PubMed Central

    Visioli, Giovanna; D'Egidio, Sara; Sanangelantoni, Anna M.

    2015-01-01

    Hyperaccumulators are plants that can extract heavy metal ions from the soil and translocate those ions to the shoots, where they are sequestered and detoxified. Hyperaccumulation depends not only on the availability of mobilized metal ions in the soil, but also on the enhanced activity of metal transporters and metal chelators which may be provided by the plant or its associated microbes. The rhizobiome is captured by plant root exudates from the complex microbial community in the soil, and may colonize the root surface or infiltrate the root cortex. This community can increase the root surface area by inducing hairy root proliferation. It may also increase the solubility of metals in the rhizosphere and promote the uptake of soluble metals by the plant. The bacterial rhizobiome, a subset of specialized microorganisms that colonize the plant rhizosphere and endosphere, makes an important contribution to the hyperaccumulator phenotype. In this review, we discuss classic and more recent tools that are used to study the interactions between hyperaccumulators and the bacterial rhizobiome, and consider future perspectives based on the use of omics analysis and microscopy to study plant metabolism in the context of metal accumulation. Recent data suggest that metal-resistant bacteria isolated from the hyperaccumulator rhizosphere and endosphere could be useful in applications such as phytoextraction and phytoremediation, although more research is required to determine whether such properties can be transferred successfully to non-accumulator species. PMID:25709609

  18. THE EFFECT OF THE PH OF PH BUFFERED NUTRIENT SOLUTIONS ON NICKEL HYPERACCUMULATION BY ALYSSUM CORSICUM AND BERKHEYA CODDII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is hypothesized that plant hyperaccumulation of Ni evolved as a defense mechanism against diseases and insects. Two hyperaccumulators, Alyssum corsicum and Berkheya coddii, were compared to cabbage (Brassica oleracea) grown in MES-HEPES buffered nutrient solutions and maintained at four pH levels...

  19. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons(PAHs) co-contaminated s...

  20. Using Chelator-Buffered Nutrient Solutions to Induce Ni-Deficiency in the Ni-Hyperaccumulator Alyssum murale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ni is essential for all plants due to its role in urease. Many Alyssum species are known to hyperaccumulate Ni to over 20 g kg-1 dry weight (DW) while normal plants require only about 0.1 mg kg-1 DW. As part of our research on Ni hyperaccumulation by plants, we conducted experiments to measure the...

  1. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale*

    PubMed Central

    Agrawal, Bhavana; Czymmek, Kirk J.; Sparks, Donald L.; Bais, Harsh P.

    2013-01-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation. PMID:23322782

  2. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  3. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  4. Feasibility of using hyperaccumulating plants to bioremediate metal-contaminated soil

    SciTech Connect

    Kelly, R.J.; Guerin, T.F.

    1995-12-31

    A feasibility study was carried out to determine whether selected plants were capable of hyperaccumulating anthropogenic sources of metals found in soils from three contaminated sites. A trial was conducted using the previously reported hyperaccumulators, Armeria maritima (thrift), Impatiens balsamina (balsam), Alyssum saxatile (gold dust), and the control species, Brassica oleracea (cabbage). Although none of these plants showed any substantial hyperaccumulation of Cu, Zn, Pb, and Cd, it was established that there is an optimum period in the life-cycle of these plants in which the metal concentration reaches a maximum. This period was dependent on the metal, soil, and plant type. The current paper describes the data obtained for Zn and Cu uptake by thrift.

  5. Tolerant mechanisms of Rorippa globosa (Turcz.) Thell. hyperaccumulating Cd explored from root morphology.

    PubMed

    Wei, Shuhe; Li, Yunmeng; Zhan, Jie; Wang, Shanshan; Zhu, Jiangong

    2012-08-01

    Hoagland solution was used to determine the root morphology properties of Rorippa globosa (Turcz.) Thell. and Rorippa palustris (Leyss.) Bess. Under the conditions of Cd spiked at 2.5 and 5 mg kg(-1), R. globosa showed all hyperaccumulative characteristics and was a Cd-hyperaccumulator. In contrast, R. palustris was a non-hyperaccumulator. The total root lengths, total root surface areas and total root volumes of R. globosa were not significantly decreased (p<0.05) compared to the control when 2.5 and 5 mg kg(-1) of Cd added. However, these 3 indexes of R. palustris were all significantly decreased (p<0.05) when 2.5, 5, 10, 20 and 40 mg kg(-1) Cd added compared its control. The average root diameters of R. palustris and R. globosa were not affected by Cd. These results showed that root morphology might be a factor of plant with strong tolerance to Cd. PMID:22717563

  6. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.).

    PubMed

    Sedbrook, John C; Phippen, Winthrop B; Marks, M David

    2014-10-01

    Oilseed crops are sources of oils and seed meal having a multitude of uses. While the domestication of soybean and rapeseed took extended periods of time, new genome-based techniques have ushered in an era where crop domestication can occur rapidly. One attractive target for rapid domestication is the winter annual plant Field Pennycress (Thlaspi arvense L.; pennycress; Brassicaceae). Pennycress grows widespread throughout temperate regions of the world and could serve as a winter oilseed-producing cover crop. If grown throughout the USA Midwest Corn Belt, for example, pennycress could produce as much as 840L/ha oils and 1470kg/ha press-cake annually on 16 million hectares of farmland currently left fallow during the fall through spring months. However, wild pennycress strains have inconsistent germination and stand establishment, un-optimized maturity for a given growth zone, suboptimal oils and meal quality for biofuels and food production, and significant harvest loss due to pod shatter. In this review, we describe the virtues and current shortcomings of pennycress and discuss how knowledge from studying Arabidopsis thaliana and other Brassicas, in combination with the advent of affordable next generation sequencing, can bring about the rapid domestication and improvement of pennycress and other crops. PMID:25219314

  7. Phylogeography of Thlaspi arvense (Brassicaceae) in China Inferred from Chloroplast and Nuclear DNA Sequences and Ecological Niche Modeling

    PubMed Central

    An, Miao; Zeng, Liyan; Zhang, Ticao; Zhong, Yang

    2015-01-01

    Thlaspi arvense is a well-known annual farmland weed with worldwide distribution, which can be found from sea level to above 4000 m high on the Qinghai-Tibetan Plateau (QTP). In this paper, a phylogeographic history of T. arvense including 19 populations from China was inferred by using three chloroplast (cp) DNA segments (trnL-trnF, rpl32-trnL and rps16) and one nuclear (n) DNA segment (Fe-regulated transporter-like protein, ZIP). A total of 11 chloroplast haplotypes and six nuclear alleles were identified, and haplotypes unique to the QTP were recognized (C4, C5, C7 and N4). On the basis of molecular dating, haplotypes C4, C5 and C7 have separated from others around 1.58 Ma for cpDNA, which corresponds to the QTP uplift. In addition, this article suggests that the T. arvense populations in China are a mixture of diverged subpopulations as inferred by hT/vT test (hT ≤ vT, cpDNA) and positive Tajima’s D values (1.87, 0.05 < p < 0.10 for cpDNA and 3.37, p < 0.01 for nDNA). Multimodality mismatch distribution curves and a relatively large shared area of suitable environmental conditions between the Last Glacial Maximum (LGM) as well as the present time recognized by MaxEnt software reject the sudden expansion population model. PMID:26110380

  8. The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens.

    PubMed

    Monsant, A C; Tang, C; Baker, A J M

    2008-10-01

    The phytoextraction of Zn may be improved by applying N fertilizers to increase the biomass and Zn content of shoots. Rhizosphere-pH change from uptake of different N forms will affect Zn phyto-availability in the rhizosphere and Zn phytoextraction. This glasshouse study examined the effect of N form on Zn phytoextraction by Thlaspi caerulescens (Prayon). The plants were grown in a Zn-contaminated soil (total Zn 250 mg kg-1 soil; pHwater 5.7) and supplied with (NH4)2SO4, Ca(NO3)2 or urea [(NH2)2CO]. The form was maintained by applying the nitrification inhibitor dicyandiamide. A biodegradable chelator ethylenediaminedisuccinic acid (EDDS) was included for comparison. The addition of N doubled the shoot biomass. The highest shoot Zn content occurred in the Ca(NO3)2 treatment and was associated with the highest rhizosphere pH. The lowest shoot dry weight occurred in the EDDS treatment. The Zn concentration in the shoots increased as the rhizosphere pH increased. A significant correlation occurred between Ca and Zn concentrations in the shoots. This study demonstrated that Ca(NO3)2 is a more effective treatment than , urea or EDDS for enhancing Zn phytoextraction in a mildly acidic soil. PMID:18752830

  9. A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop

    PubMed Central

    Dorn, Kevin M.; Fankhauser, Johnathon D.; Wyse, Donald L.; Marks, M. David

    2015-01-01

    Field pennycress (Thlaspi arvense L.) is being domesticated as a new winter cover crop and biofuel species for the Midwestern United States that can be double-cropped between corn and soybeans. A genome sequence will enable the use of new technologies to make improvements in pennycress. To generate a draft genome, a hybrid sequencing approach was used to generate 47 Gb of DNA sequencing reads from both the Illumina and PacBio platforms. These reads were used to assemble 6,768 genomic scaffolds. The draft genome was annotated using the MAKER pipeline, which identified 27,390 predicted protein-coding genes, with almost all of these predicted peptides having significant sequence similarity to Arabidopsis proteins. A comprehensive analysis of pennycress gene homologues involved in glucosinolate biosynthesis, metabolism, and transport pathways revealed high sequence conservation compared with other Brassicaceae species, and helps validate the assembly of the pennycress gene space in this draft genome. Additional comparative genomic analyses indicate that the knowledge gained from years of basic Brassicaceae research will serve as a powerful tool for identifying gene targets whose manipulation can be predicted to result in improvements for pennycress. PMID:25632110

  10. Phylogeography of Thlaspi arvense (Brassicaceae) in China Inferred from Chloroplast and Nuclear DNA Sequences and Ecological Niche Modeling.

    PubMed

    An, Miao; Zeng, Liyan; Zhang, Ticao; Zhong, Yang

    2015-01-01

    Thlaspi arvense is a well-known annual farmland weed with worldwide distribution, which can be found from sea level to above 4000 m high on the Qinghai-Tibetan Plateau (QTP). In this paper, a phylogeographic history of T. arvense including 19 populations from China was inferred by using three chloroplast (cp) DNA segments (trnL-trnF, rpl32-trnL and rps16) and one nuclear (n) DNA segment (Fe-regulated transporter-like protein, ZIP). A total of 11 chloroplast haplotypes and six nuclear alleles were identified, and haplotypes unique to the QTP were recognized (C4, C5, C7 and N4). On the basis of molecular dating, haplotypes C4, C5 and C7 have separated from others around 1.58 Ma for cpDNA, which corresponds to the QTP uplift. In addition, this article suggests that the T. arvense populations in China are a mixture of diverged subpopulations as inferred by hT/vT test (hT ? vT, cpDNA) and positive Tajima's D values (1.87, 0.05 < p < 0.10 for cpDNA and 3.37, p < 0.01 for nDNA). Multimodality mismatch distribution curves and a relatively large shared area of suitable environmental conditions between the Last Glacial Maximum (LGM) as well as the present time recognized by MaxEnt software reject the sudden expansion population model. PMID:26110380

  11. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.

    PubMed

    Gumz, Frauke; Krausze, Joern; Eisenschmidt, Daniela; Backenkhler, Anita; Barleben, Leif; Brandt, Wolfgang; Wittstock, Ute

    2015-09-01

    Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 . TaTFP crystallized as homodimer. Each monomer forms a six-blade ?-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants. PMID:26260516

  12. Herbicide Chlorsulfuron Decreases Assimilate Transport Out of Treated Leaves of Field Pennycress (Thlaspi arvense L.) Seedlings 1

    PubMed Central

    Bestman, Hank D.; Devine, Malcolm D.; Born, William H. Vanden

    1990-01-01

    Treatment of field pennycress (Thlaspi arvense L.) leaves with the herbicide chlorsulfuron resulted in a decrease in the export of assimilate. Twelve hours after a spot application of 1 microgram, assimilate translocation was 70% of that in control leaves. In excised leaves treated with chlorsulfuron the total amounts of sugars and free amino acids were 150 and 170%, respectively, of the amounts in control leaves, 30 hours after herbicide treatment. The amount of sucrose was 247% of that in control leaves. The increase in the concentration of sucrose in the chlorsulfuron-treated leaves, combined with the absence of an effect of chlorsulfuron on carbon dioxide fixation, suggests that the decrease in assimilate transport is not due to an effect on the synthesis of assimilates, but rather to an effect on their movement out of the leaves. Supplying branched-chain amino acids to the field pennycress seedlings prior to the application of chlorsulfuron prevented the occurrence of the effects described. Images Figure 4 Figure 5 PMID:16667637

  13. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?

    PubMed

    Rascio, Nicoletta; Navari-Izzo, Flavia

    2011-02-01

    The term "hyperaccumulator" describes a number of plants that belong to distantly related families, but share the ability to grow on metalliferous soils and to accumulate extraordinarily high amounts of heavy metals in the aerial organs, far in excess of the levels found in the majority of species, without suffering phytotoxic effects. Three basic hallmarks distinguish hyperaccumulators from related non-hyperaccumulating taxa: a strongly enhanced rate of heavy metal uptake, a faster root-to-shoot translocation and a greater ability to detoxify and sequester heavy metals in leaves. An interesting breakthrough that has emerged from comparative physiological and molecular analyses of hyperaccumulators and related non-hyperaccumulators is that most key steps of hyperaccumulation rely on different regulation and expression of genes found in both kinds of plants. In particular, a determinant role in driving the uptake, translocation to leaves and, finally, sequestration in vacuoles or cell walls of great amounts of heavy metals, is played in hyperaccumulators by constitutive overexpression of genes encoding transmembrane transporters, such as members of ZIP, HMA, MATE, YSL and MTP families. Among the hypotheses proposed to explain the function of hyperaccumulation, most evidence has supported the "elemental defence" hypothesis, which states that plants hyperaccumulate heavy metals as a defence mechanism against natural enemies, such as herbivores. According to the more recent hypothesis of "joint effects", heavy metals can operate in concert with organic defensive compounds leading to enhanced plant defence overall. Heavy metal contaminated soils pose an increasing problem to human and animal health. Using plants that hyperaccumulate specific metals in cleanup efforts appeared over the last 20 years. Metal accumulating species can be used for phytoremediation (removal of contaminant from soils) or phytomining (growing plants to harvest the metals). In addition, as many of the metals that can be hyperaccumulated are also essential nutrients, food fortification and phytoremediation might be considered two sides of the same coin. An overview of literature discussing the phytoremediation capacity of hyperaccumulators to clean up soils contaminated with heavy metals and the possibility of using these plants in phytomining is presented. PMID:21421358

  14. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants

    PubMed Central

    Jaffré, Tanguy; Pillon, Yohan; Thomine, Sébastien; Merlot, Sylvain

    2013-01-01

    While an excess of metals such as zinc, cadmium or nickel (Ni) is toxic for most plants, about 500 plant species called hyperaccumulators are able to accumulate high amounts of these metals. These plants and the underlying mechanisms are receiving an increasing interest because of their potential use in sustainable biotechnologies such as biofortification, phytoremediation, and phytomining. Among hyperaccumulators, about 400 species scattered in 40 families accumulate Ni. Despite this wide diversity, our current knowledge of the mechanisms involved in Ni accumulation is still limited and mostly restricted to temperate herbaceous Brassicaceae. New Caledonia is an archipelago of the tropical southwest pacific with a third of its surface (5500 km2) covered by Ni-rich soils originating from ultramafic rocks. The rich New Caledonia flora contains 2145 species adapted to these soils, among which 65 are Ni hyperaccumulators, including lianas, shrubs or trees, mostly belonging to the orders Celastrales, Oxalidales, Malpighiales, and Gentianales. We present here our current knowledge on Ni hyperaccumulators from New Caledonia and the latest molecular studies developed to better understand the mechanisms of Ni accumulation in these plants. PMID:23898341

  15. Organic acids rather than histidine predominate in Ni chelation in Alyssum hyperaccumulator xylem exudate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of Ni uptake mechanisms by hyperaccumulator plants is necessary to improve Ni uptake efficiency for phytoremediation technologies i.e. phytomining. It is known that an important aspect of Ni translocation involves Ni chelation with organic ligands. However, it is still not cle...

  16. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources.

    PubMed

    Grison, Claire M; Mazel, Marine; Sellini, Amandine; Escande, Vincent; Biton, Jacques; Grison, Claude

    2015-04-01

    Anthyllis vulneraria was highlighted here as a Zn-hyperaccumulator for the development of a pilot phytoextraction process in the mine site of Les Avinières in the district of Saint-Laurent-Le-Minier. A. vulneraria appeared to hyperaccumulate the highest concentration of Zn in shoots with a better metal selectivity relative to Cd and Pb than the reference Zn-hyperaccumulator Noccea caerulescens. A bigger biomass production associated to a higher Zn concentration conducted A. vulneraria to the highest total zinc gain per hectare per year. As a legume, A. vulneraria was infected by rhizobia symbionts. Inoculation of A. vulneraria seeds showed a positive impact on Zn hyperaccumulation. A large-scale culture process of symbiotic rhizobia of A. vulneraria was investigated and optimized to allow large-scale inoculation process. Contaminated shoots of A. vulneraria were not considered as wastes and were recovered as Eco-Zn catalyst in particular, examples of organic synthesis, electrophilic aromatic substitution. Eco-Zn catalyst was much more efficient than conventional catalysts and allowed greener chemical processes. PMID:25253057

  17. The Metal Hyperaccumulator Alyssum murale Uses Nitrogen and Oxygen Donor Ligands for Ni Transport and Storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Kotodesh genotype of the nickel (Ni) hyperaccumulator Alyssum murale was examined to determine the compartmentalization and internal speciation of Ni, and other elements, in an effort to ascertain the mechanism used by this plant to tolerate extremely high shoot Ni concentrations. Plants were g...

  18. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, Helen N; Eyles, Chris J; Bennett, Mark H; Smith, J Andrew C; Preston, Gail M

    2013-09-01

    The metal hyperaccumulator plant Noccaea caerulescens is protected from disease by the accumulation of high concentrations of metals in its aerial tissues, which are toxic to many pathogens. As these metals can lead to the production of damaging reactive oxygen species (ROS), metal hyperaccumulator plants have developed highly effective ROS tolerance mechanisms, which might quench ROS-based signals. We therefore investigated whether metal accumulation alters defence signalling via ROS in this plant. We studied the effect of zinc (Zn) accumulation by N. caerulescens on pathogen-induced ROS production, salicylic acid accumulation and downstream defence responses, such as callose deposition and pathogenesis-related (PR) gene expression, to the bacterial pathogen Pseudomonas syringae pv. maculicola. The accumulation of Zn caused increased superoxide production in N. caerulescens, but inoculation with P. syringae did not elicit the defensive oxidative burst typical of most plants. Defences dependent on signalling through ROS (callose and PR gene expression) were also modified or absent in N. caerulescens, whereas salicylic acid production in response to infection was retained. These observations suggest that metal hyperaccumulation is incompatible with defence signalling through ROS and that, as metal hyperaccumulation became effective as a form of elemental defence, normal defence responses became progressively uncoupled from ROS signalling in N. caerulescens. PMID:23758201

  19. Hyperaccumulator Alyssum Murale Relies on a Different Metal Storage Mechanism for Cobalt than for Nickel.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nickel hyperaccumulator Alyssum murale has been developed as a commercial crop for phytoremediation/phytomining Ni-enriched soils (anthropogenic/geogenic) containing elevated concentrations of other metals. Metal co-tolerance, accumulation, and localization were investigated for Alyssum exposed to c...

  20. High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants.

    PubMed

    Xie, Bo; Stessman, Dan; Hart, Jason H; Dong, Haili; Wang, Yingjun; Wright, David A; Nikolau, Basil J; Spalding, Martin H; Halverson, Larry J

    2014-09-01

    The genetically tractable microalga Chlamydomonas reinhardtii has many advantages as a model for renewable bioproducts and/or biofuels production. However, one limitation of C.reinhardtii is its relatively low-lipid content compared with some other algal species. To overcome this limitation, we combined ethane methyl sulfonate mutagenesis with fluorescence-activated cell sorting (FACS) of cells stained with the lipophilic stain Nile Red to isolate lipid hyperaccumulating mutants of C.reinhardtii. By manipulating the FACS gates, we sorted mutagenized cells with extremely high Nile Red fluorescence signals that were rarely detected in nonmutagenized populations. This strategy successfully isolated several putative lipid hyperaccumulating mutants exhibiting 23% to 58% (dry weight basis) higher fatty acid contents than their progenitor strains. Significantly, for most mutants, nitrogen starvation was not required to attain high-lipid content nor was there a requirement for a deficiency in starch accumulation. Microscopy of Nile Red stained cells revealed that some mutants exhibit an increase in the number of lipid bodies, which correlated with TLC analysis of triacyglycerol content. Increased lipid content could also arise through increased biomass production. Collectively, our findings highlight the ability to enhance intracellular lipid accumulation in algae using random mutagenesis in conjunction with a robust FACS and lipid yield verification regime. Our lipid hyperaccumulating mutants could serve as a genetic resource for stacking additional desirable traits to further increase lipid production and for identifying genes contributing to lipid hyperaccumulation, without lengthy lipid-induction periods. PMID:24702864

  1. Transcriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance

    PubMed Central

    Yang, Xiaoe; Liu, Jian-Xiang

    2013-01-01

    The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE) shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE) shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≧2.0) and down-regulated (Fold Change ≦0.5) by chronic Cd treatment in S. alfredii Hance (HE) at q-value cutoff of 0.005, respectively. Quantitative RT-PCR was employed to compare gene expression patterns between S. alfredii Hance (HE) and non-hyperaccumulating ecotype (NHE). Our results demonstrated that several genes involved in cell wall modification, metal translocation and remobilization were more induced or constitutively expressed at higher levels in HE shoots than that in NHE shoots in response to Cd exposure. Together, our study provides large-scale expressed sequence information and genome-wide transcriptome profiling of Cd responses in S. alfredii Hance (HE) shoots. PMID:23755133

  2. Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode.

    PubMed

    Jhee, Edward M; Boyd, Robert S; Eubanks, Micky D

    2005-11-01

    No study of a single nickel (Ni) hyperaccumulator species has investigated the impact of hyperaccumulation on herbivores representing a variety of feeding modes. Streptanthus polygaloides plants were grown on high- or low-Ni soils and a series of no-choice and choice feeding experiments was conducted using eight arthropod herbivores. Herbivores used were two leaf-chewing folivores (the grasshopper Melanoplus femurrubrum and the lepidopteran Evergestis rimosalis), a dipteran rhizovore (the cabbage maggot Delia radicum), a xylem-feeder (the spittlebug Philaenus spumarius), two phloem-feeders (the aphid, Lipaphis erysimi and the spidermite Trialeurodes vaporariorum) and two cell-disruptors (the bug Lygus lineolaris and the whitefly Tetranychus urticae). Hyperaccumulated Ni significantly decreased survival of the leaf-chewers and rhizovore, and significantly reduced population growth of the whitefly cell-disruptor. However, vascular tissue-feeding insects were unaffected by hyperaccumulated Ni, as was the bug cell-disruptor. We conclude that Ni can defend against tissue-chewing herbivores but is ineffective against vascular tissue-feeding herbivores. The effects of Ni on cell-disruptors varies, as a result of either variation of insect Ni sensitivity or the location of Ni in S. polygaloides cells and tissues. PMID:16219073

  3. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants.

    PubMed

    Jaffré, Tanguy; Pillon, Yohan; Thomine, Sébastien; Merlot, Sylvain

    2013-01-01

    While an excess of metals such as zinc, cadmium or nickel (Ni) is toxic for most plants, about 500 plant species called hyperaccumulators are able to accumulate high amounts of these metals. These plants and the underlying mechanisms are receiving an increasing interest because of their potential use in sustainable biotechnologies such as biofortification, phytoremediation, and phytomining. Among hyperaccumulators, about 400 species scattered in 40 families accumulate Ni. Despite this wide diversity, our current knowledge of the mechanisms involved in Ni accumulation is still limited and mostly restricted to temperate herbaceous Brassicaceae. New Caledonia is an archipelago of the tropical southwest pacific with a third of its surface (5500 km(2)) covered by Ni-rich soils originating from ultramafic rocks. The rich New Caledonia flora contains 2145 species adapted to these soils, among which 65 are Ni hyperaccumulators, including lianas, shrubs or trees, mostly belonging to the orders Celastrales, Oxalidales, Malpighiales, and Gentianales. We present here our current knowledge on Ni hyperaccumulators from New Caledonia and the latest molecular studies developed to better understand the mechanisms of Ni accumulation in these plants. PMID:23898341

  4. SPECTROMICROSCOPIC INVESTIGATION OF CO SPECIATION IN A NI/CO HYPERACCUMULATOR PLANT USED FOR PHYTOREMEDIATION AND PHYTOMINING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metal contamination of surface and subsurface environments is a worldwide concern. Unique metallophyte plants (hyperaccumulators) accumulate high concentrations of trace metals in their harvestable biomass, and thereby offer a sustainable method for treatment of metal-contaminated sites (phytoremed...

  5. Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Wang, S. L.; Liao, W. B.; Yu, F. Q.; Liao, B.; Shu, W. S.

    2009-08-01

    A field survey was conducted to identify potential hyperaccumulators of Pb, Zn or Cd in the Beichang Pb/Zn mine outcrop in Yunnan Province, China. The average total concentrations of Pb, Zn, and Cd in the soils were up to 28,438, 5,109, and 52 mg kg-1, respectively. A total of 68 plant species belonging to 60 genera of 37 families naturally colonizing the outcrop were recorded. According to metal accumulation in the plants and translocation factor (TF), Silene viscidula was identified as potential hyperaccumulator of Pb, Zn, and Cd with mean shoot concentrations of 3,938 mg kg-1 of Pb (TF = 1.2), 11,155 mg kg-1 of Zn (TF = 1.8) and 236 mg kg-1 of Cd (TF = 1.1), respectively; S. gracilicanlis (Pb 3,617 mg kg-1, TF = 1.2) and Onosma paniculatum (Pb 1,837 mg kg-1, TF = 1.9) were potential Pb hyperaccumulators. Potentilla griffithii (Zn 8,748 mg kg-1, TF = 1.5) and Gentiana sp. (Zn 19,710 mg kg-1, TF = 2.7) were potential Zn hyperaccumulators. Lysimachia deltoides (Cd 212 mg kg-1, TF = 3.2) was a potential Cd hyperaccumulator. These new plant resources could be used to explore the mechanisms of Pb, Zn and/or Cd hyperaccumulation, and the findings could be applied for the phytoremediation of Pb, Zn and/or Cd-contaminated soils.

  6. Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines

    PubMed Central

    Fernando, Edwino S.; Quimado, Marilyn O.; Doronila, Augustine I.

    2014-01-01

    Abstract A new, nickel-hyperaccumulating species of Rinorea (Violaceae), Rinorea niccolifera Fernando, from Luzon Island, Philippines, is described and illustrated. This species is most similar to the widespread Rinorea bengalensis by its fasciculate inflorescences and smooth subglobose fruits with 3 seeds, but it differs by its glabrous ovary with shorter style (5 mm long), the summit of the staminal tube sinuate to entire and the outer surface smooth, generally smaller leaves (3–8 cm long × 2–3 cm wide), and smaller fruits (0.6–0.8 cm diameter). Rinorea niccolifera accumulates to >18,000 µg g-1 of nickel in its leaf tissues and is thus regarded as a Ni hyperaccumulator. PMID:24843295

  7. Selection and combustion of Ni-hyperaccumulators for the phytomining process.

    PubMed

    Zhang, Xin; Houzelot, Vivian; Bani, Aida; Morel, Jean Louis; Echevarria, Guillaume; Simonnot, Marie-Odile

    2014-01-01

    Ni recovery from serpentine soils by phytomining has proved feasible. Phytomining involves the crop of hyperaccumulating plants with high Ni contents and the valorization of Ni by pyro or hydrometallurgical process. In order to evaluate the Ni content of different plants, we analyzed the organs of 14 hyperaccumulators from three genera: Alyssum, Leptoplax and Bornmuellera. The highest concentration was recorded in the leaves of Leptoplax (34.3 +/- 0.7 mg g(-1)DM). Additionally, we investigated biomass combustion which is the first step of the process we designed to obtain a nickel salt. We showed that temperature and duration were important parameters to ensure a good quality of ashes. At the bench scale, the best conditions were 550 degrees C and 3 h. In this way, we obtained ashes in which Ni could reach 20 wt%. Biomass ashes can be considered as a bio-ore for recovering metal value. PMID:24933902

  8. A Ni hyperaccumulator and a congeneric non-accumulator reveal equally effective defenses against herbivory.

    PubMed

    Vilas Boas, Liliana; Gonçalves, Susana C; Portugal, António; Freitas, Helena; Gonçalves, M Teresa

    2014-01-01

    The defense hypothesis is commonly used to explain the adaptive role of metal hyperaccumulation. We tested this hypothesis using two Brassicaceae congeneric species: Alyssum pintodasilvae, a Ni hyperaccumulator, and the non-accumulator Alyssum simplex both growing on serpentine soils in Portugal. Artificial diet disks amended with powdered leaves from each plant species were used to compare the performance (mortality, biomass change) and feeding behavior of Tribolium castaneum in no-choice and choice tests. The performance of T. castaneum was not affected at several concentrations of A. pintodasilvae or A. simplex in no-choice tests. However, the consumption of plant-amended disks was significantly lower than that of control disks, irrespectively of the species fed. Accordingly, when insects were given an alternative food choice, disks of both plant species were significantly less consumed than control disks. Moreover, insects did not discriminate between disks in the combination "A. pintodasilvae+A. simplex". Contrary to our expectations, these results suggest that both plant species have equally effective defenses against herbivory. While Ni is believed to be part of the deterrence mechanism in the hyperaccumulator A. pintodasilvae, it seems likely that organic compounds, possibly glucosinolates, play an important role in the defense of A. simplex or in both species. PMID:23892018

  9. Hyperaccumulator Alyssum murale Relies on a Different Metal Storage Mechanism for Cobalt than for Nickel

    SciTech Connect

    Tappero, R.; Peltier, E; Grafe, M; Heidel, K; Ginder-Vogel, M; Livi, K; Rivers, M; Marcus, M; Chaney, R; Sparks, D

    2007-01-01

    The nickel (Ni) hyperaccumulator Alyssum murale has been developed as a commercial crop for phytoremediation/phytomining Ni from metal-enriched soils. Here, metal co-tolerance, accumulation and localization were investigated for A. murale exposed to metal co-contaminants. A. murale was irrigated with Ni-enriched nutrient solutions containing basal or elevated concentrations of cobalt (Co) or zinc (Zn). Metal localization and elemental associations were investigated in situ with synchrotron X-ray microfluorescence (SXRF) and computed-microtomography (CMT). A. murale hyperaccumulated Ni and Co (> 1000 {micro}g g{sup -1} dry weight) from mixed-metal systems. Zinc was not hyperaccumulated. Elevated Co or Zn concentrations did not alter Ni accumulation or localization. SXRF images showed uniform Ni distribution in leaves and preferential localization of Co near leaf tips/margins. CMT images revealed that leaf epidermal tissue was enriched with Ni but devoid of Co, that Co was localized in the apoplasm of leaf ground tissue and that Co was sequestered on leaf surfaces near the tips/margins. Cobalt-rich mineral precipitate(s) form on leaves of Co-treated A. murale. Specialized biochemical processes linked with Ni (hyper)tolerance in A. murale do not confer (hyper)tolerance to Co. A. murale relies on a different metal storage mechanism for Co (exocellular sequestration) than for Ni (vacuolar sequestration).

  10. Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn-hyperaccumulating plant species.

    PubMed

    Liu, Jie; Shang, Weiwei; Zhang, Xuehong; Zhu, Yinian; Yu, Ke

    2014-02-28

    Identifying a hyperaccumulator is an important groundwork for the phytoextraction of heavy metal-contaminated soil. Celosia argentea Linn., which grew on a Mn tailing wasteland, was found to hyperaccumulate Mn (14 362mgkg(-1) in leaf dry matter) in this study. To investigate Mn tolerance and accumulation in C. argentea, a hydroponic culture experiment was conducted in a greenhouse. Results showed that the biomass and the relative growth rate of C. argentea were insignificantly different (p>0.05) at the Mn supply level ranging from 2.5mgL(-1) (control) to 400mgL(-1). Manganese concentrations in leaves, stems, and roots reached maxima of 20228, 8872, and 2823mgkg(-1) at 600mgMnL(-1), respectively. The relative rate of Mn accumulation increased by 91.2% at 400mgMnL(-1). Over 95% of the total Mn taken up by C. argentea was translocated to shoots. Thus, C. argentea exhibits the basic characteristics of a Mn-hyperaccumulator. This species has great potential to remediate Mn-contaminated soil cheaply and can also aid the studies of Mn uptake, translocation, speciation, distribution and detoxification in plants. PMID:24444455

  11. Thermal Characteristics of Hyperaccumulator and Fate of Heavy Metals during Thermal Treatment of Sedum plumbizincicola.

    PubMed

    Zhong, Daoxu; Zhong, Zhaoping; Wu, Longhua; Xue, Hui; Song, Zuwei; Luo, Yongming

    2015-01-01

    Thermal treatment is one of the most promising disposal techniques for heavy metal- (HM)-enriched hyperaccumulators. However, the thermal characteristics and fate of HMs during thermal treatment of hyperaccumulator biomass need to be known in detail. A horizontal tube furnace was used to analyze the disposal process of hyperaccumulator biomass derived from a phyto-extracted field in which the soil was moderately contaminated with heavy metals. Different operational conditions regarding temperature and gas composition were tested. A thermo-dynamic analysis by advanced system for process engineering was performed to predict HM speciation during thermal disposal and SEM-EDS, XRD and sequential chemical extraction were used to characterize the heavy metals. The recovery of Zn, Pb and Cd in bottom ash decreased with increasing temperature but recovery increased in the fly ash. Recovery of Zn, Pb and Cd fluctuated with increasing air flow rate and the metal recovery rates were higher in the fly ash than the bottom ash. Most Cl, S, Fe, Al and SiO2 were found as alkali oxides, SO2, Fe2(SO4)3, iron oxide, Ca3Al2O6, K2SiO3 and SiO2 instead of reacting with HMs. Thus, the HMs were found to occur as the pure metals and their oxides during the combustion process and as the sulfides during the reducing process. PMID:26030364

  12. A more complete picture of metal hyperaccumulation through next-generation sequencing technologies

    PubMed Central

    Verbruggen, Nathalie; Hanikenne, Marc; Clemens, Stephan

    2013-01-01

    The mechanistic understanding of metal hyperaccumulation has benefitted immensely from the use of molecular genetics tools developed for Arabidopsis thaliana. The revolution in DNA sequencing will enable even greater strides in the near future, this time not restricted to the family Brassicaceae. Reference genomes are within reach for many ecologically interesting species including heterozygous outbreeders. They will allow deep RNA-seq transcriptome studies and the re-sequencing of contrasting individuals to unravel the genetic basis of phenotypic variation. Cell-type specific transcriptome analyses, which will be essential for the dissection of metal translocation pathways in hyperaccumulators, can be achieved through the combination of RNA-seq and translatome approaches. Affordable high-resolution genotyping of many individuals enables the elucidation of quantitative trait loci in intra- and interspecific crosses as well as through genome-wide association mapping across large panels of accessions. Furthermore, genome-wide scans have the power to detect loci under recent selection. Together these approaches will lead to a detailed understanding of the evolutionary path towards the emergence of hyperaccumulation traits. PMID:24098304

  13. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, H N; McCurrach, H; Mithani, A; Smith, J A C; Preston, G M

    2016-05-11

    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant-pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. PMID:27170725

  14. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Zn/Cd hyperaccumulator, Noccaea caerulescens, has been studied extensively for its ability to accumulate Zn and Cd in its leaves to extremely high levels. Previous studies have indicated that the Zn and Cd hyperaccumulation trait exhibited by this species involves different transport and toleran...

  15. Extraction of labeled metabolites following exogenous application of /sup 14/C GA/sub 12/ to the apices of the Thlaspi arvense L

    SciTech Connect

    Hazebroek, J.; Metzger, J.

    1987-04-01

    Flowering in the winter annual field pennycress (Thlaspi arvense L.) is induced by exposure to low temperature (4/sup 0/C). /sup 14/C GA/sub 12/ was applied externally to the apices of two thermoinduced and two control plants. After incubation for 2 days at 21/sup 0/C, the plants were harvested, and a 2-cm apical section and the remainder of each plant were analyzed separately for the presence of radiolabeled metabolites. More radioactivity was found in the acidic ethyl acetate fraction from an extract of the apices of induced plants than that of noninduced plants. Conversely, the fraction prepared from the rest of the induced plant tissue was less radioactive than the noninduced sample. Gradient-eluted reverse phase HPLC of the samples revealed labeled compounds that co-chromatographed with several endogenous gibberellins.

  16. Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator.

    PubMed

    Leung, H M; Wu, F Y; Cheung, K C; Ye, Z H; Wong, M H

    2010-09-15

    The effects of arbuscular mycorrhizal (AM) fungi and phosphate rock on the phytorextraction efficiency of a hyperaccumulator (Pteris vittata) and a non-hyperaccumulator (Cynodon dactylon) plant were studied. Both seedlings were planted in As contaminated soil under different treatments [(1) control (contaminated soil only), (2) indigenous mycorrhizas (IM), (3) mixed AM inoculum [indigenous mycorrhiza + Glomus mosseae (IM/Gm)] and (4) IM/Gm + phosphate rock (P rock)] with varying intensities (40%, 70% and 100%) of water moisture content (WMC). Significant As reduction in soil (23.8% of soil As reduction), increase in plant biomass (17.8 g/pot) and As accumulation (2054 mg/kg DW) were observed for P. vittata treated with IM/Gm + PR at 100% WMC level. The overall results indicated that the synergistic effect of mycorrhiza and P rock affected As subcellular distribution of the hyperaccumulator and thereby altered its As removal efficiency under well-watered conditions. PMID:20541316

  17. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties.

    PubMed

    Sura-de Jong, Martina; Reynolds, Ray J B; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C; Chocholata, Iva; Cappa, Jennifer J; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T; Lovecka, Petra; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5-1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  18. Constitutively High Expression of the Histidine Biosynthetic Pathway Contributes to Nickel Tolerance in Hyperaccumulator PlantsW⃞

    PubMed Central

    Ingle, Robert A.; Mugford, Sam T.; Rees, Jonathan D.; Campbell, Malcolm M.; Smith, J. Andrew C.

    2005-01-01

    Plants that hyperaccumulate Ni exhibit an exceptional degree of Ni tolerance and the ability to translocate Ni in large amounts from root to shoot. In hyperaccumulator plants in the genus Alyssum, free His is an important Ni binding ligand that increases in the xylem proportionately to root Ni uptake. To determine the molecular basis of the His response and its contribution to Ni tolerance, transcripts representing seven of the eight enzymes involved in His biosynthesis were investigated in the hyperaccumulator species Alyssum lesbiacum by RNA gel blot analysis. None of the transcripts changed in abundance in either root or shoot tissue when plants were exposed to Ni, but transcript levels were constitutively higher in A. lesbiacum than in the congeneric nonaccumulator A. montanum, especially for the first enzyme in the biosynthetic pathway, ATP-phosphoribosyltransferase (ATP-PRT). Comparison with the weak hyperaccumulator A. serpyllifolium revealed a close correlation between Ni tolerance, root His concentration, and ATP-PRT transcript abundance. Overexpression of an A. lesbiacum ATP-PRT cDNA in transgenic Arabidopsis thaliana increased the pool of free His up to 15-fold in shoot tissue, without affecting the concentration of any other amino acid. His-overproducing lines also displayed elevated tolerance to Ni but did not exhibit increased Ni concentrations in either xylem sap or shoot tissue, suggesting that additional factors are necessary to recapitulate the complete hyperaccumulator phenotype. These results suggest that ATP-PRT expression plays a major role in regulating the pool of free His and contributes to the exceptional Ni tolerance of hyperaccumulator Alyssum species. PMID:15923352

  19. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties

    PubMed Central

    Sura-de Jong, Martina; Reynolds, Ray J. B.; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C.; Chocholata, Iva; Cappa, Jennifer J.; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T.; Lovecka, Petra; Pilon-Smits, Elizabeth A. H.

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5–1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  20. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance*

    PubMed Central

    Xing, Yan; Peng, Hong-yun; Li, Xia; Zhang, Meng-xi; Gao, Ling-ling; Yang, Xiao-e

    2012-01-01

    The active metabolite in the post-harvested biomass of zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China. The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S. alfredii biomass by means of sonication/ethanol extraction and macroporous resin column (AB-8 type) isolation. The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards. PMID:23024051

  1. Molecular Mechanisms of Selenium Tolerance and Hyperaccumulation in Stanleya pinnata1[W][OA

    PubMed Central

    Freeman, John L.; Tamaoki, Masanori; Stushnoff, Cecil; Quinn, Colin F.; Cappa, Jennifer J.; Devonshire, Jean; Fakra, Sirine C.; Marcus, Matthew A.; McGrath, Steve P.; Van Hoewyk, Doug; Pilon-Smits, Elizabeth A.H.

    2010-01-01

    The molecular mechanisms responsible for selenium (Se) tolerance and hyperaccumulation were studied in the Se hyperaccumulator Stanleya pinnata (Brassicaceae) by comparing it with the related secondary Se accumulator Stanleya albescens using a combination of physiological, structural, genomic, and biochemical approaches. S. pinnata accumulated 3.6-fold more Se and was tolerant to 20 μm selenate, while S. albescens suffered reduced growth, chlorosis and necrosis, impaired photosynthesis, and high levels of reactive oxygen species. Levels of ascorbic acid, glutathione, total sulfur, and nonprotein thiols were higher in S. pinnata, suggesting that Se tolerance may in part be due to increased antioxidants and up-regulated sulfur assimilation. S. pinnata had higher selenocysteine methyltransferase protein levels and, judged from liquid chromatography-mass spectrometry, mainly accumulated the free amino acid methylselenocysteine, while S. albescens accumulated mainly the free amino acid selenocystathionine. S. albescens leaf x-ray absorption near-edge structure scans mainly detected a carbon-Se-carbon compound (presumably selenocystathionine) in addition to some selenocysteine and selenate. Thus, S. albescens may accumulate more toxic forms of Se in its leaves than S. pinnata. The species also showed different leaf Se sequestration patterns: while S. albescens showed a diffuse pattern, S. pinnata sequestered Se in localized epidermal cell clusters along leaf margins and tips, concentrated inside of epidermal cells. Transcript analyses of S. pinnata showed a constitutively higher expression of genes involved in sulfur assimilation, antioxidant activities, defense, and response to (methyl)jasmonic acid, salicylic acid, or ethylene. The levels of some of these hormones were constitutively elevated in S. pinnata compared with S. albescens, and leaf Se accumulation was slightly enhanced in both species when these hormones were supplied. Thus, defense-related phytohormones may play an important signaling role in the Se hyperaccumulation of S. pinnata, perhaps by constitutively up-regulating sulfur/Se assimilation followed by methylation of selenocysteine and the targeted sequestration of methylselenocysteine. PMID:20498337

  2. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens

    PubMed Central

    Visioli, Giovanna; Vamerali, Teofilo; Mattarozzi, Monica; Dramis, Lucia; Sanangelantoni, Anna M.

    2015-01-01

    This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM) and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest indole acetic acid production and 1-aminocyclopropane-1-carboxylic acid-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal, and translocation of Ni, together with that of Fe, Co, and Cu. Bacteria of both strains densely colonized the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass, and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials in multiple metal-contaminated sites, with possible extension to non-hyperaccumulator plants. PMID:26322074

  3. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    PubMed Central

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-01-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of −0.70‰ to −0.22‰ in Ricinus communis and −0.51‰ to −0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology. PMID:27076359

  4. Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo.

    PubMed

    Mesjasz-Przybylowicz, Jolanta; Przybylowicz, Wojciech; Barnabas, Alban; van der Ent, Antony

    2016-03-01

    Phyllanthus balgooyi (Phyllanthaceae), one of > 20 nickel (Ni) hyperaccumulator plant species known in Sabah (Malaysia) on the island of Borneo, is remarkable because it contains > 16 wt% Ni in its phloem sap, the second highest concentration of Ni in any living material in the world (after Pycnandra acuminata (Sapotaceae) from New Caledonia with 25 wt% Ni in latex). This study focused on the tissue-level distribution of Ni and other elements in the leaves, petioles and stem of P. balgooyi using nuclear microprobe imaging (micro-PIXE). The results show that in the stems and petioles of P. balgooyi Ni concentrations were very high in the phloem, while in the leaves there was significant enrichment of this element in the major vascular bundles. In the leaves, cobalt (Co) was codistributed with Ni, while the distribution of manganese (Mn) was different. The highest enrichment of calcium (Ca) in the stems was in the periderm, the epidermis and subepidermis of the petiole, and in the palisade mesophyll of the leaf. Preferential accumulation of Ni in the vascular tracts suggests that Ni is present in a metabolically active form. The elemental distribution of P. balgooyi differs from those of many other Ni hyperaccumulator plant species from around the world where Ni is preferentially accumulated in leaf epidermal cells. PMID:26508435

  5. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum.

    PubMed

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-01-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ(114/110)Cdorgans-solution) of -0.70‰ to -0.22‰ in Ricinus communis and -0.51‰ to -0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology. PMID:27076359

  6. Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species Sedum alfredii

    SciTech Connect

    Tian, Shengke; Lu, Lingli; Labavitch, John M.; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick Hugh

    2012-07-23

    Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 {micro}g g{sup -1} were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii.

  7. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants.

    PubMed

    Álvarez-López, V; Prieto-Fernández, Á; Cabello-Conejo, M I; Kidd, P S

    2016-04-01

    Ni phytomining is a promising technology for Ni recovery from low-grade ores such as ultramafic soils. Metal-hyperaccumulators are good candidates for phytomining due to their extraordinary capacity for Ni accumulation. However, many of these plants produce a low biomass, which makes the use of agronomic techniques for improving their growth necessary. In this study, the Ni hyperaccumulators Alyssum serpyllifolium ssp. lusitanicum, A. serpyllifolium ssp. malacitanum, Alyssum bertolonii and Noccaea goesingense were evaluated for their Ni phytoextraction efficiency from a Ni-rich serpentine soil. Effects of soil inorganic fertilisation (100:100:125kgNPKha(-1)) and soil organic amendment addition (2.5, 5 or 10% compost) on plant growth and Ni accumulation were determined. All soil treatments greatly improved plant growth, but the highest biomass production was generally found after addition of 2.5 or 5% compost (w/w). The most pronounced beneficial effects were observed for N. goesingense. Total Ni phytoextracted from soils was significantly improved using both soil treatments (inorganic and organic), despite the decrease observed in soil Ni availability and shoot Ni concentrations in compost-amended soils. The most promising results were found using intermediate amount of compost, indicating that these types of organic wastes can be incorporated into phytomining systems. PMID:26803735

  8. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    NASA Astrophysics Data System (ADS)

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-04-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of ‑0.70‰ to ‑0.22‰ in Ricinus communis and ‑0.51‰ to ‑0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology.

  9. HOST-SWITCHING DOES NOT CIRCUMVENT THE NI-BASED DEFENCE OF THE NI HYPERACCUMULATOR STREPTANTHUS POLYGALOIDES (BRASSICACEAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar concentration of heavy metals, such as nickel, may help defend metal --hyperaccumulating plants against both herbivores and pathogens. Host switching by generalist herbivores might be one strategy by which they can dilute lifetime consumption of toxic nickel. We examined the effects of host...

  10. Exogenous cytokinin treatments of a Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: Implications for phytoextraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of exogenous plant growth regulators was examined as a viable technique to increase the efficiency of plant metal phytoextraction from contaminated soils. The aim of this study was to investigate the alteration of Ni phytoextraction by Alyssum murale, a Ni hyperaccumulator, following the...

  11. Nickel and Manganese Accumulation, Interaction and Localization in Leaves of the Ni Hyperaccumulators Alyssum murale and Alyssum corsicum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Alyssum contains >50 Ni hyperaccumulator species; many can achieve 3% Ni in dry leaf. In soils with normal Mn levels, Alyssum trichome bases were observed previously to accumulate Ni and Mn to high levels. Here we report concentration and localization patterns in A. murale and A. corsicum...

  12. Do High-nickel Leaves Shed by the Ni-hyperaccumulator Alyssum Murale Inhibit Seed Germination of Competing Plants?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elemental allelopathy suggests that nickel (Ni)-rich leaves shed by hyperaccumulators inhibit the germination and growth of nearby plant species. Here, the germination of eight herbaceous species following addition of Alyssum murale biomass or Ni(NO3)2, with the same Ni level added to soil, was ass...

  13. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing Se content in food crops in Se-deficient regions of the world. In this study, we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with...

  14. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China

    NASA Astrophysics Data System (ADS)

    Cui, Shuang; Zhou, Qixing; Chao, Lei

    2007-01-01

    The absorption and accumulation of Pb, Zn, Cu and Cd in some endurant weed plant species that survived in an old smeltery in Liaoning, China, were systematically investigated. Potential hyperaccumulative characteristics of these species were also discussed. The results showed that metal accumulation in plants differed with species, tissues and metals. Endurant weed plants growing in this contaminated site exhibited high metal adaptability. Both the metal exclusion and detoxification tolerance strategies were involved in the species studied. Seven species for Pb and four species for Cd were satisfied for the concentration time level standard for hyperaccumulator. Considering translocation factor (TF) values, one species for Pb, seven species for Zn, two species for Cu and five species for Cd possessed the characteristic of hyperaccumulator. Particularly, Abutilon theophrasti Medic, exhibited strong accumulative ability to four heavy metals. Although enrichment coefficients of all samples were lesser than 1 and the absolute concentrations didn’t reach the standard, species mentioned above were primarily believed to be potential hyperaccumulators.

  15. Spatial Imaging, Speciation, and Quantification of Selenium in the Hyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata1

    PubMed Central

    Freeman, John L.; Zhang, Li Hong; Marcus, Matthew A.; Fakra, Sirine; McGrath, Steve P.; Pilon-Smits, Elizabeth A.H.

    2006-01-01

    Astragalus bisulcatus and Stanleya pinnata hyperaccumulate selenium (Se) up to 1% of plant dry weight. In the field, Se was mostly present in the young leaves and reproductive tissues of both hyperaccumulators. Microfocused scanning x-ray fluorescence mapping revealed that Se was hyperaccumulated in trichomes in young leaves of A. bisulcatus. None of 10 other elements tested were accumulated in trichomes. Micro x-ray absorption spectroscopy and liquid chromatography-mass spectrometry showed that Se in trichomes was present in the organic forms methylselenocysteine (MeSeCys; 53%) and γ-glutamyl-MeSeCys (47%). In the young leaf itself, there was 30% inorganic Se (selenate and selenite) in addition to 70% MeSeCys. In young S. pinnata leaves, Se was highly concentrated near the leaf edge and surface in globular structures that were shown by energy-dispersive x-ray microanalysis to be mainly in epidermal cells. Liquid chromatography-mass spectrometry revealed both MeSeCys (88%) and selenocystathionine (12%) inside leaf edges. In contrast, both the Se accumulator Brassica juncea and the nonaccumulator Arabidopsis thaliana accumulated Se in their leaf vascular tissues and mesophyll cells. Se in hyperaccumulators appears to be mobile in both the xylem and phloem because Se-treated S. pinnata was found to be highly toxic to phloem-feeding aphids, and MeSeCys was present in the vascular tissues of a S. pinnata young leaf petiole as well as in guttation fluid. The compartmentation of organic selenocompounds in specific storage areas in the plant periphery appears to be a unique property of Se hyperaccumulators. The high concentration of Se in the plant periphery may contribute to Se tolerance and may also serve as an elemental plant defense mechanism. PMID:16920881

  16. Spatial Imaging, Speciation, and Quantification of Selenium in theHyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata

    SciTech Connect

    Freeman, J.L.; Zhang, L.H.; Marcus, M.A.; Fakra, S.; McGrath,S.P.; Pilon-Smits, E.A.H.

    2006-09-01

    Astragalus bisulcatus and Stanleya pinnata hyperaccumulate selenium (Se) up to 1% of plant dry weight. In the field, Se was mostly present in the young leaves and reproductive tissues of both hyperaccumulators. Microfocused scanning x-ray fluorescence mapping revealed that Se was hyperaccumulated in trichomes in young leaves of A. bisulcatus. None of 10 other elements tested were accumulated in trichomes. Micro x-ray absorption spectroscopy and liquid chromatography-mass spectrometry showed that Se in trichomes was present in the organic forms methylselenocysteine (MeSeCys; 53%) and {gamma}-glutamyl-MeSeCys (47%). In the young leaf itself, there was 30% inorganic Se (selenate and selenite) in addition to 70% MeSeCys. In young S. pinnata leaves, Se was highly concentrated near the leaf edge and surface in globular structures that were shown by energy-dispersive x-ray microanalysis to be mainly in epidermal cells. Liquid chromatography-mass spectrometry revealed both MeSeCys (88%) and selenocystathionine (12%) inside leaf edges. In contrast, both the Se accumulator Brassica juncea and the nonaccumulator Arabidopsis thaliana accumulated Se in their leaf vascular tissues and mesophyll cells. Se in hyperaccumulators appears to be mobile in both the xylem and phloem because Se-treated S. pinnata was found to be highly toxic to phloem-feeding aphids, and MeSeCys was present in the vascular tissues of a S. pinnata young leaf petiole as well as in guttation fluid. The compartmentation of organic selenocompounds in specific storage areas in the plant periphery appears to be a unique property of Se hyperaccumulators. The high concentration of Se in the plant periphery may contribute to Se tolerance and may also serve as an elemental plant defense mechanism.

  17. Evaluation of hyperaccumulator plant species grown in metalliferous sites in Albania

    NASA Astrophysics Data System (ADS)

    Babani, F.; Civici, N.; Mullaj, A.; Kongjika, E.; Ylli, A.

    2007-04-01

    Heavy metal contamination of soils causes serious problems to our society. A small number of interesting plant species have been identified that can grow in soils containing high levels of heavy metals, and can also accumulate these metals to high concentrations in the shoot. The heavy metal contents in root, shoot, leaves and flowers of spontaneous plants grown in metalliferous sites in Albania together with the elemental composition of the native soils were determined by X-ray fluorescence spectrometry. Efficiency of photosynthetic apparatus of analyzed ecotypes was evaluated via chlorophyll fluorescence imaging during induction kinetics. Response of plant root system to the presence of metals, the available pools of metals to plants, effect of plant biomass to phytoextraction, photosynthetic pigment metabolism and chlorophyll fluorescence signature of leaves allowed to characterize hyperaccumulator properties and to detect the variation between selected ecotypes to heavy metal accumulation.

  18. Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L.

    PubMed

    Wan, Xiao-ming; Lei, Mei; Chen, Tong-bin; Yang, Jun-xing; Liu, Hong-tao; Chen, Yang

    2015-11-01

    Mechanisms of Pteris vittata L. to hyperaccumulate arsenic (As), especially the efficient translocation of As from rhizoids to fronds, are not clear yet. The present study aims to investigate the role of transpiration in the accumulation of As from the aspects of transpiration regulation and ecotypic difference. Results showed that As accumulation of P. vittata increased proportionally with an increase in the As exposure concentration. Lowering the transpiration rate by 28?67% decreased the shoot As concentration by 19?56%. Comparison of As distribution under normal treatment and shade treatment indicated that transpiration determines the distribution pattern of As in pinnae. In terms of the ecotypic difference, the P. vittata ecotype from moister and warmer habitat had 40% higher transpiration and correspondingly 40% higher shoot As concentration than the ecotype from drier and cooler habitat. Results disclosed that transpiration is the main driver for P. vittata to accumulate and re-distribute As in pinnae. PMID:26081771

  19. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. PMID:24675367

  20. A Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress

    PubMed Central

    Xie, Qingqing; Li, Zhenji; Yang, Limin; Lv, Jing; Jobe, Timothy O.; Wang, Qiuquan

    2015-01-01

    Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification. PMID:26327118

  1. A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens

    PubMed Central

    Lin, Ya-Fen; Severing, Edouard I.; te Lintel Hekkert, Bas; Schijlen, Elio; Aarts, Mark G. M.

    2014-01-01

    Noccaea caerulescens is an extremophile plant species belonging to the Brassicaceae family. It has adapted to grow on soils containing high, normally toxic, concentrations of metals such as nickel, zinc, and cadmium. Next to being extremely tolerant to these metals, it is one of the few species known to hyperaccumulate these metals to extremely high concentrations in their aboveground biomass. In order to provide additional molecular resources for this model metal hyperaccumulator species to study and understand the mechanism of adaptation to heavy metal exposure, we aimed to provide a comprehensive database of transcript sequences for N. caerulescens. In this study, 23,830 transcript sequences (isotigs) with an average length of 1025 bp were determined for roots, shoots and inflorescences of N. caerulescens accession “Ganges” by Roche GS-FLEX 454 pyrosequencing. These isotigs were grouped into 20,378 isogroups, representing potential genes. This is a large expansion of the existing N. caerulescens transcriptome set consisting of 3705 unigenes. When translated and compared to a Brassicaceae proteome set, 22,232 (93.2%) of the N. caerulescens isotigs (corresponding to 19,191 isogroups) had a significant match and could be annotated accordingly. Of the remaining sequences, 98 isotigs resembled non-plant sequences and 1386 had no significant similarity to any sequence in the GenBank database. Among the annotated set there were many isotigs with similarity to metal homeostasis genes or genes for glucosinolate biosynthesis. Only for transcripts similar to Metallothionein3 (MT3), clear evidence for an additional copy was found. This comprehensive set of transcripts is expected to further contribute to the discovery of mechanisms used by N. caerulescens to adapt to heavy metal exposure. PMID:24999345

  2. Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply

    PubMed Central

    Barabasz, Anna; Krämer, Ute; Hanikenne, Marc; Rudzka, Justyna; Antosiewicz, Danuta Maria

    2010-01-01

    Engineering enhanced transport of zinc to the aerial parts of plants is a major goal in bio-fortification. In Arabidopsis halleri, high constitutive expression of the AhHMA4 gene encoding a metal pump of the P1B-ATPase family is necessary for both Zn hyperaccumulation and the full extent of Zn and Cd hypertolerance that are characteristic of this species. In this study, an AhHMA4 cDNA was introduced into N. tabacum var. Xanthi for expression under the control of its endogenous A. halleri promoter known to confer high and cell-type specific expression levels in both A. halleri and the non-hyperaccumulator A. thaliana. The transgene was expressed at similar levels in both roots and shoots upon long-term exposure to low Zn, control, and increased Zn concentrations. A down-regulation of AhHMA4 transcript levels was detected with 10 μM Zn resupply to tobacco plants cultivated in low Zn concentrations. In general, a transcriptional regulation of AhHMA4 in tobacco contrasted with the constitutively high expression previously observed in A. halleri. Differences in root/shoot partitioning of Zn and Cd between transgenic lines and the wild type were strongly dependent on metal concentrations in the hydroponic medium. Under low Zn conditions, an increased Zn accumulation in the upper leaves in the AhHMA4-expressing lines was detected. Moreover, transgenic plants exposed to cadmium accumulated less metal than the wild type. Both modifications of zinc and cadmium accumulation are noteworthy outcomes from the biofortification perspective and healthy food production. Expression of AhHMA4 may be useful in crops grown on soils poor in Zn. PMID:20484319

  3. Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii.

    PubMed

    Liu, Wuxing; Zhang, Chengjun; Hu, Pengjie; Luo, Yongming; Wu, Longhua; Sale, Peter; Tang, Caixian

    2016-01-01

    Using hyperaccumulator plants is an important method to remove heavy metals from contaminated land. Carpobrotus rossii, a newly found Cd hyperaccumulator, has shown potential to remediate Cd-contaminated soils. This study examined the effect of nitrogen forms on Cd phytoextraction by C. rossii. The plants were grown for 78 days in an acid soil spiked with 20 mg Cd kg(-1) and supplied with (NH4)2SO4, Ca(NO3)2, urea, and chicken manure as nitrogen (N) fertilizers. Nitrification inhibitor dicyandiamide (DCD) was applied to maintain the ammonium (NH4(+)) form. Nitrogen fertilization increased shoot biomass but decreased root biomass with the highest shoot biomass occurring in the manure treatment. Compared to the no-N control, urea application did not affect shoot Cd concentration, but increased Cd content by 17% due to shoot biomass increase. Chicken manure significantly decreased CaCl2-extractable Cd in soil, and the Cd concentration and total Cd uptake in the plant. Rhizosphere pH was the highest in the manure treatment and the lowest in the NH4(+) treatments. The manure and nitrate (NO3(-)) treatments tended to have higher rhizosphere pH than their respective bulk soil pH, whereas the opposite was observed for urea and NH4(+) treatments. Furthermore, the concentrations of extractable Cd in soil and Cd in the plant correlated negatively with rhizosphere pH. The study concludes that urea significantly enhanced the Cd phytoaccumulation by C. rossii while chicken manure decreased Cd availability in soil and thus the phytoextraction efficiency. PMID:26358206

  4. Can the Hyperaccumulating Plant Arabidopsis halleri in Feed Influence a Given Consumer Organism (Rattus norvegicus var. alba)?

    PubMed

    Válek, Petr; Sloup, Vladislav; Jankovská, Ivana; Langrová, Iva; Száková, Jiřina; Miholová, Daniela; Horáková, Barbora; Křivská, Daniela

    2015-07-01

    Zinc and cadmium concentrations in rat (Rattus norvegicus var. alba) tissues were analyzed by inductively coupled plasma optical emission spectrometry. Rats were fed the zinc and cadmium hyperaccumulating plant, Arabidopsis halleri. When compared to the control group, a Cd increase in all tissues (liver, kidneys, small intestine, spleen, testes, muscle), with the exception of bone tissue was observed. In comparison to the control group, the kidneys, liver and small intestine contained 375, 162, and 80 times more Cd, respectively. Differences between zinc concentrations in rats fed with A. halleri and those of the control group were significant only in the small intestine and kidney tissues. Results suggest using the hyperaccumulating plant A. halleri as a feed stresses the consumer organism not through its Zn content, but through its Cd content. PMID:25917848

  5. Characterization of Zinc and Cadmium Hyperaccumulation in Three Noccaea (Brassicaceae) Populations from Non-metalliferous Sites in the Eastern Pyrenees

    PubMed Central

    Martos, Soledad; Gallego, Berta; Sáez, Llorenç; López-Alvarado, Javier; Cabot, Catalina; Poschenrieder, Charlotte

    2016-01-01

    The Southern slope of the Pyrenees is the meridional limit for the distribution of several Noccaea populations. However, the systematic description of these populations and their hyperaccumulation mechanisms are not well established. Morphological and genetic analysis (ITS and 3 chloroplast regions) were used to identify Noccaea populations localized on non-metallicolous soils during a survey in the Catalonian Pyrenees. Cd and Zn concentrations were analyzed in soils and plants both sampled in the field and grown hydroponically. The expression of selected metal transporter genes was assessed by quantitative PCR. The populations were identified as Noccaea brachypetala (Jord.) F.K. Mey by conspicuous morphological traits. Principal component analysis provided a clear separation among N. brachypetala, Noccaea caerulescens J. Presl & C. Presl and Noccaea occitanica (Jord.) F.K. Mey., three Noccaea species reported in the Pyrenees. Contrastingly, ITS and cpDNA analyses were unable to clearly differentiate these taxa. Differences in the expression of the metal transporter genes HMA3, HMA4, and MTP1 between N. caerulescens and N. brachypetala, and those amongst the N. brachypetala populations suggest differences in the strategies for handling enhanced Cd and Zn availability. This is the first report demonstrating Cd and Zn hyperaccumulation by N. brachypetala both in the field and in hydroponics. This comprehensive study based on taxonomic, molecular, and physiological data allows both the correct identification of this species and the characterization of population differences in hyperaccumulation and tolerance of Zn and Cd. PMID:26904085

  6. Characterization of Zinc and Cadmium Hyperaccumulation in Three Noccaea (Brassicaceae) Populations from Non-metalliferous Sites in the Eastern Pyrenees.

    PubMed

    Martos, Soledad; Gallego, Berta; Sáez, Llorenç; López-Alvarado, Javier; Cabot, Catalina; Poschenrieder, Charlotte

    2016-01-01

    The Southern slope of the Pyrenees is the meridional limit for the distribution of several Noccaea populations. However, the systematic description of these populations and their hyperaccumulation mechanisms are not well established. Morphological and genetic analysis (ITS and 3 chloroplast regions) were used to identify Noccaea populations localized on non-metallicolous soils during a survey in the Catalonian Pyrenees. Cd and Zn concentrations were analyzed in soils and plants both sampled in the field and grown hydroponically. The expression of selected metal transporter genes was assessed by quantitative PCR. The populations were identified as Noccaea brachypetala (Jord.) F.K. Mey by conspicuous morphological traits. Principal component analysis provided a clear separation among N. brachypetala, Noccaea caerulescens J. Presl & C. Presl and Noccaea occitanica (Jord.) F.K. Mey., three Noccaea species reported in the Pyrenees. Contrastingly, ITS and cpDNA analyses were unable to clearly differentiate these taxa. Differences in the expression of the metal transporter genes HMA3, HMA4, and MTP1 between N. caerulescens and N. brachypetala, and those amongst the N. brachypetala populations suggest differences in the strategies for handling enhanced Cd and Zn availability. This is the first report demonstrating Cd and Zn hyperaccumulation by N. brachypetala both in the field and in hydroponics. This comprehensive study based on taxonomic, molecular, and physiological data allows both the correct identification of this species and the characterization of population differences in hyperaccumulation and tolerance of Zn and Cd. PMID:26904085

  7. Effect of different nitrogenous nutrients on the cadmium hyperaccumulation efficiency of Rorippa globosa (Turcz.) Thell.

    PubMed

    Wei, Shuhe; Ji, Dandan; Twardowska, Irena; Li, Yunmeng; Zhu, Jiangong

    2015-02-01

    This experiment was used to explore whether the 11 nitrogenous nutrients affect the hyperaccumulation of Rorippa globosa (Turcz.) Thell. to Cd. Pot culture experiments using soil spiked with Cd as CdCl2·2.5H2O and 11 nitrogen-containing chemicals were conducted to determine the efficiency of the accumulation of Cd by R. globosa. Application of all 11 nitrogenous nutrients significantly (p < 0.05) enhanced Cd accumulation by R. globosa (Turcz.) Thell. Two major modes of Cd accumulation were observed: (i) through increase of biomass yield without reduction of Cd uptake and (ii) through increase of Cd uptake efficiency in parallel with increase of biomass yield. Bicarbonate > phosphate > chloride compounds of NH4 enhanced the biomass yield to the greatest extent, while oxalate > nitrate > chloride > and bicarbonate caused a significant increase of Cd uptake by R. globosa. Competition between N and Cd translocation caused either significant reduction of Cd translocation factor or decrease of biomass yield. Of studied nutrients, ammonium bicarbonate NH4HCO3 and ammonium chloride NH4Cl exerted the best joint effect of these two processes on the efficiency of R. globosa as a Cd hyperaccumulator. Application of these chemicals caused increase of Cd concentrations in roots of R. globosa by 35.1 and 41.1 %, and in shoots by 13.9 and 56.4 %, while biomasses of roots increased by 5.8- and 3.8-fold and in shoots by 7.4-fold, and 6.4-fold, respectively, compared to the control. As a result, accumulated load (μg pot(-1)) of Cd in roots increased by 8.2- and 5.8-fold and in shoots by 8.6- and 10.6-fold in both pots. Consequently, chemicals (NH4HCO3 and NH4Cl) that enhanced both Cd enrichment and biomass yield had the greatest effect on the bioaccumulation capacity of R. globosa. PMID:25167813

  8. Phytomining of valuable metals from waste incineration residues using hyperaccumulator plants

    NASA Astrophysics Data System (ADS)

    Rosenkranz, Theresa; Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika; Puschenreiter, Markus

    2015-04-01

    Worldwide the availability of primary sources of certain economically important metals is decreasing, resulting in high supply risks and increasing prices for this materials. Therefore, an alternative way of retrieving these high valuable technical metals is the recycling and use of anthropogenic secondary sources, such as waste incineration residues. Phytomining offers an environmentally sound and cheap technology to recover such metals from secondary sources. Thus, the aim of our research work is to investigate the potential of phytomining from waste incineration slags by growing metal hyperaccumulating plants on this substrates and use the metal enriched biomass as a bio-ore. As a first stage, material from Vienna's waste incineration plants was sampled and analyzed. Residues from municipal wastes as well as residues from hazardous waste incineration and sewage sludge incineration were analyzed. In general, the slags can be characterized by a very high pH, high salinity and high heavy metal concentrations. Our work is targeting the so-called critical raw materials defined by the European Commission in 2014. Thus, the target metal species in our project are amongst others cobalt, chromium, antimony, tungsten, gallium, nickel and selected rare earth elements. This elements are present in the slags at moderate to low concentrations. In order to optimize the substrate for plant growth the high pH and salt content as well as the low nitrogen content in the slags need to be controlled. Thus, different combinations of amendments, mainly from the waste industry, as well as different acidifying agents were tested for conditioning the substrate. Washing the slags with diluted nitric acid turned out to be effective for lowering the pH. The acid treated substrate in combination with material from mechanical biological waste treatment and biochar, is currently under investigation in a greenhouse pot experiment. The experimental setup consists of a full factorial design involving six plant species and an unplanted control as well as two different substrates. Fast growing species (Brassica napus, B. juncea, Nicotiana tabacum) will be harvested after two months, whereas slowly growing hyperaccumulators (Sedum plumbizincicola, Alyssum pintodasilvae) will be harvested after four months of growth. The plant tissue will be analyzed for the accumulation of the target metals. Moreover, the influence of plants on the substrate and solubility of certain metals is going to be evaluated.

  9. Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler.

    PubMed

    Orłowska, Elżbieta; Przybyłowicz, Wojciech; Orlowski, Dariusz; Mongwaketsi, Nametso P; Turnau, Katarzyna; Mesjasz-Przybyłowicz, Jolanta

    2013-04-01

    The effect of arbuscular mycorrhizal fungi (AMF) on the distribution and concentration of elements in roots of Ni-hyperaccumulating plant Berkheya coddii was studied. Micro-PIXE (particle-induced X-ray emission) analysis revealed significant differences between AMF-inoculated and non-inoculated plants as well as between main and lateral roots. The accumulation of P, K, Mn and Zn in the cortical layer of lateral roots of inoculated plants confirmed the important role of AMF in uptake and accumulation of these elements. Higher concentration of P, K, Fe, Ni, Cu and Zn in the vascular stele in roots of AMF-inoculated plants than in the non-inoculated ones indicates more efficient translocation of these elements to the aboveground parts of the plant. These findings indicate the necessity of including the influence of AMF in studies on the uptake of elements by plants and in industrial use of B. coddii for Ni extraction from polluted soils. PMID:23369753

  10. Effect of elevated CO2 concentration on photosynthetic characteristics of hyperaccumulator Sedum alfredii under cadmium stress.

    PubMed

    Li, Tingqiang; Tao, Qi; Di, Zhenzhen; Lu, Fan; Yang, Xiaoe

    2015-07-01

    The combined effects of elevated CO2 and cadmium (Cd) on photosynthetic rate, chlorophyll fluorescence and Cd accumulation in hyperaccumulator Sedum alfredii Hance were investigated to predict plant growth under Cd stress with rising atmospheric CO2 concentration. Both pot and hydroponic experiments were conducted and the plants were grown under ambient (350?L?L(-1)) or elevated (800?L?L(-1)) CO2 . Elevated CO2 significantly (P?

  11. Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids

    PubMed Central

    Vonlanthen, Sofie; Dauvillée, David; Purton, Saul

    2015-01-01

    When green algae are exposed to physiological stresses such as nutrient deprivation, growth is arrested and the cells channel fixed carbon instead into storage compounds, accumulating first starch granules and then lipid bodies containing triacylglycerides. In recent years there has been significant interest in the commercial exploitation of algal lipids as a sustainable source of biodiesel. Since starch and lipid biosynthesis involves the same C3 precursor pool, it has been proposed that mutations blocking starch accumulation should result in increased lipid yields, and indeed several studies have supported this. The fast-growing, thermotolerant alga Chlorella sorokiniana represents an attractive strain for industrial cultivation. We have therefore generated and characterized starch-deficient mutants of C. sorokiniana and determined whether lipid levels are increased in these strains under stress conditions. One mutant (ST68) is shown to lack isoamylase, whilst two others (ST3 and ST12) are defective in starch phosphorylase. However, we find no significant change in the accumulation or profile of fatty acids in these mutants compared to the wild-type, suggesting that a failure to accumulate starch per se is not sufficient for the hyper-accumulation of lipid, and that more subtle regulatory steps underlie the partitioning of carbon to the two storage products. PMID:26865991

  12. Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress.

    PubMed

    Campos, Naiara V; Araújo, Talita O; Arcanjo-Silva, Samara; Freitas-Silva, Larisse; Azevedo, Aristéa A; Nunes-Nesi, Adriano

    2016-06-01

    Arsenic (As) pollution is a major environmental concern due to its worldwide distribution and high toxicity to organisms. The fern Pityrogramma calomelanos is one of the few plant species known to be able to hyperaccumulate As, although the mechanisms involved are largely unknown. This study aimed to investigate the metabolic adjustments involved in the As-tolerance of P. calomelanos. For this purpose, ferns with five to seven fronds were exposed to a series of As concentrations. Young fronds were used for biochemical analysis and metabolite profiling using gas chromatography-mass spectrometry. As treatment increased the total concentration of proteins and soluble phenols, enhanced peroxidase activities, and promoted disturbances in nitrogen and carbon metabolism. The reduction of the glucose pool was one of the striking responses to As. Remarkable changes in amino acids levels were observed in As-treated plants, including those related to biosynthesis of glutathione and phenols, osmoregulation and two photorespiratory intermediates. In addition, increases in polyamines levels and antioxidant enzyme activities were observed. In summary, this study indicates that P. calomelanos tolerates high concentration of As due to its capacity to upregulate biosynthesis of amino acids and antioxidants, without greatly disturbing central carbon metabolism. At extremely high As concentrations, however, this protective mechanism fails to block reactive oxygen species production, leading to lipid peroxidation and leaf necrosis. PMID:26853807

  13. Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida.

    PubMed

    Zhu, Ling-Jia; Guan, Dong-Xing; Luo, Jun; Rathinasabapathi, Bala; Ma, Lena Q

    2014-10-01

    We isolated and characterized As-resistant endophytic bacteria (AEB) from two arsenic hyperaccumulators. Their plant growth promoting traits and the relation between As tolerance and transformation were evaluated. A total of 41 and 33 AEB were isolated from Pteris vittata (PV) and Pteris multifida (PM) respectively. PV AEB represented 2genera while PM AEB comprised of 12 genera, with Bacillus sp. being the most dominant bacteria from both plants. All AEB had limited ability in solubilizing P and producing indole acetic acid (IAA) and siderophore. All isolates tolerated 10mM arsenate (As(V)), with PV isolates being more tolerant to As(V) and PM more tolerant to arsenite (As(III)). Bacterial arsenic tolerance was related to their ability in As(III) oxidation and As(V) reduction as well as their ability to retain As in the biomass to a varying extent. Though AEB showed limited plant growth promoting traits, they were important in arsenic tolerance and speciation in plants. PMID:25065783

  14. Effects of grafting on the cadmium accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum.

    PubMed

    Lin, Lijin; Yang, Daiyu; Wang, Xun; Liao, Ming'an; Wang, Zhihui; Lv, Xiulan; Tang, Fuyi; Liang, Dong; Xia, Hui; Lai, Yunsong; Tang, Yi

    2016-02-01

    The effects of grafting on the cadmium (Cd) accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum were studied under Cd stress in our experiment. Four treatments were used in the experiment: ungrafted (UG), self-rooted grafting by the same S. photeinocarpum seedling (SG), self-rooted grafting by two different development stages of S. photeinocarpum seedlings (DG), and grafting on the rootstock of wild potato (PG). SG and DG decreased the root, scion stem, leaf, whole shoot, and whole plant biomasses compared with UG, but increased the rootstock stem biomass, while only PG increased the root and whole plant biomasses. SG and DG increased the Cd contents in the different organs of S. photeinocarpum compared with UG, while PG decreased the Cd content compared with UG. The Cd extraction by the whole plant of S. photeinocarpum was ranked as DG > SG > UG > PG. Additionally, the antioxidant enzyme activities in SG and DG were enhanced compared with UG, while that of PG was reduced compared with UG. The grafting increased the DNA methylation levels and changed the methylation patterns of S. photeinocarpum compared with UG. Therefore, SG and DG can increase the Cd accumulation in S. photeinocarpum, which can be used for the phytoremediation of Cd-contaminated soil. PMID:26739012

  15. High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata.

    PubMed

    Chen, Yanshan; Fu, Jing-Wei; Han, Yong-He; Rathinasabapathi, Bala; Ma, Lena Q

    2016-02-01

    Arsenite (AsIII) efflux is an important mechanism for arsenic (As) detoxification in plants. Low AsIII efflux has been observed in As-hyperaccumulator Pteris vittata, which may contribute to its highly efficient As translocation and accumulation; however, the results may be compromised by microbial AsIII oxidation, relatively low As concentration in the medium and short-term As exposure. Here, sterile P. vittata sporophytes were cultivated in sterile medium containing 10, 200 and 500 µM arsenate (AsV) for 28 d. Arsenite efflux to the growth medium and As speciation in P. vittata was investigated. Low AsIII efflux at 12% of AsV uptake was observed at 10 µM AsV, but high AsIII efflux (36-76%) was observed at 200 and 500 µM AsV, with 1987-2397 mg kg(-1) As being accumulated in the fronds. This is the first report to show efficient AsIII efflux in P. vittata. This study showed that P. vittata may use high AsIII efflux to cope with As toxicity under high As exposure, which may be necessary to sustain growth while accumulating As. PMID:26595313

  16. The Variation of Root Exudates from the Hyperaccumulator Sedum alfredii under Cadmium Stress: Metabonomics Analysis

    PubMed Central

    Luo, Qing; Sun, Lina; Hu, Xiaomin; Zhou, Ruiren

    2014-01-01

    Hydroponic experiments were conducted to investigate the variation of root exudates from the hyperaccumulator Sedum alfredii under the stress of cadmium (Cd). S. alfredii was cultured for 4 days in the nutrient solution spiked with CdCl2 at concentrations of 0, 5, 10, 40, and 400 µM Cd after the pre-culture. The root exudates were collected and analyzed by GC-MS, and 62 compounds were identified. Of these compounds, the orthogonal partial least-squares discrimination analysis (OPLS-DA) showed that there were a distinct difference among the root exudates with different Cd treatments and 20 compounds resulting in this difference were found out. Changing tendencies in the relative content of these 20 compounds under the different Cd treatments were analyzed. These results indicated that trehalose, erythritol, naphthalene, d-pinitol and n-octacosane might be closely related to the Cd stabilization, phosphoric acid, tetradecanoic acid, oxalic acid, threonic acid and glycine could be attributed to the Cd mobilization, and mannitol, oleic acid, 3-hydroxybutanoic acid, fructose, octacosanol and ribitol could copy well with the Cd stress. PMID:25545686

  17. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    PubMed

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. PMID:26592710

  18. Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri

    PubMed Central

    Nouet, Cécile; Charlier, Jean-Benoit; Carnol, Monique; Bosman, Bernard; Farnir, Frédéric; Motte, Patrick; Hanikenne, Marc

    2015-01-01

    In Arabidopsis halleri, the HMA4 gene has an essential function in Zn/Cd hypertolerance and hyperaccumulation by mediating root-to-shoot translocation of metals. Constitutive high expression of AhHMA4 results from a tandem triplication and cis-activation of the promoter of all three copies. The three AhHMA4 copies possess divergent promoter sequences, but highly conserved coding sequences, and display identical expression profiles in the root and shoot vascular system. Here, an AhHMA4::GFP fusion was expressed under the control of each of the three A. halleri HMA4 promoters in a hma2hma4 double mutant of A. thaliana to individually examine the function of each AhHMA4 copy. The protein showed non-polar localization at the plasma membrane of the root pericycle cells of both A. thaliana and A. halleri. The expression of each AhHMA4::GFP copy complemented the severe Zn-deficiency phenotype of the hma2hma4 mutant by restoring root-to-shoot translocation of Zn. However, each copy had a different impact on metal homeostasis in the A. thaliana genetic background: AhHMA4 copies 2 and 3 were more highly expressed and provided higher Zn tolerance in roots and accumulation in shoots than copy 1, and AhHMA4 copy 3 also increased Cd tolerance in roots. These data suggest a certain extent of functional differentiation among the three A. halleri HMA4 copies, stemming from differences in expression levels rather than in expression profile. HMA4 is a key node of the Zn homeostasis network and small changes in expression level can have a major impact on Zn allocation to root or shoot tissues. PMID:26044091

  19. An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite.

    PubMed

    Sundaram, Sabarinath; Rathinasabapathi, Bala; Ma, Lena Q; Rosen, Barry P

    2008-03-01

    To elucidate the mechanisms of arsenic resistance in the arsenic hyperaccumulator fern Pteris vittata L., a cDNA for a glutaredoxin (Grx) Pv5-6 was isolated from a frond expression cDNA library based on the ability of the cDNA to increase arsenic resistance in Escherichia coli. The deduced amino acid sequence of Pv5-6 showed high homology with an Arabidopsis chloroplastic Grx and contained two CXXS putative catalytic motifs. Purified recombinant Pv5-6 exhibited glutaredoxin activity that was increased 1.6-fold by 10 mm arsenate. Site-specific mutation of Cys(67) to Ala(67) resulted in the loss of both GRX activity and arsenic resistance. PvGrx5 was expressed in E. coli mutants in which the arsenic resistance genes of the ars operon were deleted (strain AW3110), a deletion of the gene for the ArsC arsenate reductase (strain WC3110), and a strain in which the ars operon was deleted and the gene for the GlpF aquaglyceroporin was disrupted (strain OSBR1). Expression of PvGrx5 increased arsenic tolerance in strains AW3110 and WC3110, but not in OSBR1, suggesting that PvGrx5 had a role in cellular arsenic resistance independent of the ars operon genes but dependent on GlpF. AW3110 cells expressing PvGrx5 had significantly lower levels of arsenite when compared with vector controls when cultured in medium containing 2.5 mm arsenate. Our results are consistent with PvGrx5 having a role in regulating intracellular arsenite levels, by either directly or indirectly modulating the aquaglyceroporin. To our knowledge, PvGrx5 is the first plant Grx implicated in arsenic metabolism. PMID:18156657

  20. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis.

    PubMed

    Hlokov, Kate?ina; Mat?nov, Michaela; ?kov, Petra; Strnad, Hynek; Hrelov, Hana; Hroudov, Milue; Kotrba, Pavel

    2016-03-01

    Mechanisms evolved in eukaryotes to handle heavy metals involve cytosolic, metal-binding metallothioneins (MTs). We have previously documented that the sequestration of silver (Ag) in the Ag-hyperaccumulating Amanita strobiliformis is dominated by 34-amino-acid (AA) AsMT1a, 1b, and 1c isoforms. Here we show that in addition to AsMT1a, 1b, and 1c isogenes, the fungus has two other MT genes: AsMT2 encoding a 34-AA AsMT2 similar to MTs known from other species, but unrelated to AsMT1s; AsMT3 coding for a 62-AA AsMT3 that shares substantial identity with as-yet-uncharacterized conserved peptides predicted in agaricomycetes. Transcription of AsMT1s and AsMT3 in the A. strobiliformis mycelium was specifically inducible by treatments with Ag or copper (Cu) and zinc (Zn) or cadmium (Cd), respectively; AsMT2 showed a moderate upregulation in the presence of Cd. Expression of AsMTs in the metal-sensitive Saccharomyces cerevisiae revealed that all AsMTs confer increased Cd tolerance (AsMT3 proved the most effective) and that, unlike AsMT1 and AsMT2, AsMT3 can protect the yeasts against Zn toxicity. The highest level of Cu tolerance was observed with yeasts expressing AsMT1a. Our data indicate that A. strobiliformis can specifically employ different MT genes for functions in the cellular handling of Ag and Cu (AsMT1s) and Zn (AsMT3). PMID:26895864

  1. Chromate and phosphate inhibited each other's uptake and translocation in arsenic hyperaccumulator Pteris vittata L.

    PubMed

    de Oliveira, Letúzia M; Lessl, Jason T; Gress, Julia; Tisarum, Rujira; Guilherme, Luiz R G; Ma, Lena Q

    2015-02-01

    We investigated the effects of chromate (CrVI) and phosphate (P) on their uptake and translocation in As-hyperaccumulator Pteris vittata (PV). Plants were exposed to 1) 0.10 mM CrVI and 0, 0.25, 1.25, or 2.50 mM P or 2) 0.25 mM P and 0, 0.50, 2.5 or 5.0 mM CrVI for 24 h in hydroponics. PV accumulated 2919 mg/kg Cr in the roots at CrVI₀.₁₀, and 5100 and 3500 mg/kg P in the fronds and roots at P₀.₂₅. When co-present, CrVI and P inhibited each other's uptake in PV. Increasing P concentrations reduced Cr root concentrations by 62-82% whereas increasing CrVI concentrations reduced frond P concentrations by 52-59% but increased root P concentrations by 11-15%. Chromate reduced P transport, with more P being accumulated in PV roots. Though CrVI was supplied, 64-78% and 92-93% CrIII were in PV fronds and roots. Based on X-ray diffraction, Cr₂O₃ was detected in the roots confirming CrVI reduction to CrIII by PV. In short, CrVI and P inhibited each other in uptake and translocation by PV, and CrVI reduction to CrIII in PV roots served as its detoxification mechanism. The finding helps to understand the interactions of P and Cr during their uptake in PV. PMID:25434865

  2. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar.

    PubMed

    Rees, Frdric; Sterckeman, Thibault; Morel, Jean Louis

    2016-01-01

    Biochar may be used as an amendment in contaminated soils in phytoremediation processes. The mechanisms controlling plant metal uptake in biochar-amended soils remain however unclear. This work aimed at evaluating the influence of biochar on root development and its consequence on plant metal uptake, for two non-hyperaccumulating plants (Zea mays and Lolium perenne) and one hyperaccumulator of Cd and Zn (Noccaea caerulescens). We conducted rhizobox experiments using one acidic and one alkaline soil contaminated with Cd, Pb and Zn. Biochar was present either homogeneously in the whole soil profile or localized in specific zones. A phenomenon of root proliferation specific to biochar-amended zones was seen on the heterogeneous profiles of the acidic soil and interpreted by a decrease of soil phytotoxicity in these zones. Biochar amendments also favored root growth in the alkaline soil as a result of the lower availability of certain nutrients in the amended soil. This increase of root surface led to a higher accumulation of metals in roots of Z.mays in the acidic soil and in shoots of N. caerulescens in the alkaline soil. In conclusion, biochar can have antagonist effects on plant metal uptake by decreasing metal availability, on one hand, and by increasing root surface and inducing root proliferation, on the other hand. PMID:25912633

  3. Interaction of Nickel and Manganese in Accumulation and Localization in Leaves of the Ni Hyperaccumulators Alyssum murale and Alyssum corsicum

    SciTech Connect

    Broadhurst, C.; Tappero, R; Maugel, T; Erbe, E; Sparks, D; Chaney, R

    2009-01-01

    The genus Alyssum contains >50 Ni hyperaccumulator species; many can achieve >2.5% Ni in dry leaf. In soils with normal Mn levels, Alyssum trichome bases were previously observed to accumulate Ni and Mn to high levels. Here we report concentration and localization patterns in A. murale and A. corsicum grown in soils with nonphytotoxic factorial additions of Ni and Mn salts. Four leaf type subsets based on size and age accumulated Ni and Mn similarly. The greatest Mn accumulation (10 times control) was observed in A. corsicum with 40 mmol Mn kg-1 and 40 mmol Ni kg-1 added to potting soil. Whole leaf Ni concentrations decreased as Mn increased. Synchrotron X-ray fluorescence mapping of whole fresh leaves showed localized in distinct high-concentration Mn spots associated with trichomes, Ni and Mn distributions were strongly spatially correlated. Standard X-ray fluorescence point analysis/mapping of cryofractured and freeze-dried samples found that Ni and Mn were co-located and strongly concentrated only in trichome bases and in cells adjacent to trichomes. Nickel concentration was also strongly spatially correlated with sulfur. Results indicate that maximum Ni phytoextraction by Alyssum may be reduced in soils with higher phytoavailable Mn, and suggest that Ni hyperaccumulation in Alyssum species may have developed from a Mn handling system.

  4. Tonoplast- and Plasma Membrane-Localized Aquaporin-Family Transporters in Blue Hydrangea Sepals of Aluminum Hyperaccumulating Plant

    PubMed Central

    Negishi, Takashi; Oshima, Kenshiro; Hattori, Masahira; Kanai, Masatake; Mano, Shoji; Nishimura, Mikio; Yoshida, Kumi

    2012-01-01

    Hydrangea (Hydrangea macrophylla) is tolerant of acidic soils in which toxicity generally arises from the presence of the soluble aluminum (Al) ion. When hydrangea is cultivated in acidic soil, its resulting blue sepal color is caused by the Al complex formation of anthocyanin. The concentration of vacuolar Al in blue sepal cells can reach levels in excess of approximately 15 mM, suggesting the existence of an Al-transport and/or storage system. However, until now, no Al transporter has been identified in Al hyperaccumulating plants, animals or microorganisms. To identify the transporter being responsible for Al hyperaccumulation, we prepared a cDNA library from blue sepals according to the sepal maturation stage, and then selected candidate genes using a microarray analysis and an in silico study. Here, we identified the vacuolar and plasma membrane-localized Al transporters genes vacuolar Al transporter (VALT) and plasma membrane Al transporter 1 (PALT1), respectively, which are both members of the aquaporin family. The localization of each protein was confirmed by the transient co-expression of the genes. Reverse transcription-PCR and immunoblotting results indicated that VALT and PALT1 are highly expressed in sepal tissue. The overexpression of VALT and PALT1 in Arabidopsis thaliana conferred Al-tolerance and Al-sensitivity, respectively. PMID:22952644

  5. Characterization of a Selenium-Tolerant Rhizosphere Strain from a Novel Se-Hyperaccumulating Plant Cardamine hupingshanesis

    PubMed Central

    Yuan, Linxi; Luo, Lei; Yin, Xuebin

    2014-01-01

    A novel selenium- (Se-) hyperaccumulating plant, Cardamine hupingshanesis, accumulating Se as a form of SeCys2, was discovered in Enshi, Hubei, China, which could not be explained by present selenocysteine methyltransferase (SMT) theory. However, it is interesting to investigate if rhizosphere bacteria play some roles during SeCys2 accumulation. Here, one Se-tolerant rhizosphere strain, Microbacterium oxydans, was isolated from C. hupingshanesis. Phylogenetic analysis and 16S rRNA gene sequences determined the strain as a kind of Gram positive bacillus and belonged to the family Brevibacterium frigoritolerans. Furthermore, Se tolerance test indicated the strain could grow in extreme high Se level of 15.0 mg Se L−1. When exposed to 1.5 mg Se L−1, SeCys2 was the predominant Se species in the bacteria, consistent with the Se species in C. hupingshanesis. This coincidence might reveal that this strain played some positive effect in SeCys2 accumulation of C. hupingshanesis. Moreover, when exposed to 1.5 mg Se L−1 or 15.0 mg Se L−1, As absorption diminished in the logarithmic phase. In contrast, As absorption increased when exposed to 7.5 mg Se L−1, indicating As metabolism processes could be affected by Se on this strain. The present study provided a sight on the role of rhizosphere bacteria during Se accumulation for Se-hyperaccumulating plant. PMID:25478582

  6. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata.

    PubMed

    Bañuelos, Gary S; Arroyo, Irvin; Pickering, Ingrid J; Yang, Soo In; Freeman, John L

    2015-01-01

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing the Se content in food crops in Se-deficient regions of the world. In this study we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with ground shoots of the Se-hyperaccumulator Stanleyapinnata. With increasing application rates of S. pinnata, total plant Se concentrations increased to nutritionally ideal levels inside edible parts. Selenium compounds in aqueous extracts were analyzed by SAX-HPLC-ICPMS and identified as a variety of mainly organic-Se forms. Together with bulk Se K-edge X-ray absorption near-edge structure (XANES) analysis performed on broccoli florets, carrot roots and shoots, dried ground S. pinnata, and the amended soil at post-plant, we demonstrate that Se-enriched S. pinnata is valuable as a soil amendment for enriching broccoli and carrots with healthful forms of organic-Se. PMID:25053099

  7. Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant.

    PubMed

    Negishi, Takashi; Oshima, Kenshiro; Hattori, Masahira; Kanai, Masatake; Mano, Shoji; Nishimura, Mikio; Yoshida, Kumi

    2012-01-01

    Hydrangea (Hydrangea macrophylla) is tolerant of acidic soils in which toxicity generally arises from the presence of the soluble aluminum (Al) ion. When hydrangea is cultivated in acidic soil, its resulting blue sepal color is caused by the Al complex formation of anthocyanin. The concentration of vacuolar Al in blue sepal cells can reach levels in excess of approximately 15 mM, suggesting the existence of an Al-transport and/or storage system. However, until now, no Al transporter has been identified in Al hyperaccumulating plants, animals or microorganisms. To identify the transporter being responsible for Al hyperaccumulation, we prepared a cDNA library from blue sepals according to the sepal maturation stage, and then selected candidate genes using a microarray analysis and an in silico study. Here, we identified the vacuolar and plasma membrane-localized Al transporters genes vacuolar Al transporter (VALT) and plasma membrane Al transporter 1 (PALT1), respectively, which are both members of the aquaporin family. The localization of each protein was confirmed by the transient co-expression of the genes. Reverse transcription-PCR and immunoblotting results indicated that VALT and PALT1 are highly expressed in sepal tissue. The overexpression of VALT and PALT1 in Arabidopsis thaliana conferred Al-tolerance and Al-sensitivity, respectively. PMID:22952644

  8. Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii.

    PubMed

    Qiu, Rong-Liang; Thangavel, Palaniswamy; Hu, Peng-Jie; Senthilkumar, Palaninaicker; Ying, Rong-Rong; Tang, Ye-Tao

    2011-02-28

    Potentilla griffithii Hook is a newly found hyperaccumulator plant capable of high tolerance and accumulation of Zn and Cd. We investigated the interactive effects between Cd and Zn on accumulation and vacuolar sequestration in P. griffithii. Stimulatory effect of growth was noted at 0.2 mM Cd and 1.25 and 2.5 mM Zn tested. Accumulation of Zn and Cd in roots, petioles and leaves were increased significantly with addition of these metals individually. However, the Zn supplement decreased root Cd accumulation but increased the concentration of Cd in petioles and leaves. The results from sub-cellular distribution showed that up to 94% and 70% of the total Zn and Cd in the leaves were present in the protoplasts, and more than 90% Cd and Zn in the protoplasts were localized in the vacuoles. Nearly, 88% and 85% of total Cd and Zn were extracted in the cell sap of the leaves suggesting that most of the Cd and Zn in the leaves were available in soluble form. The present results indicate that Zn supplement significantly enhanced the petiole accumulation of Cd and further vacuolar sequestration plays an important role in tolerance, detoxification and hyperaccumulation of these metals in P. griffithii. PMID:21211902

  9. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray.

    PubMed

    Chiang, Huai-Chih; Lo, Jing-Chi; Yeh, Kuo-Chen

    2006-11-01

    To survive in variable soil conditions, plants possess homeostatic mechanisms to maintain a suitable concentration of essential heavy metal ions. Certain plants, inhabiting heavy metal-enriched or -contaminated soil, thus are named hyperaccumulators. Studying hyperaccumulators has great potential to provide information for phytoremediation. To better understand the hyperaccumulating mechanism, we used an Arabidopsis cDNA microarray to compare the gene expression of the Zn/Cd hyperaccumulator Arabidopsis halleri and a nonhyperaccumulator, Arabidopsis thaliana. By analyzing the expression of metal-chelators, antioxidation-related genes, and transporters, we revealed a few novel molecular features. We found that metallothionein 2b and 3, APX and MDAR4 in the ascorbate-glutathione pathway, and certain metal transporters in P(1B)-type ATPase, ZIP, Nramp, and CDF families, are expressed at higher levels in A. halleri than in A. thaliana. We further validated that the enzymatic activity of ascorbate peroxidase and class III peroxidases are highly elevated in A. halleri. This observation positively correlates with the higher ability of A. halleri to detoxify H2O2 produced by cadmium and paraquat treatments. We thus suggest that higher peroxidase activities contribute to the heavy metal tolerance in A. halleri by alleviating the ROS damage. We have revealed genes that could be candidates for the future engineering of plants with large biomass for use in phytoremediation. PMID:17144312

  10. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil.

    PubMed

    Broadhurst, Catherine L; Chaney, Rufus L

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg(-1) Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg(-1) Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg(-1). A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and phytomining approaches. PMID:27092164

  11. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil

    PubMed Central

    Broadhurst, Catherine L.; Chaney, Rufus L.

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg−1 Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg−1 Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg−1. A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and phytomining approaches. PMID:27092164

  12. Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulator Pteris vittata.

    PubMed

    de Oliveira, Letúzia M; Gress, Julia; De, Jaysankar; Rathinasabapathi, Bala; Marchi, Giuliano; Chen, Yanshan; Ma, Lena Q

    2016-03-01

    We investigated the effects of chromate (CrVI) and sulfate on their uptake and translocation in As-hyperaccumulator Pteris vittata. Plants were exposed to 1) 0.1 mM CrVI and 0, 0.25, 1.25 or 2.5 mM sulfate or 2) 0.25 mM sulfate and 0, 0.5, 2.5 or 5.0 mM CrVI for 1 d in hydroponics. P. vittata accumulated 26 and 1261 mg kg(-1) Cr in the fronds and roots at CrVI0.1, and 2197 and 1589 mg kg(-1) S in the fronds and roots at S0.25. Increasing sulfate concentrations increased Cr root concentrations by 16-66% and helped CrVI reduction to CrIII whereas increasing CrVI concentrations increased frond sulfate concentrations by 3-27%. Increasing sulfate concentrations enhanced TBARS concentrations in the biomass, indicating oxidative stress caused lipid peroxidation in plant cell membranes. However, addition of 0.25-2.5 mM sulfate alleviated CrVI's toxic effects and decreased TBARS from 23.5 to 9.46-12.3 μmol g(-1) FW. Though CrVI was supplied, 78-96% of CrIII was in the biomass, indicating efficient CrVI reduction to CrIII by P. vittata. The data indicated the amazing ability of P. vittata in Cr uptake at 289 mg kg(-1) h(-1) with little translocation to the fronds. These results indicated that P. vittata had potential in Cr phytoremediation in contaminated sites but further studies are needed to evaluate this potential. The facts that CrVI and sulfate helped each other in uptake by P. vittata suggest that CrVI was not competing with sulfate uptake in P. vittata. However, the mechanisms of how sulfate and CrVI enhance each other's accumulation in P. vittata need further investigation. PMID:26761595

  13. Intra-specific variation in Ni tolerance, accumulation and translocation patterns in the Ni-hyperaccumulator Alyssum lesbiacum.

    PubMed

    Adamidis, G C; Aloupi, M; Kazakou, E; Dimitrakopoulos, P G

    2014-01-01

    A hydroponic experiment was conducted to investigate inter-population variation in Ni tolerance, accumulation and translocation patterns in Alyssum lesbiacum. The in vitro results were compared to field data (soil bioavailable and leaf Ni concentrations) so as to examine any potential relationship between hydroponic and natural conditions. Seeds from the four major existing populations of A. lesbiacum were used for the cultivation of plantlets in solution cultures with incrementally increasing Ni concentrations (ranging from 0 to 250 μmol L(-1) NiSO4). Ni accumulation and tolerance of shoots and roots, along with initial seed Ni concentration for each population were measured. The ratio of root or shoot length of plantlets grown in NiSO4 solutions to root or shoot lengths of plantlets grown in the control solution was used as tolerance index. For the range of metal concentrations used, A. lesbiacum presented significant inter-population variation in Ni tolerance, accumulation and translocation patterns. Initial seed Ni concentration was positively correlated to shoot Ni accumulation. A significant positive relationship between tolerance and accumulation was demonstrated. Initial seed Ni concentration along with physiological differences in xylem loading and Ni translocation of each population, appear to be the determining factors of the significant inter-population variation in Ni tolerance and accumulation. Our results highlight the inter-population variation in Ni tolerance and accumulation patterns in the Ni-hyperaccumulator A. lesbiacum and give support to the suggestion that the selection of metal hyperaccumulator species with enhanced phytoremediation efficiency should be considered at the population level. PMID:24182400

  14. Uptake of antimonite and antimonate by arsenic hyperaccumulator Pteris vittata: Effects of chemical analogs and transporter inhibitor.

    PubMed

    Tisarum, Rujira; Chen, Yanshan; Dong, Xiaoling; Lessl, Jason T; Ma, Lena Q

    2015-11-01

    Antimonite (SbIII) is transported into plants via aquaglyceroporin channels but it is unknown in As-hyperaccumulator Ptreis vittata (PV). We tested the effects of SbIII analogs (arsenite-AsIII, glycerol, silicic acid-Si, and, glucose), antimonate (SbV) analog (phosphate-P), and aquaglyceroporin transporter inhibitor (silver, Ag) on the uptake of SbIII or SbV by PV gametophytes. PV gametophytes were grown in 20% Hoagland solution containing 65 μM SbIII or SbV and increasing concentrations of analogs at 65-6500 μM for 2 h or 4 h under sterile condition. After exposing to 65 μM Sb for 2 h, PV accumulated 767 mg/kg Sb in SbIII treatment and 419 mg/kg in SbV treatment. SbIII uptake by PV gametophytes was not impacted by glycerol or AsIII nor aquaglyceroporin inhibitor Ag during 2 h exposure. While Si increased SbIII uptake and glucose decreased SbIII uptake by PV gametophytes, the impact disappeared during 4 h exposure. Under P-sufficient condition, P increased SbIII uptake and decreased SbV uptake during 2 h exposure, but the effect again disappeared after 4 h. After being P-starved for 2 weeks, P decreased SbIII with no effect on SbV uptake during 2 h exposure. Our results indicated that: 1) PV gametophytes could serve as an efficient model to study Sb uptake, and 2) unique SbIII uptake by PV may be related to its trait of As hyperaccumulation. PMID:26142750

  15. Hyperaccumulator of Pb in native plants growing on Peruvian mine tailings

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Roca, Nuria; Boluda, Rafael; Tume, Pedro; Duran, Paola; Poma, Wilfredo; Sanchez, Isidoro

    2014-05-01

    Tailings usually provide an unfavourable substrate for plant growth because of their extreme pH, low organic matter and nutrients, high concentrations of trace elements and physical disturbance, such as bad soil structure, and low water availability. Heavy metal contamination has also been one serious problem in the vicinity of mine sites due to the discharge and dispersion of mine-waste materials into the ecosystem. Moreover, Pb is considered a target metal when undertaking soil remediation, because it is usually quite immobile and not readily accumulated in upper plant parts. The presence of vegetation reduces water and wind erosion, which may decrease the downward migration of contaminants into the groundwater and improve aesthetical aspects. Plants growing on naturally metal-enriched soils are of particular interest in this perspective, since they are genetically tolerant to high metal concentrations, have an excellent adaptation to this multi-stress environment. Efficient phytoextraction requires plant species combining both high metal tolerance and elevated capacity for metal uptake and metal translocation to easily harvestable plant organs (e.g. shoots). Soil and plant samples were taken in Peru, at a polymetallic mine (mainly Ag, Pb and Cu) in Cajamarca Province, Hualgayoc district. Top soils (0-20 cm) were analysed for physical and chemical properties by standard methods. Total Pb concentrations in top soils were determined by ICP-OES. Pb content in plants were analysed separately (aerial and root system) by ICP-MS. Ti content was used as an indicator for contamination of plant samples with soil particles. Translocation Factor (TF) and Shoot Accumulation Factor (SAF) were determined to assess the tolerance strategies developed by these species and to evaluate their potential for phytoremediation purposes. The non-polluted soils had near neutral pH (6.8±0.1), a great content of organic carbon (42 ± 4.0 g•kg-1) and a silt loamy texture. Soil and plant samples were taken at four locations (CA1, CA2, CA3, CA4) with different levels of Pb. The Pb soil content (mean ± standard deviation) in mg•kg-1 is as follows: CA1 3992 ± 301; CA2 10128 ± 2247, CA3 14197 ± 895, CA4 16060 ± 810. The non-polluted value around the mine was Pb 124 mg•kg-1. Unusual elevated concentrations of Pb (over 1000 mg kg-1) and TF greater than one were detected in shoots of 6 different plants species (Ageratina sp., Achirodine alata, Cortaderia apalothica, Epilobium denticulatum, Taraxacum officinalis and Trifolium repens). The location CA4 has the maximum content of Pb in the shoots of Ageratina sp. (5045±77 mg•kg-1), C. apalothica (3367±188 mg•kg-1), E. denticulatum (13599±848 mg•kg-1), T. officinalis (2533±47 mg•kg-1) and T. repens (2839±231 mg•kg-1). However, the BF (Bioaccumulation Factor) was smaller than one. Despite the low BF index, the great TFs for Pb indicate that these plant species effectively translocate this metal (i.e., 2.4 for Ageratina sp., 2.3 for C. apalothica, 1.6 for T. repens, 1.5 for A. alata, 1.3 for T. officinalis and 1.2 for E. denticulatum). It seems that the BF is not a reliable index when the metal soil concentration is extremely large. Controlled-environment studies must be performed to definitively confirm the Pb hyperaccumulation character of cited plant species.

  16. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    NASA Astrophysics Data System (ADS)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    Sewage sludges as well as ashes from waste incineration plants are known accumulation sinks of many elements that are either important nutrients for biological organisms (phosphorus, potassium, magnesium, etc.) or valuable metals when considered on their own in pure form (nickel, chrome, zinc, etc.); they are also serious pollutants when they occur in wild mixtures at localized anthropogenic end- of-stream points. Austria and many other countries have to import up to 90% of the material inputs of metals from abroad. These primary resources are becoming more expensive as they become more scarce and remaining deposits more difficult to mine, which is a serious concern for industrialized nations. Basic economic and strategic reasoning demands an increase in recycling activities and waste minimization. Technologies to recover metals in a reasonable and economically relevant manner from very diffuse sources are practically non-existent or require large amounts of energy and chemicals, which pose environmental risks. On the other hand agriculture uses large volumes of mineral fertilizers, which are often sourced from mines as well, and thus are also subject to the same principle of finiteness and potential shortage in supply. These converted biological nutrients are taken up by crops and through the food chain and human consumption end up in sewage systems and in wastewater treatment plants in great quantities. The metabolized nutrients mostly do not return to agriculture, but due to contamination with heavy metals are diverted to be used as construction aggregates or are thermally treated and end up rather uselessly in landfills. The project BIO-ORE aimed to explore new pathways to concentrate metals from diluted sources such as sewage sludge and wastewater by using highly efficient biological absorption and transport mechanisms. These enzymatic systems from plants work with very little energy input. The process is called bioaccumulation and can be most effectively observed in so-called hyperaccumulating metalophytes, which are studied for its suitability to be incorporated in metal recovery processes of elements that diffusely occur in different waste streams. In a systematic series of tests under laboratory conditions the accumulation behaviour for many different elements including rare earth metals of a selection of candidate plants growing on sewage sludge, incineration residues and industrial leftovers was assessed (quantitavely and qualitatively). Growth performance of these plants as well as the most suitable substrate properties were evaluated. The results of this project provided the groundwork for further research and development steps that might bring to practical implementation a technological option with potentially huge benefits: The recovery of valuable metal resources from sewage sludge, incineration ashes and metal rich wastewaters by environmentally friendly and low energy means. Simultaneous decontamination of the input substrates from heavy metals, opening the possibility for these nutrient streams to be redirected to biological regeneration processes (for example use as fertilizers in agriculture) without fear of polluting soils with heavy metal loads. Generation of biomass on contaminated substrates can yield usable energy surplus through incineration during or after processing.

  17. Speciation and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence.

    PubMed

    Lu, Lingli; Liao, Xingcheng; Labavitch, John; Yang, Xiaoe; Nelson, Erik; Du, Yonghua; Brown, Patrick H; Tian, Shengke

    2014-11-01

    Differences in metal homeostasis among related plant species can give important information of metal hyperaccumulation mechanisms. Speciation and distribution of Zn were investigated in a hyperaccumulating population of Sedum alfredii by using extended X-ray absorption fine structure and micro-synchrotron X-ray fluorescence (μ-XRF), respectively. The hyperaccumulator uses complexation with oxygen donor ligands for Zn storage in leaves and stems, and variations in the Zn speciation was noted in different tissues. The dominant chemical form of Zn in leaves was most probably a complex with malate, the most prevalent organic acid in S. alfredii leaves. In stems, Zn was mainly associated with malate and cell walls, while Zn-citrate and Zn-cell wall complexes dominated in the roots. Two-dimensional μ-XRF images revealed age-dependent differences in Zn localization in S. alfredii stems and leaves. In old leaves of S. alfredii, Zn was high in the midrib, margin regions and the petiole, whereas distribution of Zn was essentially uniform in young leaves. Zinc was preferentially sequestered by cells near vascular bundles in young stems, but was highly localized to vascular bundles and the outer cortex layer of old stems. The results suggest that tissue- and age-dependent variations of Zn speciation and distribution occurred in the hyperaccumulator S. alfredii, with most of the Zn complexed with malate in the leaves, but a shift to cell wall- and citric acid-Zn complexes during transportation and storage in stems and roots. This implies that biotransformation in Zn complexation occurred during transportation and storage processes in the plants of S. alfredii. PMID:25306525

  18. Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation.

    PubMed

    Han, Xiaojiao; Yin, Hengfu; Song, Xixi; Zhang, Yunxing; Liu, Mingying; Sang, Jiang; Jiang, Jing; Li, Jihong; Zhuo, Renying

    2016-06-01

    The hyperaccumulating ecotype of Sedum alfredii Hance is a cadmium (Cd)/zinc/lead co-hyperaccumulating species of Crassulaceae. It is a promising phytoremediation candidate accumulating substantial heavy metal ions without obvious signs of poisoning. However, few studies have focused on the regulatory roles of miRNAs and their targets in the hyperaccumulating ecotype of S. alfredii. Here, we combined analyses of the transcriptomics, sRNAs and the degradome to generate a comprehensive resource focused on identifying key regulatory miRNA-target circuits under Cd stress. A total of 87 721 unigenes and 356 miRNAs were identified by deep sequencing, and 79 miRNAs were differentially expressed under Cd stress. Furthermore, 754 target genes of 194 miRNAs were validated by degradome sequencing. A gene ontology (GO) enrichment analysis of differential miRNA targets revealed that auxin, redox-related secondary metabolism and metal transport pathways responded to Cd stress. An integrated analysis uncovered 39 pairs of miRNA targets that displayed negatively correlated expression profiles. Ten miRNA-target pairs also exhibited negative correlations according to a real-time quantitative PCR analysis. Moreover, a coexpression regulatory network was constructed based on profiles of differentially expressed genes. Two hub genes, ARF4 (auxin response factor 4) and AAP3 (amino acid permease 3), which might play central roles in the regulation of Cd-responsive genes, were uncovered. These results suggest that comprehensive analyses of the transcriptomics, sRNAs and the degradome provided a useful platform for investigating Cd hyperaccumulation in S. alfredii, and may provide new insights into the genetic engineering of phytoremediation. PMID:26801211

  19. Elemental distribution in reproductive and neural organs of the Epilachna nylanderi (Coleoptera: Coccinellidae), a phytophage of nickel hyperaccumulator Berkheya coddii (Asterales: Asteraceae) by micro-PIXE.

    PubMed

    Mesjasz-Przybyłowicz, Jolanta; Orłowska, Elżbieta; Augustyniak, Maria; Nakonieczny, Mirosław; Tarnawska, Monika; Przybyłowicz, Wojciech; Migula, Paweł

    2014-01-01

    The phenomenon of metal hyperaccumulation by plants is often explained by a pathogen or herbivore defense hypothesis. However, some insects feeding on metal hyperaccumulating plants are adapted to the high level of metals in plant tissues. Former studies on species that feed on the leaves of Berkheya coddii Roessler 1958 (Asteraceae), a nickel-hyperaccumulating plant, demonstrated several protective mechanisms involved in internal distribution, immobilization, and elimination of Ni from the midgut and Malpighian tubules. These species are mainly coleopterans, including the lady beetle, Epilachna nylanderi (Mulsant 1850) (Coleoptera: Coccinellidae), collected from the ultramafic ecosystem near Barberton in South Africa. By performing particle-induced X-ray emission microanalysis elemental microanalysis (PIXE), this study examined whether Ni may be harmful to internal body systems that decide on insect reactivity (central nervous system [CNS]), their reproduction, and the relationships between Ni and other micronutrients. Data on elemental distribution of nine selected elements in target organs of E. nylanderi were compared with the existing data for other insect species adapted to the excess of metals. Micro-PIXE maps of seven regions of the CNS showed Ni mainly in the neural connectives, while cerebral ganglia were better protected. Concentrations of other bivalent metals were lower than those of Ni. Testis, compared with other reproductive organs, showed low amounts of Ni. Zn was effectively regulated at physiological dietary levels. In insects exposed to excess dietary Zn, it was also accumulated in the reproductive organs. Comparison of E. nylanderii with other insects that ingest hyperaccumulating plants, especially chrysomelid Chrysolina clathrata (Clark) (Coleoptera: Chrysomelidae), showed lower protection of the CNS and reproductive organs. PMID:25399425

  20. A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot District, Tak Province, Thailand: (1) Determination of Cd-hyperaccumulating plants.

    PubMed

    Khaokaew, Saengdao; Landrot, Gautier

    2015-11-01

    The cadmium (Cd) phytoremediation capabilities of Gynura pseudochina, Chromolaena odorata, Conyza sumatrensis, Crassocephalum crepidioides and Nicotiana tabacum were determined by conducting in-situ experiments in a highly Cd-contaminated agricultural field at Mae Sot District, Tak Province, Thailand. Most of these five plant species, which are commonly found in Thailand, previously demonstrated Cd-hyperaccumulating capacities under greenhouse conditions. This study represented an important initial step in determining if any of these plants could, under field-conditions, effectively remove Cd from the Mae Sot contaminated fields, which represent a health threat to thousands of local villagers. All plant species had at least a 95% survival rate on the final harvest day. Additionally, all plant species, except C. odorata, could hyperaccumulate the extractable Cd amounts present in the soil, based on their associated Bioaccumulation Factor (BAF), Translocation Factor (TF), and background Vegetation Factor (VF). Therefore, the four Cd-hyperaccumulating plant species identified in this study may successfully treat a majority of contaminated fields at Mae Sot, as it was previously reported that Cd amounts present in a number of these soils were mostly available. PMID:25454203

  1. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.

    TOXLINE Toxicology Bibliographic Information

    Tang L; Ying RR; Jiang D; Zeng XW; Morel JL; Tang YT; Qiu RL

    2013-12-01

    Mechanisms of cadmium (Cd)-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata were investigated using photosynthesis limitation analysis. P.divaricata seedlings were grown in nutrient solution containing 0, 5, 10, 25, 50, or 75?M Cd for 2 weeks. Total limitations to photosynthesis (TL) increased from 0% at 5?M Cd to 68.8% at 75?M Cd. CO2 diffusional limitation (DL) made the largest contribution to TL, accounting for 93-98% of TL in the three highest Cd treatments, compared to just 2-7% of TL attributable to biochemical limitation (BL). Microscopic imaging revealed significantly decreased stomatal density and mesophyll thickness in the three highest Cd treatments. Chlorophyll fluorescence parameters related to photosynthetic biochemistry (Fv/Fm, NPQ, ?PSII, and qP) were not significantly decreased by increased Cd supply. Our results suggest that increased DL in leaves is the main cause of Cd-induced inhibition of photosynthesis in P.divaricata, possibly due to suppressed function of mesophyll and stomata. Analysis of chlorophyll fluorescence showed that Cd supply had little effect on photochemistry parameters, suggesting that the PSII reaction centers are not a main target of Cd inhibition of photosynthesis in P.divaricata.

  2. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.

    PubMed

    Tang, Lu; Ying, Rong-Rong; Jiang, Dan; Zeng, Xiao-Wen; Morel, Jean-Louis; Tang, Ye-Tao; Qiu, Rong-Liang

    2013-12-01

    Mechanisms of cadmium (Cd)-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata were investigated using photosynthesis limitation analysis. P.divaricata seedlings were grown in nutrient solution containing 0, 5, 10, 25, 50, or 75?M Cd for 2 weeks. Total limitations to photosynthesis (TL) increased from 0% at 5?M Cd to 68.8% at 75?M Cd. CO2 diffusional limitation (DL) made the largest contribution to TL, accounting for 93-98% of TL in the three highest Cd treatments, compared to just 2-7% of TL attributable to biochemical limitation (BL). Microscopic imaging revealed significantly decreased stomatal density and mesophyll thickness in the three highest Cd treatments. Chlorophyll fluorescence parameters related to photosynthetic biochemistry (Fv/Fm, NPQ, ?PSII, and qP) were not significantly decreased by increased Cd supply. Our results suggest that increased DL in leaves is the main cause of Cd-induced inhibition of photosynthesis in P.divaricata, possibly due to suppressed function of mesophyll and stomata. Analysis of chlorophyll fluorescence showed that Cd supply had little effect on photochemistry parameters, suggesting that the PSII reaction centers are not a main target of Cd inhibition of photosynthesis in P.divaricata. PMID:24077231

  3. [Effects of dissolved organic matter derived from hyperaccumulator Sedum alfredii Hance rhizosphere on Zn adsorption and desorption in soil].

    PubMed

    Li, Ting-qiang; Zhu, En; Yang, Xiao-e; Shentu, Jia-li

    2008-04-01

    The study with pot experiment and simulation test showed that after planted hyperaccumulator Sedum alfredii Hance on mining soil, the water soluble Zn and NH4OAc extractable Zn in rhizosphere were decreased obviously, while the available Zn in non-rhizosphere had less change. The pH value of rhizosphere soil was decreased by 0. 3 units, whereas the organic matter and dissolved organic matter (DOM) contents were increased by 13.6% and 20.9%, respectively, compared with the soil without S. alfredii. The effects of DOM from S. alfredii rhizosphere on Zn absorption and desorption varied with the kinds of test soils. After the addition of rhizosphere DOM, the maximal absorption capacity (Xm) of mining soil, quaternary red clay soil, and fluavio-marine yellow loamy soil was reduced by 17.8%, 21.9% and 27.7%, respectively, whereas the addition of non-rhizosphere DOM had no effects on Zn absorption. The Zn desorption in the three soils, especially in fluavio-marine yellow loamy soil, was promoted by the addition of rhizosphere DOM. It was indicated that the DOM from S. alfredii rhizosphere could reduce the maximal absorption capacity and accelerate the desorption of adsorbed Zn, and thus, increase the Zn mobility and bioavailability. PMID:18593047

  4. The Hyperaccumulator Alyssum murale uses Complexation with Nitrogen and Oxygen Donor Ligands for Ni Transport and Storage

    SciTech Connect

    McNear, Jr., D.; Chanay, R; Sparks, D

    2010-01-01

    The Kotodesh genotype of the nickel (Ni) hyperaccumulator Alyssum murale was examined to determine the compartmentalization and internal speciation of Ni, and other elements, in an effort to ascertain the mechanism used by this plant to tolerate extremely high shoot (stem and leaf) Ni concentrations. Plants were grown either hydroponically or in Ni enriched soils from an area surrounding an historic Ni refinery in Port Colborne, Ontario, Canada. Electron probe micro-analysis (EPMA) and synchrotron based micro X-ray fluorescence ({mu}-SXRF) spectroscopy were used to determine the metal distribution and co-localization and synchrotron X-ray and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopies were used to determine the Ni speciation in plant parts and extracted sap. Nickel is concentrated in the dermal leaf and stem tissues of A. murale bound primarily to malate along with other low molecular weight organic ligands and possibly counter anions (e.g., sulfate). Ni is present in the plant sap and vasculature bound to histidine, malate and other low molecular weight compounds. The data presented herein supports a model in which Ni is transported from the roots to the shoots complexed with histidine and stored within the plant leaf dermal tissues complexed with malate, and other low molecular weight organic acids or counter-ions.

  5. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.

    PubMed

    Huang, Yi; Miyauchi, Keisuke; Inoue, Chihiro; Endo, Ginro

    2016-03-01

    In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50 μg/L, 500 μg/L, and 1000 μg/L) to lower than the detection limit (0.1 μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water. PMID:26549187

  6. [Effects of Soil Moisture on Phytoremediation of As-Containinated Soils Using As-Hyperaccumulator Pteris vittata L].

    PubMed

    Liu, Qiu-xin; Yan, Xiu-lan; Liao, Xiao-yong; Lin, Long-yong; Yang, Jing

    2015-08-01

    A pot experiment was carried out to study the effects of soil moisture on the growth and arsenic uptake of As-hyperaccumulator Pteris vittata L. The results showed that the remediation efficiency of As was the highest when the soil moisture was between 35%-45%. P. vittata grew best under 45% water content, and its aboveground and underground plant dry weights were 2.95 g x plant(-1) and 11.95 g x plant(-1), respectively; the arsenic concentration in aboveground and roots was the highest under 35% water content, and 40% content was the best for accumulation of arsenic in P. vittata. Moreover, controlling the soil moisture to 35%-45% enhanced the conversion of As(V) to As(III) in aboveground plant, and promoted arsenic detoxification in P. vittata. These above results showed that soil moisture played an important role in the absorption and transport of arsenic by P. vittata. The results of this study can provide important guidance for the large-scale planting of P. vittata and the moisture management measures in engineering application. PMID:26592040

  7. Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyperaccumulator plant Alyssum inflatum.

    PubMed

    Ghasemi, Rasoul; Ghaderian, S Majid; Krämer, Ute

    2009-11-01

    The divalent cations of several transition metal elements have similar chemical properties and, when present in excess, one metal can interfere with the homeostasis of another. To better understand the role of interactions between transition metals in the development of metal toxicity symptoms in plants, the effects of exposure to excess nickel (Ni) on copper (Cu) and iron (Fe) homeostasis in the Ni hyperaccumulator plant Alyssum inflatum were examined. Alyssum inflatum was hypertolerant to Ni, but not to Cu. Exposure to elevated subtoxic Ni concentrations increased Cu sensitivity, associated with enhanced Cu accumulation and enhanced root surface Cu(II)-specific reductase activity. Exposure to elevated Ni concentrations resulted in an inhibition of root-to-shoot translocation of Fe and concentration-dependent progressive Fe accumulation in root pericycle, endodermis and cortex cells of the differentiation zone. Shoot Fe concentrations, chlorophyll concentrations and Fe-dependent antioxidant enzyme activities were decreased in Ni-exposed plants when compared with unexposed controls. Foliar Fe spraying or increased Fe supply to roots ameliorated the chlorosis observed under exposure to high Ni concentrations. These results suggest that Ni interferes with Cu regulation and that the disruption of root-to-shoot Fe translocation is a major cause of nickel toxicity symptoms in A. inflatum. PMID:19691676

  8. Subcellular distribution of rare earth elements and characterization of their binding species in a newly discovered hyperaccumulator Pronephrium simplex.

    PubMed

    Lai, Ying; Wang, Qiuquan; Yang, Limin; Huang, Benli

    2006-08-15

    Subcellular distribution of rare earth elements (REEs, including 14 lanthanides and yttrium) in a newly discovered REE hyperaccumulator, Pronephrium simplex (P. simplex), was determined by a chemical sequence extraction followed by ICP-MS analysis. Results showed that most REEs are associated with cell wall and proteins, and REEs concentration in the proteins, 2899.5mugg(-1), is much higher than those in the cell wall; in the chloroplast of P. simplex, REEs distribute almost equally in chloroplast membrane and thylakoid, while most REEs in the thylakoid are binding with photosystem II (PS II); a new REE-binding peptide in the lamina of P. simplex, which can accumulate REEs up to 3000mugg(-1) and has higher affinity with light REEs, was characterized, indicating that its molecular mass is 5073Da, and may have beta-sheet structure; isoelectrofocusing electrophoretic photograph indicated that it is acidic peptide with IP of 3.7. Such information should be useful for understanding of both the storage and physiological role of REEs in P. simplex and further studies on the phytoremediation of REEs contaminated environments. PMID:18970723

  9. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. PMID:26469935

  10. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    PubMed

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils. PMID:26874625

  11. Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation.

    PubMed

    Filatov, Victor; Dowdle, John; Smirnoff, Nicholas; Ford-Lloyd, Brian; Newbury, H John; Macnair, Mark R

    2006-09-01

    One of the challenges of comparative genomics is to identify specific genetic changes associated with the evolution of a novel adaptation or trait. We need to be able to disassociate the genes involved with a particular character from all the other genetic changes that take place as lineages diverge. Here we show that by comparing the transcriptional profile of segregating families with that of parent species differing in a novel trait, it is possible to narrow down substantially the list of potential target genes. In addition, by assuming synteny with a related model organism for which the complete genome sequence is available, it is possible to use the cosegregation of markers differing in transcription level to identify regions of the genome which probably contain quantitative trait loci (QTLs) for the character. This novel combination of genomics and classical genetics provides a very powerful tool to identify candidate genes. We use this methodology to investigate zinc hyperaccumulation in Arabidopsis halleri, the sister species to the model plant, Arabidopsis thaliana. We compare the transcriptional profile of A. halleri with that of its sister nonaccumulator species, Arabidopsis petraea, and between accumulator and nonaccumulator F(3)s derived from the cross between the two species. We identify eight genes which consistently show greater expression in accumulator phenotypes in both roots and shoots, including two metal transporter genes (NRAMP3 and ZIP6), and cytoplasmic aconitase, a gene involved in iron homeostasis in mammals. We also show that there appear to be two QTLs for zinc accumulation, on chromosomes 3 and 7. PMID:16911220

  12. Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria.

    PubMed

    Han, Yong-He; Fu, Jing-Wei; Chen, Yanshan; Rathinasabapathi, Bala; Ma, Lena Q

    2016-02-01

    Bacteria-mediated arsenic (As) transformation and their impacts on As and P uptake and plant growth in As-hyperaccumulator Pteris vittata (PV) were investigated under sterile condition. All As-resistant bacteria (9 endophytic and 6 rhizospheric) were As-reducers except one As-oxidizer. After growing two months in media with 37.5 mg kg(-1) AsV, As concentrations in the fronds and roots were 3655-5389 (89-91% AsIII) and 971-1467 mg kg(-1) (41-73% AsIII), corresponding to 22-52% decrease in the As in the media. Bacterial inoculation enhanced As and P uptake by up to 47 and 69%, and PV growth by 20-74%, which may be related to elevated As and P in plants (r = 0.88-0.97, p < 0.05). Though AsV was supplied, 95% of the As in the bacteria-free media was AsIII, suggesting efficient efflux of AsIII by PV roots (120 µg g(-1) root fw). This was supported by the fact that no AsV was detected in media inoculated with As-reducers while 95% of AsV was detected with As-oxidizer. Our data showed that, under As-stress, PV reduced As toxicity by efficient AsIII efflux into media and AsIII translocation to the fronds, and bacteria benefited PV growth probably via enhanced As and P uptake. PMID:26547029

  13. Increased ecological risk due to the hyperaccumulation of As in Pteris cretica during the phytoremediation of an As-contaminated site.

    PubMed

    Jeong, Seulki; Moon, Hee Sun; Nam, Kyoungphile

    2015-03-01

    Ecological risk due to the hyperaccumulation of As in Pteris cretica during phytoremediation was evaluated at an abandoned As-contaminated site. Five receptor groups representing terrestrial invertebrates, avian insectivores, small mammals, herbivores, and omnivores were selected as potentially affected ecological receptors. Soil and food ingestion were considered as major exposure pathways. Phytoremediation was performed with P.cretica only and with both P.cretica and siderophores to enhance plant uptake of As. Ecological hazard index (EHI) values for the small mammal greatly exceeded 1.0 even after three weeks of growth regardless of siderophore application, probably due to its limited home range. For the mammalian herbivore, which mainly consumes plant foliage, the EHI values were greater than 5.73 after seven weeks without siderophore application, but the value increased sharply to 29.3 at seven weeks when siderophores were applied. This increased risk could be attributed to the facilitated translocation of As from roots to stems and leaves in P.cretica. Our results suggest that, when a phytoremediation strategy is considered for metals remediation, its ecological consequences should be taken into account to prevent the spread of hyperaccumulated heavy metals throughout the food chain of ecological receptors. Uncertainties involved in the ecological risk assessment process were also discussed. PMID:25441929

  14. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions.

    PubMed

    Tlustoš, Pavel; Břendová, Kateřina; Száková, Jiřina; Najmanová, Jana; Koubová, Kateřina

    2016-01-01

    Three Cd and Zn hyperaccumulating plant species Noccaea caerulescens Noccaea praecox and Arabidopsis halleri (Brassicacceae) were cultivated in seven subsequent vegetation seasons in both pot and field conditions in soil highly contaminated with Cd, Pb, and Zn. The results confirmed the hyperaccumulation ability of both plant species, although A. halleri showed lower Cd uptake compared to N. caerulescens. Conversely, Pb phytoextraction was negligible for both species in this case. Because of the high variability in plant yield and element contents in the aboveground biomass of plants, great variation in Cd and Zn accumulation was observed during the experiment. The extraction ability in field conditions varied in the case of Cd from 0.2 to 2.9 kg ha(-1) (N. caerulescens) and up to 0.15 kg ha(-1) (A. halleri), and in the case of Zn from 0.2 to 6.4 kg ha(-1) (N. caerulescens) and up to 13.8 kg.ha(-1) (A. halleri). Taking into account the 20 cm root zone of the soil, the plants were able to extract up to 4.1% Cd and 0.2% Zn in one season. However, cropping measures should be optimized to improve and stabilize the long-term phytoextraction potential of these plants. PMID:26280307

  15. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator.

    PubMed

    Grison, Claire M; Jackson, Stephen; Merlot, Sylvain; Dobson, Alan; Grison, Claude

    2015-05-01

    A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (ChimEc512(T)) was isolated from 56 host seedlings of the hyperaccumulating Anthyllis vulneraria legume, which was on an old zinc mining site at Les Avinières, Saint-Laurent-Le-Minier, Gard, South of France. On the basis of 16S rRNA gene sequence similarities, strain ChimEc512(T) was shown to belong to the genus Rhizobium and to be most closely related to Rhizobium endophyticum CCGE 2052(T) (98.4%), Rhizobium tibeticum CCBAU 85039(T) (98.1%), Rhizobium grahamii CCGE 502(T) (98.0%) and Rhizobium mesoamericanum CCGE 501(T) (98.0%). The phylogenetic relationships of ChimEc512(T) were confirmed by sequencing and analyses of recA and atpD genes. DNA-DNA relatedness values of strain ChimEc512(T) with R. endophyticum CCGE 2052(T), R. tibeticum CCBAU 85039(T), R. mesoamericanum CCGE 52(T), Rhizobium grahamii CCGE 502(T), Rhizobium etli CCBAU 85039(T) and Rhizobium radiobacter KL09-16-8-2(T) were 27, 22, 16, 18, 19 and 11%, respectively. The DNA G+C content of strain ChimEc512(T) was 58.9 mol%. The major cellular fatty acid was C18 : 1ω7c, characteristic of the genus Rhizobium . The polar lipid profile included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and moderate amounts of aminolipids, phospholipid and sulfoquinovosyl diacylglycerol. Although ChimEc512(T) was able to nodulate A. vulneraria, the nodC and nifH genes were not detected by PCR. The rhizobial strain was tolerant to high concentrations of heavy metals: up to 35 mM Zn and up to 0.5 mM Cd and its growth kinetics was not impacted by Zn. The results of DNA-DNA hybridizations and physiological tests allowed genotypic and phenotypic differentiation of strain ChimEc512(T) from species of the genus Rhizobium with validly published names. Strain ChimEc512(T), therefore, represents a novel species, for which the name Rhizobium metallidurans sp. nov. is proposed, with the type strain ChimEc512(T) ( =DSM 26575 = CIP 110550(T)). PMID:25701848

  16. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    PubMed

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas Bacillus sp. E1S2 significantly enhanced the accumulation of Zn (18%) in plants compared with non-inoculated controls. The inoculated strains also showed high levels of colonization in rhizosphere and plant tissues. Results demonstrate the potential to improve phytoextraction of soils contaminated with multiple heavy metals by inoculating metal hyperaccumulating plants with their own selected functional endophytic bacterial strains. PMID:25796039

  17. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana

    PubMed Central

    Schat, Henk; Aarts, Mark G. M.

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5’ deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473

  18. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly technical progress report, March 20, 1997--June 19, 1997

    SciTech Connect

    Kochian, L.

    1997-11-01

    This laboratory has been involved in a collaborative project focusing on a range of issues related to the phytoremediation of heavy metal-and radionuclide- contaminated soils. While much of the research has been fundamental in nature, involving physiological and molecular characterizations of the mechanisms of hyperaccumulation in plants, the laboratory is also investigating more practical issues related to phytoremediation. A central issue in this latter research has been the identification of amendments capable of increasing the bioavailability and subsequent phytoextraction of radionuclides. The results described here detail these efforts for uranium and Cs-137. A study was also conducted on a Cs-137 contaminated site at Brookhaven National Laboratory (BNL), which allowed application of the laboratory and greenhouse results to a field setting.

  19. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species, Quarterly technical progress report, December 20, 1995--March 20, 1995

    SciTech Connect

    Kochian, L.; Brady, D.; Last, M.; Ebbs, S.

    1995-12-01

    Although the period covered by this progress report began on December 20, 1994, which was the date that DOE approved the Interagency Agreement, the agreement was not approved by USDA until January 9, 1995 and the first scientists working on the project were not hired until February 1, 1995. The first goal of the research supported by the Interagency Agreement is to use hydroponic techniques to identify plant species and genotypes with potential for heavy metal hyperaccumulation for planting on a test site at Silverbow Creek and for radionuclide ({sup 90}Sr and {sup 137}Cs) accumulation on a test site at INEL, Idaho, later this year. The second goal of this research is to identify soil amendment procedures that will enhance the bioavailability of heavy metals and radionuclides in the soil without increasing the movement of the contaminants of concern (COC`s) into the groundwater. Our initial research covered in this report focuses on the first goal.

  20. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance.

    PubMed

    Mirouze, Marie; Sels, Jan; Richard, Odile; Czernic, Pierre; Loubet, Stéphanie; Jacquier, Amaury; François, Isabelle E J A; Cammue, Bruno P A; Lebrun, Michel; Berthomieu, Pierre; Marquès, Laurence

    2006-08-01

    The metal tolerance of metal hyper-accumulating plants is a poorly understood mechanism. In order to unravel the molecular basis of zinc (Zn) tolerance in the Zn hyper-accumulating plant Arabidopsis halleri ssp. halleri, we carried out a functional screening of an A. halleri cDNA library in the yeast Saccharomyces cerevisiae to search for genes conferring Zn tolerance to yeast cells. The screening revealed four A. halleri defensin genes (AhPDFs), which induced Zn but not cadmium (Cd) tolerance in yeast. The expression of AhPDF1.1 under the control of the 35S promoter in A. thaliana made the transgenic plants more tolerant to Zn than wild-type plants, but did not change the tolerance to Cd, copper (Cu), cobalt (Co), iron (Fe) or sodium (Na). Thus, AhPDF1.1 is able to confer Zn tolerance both to yeast and plants. In A. halleri, defensins are constitutively accumulated at a higher level in shoots than in A. thaliana. A. halleri defensin pools are Zn-responsive, both at the mRNA and protein levels. In A. thaliana, some but not all defensin genes are induced by ZnCl2 treatment, and these genes are not induced by NaCl treatment. Defensins, found in a very large number of organisms, are known to be involved in the innate immune system but have never been found to play any role in metal physiology. Our results support the proposition that defensins could be involved in Zn tolerance in A. halleri, and that a role for plant defensins in metal physiology should be considered. PMID:16792695

  1. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-02-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. PMID:26650084

  2. The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb(2+) by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity.

    PubMed

    Estrella-Gmez, N; Mendoza-Czatl, D; Moreno-Snchez, R; Gonzlez-Mendoza, D; Zapata-Prez, O; Martnez-Hernndez, A; Santamara, J M

    2009-03-01

    The relationship between accumulation of Pb(2+) and the activation of chelation and metal sequestration mechanisms mediated by phytochelatins (PC) was analyzed in the Pb(2+) hyperaccumulator aquatic fern Salvinia minima, after exposure to 40microM Pb(NO(3))(2). The tissue accumulation pattern of lead and the phytochelatin biosynthesis responses were analyzed in both, S. minima submerged root-like modified fronds (here named "roots"), and in its aerial leaf-like fronds ("leaves"). S. minima roots accumulated a significantly higher concentrations of Pb(+2) than leaves did. Accumulation of Pb(2+) in roots was bi-phasic with a first uptake phase reached after 3h exposure and a second higher uptake phase reached after 24h exposure. In leaves, a single delayed, smaller uptake phase was attained only after 9h of exposure. In roots lead accumulation correlated with an increased phytochelatin synthase (PCS) activity and an enhanced PC production. A higher proportion of polymerized PC(4) was observed in both tissues of exposed S. minima plants relative to unexposed ones, although a higher concentration of PC(4) was found in roots than in leaves. PCS activity and Pb(2+) accumulation was also higher in roots than in leaves. The expression levels of the S. minima PCS gene (SmPCS), in response to Pb(2+) treatment, were also evaluated. In S. minima leaves, the accumulation of Pb(2+) correlated with a marked increase in expression of SmPCS, suggesting a transcriptional regulation in the PCS activation and PC accumulation in this S. minima tissue. However, in roots, the basal expression of SmPCS was down-regulated after Pb(2+) treatment. This fact did not correlate with the later but strong increase in both, PCS activity and PC production; suggesting that the PC biosynthesis activation in S. minima roots occurs only by post-translational activation of PCS. Taken together, our data suggest that the accumulation of PC in S. minima is a direct response to Pb(2+) accumulation, and phytochelatins do participate as one of the mechanism to cope with Pb(2+) of this Pb-hyperaccumulator aquatic fern. PMID:19110323

  3. "Towards practical cadmium phytoextraction with Thlaspi caerulescens"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During 2005-2007, a series of field trials were conducted to investigate the potential of Thlapsi caerulescens ecotypes derived from southern France to phytoextract localized Cd/Zn contamination in Thailand. Soil treatments included pH variation and fertilization level. T. caerulescens ecotypes w...

  4. Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils.

    PubMed

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C C; Li, Baoqin; Long, Xinxian

    2014-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14-0.16 L/mg and n values were 1.51-2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K > or = 1.49 L/mg and n > or = 3.59. PMID:24912231

  5. A Vacuolar Arsenite Transporter Necessary for Arsenic Tolerance in the Arsenic Hyperaccumulating Fern Pteris vittata Is Missing in Flowering Plants[W][OA

    PubMed Central

    Indriolo, Emily; Na, GunNam; Ellis, Danielle; Salt, David E.; Banks, Jo Ann

    2010-01-01

    The fern Pteris vittata tolerates and hyperaccumulates exceptionally high levels of the toxic metalloid arsenic, and this trait appears unique to the Pteridaceae. Once taken up by the root, arsenate is reduced to arsenite as it is transported to the lamina of the frond, where it is stored in cells as free arsenite. Here, we describe the isolation and characterization of two P. vittata genes, ACR3 and ACR3;1, which encode proteins similar to the ACR3 arsenite effluxer of yeast. Pv ACR3 is able to rescue the arsenic-sensitive phenotypes of yeast deficient for ACR3. ACR3 transcripts are upregulated by arsenic in sporophyte roots and gametophytes, tissues that directly contact soil, whereas ACR3;1 expression is unaffected by arsenic. Knocking down the expression of ACR3, but not ACR3;1, in the gametophyte results in an arsenite-sensitive phenotype, indicating that ACR3 plays a necessary role in arsenic tolerance in the gametophyte. We show that ACR3 localizes to the vacuolar membrane in gametophytes, indicating that it likely effluxes arsenite into the vacuole for sequestration. Whereas single-copy ACR3 genes are present in moss, lycophytes, other ferns, and gymnosperms, none are present in angiosperms. The duplication of ACR3 in P. vittata and the loss of ACR3 in angiosperms may explain arsenic tolerance in this unusual group of ferns while precluding the same trait in angiosperms. PMID:20530755

  6. Disruption of a rice gene for α-glucan water dikinase, OsGWD1, leads to hyperaccumulation of starch in leaves but exhibits limited effects on growth

    PubMed Central

    Hirose, Tatsuro; Aoki, Naohiro; Harada, Yusuke; Okamura, Masaki; Hashida, Yoichi; Ohsugi, Ryu; Akio, Miyao; Hirochika, Hirohiko; Terao, Tomio

    2013-01-01

    To identify potential regulators of photoassimilate partitioning, we screened for rice mutant plants that accumulate high levels of starch in the leaf blades, and a mutant line leaf starch excess 1 (LSE1) was obtained and characterized. The starch content in the leaf blades of LSE1 was more than 10-fold higher than that in wild-type plants throughout the day, while the sucrose content was unaffected. The gene responsible for the LSE1 phenotype was identified by gene mapping to be a gene encoding α-glucan water dikinase, OsGWD1 (Os06g0498400), and a 3.4-kb deletion of the gene was found in the mutant plant. Despite the hyperaccumulation of starch in their leaf blades, LSE1 plants exhibited no significant change in vegetative growth, presenting a clear contrast to the reported mutants of Arabidopsis thaliana and Lotus japonicus in which disruption of the genes for α-glucan water dikinase leads to marked inhibition of vegetative growth. In reproductive growth, however, LSE1 exhibited fewer panicles per plant, lower percentage of ripened grains and smaller grains; consequently, the grain yield was lower in LSE1 plants than in wild-type plants by 20~40%. Collectively, although α-glucan water dikinase was suggested to have universal importance in leaf starch degradation in higher plants, the physiological priority of leaf starch in photoassimilate allocation may vary among plant species. PMID:23750161

  7. Stable isotope tracing: a powerful tool for selenium speciation and metabolic studies in non-hyperaccumulator plants (ryegrass Lolium perenne L.).

    PubMed

    Di Tullo, Pamela; Versini, Antoine; Bueno, Maïté; Le Hécho, Isabelle; Thiry, Yves; Biron, Philippe; Castrec-Rouelle, Maryse; Pannier, Florence

    2015-12-01

    Selenium is both essential and toxic for mammals; the range between the two roles is narrow and not only dose-dependent but also related to the chemical species present in foodstuff. Unraveling the metabolism of Se in plants as a function of Se source may thus lead to ways to increase efficiency of fertilization procedures in selenium deficient regions. In this study, stable-isotope tracing was applied for the first time in plants to simultaneously monitor the bio-incorporation of two inorganic Se species commonly used as foodstuff enrichment sources. Occurrence and speciation of Se coming from different Se sources were investigated in root and leaf extracts of ryegrass (Lolium perenne L.), which had been co-exposed to two labeled Se species ((77)SeIV and (82)SeVI). Although the plant absorbed similar amounts of Se when supplied in the form of selenite or selenate, the results evidenced marked differences in speciation and tissues allocation. Selenite was converted into organic forms incorporated mostly into high molecular weight compounds with limited translocation to leaves, whereas selenate was highly mobile being little assimilated into organic forms. Double-spike isotopic tracer methodology makes it possible to compare the metabolism of two species-specific Se sources simultaneously in a single experiment and to analyze Se behavior in not-hyperaccumulator plants, the ICP-MS sensitivity being improved by the use of enriched isotopes. PMID:26427506

  8. Microbial Communities and Functional Genes Associated with Soil Arsenic Contamination and the Rhizosphere of the Arsenic-Hyperaccumulating Plant Pteris vittata L. ▿ †

    PubMed Central

    Xiong, Jinbo; Wu, Liyou; Tu, Shuxin; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Wang, Gejiao

    2010-01-01

    To understand how microbial communities and functional genes respond to arsenic contamination in the rhizosphere of Pteris vittata, five soil samples with different arsenic contamination levels were collected from the rhizosphere of P. vittata and nonrhizosphere areas and investigated by Biolog, geochemical, and functional gene microarray (GeoChip 3.0) analyses. Biolog analysis revealed that the uncontaminated soil harbored the greatest diversity of sole-carbon utilization abilities and that arsenic contamination decreased the metabolic diversity, while rhizosphere soils had higher metabolic diversities than did the nonrhizosphere soils. GeoChip 3.0 analysis showed low proportions of overlapping genes across the five soil samples (16.52% to 45.75%). The uncontaminated soil had a higher heterogeneity and more unique genes (48.09%) than did the arsenic-contaminated soils. Arsenic resistance, sulfur reduction, phosphorus utilization, and denitrification genes were remarkably distinct between P. vittata rhizosphere and nonrhizosphere soils, which provides evidence for a strong linkage among the level of arsenic contamination, the rhizosphere, and the functional gene distribution. Canonical correspondence analysis (CCA) revealed that arsenic is the main driver in reducing the soil functional gene diversity; however, organic matter and phosphorus also have significant effects on the soil microbial community structure. The results implied that rhizobacteria play an important role during soil arsenic uptake and hyperaccumulation processes of P. vittata. PMID:20833780

  9. Cadmium Sorption Characteristics of Soil Amendments and its Relationship with the Cadmium Uptake by Hyperaccumulator and Normal Plants in Amended Soils

    PubMed Central

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C.C.; Li, Baoqin; Long, Xinxian

    2013-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14–0.16 L/mg and n values were 1.51–2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K ≥ 1.49 L/mg and n ≥ 3.59. PMID:24912231

  10. Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata.

    PubMed

    Shi, Bo; Huang, Zekun; Xiang, Xu; Huang, Miaoqin; Wang, Wen-Xiong; Ke, Caihuan

    2015-01-01

    One paradigm of oysters as the hyper-accumulators of many toxic metals is the inter-individual variation of metals, but the molecular mechanisms remain very elusive. A comprehensive analysis of the transcriptome of Crassostrea angulata was conducted to reveal the relationship between gene expression and differential Cu body burden in oysters. Gene ontology analysis for the differentially expressed genes showed that the neurotransmitter transporter might affect the oyster behavior, which in turn led to difference in Cu accumulation. The ATP-binding cassette transporters superfamily played an important role in the maintenance of cell Cu homeostasis, vitellogenin and apolipophorin transport, and elimination of excess Cu. Gill and mantle Cu concentrations were significantly reduced after silencing the GABA transporter 2 (GAT2) gene, but increased after the injection of GABA receptor antagonists, suggesting that the function of GABA transporter 2 gene was strongly related to Cu accumulation. These findings demonstrated that GABA transporter can control the action of transmitter GABA in the nervous system, thereby affecting the Cu accumulation in the gills and mantles. PMID:26648252

  11. Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata

    NASA Astrophysics Data System (ADS)

    Shi, Bo; Huang, Zekun; Xiang, Xu; Huang, Miaoqin; Wang, Wen-Xiong; Ke, Caihuan

    2015-12-01

    One paradigm of oysters as the hyper-accumulators of many toxic metals is the inter-individual variation of metals, but the molecular mechanisms remain very elusive. A comprehensive analysis of the transcriptome of Crassostrea angulata was conducted to reveal the relationship between gene expression and differential Cu body burden in oysters. Gene ontology analysis for the differentially expressed genes showed that the neurotransmitter transporter might affect the oyster behavior, which in turn led to difference in Cu accumulation. The ATP-binding cassette transporters superfamily played an important role in the maintenance of cell Cu homeostasis, vitellogenin and apolipophorin transport, and elimination of excess Cu. Gill and mantle Cu concentrations were significantly reduced after silencing the GABA transporter 2 (GAT2) gene, but increased after the injection of GABA receptor antagonists, suggesting that the function of GABA transporter 2 gene was strongly related to Cu accumulation. These findings demonstrated that GABA transporter can control the action of transmitter GABA in the nervous system, thereby affecting the Cu accumulation in the gills and mantles.

  12. Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata

    PubMed Central

    Shi, Bo; Huang, Zekun; Xiang, Xu; Huang, Miaoqin; Wang, Wen-Xiong; Ke, Caihuan

    2015-01-01

    One paradigm of oysters as the hyper-accumulators of many toxic metals is the inter-individual variation of metals, but the molecular mechanisms remain very elusive. A comprehensive analysis of the transcriptome of Crassostrea angulata was conducted to reveal the relationship between gene expression and differential Cu body burden in oysters. Gene ontology analysis for the differentially expressed genes showed that the neurotransmitter transporter might affect the oyster behavior, which in turn led to difference in Cu accumulation. The ATP-binding cassette transporters superfamily played an important role in the maintenance of cell Cu homeostasis, vitellogenin and apolipophorin transport, and elimination of excess Cu. Gill and mantle Cu concentrations were significantly reduced after silencing the GABA transporter 2 (GAT2) gene, but increased after the injection of GABA receptor antagonists, suggesting that the function of GABA transporter 2 gene was strongly related to Cu accumulation. These findings demonstrated that GABA transporter can control the action of transmitter GABA in the nervous system, thereby affecting the Cu accumulation in the gills and mantles. PMID:26648252

  13. Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca americana and their impact on Mn accumulation of hybrid penisetum.

    PubMed

    Zhang, Wen-Hui; Chen, Wei; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2015-10-01

    Three hundred Mn-resistant endophytic bacteria were isolated from the Mn-hyperaccumulator, Phytolacca americana, grown at different levels of Mn (0, 1, and 10mM) stress. Under no Mn stress, 90%, 92%, and 11% of the bacteria produced indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, respectively. Under Mn stress, 68-94%, 91-92%, and 21-81% of the bacteria produced IAA, siderophore, and ACC deaminase, respectively. Greater percentages of ACC deaminase-producing bacteria were found in the Mn-treated P. americana. Furthermore, the ratios of IAA- and siderophore-producing bacteria were significantly higher in the Mn treated plant leaves, while the ratio of ACC deaminase-producing bacteria was significantly higher in the Mn treated-roots. Based on 16S rRNA gene sequence analysis, Mn-resistant bacteria were affiliated with 10 genera. In experiments involving hybrid penisetum grown in soils treated with 0 and 1000mgkg(-1) of Mn, inoculation with strain 1Y31 was found to increase the root (ranging from 6.4% to 18.3%) and above-ground tissue (ranging from 19.3% to 70.2%) mass and total Mn uptake of above-ground tissues (64%) compared to the control. Furthermore, inoculation with strain 1Y31 was found to increase the ratio of IAA-producing bacteria in the rhizosphere and bulk soils of hybrid penisetum grown in Mn-added soils. The results showed the effect of Mn stress on the ratio of the plant growth-promoting factor-producing endophytic bacteria of P. americana and highlighted the potential of endophytic bacterium as an inoculum for enhanced phytoremediation of Mn-polluted soils by hybrid penisetum plants. PMID:26114256

  14. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.

    PubMed

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-09-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium(2+)/hydrogen(+) antiporter, cation/hydrogen(+) exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  15. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.1[OPEN

    PubMed Central

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-01-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium2+/hydrogen+ antiporter, cation/hydrogen+ exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  16. Aluminium Uptake and Translocation in Al Hyperaccumulator Rumex obtusifolius Is Affected by Low-Molecular-Weight Organic Acids Content and Soil pH

    PubMed Central

    Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel

    2015-01-01

    Background and Aims High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. Methods We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Results Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of “oxalate plants.” The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. Conclusions In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids. PMID:25880431

  17. LC-MS and GC-MS metabolite profiling of nickel(II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel(II) ligand.

    PubMed

    Callahan, Damien L; Roessner, Ute; Dumontet, Vincent; Perrier, Nicolas; Wedd, Anthony G; O'Hair, Richard A J; Baker, Alan J M; Kolev, Spas D

    2008-01-01

    Targeted liquid chromatography-mass spectrometry (LC-MS) technology using size exclusion chromatography and metabolite profiling based on gas chromatography-mass spectrometry (GC-MS) were used to study the nickel-rich latex of the hyperaccumulating tree Sebertia acuminata. More than 120 compounds were detected, 57 of these were subsequently identified. A methylated aldaric acid (2,4,5-trihydroxy-3-methoxy-1,6-hexan-dioic acid) was identified for the first time in biological extracts and its structure was confirmed by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. After citric acid, it appears to be one of the most abundant small organic molecules present in the latex studied. Nickel(II) complexes of stoichiometry NiII:acid=1:2 were detected for these two acids as well as for malic, itaconic, erythronic, galacturonic, tartaric, aconitic and saccharic acids. These results provide further evidence that organic acids may play an important role in the transport and possibly in the storage of metal ions in hyperaccumulating plants. PMID:17765935

  18. Selective uptake, distribution, and redistribution of (109)Cd, (57)Co, (65)Zn, (63)Ni, and (134)Cs via xylem and phloem in the heavy metal hyperaccumulator Solanum nigrum L.

    PubMed

    Wei, Shuhe; Anders, Iwona; Feller, Urs

    2014-06-01

    The focus of this article was to explore the translocation of (109)Cd, (57)Co, (65)Zn, (63)Ni, and (134)Cs via xylem and phloem in the newly found hyperaccumulator Solanum nigrum L. Two experiments with the uptake via the roots and transport of (109)Cd, (57)Co, and (65)Zn labeled by roots, and the redistribution of (109)Cd, (65)Zn, (57)Co, (63)Ni, and (134)Cs using flap label in S. nigrum in a hydroponic culture with a standard nutrient solution were conducted. The results showed that (109)Cd added for 24 h to the nutrient medium of young plants was rapidly taken up, transferred to the shoot, and accumulated in the cotyledons and the oldest leaves but was not efficiently redistributed within the shoot afterward leading to a rather low content in the fruits. In contrast, (57)Co was more slowly taken up and released to the shoot, but afterward, this element was redistributed from older leaves to younger leaves and maturing fruits. (65)Zn was rapidly taken up and transferred to the shoot (mainly to the youngest leaves and not to the cotyledons). Afterward, this radionuclide was redistributed within the shoot to the youngest organs and finally accumulated in the maturing fruits. After flap labeling, all five heavy metals tested ((109)Cd, (57)Co, (65)Zn, (63)Ni, (134)Cs) were exported from the labeled leaf and redistributed within the plant. The accumulation in the fruits was most pronounced for (63)Ni and (65)Zn, while a relatively high percentage of (57)Co was finally found in the roots. (134)Cs was roughly in the middle of them. The transport of (109)Cd differed from that previously reported for wheat or lupin and might be important for the potential of S. nigrum to hyperaccumulate cadmium. PMID:24604268

  19. Inoculation with endophytic Bacillus megaterium 1Y31 increases Mn accumulation and induces the growth and energy metabolism-related differentially-expressed proteome in Mn hyperaccumulator hybrid pennisetum.

    PubMed

    Zhang, Wen-hui; He, Lin-yan; Wang, Qi; Sheng, Xia-Fang

    2015-12-30

    In this study, a hydroponic culture experiment was conducted in a greenhouse to investigate the molecular and microbial mechanisms involved in the endophytic Bacillus megaterium 1Y31-enhanced Mn tolerance and accumulation in Mn hyperaccumulator hybrid pennisetum. Strain 1Y31 significantly increased the dry weights (ranging from 28% to 94%) and total Mn uptake (ranging from 23% to 112%) of hybrid pennisetum treated with 0, 2, and 10mM Mn compared to the control. Total 98 leaf differentially expressed proteins were identified between the live and dead bacterial inoculated hybrid pennisetum. The major leaf differentially expressed proteins were involved in energy generation, photosynthesis, response to stimulus, metabolisms, and unknown function. Furthermore, most of the energy generation and photosynthesis-related proteins were up-regulated, whereas most of the response to stimulus and metabolism-related proteins were down-regulated under Mn stress. Notably, the proportion of indole-3-acetic acid (IAA)-producing endophytic bacteria was significantly higher in the bacterial inoculated plants under Mn stress. The results suggested that strain 1Y31 increased the growth and Mn uptake of hybrid pennisetum through increasing the efficiency of photosynthesis and energy metabolism as well as the proportion of plant growth-promoting endophytic bacteria in the plants. PMID:26241871

  20. Amino Acid Features of P1B-ATPase Heavy Metal Transporters Enabling Small Numbers of Organisms to Cope with Heavy Metal Pollution

    PubMed Central

    Ashrafi, E.; Alemzadeh, A.; Ebrahimi, M.; Ebrahimie, E.; Dadkhodaei, N.; Ebrahimi, M.

    2011-01-01

    Phytoremediation refers to the use of plants for extraction and detoxification of pollutants, providing a new and powerful weapon against a polluted environment. In some plants, such as Thlaspi spp, heavy metal ATPases are involved in overall metal ion homeostasis and hyperaccumulation. P1B-ATPases pump a wide range of cations, especially heavy metals, across membranes against their electrochemical gradients. Determination of the protein characteristics of P1B-ATPases in hyperaccumulator plants provides a new opportuntity for engineering of phytoremediating plants. In this study, using diverse weighting and modeling approaches, 2644 protein characteristics of primary, secondary, and tertiary structures of P1B-ATPases in hyperaccumulator and nonhyperaccumulator plants were extracted and compared to identify differences between proteins in hyperaccumulator and nonhyperaccumulator pumps. Although the protein characteristics were variable in their weighting, tree and rule induction models; glycine count, frequency of glutamine-valine, and valine-phenylalanine count were the most important attributes highlighted by 10, five, and four models, respectively. In addition, a precise model was built to discriminate P1B-ATPases in different organisms based on their structural protein features. Moreover, reliable models for prediction of the hyperaccumulating activity of unknown P1B-ATPase pumps were developed. Uncovering important structural features of hyperaccumulator pumps in this study has provided the knowledge required for future modification and engineering of these pumps by techniques such as site-directed mutagenesis. PMID:21573033

  1. Thlaspi arvense (Pennycress) germination, development and yield potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is being developed as an off-season rotation crop which precedes an annual soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season, with little impact on the subsequent soybean production. Penn...

  2. Thlaspi arvense (Pennycress) germination, bolting and mechanical harvest seed loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  3. Identification and validation of heavy metal and radionuclide accumulating terrestrial plant species. Quarterly technical progress report, June 21, 1995--September 20, 1995

    SciTech Connect

    Kochian, L.

    1995-12-31

    This quarterly report describes experiments on uptake of a variety of heavy metals by plants. Titles of report sections are (1) Alleviation of heavy-metal induced micronutrient deficiency through foliar fertilization, (2) Second screen for Zn, Cu, and Cd accumulation, (3) Characterization of the root Zn hyperaccumulation by Thlaspi caerulescens, (4) Comparison of commercial Brassica accessions obtained from the Iowa seed bank, (5) Second screening experiment for the accumulation of Cs and Sr by plants, (6) Effect of Ca on Cs and Sr accumulation by selected dicot species, and (7) Preliminary investigations into the forms of uranium taken up by plants.

  4. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species have adapted on such stress. The aim of this study is to investigate the behaviour of copper in plants and to assess its potential effect on the surrounding environment. To detect copper in biological samples electrochemical methods were employed particularly differential pulse voltammetry (DPV). Copper gave signals at 0.02 V measured by DPV. The obtained calibration dependence was linear (R2 = 0.995). Further, this method was utilized for determination of copper in real soil samples obtained from previously mentioned heavy-metal-polluted mining area. The content varied within range from tens to hundreds of mg of copper per kg of the soil. Moreover, we focused on investigation of copper influence on seedlings of Norway spruce. The seedlings were treated with copper (0, 0.1, 10 and 100 mM) for four weeks. We observed anatomical-morphological changes and other biochemical parameters in plants. We determined that seedlings synthesized more than 48 % protective thiols (glutathione and phytochelatins) compared to control ones. We investigated copper distribution in plant tissues by diphenylcarbazide staining. We found out that copper is highly accumulated in parenchymal stalk cells. In needles, change in auto-fluorescence of parenchymal cells of mesoderm similarly to endodermis cells. Besides, we analyzed samples of plants from the polluted area (spruce, pin, birch). The data obtained well correlated with previously mentioned. Acknowledgement The work on this experiment was supported by grant: INCHEMBIOL MSM0021622412.

  5. Genetic and Molecular Dissection of Arsenic Hyperaccumulation

    SciTech Connect

    Banks, Jo Ann

    2005-06-01

    We have constructed cDNA libraries from RNA isolated from arsenic treated gametophytes of the fern Pteris vittata. This library was made in a manner that allows each cDNA clone to be expressed in yeast. We have introduced this library into yeast cells, both wild type and arsensic sensitive mutants, and selected transformed yeast colonies with increased arsenic tolerance compared to the parental strains. From these screens we have identified putative homologs of the yeast ACR2 and ACR3 genes from Pteris vittata and, for the past year, have focused on characterizing the function of the ACR2 gene. In yeast, ACR2 is an arsenate reductase that is essential for arsenate tolerance. We refer to the Pteris vittata ACR2 gene as PvACR2. The deduced amino acid sequence of PvACR2 is highly similar to the yeast ACR2 and other related phosphatases.

  6. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives*

    PubMed Central

    Lone, Mohammad Iqbal; He, Zhen-li; Stoffella, Peter J.; Yang, Xiao-e

    2008-01-01

    Environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. Phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources. PMID:18357623

  7. Isolation and enrichment of the erucic acid from Thlaspi Arvense (Pennycress) oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  8. Extraction of pennycress (Thlaspi arvense L.) seed oil by full pressing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is currently being developed as an oilseed crop for biofuel production. Pennycress seeds harvested from a field near Peoria, IL, provided our first opportunity to conduct an oil extraction study on a pilot scale. The goals of this study were to determine the effects of seed moisture and c...

  9. Thlaspi arvense (Pennycress) as a biodiesel in a one year-two crop rotation with soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for energy has generated renewed interest in the development of oilseed crops. The short term answer to biodiesel has always been soybean. Unfortunately, soybean oil has several shortcomings in its effort to supply the U.S. market. First, and foremost, is the fact that if all curr...

  10. Thlaspi arvense (Pennycress): An off-season energy crop within the corn-soybean rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  11. Development of a non-dormant germplasm from Thlaspi Arvense (Pennycress)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  12. Flow cytometric assessment of Cd genotoxicity in three plants with different metal accumulation and detoxification capacities.

    PubMed

    Monteiro, M S; Rodriguez, E; Loureiro, J; Mann, R M; Soares, A M V M; Santos, C

    2010-09-01

    Cadmium (Cd) is a widespread environmental contaminant, strongly mutagenic and known to cause DNA damage in plants. In this work, flow cytometry (FCM) was applied to determine if in vivo exposure to Cd would induce genotoxic effects at the genome level. The hyper-accumulator Thlaspi caerulescens (J. & C. Presl), the related non-accumulator Thlaspi arvense L. and the accumulator crop species Lactuca sativa L. were germinated in distilled water and grown in modified Hoagland's medium with increasing concentrations of Cd(NO3)2 (0, 1, 10 and 100 microM). After 28 days of exposure, shoot and root growth was recorded and the tissues were harvested for Cd and FCM analysis. In general, roots from treated plants contained higher content of Cd than leaves and growth inhibition was observed in the treated plants. Nuclear DNA content was estimated and the G0/G1 full peak coefficient of variation (FPCV), as an indicator of clastogenic damage, was recorded. In T. arvense and T. caerulescens no significant differences were detected between control and exposed plants. Leaves of L. sativa exposed to 10 microM Cd presented a statistically significant increase in FPCV values in comparison with the control group. Furthermore, roots exposed to 100 microM Cd presented a reduction in nuclear DNA content and an increase in FPCV when compared to the control. FCM data indicates that no major DNA damage was induced on both Cd-exposed Thlaspi species and L. sativa leaves. On the contrary, results obtained with L. sativa roots suggests clastogenic damage in these organs exposed to 100 microM of Cd. PMID:20663557

  13. IN VIVO SYNCHROTRON INVESTIGATION OF THALLIUM HYPERACCUMULATION - I

    EPA Science Inventory

    Thallium (TI) is a metal of great toxicological concern and its prevalence in the natural environment has steadily increased as a result of manufacturing and combustion practices. Due to its low natural abundance and the increasing demand, TI recovery and reuse could be a profita...

  14. Growth and cadmium uptake of Swiss chard, Thlaspi caerulescens and corn in pH adjusted biosolids amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Before regulations were established, some biosolids applications added higher Cd levels than presently permitted. Cadmium phytoextraction from such soils would alleviate constraints on land use. Unamended farm soil, and biosolids amended farm soil and mine soil were obtained from Fulton County, Il...

  15. A comparison of phytoremediation capability of selected plant species for given trace elements.

    PubMed

    Fischerová, Zuzana; Tlustos, Pavel; Jirina Száková; Kornelie Sichorová

    2006-11-01

    In our experiment, As, Cd, Pb, and Zn remediation possibilities on medium contaminated soil were investigated. Seven plant species with a different trace element accumulation capacity and remediation potential were compared. We found good accumulation capabilities and remediation effectiveness of Salix dasyclados similar to studied hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens). We have noticed better remediation capability in willow compared to poplar for most of the elements considered in this experiment. On the contrary, poplar species were able to remove a larger portion of Pb as opposed to other species. Nevertheless, the removed volume was very small. The elements found in plant biomass depend substantially on the availability of these elements in the soil. Different element concentrations were determined in natural soil solution and by inorganic salt solution extraction (0.01 molL(-1) CaCl(2)). Extracted content almost exceeded the element concentration in the soil solution. Element concentrations in soil solution were not significantly affected by sampling time. PMID:16516363

  16. Mechanisms of nickel uptake, and hyperaccumulation by plants and implications to soil remediation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil contamination by heavy metals like Ni was originally restricted to metalliferous soils but in recent years it has become a general problem due to the increasingly frequent anthropogenic activities. Because of the characteristics of cost-effectiveness, environmental friendliness, and fewer side...

  17. MOLECULAR DISSECTION OF THE CELLULAR MECHANISMS INVOLVED IN NICKEL HYPERACCUMULATION IN PLANTS

    EPA Science Inventory

    Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites.A number of terrestrial plants are known to naturally accumulate high le...

  18. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic.

    PubMed

    Shelmerdine, Paula A; Black, Colin R; McGrath, Steve P; Young, Scott D

    2009-05-01

    Pteris vittata plants were grown on twenty-one UK soils contaminated with arsenic (As) from a wide range of natural and anthropogenic sources. Arsenic concentration was measured in fern fronds, soil and soil pore water collected with Rhizon samplers. Isotopically exchangeable soil arsenate was determined by equilibration with (73)As(V). Removal of As from the 21 soils by three sequential crops of P. vittata ranged between 0.1 and 13% of total soil As. Ferns grown on a soil subjected to long-term sewage sludge application showed reduced uptake of As because of high available phosphate concentrations. A combined solubility-uptake model was parameterised to enable prediction of phytoremediation success from estimates of soil As, 'As-lability' and soil pH. The model was used to demonstrate the remediation potential of P. vittata under different soil conditions and with contrasting assumptions regarding re-supply of the labile As pool from unavailable forms. PMID:19171413

  19. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  20. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  1. The major parameters on biomass pyrolysis for hyperaccumulative plants--A review.

    PubMed

    Dilks, R T; Monette, F; Glaus, M

    2016-03-01

    Phytoextraction is one of the main phytoremediation techniques and it has often been described as a potentially feasible in situ soil decontamination method of large amounts of heavy metals, organic pollutants and explosive compounds. As this remediation technique is approaching extensive on-field experimentation and commercialization, research focus is on investigating new ways to achieve the valorisation of its by-products. Biomass pyrolysis represents a key step to numerous valorisation options and it is characterized by differential output products that are determined by the operating conditions of the process and the characteristics of the input. However, when used to valorise plants that have undergone significant metal uptake, this strategy involves some new aspects related to harvest, procedure and final product reutilization. This paper reviews the studies made on biomass pyrolysis of plants with emphasis on the differential quality and distribution of pyrolysis products in relation with the variables of the process and the metal-rich phytoextraction feedstock properties. By investigating these parameters, this survey provides indications on ways to optimize the valorisation of phytoremediation by-products through biomass pyrolysis. PMID:26741543

  2. Zinc Hyperaccumulation in Squirrelfish (Holocentrus adscenscionis) and Its Role in Embryo Viability

    PubMed Central

    Glover, Chris N.; Capo, Tom; Walsh, Patrick J.; Hogstrand, Christer

    2012-01-01

    Female squirrelfish (Fam. Holocentridae) can accumulate and temporarily sequester copious amounts of zinc (Zn) in their livers. There, it is initially compartmentalized before a subsequent, estrogen-triggered redistribution to the ovaries. Here we show that cellular uptake of Zn is also influenced by estrogen signaling, and that estrogen increases concentrations of the plasma Zn-binding protein vitellogenin (VTG). However, estrogen-mediated increases in VTG are not sufficient to accommodate the magnitude of hepato-ovarian Zn transfer in female squirrelfish (Holocentrus adscensionis). These findings suggest that holocentrids have acquired the ability to use hormonal cues to drive hepatic uptake and storage of Zn, signal for its physiological redistribution, and influence the capacity for systemic transport of Zn beyond the mediation of increased plasma VTG concentrations. Such specific adaptations suggest an advantage for the oocyte, which is corroborated in further studies where we determined that oocyte Zn concentrations are positively correlated with egg viability in captive-spawned squirrelfish. The novel nature of these findings underlies the importance of Zn in squirrelfish reproductive biology. PMID:23056248

  3. Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils.

    PubMed

    Gonzaga, Maria Isidria Silva; Ma, Lena Q; Pacheco, Edson Patto; dos Santos, Wallace Melo

    2012-12-01

    Using chemical extraction to evaluate plant arsenic availability in contaminated soils is important to estimate the time frame for site cleanup during phytoremediation. It is also of great value to assess As mobility in soil and its risk in environmental contamination. In this study, four conventional chemical extraction methods (water, ammonium sulfate, ammonium phosphate, and Mehlich III) and a new root-exudate based method were used to evaluate As extractability and to correlate it with As accumulation in P. vittata growing in five As-contaminated soils under greenhouse condition. The relationship between different soil properties, and As extractability and plant As accumulation was also investigated. Arsenic extractability was 4.6%, 7.0%, 18%, 21%, and 46% for water, ammonium sulfate, organic acids, ammonium phosphate, and Mehlich III, respectively. Root exudate (organic acids) solution was suitable for assessing As bioavailability (81%) in the soils while Mehlich III (31%) overestimated the amount of As taken up by plants. Soil organic matter, P and Mg concentrations were positively correlated to plant As accumulation whereas Ca concentration was negatively correlated. Further investigation is needed on the effect of Ca and Mg on As uptake by P. vittata. Moreover, additional As contaminated soils with different properties should be tested. PMID:22908656

  4. Characterization and nickel sorption kinetics of a new metal hyper-accumulator Bacillus sp.

    PubMed

    Zaidi, Sabina; Musarrat, Javed

    2004-01-01

    The heavy metal-resistant bacterial strain SJ-101 has been isolated from fly ash contaminated soil. Based on the morphological and biochemical characteristics, the isolate SJ-101 was presumptively identified as Bacillus sp. The adsorption isotherms revealed the absolute adsorption capacity (Q degrees) of 244 mg Ni g(-1) dry cell mass vis-à-vis 161 mg Ni g(-1) synthetic resin (Amberlite IR-120). The higher relative adsorption capacity (K(F)) of 7.37, and the intensity of adsorption (1/n) of 0.58 with dry cell biomass suggested higher affinity of Bacillus cells towards nickel ions. The data conform to the Langmuir adsorption model relatively better than the Freundlich model. The thermodynamic parameters indicated the feasibility, endothermic, and interactive nature of nickel adsorption process on the cell surface. Higher Ni tolerance and sorption capacity of Bacillus sp. SJ-101, explicitly signifies its implications in Ni bioremediation process. PMID:15055934

  5. Bioenergy crops grown for hyperaccumulation of phosphorus in the delmarva peninsula and their biofuels potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous bioenergy crops, including sorghum, switchgrass, and miscanthus, were evaluated for their potential as phytoremedators for the uptake of phosphorus in the Delmarva Peninsula and their subsequent conversion to biofuel intermediates (bio-oil) by fast pyrolysis using pyrolysis-gas chromatogr...

  6. Bioenergy crops grown for hyperaccumulation of phosphorous in the Delmarva Peninsula and their biofuels potential.

    PubMed

    Boateng, Akwasi A; Serapiglia, Michelle J; Mullen, Charles A; Dien, Bruce S; Hashem, Fawzy M; Dadson, Robert B

    2015-03-01

    Herbaceous bioenergy crops, including sorghum, switchgrass, and miscanthus, were evaluated for their potential as phytoremediators for the uptake of phosphorus in the Delmarva Peninsula and their subsequent conversion to biofuel intermediates (bio-oil) by fast pyrolysis using pyrolysis-gas chromatography/mass spectroscopy. Four cultivars of sorghum, five cultivars of switchgrass and one miscanthus (Miscanthus × giganteus) were grown in soils with two different levels of poultry manure (PM) applications. Little variation was seen in phosphorus uptake in the two different soils indicating that the levels of available phosphorus in the soil already saturated the uptake ability of the plants. However, all plants regardless of trial took up more phosphorus than that measured for the non- PM treated control. Sorghum accumulated greater levels of nutrients including phosphorus and potassium compared to switchgrass and miscanthus. The levels of these nutrients in the biomass did not have an effect on carbohydrate contents. However, the potential yield and composition of bio-oil from fast pyrolysis were affected by both agronomics and differences in mineral concentrations. PMID:25460422

  7. CORRECTING MICRONUTRIENT DEFICIENCY USING METAL HYPERACCUMULATORS: ALYSSUM BIOMASS AS A NATURAL PRODUCT FOR NICKEL DEFICIENCY CORRECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The existence of nickel (Ni) deficiency in certain horticultural crops merits development of fertilizer products suitable for specific niche uses and for correcting or preventing deficiency problems before marketability and yields are affected. The efficacy of satisfying plant nutritional needs for ...

  8. Comparison of sup 14 C-GA sub 12 - aldehyde metabolism in thermo- and non-induced shoot tips of Thlaspi arvense L

    SciTech Connect

    Hazebroek, J.P.; Metzger, J.D. )

    1989-04-01

    The metabolism of exogenous {sup 14}C-GA{sub 12}-aldehyde by the shoot tips of induced and noninduced field pennycress plants was compared. Both the rate of metabolism and the qualitative pattern of metabolites produced six hours after application were similar in induced and noninduced plants. The 2 major metabolites were identified by GC-MS as GA{sub 12} and an isomer of GA{sub 19}. This latter compound, however, does not appear to be native to field pennycress. Small amounts of {sup 14}C-GA{sub 12}-aldehyde were also incorporated into GA{sub 19, 20} and {sub 44}. In addition, a radioactive compound with chromatographic properties similar to GA{sub 9} was observed in plants from both treatments. These results coupled with our previous studies on kaurenoic acid metabolism indicate that the limiting step(s) in GA biosynthesis in noninduced field penny cress shoot tips lies between kaurenoic acid and GA{sub 12}-aldehyde.

  9. Identifying root exudates in field contaminated soil systems

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Martinez, C. E.

    2012-12-01

    Carbon (C) compounds exuded from plant roots comprise a significant and reactive fraction of belowground C pools. These exudates substantially alter the soil directly surrounding plant roots and play a vital role in the global C cycle, soil ecology, and ecosystem mobility of both nutrients and contaminants. In soils, the solubility and bioavailability of metals such as iron, zinc, and cadmium are intricately linked to the quantity and chemical characteristics of the C compounds allocated to the soil by plants. Cadmium (Cd), a toxic heavy metal, forms stronger bonds with reduced S- and N-containing compounds than with carboxylic acids, which may influence exudate composition in hyperaccumulator and tolerant plants grown in Cd contaminated soils. We hypothesize that hyperaccumulator plants will exude a larger quantity of aromatic N and chelating di- and tri-carboxylic acid molecules, while plants that exclude heavy metals from uptake will exude a larger proportion of reduced S containing molecules. This study examines how a variety of techniques can measure the low concentrations of complex organic mixtures exuded by hyperaccumulator and non-hyperaccumulator plants grown in Cd-contaminated soils. Two congeneric plants, Thlaspi caerulescens (Ganges ecotype), and T. caerulescens (Prayon ecotype) were grown in 0.5 kg pots filled with Cd-contaminated field soils from Chicago, IL. Field soils were contaminated as a result of the application of contaminated biosolids in the 1960's and 1970's. Pots were fitted for rhizon soil moisture samplers, micro-lysimeters developed for in situ collection of small volumes in unsaturated soils, prior to planting. Plants were grown for 8 weeks before exudate collection. After the 8 weeks of growth, a pulse-chase isotope tracer method using the C stable isotope, 13C, was employed to differentiate plant-derived compounds from background soil and microbial-derived compounds. Plants were placed in a CO2 impermeable chamber, and the soil surface was covered by CO2 impermeable sheets to ensure that all 13C in the soil results from photoassimilated C released by roots and not soil-atmosphere gas exchange. Ambient CO2 was drawn down in the system until the CO2 concentration within the tent was less than 50 ppm, after which the labeled 13CO2 was introduced, returning the CO2 concentration to the ambient level (~375 ppm). The CO2 pulse lasted for 60 minutes to allow enough time for 13C assimilation within the plants. In order to determine the ideal sampling time, soil pore water samples were extracted every 1-2 hours following the 13C pulse application, over the course of 24 hours. Samples were analyzed for delta 13C as well as %C, and results indicate that the greatest plant-derived dissolved organic C is present at about 6 hours following the 13C pulse. A second experiment will also be conducted using a combination of NMR and mass spectrometry methods to obtain detailed information regarding chemical structures within exudate samples.

  10. Are plants growing at abandoned mine sites suitable for phytoremediation of contaminated soils?

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Buffa, Gabriella; Fontana, Silvia; Wahsha, Mohammad

    2013-04-01

    Plants growing on abandoned mine sites are of particular interest in the perspective to remediate contaminated soils by phytoremediation, a low cost and environmental friendly technique which uses metal-accumulator plants to clean up moderately contaminated areas. The choice of plants is a crucial aspect for the practical use of this technique, given the ability to accumulate metals in their tissues, being genetically tolerant to high metal concentrations. Up today, more than 400 native plants that hyperaccumulate metals are reported, Brassicaceae being the family with the largest number of hyperaccumulator species. For example, Alyssum bertoloni is well known as Ni accumulator, as well as Thlaspi caerulescens for Zn and Brassica napus for Pb. However, metal hyperaccumulation is not a common phenomenon in terrestrial higher plants, and many of the European hyperaccumulator plants are of small biomass, and have a slow growth rate. Therefore, there is an urgent need for surveying and screening of plants with ability to accumulate metals in their tissues and a relatively high biomass. In recent years, a survey of soils and plants growing on contaminated areas at several abandoned sulphide mines in Italy was carried out by working groups of the Universities of Florence, Siena, Cagliari, Bologna, Udine and Venice, in order to evaluate the ability of these plants to colonize mine waste and to accumulate metals, in the perspective of an ecological restoration of contaminated sites. We investigated the heavy metal concentration of the waste material, and the soils developed from, in order to determine the extent of heavy metal dispersion, and the uptake by plants, and deserved attention to wild plants growing at that sites, to find out new metal-tolerant species to utilize in soil remediation. Current results of these investigations, with particular emphasis on the Tuscan areas, are reported here. All the studied profiles are strongly enriched in metals; their concentration, however, depends on the distance from mine areas, as indicated in the following table: Sample Metal Mean (ppm) Range (ppm) Waste soils ENTISOLS Cu 3527 62-10200 Pb 301 30-830 Zn 798 110-1950 Proximal soils INCEPTISOLS Cu 1081 16-3400 Pb 623 45-1900 Zn 792 420-1300 Distal soils ALFISOLS Cu 193 80-340 Pb 267 160-430 Zn 672 410-890 Wild plants (e.g. fescue, plantain, common reed, mint, marigold, dandelion, moon plant, rock-rose, willow) were found to be metal-tolerant and to accumulate high levels of As, Cd, Cr, Cu, Pb, Zn in their tissues (both roots and aerial parts), although at different extent in response to their metabolic activity, physiology, and to soil and environmental characteristics. In conclusion, the evaluation of metal uptake by plants, combined with geobotanical observations, is an useful tool to find tolerant plant populations to be used in revegetation programs aimed at reducing the environmental impact of contaminated areas.

  11. Chelant-assisted phytoextraction and accumulation of Zn by Zea mays.

    PubMed

    Gheju, M; Stelescu, I

    2013-10-15

    Zea mays plants were exposed to soils with concentrations of Zn ranging from 64 to 1800 mg kg(-1) dw, and the efficiency of three selected chelating agents (trisodium citrate (CI), disodium oxalate (OX) and disodium dihydrogen ethylene-diamine-tetraacetate (EDTA)) in enhancing metal phytoextraction was compared. Zn concentration in plant tissues increased in conjunction with the metal concentration of the soil. EDTA was found to be the most efficient chelating amendment, increasing concentrations of Zn in shoots from 88 mg kg(-1) dw, at 64 mg kg(-1) dw soil, to 8026 mg kg(-1) dw at 1800 mg kg(-1) dw soil. The overall orders of BCFs and TFs which resulted from this study are: EDTA > H2O > OX > CI, and EDTANa2 > OX > CI > H2O, respectively. The more effective uptake of Zn by plants for the control treatment (distilled water only) than for CI and OX was attributed to the neutral or slightly alkaline pH of the two chelant irrigation solutions. Instead, EDTA had a favorable effect on Zn uptake from soil due to its additive chelating and acidifying properties. Among the three chelants, only EDTA significantly increased the Zn phytoextraction potential of Z. mays, while CI and OX induced a low metal uptake from soil by plants. Although Z. mays has a lower Zn accumulation capacity than the hyperaccumulator Thlaspi caerulescens, it could be considered as a potential phytoremediator of soils with elevated Zn concentrations, especially when metal pollution extends to depths greater than 20 cm. PMID:23845956

  12. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

    PubMed

    Muehe, E Marie; Weigold, Pascal; Adaktylou, Irini J; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-03-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  13. Impact Assessment of Mercury Accumulation and Biochemical and Molecular Response of Mentha arvensis: A Potential Hyperaccumulator Plant

    PubMed Central

    Manikandan, R.; Sahi, S. V.; Venkatachalam, P.

    2015-01-01

    The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment. PMID:25654134

  14. Refeeding-Induced Brown Adipose Tissue Glycogen Hyper-Accumulation in Mice Is Mediated by Insulin and Catecholamines

    PubMed Central

    Carmean, Christopher M.; Bobe, Alexandria M.; Yu, Justin C.; Volden, Paul A.; Brady, Matthew J.

    2013-01-01

    Brown adipose tissue (BAT) generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT) glycogen levels within 4–12 hours (hr) of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT). Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology. PMID:23861810

  15. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri

    PubMed Central

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-01-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration. PMID:25873677

  16. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri.

    PubMed

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-06-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration. PMID:25873677

  17. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  18. Abnormal accumulation of trace metals by plants

    SciTech Connect

    Reeves, R.D.; Brooks, R.R.; Baker, A.J.M.

    1996-12-31

    The article describes the hyperaccumulation of metals by plants. Ranges for low, normal, high, and hyperaccumulating uptake are established. A partial list of hyperaccumulator species and their localities is included. Studies are reviewed and summarized for zinc, cadmium and lead, nickel, cobalt and copper, selenium, and cadmium and manganese hyperaccumulation.

  19. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation ...

  20. Zn-bis-glutathionate is the best co-substrate of the monomeric phytochelatin synthase from the photosynthetic heavy metal-hyperaccumulator Euglena gracilis.

    PubMed

    García-García, Jorge D; Girard, Lourdes; Hernández, Georgina; Saavedra, Emma; Pardo, Juan P; Rodríguez-Zavala, José S; Encalada, Rusely; Reyes-Prieto, Adrián; Mendoza-Cózatl, David G; Moreno-Sánchez, Rafael

    2014-03-01

    The phytochelatin synthase from photosynthetic Euglena gracilis (EgPCS) was analyzed at the transcriptional, kinetic, functional, and phylogenetic levels. Recombinant EgPCS was a monomeric enzyme able to synthesize, in the presence of Zn(2+) or Cd(2+), phytochelatin2-phytochelatin4 (PC2-PC4) using GSH or S-methyl-GS (S-methyl-glutathione), but not γ-glutamylcysteine or PC2 as a substrate. Kinetic analysis of EgPCS firmly established a two-substrate reaction mechanism for PC2 synthesis with Km values of 14-22 mM for GSH and 1.6-2.5 μM for metal-bis-glutathionate (Me-GS2). EgPCS showed the highest Vmax and catalytic efficiency with Zn-(GS)2, and was inactivated by peroxides. The EgPCS N-terminal domain showed high similarity to that of other PCSases, in which the typical catalytic core (Cys-70, His-179 and Asp-197) was identified. In contrast, the C-terminal domain showed no similarity to other PCSases. An EgPCS mutant comprising only the N-terminal 235 amino acid residues was inactive, suggesting that the C-terminal domain is essential for activity/stability. EgPCS transcription in Euglena cells was not modified by Cd(2+), whereas its heterologous expression in ycf-1 yeast cells provided resistance to Cd(2+) stress. Phylogenetic analysis of the N-terminal domain showed that EgPCS is distant from plants and other photosynthetic organisms, suggesting that it evolved independently. Although EgPCS showed typical features of PCSases (constitutive expression; conserved N-terminal domain; kinetic mechanism), it also exhibited distinct characteristics such as preference for Zn-(GS)2 over Cd-(GS)2 as a co-substrate, a monomeric structure, and ability to solely synthesize short-chain PCs, which may be involved in conferring enhanced heavy-metal resistance. PMID:24464102

  1. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Kochian, L.

    1997-05-01

    Potential for phytoremediation of an aged radiocesium-contaminated soil from Brookhaven National Laboratory was investigated in three phases: (1) hydroponic screening for plant species capable of accumulating elevated levels of cesium in shoots, (2) amending contaminated soil to enhance {sup 137}Cs bioavailability, and (3) phytoextracting radiocesium with plant roots and its removal in harvested shoots. The bioaccumulation ratio of Cs in shoots of hydroponically grown plants ranged between 38 and 165. From solution, dicot species accumulated 2- to 4-fold more cesium in shoots than grasses. The effect of several chemical compounds on {sup 137}Cs desorption from the contaminated soil was investigated. Ammonium salts were the most effective at desorbing Cs from contaminated soil, but only 25% of radiocesium could be desorbed. Although release of radiocesium from the soil was concentration-dependent, this effect appeared to level off above 0.2 M ammonium in solution. In a pot study, from the soil contaminated with 400 pCi g{sup -1} soil, the greatest amount of {sup 137}Cs, 140 pCi, was removed in shoots of cabbage (Brassica oleracea var. capitata). {sup 137}Cs accumulation in shoots was significantly increased by the addition of 40 NH{sub 4}NO{sub 3} kg{sup -1} soil. Increasing NH{sub 4}NO{sub 3} application from 40 to 80 mmoles kg{sup -1} soil did not further increase radiocesium phytoextraction. The ability to accumulate radiocesium from soil in shoots was significantly different among species tested. This ability increased in order: reed Canary grass (Phalaris arundinacea) < Indian mustard (Brassica juncea) < tepary bean (Phaseolus acutifolius) < cabbage.

  2. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly technical progress report, March 20, 1995--June 20, 1995

    SciTech Connect

    Kochian, L.

    1995-12-01

    The biological accumulation of heavy metals and cesium, strontium, and uranium in plants is discussed. The role of nutrient deficiencies and foliar treatments of manganese and iron compounds is described.

  3. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure.

    PubMed

    Leal-Alvarado, Daniel A; Espadas-Gil, Francisco; Sáenz-Carbonell, Luis; Talavera-May, Carlos; Santamaría, Jorge M

    2016-02-01

    Salvinia minima Baker accumulates a fair amount of lead in its tissues; however, no studies have investigated the effect of lead on the physiological processes that affect photosynthesis in this species. The objective of the present study was to assess whether the high amounts of lead accumulated by S. minima can affect its photosynthetic apparatus. The physiological changes in the roots and leaves in response to lead accumulation were analyzed. An exposure to 40μM Pb(NO3)2 for 24h (first stage) was sufficient to reduce the photosynthetic rate (Pn) by 44%. This reduction in Pn was apparently the result of processes at various levels, including damage to the cell membranes (mainly in roots). Interestingly, although the plants were transferred to fresh medium without lead for an additional 24h (second stage), Pn not only remained low, but was reduced even further, which was apparently related to stomatal closure, and may have led to reduced CO2 availability. Therefore, it can be concluded that lead exposure first decreases the photosynthetic rate by damaging the root membrane and then induces stomatal closure, resulting in decreased CO2 availability. PMID:26742090

  4. A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter.

    PubMed

    DiTusa, Sandra Feuer; Fontenot, Elena B; Wallace, Robert W; Silvers, Molly A; Steele, Thomas N; Elnagar, Alia H; Dearman, Kelsey M; Smith, Aaron P

    2016-01-01

    Pteris vittata exhibits enhanced arsenic uptake, but the corresponding mechanisms are not well known. The prevalent form of arsenic in most soils is arsenate, which is a phosphate analog and a substrate for Phosphate transporter 1 (Pht1) transporters. Herein we identify and characterize three P. vittata Pht1 transporters. Pteris vittata Pht1 cDNAs were isolated and characterized via heterologous expression in Saccharomyces cerevisiae (yeast) and Nicotiana benthamiana leaves. Expression of the PvPht1 loci in P. vittata gametophytes was also examined in response to phosphate deficiency and arsenate exposure. Expression of each of the PvPht1 cDNAs complemented the phosphate uptake defect of a yeast mutant. Compared with yeast cells expressing Arabidopsis thaliana Pht1;5, cells expressing PvPht1;3 were more sensitive to arsenate, and accumulated more arsenic. Uptake assays with yeast cells and radiolabeled (32) P revealed that PvPht1;3 and AtPht1;5 have similar affinities for phosphate, but the affinity of PvPht1;3 for arsenate is much greater. In P. vittata gametophytes, PvPht1;3 transcript levels increased in response to phosphate (Pi) deficiency and arsenate exposure. PvPht1;3 is induced by Pi deficiency and arsenate, and encodes a phosphate transporter that has a high affinity for arsenate. PvPht1;3 probably contributes to the enhanced arsenate uptake capacity and affinity exhibited by P. vittata. PMID:26010225

  5. Phytoremediation of Soil Trace Elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytoremediation includes several distinct approaches to using plants to achieve soil remediation goals. Phytoextraction uses rare hyperaccumulator plants to accumulate in their shoots enough metals per year to achieve decontamination goals. Phytomining uses hyperaccumulators and biomass burn to pro...

  6. Survey of alternative feedstocks for biodiesel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  7. Biodiesel From Alternative Oilseed Feedstocks: Production and Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl esters were prepared and evaluated as potential biodiesel fuels from several alternative oilseed feedstocks, which included camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field mustard (Brassica juncea L.), field pennycress (Thlaspi arvense L.), and meadowfoam (L...

  8. Classification of specialty seed meals from NIR reflectance spectra

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance spectroscopy was used to identify alternative seed meals proposed for food and feed formulations. Spectra were collected from cold pressed Camelina (Camelina sativa), Coriander (Coriandrum sativum), and Pennycress (Thlaspi arvense) meals. Additional spectra were collected ...

  9. DEVELOPMENT OF BIO-BASED MOLECULAR TECHNOLOGIES FOR REMOVAL AND REAL-TIME MONITORING OF TOXIC METALS

    EPA Science Inventory

    Transformation of heavy-metal related genes from a hyper-accumulator to a high-biomass species is expected to promote a zinc hyper-accumulating phenotype in the normally non-hyper-accumulating poplar. Coupling fluorescence with heavy metal proteins is anticipated to allow ...

  10. Bacterial Inoculants Affecting Nickel Uptake by Alyssum murale From Low, Moderate and High Ni Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metal hyperaccumulator plants like Alyssum murale have a remarkable ability to hyperaccumulate Ni from soils containing mostly insoluble Ni. We have shown some rhizobacteria increase the phytoavailability of Ni in soils, thus enhancing Ni accumulation by A. murale. Nine bacterial strains, originally...

  11. Synthesis and physical properties of pennycress estolide 2-ethylhexyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense L.) is a new crop that is currently being developed as an off-season rotation crop between annual corn and soybean production in Central Illinois by USDA-NCAUR. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an other...

  12. Trends in literature on new oilseed crops and related species: Seeking evidence of increasing or waning interest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bibliographic records on eight new crop species Camelina, Crambe, Cuphea, Physaria, Limnanthes, Stokesia, Thlaspi, and Vernonia from Agricola, CAB Abstracts, Scopus, and Web of Science were analyzed for historical and recent trends in the areas of research, author distribution, and quantity and impa...

  13. Effects of planting depth on field establishment of pennycress and light conditions on seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense), is a promising oilseed (36% oil) with potential for biofuels and another industrial uses. A winter annual, it may be feasible for use in Midwestern double cropping systems. However, agronomic and biological issues should be studied in order to understand and overcome pr...

  14. Seed oil development of pennycress under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi sp) has been targeted as a potential oilseed for the biofuels industry. Its seeds contain ~36% oil, where erucic acid is the major fatty acid presented with 38.1%. Additionally, the physical proprieties of the methyl esters are in the range to satisfy the needs of the biodiesel m...

  15. EVALUATION OF FIELD PENNYCRESS AS AN OVERWINTER GREEN MANURE CROP IN CORN FOR SUPPRESSION OF WESTERN CORN ROOTWORM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (FP; Thlaspi arvense L.) is a winter annual species of the Brassicaceae which is a native of Europe but has a wide distribution throughout temperate North America. FP tissues contain the glucosinolate sinigrin, and release a mixture of the biocides allyl thiocyanate and allyl isoth...

  16. Comparison of the emergence of three Brassicaceae species of different origins grown in Spain and USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi arvense, Camelina sativa, C. microcarpa and Neslia paniculata are four Brassicaceae family species that are becoming rare in North-Eastern Spain. Conversely, both T. arvense and C. sativa are being investigated as oilseed crops in North America for industrial/biofuel purposes. C. microcarpa ...

  17. Biodiesel Prepared From Field Pennycress Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L., FP) is a winter annual species of the mustard family (Brassicaceae) which is widely distributed throughout temperate North America that can serve as a winter rotational crop for conventional crops, thus not displacing farm land or negatively impacting the food s...

  18. Collecting field pennycress germplasm in Colorado and characterization of oil and root variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense) has been identified as a possible source of biodiesel that may perform better in colder climates than other biodiesel fuels. A germplasm collection of the species is being maintained by the U.S. Department of Agriculture for use in research, education, and crop imp...

  19. Advancements of pennycress as a biofuel and the synthesis of estolides thereof

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense L.) is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean...

  20. Lubrication properties of new crop oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oils from new crops such as lesquerella (Lesquerella fendleri), field pennycress (Thlaspi arvense L.), meadowfoam (Limnanthes alba L.), and cuphea PSR-23 (Cuphea viscosissima × Cuphea lanceolata) were investigated and compared with vegetable oils from commodity crops such as castor, corn, and soybea...

  1. Extraction of proteins from pennycress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense L.)has recently been found to have value as a source of biodiesel. Not only does it provide a high yield of quality oil, but perhaps more importantly, it can be planted after the harvest of traditional crops. It will grow through the winter (on days warmer than 0 C) and...

  2. Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation—a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae)

    PubMed Central

    Schiavon, Michela; Pilon, Marinus; Malagoli, Mario; Pilon-Smits, Elizabeth A. H.

    2015-01-01

    Selenium (Se) hyperaccumulation, the capacity of some species to concentrate Se to levels upwards of 0.1% of dry weight, is an intriguing phenomenon that is only partially understood. Questions that remain to be answered are: do hyperaccumulators have one or more Se-specific transporters? How are these regulated by Se and sulfur (S)? In this study, hyperaccumulator Stanleya pinnata was compared with related non-hyperaccumulator Brassica juncea with respect to S-dependent selenate uptake and translocation, as well as for the expression levels of three sulfate/selenate transporters (Sultr) and three ATP sulphurylases (APS). Selenium accumulation went down ~10-fold with increasing sulfate supply in B. juncea, while S. pinnata only had a 2–3-fold difference in Se uptake between the highest (5 mM) and lowest sulfate (0 mM) treatments. The Se/S ratio was generally higher in the hyperaccumulator than the non-hyperaccumulator, and while tissue Se/S ratio in B. juncea largely reflected the ratio in the growth medium, S. pinnata enriched itself up to 5-fold with Se relative to S. The transcript levels of Sultr1;2 and 2;1 and APS1, 2, and 4 were generally much higher in S. pinnata than B. juncea, and the species showed differential transcript responses to S and Se supply. These results indicate that S. pinnata has at least one transporter with significant selenate specificity over sulfate. Also, the hyperaccumulator has elevated expression levels of several sulfate/selenate transporters and APS enzymes, which likely contribute to the Se hyperaccumulation and hypertolerance phenotype. PMID:25688247

  3. Classification and identification of metal-accumulating plant species by cluster analysis.

    PubMed

    Yang, Wenhao; Li, He; Zhang, Taoxiang; Sen, Lin; Ni, Wuzhong

    2014-09-01

    Identification and classification of metal-accumulating plant species is essential for phytoextraction. Cluster analysis is used for classifying individuals based on measured characteristics. In this study, classification of plant species for metal accumulation was conducted using cluster analysis based on a practical survey. Forty plant samples belonging to 21 species were collected from an ancient silver-mining site. Five groups such as hyperaccumulator, potential hyperaccumulator, accumulator, potential accumulator, and normal accumulating plant were graded. For Cd accumulation, the ancient silver-mining ecotype of Sedum alfredii was treated as a Cd hyperaccumulator, and the others were normal Cd-accumulating plants. For Zn accumulation, S. alfredii was considered as a potential Zn hyperaccumulator, Conyza canadensis and Artemisia lavandulaefolia were Zn accumulators, and the others were normal Zn-accumulating plants. For Pb accumulation, S. alfredii and Elatostema lineolatum were potential Pb hyperaccumulators, Rubus hunanensis, Ajuga decumbens, and Erigeron annuus were Pb accumulators, C. canadensis and A. lavandulaefolia were potential Pb accumulators, and the others were normal Pb-accumulating plants. Plant species with the potential for phytoextraction were identified such as S. alfredii for Cd and Zn, C. canadensis and A. lavandulaefolia for Zn and Pb, and E. lineolatum, R. hunanensis, A. decumbens, and E. annuus for Pb. Cluster analysis is effective in the classification of plant species for metal accumulation and identification of potential species for phytoextraction. PMID:24888623

  4. The potential for heavy metal decontamination

    SciTech Connect

    Baker, A.J.M.; McGrath, S.P.; Sidoli, C.M.D.; Reeves, R.D.

    1996-12-31

    Preliminary trials to assess the ability of plant species to extract metals are presented. A range of zinc and nickel hyperaccumulator plants from the Brassicaceae family, collected from diverse populations in Europe, were grown on plots along with nonaccumulating crop plants from the same family. Extraction efficiencies and the number of croppings required to reduce the total zinc in the soil to a concentration of 300 mg/kg are tabulated. Zinc accumulation remained high over a wide range of soil metal concentration. However, the concentration of nickel in the hyperaccumulators increased in accordance with increasing total nickel concentrations in the soil. Calculations suggest that there is an excellent potential for using hyperaccumulator species to remove metals from the rhizosphere where remediation can be considered over a period of years and multiple cropping is a viable option.

  5. Overexpression of Selenocysteine Methyltransferase in Arabidopsis and Indian Mustard Increases Selenium Tolerance and Accumulation1

    PubMed Central

    LeDuc, Danika L.; Tarun, Alice S.; Montes-Bayon, Maria; Meija, Juris; Malit, Michele F.; Wu, Carol P.; AbdelSamie, Manal; Chiang, Chih-Yuan; Tagmount, Abderrhamane; deSouza, Mark; Neuhierl, Bernhard; Böck, August; Caruso, Joseph; Terry, Norman

    2004-01-01

    A major goal of phytoremediation is to transform fast-growing plants with genes from plant species that hyperaccumulate toxic trace elements. We overexpressed the gene encoding selenocysteine methyltransferase (SMT) from the selenium (Se) hyperaccumulator Astragalus bisulcatus in Arabidopsis and Indian mustard (Brassica juncea). SMT detoxifies selenocysteine by methylating it to methylselenocysteine, a nonprotein amino acid, thereby diminishing the toxic misincorporation of Se into protein. Our Indian mustard transgenic plants accumulated more Se in the form of methylselenocysteine than the wild type. SMT transgenic seedlings tolerated Se, particularly selenite, significantly better than the wild type, producing 3- to 7-fold greater biomass and 3-fold longer root lengths. Moreover, SMT plants had significantly increased Se accumulation and volatilization. This is the first study, to our knowledge, in which a fast-growing plant was genetically engineered to overexpress a gene from a hyperaccumulator in order to increase phytoremediation potential. PMID:14671009

  6. Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): A field survey and common-garden experiment.

    PubMed

    Cappa, Jennifer J; Cappa, Patrick J; El Mehdawi, Ali F; McAleer, Jenna M; Simmons, Mark P; Pilon-Smits, Elizabeth A H

    2014-04-21

    Premise of study: Selenium (Se) hyperaccumulation, the capacity to concentrate the toxic element Se above 1000 mgkg(-1)dry mass, is found in relatively few taxa native to seleniferous soils. While Se hyperaccumulation has been shown to likely be an adaptation that protects plants from herbivory, its evolutionary history remains unstudied. Stanleya (Brassicaceae) is a small genus comprising seven species endemic to the western United States. Stanleya pinnata is a hyperaccumulator of selenium (Se). In this study we investigated to what extent other Stanleya taxa accumulate Se both in the field and a greenhouse setting on seleniferous soil. Methods: We collected multiple populations of six of the seven species and all four varieties of S. pinnata. We tested leaves, fruit, and soil for in situ Se and sulfur (S) concentrations. The seeds collected in the field were used for a common garden study in a greenhouse. Key results: We found that S. pinnata var. pinnata is the only hyperaccumulator of Se. Within S. pinnata var. pinnata, we found a geographic pattern related to Se hyperaccumulation where the highest accumulating populations are found on the eastern side of the continental divide. We also found differences in genome size within the S. pinnata species complex. Conclusions: The S. pinnata species complex has a range of physiological properties making it an attractive system to study the evolution of Se hyperaccumulation. Beyond the basic scientific value of understanding the evolution of this fascinating trait, we can potentially use S. pinnata or its genes for environmental cleanup and/or nutrient-enhanced dietary material. PMID:24752889

  7. Pint-sized plants pack a punch in fight against heavy metals

    SciTech Connect

    Boyd, V.

    1996-05-01

    USDA researchers are experimenting with plants that naturally scavenge heavy metals such as cadmium and zinc from the soil. Known as hyperaccumulators, the plants can store up to 2.5% of their dry weight in heavy metals in leaves without yield reductions. They can be grown, harvested, and dried. The dried material is then burned, and the metal ore can be recovered. As well as discussing the history of hyperaccumulators, this article focuses on the plant pennycress and work on improving its metal uptake.

  8. NiO (bunsenite) is not available to Alyssum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some species of the genus Alyssum are capable of accumulating up to 30 g kg-1 DW Ni in their leaves when grown on serpentine soils where these species are endemic. The unique ability of Alyssum species to hyperaccumulate high concentration of Ni stimulated basic research toward a better understandi...

  9. DEGRADATION OF ALYSSUM BIOMASS IN SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reasons for Ni hyperaccumulation remain unproven; however, elemental allelopathy has been suggested as a possible reason for this unusual trait. It has been suggested that continual transport of Ni from soil to leaves, then shedding of leaves to fall on the soil surface, may create a Ni toxic zo...

  10. Metal-accumulating plants: The biological resource and its commercial exploitation is soil clean-up technology

    SciTech Connect

    Baker, A.J.M.; Reeves, R.D.

    1996-12-31

    This presentation provides a broad overview of metal hyperaccumulator plants and biological accumulation technology. Plants that have been identified as having the greatest potentials for development as phytoremediator crops for metal-contaminated soils are very briefly discussed. Phytoextraction, rhizofiltration, and phytostabilization are briefly defined. Issues pertinent to large scale phytoremediation of soils are discussed, including biological and technological constraints.

  11. Chelator-buffered nutrient solution is ineffective in extracting Ni from seeds of Alyssum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperaccumulator species of the genera Alyssum can accumulate 100 times more Ni than normal crops and are therefore used for phytomining and phytoextraction of nickel contaminated soils. Basic studies on the physiology and metal uptake mechanisms of these plants are needed to increase efficiency and...

  12. Draft Genome Sequence of Stenotrophomonas maltophilia SeITE02, a Gammaproteobacterium Isolated from Selenite-Contaminated Mining Soil

    PubMed Central

    Bertolini, Cristina; van Aerle, Ronny; Lampis, Silvia; Moore, Karen A.; Paszkiewicz, Konrad; Butler, Clive S.

    2014-01-01

    Stenotrophomonas maltophilia strain SeITE02 was isolated from the rhizosphere of the selenium-hyperaccumulating legume Astragalus bisculcatus. In this report, we provide the 4.56-Mb draft genome sequence of S. maltophilia SeITE02, a gammaproteobacterium that can withstand high concentrations of selenite and reduce these to elemental selenium. PMID:24812214

  13. NiO(s) (Bunsenite) is not Available to Alyssum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AIMS: To determine if the Ni-hyperaccumulator Alyssum corsicum can absorb Ni from the kinetically inert crystalline mineral NiO(s) (bunsenite). METHODS: A. corsicum and A. montanum plants were grown for 30 days in a serpentine Hoagland solution. NiO was provided at 0 or 0.1 g L-1 (1.34 mmol L-1) ...

  14. Effects of Cadmium on Nickel Tolerance and Accumulation in Alyssum species and Cabbage Grown in Nutrient Solution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nickel phytoextraction using hyperaccumulator plant species to accumulate Ni from mineralized and contaminated soils rich in Ni is an emerging technology. Serpentinite derived soils which contain Ni ore value have a very low ratio of Ca:Mg among soils due the nature of the parent rock. In crop plant...

  15. Xylem exudate composition and root-to-shoot nickel translocation in Alyssum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An improved understanding of Ni root-to-shoot translocation mechanism in hyperaccumulators is necessary to increase Ni uptake efficiency for phytoextraction technologies. It is presumed that an important aspect of Ni translocation and storage involves chelation with organic ligands. It has been re...

  16. Bioassisted Phytomining of Gold

    NASA Astrophysics Data System (ADS)

    Maluckov, Biljana S.

    2015-05-01

    Bioassisted phytomining implies targeted use of microorganisms and plants for the selective recovery of the metal. Metals from undissolved compounds are dissolved by applying specially chosen microorganisms and therefore become available to the hyperaccumulating plants. In the article, the selective extraction method of base metals and the precious metal gold by using microorganisms and plants is discussed.

  17. The Engineered Phytoremediation of Ionic and Methylmercury Pollution

    SciTech Connect

    Richard Meagher; Sarah Marshburn; Andrew Heaton; Anne Marie Zimer; Raoufa Rahman

    2003-06-24

    Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, and above ground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in above ground tissues for later harvest.

  18. Identification of a Cd accumulator Conyza canadensis.

    PubMed

    Wei, Shuhe; Zhou, Qixing; Saha, Uttam Kumar; Xiao, Hong; Hu, Yahu; Ren, Liping; Ping, Gu

    2009-04-15

    One of key steps of phytoremediating heavy metal contaminated soils is still the identification of hyperaccumulator and accumulator. In a former published article, Conyza canadensis L. Cronq. expressed some basic properties of Cd-hyperaccumulators. In this study, concentration gradient experiment and two sample-analyzing experiments were used to identify whether this plant is a Cd-hyperaccumulator. When grown on soil spiked with Cd at the rate of 10 and 25 mg kg(-1) in concentration gradient experiment, C. canadensis had both Cd enrichment factor (EF) and Cd translocation factor (TF) greater than 1, while the shoot biomass did not differ significantly as compared to the control. On the other hand, with Cd-spiking rates of 10 and 25 mg kg(-1), the Cd concentration in the shoot did not exceed 100 mg kg(-1), which is considered as the minimum shoot Cd concentration to qualify as a hyperaccumulator. In the sample-analysis experiments from a Pb-Zn mine area and wastewater irrigation region, C. canadensis also showed Cd-accumulator characteristics. Based on the results accomplished, we propose C. canadensis as a Cd-accumulator. PMID:18653276

  19. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly plant Zn uptake and homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain a better understanding of the regulation of Zn homeostasis in plants and the degree of conservation of Zn homeostasis between plants and yeast, a cDNA library from the Zn/Cd hyperaccumulating plant species, Nocceae caerulescens, was screened for its ability to restore growth under Zn limitin...

  20. What about the rare-earth elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is insufficient understanding of the nutritional physiology of pecan trees and orchards; thus, affecting nutmeat yield and quality, disease resistance and alternate bearing. An analysis of the rare-earth element composition of pecan and related hickory cousins found that they hyperaccumulate ...

  1. Selenium Accumulation in Flowers and its Effects on Pollination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium, both an essential micronutrient and a potential toxin, is hyperaccumulated by some plants up to 1% of dry weight. The functional significance of this rare phenomenon may be an elemental defense against herbivores and pathogens. In this first of its kind study, we investigate Se distributio...

  2. Accumulation of zinc and cadmium and localization of zinc in Picris divaricata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Picris divaricata Vant., native to subtropical China, was recently identified as the first Cd/Zn hyper-accumulator from Asteraceae. Wild collected seed of P. divaricata was grown in a series of pH buffered test soils with Zn levels 00-7000 gkg-1 and Cd levels 00-150 gkg-1 for four months. Plants d...

  3. Expression of an "Arabidopsis" Ca(2+)/H(+) antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytoremediation is a cost-effective and minimally invasive technology to cleanse soils contaminated with heavy metals. However, few plant species are suitable for phytoremediation of metals such as cadmium (Cd). Genetic engineering offers a powerful tool to generate plants that can hyperaccumulate ...

  4. SYNCHROTRON X-RAY ABSORPTION-EDGE COMPUTED MICROTOMOGRAPHY IMAGING OF THALLIUM COMPARTMENTALIZATION IN IBERIS INTERMEDIA

    EPA Science Inventory

    Thallium (TI) is an extremely toxic metal which, due to its similarities to K, is readily taken up by plants. Thallium is efficiently hyperaccumulated in Iberis intermedia as TI(I). Distribution and compartmentalization of TI in I. intermedia is highes...

  5. Enhancement of phosphate absorption by garden plants by genetic engineering: a new tool for phytoremediation.

    PubMed

    Matsui, Keisuke; Togami, Junichi; Mason, John G; Chandler, Stephen F; Tanaka, Yoshikazu

    2013-01-01

    Although phosphorus is an essential factor for proper plant growth in natural environments, an excess of phosphate in water sources causes serious pollution. In this paper we describe transgenic plants which hyperaccumulate inorganic phosphate (Pi) and which may be used to reduce environmental water pollution by phytoremediation. AtPHR1, a transcription factor for a key regulator of the Pi starvation response in Arabidopsis thaliana, was overexpressed in the ornamental garden plants Torenia, Petunia, and Verbena. The transgenic plants showed hyperaccumulation of Pi in leaves and accelerated Pi absorption rates from hydroponic solutions. Large-scale hydroponic experiments indicated that the enhanced ability to absorb Pi in transgenic torenia (AtPHR1) was comparable to water hyacinth a plant that though is used for phytoremediation causes overgrowth problems. PMID:23984322

  6. Enhancement of Phosphate Absorption by Garden Plants by Genetic Engineering: A New Tool for Phytoremediation

    PubMed Central

    Togami, Junichi; Mason, John G.; Chandler, Stephen F.; Tanaka, Yoshikazu

    2013-01-01

    Although phosphorus is an essential factor for proper plant growth in natural environments, an excess of phosphate in water sources causes serious pollution. In this paper we describe transgenic plants which hyperaccumulate inorganic phosphate (Pi) and which may be used to reduce environmental water pollution by phytoremediation. AtPHR1, a transcription factor for a key regulator of the Pi starvation response in Arabidopsis thaliana, was overexpressed in the ornamental garden plants Torenia, Petunia, and Verbena. The transgenic plants showed hyperaccumulation of Pi in leaves and accelerated Pi absorption rates from hydroponic solutions. Large-scale hydroponic experiments indicated that the enhanced ability to absorb Pi in transgenic torenia (AtPHR1) was comparable to water hyacinth a plant that though is used for phytoremediation causes overgrowth problems. PMID:23984322

  7. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil.

    PubMed

    Cui, Shuang; Zhang, Tingan; Zhao, Shanlin; Li, Ping; Zhou, Qixing; Zhang, Qianru; Han, Qing

    2013-01-01

    Characteristics of accumulation and tolerance of lead (Pb) in Quamolit pennata, Antirrhinum majus L. and Celosia cristata pyramidalis were investigated to identify Pb-accumulating plants. In this study, pot culture experiment was conducted to assess whether these plants are Pb-hyperaccumulators or accumulators. The results indicated that the Pb enrichment factor (concentration in plant/soil) and Pb translocation factor (concentration in shoot/root) of these plants were principally <1 in pot culture and concentration gradient experiments. However, the Pb concentration in Celosia cristata pyramidalis shoots was higher than 1000 mg kg(-1), the threshold concentration for a Pb-hyperaccumulator. Shoot biomass of Celosia cristata pyramidalis had no significantly (p < 0.05) variation compared to the control. Based on these results, only Celosia cristata pyramidalis could be identified as a Pb-accumulator. PMID:23487996

  8. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions.

    PubMed

    Maier, Alexander; Hoecker, Ute

    2015-01-01

    In Arabidopsis and many other plant species, anthocyanin pigments accumulate only after light exposure and not in darkness. Excess light of very high fluence rates leads to a further, very strong increase in anthocyanin levels. How excess light is sensed is not well understood. Here, we show that mutations in the key repressor of light signaling, the COP1/SPA complex, cause a strong hyperaccumulation of anthocyanins not only under normal light but also under excess, high light conditions. Hence, normal light signaling via COP1/SPA is required to prevent hyperaccumulation of anthocyanins under these high light conditions. However, since cop1 and spa mutants show a similar high-light responsiveness of anthocyanin accumulation as the wild type it remains to be resolved whether COP1/SPA is directly involved in the high-light response itself. PMID:25482806

  9. Impact of heavy metal toxicity and constructed wetland system as a tool in remediation.

    PubMed

    Usharani, B; Vasudevan, N

    2016-03-01

    The objective of this review is to throw light upon the global concern of heavy metal-contaminated sites and their remediation through an ecofriendly approach. Accumulated heavy metals in soil and water bodies gain entry through the food chain and pose serious threat to all forms of life. This has engendered interest in phytoremediation techniques where hyperaccumulators are used. Constructed wetland has a pivotal role and is a cost-effective technique in the remediation of heavy metals. Metal availability and mobility are influenced by the addition of chelating agents, which enhance the availability of metal uptake. This review helps in identifying the critical knowledge gaps and areas to enhance research in the future to develop strategies such as genetically engineered hyperaccumulators to attain an environment devoid of heavy metal contamination. PMID:25454352

  10. The relationship of selenium tolerance and speciation in Lecythidaceae species.

    PubMed

    Németh, Anikó; García Reyes, Juan Francisco; Kosáry, Judit; Dernovics, Mihály

    2013-12-01

    Comparative study of selenium (Se) speciation in hyperaccumulator plants offers an interesting challenge from the analytical point of view. In our study the application of a sophisticated sample clean-up procedure and the combination of elemental and molecular mass spectrometric methods led to the identification of several new selenocompounds. The difference between the Se speciation of the primary accumulator Lecythis minor and the secondary accumulator Bertholletia excelsa confirmed the current opinion that the speciation pattern in hyperaccumulator plants is principally related to the mechanism of accumulation and not to taxonomy. The most abundant new selenocompounds were found to be the derivatives of selenohomocysteine (SeHCy) and selenomethionine (SeMet), including fatty acid metabolism related compounds. A series of SeHCy derived species containing multiple Se atoms (>2) was also detected and their structures were validated by the synthesis of their S-Se analogues. PMID:24136350

  11. Phytoremediation of ionic and methylmercury pollution

    SciTech Connect

    Meagher, Richard B

    2010-04-28

    Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and sequester the toxic elemental pollutants, like the heavy metal mercury. Our current working hypothesis is that transgenic plants controlling the transport, chemical speciation, electrochemical state. volatilization, and aboveground binding of mercury will: a) tolerate mercury and grow rapidly in mercury contaminated environments; b) prevent methylmercury from entering the food chain; c) remove mercury from polluted soil and . water; and d) hyperaccumulate mercury in aboveground tissues for later harvest. Progress toward these specific aims is reported: to increase the transport of mercury into roots and to aboveground vegetative organs; to increase biochemical sinks and storage for mercury in leaves; to increase leaf cell vacuolar storage of mercury; and to demonstrate that several stacked transgenes, when functioning in concert, enhance mercury resistance and hyperaccumulation to high levels.

  12. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium.

    PubMed

    Sors, Thomas G; Ellis, Danielle R; Na, Gun Nam; Lahner, Brett; Lee, Sangman; Leustek, Thomas; Pickering, Ingrid J; Salt, David E

    2005-06-01

    Several Astragalus species have the ability to hyperaccumulate selenium (Se) when growing in their native habitat. Given that the biochemical properties of Se parallel those of sulfur (S), we examined the activity of key S assimilatory enzymes ATP sulfurylase (ATPS), APS reductase (APR), and serine acetyltransferase (SAT), as well as selenocysteine methyltransferase (SMT), in eight Astragalus species with varying abilities to accumulate Se. Se hyperaccumulation was found to positively correlate with shoot accumulation of S-methylcysteine (MeCys) and Se-methylselenocysteine (MeSeCys), in addition to the level of SMT enzymatic activity. However, no correlation was observed between Se hyperaccumulation and ATPS, APR, and SAT activities in shoot tissue. Transgenic Arabidopsis thaliana overexpressing both ATPS and APR had a significant enhancement of selenate reduction as a proportion of total Se, whereas SAT overexpression resulted in only a slight increase in selenate reduction to organic forms. In general, total Se accumulation in shoots was lower in the transgenic plants overexpressing ATPS, PaAPR, and SAT. Root growth was adversely affected by selenate treatment in both ATPS and SAT overexpressors and less so in the PaAPR transgenic plants. Such observations support our conclusions that ATPS and APR are major contributors of selenate reduction in planta. However, Se hyperaccumulation in Astragalus is not driven by an overall increase in the capacity of these enzymes, but rather by either an increased Se flux through the S assimilatory pathway, generated by the biosynthesis of the sink metabolites MeCys or MeSeCys, or through an as yet unidentified Se assimilation pathway. PMID:15941393

  13. Shining light on metals in the environment

    SciTech Connect

    McNear, Jr., D.H.; Tappero, R.; Sparks, D.L.

    2010-07-20

    Elucidating the speciation of heavy metals in the environment is paramount to understanding their potential mobility and bioavailability. Cutting-edge synchrotron-based techniques such as microfocused X-ray absorption fine-structure (XAFS) and X-ray fluorescence (XRF) spectroscopy and microtomography have revolutionized the way metal reactions and processes in natural systems are studied. In this article, we apply these intense-light tools to decipher metal forms (species) and associations in contaminated soils and metal-hyperaccumulating plants.

  14. Use of synchrotron radiation to characterize metals in plants: the case of Cd in the hyperacumulator Arabidopsis halleri

    NASA Astrophysics Data System (ADS)

    Isaure, M.; Sarret, G.; Verbruggen, N.

    2010-12-01

    Phytoremediation uses plants to extract (phytoextraction) or stabilize (phytostabilization) metals accumulated in soils, and can be an alternative to invasive physico-chemical remediation techniques. Its development requires the knowledge of the mechanisms involved in metal tolerance and accumulation in plants, and particularly the way that plants transfer and store metals. In that context, synchrotron radiation based techniques such as micro-focused X-Ray Fluorescence (µXRF), and micro-focused X-ray Absorption Spectroscopy, including Extended X-ray Absorption Fine Structure and X-ray Absorption Near Edge Structure, are particularly suited to determine the localization and the chemical forms of metals in the different tissues, cells and sub-cellular compartments. Arabidopsis halleri is a Zn, Cd hyperaccumulating plant, naturally growing on contaminated sites, and is a model plant to investigate metal hyperaccumulation. This work presents the application of µXRF and Cd µXANES to determine the distribution and speciation of Cd in this species. Results showed that Cd was mainly located in the mesophyll and veins of leaves. It is bound to S ligands in some leaves and to O/N ligands in other ones, and the observed variations may be related to the age of the leaves. Cd speciation seems to differ from other metals, and particularly Zn, generally encountered in hyperaccumulators. High local Cd concentrations were also detected at the base of trichomes, epidermal hairs of leaves, associated to O/N ligands, probably to the cell wall. This phenomenon was also observed on non-hyperaccumulators and is clearly not the major sink for Cd, but trichomes might play a role in the detoxification process. This study illustrates the suitability of synchrotron radiation based techniques to investigate metal distribution and speciation in plants.

  15. Analysis of Sulfur And Selenium Assimilation in 'Astragalus' Plants With Varying Capacities to Accumulate Selenium

    SciTech Connect

    Sors, T.G.; Ellis, D.R.; Na, G.Nam.; Lahner, B.; Lee, S.; Leustek, T.; Pickering, I.J.; Salt, D.E.; /Purdue U. /Rutgers U., Piscataway /Saskatchewan U.

    2007-08-08

    Several Astragalus species have the ability to hyperaccumulate selenium (Se) when growing in their native habitat. Given that the biochemical properties of Se parallel those of sulfur (S), we examined the activity of key S assimilatory enzymes ATP sulfurylase (ATPS), APS reductase (APR), and serine acetyltransferase (SAT), as well as selenocysteine methyltransferase (SMT), in eight Astragalus species with varying abilities to accumulate Se. Se hyperaccumulation was found to positively correlate with shoot accumulation of S-methylcysteine (MeCys) and Se-methylselenocysteine (MeSeCys), in addition to the level of SMT enzymatic activity. However, no correlation was observed between Se hyperaccumulation and ATPS, APR, and SAT activities in shoot tissue. Transgenic Arabidopsis thaliana overexpressing both ATPS and APR had a significant enhancement of selenate reduction as a proportion of total Se, whereas SAT overexpression resulted in only a slight increase in selenate reduction to organic forms. In general, total Se accumulation in shoots was lower in the transgenic plants overexpressing ATPS, PaAPR, and SAT. Root growth was adversely affected by selenate treatment in both ATPS and SAT overexpressors and less so in the PaAPR transgenic plants. Such observations support our conclusions that ATPS and APR are major contributors of selenate reduction in planta. However, Se hyperaccumulation in Astragalus is not driven by an overall increase in the capacity of these enzymes, but rather by either an increased Se flux through the S assimilatory pathway, generated by the biosynthesis of the sink metabolites MeCys or MeSeCys, or through an as yet unidentified Se assimilation pathway.

  16. Phenotypic characterization of microbes in the rhizosphere of Alyssum murale.

    PubMed

    Abou-Shanab, R I; Delorme, T A; Angle, J S; Chaney, R L; Ghanem, K; Moawad, H; Ghozlan, H A

    2003-01-01

    Metal hyperaccumulator plants like Alyssum murale are used for phytoremediation of Ni contaminated soils. Soil microorganisms are known to play an important role in nutrient acquisition for plants, however, little is known about the rhizosphere microorganisms of hyperaccumulators. Fresh and dry weight, and Ni and Fe concentrations in plant shoots were higher when A. murale was grown in non-sterilized compared to sterilized soils. The analysis of microbial populations in the rhizosphere of A. murale and in bulk soils demonstrated that microbial numbers were affected by the presence of the plant. Significantly higher numbers of culturable actinomycetes, bacteria and fungi were found in the rhizosphere compared to bulk soil. A higher percent of Ni-resistant bacteria were also found in the rhizosphere compared to bulk soil. Percentage of acid producing bacteria was higher among the rhizosphere isolates compared to isolates from bulk soil. However, proportions of siderophore producing and phosphate solubilizing bacteria were not affected by the presence of the plant. We hypothesize that microbes in the rhizosphere of A. murale were capable of reducing soil pH leading to an increase in metal uptake by this hyperaccumulator. PMID:14750563

  17. Bioavailability assessment and accumulation by five garden flower species grown in artificially cadmium-contaminated soils.

    PubMed

    Lin, Chun-Chun; Lai, Hung-Yu; Chen, Zueng-Sang

    2010-07-01

    Many studies have been conducted on phytoextraction; however, non-native hyperaccumulator species are not suitable for the natural environment of Taiwan in many cases. Drawing upon previous results, the growth and heavy metal accumulation in artificially cadmium-contaminated soils were compared for five local garden flower species. The treatments included a control (CK), 9.73 +/- 0.05 mg kg(-1) (Cd-10), and 17.6 +/- 0.8 mg kg(-1) (Cd-20). All plants were harvested at 35 days after transplanting and analyzed for Cd content. Cd accumulation in the shoot of French marigold (Tagetes patula L.) and Impatiens (Impatiens walleriana Hook. f.) grown in Cd-20 treatment were 66.3 +/- 6.5 and 100 +/- 11 mg kg(-1), which equated to a removal of 0.80 +/- 0.11 and 0.60 +/- 0.37 mg Cd plant(-1), respectively. The maximum Cd accumulation of Impatiens reached the threshold value (100 mg kg(-1)) characteristic of a Cd hyperaccumulator and its bioconcentration factor (BCF) and translocation factor (TF) were greater than one. Impatiens therefore has the potential to hyperaccumulate Cd from Cd-contaminated soils. With the exception of Garden verbena, significant relationships were found between Cd concentrations in soil extracted by 0.05 M EDTA, 0.005 M DTPA, and 0.01 M CaCl2 and the concentration of Cd in the shoots of the tested garden flowers. PMID:21166288

  18. Lithium, Vanadium and Chromium Uptake Ability of Brassica juncea from Lithium Mine Tailings.

    PubMed

    Elektorowicz, M; Keropian, Z

    2015-01-01

    The potential for phytoremediation and phytostabilization of lithium in lieu with vanadium and chromium on a formulated acidic heterogeneous growth media engineered around lithium mine tailings, was investigated in four phases: (1) overall efficiency of the removal of the three metals, (2) bioaccumulation ratios of the three metals, (3) overall relative growth rate, and (4) translocation index of the three metals in the physiology of the hyperaccumulator plant. A pot study was conducted to assess the suitability of Brassica juncea (Indian mustard) in a phytoremediation process whereby it was lingered for eighty-six days under homogeneous growth conditions and irrigated bidaily with organic fertilizer amended with LiCl. A post harvest data analysis was achieved through ashing and the implementation of cold digestion procedure in a concentrated hydrochloric acidic matrix. In physiological efficiency parameters, the hyperaccumulator plant was twice as able to phytostabilize chromium and four times was able to phytostabilize vanadium in comparison to lithium. Moreover, it was extremely efficient in translocating and accumulating lithium inside its upper physiological sites, more so than chromium and vanadium, thereby demonstrating Indian mustard, as a hyperaccumulator plant, for phytoextraction and phytostabilization in an acidic heterogeneous rhizosphere, with an extremely low relative growth rate. PMID:25747238

  19. The potential of Thelypteris palustris and Asparagus sprengeri in phytoremediation of arsenic contamination.

    PubMed

    Anderson, LaShunda L; Walsh, Maud; Roy, Amitava; Bianchetti, Christopher M; Merchan, Gregory

    2011-02-01

    The potential of two plants, Thelypteris palustris (marsh fern) and Asparagus sprengeri (asparagus fern), for phytoremediation of arsenic contamination was evaluated. The plants were chosen for this study because of the discovery of the arsenic hyperaccumulating fern, Pteris vittata (Ma et al., 2001) and previous research indicating asparagus fern's ability to tolerate > 1200 ppm soil arsenic. Objectives were (1) to assess if selected plants are arsenic hyperaccumulators; and (2) to assess changes in the species of arsenic upon accumulation in selected plants. Greenhouse hydroponic experiments arsenic treatment levels were established by adding potassium arsenate to solution. All plants were placed into the hydroponic experiments while still potted in their growth media. Marsh fern and Asparagus fern can both accumulate arsenic. Marsh fern bioaccumulation factors (> 10) are in the range of known hyperaccumulator, Pteris vittata Therefore, Thelypteris palustris is may be a good candidate for remediation of arsenic soil contamination levels of < or = 500 microg/L arsenic. Total oxidation of As (III) to As (V) does not occur in asparagus fern. The asparagus fern is arsenic tolerant (bioaccumulation factors < 10), but is not considered a good potential phytoremediation candidate. PMID:21598785

  20. Effectiveness of metal-metal and metal-organic compound combinations against Plutella xylostella: implications for plant elemental defense.

    PubMed

    Jhee, Edward M; Boyd, Robert S; Eubanks, Micky D

    2006-02-01

    Plants that contain elevated foliar metal concentrations can be categorized as accumulators or, if the accumulation is extreme, hyperaccumulators. The defense hypothesis suggests that these plants may be defended against folivore attack, and recent research has indicated that metal concentrations at or below the accumulator range may be defensively effective. This experiment explored the toxicity of four metals hyper-accumulated by plants (Cd, Ni, Pb, and Zn) and asked if combinations of metals, or metals and organic chemicals, might broaden the defensive effectiveness of metals. Metals were used alone and in certain metal + metal (Zn plus Ni, Pb, or Cd) and metal + organic defensive chemical (Ni plus tannic acid, atropine, or nicotine) combinations. Artificial diet amended with these treatments was fed to larvae of the crucifer specialist herbivore Plutella xylostella. Combinations of metals and metals + organic chemicals significantly decreased survival and pupation rates, compared to single treatments, for at least some concentrations in every experiment. Effects of combinations were additive rather than synergistic or antagonistic. Because Zn enhanced the toxicity of other metals and Ni enhanced the toxicity of organic defensive chemicals, our findings suggest that the defensive effects of metals are more widespread among plants than previously believed. They also support the hypothesis that herbivore defense may have led to the evolution of metal hyper-accumulation by increasing the preexisting defensive effects of metals at accumulator levels in plants. PMID:16568360

  1. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants.

    PubMed

    Sharma, Shanti S; Dietz, Karl-Josef; Mimura, Tetsuro

    2016-05-01

    Plant cells orchestrate an array of molecular mechanisms for maintaining plasmatic concentrations of essential heavy metal (HM) ions, for example, iron, zinc and copper, within the optimal functional range. In parallel, concentrations of non-essential HMs and metalloids, for example, cadmium, mercury and arsenic, should be kept below their toxicity threshold levels. Vacuolar compartmentalization is central to HM homeostasis. It depends on two vacuolar pumps (V-ATPase and V-PPase) and a set of tonoplast transporters, which are directly driven by proton motive force, and primary ATP-dependent pumps. While HM non-hyperaccumulator plants largely sequester toxic HMs in root vacuoles, HM hyperaccumulators usually sequester them in leaf cell vacuoles following efficient long-distance translocation. The distinct strategies evolved as a consequence of organ-specific differences particularly in vacuolar transporters and in addition to distinct features in long-distance transport. Recent molecular and functional characterization of tonoplast HM transporters has advanced our understanding of their contribution to HM homeostasis, tolerance and hyperaccumulation. Another important part of the dynamic vacuolar sequestration syndrome involves enhanced vacuolation. It involves vesicular trafficking in HM detoxification. The present review provides an updated account of molecular aspects that contribute to the vacuolar compartmentalization of HMs. PMID:26729300

  2. Cd and Zn accumulation in plants from the Padaeng zinc mine area.

    PubMed

    Phaenark, C; Pokethitiyook, P; Kruatrachue, M; Ngernsansaruay, C

    2009-07-01

    Significant cadmium (Cd) contamination In soil and rice has been discovered in Mae Sot, Tak province, Thailand where the rice-based agricultural systems are established in the vicinity of a zinc mine. The prolonged consumption of Cd contaminated rice has potential risks to public health and health impacts of Cd exposed populations in Mae Sot have been demonstrated. The Thai government has prohibited rice cultivation in the area as an effort to prevent further exposure. Phytoextraction, the use of plants to remove contaminants from soil, is a potential option to manage Cd-contaminated areas. However, successful phytoextraction depends on first identifying effective hyperaccumulator plants appropriate for local climatic conditions. Five sampling sites at Padaeng Zinc mine, Tak province were selected to collect plant and soil samples. Total Cd and Zn concentrations in sediments or soils were approximately 596 and 20,673 mg kg(-1) in tailing pond area, 543 and 20,272 mg kg(-1) in open pit area, 894 and 31,319 mg kg(-1) in stockpile area, 1458 and 57,012 mg kg(-1) in forest area and 64 and 2733 mg kg(-1) in Cd contaminated rice field. Among a total of 36 plant species from 16 families, four species (Chromolaena odoratum, Gynura pseudochina, Impatiens violaeflora and Justicia procumbens) could be considered as Cd hyperaccumulators since their shoot Cd concentrations exceeded 100 mg Cd kg(-1) dry mass and they showed a translocation factor >1. Only Justicia procumbens could be considered as a Zn hyperaccumulator (Zn concentration in its shoot more than 10,000 mg Zn kg(-1) dry mass with the translocation factor >1). PMID:19810350

  3. Utilization of a Model for Uptake of Cadmium by Plants as a Phytoremediation Assessment Tool

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Furbish, D. J.; Clarke, J.

    2008-12-01

    Some traditional methods of environmental remediation, such as removal and disposal of contaminated soil, are loosing economic favor and public acceptance, while others, such as in situ phytoremediation, are being carefully examined because of their attractiveness as environmentally friendly, low-cost solutions to site clean-up. The success of phytoremediation strategies, however, hinges on the ability of selected plants, or plant communities, to effectively uptake, accumulate and tolerate targeted contaminants. Heavy metals, specifically cadmium (Cd), are not essential nutrients to plants. However, chemically similar zinc (Zn) is a micronutrient and is actively taken up by hyperaccumulators. For this reason, the mechanisms involved in uptake of Cd parallel those of Zn. Ideally, Cd would be allocated to the stem, leaf, and/or flower, where it becomes harvestable. Our modeling work simulates the uptake and the storage of Cd in a growing hyperaccumulator. After uptake, Cd is partitioned between adsorption to plant tissue and upward movement to leaves driven by transpiration. Uptake, adsorption and transport are also regulated by phytotoxicity. Simulations suggest that a young plant with small biomass can quickly reach phytotoxicity, which shuts down the normal operation of the plant. Conversely, mature plants on a mildly contaminated site, if harvested before the plants die due to phytotoxicity or natural cause, not only survive but may occasionally thrive. The immediate aim is to estimate the effectiveness and limitations of Cd uptake by hyperaccumulators. The eventual goal of this study is to expand the model in spatial and temporal scales, from individual plants to the community scale, and from one harvest interval to several generations. Understanding the interface between physical and biological processes, specifically the uptake and release of contaminants, provides scientists and engineers tools to assess whether phytoremediation is a reasonable strategy for a given environment.

  4. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.

    PubMed

    Rajkumar, Mani; Vara Prasad, Majeti Narasimha; Freitas, Helena; Ae, Noriharu

    2009-01-01

    Serpentine or ultramafic soils are produced by weathering and pedogenesis of ultramafic rocks that are characterized by high levels of Ni, Cr, and sometimes Co, but contain low levels of essential nutrients such as N, P, K, and Ca. A number of plant species endemic to serpentine soils are capable of accumulating exceptionally high concentrations of Ni, Zn, and Co. These plants are known as metal "hyperaccumulators." The function of hyperaccumulation depends not only on the plant, but also on the interaction of the plant roots with rhizosphere microbes and the concentrations of bioavailable metals in the soil. The rhizosphere provides a complex and dynamic microenvironment where microorganisms, in association with roots, form unique communities that have considerable potential for the detoxification of hazardous materials. The rhizosphere bacteria play a significant role on plant growth in serpentine soils by various mechanisms, namely, fixation of atmospheric nitrogen, utilization of 1-aminocyclopropane-1-carboxylic acid (ACC) as the sole N source, production of siderophores, or production of plant growth regulators (hormones). Further, many microorganisms in serpentine soil are able to solubilize "unavailable" forms of heavy metal-bearing minerals by excreting organic acids. In addition, the metal-resistant serpentine isolates increase the efficiency of phytoextraction directly by enhancing the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass of hyperaccumulators. Hence, isolation of the indigenous and stress-adapted beneficial bacteria serve as a potential biotechnological tool for inoculation of plants for the successful restoration of metal-contaminated ecosystems. In this study, we highlight the diversity and beneficial features of serpentine bacteria and discuss their potential in phytoremediation of serpentine and anthropogenically metal-contaminated soils. PMID:19514893

  5. Agromining: farming for metals in the future?

    PubMed

    van der Ent, Antony; Baker, Alan J M; Reeves, Roger D; Chaney, Rufus L; Anderson, Christopher W N; Meech, John A; Erskine, Peter D; Simonnot, Marie-Odile; Vaughan, James; Morel, Jean Louis; Echevarria, Guillaume; Fogliani, Bruno; Rongliang, Qiu; Mulligan, David R

    2015-04-21

    Phytomining technology employs hyperaccumulator plants to take up metal in harvestable plant biomass. Harvesting, drying and incineration of the biomass generates a high-grade bio-ore. We propose that "agromining" (a variant of phytomining) could provide local communities with an alternative type of agriculture on degraded lands; farming not for food crops, but for metals such as nickel (Ni). However, two decades after its inception and numerous successful experiments, commercial phytomining has not yet become a reality. To build the case for the minerals industry, a large-scale demonstration is needed to identify operational risks and provide "real-life" evidence for profitability. PMID:25700109

  6. The green clean: The emerging field of phytoremediation takes root

    SciTech Connect

    Brown, K.S.

    1995-10-01

    A few plants can biologically accumulate toxic metals from surrounding soils, a situation that could revolutionize environmental cleanup. By breeding a planting metal-munchers like alpine pennycress, scientist plan to clease waste zones of toxic levels of zinc, nickel and lead. From soil loaded with metal to radionuclide-laden water, researcher hope phytoremediation will provide a cheap way to clean man-made messes at mining, nuclear, and industrial sites. This article describes developments in the area of phytoremediation, including sections on plants called hyperaccumulators, how phytoremediators function, problems transferring phytoremediators from hydroculture to soils and problems which might prevent use of phytoremediators.

  7. Autophagy controls carbon, nitrogen, and redox homeostasis in plants.

    PubMed

    Masclaux-Daubresse, C

    2016-05-01

    During leaf senescence, autophagy is essential for nutrient recycling and remobilization, and for plant productivity. Metabolome and transcriptome studies performed on autophagy mutants revealed major disorders in nitrogen, carbon, and redox metabolisms. Analysis showed that autophagy mutants are depleted of antioxidant anthocyanin molecules. Transcriptome analysis revealed that the depletion of anthocyanin is due to the downregulation of the master genes encoding the enzymes and regulatory proteins involved in the flavonoid pathway. The hyperaccumulation of salicylic acid and the depletion of anthocyanin in autophagy mutants might result from the rerouting of carbon resources in the phenylpropanoid pathway and amplify oxidative stress in autophagy mutants. PMID:25484096

  8. The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by Mirabilis jalapa L.

    PubMed

    Wang, Song; Liu, Jianv

    2014-02-01

    In the previous study, Mirabilis jalapa L. had revealed the basic Cd hyperaccumulator characteristics, but the accumulation ability was not as strong as that of other known Cd hyperaccumulators. In order to improve the accumulation ability of this ornamental plant, the chelants were used to activate the Cd in soil. As a substitute, ethylene glycol bis(2-aminoethyl) tetraacetic acid (EGTA) was selected to testify whether it has better effectiveness and can bring lesser metal leaching risk than EDTA. The data showed that the growth of M. jalapa was inhibited, while the Cd concentration of the plant was significantly increased under the treatments containing EDTA or EGTA. The Cd translocation ability under the EGTA treatments was higher than that under the EDTA treatments. The available Cd resulted from the application of chelant EGTA to the contaminated soils can be limited to the top 5 cm, while the application of chelant EDTA to the contaminated soils can be limited to the top 10 cm. In a word, EGTA showed better effectiveness than EDTA in enhancing Cd phytoextraction of M. jalapa. As an ornamental plant, M. jalapa has the potential to be used for phytoextraction of Cd-contaminated soils and it can beautify the environment at the same time. PMID:24068285

  9. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance.

    PubMed

    Goswami, Sunayana; Das, Suchismita

    2016-04-01

    Cu phytoremediation potential of an ornamental plant, Calandula officinalis, was explored in terms of growth responses, photosynthetic activities and antioxidant enzymes such as SOD, CAT and GPX. The results showed that this plant had high Cu tolerance of up to 400mg/kg, which is far above the phytotoxic range for non hyperaccumulators. It grew normally in soils at all the doses (150-400mg/kg) without showing external signs of phytotoxicity. At 150mg/kg, flowering was augmented; root and shoot biomass, root lengths and leaf soluble protein contents remained same as that of the control. However, chlorophyll and carotenoid pigment contents declined significantly along with significant elevations in lipid peroxidation, at all the doses. Elevations of antioxidant enzymes reflected stress as well as probable mitigation of reactive oxygen species due to Cu stress. Except for the highest conc. (400mg/kg), leaf accumulation of Cu was higher than root accumulations. The Cu accumulation peaked at 300mg/kg Cu in soil, with leaf and root accumulations to be respectively, 4675 and 3995µg/g dry wt., far more than the minimum of 1000µg/g dry wt. for a Cu hyperaccumulator. The plant root at all the doses tolerated Cu, with the tolerance index ranging from 94-62.7. The soil to plant metal uptake capacity, indicated by extraction coefficient and the root to shoot translocation, indicated by translocation factor, at all the doses of Cu were >1, pointed towards efficient phytoremediation potential. PMID:26773830

  10. Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata.

    PubMed

    Prins, Christine N; Hantzis, Laura J; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-11-01

    Selenium (Se) is an essential micronutrient for many organisms, but is also a toxin and environmental pollutant at elevated levels. Due to its chemical similarity to sulphur, most plants readily take up and assimilate Se. Se accumulators such as Brassica juncea can accumulate Se between 0.01% and 0.1% of dry weight (DW), and Se hyperaccumulators such as Stanleya pinnata (Brassicaeae) contain between 0.1% and 1.5% DW of Se. While Se accumulation offers the plant a variety of ecological benefits, particularly protection from herbivory, its potential costs are still unexplored. This study examines the effects of plant Se levels on reproductive functions. In B. juncea, Se concentrations >0.05-0.1% caused decreases in biomass, pollen germination, individual seed and total seed weight, number of seeds produced, and seed germination. In S. pinnata there was no negative effect of increased Se concentration on pollen germination. In cross-pollination of B. juncea plants with different Se levels, both the maternal and paternal Se level affected reproduction, but the maternal Se concentration had the most pronounced effect. Interestingly, high-Se maternal plants were most efficiently pollinated by Se-treated paternal plants. These data provide novel insights into the potential reproductive costs of Se accumulation, interactive effects of Se in pollen grains and in the pistil, and the apparent evolution of physiological tolerance mechanisms in hyperaccumulators to avoid reproductive repercussions. PMID:21841173

  11. Selenium accumulation in flowers and its effects on pollination.

    PubMed

    Quinn, Colin F; Prins, Christine N; Freeman, John L; Gross, Amanda M; Hantzis, Laura J; Reynolds, Ray J B; Yang, Soo in; Covey, Paul A; Bañuelos, Gary S; Pickering, Ingrid J; Fakra, Sirine C; Marcus, Matthew A; Arathi, H S; Pilon-Smits, Elizabeth A H

    2011-11-01

    • Selenium (Se) hyperaccumulation has a profound effect on plant-arthropod interactions. Here, we investigated floral Se distribution and speciation in flowers and the effects of floral Se on pollen quality and plant-pollinator interactions. • Floral Se distribution and speciation were compared in Stanleya pinnata, an Se hyperaccumulator, and Brassica juncea, a comparable nonhyperaccumulator. Pollen germination was measured from plants grown with varying concentrations of Se and floral visitation was compared between plants with high and low Se. • Stanleya pinnata preferentially allocated Se to flowers, as nontoxic methyl-selenocysteine (MeSeCys). Brassica juncea had higher Se concentrations in leaves than flowers, and a lower fraction of MeSeCys. For B. juncea, high floral Se concentration impaired pollen germination; in S. pinnata Se had no effect on pollen germination. Floral visitors collected from Se-rich S. pinnata contained up to 270 μg g(-1), concentrations toxic to many herbivores. Indeed, floral visitors showed no visitation preference between high- and low-Se plants. Honey from seleniferous areas contained 0.4-1 μg Se g(-1), concentrations that could provide human health benefits. • This study is the first to shed light on the possible evolutionary cost, through decreased pollen germination in B. juncea, of Se accumulation and has implications for the management of seleniferous areas. PMID:21793829

  12. On the potential of biological treatment for arsenic contaminated soils and groundwater.

    PubMed

    Wang, Suiling; Zhao, Xiangyu

    2009-06-01

    Bioremediation of arsenic contaminated soils and groundwater shows a great potential for future development due to its environmental compatibility and possible cost-effectiveness. It relies on microbial activity to remove, mobilize, and contain arsenic through sorption, biomethylation-demethylation, complexation, coprecipitation, and oxidation-reduction processes. This paper gives an evaluation on the feasibility of using biological methods for the remediation of arsenic contaminated soils and groundwater. Ex-situ bioleaching can effectively remove bulk arsenic from contaminated soils. Biostimulation such as addition of carbon sources and mineral nutrients can be applied to promote the leaching rate. Biosorption can be used either ex-situ or in-situ to remove arsenic from groundwater by sorption to biomass and/or coprecipitation with biogenic solids or sulfides. Introduction of proper biosorbents or microorganisms to produce active biosorbents in-situ is the key to the success of this method. Phytoremediation depends on arsenic-hyperaccumulating plants to remove arsenic from soils and shallow groundwater by translocating it into plant tissues. Engineering genetic strategies can be employed to increase the arsenic-hyperaccumulating capacity of the plants. Biovolatilization may be developed potentially as an ex-situ treatment technology. Further efforts are needed to focus on increasing the volatilization rate and the post-treatment of volatilization products. PMID:19269736

  13. Molecular Genetics of Metal Detoxification: Prospects for Phytoremediation

    SciTech Connect

    Ow, David W. ow@pgec.ams.usda.gov

    2000-09-01

    Unlike compounds that can be broken down, the remediation of most heavy metals and radionuclides requires physical extraction from contaminated sources. Plants can extract inorganics, but effective phytoextraction requires plants that produce high biomass, grow rapidly and possess high capacity-uptake for the inorganic substance. Either hyperaccumulator plants must be bred for increased growth and biomass or hyperaccumulation traits must be engineered into fast growing, high biomass plants. This latter approach requires fundamental knowledge of the molecular mechanisms in the uptake and storage of inorganics. Much has been learned in recent years on how plants and certain fungi chelate and transport selected heavy metals. This progress has been facilitated by the use of Schizosaccharomyces pombe as a model system. The use of a model organism for study permits rapid characterization of the molecular process. As target genes are identified in a model organism, their sequences can be modified for expression in a heterologous host or aid in the search of homologous genes in more complex organisms. Moreover, as plant nutrient uptake is intrinsically linked to the association with rhizospheric fungi, elucidating metal sequestration in this fungus permits additional opportunities for engineering rhizospheric microbes to assist in phytoextraction.

  14. Mechanisms of lichen resistance to metallic pollution

    SciTech Connect

    Sarret, C.; Manceau, A.; Eybert-Berard, L.; Cuny, D.; Haluwyn, C. van; Deruelle, S.; Hazemann, J.L.; Menthonnex, J.J.; Soldo, Y.

    1998-11-01

    Some lichens have a unique ability to grow in heavily contaminated areas due to the development of adaptative mechanisms allowing a high tolerance to metals. Here the authors report on the chemical forms of Pb and Zn in the metal hyperaccumulator Diploschistes muscorum and of Pb in the metal tolerant lichen Xanthoria parietina. The speciation of Zn and Pb has been investigated by powder X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy using the advanced third-generation synchrotron radiation source of the European synchrotron radiation facility (ESRF in Grenoble). This study reveals that in both lichens cells are protected from toxicity by complexation of heavy metals, but the strategies differ: in D. muscorum, Pb and Zn are accumulated through an enhanced synthesis of oxalate, which precipitates toxic elements as insoluble salts, whereas in X. parietina, Pb is complexed to carboxylic groups of the fungal cell walls. The authors conclude that hyperaccumulation of metals results from a reactive mechanism of organic acid production, whereas metallo-tolerance is achieved by a passive complexation to existing functional groups.

  15. Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives.

    PubMed

    Charlier, Jean-Benoit; Polese, Catherine; Nouet, Ccile; Carnol, Monique; Bosman, Bernard; Krmer, Ute; Motte, Patrick; Hanikenne, Marc

    2015-07-01

    In Arabidopsis thaliana, FRD3 (FERRIC CHELATE REDUCTASE DEFECTIVE 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary processes underlying the evolution of hyperaccumulation in A. halleri. We combined gene expression studies with the use of ?-glucuronidase and green fluorescent protein reporter constructs to compare the expression profile and transcriptional and post-transcriptional regulation of FRD3 in both species. The AtFRD3 and AhFRD3 genes displayed a conserved expression profile. In A. thaliana, alternative transcription initiation sites from two promoters determined transcript variants that were differentially regulated by zinc supply in roots and shoots to favour the most highly translated variant under zinc-excess conditions. In A. halleri, a single transcript variant with higher transcript stability and enhanced translation has been maintained. The FRD3 gene thus undergoes complex transcriptional and post-transcriptional regulation in Arabidopsis relatives. Our study reveals that a diverse set of mechanisms underlie increased gene dosage in the A. halleri lineage and illustrates how an environmental challenge can alter gene regulation. PMID:25900619

  16. Effect of zinc and glucosinolates on nutritional quality of Noccaea caerulescens and infestation by Aleyrodes proletella.

    PubMed

    Asad, Saeed Ahmad; Young, Scott D; West, Helen M

    2015-04-01

    The Zn hyperaccumulating plant, Noccaea caerulescens, was grown under controlled conditions at a range of Zn concentrations (0-1000 mg kg(-1) dwt. soil) to determine the effectiveness of hyperaccumulation in deterring the cabbage whitefly, Aleyrodes proletella, and to establish the relationship between levels of foliar Zn and glucosinolates (organic defence compounds). Two weeks after introducing A. proletella adults to the plants, next generation nymphs were quantified. This sucking insect caused minimal damage to plant tissue and did not affect foliar glucosinolate levels. Foliar Zn concentrations increased with increasing soil Zn application and reached a maximum of ~7000 mg kg(-1). More whitefly nymphs were observed on plants as the foliar Zn concentration increased (up to ~3000 mg kg(-1)) after which numbers declined. Zn was an explanatory variable in accumulated generalised linear regression after the variation in the data due to C/N ratio had been accounted for. Nymph numbers declined with increasing C/N ratio and increased with increasing N concentration. The highest glucosinolate concentrations were in shoots with the lowest Zn concentrations; this is consistent with the 'trade-off' hypothesis which states that elemental defence mechanisms allow for lowered organic defences. PMID:25525711

  17. Arsenic-induced responses in Pityrogramma calomelanos (L.) Link: Arsenic speciation, mineral nutrition and antioxidant defenses.

    PubMed

    Campos, N V; Arcanjo-Silva, S; Viana, I B; Batista, B L; Barbosa, F; Loureiro, M E; Ribeiro, C; Azevedo, A A

    2015-12-01

    Arsenic (As) hyperaccumulation trait has been described in a limited number of fern species. The physiological basis of hyperaccumulation remains unclear, especially in non-Pteris species such as Pityrogramma calomelanos. Aiming at a better understanding of As-induced responses, P. calomelanos plants were exposed to 1 mM As for 21 days and compared with control plants. Chemical analyses revealed that As accumulation was ten times higher in pinnae then in roots and stipes. In pinnae, As was present mainly as arsenite, whereas arsenate was the dominant form in stipes and roots. Arsenic promoted an increase in antioxidant enzyme activities in both fern parts and several alterations in mineral nutrition, especially with regard to P and K. A higher content of non-protein thiols was observed in pinnae of plants exposed to As, whereas As induced the increase in lipid peroxidation in roots. The results showed that Pityrogramma calomelanos shares with Pteris vittata several aspects of As metabolism. High root-shoot As translocation showed to be essential to avoid toxic effects in roots, since the root is more sensitive to the metalloid. The higher capacity of P. calomelanos to sequester arsenite in the pinna and its efficient antioxidant system maintain the reactive oxygen species at a low level, thus enhancing the continuous accumulation of As. Molecular investigations are needed to elucidate the evolution of As-tolerance mechanisms in Pteridaceae species, especially with regard to membrane transporters and ROS signaling. PMID:26408808

  18. Constitutive camalexin production and environmental stress response variation in Arabidopsis populations from the Iberian Peninsula.

    PubMed

    Zhang, Nana; Lariviere, Andy; Tonsor, Stephen J; Traw, M Brian

    2014-08-01

    Optimal defense theory predicts that induction of defensive secondary metabolites in plants will be inversely correlated with constitutive expression of those compounds. Here, we asked whether camalexin, an important defense against fungal and bacterial pathogens, support this prediction in structured natural populations of Arabidopsis thaliana from the Iberian Peninsula. In common garden experiments, we found that genotypes from the VIE population constitutively hyper-accumulated camalexin. Camalexin concentrations were not induced significantly when plants were exposed to a temperature of 10C for 48h. However, they were induced when plants were exposed to 48h of infection by the virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Genotypes from the VIE population with the hyper-accumulation of camalexin were significantly more resistant to bacterial growth. Induction of camalexin was negatively correlated with constitutive camalexin concentrations following log transformation and two different corrections for autocorrelation, thus supporting the tradeoff predicted by optimal defense theory. Constitutive overexpression of camalexin was not explained by the only known natural genetic polymorphism at the Accelerated Cell Death 6, ACD6, locus. Collectively, the results support an important role of camalexin in defense against P. syringae as well as significant structured variation in defense levels within wild populations. PMID:25017162

  19. A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in Populus × canescens1[C][W

    PubMed Central

    He, Jiali; Li, Hong; Luo, Jie; Ma, Chaofeng; Li, Shaojun; Qu, Long; Gai, Ying; Jiang, Xiangning; Janz, Dennis; Polle, Andrea; Tyree, Melvin; Luo, Zhi-Bin

    2013-01-01

    Bark tissue of Populus × canescens can hyperaccumulate cadmium, but microstructural, transcriptomic, and physiological response mechanisms are poorly understood. Histochemical assays, transmission electron microscopic observations, energy-dispersive x-ray microanalysis, and transcriptomic and physiological analyses have been performed to enhance our understanding of cadmium accumulation and detoxification in P. × canescens. Cadmium was allocated to the phloem of the bark, and subcellular cadmium compartmentalization occurred mainly in vacuoles of phloem cells. Transcripts involved in microstructural alteration, changes in nutrition and primary metabolism, and stimulation of stress responses showed significantly differential expression in the bark of P. × canescens exposed to cadmium. About 48% of the differentially regulated transcripts formed a coregulation network in which 43 hub genes played a central role both in cross talk among distinct biological processes and in coordinating the transcriptomic regulation in the bark of P. × canescens in response to cadmium. The cadmium transcriptome in the bark of P. × canescens was mirrored by physiological readouts. Cadmium accumulation led to decreased total nitrogen, phosphorus, and calcium and increased sulfur in the bark. Cadmium inhibited photosynthesis, resulting in decreased carbohydrate levels. Cadmium induced oxidative stress and antioxidants, including free proline, soluble phenolics, ascorbate, and thiol compounds. These results suggest that orchestrated microstructural, transcriptomic, and physiological regulation may sustain cadmium hyperaccumulation in P. × canescens bark and provide new insights into engineering woody plants for phytoremediation. PMID:23530184

  20. Chemically Induced Conditional Rescue of the Reduced Epidermal Fluorescence8 Mutant of Arabidopsis Reveals Rapid Restoration of Growth and Selective Turnover of Secondary Metabolite Pools1[C][OPEN

    PubMed Central

    Kim, Jeong Im; Ciesielski, Peter N.; Donohoe, Bryon S.; Chapple, Clint; Li, Xu

    2014-01-01

    The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3′-hydroxylase (C3′H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3′H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3′H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant’s growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant. PMID:24381065

  1. Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich.

    PubMed

    Gong, Xiaomin; Liu, Yunguo; Huang, Danlian; Zeng, Guangming; Liu, Shaobo; Tang, Hui; Zhou, Lu; Hu, Xi; Zhou, Yaoyu; Tan, Xiaofei

    2016-05-01

    Cadmium (Cd) is a detrimental metal in the environment and it is easily taken up by plants, thus entering the food chain and posing a severe threat to human health. Phytoremediation being low cost, highly stable, and environmentally friendly has been considered as a promising green technology for Cd remediation. The addition of exogenous substances to the culture media has been recognized as an efficient strategy to improve plant phytoremediation capability. Pot trials were conducted to investigate the combined effects of exogenous calcium (Ca) and spermidine (Spd) on Cd-induced toxicity in Boehmeria nivea (L.) Gaudich. (ramie). Results showed that the application of 5-mM exogenous Ca significantly alleviated Cd toxicity in ramie by reducing Cd accumulation, depressing H2O2 and malondialdehyde contents, increasing plants dry weights and chlorophyll concentrations, as well as altering the activities of total superoxide dismutase and guaiacol peroxidase. Furthermore, as a non-Cd hyperaccumulator plant, ramie hyperaccumulated Cd and suffered more severe toxic effects of Cd by the treatment of 1 mM Ca/Cd. The aggravated Cd toxicity could be compensated by the addition of exogenous Spd via the promotion of plant growth and the reduction of the oxidative stress. Overall, the combination effects of 1 mM Ca and Spd appeared to be more superior compared to other treatments in the plants under Cd stress with a higher Cd accumulation ability and the evaluated Cd stress tolerance. PMID:26801927

  2. Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies

    PubMed Central

    Ricachenevsky, Felipe K.; Menguer, Paloma K.; Sperotto, Raul A.; Williams, Lorraine E.; Fett, Janette P.

    2013-01-01

    Zinc (Zn) is an essential micronutrient for plants, playing catalytic or structural roles in enzymes, transcription factors, ribosomes, and membranes. In humans, Zn deficiency is the second most common mineral nutritional disorder, affecting around 30% of the world's population. People living in poverty usually have diets based on milled cereals, which contain low Zn concentrations. Biofortification of crops is an attractive cost-effective solution for low mineral dietary intake. In order to increase the amounts of bioavailable Zn in crop edible portions, it is necessary to understand how plants take up, distribute, and store Zn within their tissues, as well as to characterize potential candidate genes for biotechnological manipulation. The metal tolerance proteins (MTP) were described as metal efflux transporters from the cytoplasm, transporting mainly Zn2+ but also Mn2+, Fe2+, Cd2+, Co2+, and Ni2+. Substrate specificity appears to be conserved in phylogenetically related proteins. MTPs characterized so far in plants have a role in general Zn homeostasis and tolerance to Zn excess; in tolerance to excess Mn and also in the response to iron (Fe) deficiency. More recently, the first MTPs in crop species have been functionally characterized. In Zn hyperaccumulator plants, the MTP1 protein is related to hypertolerance to elevated Zn concentrations. Here, we review the current knowledge on this protein family, as well as biochemical functions and physiological roles of MTP transporters in Zn hyperaccumulators and non-accumulators. The potential applications of MTP transporters in biofortification efforts are discussed. PMID:23717323

  3. [Effects of Bacillus mucilaginosus on the Cd content of rhizosphere soil and enzymes in soil of Brassica juncea].

    PubMed

    Yang, Rong; Li, Bo-Wen; Liu, Wei

    2013-06-01

    The effects of two inoculation concentrations of Bacillus mucilaginosus (1 x 10(10) (treatment A), 2 x 10(10) (treatment C) CFU x kg(-1)) on the Cd content of rhizosphere soil and enzymes in soil were investigated when Brassica as a hyperaccumulator grew in the pots experiment. The results showed that the removal rate of rhizosphere soil Cd in treatment A and C were 37.62% and 38.27%, respectively, which were 1.54 and 1.56 times as high as that of the control (24.47%). The activities of urease, phosphatase and catalase in rhizosphere were higher than those in non-rhizosphere. The urease, catalase and dehydrogenase activities increased firstly and then decreased, while the phosphatase activity increased gradually with time. However, the dehydrogenase activity in non-rhizophere was higher than that in rhizosphere. Correlation analysis showed negative correlation between content of Cd and urease and phosphatase in the control treatment and significantly negative correlation between content of Cd and activities urease and phosphatase in treatment A and C in rhizosphere. The results indicated that inoculation of Bacillus mucilaginosus not only had some positive effect on urease, phosphatase, catalase and dehydrogenase in soil but also improved the purification effect of hyperaccumulator on soil Cd. This study provides theoretical guidance for the further mechanism study of Microbe-Phytoremediation. PMID:23947067

  4. Phenotypic and molecular consequences of overexpression of metal-homeostasis genes

    PubMed Central

    Antosiewicz, Danuta M.; Barabasz, Anna; Siemianowski, Oskar

    2014-01-01

    Metal hyperaccumulating plants are able to store very large amounts of metals in their shoots. There are a number of reasons why it is important to be able to introduce metal hyperaccumulation traits into non-accumulating species (e.g., phytoremediation or biofortification in minerals) and to engineer a desired level of accumulation and distribution of metals. Metal homeostasis genes have therefore been used for these purposes. Engineered accumulation levels, however, have often been far from expected, and transgenic plants frequently display phenotypic features not related to the physiological function of the introduced gene. In this review, we focus on an aspect often neglected in research on plants expressing metal homeostasis genes: the specific regulation of endogenous metal homeostasis genes of the host plant in response to the transgene-induced imbalance of the metal status. These modifications constitute one of the major mechanisms involved in the generation of the plant's phenotype, including unexpected characteristics. Interestingly, activation of so-called metal cross-homeostasis has emerged as a factor of primary importance. PMID:24639682

  5. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam.

    PubMed

    Nguyen, Thi Hoang Ha; Sakakibara, Masayuki; Sano, Sakae; Mai, Trong Nhuan

    2011-02-28

    This study was conducted to evaluate the phytoremediation and phytomining potential of 10 plant species growing naturally at one of the largest lead-zinc mines in Northern Vietnam. Total concentrations of heavy metals and arsenic were determined in the plant and in associated soil and water in and outside of the mine area. The results indicate that hyperaccumulation levels (mg kg(-1) dry weight) were obtained in Houttuynia cordata Thunb. (1140) and Pteris vittata L. (3750) for arsenic, and in Ageratum houstonianum Mill. (1130), Potamogeton oxyphyllus Miq. (4210), and P. vittata (1020) for lead. To the best of our knowledge, the present paper is the first report on metal accumulation and hyperaccumulation by H. cordata, A. houstonianum, and P. oxyphyllus. Based on the obtained concentrations of metals, bioconcentration and translocation factors, as well as the biomass of these plants, the two latter species and P. vittata are good candidates for phytoremediation of sites contaminated with arsenic and multi-metals. None of the collected plants was suitable for phytomining, given their low concentrations of useful metals (e.g., silver, gallium, and indium). PMID:21227580

  6. Effect of salinity on zinc uptake by Brassica juncea.

    PubMed

    Novo, Luís A B; Covelo, Emma F; González, Luís

    2014-01-01

    Salinity is a major worldwide problem that affects agricultural soils and limits the reclamation of contaminated sites. Despite the large number of research papers published about salt tolerance in Brassica juncea L., there are very few accounts concerning the influence of salinity on the uptake of trace metals. In this study, B. juncea plants divided through soil sets comprising 0, 900 and 1800 mg Zn kg(-1), were treated with solutions containing 0, 60 and 120 mmol L(-1) of NaCl, with the purpose of observing the effect of salt on Zn uptake, and some physiological responses throughout the 90 days experiment. Increasing concentrations of NaCl and Zn produced a decline in the ecophysiological and biochemical properties of the plants, with observable synergistic effects on parameters like shoot dry weight, leaf area, or photochemical efficiency. Nevertheless, plants treated with 60 mmol L(-1) of NaCl accumulated striking harvestable amounts of Zn per plant that largely exceed those reported for Thlaspi caerulescens. It was concluded that salinity could play an important role on the uptake of Zn by B. juncea. The potential mechanisms behind these results are discussed, as well as the implications for phytoremediation of Zn on saline and non-saline soils. PMID:24933880

  7. Genetic diversity within the Albugo candida complex (Peronosporales, Oomycota) inferred from phylogenetic analysis of ITS rDNA and COX2 mtDNA sequences.

    PubMed

    Choi, Young-Joon; Hong, Seung-Beom; Shin, Hyeon-Dong

    2006-08-01

    Albugo candida is a destructive fungus infecting brassicaceous hosts. The genetic diversity within the A. candida complex from various host plants was investigated by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and the cytochrome c oxidase subunit II (COX2) region of mtDNA. The aligned nucleotide sequences of A. candida shared significantly high distances, up to 20.4 and 8.9%, in two genes. The phylogenetic trees, obtained using the Bayesian method and maximum parsimony analysis, showed two separate groups that corresponded to the host genera. Group I included A. candida isolates infecting Arabis, Autrieta, Berteroa, Biscutella, Brassica, Cardaminopsis, Diplotaxis, Eruca, Erysimum, Heliophila, Iberis, Lunaria, Raphanus, Sinapis, Sisymbrium, and Thlaspi. Group II contained all isolates from Capsella, Descurainia, Diptychocarpus, Draba, and Lepidium. The genetic similarities between the two genes among isolates within Group I were 99.0-100% and 99.6-100%, while those within Group II were 90.4-100% and 91.1-100%, respectively, showing considerably lower values than for Group I. The A. candida isolates from Capsella bursa-pastoris in Korea are clearly separated by sequence analysis for the two genes compared to those from Wales, England, and the USA. Based on the molecular data from the two genes, we suggest the high degree of genetic diversity exhibited within A. candida complexes warrants their division into several distinct species. PMID:16644244

  8. Cloning and characterization of the nicotianamine synthase gene in Eruca vesicaria subsp sativa.

    PubMed

    Huang, B L; Cheng, C; Zhang, G Y; Su, J J; Zhi, Y; Xu, S S; Cai, D T; Zhang, X K; Huang, B Q

    2015-01-01

    Nicotianamine (NA) is a ubiquitous metabolite in plants that bind heavy metals, is crucial for metal homeostasis, and is also an important metal chelator that facilitates long-distance metal transport and sequestration. NA synthesis is catalyzed by the enzyme nicotianamine synthase (NAS). Eruca vesicaria subsp sativa is highly tolerant to Ni, Pb, and Zn. In this study, a gene encoding EvNAS was cloned and characterized in E. vesicaria subsp sativa. The full-length EvNAS cDNA sequence contained a 111-bp 5'-untranslated region (UTR), a 155-bp 3'-UTR, and a 966-bp open reading frame encoding 322-amino acid residues. The EvNAS genomic sequence contained no introns, which is similar to previously reported NAS genes. The deduced translation of EvNAS contained a well-conserved NAS domain (1-279 amino acids) and an LIKI-CGEAEG box identical to some Brassica NAS and to the LIRL-box in most plant NAS, which is essential for DNA binding. Phylogenetic analysis indicated that EvNAS was most closely related to Brassica rapa NAS3 within the Cruciferae, followed by Thlaspi NAS1, Camelina NAS3, and Arabidopsis NAS3. A reverse transcription-polymerase chain reaction indicated that EvNAS expression was greatest in the leaves, followed by the flower buds and hypocotyls. EvNAS was moderately expressed in the roots. PMID:26782459

  9. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania)

    NASA Astrophysics Data System (ADS)

    Estrade, Nicolas; Cloquet, Christophe; Echevarria, Guillaume; Sterckeman, Thibault; Deng, Tenghaobo; Tang, YeTao; Morel, Jean-Louis

    2015-08-01

    The dissolved nickel (Ni) isotopic composition of rivers and oceans presents an apparent paradox. Even though rivers represent a major source of Ni in the oceans, seawater is more enriched in the heavier isotopes than river-water. Additional sources or processes must therefore be invoked to account for the isotopic budget of dissolved Ni in seawater. Weathering of continental rocks is thought to play a major role in determining the magnitude and sign of isotopic fractionation of metals between a rock and the dissolved product. We present a study of Ni isotopes in the rock-soil-plant systems of several ultramafic environments. The results reveal key insights into the magnitude and the control of isotopic fractionation during the weathering of continental ultramafic rocks. This study introduces new constraints on the influence of vegetation during the weathering process, which should be taken into account in interpretations of the variability of Ni isotopes in rivers. The study area is located in a temperate climate zone within the ophiolitic belt area of Albania. The serpentinized peridotites sampled present a narrow range of heavy Ni isotopic compositions (δ60Ni = 0.25 ± 0.16 ‰, 2SD n = 2). At two locations, horizons within two soil profiles affected by different degrees of weathering all presented light isotopic compositions compared to the parent rock (Δ60Nisoil-rock up to - 0.63 ‰). This suggests that the soil pool takes up the light isotopes, while the heavier isotopes remain in the dissolved phase. By combining elemental and mineralogical analyses with the isotope compositions determined for the soils, the extent of fractionation was found to be controlled by the secondary minerals formed in the soil. The types of vegetation growing on ultramafic-derived soils are highly adapted and include both Ni-hyperaccumulating species, which can accumulate several percent per weight of Ni, and non-accumulating species. Whole-plant isotopic compositions were found to be isotopically heavier than the soil (Δ60Niwhole plant-soil up to 0.40‰). Fractions of Ni extracted by DTPA (diethylenetriaminepentaacetic acid) presented isotopically heavy compositions compared to the soil (Δ60NiDTPA-soil up to 0.89‰), supporting the hypothesis that the dissolved Ni fraction controlled by weathering has a heavy isotope signature. The non-hyperaccumulators (n = 2) were inclined to take up and translocate light Ni isotopes with a large degree of fractionation (Δ60Nileaves-roots up to - 0.60 ‰). For Ni-hyperaccumulators (n = 7), significant isotopic fractionation was observed in the plants in their early growth stages, while no fractionation occurred during later growth stages, when plants are fully loaded with Ni. This suggests that (i) the high-efficiency translocation process involved in hyperaccumulators does not fractionate Ni isotopes, and (ii) the root uptake process mainly controls the isotopic composition of the plant. In ultramafic contexts, vegetation composed of hyperaccumulators can significantly influence isotopic compositions through its remobilization in the upper soil horizon, thereby influencing the isotopic balance of Ni exported to rivers.

  10. Transcriptome analyses of Populus x euramericana clone I-214 leaves exposed to excess zinc.

    PubMed

    Di Baccio, Daniela; Galla, Giulio; Bracci, Tania; Andreucci, Andrea; Barcaccia, Gianni; Tognetti, Roberto; Sebastiani, Luca

    2011-12-01

    Zinc (Zn) is an essential element for plant growth and development, but at high levels this metal can become toxic. Hyperaccumulator species are often not suitable for phytoremediation technologies because they need to be fast growing and have high biomass production, such as those of the Populus genus. Comparative genomics studies of poplars subjected to stress conditions such as heavy metal contamination have generated resources useful for improving the annotation of genes and have provided novel insights in the defense/tolerance mechanisms governing adaptation in non-hyperaccumulator plants. Using a microarray-based comparative analysis, we identified functional gene sets that are differentially regulated in the leaves of Populus × euramericana clone I-214 subjected to an excess but sub-lethal dose of Zn (1 mM). Eco-physiological and chemical analyses confirmed the results obtained in previous similar experiments. A total of 3861 expressed sequence tags (ESTs) were differentially expressed and grouped into two distinct libraries of up-regulated (40%) and down-regulated (60%) putative genes. The annotation of genes and gene products according to the Gene Ontology vocabularies was performed using Blast2GO software. The two transcriptome data sets were used to query all known Kyoto Encyclopedia of Genes and Genomes (KEGG) biosynthetic pathways of the genes identified in this study. The most represented molecular functions and biological processes were nucleotide binding and transcription, transport and response to stress and abiotic and biotic stimuli. The chloroplast, mitochondrion and their membrane systems were the cellular components most affected by excess Zn, as well as the photosynthetic, defense, sulfur and glutathione (GSH) metabolic pathways. The most up-regulated genes encoded electron carriers associated with ferrodoxin, the small subunit of ribulose-bisphosphate carboxylase oxygenase, and enzymes involved in GSH metabolism. This study is the most in-depth transcriptome and gene-annotation analysis of a hybrid poplar to date. The results are presented and critically discussed in terms of poplar response/tolerance to Zn stress for the characterization of non-hyperaccumulator phenotypes and the identification of candidate genes in perennial plants. These genetic findings provide useful information on tree species' adaptation to metal stress and provide powerful tools for the selection and/or genetic manipulation of stress-tolerant poplar clones. PMID:22038866

  11. [Antioxidative response of Phytolacca americana and Nicotiana tabacum to manganese stresses].

    PubMed

    Zhang, Yu-xiu; Huang, Zhi-bo; Zhang, Hong-mei; Li, Lin-feng; Chai, Tuan-yao

    2009-12-01

    Plant species capable of accumulating heavy metals are of considerable interest for phytoremediation and phytomining. The mechanism of Mn tolerance/hyperaccumulate in Phytolacca americana L. is less known. To elucidate the role of antioxidative enzyme in response to Mn, the 6-week-old seedling of Mn hyperaccumulator P. americana and non-accumulator-tobacco (Nicotiana tabacum) were exposed to half strength Hoagland solution with 1 mmol x L(-1) or 3 mmol x L(-1) MnCl2 for 4 days. The photosynthetic rate in P. americana decreased more slowly than that in tobacco, while the MDA content and electrolyte leakage in tobacco increased more rapidly than that in P. americana. For example, after exposure to 1 mmol x L(-1) Mn for 4 days, the photosynthetic rates of P. americana and tobacco in comparison to the control reduced by 13.3% and 75.5%, respectively. The MDA content and electrolyte leakage in tobacco increased by 347.3% and 120.1%, respectively, whereas Mn had no marked effect on both of it in P. americana, indicated that the oxidative damage in tobacco was more serious than that in P. americana. The activities of SOD and POD of both species increased rapidly with elevated Mn concentration and exposure time in both species, the increase of SOD activity in P. americana was higher than that in tobacco. CAT activity in tobacco declined rapidly, while the activity of CAT in P. americana was increased. The activities of SOD, POD and CAT in P. americana upon 1 mmol x L(-1) Mn exposure increased by 161.1%, 111.3% and 17.5%, respectively. The activities of SOD and POD in tobacco increased by 55.5% and 206.0%, respectively, while CAT activity decreased by 15.6%, indicating that the antioxidative enzymes in P. americana, particularly in CAT,could fully scavenge the reactive oxygen species generated by Mn toxicity. These results collectively indicate that the enzymatic antioxidation capacity is one of the important mechanisms responsible for Mn tolerance in hyperaccumulator plant species. PMID:20187406

  12. Hormetic Responses of Lonicera Japonica Thunb. To Cadmium Stress

    PubMed Central

    Liu, Zhouli; Chen, Wei; Jia, Lian; Yu, Shuai; Zhao, Mingzhu

    2015-01-01

    The hormetic responses of Lonicera japonica Thunb. to cadmium (Cd) stress were investigated in a hydroponic experiment. The present results showed that root length and total biomass dry weight increased in comparison with the control at low concentrations Cd. The height of the plant exposed to 2.5 and 5 mg L-1 Cd increased significantly by 11.9% and 12.8% relative to the control, and with the increase of Cd concentrations in the medium, plant height began to decrease. The responses of photosynthetic pigments contents and relative water content to Cd stress had a similar trend, which all showed significantly an inverted U-shaped dose–response curve and confirmed that the stimulatory effect of low concentrations Cd occurred in the plant. Furthermore, L. japonica, as a new Cd-hyperaccumulator, could be considered as a new plant model to study the underlying mechanisms of the hormesis. PMID:26672952

  13. Hormetic Responses of Lonicera Japonica Thunb. To Cadmium Stress.

    PubMed

    Liu, Zhouli; Chen, Wei; He, Xingyuan; Jia, Lian; Yu, Shuai; Zhao, Mingzhu

    2015-01-01

    The hormetic responses of Lonicera japonica Thunb. to cadmium (Cd) stress were investigated in a hydroponic experiment. The present results showed that root length and total biomass dry weight increased in comparison with the control at low concentrations Cd. The height of the plant exposed to 2.5 and 5 mg L(-1) Cd increased significantly by 11.9% and 12.8% relative to the control, and with the increase of Cd concentrations in the medium, plant height began to decrease. The responses of photosynthetic pigments contents and relative water content to Cd stress had a similar trend, which all showed significantly an inverted U-shaped dose-response curve and confirmed that the stimulatory effect of low concentrations Cd occurred in the plant. Furthermore, L. japonica, as a new Cd-hyperaccumulator, could be considered as a new plant model to study the underlying mechanisms of the hormesis. PMID:26672952

  14. Seasonal effects on accumulation of microbial indicator organisms by Mercenaria mercenaria.

    PubMed Central

    Burkhardt, W; Watkins, W D; Rippey, S R

    1992-01-01

    The ability of hard-shelled clams (Mercenaria mercenaria) to accumulate fecal coliforms and other microorganisms (Escherichia coli, Clostridium perfringens, and male-specific bacteriophages) was determined over a 1-year period. Twenty separate trails were conducted during different seasons to encompass a wide range of water temperatures. The greatest accumulation of microorganisms in hard-shelled clams occurred during certain periods in the spring, at temperatures ranging from 11.5 to 21.5 degrees C. These periods of hyperaccumulation did not always coincide for all organisms; the accumulation of bacteriophages was not predicted by the accumulation of either fecal coliforms or C. perfringens. Bacteriophages and C. perfringens showed significantly higher rates of accumulation than either the fecal coliform group or E. coli, especially during the spring. The higher incidence of human viral gastroenteritis associated with the consumption of shellfish during this period may be a result of the extraordinary concentration of certain microorganisms, including enteric viral pathogens. PMID:1575484

  15. The engineered phytoremediation of ionic and methylmercury pollution 70054yr.2001.doc

    SciTech Connect

    Meagher, Richard B.

    2001-06-01

    Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants (Meagher, 2000) applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants requires the use relatively different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest. Various parts of this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants as recently reviewed (Meagher et al., 2000; Rugh et al., 2000).

  16. The engineered phytoremediation of ionic and methylmercury pollution 70054yr.2000.doc

    SciTech Connect

    Meagher, Richard B.

    2000-06-01

    Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants (Meagher, 2000). We have focused our research on the phytoremediation of soil and water-borne ionic and organic mercury (Meagher and Rugh, 1996; Meagher et al., 2000). Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. In the near future, the experience gained through engineering plants that hyperaccumulate mercury, can be applied to extraction or accumulation of various toxic heavy metal and radionuclide contaminates at dozens of DOE sites.

  17. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.

    PubMed

    Luo, Kai; Ma, Tingting; Liu, Hongyan; Wu, Longhua; Ren, Jing; Nai, Fengjiao; Li, Rui; Chen, Like; Luo, Yongming; Christie, Peter

    2015-01-01

    Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions. PMID:25747245

  18. Phytoremediation potential of paragrass--an in situ approach for chromium contaminated soil.

    PubMed

    Mohanty, Monalisa; Patra, Hemanta Kumar

    2012-09-01

    The present in situ phytoextraction approach uses paragrass (Brachiaria mutica (Forssk) Stapf) as a hyper accumulator for attenuation of chromium level in soil and mine waste water at South Kaliapani chromite mine area of Orissa. The bioconcentration factor (BCF) for Cr was maximum (0.334) in 100 days grown paragrass weeds. Transportation index (Ti) i.e. 6.16 and total accumulation rate (TAR) i.e. 8.2 mg kg(-1)day(-1) was maximum in 125 days old paragrass grown in Cr contaminated experimental cultivated plots. Cr bioaccumulation in roots was nearly 1000 times more than shoots. Paragrass showed luxuriant growth with massive fibrous roots when grown over Cr contaminated soils (11,170 mg/ kg dry soil). Cr bioaccumulation varies significantly with plant age, biomass and level of Cr contamination in irrigated mine waste water and soil. Paragrass could be used as hyperaccumulators as it showed rapid massive growth with a high tolerance to Cr. PMID:22908645

  19. Phytoremediation potential of paragrass--an in situ approach for chromium contaminated soil.

    TOXLINE Toxicology Bibliographic Information

    Mohanty M; Patra HK

    2012-09-01

    The present in situ phytoextraction approach uses paragrass (Brachiaria mutica (Forssk) Stapf) as a hyper accumulator for attenuation of chromium level in soil and mine waste water at South Kaliapani chromite mine area of Orissa. The bioconcentration factor (BCF) for Cr was maximum (0.334) in 100 days grown paragrass weeds. Transportation index (Ti) i.e. 6.16 and total accumulation rate (TAR) i.e. 8.2 mg kg(-1)day(-1) was maximum in 125 days old paragrass grown in Cr contaminated experimental cultivated plots. Cr bioaccumulation in roots was nearly 1000 times more than shoots. Paragrass showed luxuriant growth with massive fibrous roots when grown over Cr contaminated soils (11,170 mg/ kg dry soil). Cr bioaccumulation varies significantly with plant age, biomass and level of Cr contamination in irrigated mine waste water and soil. Paragrass could be used as hyperaccumulators as it showed rapid massive growth with a high tolerance to Cr.

  20. Combined toxicity of mercury and plastic wastes to crustacean and gastropod inhabiting the waters in Kuwait.

    PubMed

    Bu-Olayan, A H; Thomas, B V

    2015-11-01

    The present study determined total mercury (T-Hg) in crustacean Portunus pelagicus (blue crab) and mollusc Tapes sulcarius (Furrowed Venus: Cockle) following suspected rise in beach plastic wastes and their effect on marine organisms. Live samples were collected from beaches representing six Kuwait Governorate areas and exposed to toxicity (96hr) and bio accumulation tests for 180 d with inclusion of plastic wastes and environmental conditions simulated in laboratory. Results revealed high T-Hg concentrations in T sulcarius (1.44ng l(-1)) compared to P. pelagicus (1.03ng l(-1)) during winter than summer, with bio accumulation factor (BAF) > 1 labelled these species as hyper-accumulators. Significantly, combination of T-Hg concentrations from plastic wastes and in seawater validated the possibilities of detrimental effects of other marine lives besides deteriorating the aesthetic values of scenic beaches and likelihood of invasive species in such coastal areas. PMID:26688963

  1. Polycyclic aromatic hydrocarbons in soils and lower-layer plants of the southern shrub tundra under technogenic conditions

    NASA Astrophysics Data System (ADS)

    Yakovleva, E. V.; Gabov, D. N.; Beznosikov, V. A.; Kondratenok, B. M.

    2014-06-01

    In soils and plants of the southern shrub tundra, 15 polycyclic aromatic hydrocarbons (PAHs) have been detected by high-performance liquid chromatography. Polyarenes in emissions, soil organic horizons, and plants mainly include low-molecular-weight PAHs: naphthalene, fluorine, and pyrene. The contents of the total PAHs in soils and plants exceed the background levels by 3-5 times. The distribution of polyarenes among the organs of the studied plants is nonuniform and depends on the plant species and technogenic load on the area. The studied plants include both hyperaccumulators of polyarenes ( Pleurozium schreberi) and indicators of PAHs in the soil ( Polytrichum commune). Pleurozium schreberi is the most abundant species in the areas under study, and it accumulates the largest mass fraction of PAHs. The differences in the accumulation of PAHs by the plants of the tundra and taiga zones have been revealed.

  2. Arsenic uptake by Lemna minor in hydroponic system.

    PubMed

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration. PMID:24933913

  3. Repressor-mediated tissue-specific gene expression in plants

    DOEpatents

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  4. Phytoremediation of Ionic and Methyl Mercury Pollution

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant. To advance this mercury phytoremediation strategy, our planned research focuses on the following Specific Aims: (1) to increase the transport of mercury to aboveground tissue; (2) to identify small mercury binding peptides that enhance hyperaccumulation aboveground; (3) to test the ability of multiple genes acting together to enhance resistance and hyperaccumulation; (4) to construct a simple molecular system for creating male/female sterility, allowing engineered grass, shrub, and tree species to be released indefinitely at contaminated sites; (5) to test the ability of transgenic cottonwood and rice plants to detoxify ionic mercury and prevent methylmercury release from contaminated sediment; and (6) to initiate field testing with transgenic cottonwood and rice for the remediation of methylmercury and ionic mercury. The results of these experiments will enable the phytoremediation of methyl- and ionic mercury by a wide spectrum of deep-rooted, fast-growing plants adapted to diverse environments. We have made significant progress on all six of these specific aims as summarized below.

  5. Reduction of Health Risks Due to Chromium(VI)Using Mesquite: A Potential Cr Phytoremediator

    SciTech Connect

    Gardea-Torresdey, Jorge L.; Aldrich, Mary V.; Peralta-Videa, Jose R.; Parsons, Jason G.

    2004-03-29

    Chromium is a transition metal extensively used in industry. Cr mining and industrial operations account for chromium wastes at Superfund sites in the United States. A study was performed to investigate the possibility of using mesquite (Prosopis spp.), which is an indigenous desert plant species, to remove Cr from contaminated sites. In this study, mesquite plants were grown in an agar-based medium containing 75 mg L-1 and 125 mg L-1 of Cr(VI). The Cr content of leaf tissue (992 mg kg-1 of dry weight, from 125 mg L-1 of Cr(VI)) indicated that mesquite could be classified as a chromium hyperaccumulator. X-ray absorption spectroscopy (XAS) studies performed to experimental samples showed that mesquite roots absorbed some of the supplied Cr(VI). However, the data analyses of plant tissues demonstrated that the absorbed Cr(VI) was fully reduced to Cr(III) in the leaf tissue.

  6. Tolerance of Ornamental Succulent Plant Crown of Thorns (Euphorbia milli) to Chromium and its Remediation.

    PubMed

    Ramana, Sivakoti; Biswas, Ashis Kumar; Singh, Amar Bahadur; Ajay; Ahirwar, Narendar Kumar; Subba Rao, Annangi

    2015-01-01

    The potential of an ornamental shrub Crown of thorns (Euphorbia milli) was evaluated for remediation of soil contaminated with Cr. The plant is one of the rare succulent ornamental shrubs with a slow to moderate growth rate and is capable of blooming almost year-round. The plant could tolerate well up to 75 mg of applied Cr and beyond that there was mortality of plants. Though the plant could not be classified as a hyperaccumulator, the plant was still very efficient in translocating Cr from roots to shoots as evident from the data on uptake and translocation efficiency values. The translocation efficiency of over 80% in our study demonstrates that a large proportion of Cr has been translocated to the harvestable biomass of the plant and therefore, this plant could be effectively recommended for the remediation of soils contaminated with low to medium level of contamination i.e., up to 50 mg/kg soil. PMID:25409249

  7. Characterization and multiplexing of 21 microsatellite markers for the herb Noccaea caerulescens (Brassicaceae)1

    PubMed Central

    Mousset, Mathilde; Flaven, Elodie; Justy, Fabienne; Pouzadoux, Juliette; Gode, Cécile; Pauwels, Maxime; Gonneau, Cédric

    2015-01-01

    Premise of the study: Multiplexed microsatellite markers were developed for population genetic studies in the pseudometallophyte Noccaea caerulescens (Brassicaceae), a model species to investigate metal tolerance and hyperaccumulation in higher plants. Methods and Results: Microsatellite loci were isolated through pyrosequencing of an enriched DNA library. Three multiplexes combining four previously published and 17 newly designed markers were developed. The new markers were screened in metallicolous and nonmetallicolous populations from southern France. The total number of alleles per locus ranged from five to 18. The observed heterozygosity per locus and per population ranged from 0 to 0.83, and expected heterozygosity ranged from 0 to 0.89. Conclusions: The investigated loci showed reasonable to high levels of polymorphism at the regional scale. The multiplex set should be helpful in investigating genetic diversity, population structure, and demographic history in N. caerulescens at various spatial scales. PMID:26697274

  8. 2D DIGE proteomic analysis highlights delayed postnatal repression of ?-fetoprotein expression in homocystinuria model mice

    PubMed Central

    Kamata, Shotaro; Akahoshi, Noriyuki; Ishii, Isao

    2015-01-01

    Cystathionine ?-synthase-deficient (Cbs?/?) mice, an animal model for homocystinuria, exhibit hepatic steatosis and juvenile semilethality via as yet unknown mechanisms. The plasma protein profile of Cbs?/? mice was investigated by proteomic analysis using two-dimensional difference gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight/mass spectrometry. We found hyperaccumulation of ?-fetoprotein (AFP) and downregulation of most other plasma proteins. AFP was highly expressed in fetal liver, but its expression declined dramatically via transcriptional repression after birth in both wild-type and Cbs?/? mice. However, the repression was delayed in Cbs?/? mice, causing high postnatal AFP levels, which may relate to transcriptional repression of most plasma proteins originating from liver and the observed hepatic dysfunction. PMID:26199862

  9. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway.

    PubMed

    Sun, Longqing; Zhu, Longfu; Xu, Li; Yuan, Daojun; Min, Ling; Zhang, Xianlong

    2014-01-01

    Plant oxylipins are derived from unsaturated fatty acids and play roles in plant growth and development as well as defence. Although recent studies have revealed that fatty acid metabolism is involved in systemic acquired resistance, the precise function of oxylipins in plant defence remains unknown. Here we report a cotton P450 gene SILENCE-INDUCED STEM NECROSIS (SSN), RNAi suppression of which causes a lesion mimic phenotype. SSN is also involved in jasmonate metabolism and the response to wounding. Fatty acid and oxylipin metabolite analysis showed that SSN overexpression causes hyperaccumulation of hydroxide and ketodiene fatty acids and reduced levels of 18:2 fatty acids, whereas silencing causes an imbalance in LOX (lipoxygenase) expression and excessive hydroperoxide fatty acid accumulation. We also show that an unknown oxylipin-derived factor is a putative mobile signal required for systemic cell death and hypothesize that SSN acts as a valve to regulate HR on pathogen infection. PMID:25371113

  10. [Plant sulfate assimilation and regulation of the activity of related enzymes under cadmium stress].

    PubMed

    Sun, Xue-Mei; Yang, Zhi-Min

    2006-02-01

    The complexation and sequestration of heavy metal ions (e.g. Cd) by the cysteine-rich polypeptides known as phytochelatins (PC) are thought to confer heavy metal hyperaccumulation and tolerance in some plant species. PC is synthesized enzymatically from glutathione. The tripeptide glutathione is a product of primary sulfur metabolism. A variety of enzymes or proteins are involved in sulfur assimilation including sulfate transporters (STs), ATP sulfurylase (ATPS), APS reductase (APSR), sulfite reductase (SiR), glutathione synthetase (GS) and phytochelatin synthesis (PCS). These enzymes or proteins are upstream-regulated by Cd at either the metabolic or the genetic level under metal stress. Increasing evidence shows that enhancement of sulfate uptake and reduction occurs with the production of PC in plants under heavy metal stress. In this article, the key aspects of our recent understanding of regulatory mechanisms involved in the relation between the sulfate assimilation and phytochelatin synthesis are described. PMID:16477125

  11. The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and nZVI-contaminated soil.

    PubMed

    Jiamjitrpanich, Waraporn; Parkpian, Preeda; Polprasert, Chongrak; Laurent, François; Kosanlavit, Rachain

    2012-01-01

    This study was designed to compare the initial method for phytoremediation involving germination and transplantation. The study was also to determine the tolerance efficiency of Panicum maximum (Purple guinea grass) and Helianthus annuus (Sunflower) in TNT-contaminated soil and nZVI-contaminated soil. It was found that the transplantation of Panicum maximum and Helianthus annuus was more suitable than germination as the initiate method of nano-phytoremediation potting test. The study also showed that Panicum maximum was more tolerance than Helianthus annuus in TNT and nZVI-contaminated soil. Therefore, Panicum maximum in the transplantation method should be selected as a hyperaccumulated plant for nano-phytoremediation potting tests. Maximum tolerance dosage of Panicum maximum to TNT-concentration soil was 320 mg/kg and nZVI-contaminated soil was 1000 mg/kg in the transplantation method. PMID:22702809

  12. Metal and metalloid containing natural products and a brief overview of their applications in biology, biotechnology and biomedicine.

    PubMed

    Dias, Daniel A; Kouremenos, Konstantinos A; Beale, David J; Callahan, Damien L; Jones, Oliver A H

    2016-02-01

    Bioinorganic natural product chemistry is a relatively unexplored but rapidly developing field with enormous potential for applications in biology, biotechnology (especially in regards to nanomaterial development, synthesis and environmental cleanup) and biomedicine. In this review the occurrence of metals and metalloids in natural products and their synthetic derivatives are reviewed. A broad overview of the area is provided followed by a discussion on the more common metals and metalloids found in natural sources, and an overview of the requirements for future research. Special attention is given to metal hyperaccumulating plants and their use in chemical synthesis and bioremediation, as well as the potential uses of metals and metalloids as therapeutic agents. The potential future applications and development in the field are also discussed. PMID:26553050

  13. Effect of lead on root growth

    PubMed Central

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development. PMID:23750165

  14. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus).

    PubMed

    Cojocaru, Paula; Gusiatin, Zygmunt Mariusz; Cretescu, Igor

    2016-06-01

    This paper analyses the capacity of the rape (Brassica napus) to extract Cd and Zn from the soil and the effect of these metals on the morphometric parameters of the plant (length, weight, surface area, fractal dimension of leaves). Rape plants were mostly affected by the combined toxicity of the Cd and Zn mixture that caused a significant reduction in the rate of seed germination, the plant biomass quantity and the fractal dimension. In the case of Cd soil pollution, the bioaccumulation factor (BAF), bioaccumulation coefficient (BAC) as well as the heavy metal root-to-stalk translocation factor (TF) were determined. The results showed that B. napus had a great potential as a cadmium hyperaccumulator but not as an accumulator of Zn or Cd + Zn mixture. The efficiency of phytoextraction rape was 0.8-1.22 % for a soil heavily polluted with cadmium. PMID:26884243

  15. Effect of lead on root growth.

    PubMed

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development. PMID:23750165

  16. Heavy metals concentration in plants growing on mine tailings in Central Mexico.

    PubMed

    Franco-Hernández, M O; Vásquez-Murrieta, M S; Patiño-Siciliano, A; Dendooven, L

    2010-06-01

    Metal concentrations were measured in plants growing on heavily contaminated tailings from a mine active since about 1800 in San Luis Potosí (Mexico). Viguiera dentata (Cav.) Spreng., Parthenium bipinnatifidum (Ort.) Rollins, Flaveria angustifolia (Cav.) Pers., F. trinervia (Spreng.) C. Mohr. and Sporobolusindicus (L.) R. Br. were tolerant to high As, Cu, Pb and Zn concentrations. Of those, S.indicus excluded heavy metals from its shoots, while P. bipinnatifidum and F. angustifolia accumulated them. V. dentata and P. bipinnatifidum were accumulators of As, but not hyperaccumulators. It was found that V. dentata,P. bipinnatifidum, F. angustifolia, F. trinervia and S.indicus, could be used to vegetate soils contaminated with As, Cu, Pb and Zn. Ambrosiaartemisifolia could be used to remediate soils contaminated with Zn, S. amplexicaulis those with Cu and F. angustifolia and F. trinervia those with As, as they have a strong capacity to accumulate those metals. PMID:20116240

  17. Applicability of Phytoextraction with Arabidopsis halleri ssp. gemmifera to Remediate Cd-contaminated Andisols

    NASA Astrophysics Data System (ADS)

    Kameyama, Koji; Tani, Shigeru; Sugawara, Reiko; Ishikawa, Yuichi

    The objective of this study was to investigate the applicability of phytoextraction with a Cd-hyperaccumulator plant (Arabidopsis halleri ssp. gemmifera) to remediate Cd-contaminated Andisols. Cd absorption potentials of this plant for Andisols were examined in pot experiments. Sequentially, phytoextraction durations for remediation of Cd-contaminated Andisols were calculated from the experimental data. The results were as follows: (1) Cd concentrations in the plant shoots ranged from 170-750 mgṡkg-1. (2) Cd absorption of the plant for Andisols with ALC (Autoclaved Lightweight aerated Concrete) was less than for Andisols without ALC. However, the plants absorbed the same amount of soil Cd extracted by 0.01 M HCl with or without ALC. (3) Calculations suggest that the applicability of phytoextraction with this plant is high for slightly contaminated Andisols. Therefore, phytoextraction with Arabidopsis halleri ssp. gemmifera may be a viable option for the remediation of Cd-contaminated Andisols.

  18. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam. and Typha angustifolia L. grown in hydroponics.

    PubMed

    Chayapan, P; Kruatrachue, M; Meetam, M; Pokethitiyook, P

    2015-09-01

    Cadmium and zinc phytoremediation potential of wetland plants, Colocasia esculenta, Cyperus malaccensis, and Typha angustifolia, was investigated. Plants were grown for 15 days in nutrient solutions containing various concentrations of Cd (0, 5, 10, 20, 50 mg l(-1)) and Zn (0, 10, 20, 50, 100 mg l(-1)). T angustifolia was tolerant to both metals as indicated by high RGR when grown in 50 mg I(-1) Cd and 100 mg I(-1) Zn solutions. All these plants accumulated more metals in their underground parts and > 100 mg kg(-1) in their aboveground with TF values < 1. Only C. esculenta could be considered a Zn hyperaccumulator because it could concentrate > 10,000 mg kg(-1) in its aboveground parts with TF > 1. T angustifolia exhibited highest biomass production and highest Cd and Zn uptake, confirming that this plant is a suitable candidate for treating of Cd contaminated soil/sediments. PMID:26521563

  19. Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads

    PubMed Central

    Cavaiuolo, Marina; Ferrante, Antonio

    2014-01-01

    Rocket is an important leafy vegetable crop and a good source of antioxidants and anticancer molecules such as glucosinolates and other sulfur compounds. Rocket is also a hyper-accumulator of nitrates which have been considered for long time the main factors that cause gastro-intestinal cancer. In this review, the content of these compounds in rocket tissues and their levels at harvest and during storage are discussed. Moreover, the effect of these compounds in preventing or inducing human diseases is also highlighted. This review provides an update to all the most recent studies carried out on rocket encouraging the consumption of this leafy vegetable to reduce the risk of contracting cancer and other cardiovascular diseases. PMID:24736897

  20. The ABC Transporter ABCG1 Is Required for Suberin Formation in Potato Tuber Periderm[W

    PubMed Central

    Landgraf, Ramona; Smolka, Ulrike; Altmann, Simone; Eschen-Lippold, Lennart; Senning, Melanie; Sonnewald, Sophia; Weigel, Benjamin; Frolova, Nadezhda; Strehmel, Nadine; Hause, Gerd; Scheel, Dierk; Böttcher, Christoph; Rosahl, Sabine

    2014-01-01

    The lipid biopolymer suberin plays a major role as a barrier both at plant-environment interfaces and in internal tissues, restricting water and nutrient transport. In potato (Solanum tuberosum), tuber integrity is dependent on suberized periderm. Using microarray analyses, we identified ABCG1, encoding an ABC transporter, as a gene responsive to the pathogen-associated molecular pattern Pep-13. Further analyses revealed that ABCG1 is expressed in roots and tuber periderm, as well as in wounded leaves. Transgenic ABCG1-RNAi potato plants with downregulated expression of ABCG1 display major alterations in both root and tuber morphology, whereas the aerial part of the ABCG1-RNAi plants appear normal. The tuber periderm and root exodermis show reduced suberin staining and disorganized cell layers. Metabolite analyses revealed reduction of esterified suberin components and hyperaccumulation of putative suberin precursors in the tuber periderm of RNA interference plants, suggesting that ABCG1 is required for the export of suberin components. PMID:25122151

  1. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway

    PubMed Central

    Sun, Longqing; Zhu, Longfu; Xu, Li; Yuan, Daojun; Min, Ling; Zhang, Xianlong

    2014-01-01

    Plant oxylipins are derived from unsaturated fatty acids and play roles in plant growth and development as well as defence. Although recent studies have revealed that fatty acid metabolism is involved in systemic acquired resistance, the precise function of oxylipins in plant defence remains unknown. Here we report a cotton P450 gene SILENCE-INDUCED STEM NECROSIS (SSN), RNAi suppression of which causes a lesion mimic phenotype. SSN is also involved in jasmonate metabolism and the response to wounding. Fatty acid and oxylipin metabolite analysis showed that SSN overexpression causes hyperaccumulation of hydroxide and ketodiene fatty acids and reduced levels of 18:2 fatty acids, whereas silencing causes an imbalance in LOX (lipoxygenase) expression and excessive hydroperoxide fatty acid accumulation. We also show that an unknown oxylipin-derived factor is a putative mobile signal required for systemic cell death and hypothesize that SSN acts as a valve to regulate HR on pathogen infection. PMID:25371113

  2. Arsenic speciation in tissues of the hyperacumulator P. calomelanos var. austroamericana using x-ray absorption spectroscopy.

    SciTech Connect

    Heald, S. M.; Kachenko, A.; Graefe, M.; Singh, B.; X-Ray Science Division; Univ. of Sydney

    2010-06-15

    The fate and chemical speciation of arsenic (As) uptake, translocation and storage by the As hyperaccumulating fern Pityogramma calomelanos var. austroamericana (Pteridaceae) were examined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and synchrotron-based {mu}-X-ray absorption near edge structure ({mu}-XANES) and {mu}-X-ray fluorescence ({mu}-XRF) spectroscopies. Chemical analysis revealed total As concentration was ca. 6.5 times greater in young fronds (5845 mg kg {sup -1} dry weight) than in old frons (903 mg kg {sup -1} DW) pinnae, As concentration decreased from the base (6822 mg kg {sup -1} DW) to the apex (4301 mg kg {sup -1}DW) of the fronds. The results from {mu}-XANES and {mu}-XRF of living tissues suggested that more than 60% of arsenate (As{sup v}) absorbed was reduced to arsenite (As{sup III}) in roots, prior to transport through vascular tissues as As{sup v} and As{sup III}. In pinnules, As{sup III} was the predominate redox species (72-90%), presumably as solvated, oxygen coordinated compounds. The presence of putative As{sup III}-sulphide (S{sup -2}) coordinationthroughout the fern tissues (4-25%) suggests that S{sup 2-} functional groups may contribute in the biochemical reduction of As{sup v} to As{sup III} during uptake and transport at a whole plant level. Organic arsenicals and thiol-rich compounds were not detected in the species and are unlikely to play a role in As hyperaccumulation in this fern. The study provides important insights into homeostatic regulation of As following As uptake in P. calomelanos var. austroamericana.

  3. Phytoremediation of Ionic and Methyl Mercury Pollution

    SciTech Connect

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  4. Phytoremediation of Ionic and Methyl Mercury Pollution

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant.

  5. Evaluation of three endemic Mediterranean plant species Atriplex halimus, Medicago lupulina and Portulaca oleracea for Phytoremediation of Ni, Pb and Zn

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Amer, Nasser; Bitar, Lina Al; Mondelli, Donato; Dumontet, Stefano

    2013-04-01

    The success of phytoremediation depends upon the identification of suitable plants species that hyperaccumulate/tolerate heavy metals and produce large amounts of biomass. In this study, three endemic Mediterranean plant species Atriplex halimus, Medicago lupulina and Portulaca oleracea, were grown hydroponically to assess their potential use in phytoremediation of Ni, Pb and Zn and biomass production. The objective of this research is to improve phytoremediation procedures by searching for a new endemic Mediterranean plant species which can be used for phytoremediation of low/moderate contamination in the Mediterranean arid and semiarid conditions and bioenergy production. The hydroponics experiment was carried out in a growth chamber using half strength Hoagland's solution as control (CTR) and 5 concentrations for Pb and Zn (5, 10, 25, 50 and 100 mg L-1) and 3 concentrations for Ni (1, 2, and 5 mg L-1). Complete randomized design with five replications was adopted. Main growth parameters (shoot and root dry weight, shoot and root length and chlorophyll content) were determined. Shoots and roots were analyzed for their metals contents. Some interesting contributions of this research are: (i) plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea, whereas heavy metal toxicity ranked as follows: Ni > Zn > Pb, (ii) none of the plant species was identified as hyperaccumulator, (iii) Atriplex halimus and Medicago lupulina can accumulate Ni, Pb and Zn in their roots, (iv) translocate small fraction to their above ground biomass, and (v) indicate moderate pollution levels of the environment. In addition, as they are a good biomass producer, they can be used in phytostabilisation of marginal lands and their above ground biomass can be used for livestock feeding as well for bioenergy production.

  6. Nickel and manganese transfer from soil to plant in lateritic mining soils from New Caledonia

    NASA Astrophysics Data System (ADS)

    Pouschat, P.; Rose, J.; Alliot, I.; Dominici, C.; Keller, C.; Laffont-Schwob, I.; Olivi, L.; Ambrosi, J.-P.

    2009-04-01

    New Caledonian ferritic soils (more than 50 % of iron) are naturally rich in metals (chromium, nickel, cobalt, and manganese), deficient in major nutrients (nitrogen, phosphorous, and potassium), and unbalanced for the calcium/magnesium ratio. Under these particular ecological conditions, New Caledonia, recognized as a hot-spot of biodiversity, is a natural laboratory to study and understand the adaptation strategies of plants to metalliferous soils, and particularly the tolerance and (hyper)accumulation of metals by plants. Moreover, understanding such mechanisms is essential to develop rehabilitation or phytoremediation techniques for polluted soils, as well as phytomining techniques. Thus, in order to understand the soil - plant relationship and metal mobility along a toposequence in a future nickel mining massif, field experiments were conducted in an isolated ultramafic massif of New Caledonia. Several plant species of two endemic and frequent plant genera were chosen: Tristaniopsis guillainii and T. calobuxus (Myrtaceae), and Phyllanthus serpentinus and P. favieri (Euphorbiaceae), because of their nickel and/or manganese accumulating or hyperaccumulating nature. Leaves, twigs, and roots of all plants were collected along the soil sequence and their associated rhizospheric and bulk soils were sampled. Next, a series of characterization techniques were adapted and then coupled to cryogenics. The combined use of those multiple techniques (cryo-microtomy, cryo-SEM, µXRF, cryo-XAS, and soil characterization) allowed to study co-location and speciation of nickel and manganese in the different plant organs and soils (rhizospheric and bulk). Bioaccumulated nickel and manganese had different distribution patterns. In leaves, Ni accumulated in non photosynthetic tissues (e.g. epidermis) whereas Mn preferentially accumulated in mesophyll whatever the plant species. Nevertheless, in spite of a different speciation in soils, nickel and manganese were both found as similar divalent organometallic complexes in the different plant parts.

  7. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice.

    PubMed

    Yamaji, Naoki; Sakurai, Gen; Mitani-Ueno, Namiki; Ma, Jian Feng

    2015-09-01

    Requirement of mineral elements in different plant tissues is not often consistent with their transpiration rate; therefore, plants have developed systems for preferential distribution of mineral elements to the developing tissues with low transpiration. Here we took silicon (Si) as an example and revealed an efficient system for preferential distribution of Si in the node of rice (Oryza sativa). Rice is able to accumulate more than 10% Si of the dry weight in the husk, which is required for protecting the grains from water loss and pathogen infection. However, it has been unknown for a long time how this hyperaccumulation is achieved. We found that three transporters (Lsi2, Lsi3, and Lsi6) located at the node are involved in the intervascular transfer, which is required for the preferential distribution of Si. Lsi2 was polarly localized to the bundle sheath cell layer around the enlarged vascular bundles, which is next to the xylem transfer cell layer where Lsi6 is localized. Lsi3 was located in the parenchyma tissues between enlarged vascular bundles and diffuse vascular bundles. Similar to Lsi6, knockout of Lsi2 and Lsi3 also resulted in decreased distribution of Si to the panicles but increased Si to the flag leaf. Furthermore, we constructed a mathematical model for Si distribution and revealed that in addition to cooperation of three transporters, an apoplastic barrier localized at the bundle sheath cells and development of the enlarged vascular bundles in node are also required for the hyperaccumulation of Si in rice husk. PMID:26283388

  8. Element accumulation patterns of deciduous and evergreen tree seedlings on acid soils: implications for sensitivity to manganese toxicity.

    PubMed

    St Clair, Samuel B; Lynch, Jonathan P

    2005-01-01

    Foliar nutrient imbalances, including the hyperaccumulation of manganese (Mn), are correlated with symptoms of declining health in sensitive tree species growing on acidic forest soils. The objectives of this study were to: (1) compare foliar nutrient accumulation patterns of six deciduous (sugar maple (Acer saccharum Marsh.), red maple (Acer rubrum L.), red oak (Quercus rubra L.), white oak (Quercus alba L.), black cherry (Prunus serotina Ehrh.) and white ash (Fraxinus americana L.)) and three evergreen (eastern hemlock (Tsuga canadensis L.), white pine (Pinus strobus L.) and white spruce (Picea glauca (Moench) Voss.)) tree species growing on acidic forest soils; and (2) examine how leaf phenology and other traits that distinguish evergreen and deciduous tree species influence foliar Mn accumulation rates and sensitivity to excess Mn. For the first objective, leaf samples of seedlings from five acidic, non-glaciated field sites on Pennsylvania's Allegheny Plateau were collected and analyzed for leaf element concentrations. In a second study, we examined growth and photosynthetic responses of seedlings exposed to excess Mn in sand culture. In field samples, Mn in deciduous foliage hyperaccumulated to concentrations more than twice as high as those found in evergreen needles. Among species, sugar maple was the most sensitive to excess Mn based on growth and photosynthetic measurements. Photosynthesis in red maple and red oak was also sensitive to excess Mn, whereas white oak, black cherry, white ash and the three evergreen species were tolerant of excess Mn. Among the nine species, relative rates of photosynthesis were negatively correlated with foliar Mn concentrations, suggesting that photosynthetic sensitivity to Mn is a function of its rate of accumulation in seedling foliage. PMID:15519989

  9. Isolation and characterization of metal resistant-tolerant rhizosphere bacteria from the serpentine soils in Turkey.

    PubMed

    Turgay, Oğuz Can; Görmez, Arzu; Bilen, Serdar

    2012-01-01

    Despite the number of studies describing metal hyper-accumulating plants and their associated bacteria in various regions and countries, there is no information on rhizosphere microbial potential of the Turkish serpentine soils. This study aimed to explore the rhizosphere microbial diversity of Ni-resistant, hyper-accumulating plants grown on Ni-rich soils and their metal tolerance-resistance characteristics. One hundred ninety-one locations were visited to collect soil and plant samples from different serpentine regions of Western Turkey. Following bioavailable and total Ni analysis of collected samples, the seeds of the selected plants with higher Ni content were taken to the growth/germination test in a range of serpentine soils in a growth chamber condition. In order to investigate the rhizosphere microbial diversity, Isatis pinnatiloba and Alyssum dasycarpum which were able to germinate and grow well in the preliminary tests, were introduced to 6-month greenhouse experiment in the range of three serpentine soils with higher bioavailable Ni content. I. pinnatiloba had a better stimulatory effect on the rhizosphere microbial diversity. A total of 22 bacterial isolates were identified from different soil conditions in the end of experiment. Following microbial identification and confirmation tests, 11 isolates were found to be resistant and tolerant to the increasing concentrations of Ni, Pb, Cd and Zn in the range of 50-2,000 mg L( - 1), which was considerably higher than those indicated by earlier studies. The strains isolated and identified from the Turkish serpentine soils were the members of genera Arthrobacter, Bacillus, Microbacterium and Staphylococcus. PMID:21404012

  10. Bacterially Induced Weathering of Ultramafic Rock and Its Implications for Phytoextraction

    PubMed Central

    Kidd, Petra; Kuffner, Melanie; Prieto-Fernández, Ángeles; Hann, Stephan; Monterroso, Carmela; Sessitsch, Angela; Wenzel, Walter; Puschenreiter, Markus

    2013-01-01

    The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants. PMID:23793627

  11. Bioaugmentation with Endophytic Bacterium E6S Homologous to Achromobacter piechaudii Enhances Metal Rhizoaccumulation in Host Sedum plumbizincicola

    PubMed Central

    Ma, Ying; Zhang, Chang; Oliveira, Rui S.; Freitas, Helena; Luo, Yongming

    2016-01-01

    Application of hyperaccumulator-endophyte symbiotic systems is a potential approach to improve phytoremediation efficiency, since some beneficial endophytic bacteria are able to detoxify heavy metals, alter metal solubility in soil, and facilitate plant growth. The objective of this study was to isolate multi-metal resistant and plant beneficial endophytic bacteria and to evaluate their role in enhancing plant growth and metal accumulation/translocation. The metal resistant endophytic bacterial strain E6S was isolated from stems of the Zn/Cd hyperaccumulator plant Sedum plumbizincicola growing in metalliferous mine soils using Dworkin and Foster salts minimal agar medium with 1-aminocyclopropane-1-carboxylate (ACC) as the sole nitrogen source, and identified as homologous to Achromobacter piechaudii based on morphological and biochemical characteristics, partial 16S rDNA sequence and phylogenetic analysis. Strain E6S showed high level of resistance to various metals (Cd, Zn, and Pb). Besides utilizing ACC, strain E6S exhibited plant beneficial traits, such as solubilization of phosphate and production of indole-3-acetic acid. Inoculation with E6S significantly increased the bioavailability of Cd, Zn, and Pb in soil. In addition, bacterial cells bound considerable amounts of metal ions in the following order: Zn > Cd >Pb. Inoculation of E6S significantly stimulated plant biomass, uptake and bioaccumulation of Cd, Zn, and Pb. However, E6S greatly reduced the root to shoot translocation of Cd and Zn, indicating that bacterial inoculation assisted the host plant to uptake and store heavy metals in its root system. Inoculation with the endophytic bacterium E6S homologous to A. piechaudii can improve phytostabilization of metalliferous soils due to its effective ability to enhance in situ metal rhizoaccumulation in plants. PMID:26870079

  12. Bioaugmentation with Endophytic Bacterium E6S Homologous to Achromobacter piechaudii Enhances Metal Rhizoaccumulation in Host Sedum plumbizincicola.

    PubMed

    Ma, Ying; Zhang, Chang; Oliveira, Rui S; Freitas, Helena; Luo, Yongming

    2016-01-01

    Application of hyperaccumulator-endophyte symbiotic systems is a potential approach to improve phytoremediation efficiency, since some beneficial endophytic bacteria are able to detoxify heavy metals, alter metal solubility in soil, and facilitate plant growth. The objective of this study was to isolate multi-metal resistant and plant beneficial endophytic bacteria and to evaluate their role in enhancing plant growth and metal accumulation/translocation. The metal resistant endophytic bacterial strain E6S was isolated from stems of the Zn/Cd hyperaccumulator plant Sedum plumbizincicola growing in metalliferous mine soils using Dworkin and Foster salts minimal agar medium with 1-aminocyclopropane-1-carboxylate (ACC) as the sole nitrogen source, and identified as homologous to Achromobacter piechaudii based on morphological and biochemical characteristics, partial 16S rDNA sequence and phylogenetic analysis. Strain E6S showed high level of resistance to various metals (Cd, Zn, and Pb). Besides utilizing ACC, strain E6S exhibited plant beneficial traits, such as solubilization of phosphate and production of indole-3-acetic acid. Inoculation with E6S significantly increased the bioavailability of Cd, Zn, and Pb in soil. In addition, bacterial cells bound considerable amounts of metal ions in the following order: Zn > Cd >Pb. Inoculation of E6S significantly stimulated plant biomass, uptake and bioaccumulation of Cd, Zn, and Pb. However, E6S greatly reduced the root to shoot translocation of Cd and Zn, indicating that bacterial inoculation assisted the host plant to uptake and store heavy metals in its root system. Inoculation with the endophytic bacterium E6S homologous to A. piechaudii can improve phytostabilization of metalliferous soils due to its effective ability to enhance in situ metal rhizoaccumulation in plants. PMID:26870079

  13. Literature review: Phytoaccumulation of chromium, uranium, and plutonium in plant systems

    SciTech Connect

    Hossner, L.R.; Loeppert, R.H.; Newton, R.J.; Szaniszlo, P.J.

    1998-05-01

    Phytoremediation is an integrated multidisciplinary approach to the cleanup of contaminated soils, which combines the disciplines of plant physiology, soil chemistry, and soil microbiology. Metal hyperaccumulator plants are attracting increasing attention because of their potential application in decontamination of metal-polluted soils. Traditional engineering technologies may be too expensive for the remediation of most sites. Removal of metals from these soils using accumulator plants is the goal of phytoremediation. The emphasis of this review has been placed on chromium (Cr), plutonium (Pu), and uranium (U). With the exception of Cr, these metals and their decay products exhibit two problems, specifically, radiation dose hazards and their chemical toxicity. The radiation hazard introduces the need for special precautions in reclamation beyond that associated with non-radioactive metals. The uptake of beneficial metals by plants occurs predominantly by way of channels, pores, and transporters in the root plasma membrane. Plants characteristically exhibit a remarkable capacity to absorb what they need and exclude what they don`t need. But most vascular plants absorb toxic and heavy metals through their roots to some extent, though to varying degrees, from negligible to substantial. Sometimes absorption occurs because of the chemical similarity between beneficial and toxic metals. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metal from root to shoot. At the other extreme, hyperaccumulator plants absorb and concentrate metals in both roots and shoots. Some plant species endemic to metalliferous soils accumulate metals in percent concentrations in the leaf dry matter.

  14. Phytoremediation of iron from red soil of tropical region by using Centella asiatica.

    PubMed

    Bhat, Irshad Ul Haq; Mauris, Eddma Nathan; Khanam, Zakia

    2016-09-01

    The accumulation and removal efficiency of Fe by Centella asiatica was carried out at various Fe concentrations in soil treatments (0, 50, 100, 150 and 200 mg Fe/kg soil). Iron accumulation in different parts of C. asiatica (leaf, stem and root) was analyzed by atomic absorption spectrophotometer (AAS). Factorial experiment with a completely randomized design and Duncan's test were used for data analyses. The results revealed that C. asiatica have the ability to uptake and accumulate Fe significantly (p < 0.05; r  =  0.977) in the aerial parts. The different soil treatments had significant effect on the total Fe accumulations in C. asiatica (p < 0.05). The potential of C. asiatica as a metal hyperaccumulator plant, harvested for analysis, shows efficient accumulation of Fe at high concentration (p < 0.05; r  =  0.977). The root showed the highest accumulation of Fe followed by the leaves (p < 0.05) and the stem (p < 0.05). The Pearson correlation coefficient between leaves and root have showed highly significant correlation (p < 0.01; r  =  0.785) as compared to the leaves and stem (p < 0.01; r  =  0.780). The efficiency of Fe removal by C. asiatica from the contaminated soil has been evaluated by bioconcentration factor and translocation factor, found to be >1 and <1, respectively, further supporting its metal hyperaccumulator properties. PMID:26940261

  15. Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation.

    PubMed

    Khan, Abdur Rahim; Ullah, Ihsan; Khan, Abdul Latif; Park, Gun-Seok; Waqas, Muhammad; Hong, Sung-Jun; Jung, Byung Kwon; Kwak, Yunyoung; Lee, In-Jung; Shin, Jae-Ho

    2015-09-01

    The growth of hyperaccumulator plants is often compromised by increased toxicity of metals like cadmium (Cd). However, extraction of such metals from the soil can be enhanced by endophytic microbial association. Present study was aimed to elucidate the potential of microbe-assisted Cd phytoextraction in hyperaccumulator Solanum nigrum plants and their interactions under varied Cd concentrations. An endophytic bacteria Serratia sp. RSC-14 was isolated from the roots of S. nigrum. In addition to Cd tolerance up to 4 mM, the RSC-14 exhibited phosphate solubilization and secreted plant growth-promoting phytohormones such as indole-3-acetic acid (54 μg/mL). S. nigrum plants were inoculated with RSC-14 and were grown in different concentrations of Cd (0, 10, and 30 mg Cd kg(-1) sand). Results revealed that Cd treatment caused significant cessation in plant growth, biomass, and chlorophyll content, whereas significantly higher malondialdehyde (MDA) and electrolyte production in leaves were observed in a dose-dependent manner. Conversely, RSC-14 inoculation relived the toxic effects of Cd-induced stress by significantly increasing root/shoot growth, biomass production, and chlorophyll content and decreasing MDA and electrolytes contents. Ameliorative effects on host growth were also observed by the regulation of metal-induced oxidative stress enzymes such as catalase, peroxidase, and polyphenol peroxidase. Activities of these enzymes were significantly reduced in RSC-14 inoculated plants as compared to control plants under Cd treatments. The lower activities of stress responsive enzymes suggest modulation of Cd stress by RSC-14. The current findings support the beneficial uses of Serratia sp. RSC-14 in improving the phytoextraction abilities of S. nigrum plants in Cd contamination. PMID:25956518

  16. Physiological responses of the hybrid larch (Larix × eurolepis Henry) to cadmium exposure and distribution of cadmium in plantlets.

    PubMed

    Bonet, Amandine; Lelu-Walter, Marie-Anne; Faugeron, Céline; Gloaguen, Vincent; Saladin, Gaëlle

    2016-05-01

    Phytoextraction of Cd is a growing biotechnology although we currently know few Cd hyperaccumulators, i.e., plant species able to accumulate at least 0.1 mg Cd g(-1) dry weight in aerial organs. Owing their deep root system and high biomass, trees are more and more preferred to herbaceous species for phytoextraction. Assuming that conifers could be relevant models under cold climates, we investigated cadmium tolerance of the hybrid larch Larix × eurolepis Henry (Larix decidua × Larix kaempferi) and the efficiency of this species to store this metal. In vitro grown larches were chosen in order to reduce time of exposure and to more rapidly evaluate their potential efficiency to accumulate Cd. One-month-old plantlets were exposed for 2 and 4 weeks to 250 and 500 μM Cd. Results showed that they tolerated a 4-week exposure to 250 μM Cd, whereas the content of photosynthetic pigment strongly dropped in plantlets growing in the presence of 500 μM Cd. In the presence of 250 μM Cd, shoot growth slightly decreased but photosynthetic pigment and total soluble carbohydrate contents were not modified and no lipid peroxidation was detected. In addition, these plantlets accumulated proline, particularly in shoots (two to three times more than control). In roots, Cd concentration in the intracellular fraction was always higher than in the cell wall fraction contrary to shoots where Cd concentration in the cell wall fraction increased with time and Cd concentration in the medium. In shoots, Cd concentration was lower than in roots with a ratio of 0.2 after 4 weeks of exposure but stayed around 0.2 mg g(-1) dry weight, thus a value higher than the threshold requested for Cd hyperaccumulators. Hybrid larch would thus be a relevant candidate for field test of Cd phytoextraction. PMID:26797952

  17. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice

    PubMed Central

    Yamaji, Naoki; Sakurai, Gen; Mitani-Ueno, Namiki; Ma, Jian Feng

    2015-01-01

    Requirement of mineral elements in different plant tissues is not often consistent with their transpiration rate; therefore, plants have developed systems for preferential distribution of mineral elements to the developing tissues with low transpiration. Here we took silicon (Si) as an example and revealed an efficient system for preferential distribution of Si in the node of rice (Oryza sativa). Rice is able to accumulate more than 10% Si of the dry weight in the husk, which is required for protecting the grains from water loss and pathogen infection. However, it has been unknown for a long time how this hyperaccumulation is achieved. We found that three transporters (Lsi2, Lsi3, and Lsi6) located at the node are involved in the intervascular transfer, which is required for the preferential distribution of Si. Lsi2 was polarly localized to the bundle sheath cell layer around the enlarged vascular bundles, which is next to the xylem transfer cell layer where Lsi6 is localized. Lsi3 was located in the parenchyma tissues between enlarged vascular bundles and diffuse vascular bundles. Similar to Lsi6, knockout of Lsi2 and Lsi3 also resulted in decreased distribution of Si to the panicles but increased Si to the flag leaf. Furthermore, we constructed a mathematical model for Si distribution and revealed that in addition to cooperation of three transporters, an apoplastic barrier localized at the bundle sheath cells and development of the enlarged vascular bundles in node are also required for the hyperaccumulation of Si in rice husk. PMID:26283388

  18. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.

    PubMed

    Broadhurst, C Leigh; Chaney, Rufus L; Davis, Allen P; Cox, Albert; Kumar, Kuldip; Reeves, Roger D; Green, Carrie E

    2015-01-01

    Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH>6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped. PMID:25174422

  19. Phytoremediation potential of some halophytic species for soil salinity.

    PubMed

    Devi, S; Nandwal, A S; Angrish, R; Arya, S S; Kumar, N; Sharma, S K

    2016-07-01

    Phytoremediation potential of six halophytic species i.e. Suaeda nudiflora, Suaeda fruticosa, Portulaca oleracea, Atriplex lentiformis, Parkinsonia aculeata and Xanthium strumarium was assessed under screen house conditions. Plants were raised at 8.0, 12.0, 16.0, and 20.0 dSm(-1) of chloride-dominated salinity. The control plants were irrigated with canal water. Sampling was done at vegetative stage (60-75 DAS). About 95 percent seed germination occurred up to 12 dSm(-1) and thereafter declined slightly. Mean plant height and dry weight plant(-1) were significantly decreased from 48.71 to 32.44 cm and from 1.73 to 0.61g plant(-1) respectively upon salinization. Na(+)/K(+) ratio (0.87 to 2.72), Na(+)/ Ca(2+) + Mg(2+) (0.48 to 1.54) and Cl(-)/SO4(2-) (0.94 to 5.04) ratio showed increasing trend. Salinity susceptibility index was found minimum in Suaeda fruticosa (0.72) and maximum in Parkinsonia aculeata (1.17). Total ionic content also declined and magnitude of decline varied from 8.51 to 18.91% at 8 dSm(-1) and 1.85 to 7.12% at 20 dSm(-1) of salinity. On the basis of phytoremediation potential Suaeda fruticosa (1170.02 mg plant(-1)), Atriplex lentiformis (777.87 mg plant(-1)) were the best salt hyperaccumulator plants whereas Xanthium strumarium (349.61 mg plant(-1)) and Parkinsonia aculeata (310.59 mg plant(-1)) were the least hyperaccumulator plants. PMID:26684673

  20. Testing the joint effects hypothesis of elemental defense using Spodoptera exigua.

    PubMed

    Cheruiyot, Dorothy J; Boyd, Robert S; Moar, William

    2015-02-01

    Metal hyperaccumulation may be an elemental defense, in which high concentrations of a metal in plant tissues decrease herbivore survival or growth rate. The Joint Effects Hypothesis suggests that a combination of metals, or a combination of a metal with an organic compound, may have an enhanced defensive effect. The enhancement may be additive or synergistic: in either case the concentration of a particular metal necessary to provide a defensive benefit for the plant is lowered. We tested the Joint Effects Hypothesis using Spodoptera exigua (beet armyworm) neonates fed artificial diets. Metal + metal experiments utilized diets amended with metal pairs, using four metals commonly hyperaccumulated by plants (Co, Cu, Ni, and Zn). We also conducted metal + organic compound experiments, pairing each metal with nicotine, mustard seed powder, or tannic acid. We tested for joint effects using both lethal (LC20 levels) and sublethal concentrations (10-25 % reduced larval weight) of the chemicals tested. For all experiments, either additive or synergistic effects were found. Of the metal + metal pairs tested, three (Co + Cu, Cu + Zn, and Ni + Zn) were synergistic in lethal concentration tests and only Co + Cu was synergistic in sublethal tests. For metal + organic combination lethal tests, synergism occurred for all combinations except for Co or Ni + nicotine, Ni + mustard seed powder, and Zn + nicotine. For sublethal tests, Zn + all three organic chemicals, Co + mustard seed powder or tannic acid, and Cu + nicotine, were synergistic. These results support the Joint Effects Hypothesis, suggesting that metals combined with other metals or organic compounds may be more effective against herbivores than individual metals. PMID:25712748

  1. Arbuscular mycorrhiza and heavy metal tolerance.

    PubMed

    Hildebrandt, Ulrich; Regvar, Marjana; Bothe, Hermann

    2007-01-01

    Arbuscular mycorrhizal fungi (AMF) have repeatedly been demonstrated to alleviate heavy metal stress of plants. The current manuscript summarizes results obtained to date on the colonization of plants by AMF in heavy metal soils, the depositions of heavy metals in plant and fungal structures and the potential to use AMF-plant combinations in phytoremediation, with emphasis on pennycresses (Thlaspi ssp.). The focus of this manuscript is to describe and discuss studies on the expression of genes in plants and fungi under heavy metal stress. The summary is followed by data on differential gene expression in extraradical mycelia (ERM) of in vitro cultured Glomus intraradices Sy167 supplemented with different heavy metals (Cd, Cu or Zn). The expression of several genes encoding proteins potentially involved in heavy metal tolerance varied in their response to different heavy metals. Such proteins included a Zn transporter, a metallothionein, a 90 kD heat shock protein and a glutathione S-transferase (all assignments of protein function are putative). Studies on the expression of the selected genes were also performed with roots of Medicago truncatula grown in either a natural, Zn-rich heavy metal "Breinigerberg" soil or in a non-polluted soil supplemented with 100 microM ZnSO(4). The transcript levels of the genes analyzed were enhanced up to eight fold in roots grown in the heavy metal-containing soils. The data obtained demonstrate the heavy metal-dependent expression of different AMF genes in the intra- and extraradical mycelium. The distinct induction of genes coding for proteins possibly involved in the alleviation of damage caused by reactive oxygen species (a 90 kD heat shock protein and a glutathione S-transferase) might indicate that heavy metal-derived oxidative stress is the primary concern of the fungal partner in the symbiosis. PMID:17078985

  2. Host Suitability of 32 Common Weeds to Meloidogyne hapla in Organic Soils of Southwestern Quebec.

    PubMed

    Bélair, G; Benoit, D L

    1996-12-01

    Thirty-two weeds commonly found in the organic soils of southwestern Quebec were evaluated for host suitability to a local isolate of the northern root-knot nematode Meloidogyne hapla under greenhouse conditions. Galls were observed on the roots of 21 species. Sixteen of the 21 had a reproduction factor (Pf/Pi = final number of M. hapla eggs and juveniles per initial number of M. hapla juveniles per pot) higher than carrot (Pf/Pi = 0.37), the major host crop in this agricultural area. Tomato cv. Rutgers was also included as a susceptible host and had the highest Pf/Pi value of 13.7. Bidens cernua, B. frondosa, B. vulgata, Erysimum cheiranthoides, Eupatorium maculatum, Matricaria matricarioides, Polygonum scabrum, Thalictrum pubescens, Veronica agrestis, and Sium suave are new host records for M. hapla. Bidens cernua, B. frondosa, B. wulgata, D. carota, M. matricarioides, Pasticana sativa, P. scabrum, S. suave, and Thlaspi arvense sustained moderate to high galling by M. hapla and supported high M. hapla production (12.4 /= 2.9). Capsella bursa-pastoris, Chrysanthemum leucanthemum, Gnaphalium uliginosum, Stellaria media, and Veronica agrestis sustained moderate galling and supported moderate M. hapla reproduction (2.8 /= 0.5). Chenopodium album, C. glaucum, E. cheiranthoides, P. convolvulus, Portulaca oleracea, and Rorippa islandica supported low reproduction (0.25 /= 0.02) and sustained low galling. Galling was observed on Senecio vulgaris but no eggs or juveniles; thus, S. vulgaris may be useful as a trap plant. Eupatorium maculatum, and T. pubescens harbored no distinct galling but supported low to moderate M. hapla reproduction, respectively. Amaranthus retroflexus, Ambrosia artemisiifolia, Echinochloa crusgalli, Erigeron canadensis, Oenothera parviflora, Panicum capillare, Setaria glauca, S. viridis, and Solidago canadensis were nonhosts. Our results demonstrate the importance of adequate weed control in an integrated program for the management of M. hapla in organic soil. PMID:19277189

  3. Effects of Metal Phytoextraction Practices on the Indigenous Community of Arbuscular Mycorrhizal Fungi at a Metal-Contaminated Landfill

    PubMed Central

    Pawlowska, Teresa E.; Chaney, Rufus L.; Chin, Mel; Charvat, Iris

    2000-01-01

    Phytoextraction involves use of plants to remove toxic metals from soil. We examined the effects of phytoextraction practices with three plant species (Silene vulgaris, Thlaspi caerulescens, and Zea mays) and a factorial variation of soil amendments (either an ammonium or nitrate source of nitrogen and the presence or absence of an elemental sulfur supplement) on arbuscular mycorrhizal (AM) fungi (Glomales, Zygomycetes) at a moderately metal-contaminated landfill located in St. Paul, Minn. Specifically, we tested whether the applied treatments affected the density of glomalean spores and AM root colonization in maize. Glomalean fungi from the landfill were grouped into two morphotypes characterized by either light-colored spores (LCS) or dark-colored spores (DCS). Dominant species of the LCS morphotype were Glomus mosseae and an unidentified Glomus sp., whereas the DCS morphotype was dominated by Glomus constrictum. The density of spores of the LCS morphotype from the phytoremediated area was lower than the density of these spores in the untreated landfill soil. Within the experimental area, spore density of the LCS morphotype in the rhizosphere of mycorrhizal maize was significantly higher than in rhizospheres of nonmycorrhizal S. vulgaris or T. caerulescens. Sulfur supplement increased vesicular root colonization in maize and exerted a negative effect on spore density in maize rhizosphere. We conclude that phytoextraction practices, e.g., the choice of plant species and soil amendments, may have a great impact on the quantity and species composition of glomalean propagules as well as on mycorrhiza functioning during long-term metal-remediation treatments. PMID:10831433

  4. Use of a novel herbal medicine in a 75-year-old woman with multi-metastatic pancreatic cancer: A case report and review of the literature

    PubMed Central

    LI, YANCHU; LI, XIANYONG; TIP, PAIROTETORSAK; ZHANG, LINGYAN

    2015-01-01

    Pancreatic cancer is one of the most aggressive types of malignant tumors and is associated with an extremely poor prognosis. Despite numerous research efforts over the last few years, little progress has been made in the understanding and treatment of the disease. Gemcitabine-based regimens are considered as the first-line treatment for pancreatic cancer, but the effects of chemotherapy on the disease are limited. Natural products extracted from herbs represent a valuable resource for novel bioactive anticancer agents and could benefit multi-metastasis pancreatic adenocarcinoma patients with an Eastern Cooperative Oncology Group status of 3. Biological intra-control cancer treatment (BICT) is a novel systemic therapy involving palliative care and herbal extract combinations [including ginseng (Panax ginseng C.A. Mey.), Herba Agrimonia (Agrimonia pilosa Ledeb.), White Flower Patrinia Herb (Thlaspi arvense Linn.) and arginine], which has been approved by the State Food and Drug Association. The treatment is intended to regulate and inhibit blood vessel generation and tumor growth by inhibiting epidermal growth factor receptor and vascular endothelial growth factor receptor expression, and to manage symptoms to improve the quality of the treatment. The present study discusses the case of a 75-year-old female diagnosed with pancreatic cancer with multiple metastases in the liver and lymph nodes. The patient was administered BICT and achieved survival for 11 months without side-effects of a severity greater than grade 1 according to the Common Terminology Criteria for Adverse Events. The study also describes a possible approach to providing palliative care and treating late-stage, metastatic pancreatic adenocarcinomas in elderly patients. PMID:26171011

  5. [Mechanisms of heavy metal cadmium tolerance in plants].

    PubMed

    Zhang, Jun; Shu, Wen-Sheng

    2006-02-01

    Cadmium (Cd) is a strongly phytotoxic heavy metal, which inhibits plant growth and even leads to plant death. The main symptoms of Cd(2+) toxicity to plants are stunting and chlorosis. Plant has developed some functions for Cd(2+) tolerance, which include cell wall binding, chelation with phytochelatins (PCs), compartmentation of Cd(2+) in vacuole, and enrichment in leaf trichomes. However, Cd(2+) tolerance in plant is more likely involved in an integrated network of multiple response processes than several isolated functions cited above. In the network, the processes of sulfur metabolism, antioxidative response, and Cd(2+) transport across plasma and vacuole membrane in plant are closely related with Cd(2+) tolerance in plant. The processes of sulfur uptake, assimilation and sequential sulfur metabolism in plant respond to Cd(2+) stress. The expression of sulfur transporters with varied affinity was changed in different ways under Cd(2+) stress, and the high expression of ATP sulfurylase (APS) and adenosine 5' phosphosulfate reductase (APR), which may help to keep the supply of S(2-) for cysteine (Cys) synthesis. The efficiency of Cys synthesis may function in Cd(2+) detoxification, and the up-regulated expression of Ser acetyltransferase (SAT) and O-acetyl-ser (thiol)-lyase (OASTL) has been found in some Cd(2+) treated plants. Reduced glutathione (GSH) is an important antioxidant and the precursor of PCs, glutamylcysteine synthetase (GCS) and glutathione synthetase (GS) catalyze GSH synthesis from Cys, overexpression of the two enzymes can improve Cd(2+) tolerance in plant. PCs are more important Cd(2+) chelators than metallothioneins (MTs) in plants, and the expression of phytochelatin synthase (PCS) responds to Cd(2+) stress. Plant antioxidative system also contributes to Cd(2+) tolerance. The antioxidative response to Cd(2+)-induced oxidative stress varies in different plants and tissues and is also Cd(2+) concentration dependent, and the Cd hyperaccumulator plants show strong tolerance to oxidative stress. Some genes encoded metal transporters with Cd(2+) substrate specificity at plasma and vacuole membranes, which have been isolated and characterized in recent years. These genes play critical roles in Cd(2+) translocation, allocation, and compartmentation in plants. Despite the great progresses made in the field in recent years, there are still some issues which need further exploration, such as the detail of signal transduction and the responses of gene regulation to Cd(2+), the rhizosphere activation and root adsorption to soil Cd(2+), Cd(2+) trafficking in xylem and phloem, Cd(2+) translocation to fruit and seed, and the possible presence of a high-affinity Cd(2+) transporter in Cd hyperaccumulators. PMID:16477124

  6. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors

    PubMed Central

    2014-01-01

    Background Microalgae can accumulate considerable amounts of lipids under different nutrient-deficient conditions, making them as one of the most promising sustainable sources for biofuel production. These inducible processes provide a powerful experimental basis for fully understanding the mechanisms of physiological acclimation, lipid hyperaccumulation and gene expression in algae. In this study, three nutrient-deficiency strategies, viz nitrogen-, phosphorus- and iron-deficiency were applied to trigger the lipid hyperaccumulation in an oleaginous Chlorella pyrenoidosa. Regular patterns of growth characteristics, lipid accumulation, physiological parameters, as well as the expression patterns of lipid biosynthesis-related genes were fully analyzed and compared. Results Our results showed that all the nutrient stress conditions could enhance the lipid content considerably compared with the control. The total lipid and neutral lipid contents exhibit the most marked increment under nitrogen deficiency, achieving 50.32% and 34.29% of dry cell weight at the end of cultivation, respectively. Both photosynthesis indicators and reactive oxygen species parameters reveal that physiological stress turned up when exposed to nutrient depletions. Time-course transcript patterns of lipid biosynthesis-related genes showed that diverse expression dynamics probably contributes to the different lipidic phenotypes under stress conditions. By analyzing the correlation between lipid content and gene expression level, we pinpoint several genes viz. rbsL, me g6562, accA, accD, dgat g2354, dgat g3280 and dgat g7063, which encode corresponding enzymes or subunits of malic enzyme, ACCase and diacylglycerol acyltransferase in the de novo TAG biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. Conclusion This study provided us not only a comprehensive picture of adaptive mechanisms from physiological perspective, but also a number of targeted genes that can be used for a systematic metabolic engineering. Besides, our results also represented the feasibility of lipid production through trophic transition cultivation modes, throwing light on a two-stage microalgal lipid production strategy with which heterotrophy stage provides sufficient robust seed and nitrogen-starvation photoautotrophy stage enhances the overall lipid productivity. PMID:24479413

  7. A field study on phytoremediation of a lead-contaminated soil by Eucalyptus globulus in an abandoned mine site - Alagoa, Portugal

    NASA Astrophysics Data System (ADS)

    Gerardo, R.; Kikuchi, R.

    2009-04-01

    Current engineering-based technologies used to clean up soils are very costly and need lots of work. Phytoremediation is the use of plants to remove pollutants (i.e. heavy metals) from the environment or render them harmless. In the phytoremediation process several plant species can be used to reduce the concentrations of heavy metals in contaminated soils to environmentally acceptable levels. The idea of using rare plants which hyperaccumulate metals to selectively remove and recycle excessive soil metals has increasingly been examined as a potential practical and more cost effective technology than soil replacement, solidification, or washing strategies presently used. However, most hyperaccumulator species are not suitable for phytoremediation application in the field due to their small biomass and slow growth. Cultivation of woody plants in contaminated soils has showed potential for use in phytoremediation but also it provides aesthetic improvement in the field. In this study we studied the possibility of using the approach of phytoremediation of lead by Eucalyptus globulus in a lead-contaminated soil from an abandoned mine. Although Eucalytpus globulus prefer good ecological conditions in humid temperate climates, there are few studies that have showed their great potential in contaminated areas and important biomonitors of environmental quality. A test field was set up in an abandoned mine site (Alagoa, Portugal) in order to investigate the feasibility of phytoremediation of lead by Eucalyptus globulus. The field soil was characterized as follows: humus - 2.56-7.08%, pH in the soil water - 4.50-5.10, silte - 18-15% and total Pb - 67-239 mg/kg. The soils in some areas exceed the critical value (150 mg/kg) according with Portuguese law. Eucalytus globulus growing on the abandoned mine, contaminated with lead was studied. The results of shoots sample analysis (n = 15) show the total Pb levels of 0.170-0.093 mg/kg in the stem and 2.94-5.14 mg/kg in the leaves. The results obtain from this work suggest potential indicators for use of Eucalytus globulus in mining areas. Also the presence in the field of several generations of Eucalytus globulus and the existence of young plants near the main gallery suggest good adaptation in lead-contaminated soil.

  8. A Phytoremediation Strategy for Arsenic

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground. Phytochelatins bind diverse thiol-reactive elements like As(III) and are synthesized from amino acids in a three-step enzymatic pathway utilizing three enzymes: ECS = gamma-glutamylcysteine synthetase; GS = GSH synthetase; and PS = phytochelatin synthase. We cloned each of the genes that encode these enzymes and used at least two different plant promoters to express them in transgenic Arabidopsis. We have shown that all three confer significant resistance to arsenic and allow rapid growth on a concentration of arsenic (300 micromolar) that kills wild-type seeds and plants.

  9. Wild food plants used by the Tibetans of Gongba Valley (Zhouqu county, Gansu, China)

    PubMed Central

    2014-01-01

    Background The ethnobotany of Tibetans is a seriously under-studied topic. The aim of the study was to investigate knowledge and use of wild food plants in a valley inhabited by Tibetans in the Gannan Tibetan Autonomous Region. Methods The field research was carried out in a wooded mountain valley in 9 neighbouring villages the Zhouqu (Brugchu) county, and comprised 17 interviews with single informants and 14 group interviews, involving 122 people altogether. Results We recorded the use of 81 species of vascular plants from 41 families. Fruits formed the largest category, with 42 species, larger than the wild greens category, with 36 species. We also recorded the culinary use of 5 species of edible flowers, 7 species with underground edible organs and 5 taxa of fungi. On average, 16.2 edible taxa were listed per interview (median – 16). Green vegetables formed the largest category of wild foods (mean – 8.7 species, median – 9 species), but fruits were listed nearly as frequently (mean – 6.9, median – 6). Other categories were rarely mentioned: flowers (mean – 0.2, median – 0), underground edible parts (mean – 0.3, median – 0) and mushrooms (mean – 1.5, – median 1). Wild vegetables are usually boiled and/or fried and served as side-dishes (cai). They are often lacto-fermented. Wild fruits are mainly collected by children and eaten raw, they are not stored for further use. The most widely used wild vegetables are: Eleuterococcus spp., Pteridium aquilinum, Helwingia japonica, Aralia chinensis, Allium victorialis, Pteridium aquilinum, Ixeris chinensis, Thlaspi arvense and Chenopodium album. The culinary use of Caltha palustris as a green vegetable is very interesting. In its raw state, marsh marigold is a toxic plant, due to the presence of protoanemonin. In this area it is dried or lactofermented before use. The most commonly eaten fruits are: Pyrus xerophila, Prunus salicina, Berchemia sinica, Rubus spp. and Eleagnus umbellata. Conclusions The number of wild taxa eaten in the studied valley is relatively large compared to most studies from around the world. However, compared to the northern slope of the Qinling, in Shaanxi, the list is considerably shorter, in spite of the similar methodology applied and similar research effort involved. PMID:24502461

  10. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India.

    PubMed

    Kumari, Alka; Lal, Brij; Rai, Upendra Nath

    2016-06-01

    The present investigation was carried out to screen native plants growing in fly ash (FA) contaminated areas near National Thermal Power Corporation (NTPC), Kahalgaon, Bihar, India with a view to using them for the eco-restoration of the area. A total number of 30 plant species (5 aquatic and 25 terrestrial including 6 ferns) were collected and their diversity status and dominance were also studied. After screening of dominant species at highly polluted site, 8 terrestrial and 5 aquatic plants were analyzed for heavy metals (Fe, Zn, Cu, Ni, Si, Al, Pb, Cr, and Cd). Differential accumulations of various heavy metals by different species of plants were observed. Typha latifolia was found to be most efficient metal accumulator of Fe (927), Cu (58), Zn (87), Ni (57), Al (67), Cd (95), and Pb (69), and Azolla pinnata as Cr (93) hyper-accumulator among aquatic species in µg g(-1). In terrestrial species the maximum levels of Fe (998), Zn (81), Ni (93), Al (121), and Si (156) were found in Croton bonplandium. However, there was high spatial variability in total metal accumulation in different species indicated by coefficient of variation (CV%). These results suggest that various aquatic, some dominant terrestrial plants including fern species may be used in a synergistic way to remediate and restore the FA contaminated wastelands. PMID:26442874

  11. Different Heavy Metal Accumulation Strategies of Epilithic Lichens Colonising Artificial Post-Smelting Wastes.

    PubMed

    Rola, Kaja; Osyczka, Piotr; Kafel, Alina

    2016-02-01

    Lichens appear to be essential and effective colonisers of bare substrates including the extremely contaminated wastes of slag dumps. This study examines the metal accumulation capacity of epilithic lichens growing directly on the surface of artificial slag sinters. Four species representing different growth forms, i.e., crustose Candelariella aurella, Lecanora muralis, and Lecidea fuscoatra and fruticose Stereocaulon nanodes, were selected to evaluate the relationships between zinc, lead, cadmium, and nickel contents in their thalli and host substrates. Bioaccumulation factors of examined crustose lichens showed their propensity to hyperaccumulate heavy metals. Contrarily, concentrations of metals in fruticose thalli of S. nanodes were, as a rule, lower than in the corresponding substrates. This indicates that the growth form of thalli and degree of thallus adhesion to the substrate has a significant impact on metal concentrations in lichens colonising post-smelting wastes. Nonlinear regression models described by power functions show that at greater levels of Pb concentration in the substrate, the ability of C. aurella, L. muralis and L. fuscoatra to accumulate the metal experiences a relative decrease, whereas hyperbolic function describes a similar trend in relation to Ni content in S. nanodes. This phenomenon may be an important attribute of lichens that facilitates their colonisation of the surface of slag wastes. PMID:26155778

  12. Physiological responses of fenugreek seedlings and plants treated with cadmium.

    PubMed

    Zayneb, Chaâbene; Bassem, Khemakhem; Zeineb, Kamoun; Grubb, C Douglas; Noureddine, Drira; Hafedh, Mejdoub; Amine, Elleuch

    2015-07-01

    The bioaccumulation efficiency of cadmium (Cd) by fenugreek (Trigonella foenum-graecum) was examined using different concentrations of CdCl2. The germination rate was similar to control except at 10 mM Cd. However, early seedling growth was quite sensitive to the metal from the lowest Cd level. Accordingly, amylase activity was reduced substantially on treatment of seeds with 0.5, 1, and 10 mM Cd. Cadmium also affected various other plant growth parameters. Its accumulation was markedly lower in shoots as compared to roots, reducing root biomass by almost 50 %. Plants treated with 1 and 5 mM Cd presented chlorosis due to a significant reduction in chlorophyll b especially. Furthermore, at Cd concentrations greater than 0.1 mM, plants showed several signs of oxidative stress; an enhancement in root hydrogen peroxide (H2O2) level and in shoot malondialdehyde (MDA) content was observed. Conversely, antioxidant enzyme activities (superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)) increased in various plant parts. Likewise, total phenolic and flavonoid contents reached their highest values in the 0.5 mM Cd treatment, consistent with their roles in quenching low concentrations of reactive oxygen species (ROS). Consequently, maintaining oxidant and antioxidant balance may permit fenugreek to hyperaccumulate Cd and allow it to be employed in extremely Cd polluted soils for detoxification purposes. PMID:25752634

  13. Uptake and distribution of selenium in different fern species.

    PubMed

    Srivastava, Mrittunjai; Ma, Lena Q; Cotruvo, Joseph A

    2005-01-01

    There has been an interest in using hyperaccumulating plants for the removal of heavy metals and metalloids. High selenium (Se) concentrations in the environment are detrimental to animals, humans, and sustainable agriculture, yet selenium is also an essential nutrient for humans. This experiment was conducted to screen fern plants for their potential to accumulate selenium. Eleven fern species, Pteris vittata, P. quadriaurita, P. dentata, P. ensiformis, P. cretica, Dryopteris erythrosora, Didymochlaena truncatula, Adiantum hispidulum, Actiniopteris radiata, Davallia griffithiana, and Cyrtomium fulcatum, were grown under hydroponic conditions for one week at 20 mg L(-1) selenate or selenite. Root Se concentrations reached 245-731 and 516-1082 mg kg(-1) when treated with selenate and selenite, respectively. The corresponding numbers in the fronds were 153-745 and 74-1,028 mg kg(-1) with no visible toxicity symptoms. Only three fern species were able to accumulate more Se in the fronds than the roots, which were D. griffithiana when treated with selenate, P. vittata when treated with selenite, and A. radiata regardless of the forms of Se. A. radiata was the best species overall for Se accumulation. More research is needed to further determine the potential of the fern species identified in this study for phytoremediation of the Se contaminated soils and water. PMID:15943242

  14. Uptake and distribution of selenium in different fern species.

    TOXLINE Toxicology Bibliographic Information

    Srivastava M; Ma LQ; Cotruvo JA

    2005-01-01

    There has been an interest in using hyperaccumulating plants for the removal of heavy metals and metalloids. High selenium (Se) concentrations in the environment are detrimental to animals, humans, and sustainable agriculture, yet selenium is also an essential nutrient for humans. This experiment was conducted to screen fern plants for their potential to accumulate selenium. Eleven fern species, Pteris vittata, P. quadriaurita, P. dentata, P. ensiformis, P. cretica, Dryopteris erythrosora, Didymochlaena truncatula, Adiantum hispidulum, Actiniopteris radiata, Davallia griffithiana, and Cyrtomium fulcatum, were grown under hydroponic conditions for one week at 20 mg L(-1) selenate or selenite. Root Se concentrations reached 245-731 and 516-1082 mg kg(-1) when treated with selenate and selenite, respectively. The corresponding numbers in the fronds were 153-745 and 74-1,028 mg kg(-1) with no visible toxicity symptoms. Only three fern species were able to accumulate more Se in the fronds than the roots, which were D. griffithiana when treated with selenate, P. vittata when treated with selenite, and A. radiata regardless of the forms of Se. A. radiata was the best species overall for Se accumulation. More research is needed to further determine the potential of the fern species identified in this study for phytoremediation of the Se contaminated soils and water.

  15. Hijacking membrane transporters for arsenic phytoextraction

    PubMed Central

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  16. Germin-like protein 2 gene promoter from rice is responsive to fungal pathogens in transgenic potato plants.

    PubMed

    Munir, Faiza; Hayashi, Satomi; Batley, Jacqueline; Naqvi, Syed Muhammad Saqlan; Mahmood, Tariq

    2016-01-01

    Controlled transgene expression via a promoter is particularly triggered in response to pathogen infiltration. This is significant for eliciting disease-resistant features in crops through genetic engineering. The germins and germin-like proteins (GLPs) are known to be associated with plant and developmental stages. The 1107-bp Oryza sativa root GLP2 (OsRGLP2) gene promoter fused to a β-glucuronidase (GUS) reporter gene was transformed into potato plants through an Agrobacterium-mediated transformation. The OsRGLP2 promoter was activated in response to Fusarium solani (Mart.) Sacc. and Alternaria solani Sorauer. Quantitative real-time PCR results revealed 4-5-fold increase in promoter activity every 24 h following infection. There was a 15-fold increase in OsRGLP2 promoter activity after 72 h of F. solani (Mart.) Sacc. treatment and a 12-fold increase observed with A. solani Sorauer. Our results confirmed that the OsRGLP2 promoter activity was enhanced under fungal stress. Furthermore, a hyperaccumulation of H2O2 in transgenic plants is a clear signal for the involvement of OsRGLP2 promoter region in the activation of specific genes in the potato genome involved in H2O2-mediated defense response. The OsRGLP2 promoter evidently harbors copies of GT-I and Dof transcription factors (AAAG) that act in response to elicitors generated in the wake of pathogen infection. PMID:26277722

  17. Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus[C][W

    PubMed Central

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O.; Nyamdari, Batbayar; Wilson, Mark C.; Frost, Christopher J.; Chen, Han-Yi; Babst, Benjamin A.; Harding, Scott A.; Tsai, Chung-Jui

    2013-01-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained. PMID:23903318

  18. Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature.

    PubMed

    Busov, Victor B; Meilan, Richard; Pearce, David W; Ma, Caiping; Rood, Stewart B; Strauss, Steven H

    2003-07-01

    We identified a dwarf transgenic hybrid poplar (Populus tremula x Populus alba) after screening of 627 independent activation-tagged transgenic lines in tissue culture, greenhouse, and field environments. The cause of the phenotype was a hyperactivated gene encoding GA 2-oxidase (GA2ox), the major gibberellin (GA) catabolic enzyme in plants. The mutation resulted from insertion of a strong transcriptional enhancer near the transcription start site. Overexpression of the poplar GA2ox gene (PtaGA2ox1) caused hyperaccumulation of mRNA transcripts, quantitative shifts in the spectrum of GAs, and similarity in phenotype to transgenic poplars that overexpress a bean (Phaseolus coccineus) GA2ox gene. The poplar PtaGA2ox1 sequence was most closely related to PsGA2ox2 from pea (Pisum sativum) and two poorly known GA2oxs from Arabidopsis (AtGA2ox4 and AtGA2ox5). The dwarf phenotype was reversible through gibberellic acid application to the shoot apex. Transgenic approaches to producing semidwarf trees for use in arboriculture, horticulture, and forestry could have significant economic and environmental benefits, including altered fiber and fruit production, greater ease of management, and reduced risk of spread in wild populations. PMID:12857810

  19. The CRR1 nutritional copper sensor in Chlamydomonas contains two distinct metal-responsive domains.

    PubMed

    Sommer, Frederik; Kropat, Janette; Malasarn, Davin; Grossoehme, Nicholas E; Chen, Xiaohua; Giedroc, David P; Merchant, Sabeeha S

    2010-12-01

    Copper response regulator 1 (CRR1), an SBP-domain transcription factor, is a global regulator of nutritional copper signaling in Chlamydomonas reinhardtii and activates genes necessary during periods of copper deficiency. We localized Chlamydomonas CRR1 to the nucleus in mustard (Sinapis alba) seedlings, a location consistent with its function as a transcription factor. The Zn binding SBP domain of CRR1 binds copper ions in vitro. Cu(I) can replace Zn(II), but the Cu(II) form is unstable. The DNA binding activity is inhibited in vitro by Cu(II) or Hg(II) ions, which also prevent activation of transcription in vivo, but not by Co(II) or Ni(II), which have no effect in vivo. Copper inhibition of DNA binding is reduced by mutation of a conserved His residue. These results implicate the SBP domain in copper sensing. Deletion of a C-terminal metallothionein-like Cys-rich domain impacted neither nutritional copper signaling nor the effect of mercuric supplementation, but rendered CRR1 insensitive to hypoxia and to nickel supplementation, which normally activate the copper deficiency regulon in wild-type cells. Strains carrying the crr1-?Cys allele upregulate ZRT genes and hyperaccumulate Zn(II), suggesting that the effect of nickel ions may be revealing a role for the C-terminal domain of CRR1 in zinc homeostasis in Chlamydomonas. PMID:21131558

  20. Risk Assessment of Fluoride Intake from Tea in the Republic of Ireland and its Implications for Public Health and Water Fluoridation

    PubMed Central

    Waugh, Declan T.; Potter, William; Limeback, Hardy; Godfrey, Michael

    2016-01-01

    The Republic of Ireland (RoI) is the only European Country with a mandatory national legislation requiring artificial fluoridation of drinking water and has the highest per capita consumption of black tea in the world. Tea is a hyperaccumulator of fluoride and chronic fluoride intake is associated with multiple negative health outcomes. In this study, fifty four brands of the commercially available black tea bag products were purchased and the fluoride level in tea infusions tested by an ion-selective electrode method. The fluoride content in all brands tested ranged from 1.6 to 6.1 mg/L, with a mean value of 3.3 mg/L. According to our risk assessment it is evident that the general population in the RoI is at a high risk of chronic fluoride exposure and associated adverse health effects based on established reference values. We conclude that the culture of habitual tea drinking in the RoI indicates that the total cumulative dietary fluoride intake in the general population could readily exceed the levels known to cause chronic fluoride intoxication. Evidence suggests that excessive fluoride intake may be contributing to a wide range of adverse health effects. Therefore from a public health perspective, it would seem prudent and sensible that risk reduction measures be implemented to reduce the total body burden of fluoride in the population. PMID:26927146

  1. Phytoremediation of ionic and methylmercury pollution

    SciTech Connect

    Meagher, Richard B.

    2003-06-01

    Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants (Meagher, 2000) applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants requires the use relatively different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest. Various parts of this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants as we recently reviewed (Meagher et al., 2000; Rugh et al., 2000). A positive spin-off from this work on mercury has been a strategy for the phytoremediation of arsenic (Dhankher et al., 2002) and cadmium.

  2. Phytoremediation of Ionic and Methyl Mercury Pollution

    SciTech Connect

    Meagher, Richard B.

    2003-06-01

    Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants by applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants employs a variety of different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, transport, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest and waste disposal. Various parts of this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants, as we reviewed previously (Meagher et al., 2000; Rugh et al., 2000). A positive spin-off from this work on mercury has been a strategy for the phytoremediation of arsenic (Dhankher et al., 2002) and cadmium (Dhankher et al., 2003).

  3. Phytoremediation of ionic and methylmercury pollution

    SciTech Connect

    Meagher, Richard B.

    2002-06-01

    Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants (Meagher, 2000) applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants requires the use relatively different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest. Various parts of this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants as we recently reviewed (Meagher et al., 2000; Rugh et al., 2000). A positive spin-off from this work on mercury has been a strategy for the phytoremediation of arsenic (Dhankher et al., 2002) and cadmium.

  4. Phytoremediation of soils contaminated with toxic elements and radionuclides

    SciTech Connect

    Cornish, J.E.; Goldberg, W.C.; Levine, R.S.; Benemann, J.R.

    1995-12-31

    At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE`s Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass. Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE.

  5. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways

    PubMed Central

    Mukhopadhyay, Pradipto; Tyagi, Akhilesh Kumar; Tyagi, Akhilesh Kumar

    2015-01-01

    Class-I TCP transcription factors are plant-specific developmental regulators. In this study, the role of one such rice gene, OsTCP19, in water-deficit and salt stress response was explored. Besides a general upregulation by abiotic stresses, this transcript was more abundant in tolerant than sensitive rice genotypes during early hours of stress. Stress, tissue and genotype-dependent retention of a small in-frame intron in this transcript was also observed. Overexpression of OsTCP19 in Arabidopsis caused upregulation of IAA3, ABI3 and ABI4 and downregulation of LOX2, and led to developmental abnormalities like fewer lateral root formation. Moreover, decrease in water loss and reactive oxygen species, and hyperaccumulation of lipid droplets in the transgenics contributed to better stress tolerance both during seedling establishment and in mature plants. OsTCP19 was also shown to directly regulate a rice triacylglycerol biosynthesis gene in transient assays. Genes similar to those up- or downregulated in the transgenics were accordingly found to coexpress positively and negatively with OsTCP19 in Rice Oligonucleotide Array Database. Interactions of OsTCP19 with OsABI4 and OsULT1 further suggest its function in modulation of abscisic acid pathways and chromatin structure. Thus, OsTCP19 appears to be an important node in cell signaling which crosslinks stress and developmental pathways. PMID:25925167

  6. Differential cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Zygophyllum fabago L.

    PubMed

    Lefèvre, Isabelle; Vogel-Mikuš, Katarina; Jeromel, Luka; Vavpetič, Primož; Planchon, Sébastien; Arčon, Iztok; Van Elteren, Johannes T; Lepoint, Gilles; Gobert, Sylvie; Renaut, Jenny; Pelicon, Primož; Lutts, Stanley

    2014-06-01

    Cadmium and zinc share many similar physiochemical properties, but their compartmentation, complexation and impact on other mineral element distribution in plant tissues may drastically differ. In this study, we address the impact of 10 μm Cd or 50 μm Zn treatments on ion distribution in leaves of a metallicolous population of the non-hyperaccumulating species Zygophyllum fabago at tissue and cell level, and the consequences on the plant response through a combined physiological, proteomic and metabolite approach. Micro-proton-induced X-ray emission and laser ablation inductively coupled mass spectrometry analyses indicated hot spots of Cd concentrations in the vicinity of vascular bundles in response to Cd treatment, essentially bound to S-containing compounds as revealed by extended X-ray absorption fine structure and non-protein thiol compounds analyses. A preferential accumulation of Zn occurred in vascular bundle and spongy mesophyll in response to Zn treatment, and was mainly bound to O/N-ligands. Leaf proteomics and physiological status evidenced a protection of photosynthetically active tissues and the maintenance of cell turgor through specific distribution and complexation of toxic ions, reallocation of some essential elements, synthesis of proteins involved in photosynthetic apparatus or C-metabolism, and metabolite synthesis with some specificities regarding the considered heavy metal treatment. PMID:24237383

  7. The use of vetiver for remediation of heavy metal soil contamination.

    PubMed

    Antiochia, Riccarda; Campanella, Luigi; Ghezzi, Paola; Movassaghi, K

    2007-06-01

    The use of Vetiveria zizanioides (vetiver) was studied to evaluate its efficiency for the remediation of soils contaminated by heavy metals. Vetiver plants were tested for Cr, Cu, Pb and Zn. Phytoextraction and bioremediation experiments were carried out by irrigating the vetiver plants and the dry plants with solutions containing suitable amounts of Cr, Cu, Pd and Zn. The concentrations of the heavy metals were determined in both experiments in shoot and root parts of vetiver plants using inductively coupled plasma atomic emission spectroscopy after a mineralization step. Phytoextraction experiments showed a poor efficiency of vetiver for Cr and Cu uptake (both less than 0.1% in shoots and roots after 30 days), but a quite high capability of Pb and Zn uptake (0.4% in shoots and 1% in roots for Pb and 1% both in shoots and in roots for Zn, after 30 days). For these reasons the vetiver plant can be considered a quite good "hyperaccumulator" only for Pb and Zn. As for bioremediation experiments, the vetiver plant showed heavy metal uptake values significantly lower than those obtained with other biological substrates. PMID:17468861

  8. Compound amino acids added in media improved Solanum nigrum L. phytoremediating CD-PAHS contaminated soil.

    PubMed

    Wei, Shuhe; Bai, Jiayi; Yang, Chuanjie; Zhang, Qianru; Knorrm, Klaus-Holger; Zhan, Jie; Gao, Qianhui

    2016-04-01

    Cd hyperaccumulator Solanum nigrum L. was a promising plant used to simultaneously remediate Cd-PAHs combined pollution soil through its extra accumulation capacity and rhizosphere degradation. This article compared the strengthening remediation role of cysteine (Cys), glycine (Gly) and glutamic acid (Glu) with EDTA and TW80. The results showed that the addition of 0.03 mmol L(-1) Cys, Gly, and Glu didn't significantly impact (p < 0.05) shoot biomass of S. nigrum, but obviously increased Cd concentration. Therefore, Cd capacity (µg pot(-1)) in shoots of S. nigrum was significantly increased (p < 0.05) by 37.7% compared to the control without reagent added. At the meantime, the PAHs degradation ratio in rhizoshpere was increased by 34.5%. Basically, the improving role of Cys, Gly, and Glu was higher than EDTA and TW80. The main reasons of enhanced the accumulation of S. nigrum to Cd might lie in the addition of Cys, Gly, and Glu which reduced pH and increased extractable Cd concentration in rhizosphere and phytochelatines (PCs) concentration in leaves. As for the degradation of PAHs in rhizosphere, increased microorganism number might be play important role. PMID:26515779

  9. Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA

    PubMed Central

    Haque, Nazmul; Peralta-Videa, Jose R.; Jones, Gary L.; Gill, Thomas E.; Gardea-Torresdey, Jorge L.

    2008-01-01

    The metal concentrations in a copper mine tailings and Desert broom (Baccharis sarothroides Gray) plants were investigated. The metal concentrations in plants, soil cover, and tailings were determined using ICP-OES. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in tailings was 526.4, 207.4, 89.1, 84.5, 51.7, 49.6, 39.7, and 35.6 mg kg−1, respectively. The concentration of all elements in soil cover was 10~15% higher than that of the tailings, except for molybdenum. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in roots was 818.3, 151.9, 73.9, 57.1, 40.1, 44.6, 96.8, and 26.7 mg kg−1 and 1214.1, 107.3, 105.8, 105.5, 55.2, 36.9, 30.9, and 10.9 mg kg−1 for shoots, respectively. Considering the translocation factor, enrichment coefficient, and the accumulation factor, desert broom could be a potential hyperaccumulator of Cu, Pb, Cr, Zn, As, and Ni. PMID:17964035

  10. Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO4 and promoted Pteris vittata growth.

    PubMed

    Liu, Xue; Yang, Guang-Mei; Guan, Dong-Xing; Ghosh, Piyasa; Ma, Lena Q

    2015-11-01

    The impact of siderophore produced by arsenic-resistant bacterium Pseudomonas PG12 on FeAsO4 dissolution and plant growth were examined. Arsenic-hyperaccumulator Pteris vittata was grown for 7 d in 0.2-strength Fe-free Hoagland solution containing FeAsO4 mineral and PG12-siderophore or fungal-siderophore desferrioxamine B (DFOB). Standard siderophore assays indicated that PG12-siderophore was catecholate-type. PG12-siderophore was more effective in promoting FeAsO4 dissolution, and Fe and As plant uptake than DFOB. Media soluble Fe and As in PG12 treatment were 34.6 and 3.07 μM, 1.6- and 1.4-fold of that in DFOB. Plant Fe content increased from 2.93 to 6.24 g kg(-1) in the roots and As content increased from 14.3 to 78.5 mg kg(-1) in the fronds. Besides, P. vittata in PG12 treatment showed 2.6-times greater biomass than DFOB. While P. vittata fronds in PG12 treatment were dominated by AsIII, those in DFOB treatment were dominated by AsV (61-77%). This study showed that siderophore-producing arsenic-resistant rhizobacteria may have potential in enhancing phytoremediation of arsenic-contaminated soils. PMID:26247380

  11. Enhanced Heavy Metal Tolerance and Accumulation by Transgenic Sugar Beets Expressing Streptococcus thermophilus StGCS-GS in the Presence of Cd, Zn and Cu Alone or in Combination

    PubMed Central

    Liu, Dali; An, Zhigang; Mao, Zijun; Ma, Longbiao; Lu, Zhenqiang

    2015-01-01

    Phytoremediation is a promising means of ameliorating heavy metal pollution through the use of transgenic plants as artificial hyperaccumulators. A novel Streptococcus thermophilus γ-glutamylcysteine synthetase-glutathione synthetase (StGCS-GS) that synthesizes glutathione (GSH) with limited feedback inhibition was overexpressed in sugar beet (Beta vulgaris L.), yielding three transgenic lines (s2, s4 and s5) with enhanced tolerance to different concentrations of cadmium, zinc and copper, as indicated by their increased biomass, root length and relative growth compared with wild-type plants. Transgenic sugar beets accumulated more Cd, Zn and Cu ions in shoots than wild-type, as well as higher GSH and phytochelatin (PC) levels under different heavy metal stresses. This enhanced heavy metal tolerance and increased accumulation were likely due to the increased expression of StGCS-GS and consequent overproduction of both GSH and PC. Furthermore, when multiple heavy metal ions were present at the same time, transgenic sugar beets overexpressing StGCS-GS resisted two or three of the metal combinations (50 μM Cd-Zn, Cd-Cu, Zn-Cu and Cd-Zn-Cu), with greater absorption in shoots. Additionally, there was no obvious competition between metals. Overall, the results demonstrate the explicit role of StGCS-GS in enhancing Cd, Zn and Cu tolerance and accumulation in transgenic sugar beet, which may represent a highly promising new tool for phytoremediation. PMID:26057126

  12. Assessment of the root system of Brassica juncea (L.) czern. and Bidens pilosa L. exposed to lead polluted soils using rhizobox systems.

    PubMed

    Soledad Graziani, Natalia; Salazar, María Julieta; Pignata, María Luisa; Rodriguez, Judith Hebelen

    2016-03-01

    The purpose of this study was to compare the behavior of the root system of one of the most frequently cited species in phytoremediation Indian mustard [Brassica juncea (L.) Czern.] and a representative perennial herb (Bidens pilosa L.) native of Argentina, for different concentrations of lead in soils through chemical and visualization techniques of the rhizosphere. Lead polluted soils from the vicinity of a lead recycling plant in the locality of Bouwer, were used in juxtaposed rhizobox systems planted with seedlings of B. juncea and B. pilosa with homogeneous and heterogeneous soil treatments. Root development, pH changes in the rhizosphere, dry weight biomass, lead content of root and aerial parts and potential extraction of lead by rhizosphere exudates were determined. In both species lead was mainly accumulated in roots. However, although B. juncea accumulated more lead than B. pilosa at elevated concentrations in soils, the latter achieved greater root and aerial development. No changes in the pH of the rhizosphere associated to lead were observed, despite different extractive potentials of lead in the exudates of the species analyzed. Our results indicated that Indian mustard did not behave as a hyperaccumulator in the conditions of the present study. PMID:26292209

  13. Lipid body accumulation alters calcium signaling dynamics in immune cells

    PubMed Central

    Greineisen, William E.; Speck, Mark; Shimoda, Lori M.N.; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J.; Turner, Helen

    2014-01-01

    Summary There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcεRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signalling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcεRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signalling pathway and its downstream targets. PMID:25016314

  14. Heavy metal removal and crude bio-oil upgrade from Sedum alfredii Hance harvest using hydrothermal upgrading.

    PubMed

    Yang, Jian-guang; Tang, Chao-bo; He, Jing; Yang, Sheng-Hai; Tang, Mo-tang

    2010-07-15

    In this study, heavy metals were removed and crude bio-oil was yielded from a heavy metal hyperaccumulator harvest, Sedum alfredii Hance, through hydrothermal upgrading process. This paper reports on the optimization of process parameters for the removal of heavy metals (zinc, lead, and copper) and for the upgrading of crude bio-oil from this biomass in an autoclave. Parameters such as granularity, temperature, pressure, and duration were examined for their effect on the removal efficiency of heavy metals and upgrading efficacy of crude bio-oil. Maximum heavy metal removal efficiency of >99% and crude bio-oil upgrading efficiency of >60% were attained with an 18 mesh (1 mm) granularity, and 22.1 MPa at 370 degrees C in the presence of 10 mg/L additives (K(2)CO(3)) for 60 s. Under these optimized conditions, an oil phase (mostly composed of phenolic hydrocarbons and derivatives), a water phase raffinate (containing Zn(2+) (0.39 g/L), Pb(2+) (0.10 g/L), Cu(2+) (0.15 g/L)), and a solid phase (the hydrothermal upgrading residue, which completely satisfies the limit set by China legislation related to biosolids disposal) were obtained. PMID:20409636

  15. Extensive variation in cadmium tolerance and accumulation among populations of Chamaecrista fasciculata.

    PubMed

    Henson, Tessa M; Cory, Wendy; Rutter, Matthew T

    2013-01-01

    Plant populations may vary substantially in their tolerance for and accumulation of heavy metals, and assessment of this variability is important when selecting species to use in restoration or phytoremediation projects. We examined the population variation in cadmium tolerance and accumulation in a leguminous pioneer species native to the eastern United States, the partridge pea (Chamaecrista fasciculata). We assayed growth, reproduction and patterns of cadmium accumulation in six populations of C. fasciculata grown on a range of cadmium-contaminated soils. In general, C. fasciculata exhibited tolerance in low to moderate soil cadmium concentrations. Both tolerance and accumulation patterns varied across populations. C. fasciculata exhibited many characteristics of a hyperaccumulator species, with high cadmium uptake in shoots and roots. However, cadmium was excluded from extrafloral nectar. As a legume with tolerance for moderate cadmium contamination, C. fasciculata has potential for phytoremediation. However, our findings also indicate the importance of considering the effects of genetic variation on plant performance when screening plant populations for utilization in remediation and restoration activities. Also, there is potential for cadmium contamination to affect other species through contamination of leaves, fruits, flowers, pollen and root nodules. PMID:23667586

  16. Reverse Genetic Characterization of Cytosolic Acetyl-CoA Generation by ATP-Citrate Lyase in ArabidopsisW⃞

    PubMed Central

    Fatland, Beth L.; Nikolau, Basil J.; Wurtele, Eve Syrkin

    2005-01-01

    Acetyl-CoA provides organisms with the chemical flexibility to biosynthesize a plethora of natural products that constitute much of the structural and functional diversity in nature. Recent studies have characterized a novel ATP-citrate lyase (ACL) in the cytosol of Arabidopsis thaliana. In this study, we report the use of antisense RNA technology to generate a series of Arabidopsis lines with a range of ACL activity. Plants with even moderately reduced ACL activity have a complex, bonsai phenotype, with miniaturized organs, smaller cells, aberrant plastid morphology, reduced cuticular wax deposition, and hyperaccumulation of starch, anthocyanin, and stress-related mRNAs in vegetative tissue. The degree of this phenotype correlates with the level of reduction in ACL activity. These data indicate that ACL is required for normal growth and development and that no other source of acetyl-CoA can compensate for ACL-derived acetyl-CoA. Exogenous malonate, which feeds into the carboxylation pathway of acetyl-CoA metabolism, chemically complements the morphological and chemical alterations associated with reduced ACL expression, indicating that the observed metabolic alterations are related to the carboxylation pathway of cytosolic acetyl-CoA metabolism. The observations that limiting the expression of the cytosolic enzyme ACL reduces the accumulation of cytosolic acetyl-CoA–derived metabolites and that these deficiencies can be alleviated by exogenous malonate indicate that ACL is a nonredundant source of cytosolic acetyl-CoA. PMID:15608338

  17. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14.

    PubMed

    Guo, Hanjun; Luo, Shenglian; Chen, Liang; Xiao, Xiao; Xi, Qiang; Wei, Wanzhi; Zeng, Guangming; Liu, Chengbin; Wan, Yong; Chen, Jueliang; He, Yejuan

    2010-11-01

    Heavy metal bioremediation by a multi-metal resistant endophytic bacteria L14 (EB L14) isolated from the cadmium hyperaccumulator Solanum nigrum L. was characterized for its potential application in metal treatment. 16S rDNA analysis revealed that this endophyte belonged to Bacillus sp. The hormesis of EB L14 were observed in presence of divalent heavy metals (Cu (II), Cd (II) and Pb (II)) at a relatively lower concentration (10mg/L). Such hormesis was the side effect of abnormal activities increases of ATPase which was planned to provide energy to help EB L14 reduce the toxicity of heavy metals by exporting the cations. Within 24h incubation, EB L14 could specifically uptake 75.78%, 80.48%, 21.25% of Cd (II), Pb (II) and Cu (II) under the initial concentration of 10mg/L. However, nearly no chromium uptake was observed. The mechanism study indicated that its remediation efficiencies may be greatly promoted through inhibiting the activities of ATPase. The excellent adaptation abilities and promising remediation efficiencies strongly indicated the superiority of this endophyte in heavy metal bioremediation at low concentrations, which could be useful for developing efficient metal removal system. PMID:20637605

  18. A Novel Selenocystine-Accumulating Plant in Selenium-Mine Drainage Area in Enshi, China

    PubMed Central

    Yuan, Linxi; Zhu, Yuanyuan; Lin, Zhi-Qing; Banuelos, Gary; Li, Wei; Yin, Xuebin

    2013-01-01

    Plant samples of Cardamine hupingshanesis (Brassicaceae), Ligulariafischeri (Ledeb.) turcz (Steraceae) and their underlying top sediments were collected from selenium (Se) mine drainage areas in Enshi, China. Concentrations of total Se were measured using Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS) and Se speciation were determined using liquid chromatography/UV irradiation-hydride generation-atomic fluorescence spectrometry (LC-UV-HG-AFS). The results showed that C. hupingshanesis could accumulate Se to 239±201 mg/kg DW in roots, 316±184 mg/kg DW in stems, and 380±323 mg/kg DW in leaves, which identifies it as Se secondary accumulator. Particularly, it could accumulate Se up to 1965±271 mg/kg DW in leaves, 1787±167 mg/kg DW in stem and 4414±3446 mg/kg DW in roots, living near Se mine tailing. Moreover, over 70% of the total Se accumulated in C. hupingshanesis were in the form of selenocystine (SeCys2), increasing with increased total Se concentration in plant, in contrast to selenomethionine (SeMet) in non-accumulators (eg. Arabidopsis) and secondary accumulators (eg. Brassica juncea), and selenomethylcysteine (SeMeCys) in hyperaccumulators (eg. Stanleya pinnata). There is no convincing explanation on SeCys2 accumulation in C. hupingshanesis based on current Se metabolism theory in higher plants, and further study will be needed. PMID:23750270

  19. Cell death-inducing stresses are required for defense activation in DS1-phosphatidic acid phosphatase-silenced Nicotiana benthamiana.

    PubMed

    Nakano, Masahito; Yoshioka, Hirofumi; Ohnishi, Kouhei; Hikichi, Yasufumi; Kiba, Akinori

    2015-07-20

    We previously identified DS1 plants that showed resistance to compatible Ralstonia solanacearum with accelerated defense responses. Here, we describe activation mechanisms of defense responses in DS1 plants. After inoculation with incompatible R. solanacearum 8107, DS1 plants showed hyperinduction of hypersensitive response (HR) and reactive oxygen species (ROS) generation. Transient expression of PopP1 and AvrA induced hyperinduction of HR and ROS generation. Furthermore, Pseudomonas cichorii (Pc) and a type III secretion system (TTSS)-deficient mutant of P. cichorii showed accelerated induction of HR and ROS generation. Chitin and flg22 did not induce either HR or ROS hyperaccumulation; however, INF1 accelerated HR and ROS in DS1 plants. Activation of these defense responses was closely associated with increased phosphatidic acid (PA) content. Our results show that DS1 plants exhibit PA-mediated sensitization of plant defenses and that cell death-inducing stress is required to achieve full activation of defense responses. PMID:26188395

  20. Selection of a suitable plant for phytoremediation in mining artisanal zones.

    PubMed

    Chamba, I; Gazquez, M J; Selvaraj, T; Calva, J; Toledo, J J; Armijos, C

    2016-09-01

    A study was undertaken with the aim of identifying a suitable plant for the phytoremediation of metal-polluted soil from an artisanal mining area in Ecuador. Three zones including a natural zone (NZ), abandoned zone (AZ) and intensively mined zone (IZ) were selected. Three common native plants grown in the three zones were identified and collected, including Miconia zamorensis, Axonopus compressus and Erato polymnioides. The percentage of arbuscular mycorrhizal colonization that benefits their own survival in polluted soil was analyzed in the root samples of these candidate species. Analysis of the soils and plants collected from the different zones showed that the concentrations of Pb, Zn, Cu and Cd were comparatively lower in the NZ, higher in the AZ and IZ, and highest in the AZ for all the metals. The concentration of all these metals in plant tissues was the highest in E. polymnioides. The data analysis including the metal accumulation index, bioconcentration factor and translocation factor strongly identified E. polymnioides as a hyperaccumulator plant suitable for phytoremediation. PMID:26940037

  1. Aluminium stress disrupts metabolic performance of Plantago almogravensis plantlets transiently.

    PubMed

    Grevenstuk, Tomás; Moing, Annick; Maucourt, Mickaël; Deborde, Catherine; Romano, Anabela

    2015-12-01

    Little is known about how tolerant plants cope with internalized aluminium (Al). Tolerant plants are known to deploy efficient detoxification mechanisms, however it is not known to what extent the primary and secondary metabolism is affected by Al. The aim of this work was to study the metabolic repercussions of Al stress in the tolerant plant Plantago almogravensis. P. almogravensis is well adapted to acid soils where high concentrations of free Al are found and has been classified as a hyperaccumulator. In vitro reared plantlets were used for this purpose in order to control Al exposure rigorously. The metabolome of P. almogravensis plantlets as well as its metabolic response to the supply of sucrose was characterized. The supply of sucrose leads to an accumulation of amino acids and secondary metabolites and consumption of carbohydrates that result from increased metabolic activity. In Al-treated plantlets the synthesis of amino acids and secondary metabolites is transiently impaired, suggesting that P. almogravensis is able to recover from the Al treatment within the duration of the trials. In the presence of Al the consumption of carbohydrate resources is accelerated. The content of some metabolic stress markers also demonstrates that P. almogravensis is highly adapted to Al stress. PMID:26433896

  2. Evaluation of two Brazilian indigenous plants for phytostabilization and phytoremediation of copper-contaminated soils.

    PubMed

    Andreazza, R; Bortolon, L; Pieniz, S; Bento, F M; Camargo, F A O

    2015-11-01

    Indigenous plants have been grown naturally and vigorously in copper contaminated soils. Thus, the aim of this study was to evaluate the phytoremediation ability of two indigenous plants naturally grown in two vineyard soils copper contaminated, and in a copper mining waste. However, it was evaluated the macro and micronutrient uptake and the potential of phytoremediation. So, a greenhouse study was carried out with Bidens pilosa and Plantago lanceolata in samples of vineyard soils (Inceptisol and Mollisol) copper contaminated, and in a copper mining waste. Plant growth, macro and micronutrient up take, tolerance index (TI), translocation factor (TF), metal extraction ratio (MER), bioaccumulation factor (BCF), plant effective number of the shoots (PENs), and plant effective number of the total plant (PENt) were analyzed. Both plants grown in vineyard soils showed high phytomass production and TI. P. lanceolata plants cultivated in the Inceptisol showed the highest copper concentrations in the shoots (142 mg kg-1), roots (964 mg kg-1) and entire plants (1,106 mg kg-1). High levels of copper were phytoaccumulated from the Inceptisol by B. pilosa and P. lanceolata with 3,500 and 2,200 g ha-1 respectively. Both B. pilosa and P. lanceolata plants showed characteristics of high copper hyperaccumulator. Results showed that both species play an important role in the natural copper phytoaccumulation in both vineyard soils contaminated with copper, being important to its phytoremediation. PMID:26675903

  3. Kinetic parameters and mechanisms of the batch biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz biomass.

    PubMed

    Li, Jianping; Lin, Qingyu; Zhang, Xuehong; Yan, Yan

    2009-05-01

    The hyperaccumulative plant species Leersia hexandra Swartz, particularly, has been considered for its detoxification mechanism for phytoremediation of chromium-contaminated water environments. This study investigates the role of the adsorption mechanism of the L. hexandra Sw. biomass on the removal of chromium ions Cr(VI) and Cr(III) from an aqueous solution. The interaction between chromium ions and the L. hexandra Sw. biomass was characterized by using infrared spectroscopy. The results indicate that the binding process of the chromium ions involves the active participation of ligands present in the biomass, such as acylamide, carbonyl, amino, carboxyl, and hydroxyl groups, to immobilize the chromium ions. Equilibrium biosorption experiments were carried out to investigate the effects of pH values and contact time. Adsorption isotherms were modeled with the Langmuir and Freundlich equations and isotherm constants were calculated. Kinetic experiments showed the rapid process of biosorption and the pseudo-second-order model was successfully applied to predict the rate constant of biosorption. This study firstly discovered the kinetics equilibrium modelling of L. hexandra Sw. biomass on biosorption Cr(VI) and Cr(III). PMID:19251269

  4. Stable Transformation of Ferns Using Spores as Targets: Pteris vittata and Ceratopteris thalictroides1[W][OPEN

    PubMed Central

    Muthukumar, Balasubramaniam; Joyce, Blake L.; Elless, Mark P.; Stewart, C. Neal

    2013-01-01

    Ferns (Pteridophyta) are very important members of the plant kingdom that lag behind other taxa with regards to our understanding of their genetics, genomics, and molecular biology. We report here, to our knowledge, the first instance of stable transformation of fern with recovery of transgenic sporophytes. Spores of the arsenic hyperaccumulating fern Pteris vittata and tetraploid ‘C-fern Express’ (Ceratopteris thalictroides) were stably transformed by Agrobacterium tumefaciens with constructs containing the P. vittata actin promoter driving a GUSPlus reporter gene. Reporter gene expression assays were performed on multiple tissues and growth stages of gametophytes and sporophytes. Southern-blot analysis confirmed stable transgene integration in recovered sporophytes and also confirmed that no plasmid from A. tumefaciens was present in the sporophyte tissues. We recovered seven independent transformants of P. vittata and four independent C. thalictroides transgenics. Inheritance analyses using β-glucuronidase (GUS) histochemical staining revealed that the GUS transgene was stably expressed in second generation C. thalictroides sporophytic tissues. In an independent experiment, the gusA gene that was driven by the 2× Cauliflower mosaic virus 35S promoter was bombarded into P. vittata spores using biolistics, in which putatively stable transgenic gametophytes were recovered. Transformation procedures required no tissue culture or selectable marker genes. However, we did attempt to use hygromycin selection, which was ineffective for recovering transgenic ferns. This simple stable transformation method should help facilitate functional genomics studies in ferns. PMID:23933990

  5. Managing the manganese: molecular mechanisms of manganese transport and homeostasis.

    PubMed

    Pittman, Jon K

    2005-09-01

    Manganese (Mn) is an essential metal nutrient for plants. Recently, some of the genes responsible for transition metal transport in plants have been identified; however, only relatively recently have Mn2+ transport pathways begun to be identified at the molecular level. These include transporters responsible for Mn accumulation into the cell and release from various organelles, and for active sequestration into endomembrane compartments, particularly the vacuole and the endoplasmic reticulum. Several transporter gene families have been implicated in Mn2+ transport, including cation/H+ antiporters, natural resistance-associated macrophage protein (Nramp) transporters, zinc-regulated transporter/iron-regulated transporter (ZRT/IRT1)-related protein (ZIP) transporters, the cation diffusion facilitator (CDF) transporter family, and P-type ATPases. The identification of mutants with altered Mn phenotypes can allow the identification of novel components in Mn homeostasis. In addition, the characterization of Mn hyperaccumulator plants can increase our understanding of how plants can adapt to excess Mn, and ultimately allow the identification of genes that confer this stress tolerance. The identification of genes responsible for Mn2+ transport has substantially improved our understanding of plant Mn homeostasis. PMID:16101910

  6. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria.

    PubMed

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2015-09-01

    Phosphorus is an essential nutrient, which is limited in most soils. The P solubilization and growth enhancement ability of seven arsenic-resistant bacteria (ARB), which were isolated from arsenic hyperaccumulator Pteris vittata, was investigated. Siderophore-producing ARB (PG4, 5, 6, 9, 10, 12 and 16) were effective in solubilizing P from inorganic minerals FePO4 and phosphate rock, and organic phytate. To reduce bacterial P uptake we used filter-sterilized Hoagland medium containing siderophores or phytase produced by PG12 or PG6 to grow tomato plants supplied with FePO4 or phytate. To confirm that siderophores were responsible for P release, we compared the mutants of siderophore-producing bacterium Pseudomonas fluorescens Pf5 (PchA) impaired in siderophore production with the wild type and test strains. After 7d of growth, mutant PchA solubilized 10-times less P than strain PG12, which increased tomato root biomass by 1.7 times. For phytate solubilization by PG6, tomato shoot biomass increased by 44% than control bacterium Pseudomonas chlororaphis. P solubilization by ARB from P. vittata may be useful in enhancing plant growth and nutrition in other crop plants. PMID:25880602

  7. Potential of Mauritius Hemp (Furcraea gigantea Vent.) for the Remediation of Chromium Contaminated Soils.

    PubMed

    Ramana, Sivakoti; Biswas, Ashis K; Singh, Amar B; Ahirwar, Narendra K; Prasad, Ravulapalli D; Srivastava, Sanjay

    2015-01-01

    The present study was conducted to evaluate the ability of a high biomass producing, drought tolerant succulent plant Mauritius hemp (Furcraea gigantea Vent.) for its tolerance to different levels of Cr (0, 25, 50, 100 and 200 mg Cr kg soil(-1)) and its potential for phytoremediation purposes. Based on the data on inhibition of the growth of plants with Cr, tolerance index and grade of growth inhibition, it was observed that the plant could tolerate up to 50 mg Cr kg (-1) soil. Absorption of Cr from soil to plant and its translocation into plant tissues were discussed in terms of bio concentration factor (BCF), transfer factor (TF), and translocation efficiency (TE%). Cr was mainly accumulated in the roots and exclusion of Cr was found to be the principal physiological tolerance mechanism followed by a marked increase in proline, ascorbic acid, total free amino acids in the leaf tissue and malic acid in the rhizosphere samples to counter Cr stress. Based on the tissue concentration of Cr (< 300 μg g(-1) in the leaves and TF<1), it was concluded that, Furcraea gigantea could not be considered a hyperaccumulator and therefore unsuitable for phytoextraction of Cr. Nevertheless, Furcraea gigantea could be a suitable candidate for phytostablization of Cr contaminated soils. PMID:25976885

  8. A new method for antimony speciation in plant biomass and nutrient media using anion exchange cartridge.

    PubMed

    Tisarum, Rujira; Ren, Jing-Hua; Dong, Xiaoling; Chen, Hao; Lessl, Jason T; Ma, Lena Q

    2015-11-01

    A selective separation method based on anion exchange cartridge was developed to determine antimony (Sb) speciation in biological matrices by graphite furnace atomic absorption spectrophotometry (GFAAS). The selectivity of the cartridge towards antimonite [Sb(III)] and antimonate [Sb(V)] reversed in the presence of deionized (DI) water and 2mM citric acid. While Sb(V) was retained by the cartridge in DI water, Sb(III) was retained in citric acid media. At pH 6, Sb(III) and Sb(V) formed Sb(III)- and Sb(V)-citrate complexes, but the cartridge had higher affinity towards the Sb(III)-citrate complex. Separation of Sb(III) was tested at various concentrations in fresh and spent growth media and plant tissues. Our results showed that cartridge-based Sb speciation was successful in plant tissues, which was confirmed by HPLC-ICP-MS. The cartridge retained Sb(III) and showed 92-104% Sb(V) recovery from arsenic hyperaccumulator Pteris vittata roots treated with Sb(III) and Sb(V). The cartridge procedure is an effective alternative for Sb speciation, offering low cost, reproducible results, and simple Sb analysis using GFAAS. PMID:26452943

  9. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.

    PubMed

    Santiago-Martínez, M Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Zepeda-Rodriguez, Armando; Moreno-Sánchez, Rafael; Saavedra, Emma; Jasso-Chávez, Ricardo

    2015-05-15

    The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O₂, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O₂ concentration is particularly low. PMID:25698571

  10. Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA.

    PubMed

    Clabeaux, Bernadette L; Navarro, Divina A; Aga, Diana S; Bisson, Mary A

    2013-12-01

    Chara australis (R. Br.) is a macrophytic alga that can grow in and accumulate Cd from artificially contaminated sediments. We investigated the effects of Zn independently and in combination with Cd on C. australis growth, metal tolerance, and uptake. Plant growth was reduced at concentrations ≥ 75 mg Zn (kg soil)⁻¹. Zn also increased the concentration of glutathione in the plant, suggesting alleviation of stress. Phytotoxic effects were observed at ≥ 250 mg added Zn (kg soil)⁻¹. At 1.5mg Zn (kg soil)⁻¹, the rhizoid bioconcentration factor (BCF) was >1.0 for both Cd and Zn. This is a criterion for hyperaccumulator status, a commonly used benchmark for utility in remediation of contaminated soils by phytoextraction. There was no significant interaction between Cd and Zn on accumulation, indicating that Chara should be effective at phytoextraction of mixed heavy metal contamination in sediments. The effects of the chelator, ethylenediaminetetraacetic acid (EDTA), were also tested. Moderate levels of EDTA increased Cd and Zn accumulation in rhizoids and Cd BCF of shoots, enhancing Chara's potential in phytoremediation. This study demonstrates for the first time the potential of macroalgae to remove metals from sediments in aquatic systems that are contaminated with a mixture of metals. PMID:24035462

  11. Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining

    PubMed Central

    Zong, Dali; Callén, Elsa; Pegoraro, Gianluca; Lukas, Claudia; Lukas, Jiri; Nussenzweig, André

    2015-01-01

    DNA double strand breaks (DSBs) formed during S phase are preferentially repaired by homologous recombination (HR), whereas G1 DSBs, such as those occurring during immunoglobulin class switch recombination (CSR), are repaired by non-homologous end joining (NHEJ). The DNA damage response proteins 53BP1 and BRCA1 regulate the balance between NHEJ and HR. 53BP1 promotes CSR in part by mediating synapsis of distal DNA ends, and in addition, inhibits 5’ end resection. BRCA1 antagonizes 53BP1 dependent DNA end-blocking activity during S phase, which would otherwise promote mutagenic NHEJ and genome instability. Recently, it was shown that supra-physiological levels of the E3 ubiquitin ligase RNF168 results in the hyper-accumulation of 53BP1/BRCA1 which accelerates DSB repair. Here, we ask whether increased expression of RNF168 or 53BP1 impacts physiological versus mutagenic NHEJ. We find that the anti-resection activities of 53BP1 are rate-limiting for mutagenic NHEJ but not for physiological CSR. As heterogeneity in the expression of RNF168 and 53BP1 is found in human tumors, our results suggest that deregulation of the RNF168/53BP1 pathway could alter the chemosensitivity of BRCA1 deficient tumors. PMID:25916843

  12. Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1

    PubMed Central

    Adams, Joshua P.; Adeli, Ardeshir; Hsu, Chuan-Yu; Harkess, Richard L.; Page, Grier P.; dePamphilis, Claude W.; Schultz, Emily B.; Yuceer, Cetin

    2011-01-01

    Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation. PMID:21504875

  13. Plants Level of Chromium and Nickel at a Refuse Site, Any Positive Impact?

    NASA Astrophysics Data System (ADS)

    Ololade, I. A.; Ashoghon, A. O.; Adeyemi, O.

    Trace metals, including heavy metals can be dangerous to the biota and human beings. Consequently, a study of the accumulation of two unpopular heavy metals, Chromium (Cr) and Nickel (Ni), in four species of plants were carried out. At Ojota refuse sites (Old and New) in Lagos State, Nigeria, from where samples were taken; knowledge about these metals were scarce. The results obtained from the analysis of leaves and roots of plants showed that the sites were heavily polluted by chromium and nickel containing substances, which were indiscriminately dumped at the sites. Values were far above the background level with higher concentrations being recorded at the New Refuse Site (NRS). The concentrations obtained were also found to correlate strongly with the results of some soil physico-chemical properties, which were determined during the study. The plants used in the present research were observed to display a higher level of tolerance to metal concentration, an important characteristic of hyper-accumulator plants in phytoremediation study. Consequently, they are recommended for cultivation in non-grazing heavy metal polluted sites. However, livestock feedings and vegetable consumption at the present sites should be discouraged to avoid metal poisoning.

  14. Effect of CO, NOx and SO2 on ROS production, photosynthesis and ascorbate–glutathione pathway to induce Fragaria×annasa as a hyperaccumulator☆

    PubMed Central

    Muneer, Sowbiya; Kim, Tae Hwan; Choi, Byung Chul; Lee, Beom Seon; Lee, Jeong Hyun

    2013-01-01

    A study was conducted to determine the effect of carbon monoxide (CO), nitroxide (NOx) and sulfur dioxide (SO2) on ROS production, photosynthesis and ascorbate–glutathione pathway in strawberry plants. The results showed that both singlet oxygen (O2−1) and hydrogen peroxide (H2O2) content increased in CO, NOx and SO2 treated strawberry leaves. A drastic reduction of primary metabolism of plants (photosynthesis), with the closure of stomata, resulted in a reduction of protein, carbohydrate and sucrose content due to production of reactive oxygen species (ROS) under prolonged exposure of gas stress. The resulting antioxidant enzymes were increased under a low dose of gas stress, whereas they were decreased due to a high dose of gas stress. Our results indicate that increased ROS may act as a signal to induce defense responses to CO, NOx and SO2 gas stress. The increased level of antioxidant enzymes plays a significant role in plant protection due to which strawberry plants can be used as a hyperaccumulator to maintain environmental pollution, however, the defense capacity cannot sufficiently alleviate oxidative damage under prolonged exposure of CO, NOx and SO2 stress. PMID:25460723

  15. Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Sighicelli, M.; Lai, A.; Colao, F.; Ahmed, A. H. Hanafy; Fantoni, R.; Harith, M. A.

    2008-10-01

    Phytoremediation popularly known as 'green clean technology' is a new promising technology used for toxic contaminants removal from the environment such as heavy metals (HMs), adopting suitable plants. This concept is increasingly being adopted as it is a cost effective and environmentally friendly alternative to traditional methods of treatment. This study was focused on using scented geranium, Pelargonium zonale, as accumulator or hyperaccumulator plant for natural lead extraction from artificially contaminated soil with different Pb concentrations (0, 2000, 5000, 7000 ppm). Utilization of EDTA as a chelator, that would permit higher metal availability and uptake by the tested plants roots, was also tested. Laser Induced Breakdown Spectroscopy (LIBS) was used to follow up Pb concentrations in both soil and plant green harvestable parts known as shoots, before, during and after lead addition in soil. LIBS measurements were conducted in a microdestructive way by focusing a high energy Nd:YAG laser, emitting at 1064 nm, on plant and soil samples previously dried, homogenized and pressed in pellets. The emitted LIBS spectra were acquired by a gated CCD after dispersion on a monochromator and analyzed to retrieve relative concentrations of the selected HM both in the soil and on plants as a function of the time after doping and eventual chelator addition. EDTA was found to enhance Pb uptake from the soil which increased with time, good correlation was found between LIBS and ICP-OES results of plant tissues spectrochemical analysis.

  16. Mining in New Caledonia: environmental stakes and restoration opportunities.

    PubMed

    Losfeld, Guillaume; L'Huillier, Laurent; Fogliani, Bruno; Jaffré, Tanguy; Grison, Claude

    2015-04-01

    New Caledonia is a widely recognised marine and terrestrial biodiversity hot spot. However, this unique environment is under increasing anthropogenic pressure. Major threats are related to land cover change and include fire, urban sprawling and mining. Resulting habitat loss and fragmentation end up in serious erosion of the local biodiversity. Mining is of particular concern due to its economic significance for the island. Open cast mines were exploited there since 1873, and scraping out soil to access ores wipes out flora. Resulting perturbations on water flows and dramatic soil erosion lead to metal-rich sediment transport downstream into rivers and the lagoon. Conflicting environmental and economic aspects of mining are discussed in this paper. However, mining practices are also improving, and where impacts are inescapable ecological restoration is now considered. Past and ongoing experiences in the restoration of New Caledonian terrestrial ecosystems are presented and discussed here. Economic use of the local floristic diversity could also promote conservation and restoration, while providing alternative incomes. In this regard, Ecocatalysis, an innovative approach to make use of metal hyperaccumulating plants, is of particular interest. PMID:25065482

  17. Tie-dyed2 Encodes a Callose Synthase That Functions in Vein Development and Affects Symplastic Trafficking within the Phloem of Maize Leaves12[C][W][OA

    PubMed Central

    Slewinski, Thomas L.; Baker, R. Frank; Stubert, Adam; Braun, David M.

    2012-01-01

    The tie-dyed2 (tdy2) mutant of maize (Zea mays) displays variegated green and yellow leaves. Intriguingly, the yellow leaf tissues hyperaccumulate starch and sucrose, the soluble sugar transported long distance through the phloem of veins. To determine the molecular basis for Tdy2 function, we cloned the gene and found that Tdy2 encodes a callose synthase. RNA in situ hybridizations revealed that in developing leaves, Tdy2 was most highly expressed in the vascular tissue. Comparative expression analysis with the vascular marker maize PINFORMED1a-yellow fluorescent protein confirmed that Tdy2 was expressed in developing vein tissues. To ascertain whether the defect in tdy2 leaves affected the movement of sucrose into the phloem or its long-distance transport, we performed radiolabeled and fluorescent dye tracer assays. The results showed that tdy2 yellow leaf regions were defective in phloem export but competent in long-distance transport. Furthermore, transmission electron microscopy of tdy2 yellow leaf regions showed incomplete vascular differentiation and implicated a defect in cell-to-cell solute movement between phloem companion cells and sieve elements. The disruption of sucrose movement in the phloem in tdy2 mutants provides evidence that the Tdy2 callose synthase functions in vascular maturation and that the vascular defects result in impaired symplastic trafficking into the phloem translocation stream. PMID:22932757

  18. Aluminum induced metabolic responses in two tea cultivars.

    PubMed

    Xu, Qingshan; Wang, Yu; Ding, Zhaotang; Song, Lubin; Li, Yusheng; Ma, Dexin; Wang, Yi; Shen, Jiazhi; Jia, Sisi; Sun, Haiwei; Zhang, Hong

    2016-04-01

    Tea [Camellia sinensis (L.)], is an aluminum (Al(3+)) hyperaccumulator plant and grows well in acid soils. In the present study, roots of two tea cultivars, JHC and YS were treated with different concentrations of Al(3+). After treatments, the root length, dry matter, root activity and chlorophyll content (SPAD value) of JHC had greater increase than that of YS. We also detected metabolic changes of two varieties using GC-MS method. Comparison between two cultivars indicated that shikimic pathway was more enhanced in YS roots by Al(3+) with higher levels of catechine, quinic acid and shikimic acid. While, more active amino acid synthesis was found in JHC roots and JHC leaves remained the higher level contents of metabolites related to cysteine synthesis. The comparison also showed that a large amount of sugar alcohols were accumulated in roots of two varieties, whereas most of them were reduced in YS leaves. Other well-known ligands, such as phosphoric acid and malic acid were observed in two cultivars that showed significantly altered abundances under Al(3+) treatments. The results indicated that Al(3+) adaptation of two cultivars may be correlated with their differential metabolism of amino acids, sugars and shikimic acids. PMID:26895429

  19. Proteomic changes in maize as a response to heavy metal (lead) stress revealed by iTRAQ quantitative proteomics.

    PubMed

    Li, G K; Gao, J; Peng, H; Shen, Y O; Ding, H P; Zhang, Z M; Pan, G T; Lin, H J

    2016-01-01

    Lead (Pb), a heavy metal, has become a crucial pollutant in soil and water, causing not only permanent and irreversible health problems, but also substantial reduction in crop yields. In this study, we conducted proteome analysis of the roots of the non-hyperaccumulator inbred maize line 9782 at four developmental stages (0, 12, 24, and 48 h) under Pb pollution using isobaric tags for relative and absolute quantification technology. A total of 252, 72 and 116 proteins were differentially expressed between M12 (after 12-h Pb treatment) and CK (water-mocked treatment), M24 (after 24-h Pb treatment) and CK, and M48 (after 48-h Pb treatment) and CK, respectively. In addition, 14 differentially expressed proteins were common within each comparison group. Moreover, Cluster of Orthologous Groups enrichment analysis revealed predominance of the proteins involved in posttranslational modification, protein turnover, and chaperones. Additionally, the changes in protein profiles showed a lower concordance with corresponding alterations in transcript levels, indicating important roles for transcriptional and posttranscriptional regulation in the response of maize roots to Pb pollution. Furthermore, enriched functional categories between the successive comparisons showed that the proteins in functional categories of stress, redox, signaling, and transport were highly up-regulated, while those in the functional categories of nucleotide metabolism, amino acid metabolism, RNA, and protein metabolism were down-regulated. This information will help in furthering our understanding of the detailed mechanisms of plant responses to heavy metal stress by combining protein and mRNA profiles. PMID:26909923

  20. The Growth Reduction Associated with Repressed Lignin Biosynthesis in Arabidopsis thaliana Is Independent of Flavonoids[C

    PubMed Central

    Li, Xu; Bonawitz, Nicholas D.; Weng, Jing-Ke; Chapple, Clint

    2010-01-01

    Defects in phenylpropanoid biosynthesis arising from deficiency in hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase (HCT) or p-coumaroyl shikimate 3′-hydroxylase (C3′H) lead to reduced lignin, hyperaccumulation of flavonoids, and growth inhibition in Arabidopsis thaliana. It was previously reported that flavonoid-mediated inhibition of auxin transport is responsible for growth reduction in HCT-RNA interference (RNAi) plants. This conclusion was based on the observation that simultaneous RNAi silencing of HCT and chalcone synthase (CHS), an enzyme essential for flavonoid biosynthesis, resulted in less severe dwarfing than silencing of HCT alone. In an attempt to extend these results using a C3′H mutant (ref8) and a CHS null mutant (tt4-2), we found that the growth phenotype of the ref8 tt4-2 double mutant, which lacks flavonoids, is indistinguishable from that of ref8. Moreover, using RNAi, we found that the relationship between HCT silencing and growth inhibition is identical in both the wild type and tt4-2. We conclude from these results that the growth inhibition observed in HCT-RNAi plants and the ref8 mutant is independent of flavonoids. Finally, we show that expression of a newly characterized gene bypassing HCT and C3′H partially restores both lignin biosynthesis and growth in HCT-RNAi plants, demonstrating that a biochemical pathway downstream of coniferaldehyde, probably lignification, is essential for normal plant growth. PMID:20511296

  1. Characterization of glutathione reductase and catalase in the fronds of two Pteris ferns upon arsenic exposure.

    PubMed

    Kertulis-Tartar, Gina M; Rathinasabapathi, Bala; Ma, Lena Q

    2009-10-01

    To better understand the mechanisms of plant tolerance to high concentration of arsenic, we characterized two antioxidant enzymes, glutathione reductase (GR) and catalase (CAT), in the fronds of Pteris vittata, an arsenic-hyperaccumulating fern, and Pteris ensiformis, an arsenic-sensitive fern. The induction, activation and apparent kinetics of GR and CAT in the plants upon arsenic exposure were investigated. Under arsenic exposure (sodium arsenate), CAT activity in P. vittata was increased by 1.5-fold, but GR activity was unchanged. Further, GR was not inhibited or activated by the arsenic in assays. No significant differences in K(m) and V(max) values of GR or CAT were observed between the two ferns. However, CAT activity in P. vittata was activated by 200 microM arsenate up to 300% compared to the control. Similar but much smaller increases were observed for P. ensiformis and purified bovine liver catalase (133% and 120%, respectively). This research reports, for the first time, the activation of CAT by arsenic in P. vittata. The increased CAT activities may allow P. vittata to more efficiently mediate arsenic-induced stress by preparing the fern for the impeding production of reactive oxygen species resulting from arsenate reduction to arsenite in the fronds. PMID:19574057

  2. Biogeochemical studies of metallophytes from four copper-enriched sites along the Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Ye, M.; Li, J. T.; Tian, S. N.; Hu, M.; Yi, S.; Liao, B.

    2009-02-01

    The area along middle and lower reaches of the Yangtze River is one of the biggest Cu belts in China. In the present study, the metallophytes growing in four copper (Cu)-enriched sites along the Yangtze River were surveyed to get detailed information about vegetation composition and their Cu uptake characteristics. In all sampling sites, Cu concentrations of soils were high; whereas the organic matter, acidity and salinity of most soils were on normal levels. Totally 82 plant species belonging to 45 families were recorded. All the species recorded in the present study exhibited high tolerances for Cu although they differed greatly in their abilities to accumulate Cu. Except for Rumex acetosa and Phytolacca acinosa, most species were Cu-excluders and no Cu hyperaccumulator was found. The Cu translocation factors (TFs) and bioconcentration factors (BCFs) of the 12 dominant species were fairly low, indicating low concentrations of Cu were translocated to the shoots of these species. On this basis, the potential utilization of these metallophytes for phytoremediation was discussed.

  3. Evaluation of the effectiveness and salt stress of Pteris vittata in the remediation of arsenic contamination caused by tsunami sediments.

    PubMed

    Sugawara, Kazuki; Kobayashi, Akihiro; Endo, Ginro; Hatayama, Masayoshi; Inoue, Chihiro

    2014-01-01

    On March 11, 2011, one of the negative effects of the tsunami phenomenon that devastated the Pacific coast of the Tohoku district in Japan was the deposition of a wide range of arsenic (As) contamination to the soil. To remediate such a huge area of contamination, phytoremediation by Pteris vittata, an As-hyperaccumulator, was considered. To evaluate the efficacy of applying P. vittata to the area, the salt tolerance of P. vittata and the phytoextraction of As from soil samples were investigated. For the salt tolerance test, spore germination was considerably decreased at an NaCl level of more than 100 mM. At 200 mM, the gametophytes exhibited a morphological defect. Furthermore, the growth inhibition of P. vittata was observed with a salinity that corresponded to 66.2 mS/m of electric conductivity (EC) in the soil. A laboratory phytoremediation experiment was conducted using As-contaminated soils for 166 days. P. vittata grew and accumulated As at 264 mg/kg-DW into the shoots. Consequently, the soluble As in the soil was evidently decreased. These results showed that P. vittata was applicable to the phytoremediation of As-contaminated soil with low salinity as with the contamination caused by the 2011 tsunami. PMID:25320850

  4. Impacts of silver nanoparticles on bacterial species B. subtilis and E. coli and the major crop plant Z. mays

    NASA Astrophysics Data System (ADS)

    Doody, Michael A.

    This thesis examines the impacts of citrate-coated silver nanoparticles (c-AgNPs) on two species of bacteria (Bacillus subtilis and Escherichia coli), the major crop plant Zea mays, and the beneficial plant-microbe relationship between Z. mays and B. subtilis. AgNPs are an increasing component of antimicrobial consumer, industrial, and military products. This has led to widespread scientific concern for the ecological safety outside their intended use. An overview of their history, use, and toxicity was used to inform the design of experiments and resulting data. Growth inhibition and sub-lethal toxic effects were used to assess the effects of c-AgNP exposure to bacteria. Similar analytical methods were used to quantify the response of Z. mays to c-AgNP exposure. Results showed that exposure to c-AgNP significantly reduced the growth of bacterial populations and alters their growth kinetics. Z. mays experienced significant sub-lethal effects due to exposure, including reduced root length and biomass, and hyper-accumulated Ag in root tissues. Beneficial interactions between B. subtilis and Z. mays were reduced as both species suffered sub-lethal effects of exposure to c-AgNPs.

  5. Increasing the Richness of Culturable Arsenic-Tolerant Bacteria from Theonella swinhoei by Addition of Sponge Skeleton to the Growth Medium.

    PubMed

    Keren, Ray; Lavy, Adi; Ilan, Micha

    2016-05-01

    Theonella swinhoei is an arsenic hyper-accumulator sponge, harboring a multitude of associated bacteria. These bacteria reside in the mesohyl, the dense extracellular matrix of the sponge. Previous elemental analysis of separated cell fractions from the sponge had determined that arsenic is localized to the associated bacteria. Subsequently, sponge-associated arsenic-tolerant bacteria were isolated here and grouped into 15 operational taxonomic units (OTUs, 97 % similarity). Both culture-dependent and culture-independent work had revealed that T. swinhoei harbors a highly diverse bacterial community. It was thus hypothesized the acclimation of bacteria in the presence of a sponge skeleton, better mimicking its natural environment, would increase the yield of isolation of sponge-associated bacteria. Using seven modularly designed media, 380 bacteria isolates were grown and grouped into 22 OTUs. Inclusion of sponge skeleton in the growth medium promoted bacterial growth in all seven media, accounting for 20 of the 22 identified OTUs (the other two in a medium without skeleton). Diversity and richness indices were calculated for each treatment or combination of treatments with shared growth parameters. Integrating data inherent in the modularly designed media with the ecological indices led to the formation of new hypotheses regarding the aeration conditions and expected arsenic form in situ. Both aerobic and anoxic conditions are expected to occur in the sponge (temporally and/or spatially). Arsenate is expected to be the dominant (or even the only) arsenic form in the sponge. PMID:26809776

  6. RanGAP2 Mediates Nucleocytoplasmic Partitioning of the NB-LRR Immune Receptor Rx in the Solanaceae, Thereby Dictating Rx Function[W][OA

    PubMed Central

    Tameling, Wladimir I.L.; Nooijen, Claudia; Ludwig, Nora; Boter, Marta; Slootweg, Erik; Goverse, Aska; Shirasu, Ken; Joosten, Matthieu H.A.J.

    2010-01-01

    The potato (Solanum tuberosum) nucleotide binding–leucine-rich repeat immune receptor Rx confers resistance to Potato virus X (PVX) and requires Ran GTPase-activating protein 2 (RanGAP2) for effective immune signaling. Although Rx does not contain a discernible nuclear localization signal, the protein localizes to both the cytoplasm and nucleus in Nicotiana benthamiana. Transient coexpression of Rx and cytoplasmically localized RanGAP2 sequesters Rx in the cytoplasm. This relocation of the immune receptor appeared to be mediated by the physical interaction between Rx and RanGAP2 and was independent of the concomitant increased GAP activity. Coexpression with RanGAP2 also potentiates Rx-mediated immune signaling, leading to a hypersensitive response (HR) and enhanced resistance to PVX. Besides sequestration, RanGAP2 also stabilizes Rx, a process that likely contributes to enhanced defense signaling. Strikingly, coexpression of Rx with the Rx-interacting WPP domain of RanGAP2 fused to a nuclear localization signal leads to hyperaccumulation of both the WPP domain and Rx in the nucleus. As a consequence, both Rx-mediated resistance to PVX and the HR induced by auto-active Rx mutants are significantly suppressed. These data show that a balanced nucleocytoplasmic partitioning of Rx is required for proper regulation of defense signaling. Furthermore, our data indicate that RanGAP2 regulates this partitioning by serving as a cytoplasmic retention factor for Rx. PMID:21169509

  7. Effects of Phosphate on Arsenate Uptake and Translocation in Nonmetallicolous and Metallicolous Populations of Pteris Vittata L. Under Solution Culture.

    PubMed

    Wu, Fuyong; Wu, Shengchun; Deng, Dan; Wong, Ming Hung

    2015-01-01

    An arsenic hyperaccumulator, Pteris vittata L., is common in nature and could occur either on As-contaminated soils or on uncontaminated soils. However, it is not clear whether phosphate transporter play similar roles in As uptake and translocation in nonmetallicolous and metallicolous populations of P. vittata. Five populations were used to investigate effects of phosphate on arsenate uptake and translocation in the plants growing in 1.2 L 20% modified Hoagland's nutrient solution containing either 100 μM phosphate or no phosphate and 10 μM arsenate for 1, 2, 6, 12, 24 h, respectively. The results showed that the nonmetallicolous populations accumulated apparently more As in their fronds and roots than the metallicolous populations at both P supply levels. Phosphate significantly (P < 0.01) decreased frond and root concentrations of As during short time solution culture. In addition, the effects of phosphate on As translocation in P. vittata varied among different time-points during time-course hydroponics (1-24 h). The present results indicated that the inhibitory effect of phosphate on arsenate uptake was larger in the three nonmetallicolous populations than those in the two metallicolous populations of P. vittata. PMID:26083716

  8. Global metabolic changes following loss of a feedback loop reveal dynamic steady states of the yeast metabolome.

    PubMed

    Lu, Peng; Rangan, Anupama; Chan, Sherwin Y; Appling, Dean R; Hoffman, David W; Marcotte, Edward M

    2007-01-01

    Metabolic enzymes control cellular metabolite concentrations dynamically in response to changing environmental and intracellular conditions. Such real-time feedback regulation suggests the global metabolome may sample distinct dynamic steady states, forming "basins of stability" in the energy landscape of possible metabolite concentrations and enzymatic activities. Using metabolite, protein and transcriptional profiling, we characterize three dynamic steady states of the yeast metabolome that form by perturbing synthesis of the universal methyl donor S-adenosylmethionine (AdoMet). Conversion between these states is driven by replacement of serine with glycine+formate in the media, loss of feedback inhibition control by the metabolic enzyme Met13, or both. The latter causes hyperaccumulation of methionine and AdoMet, and dramatic global compensatory changes in the metabolome, including differences in amino acid and sugar metabolism, and possibly in the global nitrogen balance, ultimately leading to a G1/S phase cell cycle delay. Global metabolic changes are not necessarily accompanied by global transcriptional changes, and metabolite-controlled post-transcriptional regulation of metabolic enzymes is clearly evident. PMID:17049899

  9. Phytoremediation of toxic trace elements in soil and water.

    PubMed

    LeDuc, Danika L; Terry, Norman

    2005-12-01

    Toxic heavy metals and metalloids, such as cadmium, lead, mercury, arsenic, and selenium, are constantly released into the environment. There is an urgent need to develop low-cost, effective, and sustainable methods for their removal or detoxification. Plant-based approaches, such as phytoremediation, are relatively inexpensive since they are performed in situ and are solar-driven. In this review, we discuss specific advances in plant-based approaches for the remediation of contaminated water and soil. Dilute concentrations of trace element contaminants can be removed from large volumes of wastewater by constructed wetlands. We discuss the potential of constructed wetlands for use in remediating agricultural drainage water and industrial effluent, as well as concerns over their potential ecotoxicity. In upland ecosystems, plants may be used to accumulate metals/metalloids in their harvestable biomass (phytoextraction). Plants can also convert and release certain metals/metalloids in a volatile form (phytovolatilization). We discuss how genetic engineering has been used to develop plants with enhanced efficiencies for phytoextraction and phytovolatilization. For example, metal-hyperaccumulating plants and microbes with unique abilities to tolerate, accumulate, and detoxify metals and metalloids represent an important reservoir of unique genes that could be transferred to fast-growing plant species for enhanced phytoremediation. There is also a need to develop new strategies to improve the acceptability of using genetically engineered plants for phytoremediation. PMID:15883830

  10. Irrigation of three wetland species and a hyperaccumlating fern with arsenic-laden solutions: observations of growth, arsenic uptake, nutrient status, and chlorophyll content.

    PubMed

    Rofkar, Jordan R; Dwyer, Daryl F

    2013-01-01

    Engineered wetlands can be an integral part of a treatment strategy for remediating arsenic-contaminated wastewater, wherein, As is removed by adsorption to soil particles, chemical transformation, precipitation, or accumulation by plants. The remediation process could be optimized by choosing plant species that take up As throughout the seasonal growing period. This report details experiments that utilize wetland plant species native to Ohio (Carex stricta, Pycnanthemum virginianum, and Spartina pectinata) that exhibit seasonally related maximal growth rates, plus one hyperaccumulating fern (Pteris vittata) that was used to compare arsenic tolerance. All plants were irrigated with control or As-laden nutrient solutions (either 0, 1.5, or 25 mg As L(-1)) for 52 d. Biomass, nutrient content, and chlorophyll content were compared between plants treated and control plants (n = 5). At the higher concentration of arsenic (25 mg L(-1)), plant biomass, leaf area, and total chlorophyll were all lower than values in control plants. A tolerance index, based on total plant biomass at the end of the experiment, indicated C. stricta (0.99) and S. pectinata (0.84) were more tolerant than the other plant species when irrigated with 1.5 mg As L(-1). These plant species can be considered as candidates for engineered wetlands. PMID:23819297

  11. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    PubMed

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil. PMID:26286803

  12. Arsenic tolerance, uptake, and accumulation by nonmetallicolous and metallicolous populations of Pteris vittata L.

    PubMed

    Wu, Fuyong; Deng, Dan; Wu, Shengchun; Lin, Xiangui; Wong, Ming Hung

    2015-06-01

    Although it is known that the first As hyperaccumulator identified, Pteris vittata L., could exist in As-contaminated as well as uncontaminated soils, intra-specific variation in As accumulation among metallicolous (from As-contaminated soils) and nonmetallicolous populations (from uncontaminated soils) of P. vittata has not been fully explored. Variations in As concentrations of fronds were observed in three nonmetallicolous populations and four metallicolous populations of P. vittata collected from southeast China. The kinetics study showed that the concentration-dependent influx of arsenate and arsenite observed followed Michaelis-Menten kinetics, and that the average V max for arsenate and arsenite was apparently larger in the three nonmetallicolous populations than that in the three metallicolous populations. The pot trials indicated that the nonmetallicolous populations had significantly (p?

  13. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes.

    PubMed

    Fuentes, Ignacio I; Espadas-Gil, Francisco; Talavera-May, Carlos; Fuentes, Gabriela; Santamara, Jorge M

    2014-10-01

    An experiment was designed to assess the capacity of Salvinia minima Baker to uptake and accumulate nickel in its tissues and to evaluate whether or not this uptake can affect its physiology. Our results suggest that S. minima plants are able to take up high amounts of nickel in its tissues, particularly in roots. In fact, our results support the idea that S. minima might be considered a hyper-accumulator of nickel, as it is able to accumulate 16.3 mg g(-1) (whole plant DW basis). Our results also showed a two-steps uptake pattern of nickel, with a fast uptake of nickel at the first 6 to 12h of being expose to the metal, followed by a slow take up phase until the end of the experiment at 144 h. S. minima thus, may be considered as a fern useful in the phytoremediation of residual water bodies contaminated with this metal. Also from our results, S. minima can tolerate fair concentrations of the metal; however, at concentrations higher than 80 ?M Ni (1.5 mg g(-1) internal nickel concentration), its physiological performance can be affected. For instance, the integrity of cell membranes was affected as the metal concentration and exposure time increased. The accumulation of high concentrations of internal nickel did also affect photosynthesis, the efficiency of PSII, and the concentration of photosynthetic pigments, although at a lower extent. PMID:25019564

  14. Anion Channel Inhibitor NPPB-Inhibited Fluoride Accumulation in Tea Plant (Camellia sinensis) Is Related to the Regulation of Ca²⁺, CaM and Depolarization of Plasma Membrane Potential.

    PubMed

    Zhang, Xian-Chen; Gao, Hong-Jian; Yang, Tian-Yuan; Wu, Hong-Hong; Wang, Yu-Mei; Zhang, Zheng-Zhu; Wan, Xiao-Chun

    2016-01-01

    Tea plant is known to be a hyper-accumulator of fluoride (F). Over-intake of F has been shown to have adverse effects on human health, e.g., dental fluorosis. Thus, understanding the mechanisms fluoride accumulation and developing potential approaches to decrease F uptake in tea plants might be beneficial for human health. In the present study, we found that pretreatment with the anion channel inhibitor NPPB reduced F accumulation in tea plants. Simultaneously, we observed that NPPB triggered Ca(2+) efflux from mature zone of tea root and significantly increased relative CaM in tea roots. Besides, pretreatment with the Ca(2+) chelator (EGTA) and CaM antagonists (CPZ and TFP) suppressed NPPB-elevated cytosolic Ca(2+) fluorescence intensity and CaM concentration in tea roots, respectively. Interestingly, NPPB-inhibited F accumulation was found to be significantly alleviated in tea plants pretreated with either Ca(2+) chelator (EGTA) or CaM antagonists (CPZ and TFP). In addition, NPPB significantly depolarized membrane potential transiently and we argue that the net Ca(2+) and H⁺ efflux across the plasma membrane contributed to the restoration of membrane potential. Overall, our results suggest that regulation of Ca(2+)-CaM and plasma membrane potential depolarization are involved in NPPB-inhibited F accumulation in tea plants. PMID:26742036

  15. Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.).

    PubMed

    Zhang, Xian-Chen; Gao, Hong-Jian; Wu, Hong-Hong; Yang, Tian-Yuan; Zhang, Zheng-Zhu; Mao, Jing-Dong; Wan, Xiao-Chun

    2015-11-01

    Tea plant (Camellia sinensis (L.) O. kuntze) is known to be a fluoride (F) and aluminum (Al(3+)) hyper-accumulator. Previous study showed that pre-treatment of Al(3+) caused a significant increase of F accumulation in tea plants. However, less is known about the intricate network of Al(3+) promoted F accumulation in tea plants. In this study, the involvement of endogenous Ca(2+) and CaM in Al(3+) pretreatment-promoted F accumulation in tea plants was investigated. Our results showed that Al(3+) induced the inverse change of intracellular Ca(2+) fluorescence intensity and stimulated Ca(2+) trans-membrane transport in the mature zone of tea root. Also, a link between internal Ca(2+) and CaM was found in tea roots under the presence of Al(3+). In order to investigate whether Ca(2+) and CaM were related to F accumulation promoted by Al(3+) pretreatment, Ca(2+) chelator EGTA and CaM antagonists CPZ and TFP were used. EGTA, CPZ, and TFP pretreatment inhibited Al(3+)-induced increase of Ca(2+) fluorescence intensity and CaM content in tea roots, and also significantly reduced Al(3+)-promoted F accumulation in tea plants. Taken together, our results suggested that the endogenous Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted F accumulation in tea roots. PMID:26318146

  16. Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms.

    PubMed

    Parrotta, Luigi; Guerriero, Gea; Sergeant, Kjell; Cai, Giampiero; Hausman, Jean-Francois

    2015-01-01

    Increasing industrialization and urbanization result in emission of pollutants in the environment including toxic heavy metals, as cadmium and lead. Among the different heavy metals contaminating the environment, cadmium raises great concern, as it is ecotoxic and as such can heavily impact ecosystems. The cell wall is the first structure of plant cells to come in contact with heavy metals. Its composition, characterized by proteins, polysaccharides and in some instances lignin and other phenolic compounds, confers the ability to bind non-covalently and/or covalently heavy metals via functional groups. A strong body of evidence in the literature has shown the role of the cell wall in heavy metal response: it sequesters heavy metals, but at the same time its synthesis and composition can be severely affected. The present review analyzes the dual property of plant cell walls, i.e., barrier and target of heavy metals, by taking Cd toxicity as example. Following a summary of the known physiological and biochemical responses of plants to Cd, the review compares the wall-related mechanisms in early- and later-diverging land plants, by considering the diversity in cell wall composition. By doing so, common as well as unique response mechanisms to metal/cadmium toxicity are identified among plant phyla and discussed. After discussing the role of hyperaccumulators' cell walls as a particular case, the review concludes by considering important aspects for plant engineering. PMID:25814996

  17. From biodiversity to catalytic diversity: how to control the reaction mechanism by the nature of metallophytes.

    PubMed

    Escande, Vincent; Olszewski, Tomasz K; Grison, Claude

    2015-04-01

    Phytoextraction is widely used for the reclamation of degraded sites, particularly to remove trace metals from contaminated soils. Whereas this technique demonstrates several advantages, the biomass resulting from phytoextraction processes is highly enriched in metallic elements and constitutes therefore a problematic waste. We show here that this biomass can be used for the preparation of novel polymetallic extracts, with high potential as catalysts or reagents in organic synthesis. This new concept of ecocatalysis constitutes an innovative recycling of metallic elements whose current known reserves could be exhausted in the coming decades. The ecocatalysts Eco-Zn and Eco-Ni prepared respectively from Zn and Ni hyperaccumulating plants display two distinct chemical reactivities, starting from the same substrates. Eco-Zn led to the formation of esters of commercial interest for the fragrance industry, following a hydro-acyloxy-addition reaction pathway. In contrast, Eco-Ni afforded chlorinated products thank to the hydrochlorination of alkenes. Both ecocatalysts allowed the synthesis of valuable products in high yields through methodologies in line with the spirit of sustainable chemistry. PMID:25172465

  18. Potential of weed species applied to remediation of soils contaminated with heavy metals.

    PubMed

    Wei, Shu-He; Zhou, Qi-Xing; Wang, Xin; Cao, Wei; Ren, Li-Ping; Song, Yu-Fang

    2004-01-01

    To screen out a series of ideal plants that can effectively remedy contaminated soils by heavy metals is the main groundwork of phytoremediation engineering and the first step of its commercial application on a large scale. In this study, accumulation and endurance of 45 weed species in 16 families from an agricultural site were in situ examined by using the pot-culture field experiment, and the remediation potential of some weed species with high accumulation of heavy metals was assayed. The results showed that Solanum nigrum and Conyza canadensis can not only accumulate high concentration of Cd, but also strongly endure to single Cd and Cd-Pb-Cu-Zn combined pollution. Thus 2 weed species can be regarded as good hyperaccumulators for the remediation of Cd-contaminated soils. Although there were high Cd-accumulation in Artemigia selengensis, Znula britannica and Cephalanoplos setosum, their biomass was adversely affected due to action of heavy metals in the soils. If the problem of low endurance to heavy metals can be solved by a reinforcer, 3 weed species can be perhaps applied commercially. PMID:15559831

  19. Phytoaccumulation of Heavy Metals in Natural Vegetation at the Municipal Wastewater Site in Abbottabad, Pakistan.

    PubMed

    Irshad, Muhammad; Ruqia, Bibi; Hussain, Zahid

    2015-01-01

    Heavy metal accumulation in crops and soils from wastewater irrigation poses a significant threat to the human health. A study was carried out to investigate the removal potential of heavy metals (HM) by native plant species, namely Cannabis sativa L., Chenopodium album L., Datura stramonium L., Sonchus asper L., Amaranthus viridus L., Oenothera rosea (LHer), Xanthium stramonium L., Polygonum macalosa L., Nasturtium officinale L. and Conyza canadensis L. growing at the municipal wastewater site in Abbottabad city, Pakistan. The HM concentrations varied among plants depending on the species. Metal concentrations across species varied in the order iron (Fe) > zinc (Zn) > chromium (Cr) > nickel (Ni) > cadmium (Cd). Majority of the species accumulated more HM in roots than shoots. Among species, the concentrations (both in roots and shoots) were in the order C. sativa > C. album > X. stramonium > C. canadensis > A. viridus > N. officinale > P. macalosa > D. stramonium > S. asper > O. rosea. No species was identified as a hyperaccumulator. All species exhibited a translocation factor (TF) less than 1. Species like C. sativa, C. album and X. stramonium gave higher (> 1) biological concentration factor (BCF) and biological accumulation coefficient (BAC) especially for Fe, Cr and Cd than other species. Higher accumulation of heavy metals in these plant species signifies the general application of these species for phytostabilization and phytoextraction of HM from polluted soils. PMID:26366840

  20. Interaction of SOS2 with Nucleoside Diphosphate Kinase 2 and Catalases Reveals a Point of Connection between Salt Stress and H2O2 Signaling in Arabidopsis thaliana?

    PubMed Central

    Verslues, Paul E.; Batelli, Giorgia; Grillo, Stefania; Agius, Fernanda; Kim, Yong-Sig; Zhu, Jianhua; Agarwal, Manu; Katiyar-Agarwal, Surekha; Zhu, Jian-Kang

    2007-01-01

    SOS2, a class 3 sucrose-nonfermenting 1-related kinase, has emerged as an important mediator of salt stress response and stress signaling through its interactions with proteins involved in membrane transport and in regulation of stress responses. We have identified additional SOS2-interacting proteins that suggest a connection between SOS2 and reactive oxygen signaling. SOS2 was found to interact with the H2O2 signaling protein nucleoside diphosphate kinase 2 (NDPK2) and to inhibit its autophosphorylation activity. A sos2-2 ndpk2 double mutant was more salt sensitive than a sos2-2 single mutant, suggesting that NDPK2 and H2O2 are involved in salt resistance. However, the double mutant did not hyperaccumulate H2O2 in response to salt stress, suggesting that it is altered signaling rather than H2O2 toxicity alone that is responsible for the increased salt sensitivity of the sos2-2 ndpk2 double mutant. SOS2 was also found to interact with catalase 2 (CAT2) and CAT3, further connecting SOS2 to H2O2 metabolism and signaling. The interaction of SOS2 with both NDPK2 and CATs reveals a point of cross talk between salt stress response and other signaling factors including H2O2. PMID:17785451

  1. Purification and characterization of a highly active chromate reductase from endophytic Bacillus sp. DGV19 of Albizzia lebbeck (L.) Benth. actively involved in phytoremediation of tannery effluent-contaminated sites.

    PubMed

    Manikandan, Muthu; Gopal, Judy; Kumaran, Rangarajulu Senthil; Kannan, Vijayaraghavan; Chun, Sechul

    2016-01-01

    Phytoremediation using timber-yielding tree species is considered to be the most efficient method for chromium/tannery effluent-contaminated sites. In this study, we have chosen Albizzia lebbeck, a chromium hyperaccumulator plant, and studied one of its chromium detoxification processes operated by its endophytic bacterial assemblage. Out of the four different groups of endophytic bacteria comprising Pseudomonas, Rhizobium, Bacillus, and Salinicoccus identified from A. lebbeck employed in phytoremediation of tannery effluent-contaminated soil, Bacillus predominated with three species, which exhibited not only remarkable chromium accumulation ability but also high chromium reductase activity. A chromate reductase was purified to homogeneity from the most efficient chromium accumulator, Bacillus sp. DGV 019, and the purified 34.2-kD enzyme was observed to be stable at temperatures from 20°C to 60°C. The enzyme was active over a wide range of pH values (4.0-9.0). Furthermore, the enzyme activity was enhanced with the electron donors NADH, followed by NADPH, not affected by glutathione and ascorbic acid. Cu(2+) enhanced the activity of the purified enzyme but was inhibited by Zn(2+) and etheylenediamine tetraacetic acid (EDTA). In conclusion, due to its versatile adaptability the chromate reductase can be used for chromium remediation. PMID:26444299

  2. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil.

    PubMed

    Manikandan, Muthu; Kannan, Vijayaraghavan; Mendoza, Ordetta Hannah; Kanimozhi, Mahalingam; Chun, Sechul; Pašić, Lejla

    2016-01-01

    Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22-100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1-3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity. PMID:26147743

  3. Antimony in the Soil-Plant System in an Sb Mining/Smelting Area of Southwest China.

    PubMed

    Ning, Zengping; Xiao, Tangfu; Xiao, Enzong

    2015-01-01

    The distribution, bioavailability, and accumulation of antimony (Sb) at the interface of rhizospheric soils and indigenous plants from a large Sb mining/smelting area in Southwest China were explored. Results showed that the local soil was severely polluted by Sb, and the aluminum magnesium silicate minerals and the carbonate fraction may mainly contribute to bound Sb. The sequential extraction results of soil samples revealed that the portion of bioavailable Sb was low, but the bioavailable Sb concentration was up to 67.2 mg/kg, due to high total Sb concentrations in the soil. The Sb content in local plants showed a wide range, from 21 to 21148 mg/kg. The species of Chenopodium album Linn., Sedum emarginatum Migo, and Sedum lineare Thunb showed high accumulation of Sb at levels of above 1000 mg/kg. The Sb contents in the tissues for most plants decreased with the order of root > leaf > stem. The bioaccumulation coefficients and/or the biological transfer factors for most plants were less than 1. All of the studied plant species were not identified as Sb-hyperaccumulators, but the species of Chenopodium album Linn., Sedum emarginatum Migo, and Sedum lineare Thunb could be applied as alternative plants for phytoremediating Sb-polluted soils. PMID:26067424

  4. Feasibility Study of Phragmites karka and Christella dentata Grown in West Bengal as Arsenic Accumulator.

    PubMed

    Raj, Anshita; Jamil, Sarah; Srivastava, Pankaj Kumar; Tripathi, Rudra Deo; Sharma, Yogesh Kumar; Singh, Nandita

    2015-01-01

    A survey was undertaken, in arsenic (As) contaminated area of the Nadia district, West Bengal, India, to find native As accumulator plants. As was determined both in soil and plant parts. The results showed that the mean translocation factor of Pteris vittata L, Phragmites karka (Cav.) Trin. Ex. Steud and Christella dentata Forssk were higher than 1. It thus appeared that these plants can be efficient accumulators of As. Phytoremediation ability of C. dentata and P. karka was evaluated and compared with known As-hyperaccumulators -P. vittata and Adiantum capillus veneris L. Plants were grown in the As spiked soil (25, 50, 75 and 100 mg kg(-1)). As accumulation was found to be highest in P. vittata, 117.18 mg kg(-1) in leaf at 100 mg kg(-1) As treatment, followed by A. capillus veneris, P. karka and C. dentata being 74, 83.87 and 40.36 mg kg(-1), respectively. Lipid peroxidation increased after As exposure in all plants. However, the antioxidant enzyme activity and molecules concentration also increased which helped the plants to overcome As-induced oxidative stress. The study indicates that P. karka and C. dentata could be considered as As-accumulators and find application for As-phytoextraction in field conditions. PMID:25438026

  5. Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells.

    PubMed

    Migocka, Magdalena; Kosieradzka, Anna; Papierniak, Anna; Maciaszczyk-Dziubinska, Ewa; Posyniak, Ewelina; Garbiec, Arnold; Filleur, Sophie

    2015-02-01

    Metal-tolerance proteins (MTPs) are divalent cation transporters that have been shown to be essential for metal homeostasis and tolerance in model plants and hyperaccumulators. Due to the lack of genomic resources, studies on MTPs in cultivated crops are lacking. Here, we present the first functional characterization of genes encoding cucumber proteins homologous to MTP1 and MTP4 transporters. CsMTP1 expression was ubiquitous in cucumber plants, whereas CsMTP4 mRNA was less abundant and was not detected in the generative parts of the flowers. When expressed in yeast, CsMTP1 and CsMTP4 were able to complement the hypersensitivity of mutant strains to Zn and Cd through the increased sequestration of metals within vacuoles using the transmembrane electrochemical gradient. Both proteins formed oligomers at the vacuolar membranes of yeast and cucumber cells and localized in Arabidopsis protoplasts, consistent with their function in vacuolar Zn and Cd sequestration. Changes in the abundance of CsMTP1 and CsMTP4 transcripts and proteins in response to elevated Zn and Cd, or to Zn deprivation, suggested metal-induced transcriptional, translational, and post-translational modifications of protein activities. The differences in the organ expression and affinity of both proteins to Zn and Cd suggested that CsMTP1 and CsMTP4 may not be functionally redundant in cucumber cells. PMID:25422498

  6. Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/zeolite constructed wetland system.

    PubMed

    Mojiri, Amin; Ziyang, Lou; Tajuddin, Ramlah Mohd; Farraji, Hossein; Alifar, Nafiseh

    2016-01-15

    Constructed wetland (CW) is a low-cost alternative technology to treat wastewater. This study was conducted to co-treat landfill leachate and municipal wastewater by using a CW system. Typha domingensis was transplanted to CW, which contains two substrate layers of adsorbents, namely, ZELIAC and zeolite. Response surface methodology and central composite design have been utilized to analyze experimental data. Contact time (h) and leachate-to-wastewater mixing ratio (%; v/v) were considered as independent variables. Colour, COD, ammonia, nickel, and cadmium contents were used as dependent variables. At optimum contact time (50.2 h) and leachate-to-wastewater mixing ratio (20.0%), removal efficiencies of colour, COD, ammonia, nickel, and cadmium contents were 90.3%, 86.7%, 99.2%, 86.0%, and 87.1%, respectively. The accumulation of Ni and Cd in the roots and shoots of T. domingensis was also monitored. Translocation factor (TF) was >1 in several runs; thus, Typha is classified as a hyper-accumulator plant. PMID:26496842

  7. Functional analysis of metals distribution in organs of the beetle Chrysolina pardalina exposed to excess of nickel by Micro-PIXE

    NASA Astrophysics Data System (ADS)

    Przybyłowicz, W. J.; Mesjasz Przybyłowicz, J.; Migula, P.; Głowacka, E.; Nakonieczny, M.; Augustyniak, M.

    2003-09-01

    Micro-PIXE mapping of elemental distribution within organs of Chrysolina pardalina beetle feeding on a nickel hyperaccumulating plant species Berkheya coddii, was used to check its ability to cope with excess of nickel and to study quantitative and qualitative relations between nickel and other elements in physiologically important structures. Data analysis was performed using a new PC based version of the GeoPIXE software (GeoPIXE II). The use of micro-PIXE, supported with analysis of electronograms demonstrated mechanism of Ni rejection from the insects' body. Concretions rich in Zn, Cu, Fe, Mn, Br are formed in Malpighian tubules and in the midgut cells. Organs important for maintaining homeostasis are protected against excess of metals. Malpighian tubules play a crucial role in Ni elimination from hemolymph, further rejected through the digestive tract and in larve also with exuvia during molting. Both used methods proved that midgut cells in adults could regenerate. Such an adaptive mechanism has not been earlier described in adult beetles.

  8. Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.).

    PubMed

    Liu, Haiwei; Wang, Haiyun; Ma, Yibing; Wang, Haohao; Shi, Yi

    2016-02-01

    Tobacco plants grown in pots and in hydroponic culture accumulated cadmium (Cd) particularly: the Cd content of tobacco leaves exceeded 100 mg/kg and the enrichment factor (the ratio of Cd in leaves to that in soil) was more than 4. These high levels of accumulation identify tobacco as a hyperaccumulator of Cd. Two transpiration inhibitors (paraffin or CaCl2) and shade decreased the Cd content of tobacco leaves, and the decrease showed a linear relationship with the leaf transpiration rate. A metabolism inhibitor, namely 2,4-dinitrophenol (DNP), and low temperature (4 °C) also lowered the Cd content of tobacco leaves, but the inhibitory effect of low temperature was greater. In the half number of leaves that were shaded, the Cd content decreased to 26.5% of that in leaves that were not shaded in the same tobacco plants. These results suggests that translocation of Cd from the medium to the leaves is driven by the symplastic and the apoplastic pathways. Probably, of the two crucial steps in the translocation of Cd in tobacco plants, one, namely uptake from the medium to the xylem, is energy-dependent whereas the other, namely the transfer from the xylem to the leaves, is driven mainly by transpiration. PMID:26547876

  9. Selenium Cycling Across Soil-Plant-Atmosphere Interfaces: A Critical Review

    PubMed Central

    Winkel, Lenny H.E.; Vriens, Bas; Jones, Gerrad D.; Schneider, Leila S.; Pilon-Smits, Elizabeth; Bañuelos, Gary S.

    2015-01-01

    Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels. PMID:26035246

  10. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence

    PubMed Central

    Ding, Chen; Festa, Richard A.; Chen, Ying-Lien; Espart, Anna; Palacios, Òscar; Espín, Jordi; Capdevila, Mercè; Atrian, Sílvia; Heitman, Joseph; Thiele, Dennis J.

    2013-01-01

    Summary Copper (Cu) is an essential metal that is toxic at high concentrations. Thus, pathogens often rely on host Cu for growth, but host cells can hyper-accumulate Cu to exert anti-microbial effects. The human fungal pathogen Cryptococcus neoformans encodes various Cu-responsive genes but their role in infection is unclear. We determine that pulmonary C. neoformans infection results in Cu-specific induction of genes encoding the Cu-detoxifying metallothionein (Cmt) proteins. Mutant strains lacking CMTs or expressing Cmt variants defective in Cu-coordination exhibit severely attenuated virulence and reduced pulmonary colonization. Consistent with the up-regulation of Cmt proteins, C. neoformans pulmonary infection results in increased serum Cu concentrations and respectively increases and decreases alveolar macrophage expression of the Cu importer, Ctr1, and ATP7A, a transporter implicated in phagosomal Cu compartmentalization. These studies indicate that the host mobilizes Cu as an innate anti-fungal defense but that C. neoformans senses and neutralizes toxic Cu to promote infection. PMID:23498952

  11. A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L.

    PubMed

    Das, Suchismita; Goswami, Sunayana; Talukdar, Anupam Das

    2014-02-01

    Aquatic macrophytes have tremendous potential for remediation of the heavy metal cadmium. The objective of this study was to investigate Cd phytoremediation ability of water lettuce, Pistia stratiotes L. The study was conducted with 5, 10, 15 and 20 mg L(-1) CdCl2 in hydroponic system for 21 days and the Cd concentrations in the root and shoot tissues were estimated by atomic absorption spectroscopy. The values obtained were used to evaluate the bioconcentration factor (BCF), translocation factor (TF) and translocation efficiency of this plant. The plant showed high Cd tolerance of up to 20 mg L(-1) but there was a general trend of decline in the root and shoot biomass. The maximum BCF values for root and shoot tissues were 2,294 and 870 respectively, obtained for 5 mg L(-1) Cd, which indicated that the plant was a Cd hyperaccumulator. The TF maxima was found to be 0.6 and as much as 60 % root to shoot translocation efficiency was observed for 15 mg L(-1) Cd which points towards the suitability of water lettuce for removing Cd from surface waters. PMID:24220931

  12. Emission and control characteristics for incineration of Sedum plumbizincicola biomass in a laboratory-scale entrained flow tube furnace.

    PubMed

    Wu, Longhua; Zhong, Daoxu; Du, Yingzhe; Lu, Shengyong; Fu, Dengqiang; Li, Zhu; Li, Xiaodong; Chi, Yong; Luo, Yongming; Yan, Jianhua

    2013-01-01

    Experiments were conducted to investigate and control pollutant emission from incineration of Sedum plumbizincicola plants on a laboratory scale using an entrained flow tube furnace. Without control technologies, the flue gas contained 0.101 mg Nm(-3) of Cd, 46.4 mg Nm(-3) of Zn, 553 mg Nm(-3) of NOx, 131 pg Nm(-3) of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/Fs) and 35.4 mg Nm(-3) of polycyclic aromatic hydrocarbons (PAHs). In pollutants control experiments. Al2O3, CaO, and kaolin were compared as adsorbents and activated carbon was used as an end-of-pipe method for the capture of pollutants. Kaolin, the most effective of the three adsorbents, removed 91.2% of the Cd in flue gas. While 97.6% of the Cd and 99.6% of the PAHs were removed by activated carbon. Incineration may therefore be regarded as a viable option for the safe disposal of the biomass of the zinc and cadmium hyperaccumulator species S. plumbizincicola. PMID:23488008

  13. Prospects of genetic engineering of plants for phytoremediation of toxic metals.

    PubMed

    Eapen, Susan; D'Souza, S F

    2005-03-01

    Bioremediation is gaining a lot of importance in recent times as an alternate technology for removal of elemental pollutants in soil and water, which require effective methods of decontamination. Phytoremediation--the use of green plants to remove, contain or render harmless environmental pollutants--may offer an effective, environmentally nondestructive and cheap remediation method. The use of genetic engineering to modify plants for metal uptake, transport and sequestration may open up new avenues for enhancing efficiency of phytoremediation. Metal chelator, metal transporter, metallothionein (MT), and phytochelatin (PC) genes have been transferred to plants for improved metal uptake and sequestration. Transgenic plants, which detoxify/accumulate cadmium, lead, mercury, arsenic and selenium have been developed. A better understanding of the mechanisms of rhizosphere interaction, uptake, transport and sequestration of metals in hyperaccumulator plants will lead to designing novel transgenic plants with improved remediation traits. As more genes related to metal metabolism are discovered, facilitated by the genome sequencing projects, new vistas will be opened up for development of efficient transgenic plants for phytoremediation. PMID:15694122

  14. Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.).

    PubMed

    Shiyab, Safwan; Chen, Jian; Han, Fengxiang X; Monts, David L; Matta, Fank B; Gu, Mengmeng; Su, Yi; Masad, Motasim A

    2009-10-01

    Mercury, a potent neurotoxin, is released to the environment in significant amounts by both natural processes and anthropogenic activities. No natural hyperaccumulator plant has been reported for mercury phytoremediation. Few studies have been conducted on the physiological responses of Indian mustard, a higher biomass plant with faster growth rates, to mercury pollution. This study investigated the phytotoxicity of mercury to Indian mustard (Brassica juncea L.) and mercury-induced oxidative stress in order to examine the potential application of Indian mustard to mercury phytoremediation. Two common cultivars (Florida Broadleaf and Longstanding) of Indian mustard were grown hydroponically in a mercury-spiked solution. Plant uptake, antioxidative enzymes, peroxides, and lipid peroxidation under mercury stress were investigated. Antioxidant enzymes (catalase, CAT; peroxidase, POD; and superoxide dismutase, SOD) were the most sensitive indices of mercury-induced oxidative response of Indian mustard plants. Indian mustard effectively generated an enzymatic antioxidant defense system (especially CAT) to scavenge H(2)O(2), resulting in lower H(2)O(2) in shoots with higher mercury concentrations. These two cultivars of Indian mustard demonstrated an efficient metabolic defense and adaptation system to mercury-induced oxidative stress. A majority of Hg was accumulated in the roots and low translocations of Hg from roots to shoots were found in two cultivars of Indian mustard. Thus Indian mustard might be a potential candidate plant for phytofiltration/phytostabilization of mercury contaminated waters and wastewater. PMID:19003913

  15. Sub-cellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas

    PubMed Central

    Hong-Hermesdorf, Anne; Miethke, Marcus; Gallaher, Sean D; Kropat, Janette; Dodani, Sheel C; Chan, Jefferson; Barupala, Dulmini; Domaille, Dylan W; Shirasaki, Dyna I; Loo, Joseph A; Weber, Peter K; Pett-Ridge, Jennifer; Stemmler, Timothy L; Chang, Christopher J; Merchant, Sabeeha S

    2014-01-01

    We identified a Cu accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulated Cu, dependent on the nutritional Cu sensor CRR1, but was functionally Cu-deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. NanoSIMS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy (XAS) was consistent with Cu+ accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotope labeling demonstrated that sequestered Cu+ became bio-available for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mis-metallation during Zn deficiency and enabling efficient cuproprotein (re)-metallation upon Zn resupply. PMID:25344811

  16. The Nup107-160 Nucleoporin Complex Is Required for Correct Bipolar Spindle Assembly

    PubMed Central

    Orjalo, Arturo V.; Arnaoutov, Alexei; Shen, Zhouxin; Boyarchuk, Yekaterina; Zeitlin, Samantha G.; Fontoura, Beatriz; Briggs, Steven; Dasso, Mary

    2006-01-01

    The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores. PMID:16807356

  17. The Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly.

    PubMed

    Orjalo, Arturo V; Arnaoutov, Alexei; Shen, Zhouxin; Boyarchuk, Yekaterina; Zeitlin, Samantha G; Fontoura, Beatriz; Briggs, Steven; Dasso, Mary; Forbes, Douglass J

    2006-09-01

    The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores. PMID:16807356

  18. Regulation and function of yeast PAS kinase

    PubMed Central

    Grose, Julianne H.; Sundwall, Eleanor; Rutter, Jared

    2016-01-01

    The inability to coordinate cellular metabolic processes with the cellular and organismal nutrient environment leads to a variety of disorders, including diabetes and obesity. Nutrient-sensing protein kinases, such as AMPK and mTOR, play a pivotal role in metabolic regulation and are promising therapeutic targets for the treatment of disease. In this Extra View, we describe another member of the nutrient-sensing protein kinase group, PAS kinase, which plays a role in the regulation of glucose utilization in both mammals and yeast. PAS kinase deficient mice are resistant to high fat diet-induced weight gain, insulin resistance and hepatic triglyceride hyperaccumulation, suggesting a role for PAS kinase in the regulation of glucose and lipid metabolism in mammals. Likewise, PAS kinase deficient yeast display altered glucose partitioning, favoring glycogen biosynthesis at the expense of cell wall biosynthesis. As a result, PAS kinase deficient yeast are sensitive to cell wall perturbing agents. This partitioning of glucose in response to PAS kinase activation is due to phosphorylation of Ugp1, the enzyme primarily responsible for UDP-glucose production. The two yeast PAS kinase homologs, Psk1 and Psk2, are activated by two stimuli, cell integrity stress and nonfermentative carbon sources. We review what is known about yeast PAS kinase and describe a genetic screen that may help elucidate pathways involved in PAS kinase activation and function. PMID:19440050

  19. Riparian plants on mine runoff in Zimapan, Hidalgo, Mexico: Useful for phytoremediation?

    PubMed

    Carmona-Chit, Eréndira; Carrillo-González, Rogelio; González-Chávez, Ma Del Carmen A; Vibrans, Heike; Yáñez-Espinosa, Laura; Delgado-Alvarado, Adriana

    2016-09-01

    Dispersion and runoff of mine tailings have serious implications for human and ecosystem health in the surroundings of mines. Water, soils and plants were sampled in transects perpendicular to the Santiago stream in Zimapan, Hidalgo, which receives runoff sediments from two acidic and one alkaline mine tailing. Concentrations of potentially toxic elements (PTE) were measured in water, soils (rhizosphere and non-rhizosphere) and plants. Using diethylenetriaminepentaacetic acid (DTPA) extractable concentrations of Cu, Zn, Ni, Cd and Pb in rhizosphere soil, the bioconcentration and translocation factors were calculated. Ruderal annuals formed the principal element of the herbaceous vegetation. Accumulation was the most frequent strategy to deal with high concentrations of Zn, Cu, Ni, Cd and Pb. The order of concentration in plant tissue was Zn>Pb>Cu>Ni>Cd. Most plants contained concentrations of PTE considered as phytotoxic and behaved as metal tolerant species. Rorippa nasturtium-aquaticum accumulated particularly high concentrations of Cu. Parietaria pensylvanica and Commelina diffusa, common tropical weeds, behaved as Zn hyperaccumulators and should be studied further. PMID:26939994

  20. Novel Nickel Resistance Genes from the Rhizosphere Metagenome of Plants Adapted to Acid Mine Drainage▿ †

    PubMed Central

    Mirete, Salvador; de Figueras, Carolina G.; González-Pastor, Jose E.

    2007-01-01

    Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment. PMID:17675438