Science.gov

Sample records for hyperpolarized 13c spectroscopy

  1. In vivo13C spectroscopy in the rat brain using hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Marjańska, Małgorzata; Iltis, Isabelle; Shestov, Alexander A.; Deelchand, Dinesh K.; Nelson, Christopher; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-10-01

    The low sensitivity of 13C spectroscopy can be enhanced using dynamic nuclear polarization. Detection of hyperpolarized [1- 13C]pyruvate and its metabolic products has been reported in kidney, liver, and muscle. In this work, the feasibility of measuring 13C signals of hyperpolarized 13C metabolic products in the rat brain in vivo following the injection of hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate is investigated. Injection of [2- 13C]pyruvate led to the detection of [2- 13C]lactate, but no other downstream metabolites such as TCA cycle intermediates were detected. Injection of [1- 13C]pyruvate enabled the detection of both [1- 13C]lactate and [ 13C]bicarbonate. A metabolic model was used to fit the hyperpolarized 13C time courses obtained during infusion of [1- 13C]pyruvate and to determine the values of VPDH and VLDH.

  2. Single voxel localization for dynamic hyperpolarized 13C MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Albert P.; Cunningham, Charles H.

    2015-09-01

    The PRESS technique has been widely used to achieve voxel localization for in vivo1H MRS acquisitions. However, for dynamic hyperpolarized 13C MRS experiments, the transition bands of the refocusing pulses may saturate the pre-polarized substrate spins flowing into the voxel. This limitation may be overcome by designing refocusing pulses that do not perturb the resonance of the hyperpolarized substrate, but selectively refocuses the spins of the metabolic products. In this study, a PRESS pulse sequence incorporating spectral-spatial refocusing pulses that have a stop band ('notch') at the substrate resonance is tested in vivo using hyperpolarized [1-13C]pyruvate. Higher metabolite SNR was observed in experiments using the spectral-spatial refocusing pulses as compared to conventional refocusing pulses.

  3. Single voxel localization for dynamic hyperpolarized (13)C MR spectroscopy.

    PubMed

    Chen, Albert P; Cunningham, Charles H

    2015-09-01

    The PRESS technique has been widely used to achieve voxel localization for in vivo(1)H MRS acquisitions. However, for dynamic hyperpolarized (13)C MRS experiments, the transition bands of the refocusing pulses may saturate the pre-polarized substrate spins flowing into the voxel. This limitation may be overcome by designing refocusing pulses that do not perturb the resonance of the hyperpolarized substrate, but selectively refocuses the spins of the metabolic products. In this study, a PRESS pulse sequence incorporating spectral-spatial refocusing pulses that have a stop band ('notch') at the substrate resonance is tested in vivo using hyperpolarized [1-(13)C]pyruvate. Higher metabolite SNR was observed in experiments using the spectral-spatial refocusing pulses as compared to conventional refocusing pulses. PMID:26232365

  4. Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine

    PubMed Central

    Najac, Chloé; Chaumeil, Myriam M.; Kohanbash, Gary; Guglielmetti, Caroline; Gordon, Jeremy W.; Okada, Hideho; Ronen, Sabrina M.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized 13C probe, [6-13C]-arginine, to image arginase activity. We show that [6-13C]-arginine can be hyperpolarized, and hyperpolarized [13C]-urea production from [6-13C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [13C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-13C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages. PMID:27507680

  5. An intact small animal model of myocardial ischemia-reperfusion: Characterization of metabolic changes by hyperpolarized 13C MR spectroscopy.

    PubMed

    Yoshihara, Hikari A I; Bastiaansen, Jessica A M; Berthonneche, Corinne; Comment, Arnaud; Schwitter, Juerg

    2015-12-15

    Hyperpolarized carbon-13 magnetic resonance spectroscopy ((13)C MRS) enables the sensitive and noninvasive assessment of the metabolic changes occurring during myocardial ischemia-reperfusion. Ischemia-reperfusion models using hyperpolarized (13)C MRS are established in heart preparations ex vivo and in large animals in vivo, but an in vivo model in small animals would be advantageous to allow the study of reperfusion metabolism with neuroendocrine and inflammatory responses intact with the option to perform a greater number of experiments. A novel intact rat model of ischemia-reperfusion is presented that incorporates hyperpolarized (13)C MRS to characterize reperfusion metabolism. Typically, in an in vivo model, a tissue input function (TIF) is required to account for apparent changes in the metabolism of injected hyperpolarized [1-(13)C]pyruvate resulting from changes in perfusion. Whereas the measurement of a TIF by metabolic imaging is particularly challenging in small animals, the ratios of downstream metabolites can be used as an alternative. The ratio of [(13)C]bicarbonate:[1-(13)C]lactate (RatioBic/Lac) measured within 1-2 min after coronary release decreased vs. baseline in ischemic rats (n = 10, 15-min occlusion, controls: n = 10; P = 0.017 for interaction, 2-way ANOVA). The decrease in oxidative pyruvate metabolism [RatioBic/Lac(Ischemia)/RatioBic/Lac(Baseline)] modestly correlated with area at risk (r = 0.66; P = 0.002). Hyperpolarized (13)C MRS was also used to examine alanine production during ischemia, which is observed in ex vivo models, but no significant change was noted; metrics incorporating [1-(13)C]alanine did not substantially improve the discrimination of ischemic-reperfused myocardium from nonischemic myocardium. This intact rat model, which mimics the human situation of reperfused myocardial infarction, could be highly valuable for the testing of new drugs to treat reperfusion injury, thereby facilitating translational research. PMID

  6. Noninvasive biomarkers for acute hepatotoxicity induced by 1,3-dichloro-2-propanol: hyperpolarized 13C dynamic MR spectroscopy.

    PubMed

    Kim, Gwang-Won; Oh, Chang-Hyun; Kim, Jong-Choon; Yoon, Woong; Jeong, Yong-Yeon; Kim, Yun-Hyeon; Kim, Jae-Kyu; Park, Jin-Gyoon; Kang, Heoung-Keun; Jeong, Gwang-Woo

    2016-02-01

    The purpose of this study was to investigate the cellular metabolite change for acute hepatotoxicity induced by 1,3-dichloro-2-propanol (1,3-DCP) in rats and its correlations with the enzyme levels. In order to induce acute hepatotoxicity, a single subcutaneous injection of 1,3-DCP (80 mg/kg) was given to six male Sprague-Dawley rats. Hyperpolarized (13)C dynamic magnetic resonance spectroscopy (MRS) was performed on rat liver following injection of hyperpolarized [1-(13)C] pyruvate. The levels of serum aspartate am inotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) in the 1,3-DCP treated rats were significantly increased as compared with those in normal rats. In the dynamic (13)C MR spectra, the ratios of [1-(13)C] lactate to the total carbon and [1-(13)C] alanine to the total carbon in the 1,3-DCP treated rats were significantly increased, and there were positive correlations between cellular metabolic changes and enzyme levels. The levels of [1-(13)C] lactate and [1-(13)C] alanine are potentially considered as important biomarkers for the 1,3-DCP-induced acute hepatotoxicity. PMID:26523652

  7. Validation of the In Vivo Assessment of Pyruvate Dehydrogenase Activity Using Hyperpolarized 13C-Magnetic Resonance Spectroscopy

    PubMed Central

    Dodd, Michael S.; Heather, Lisa C.; Carter, Emma E.; Cochlin, Lowri E.; Nagel, Simon; Sibson, Nicola R.; Radda, George K.; Clarke, Kieran; Tyler, Damian J.

    2015-01-01

    Aim Many diseases of the heart are characterised by changes in substrate utilisation, which is in part regulated by the activity of the enzyme pyruvate dehydrogenase (PDH). Consequently, there is much interest in the in vivo evaluation of PDH activity in a range of physiological and pathological states to obtain information regarding the metabolic mechanisms of cardiac diseases. Hyperpolarized [1-13C]pyruvate, detected using MRS, is a novel technique for evaluating PDH flux non-invasively. PDH flux has been assumed to directly reflect in vivo PDH activity, although to date this assumption remains unproven. Methods Control animals and animals undergoing interventions known to modulate PDH activity, namely high fat feeding and dichloroacetate infusion, were used to investigate the relationship between in vivo hyperpolarized MRS measurements of PDH flux and ex vivo measurements of PDH enzyme activity (PDHa). Further, the plasma concentrations of pyruvate and other important metabolites were evaluated following pyruvate infusion to assess the metabolic consequences of the pyruvate infusion during hyperpolarized MRS experiments. Results Hyperpolarized MRS measurements of PDH flux significantly correlated with ex vivo measurements of PDHa, confirming that PDH activity directly influences the in vivo flux of hyperpolarized pyruvate through cardiac PDH. The maximum plasma concentration of pyruvate reached during hyperpolarized MRS experiments was ~250 μM, equivalent to physiological pyruvate concentrations reached during exercise or with dietary interventions. Concentrations of other metabolites, including lactate, glucose and β-hydroxybutyrate (BHB), did not vary during the 60 s following pyruvate infusion. Hence, during the 60 s data acquisition period, metabolism was minimally affected by pyruvate infusion. PMID:20799252

  8. Carbonic Anhydrase Activity Monitored In Vivo by Hyperpolarized 13C-Magnetic Resonance Spectroscopy Demonstrates Its Importance for pH Regulation in Tumors.

    PubMed

    Gallagher, Ferdia A; Sladen, Helen; Kettunen, Mikko I; Serrao, Eva M; Rodrigues, Tiago B; Wright, Alan; Gill, Andrew B; McGuire, Sarah; Booth, Thomas C; Boren, Joan; McIntyre, Alan; Miller, Jodi L; Lee, Shen-Han; Honess, Davina; Day, Sam E; Hu, De-En; Howat, William J; Harris, Adrian L; Brindle, Kevin M

    2015-10-01

    Carbonic anhydrase buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3 (-)). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized (13)C label between bicarbonate (H(13)CO3(-)) and carbon dioxide ((13)CO2), following injection of hyperpolarized H(13)CO3(-), using (13)C-magnetic resonance spectroscopy ((13)C-MRS) magnetization transfer measurements. (31)P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and (13)C-MRS measurements of the H(13)CO3(-)/(13)CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the (13)C measurements overestimated pH due to incomplete equilibration of the hyperpolarized (13)C label between the H(13)CO3(-) and (13)CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevated tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH and supports the hypothesis that a major function of CAIX is to lower the extracellular pH. PMID:26249175

  9. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using (13)C Metabolic Contrast Agents.

    PubMed

    Coffey, Aaron M; Shchepin, Roman V; Truong, Milton L; Wilkens, Ken; Pham, Wellington; Chekmenev, Eduard Y

    2016-08-16

    An open-source hyperpolarizer producing (13)C hyperpolarized contrast agents using parahydrogen induced polarization (PHIP) for biomedical and other applications is presented. This PHIP hyperpolarizer utilizes an Arduino microcontroller in conjunction with a readily modified graphical user interface written in the open-source processing software environment to completely control the PHIP hyperpolarization process including remotely triggering an NMR spectrometer for efficient production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization. Key advantages of this hyperpolarizer include: (i) use of open-source software and hardware seamlessly allowing for replication and further improvement as well as readily customizable integration with other NMR spectrometers or MRI scanners (i.e., this is a multiplatform design), (ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance is demonstrated by production of a dose (∼2-3 mL) of hyperpolarized (13)C-succinate with %P13C ∼ 28% and 30 mM concentration and (13)C-phospholactate at %P13C ∼ 15% and 25 mM concentration in aqueous medium. These contrast agents are used for ultrafast molecular imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion of hyperpolarized (13)C-phospholactate to (13)C-lactate in vivo is used here to demonstrate the feasibility of ultrafast multislice (13)C MRI after tail vein injection of hyperpolarized (13)C-phospholactate in mice. PMID:27478927

  10. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  11. Quality assurance of PASADENA hyperpolarization for 13C biomolecules

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Tran, Thao T.; Bhattacharya, Pratip

    2009-01-01

    Object Define MR quality assurance procedures for maximal PASADENA hyperpolarization of a biological 13C molecular imaging reagent. Materials and methods An automated PASADENA polarizer and a parahydrogen generator were installed. 13C enriched hydroxyethyl acrylate, 1-13C, 2,3,3-d3 (HEA), was converted to hyperpolarized hydroxyethyl propionate, 1-13C, 2,3,3-d3 (HEP) and fumaric acid, 1-13C, 2,3-d2 (FUM) to hyperpolarized succinic acid, 1-13C, 2,3-d2 (SUC), by reaction with parahydrogen and norbornadiene rhodium catalyst. Incremental optimization of successive steps in PASADENA was implemented. MR spectra and in vivo images of hyperpolarized 13C imaging agents were acquired at 1.5 and 4.7 T. Results Application of quality assurance (QA) criteria resulted in incremental optimization of the individual steps in PASADENA implementation. Optimal hyperpolarization of HEP of P = 20% was achieved by calibration of the NMR unit of the polarizer (B0 field strength ± 0.002 mT). Mean hyperpolarization of SUC, P = [15.3 ± 1.9]% (N = 16) in D2O, and P = [12.8 ± 3.1]% (N = 12) in H2O, was achieved every 5–8 min (range 13–20%). An in vivo 13C succinate image of a rat was produced. Conclusion PASADENA spin hyperpolarization of SUC to 15.3% in average was demonstrated (37,400 fold signal enhancement at 4.7 T). The biological fate of 13C succinate, a normally occurring cellular intermediate, might be monitored with enhanced sensitivity. PMID:19067009

  12. Magnetic Resonance Imaging with Hyperpolarized 13C Contrast Agents

    NASA Astrophysics Data System (ADS)

    Gordon, Jeremy W.

    Hyperpolarized 13C substrates offer the potential to non-invasively image metabolism and enzymatic activity. However, hyperpolarization introduces a number of difficulties, and imaging is hampered by non-equilibrium magnetization and the need for spectral encoding. There is therefore a need for fast and RF efficient spectral imaging techniques. This work presents a number of new methods that can be used to improve polarization, increase RF efficiency and improve modeling accuracy in hyperpolarized 13C experiments. In particular, a novel encoding and reconstruction algorithm is presented that can generate spatially and spectrally resolved images with a single RF excitation and echo time. This reconstruction framework increases data acquisition efficiency, enabling accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Overall, the methods enumerated in this dissertation have the potential to improve modeling accuracy and to mitigate the conventional tradeoffs between SNR, spatial resolution, and temporal resolution that govern image quality in hyperpolarized 13C experiments.

  13. Separation of extra- and intracellular metabolites using hyperpolarized (13)C diffusion weighted MR.

    PubMed

    Koelsch, Bertram L; Sriram, Renuka; Keshari, Kayvan R; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B; Wang, Zhen J; Larson, Peder E Z; Kurhanewicz, John

    2016-09-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized (13)C magnetic resonance spectroscopy. Using b-values of up to 15,000smm(-2), a multi-exponential signal response was measured for hyperpolarized [1-(13)C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized (13)C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized (13)C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers. PMID:27434780

  14. Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR

    NASA Astrophysics Data System (ADS)

    Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E. Z.; Kurhanewicz, John

    2016-09-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm-2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers.

  15. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  16. Transport and imaging of brute-force (13)C hyperpolarization.

    PubMed

    Hirsch, Matthew L; Smith, Bryce A; Mattingly, Mark; Goloshevsky, Artem G; Rosay, Melanie; Kempf, James G

    2015-12-01

    We demonstrate transport of hyperpolarized frozen 1-(13)C pyruvic acid from its site of production to a nearby facility, where a time series of (13)C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained (13)C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., T<∼2K and B∼14T) to pre-polarize protons to a large Boltzmann value (∼0.4% (1)H polarization). After polarizing the neat, frozen sample, ejection quickly (<1s) passed it through a low field (B<100G) to establish the (1)H pre-polarization spin temperature on (13)C via the process known as low-field thermal mixing (yielding ∼0.1% (13)C polarization). By avoiding polarization agents (a.k.a. relaxation agents) that are needed to hyperpolarize by the competing method of dissolution dynamic nuclear polarization (d-DNP), the (13)C relaxation time was sufficient to transport the sample for ∼10min before finally dissolving in warm water and obtaining a (13)C image of the hyperpolarized, dilute, aqueous product (∼0.01% (13)C polarization, a >100-fold gain over thermal signals in the 1T scanner). An annealing step, prior to polarizing the sample, was also key for increasing T1∼30-fold during transport. In that time, HP was maintained using only modest cryogenics and field (T∼60K and B=1.3T), for T1((13)C) near 5min. Much greater time and distance (with much smaller losses) may be covered using more-complete annealing and only slight improvements on transport conditions (e.g., yielding T1∼5h at 30K, 2T), whereas even intercity transfer is possible (T1>20h) at reasonable conditions of 6K and 2T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 10(2)-fold more) by polarizing below 100mK, where nanoparticle

  17. Transport and imaging of brute-force 13C hyperpolarization

    NASA Astrophysics Data System (ADS)

    Hirsch, Matthew L.; Smith, Bryce A.; Mattingly, Mark; Goloshevsky, Artem G.; Rosay, Melanie; Kempf, James G.

    2015-12-01

    We demonstrate transport of hyperpolarized frozen 1-13C pyruvic acid from its site of production to a nearby facility, where a time series of 13C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained 13C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., T < ∼2 K and B ∼ 14 T) to pre-polarize protons to a large Boltzmann value (∼0.4% 1H polarization). After polarizing the neat, frozen sample, ejection quickly (<1 s) passed it through a low field (B < 100 G) to establish the 1H pre-polarization spin temperature on 13C via the process known as low-field thermal mixing (yielding ∼0.1% 13C polarization). By avoiding polarization agents (a.k.a. relaxation agents) that are needed to hyperpolarize by the competing method of dissolution dynamic nuclear polarization (d-DNP), the 13C relaxation time was sufficient to transport the sample for ∼10 min before finally dissolving in warm water and obtaining a 13C image of the hyperpolarized, dilute, aqueous product (∼0.01% 13C polarization, a >100-fold gain over thermal signals in the 1 T scanner). An annealing step, prior to polarizing the sample, was also key for increasing T1 ∼ 30-fold during transport. In that time, HP was maintained using only modest cryogenics and field (T ∼ 60 K and B = 1.3 T), for T1(13C) near 5 min. Much greater time and distance (with much smaller losses) may be covered using more-complete annealing and only slight improvements on transport conditions (e.g., yielding T1 ∼ 5 h at 30 K, 2 T), whereas even intercity transfer is possible (T1 > 20 h) at reasonable conditions of 6 K and 2 T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 102-fold more) by polarizing below 100 mK, where

  18. PASADENA hyperpolarization of 13C biomolecules: equipment design and installation

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Robertson, Larry W.; Bhattacharya, Pratip

    2009-01-01

    Object The PASADENA method has achieved hyperpolarization of 16–20% (exceeding 40,000-fold signal enhancement at 4.7 T), in liquid samples of biological molecules relevant to in vivo MRI and MRS. However, there exists no commercial apparatus to perform this experiment conveniently and reproducibly on the routine basis necessary for translation of PASADENA to questions of biomedical importance. The present paper describes equipment designed for rapid production of six to eight liquid samples per hour with high reproducibility of hyperpolarization. Materials and methods Drawing on an earlier, but unpublished, prototype, we provide diagrams of a delivery circuit, a laminar-flow reaction chamber within a low field NMR contained in a compact, movable housing. Assembly instructions are provided from which a computer driven, semiautomated PASADENA polarizer can be constructed. Results Together with an available parahydrogen generator, the polarizer, which can be operated by a single investigator, completes one cycle of hyperpolarization each 52 s. Evidence of efficacy is presented. In contrast to competing, commercially available devices for dynamic nuclear polarization which characteristically require 90 min per cycle, PASADENA provides a low-cost alternative for high throughput. Conclusions This equipment is suited to investigators who have an established small animal NMR and wish to explore the potential of heteronuclear (13C and 15N) MRI, MRS, which harnesses the enormous sensitivity gain offered by hyperpolarization. PMID:19067008

  19. Hyperpolarized (13)C MR imaging detects no lactate production in mutant IDH1 gliomas: Implications for diagnosis and response monitoring.

    PubMed

    Chaumeil, Myriam M; Radoul, Marina; Najac, Chloé; Eriksson, Pia; Viswanath, Pavithra; Blough, Michael D; Chesnelong, Charles; Luchman, H Artee; Cairncross, J Gregory; Ronen, Sabrina M

    2016-01-01

    Metabolic imaging of brain tumors using (13)C Magnetic Resonance Spectroscopy (MRS) of hyperpolarized [1-(13)C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM) models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-(13)C] lactate produced from [1-(13)C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-(13)C] lactate. However, to date, lower grade gliomas had not been investigated using this approach. The most prevalent mutation in lower grade gliomas is the isocitrate dehydrogenase 1 (IDH1) mutation, which, in addition to initiating tumor development, also induces metabolic reprogramming. In particular, mutant IDH1 gliomas are associated with low levels of lactate dehydrogenase A (LDHA) and monocarboxylate transporters 1 and 4 (MCT1, MCT4), three proteins involved in pyruvate metabolism to lactate. We therefore investigated the potential of (13)C MRS of hyperpolarized [1-(13)C] pyruvate for detection of mutant IDH1 gliomas and for monitoring of their therapeutic response. We studied patient-derived mutant IDH1 glioma cells that underexpress LDHA, MCT1 and MCT4, and wild-type IDH1 GBM cells that express high levels of these proteins. Mutant IDH1 cells and tumors produced significantly less hyperpolarized [1-(13)C] lactate compared to GBM, consistent with their metabolic reprogramming. Furthermore, hyperpolarized [1-(13)C] lactate production was not affected by chemotherapeutic treatment with temozolomide (TMZ) in mutant IDH1 tumors, in contrast to previous reports in GBM. Our results demonstrate the unusual metabolic imaging profile of mutant IDH1 gliomas, which, when combined with other clinically available imaging methods, could be used to detect the presence of the IDH1 mutation in vivo. PMID:27437179

  20. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate.

    PubMed

    Bastiaansen, Jessica A M; Merritt, Matthew E; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) (13)C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-(13)C]pyruvate and [1-(13)C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [(13)C]bicarbonate (-48%), [1-(13)C]acetylcarnitine (+113%), and [5-(13)C]glutamate (-63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-(13)C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-(13)C]acetoacetate and [1-(13)C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-(13)C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (-82%). Combining HP (13)C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  1. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-13C]butyrate and [1-13C]pyruvate

    PubMed Central

    Bastiaansen, Jessica A. M.; Merritt, Matthew E.; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) 13C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-13C]pyruvate and [1-13C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [13C]bicarbonate (−48%), [1-13C]acetylcarnitine (+113%), and [5-13C]glutamate (−63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-13C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-13C]acetoacetate and [1-13C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-13C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (−82%). Combining HP 13C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  2. Monitoring Chemotherapeutic Response by Hyperpolarized 13C-Fumarate MRS and Diffusion MRI

    PubMed Central

    Mignion, Lionel; Dutta, Prasanta; Martinez, Gary V.; Foroutan, Parastou; Gillies, Robert J.; Jordan, Bénédicte F.

    2015-01-01

    Targeted chemotherapeutic agents often do not result in tumor shrinkage, so new biomarkers that correlate with clinical efficacy are needed. In this study, we investigated noninvasive imaging protocols to monitor responses to sorafenib, a multikinase inhibitor approved for treatment of renal cell and hepatocellular carcinoma. Healthy cells are impermeable to fumarate, so conversion of this metabolite to malate as detected by 13C-magnetic resonance spectroscopy (MRS) has been suggested as one marker for cell death and treatment response in tumors. Diffusion MRI also has been suggested as a measure of therapy-induced cytotoxic edema because viable cells act as a diffusion barrier in tissue. For these reasons, we assessed sorafenib responses using hyperpolarized 13C-fumarate, diffusion-weighted MRI (DW-MRI) in a xenograft model of human breast cancer in which daily administration of sorafenib was sufficient to stabilize tumor growth. We detected signals from fumarate and malate following intravenous administration of hyperpolarized fumarate with a progressive increase in the malate-to-fumarate (MA/FA) ratio at days 2 to 5 after sorafenib infusion. The apparent diffusion coefficient (ADC) measured by DW-MRI increased in the treated group consistent with cytotoxic edema. However, the MA/FA ratio was a more sensitive marker of therapeutic response than ADC, with 2.8-fold versus 1.3-fold changes, respectively, by day 5 of drug treatment. Histologic analyses confirmed cell death in the sorafenib-treated cohort. Notably, 13C-pyruvate-to-lactate conversion was not affected by sorafenib in the breast cancer model examined. Our results illustrate how combining hyperpolarized substrates with DW-MRI can allow noninvasive monitoring of targeted therapeutic responses at relatively early times after drug administration. PMID:24285723

  3. Monitoring chemotherapeutic response by hyperpolarized 13C-fumarate MRS and diffusion MRI.

    PubMed

    Mignion, Lionel; Dutta, Prasanta; Martinez, Gary V; Foroutan, Parastou; Gillies, Robert J; Jordan, Bénédicte F

    2014-02-01

    Targeted chemotherapeutic agents often do not result in tumor shrinkage, so new biomarkers that correlate with clinical efficacy are needed. In this study, we investigated noninvasive imaging protocols to monitor responses to sorafenib, a multikinase inhibitor approved for treatment of renal cell and hepatocellular carcinoma. Healthy cells are impermeable to fumarate, so conversion of this metabolite to malate as detected by (13)C-magnetic resonance spectroscopy (MRS) has been suggested as one marker for cell death and treatment response in tumors. Diffusion MRI also has been suggested as a measure of therapy-induced cytotoxic edema because viable cells act as a diffusion barrier in tissue. For these reasons, we assessed sorafenib responses using hyperpolarized (13)C-fumarate, diffusion-weighted MRI (DW-MRI) in a xenograft model of human breast cancer in which daily administration of sorafenib was sufficient to stabilize tumor growth. We detected signals from fumarate and malate following intravenous administration of hyperpolarized fumarate with a progressive increase in the malate-to-fumarate (MA/FA) ratio at days 2 to 5 after sorafenib infusion. The apparent diffusion coefficient (ADC) measured by DW-MRI increased in the treated group consistent with cytotoxic edema. However, the MA/FA ratio was a more sensitive marker of therapeutic response than ADC, with 2.8-fold versus 1.3-fold changes, respectively, by day 5 of drug treatment. Histologic analyses confirmed cell death in the sorafenib-treated cohort. Notably, (13)C-pyruvate-to-lactate conversion was not affected by sorafenib in the breast cancer model examined. Our results illustrate how combining hyperpolarized substrates with DW-MRI can allow noninvasive monitoring of targeted therapeutic responses at relatively early times after drug administration. PMID:24285723

  4. In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-13C]glutamine

    NASA Astrophysics Data System (ADS)

    Cabella, C.; Karlsson, M.; Canapè, C.; Catanzaro, G.; Colombo Serra, S.; Miragoli, L.; Poggi, L.; Uggeri, F.; Venturi, L.; Jensen, P. R.; Lerche, M. H.; Tedoldi, F.

    2013-07-01

    Glutamine metabolism is, with its many links to oncogene expression, considered a crucial step in cancer metabolism and it is thereby a key target for alteration in cancer development. In particular, strong correlations have been reported between oncogene expression and expression and activity of the enzyme glutaminase. This mitochondrial enzyme, which is responsible for the deamidation of glutamine to form glutamate, is overexpressed in many tumour tissues. In animal models, glutaminase expression is correlated with tumour growth rate and it is readily possible to limit tumour growth by suppression of glutaminase activity. In principle, hyperpolarized 13C MR spectroscopy can provide insight to glutamine metabolism and should hence be a valuable tool to study changes in glutaminase activity as tumours progress. However, no such successful in vivo studies have been reported, even though several good biological models have been tested. This may, at least partly, be due to problems in preparing glutamine for hyperpolarization. This paper reports a new and improved preparation of hyperpolarized [5-13C]glutamine, which provides a highly sensitive 13C MR marker. With this preparation of hyperpolarized [5-13C]glutamine, glutaminase activity in vivo in a rat liver tumour was investigated. Moreover, this marker was also used to measure response to drug treatment in vitro in cancer cells. These examples of [5-13C]glutamine used in tumour models warrant the new preparation to allow metabolic studies with this conditionally essential amino acid.

  5. Hyperpolarized (13)C Magnetic Resonance and Its Use in Metabolic Assessment of Cultured Cells and Perfused Organs.

    PubMed

    Lumata, Lloyd; Yang, Chendong; Ragavan, Mukundan; Carpenter, Nicholas; DeBerardinis, Ralph J; Merritt, Matthew E

    2015-01-01

    Diseased tissue is often characterized by abnormalities in intermediary metabolism. Observing these alterations in situ may lead to an improved understanding of pathological processes and novel ways to monitor these processes noninvasively in human patients. Although (13)C is a stable isotope safe for use in animal models of disease as well as human subjects, its utility as a metabolic tracer has largely been limited to ex vivo analyses employing analytical techniques like mass spectrometry or nuclear magnetic resonance spectroscopy. Neither of these techniques is suitable for noninvasive metabolic monitoring, and the low abundance and poor gyromagnetic ratio of conventional (13)C make it a poor nucleus for imaging. However, the recent advent of hyperpolarization methods, particularly dynamic nuclear polarization (DNP), makes it possible to enhance the spin polarization state of (13)C by many orders of magnitude, resulting in a temporary amplification of the signal sufficient for monitoring kinetics of enzyme-catalyzed reactions in living tissue through magnetic resonance spectroscopy or magnetic resonance imaging. Here, we review DNP techniques to monitor metabolism in cultured cells, perfused hearts, and perfused livers, focusing on our experiences with hyperpolarized [1-(13)C]pyruvate. We present detailed approaches to optimize the DNP procedure, streamline biological sample preparation, and maximize detection of specific metabolic activities. We also discuss practical aspects in the choice of metabolic substrates for hyperpolarization studies and outline some of the current technical and conceptual challenges in the field, including efforts to use hyperpolarization to quantify metabolic rates in vivo. PMID:26358902

  6. Sub-second Proton Imaging of 13C Hyperpolarized Contrast Agents in Water

    PubMed Central

    Truong, Milton L.; Coffey, Aaron M.; Shchepin, Roman V.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2014-01-01

    Indirect proton detection of 13C hyperpolarized contrast agents potentially enables greater sensitivity. Presented here is a study of sub-second projection imaging of hyperpolarized 13C contrast agent addressing the obstacle posed by water suppression for indirect detection in vivo. Sodium acetate phantoms were used to develop and test water suppression and sub-second imaging with frequency selective RF pulses using spectroscopic and imaging indirect proton detection. A 9.8 mM aqueous solution of 13C PHIP hyperpolarized 2-hydroxyethyl-13C-propionate-d2,3,3 (HEP),

    ~25% was used for demonstration of indirect proton sub-second imaging detection. Balanced 2D FSSFP (Fast Steady State Free Precession) allowed recording proton images with FOV = 64×64 mm2 and spatial resolution 2×2 mm2 with total acquisition time of less than 0.2 s. In thermally polarized sodium 1-13C-acetate, 13C to 1H polarization transfer efficiency of 45.1% of the theoretically predicted values was observed in imaging detection corresponding to an 11 fold of overall sensitivity improvement compared to direct 13C FSSFP imaging. 13C to 1H polarization transfer efficiency of 27% was observed in imaging detection corresponding to a 3.25 fold sensitivity improvement compared to direct 13C FSSFP imaging with hyperpolarized HEP. The range of potential applications and limitations of this sub-second and ultra-sensitive imaging approach are discussed. PMID:24753438

  7. High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.

    2015-11-01

    Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.

  8. Robust hyperpolarized (13)C metabolic imaging with selective non-excitation of pyruvate (SNEP).

    PubMed

    Chen, Way Cherng; Teo, Xing Qi; Lee, Man Ying; Radda, George K; Lee, Philip

    2015-08-01

    In vivo metabolic imaging using hyperpolarized [1-(13)C]pyruvate provides localized biochemical information and is particularly useful in detecting early disease changes, as well as monitoring disease progression and treatment response. However, a major limitation of hyperpolarized magnetization is its unrecoverable decay, due not only to T1 relaxation but also to radio-frequency (RF) excitation. RF excitation schemes used in metabolic imaging must therefore be able to utilize available hyperpolarized magnetization efficiently and robustly for the optimal detection of substrate and metabolite activities. In this work, a novel RF excitation scheme called selective non-excitation of pyruvate (SNEP) is presented. This excitation scheme involves the use of a spectral selective RF pulse to specifically exclude the excitation of [1-(13)C]pyruvate, while uniformly exciting the key metabolites of interest (namely [1-(13)C]lactate and [1-(13)C]alanine) and [1-(13)C]pyruvate-hydrate. By eliminating the loss of hyperpolarized [1-(13)C]pyruvate magnetization due to RF excitation, the signal from downstream metabolite pools is increased together with enhanced dynamic range. Simulation results, together with phantom measurements and in vivo experiments, demonstrated the improvement in signal-to-noise ratio (SNR) and the extension of the lifetime of the [1-(13)C]lactate and [1-(13)C]alanine pools when compared with conventional non-spectral selective (NS) excitation. SNEP has also been shown to perform comparably well with multi-band (MB) excitation, yet SNEP possesses distinct advantages, including ease of implementation, less stringent demands on gradient performance, increased robustness to frequency drifts and B0 inhomogeneity as well as easier quantification involving the use of [1-(13)C]pyruvate-hydrate as a proxy for the actual [1-(13)C] pyruvate signal. SNEP is therefore a promising alternative for robust hyperpolarized [1-(13)C]pyruvate metabolic imaging with high

  9. Kinetic modeling of hyperpolarized 13C 1-pyruvate metabolism in normal rats and TRAMP mice

    NASA Astrophysics Data System (ADS)

    Zierhut, Matthew L.; Yen, Yi-Fen; Chen, Albert P.; Bok, Robert; Albers, Mark J.; Zhang, Vickie; Tropp, Jim; Park, Ilwoo; Vigneron, Daniel B.; Kurhanewicz, John; Hurd, Ralph E.; Nelson, Sarah J.

    2010-01-01

    PurposeTo investigate metabolic exchange between 13C 1-pyruvate, 13C 1-lactate, and 13C 1-alanine in pre-clinical model systems using kinetic modeling of dynamic hyperpolarized 13C spectroscopic data and to examine the relationship between fitted parameters and dose-response. Materials and methodsDynamic 13C spectroscopy data were acquired in normal rats, wild type mice, and mice with transgenic prostate tumors (TRAMP) either within a single slice or using a one-dimensional echo-planar spectroscopic imaging (1D-EPSI) encoding technique. Rate constants were estimated by fitting a set of exponential equations to the dynamic data. Variations in fitted parameters were used to determine model robustness in 15 mm slices centered on normal rat kidneys. Parameter values were used to investigate differences in metabolism between and within TRAMP and wild type mice. ResultsThe kinetic model was shown here to be robust when fitting data from a rat given similar doses. In normal rats, Michaelis-Menten kinetics were able to describe the dose-response of the fitted exchange rate constants with a 13.65% and 16.75% scaled fitting error (SFE) for kpyr→lac and kpyr→ala, respectively. In TRAMP mice, kpyr→lac increased an average of 94% after up to 23 days of disease progression, whether the mice were untreated or treated with casodex. Parameters estimated from dynamic 13C 1D-EPSI data were able to differentiate anatomical structures within both wild type and TRAMP mice. ConclusionsThe metabolic parameters estimated using this approach may be useful for in vivo monitoring of tumor progression and treatment efficacy, as well as to distinguish between various tissues based on metabolic activity.

  10. Real Time Molecular Imaging of TCA Cycle Metabolism in vivo By Hyperpolarized 1-13C Diethyl Succinate

    PubMed Central

    Zacharias, Niki M.; Chan, Henry R.; Sailasuta, Napapon; Ross, Brian D.

    2011-01-01

    The Krebs tricarboxylic acid cycle (TCA) is central to metabolic energy production and is known to be altered in many disease states. Real time molecular imaging of TCA cycle in vivo will be important in understanding the metabolic basis of several diseases. Positron emission tomography (PET) using FDG-glucose (2-[18F]fluoro-2-deoxy-D-glucose) is already being used as a metabolic imaging agent in clinics. However, FDG-glucose does not reveal anything past glucose uptake and phosphorylation. We have developed a new metabolic imaging agent, hyperpolarized diethyl 1-13C 2,3-d2 succinate, that allows for real time in vivo imaging and spectroscopy of the TCA cycle. Diethyl succinate can be hyperpolarized using parahydrogen induced polarization (PHIP) in an aqueous solution with signal enhancement of 5000 compared to Boltzmann polarization. 13C magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) were achieved in vivo seconds after injection of 10 to 20 μmol of hyperpolarized diethyl succinate into normal mice. The downstream metabolites of hyperpolarized diethyl succinate were identified in vivo as malate, succinate, fumarate and aspartate. The metabolism of diethyl succinate was altered after exposing the animal to 3-nitropropionate, a known irreversible inhibitor of succinate dehydrogenase. Based on our results, hyperpolarized diethyl succinate allows for in real time in vivo MRI and MRS with a high signal to noise ratio and with visualization of multiple steps of the TCA cycle. Hyperpolarization of diethyl succinate and its in vivo applications may reveal an entirely new regime wherein the local status of TCA cycle metabolism is interrogated on the time scale of seconds to minutes with unprecedented chemical specificity and MR sensitivity. PMID:22146049

  11. Metabolism of hyperpolarized [1-(13) C]pyruvate through alternate pathways in rat liver.

    PubMed

    Jin, Eunsook S; Moreno, Karlos X; Wang, Jian-Xiong; Fidelino, Leila; Merritt, Matthew E; Sherry, A Dean; Malloy, Craig R

    2016-04-01

    The source of hyperpolarized (HP) [(13) C]bicarbonate in the liver during metabolism of HP [1-(13) C]pyruvate is uncertain and likely changes with physiology. Multiple processes including decarboxylation through pyruvate dehydrogenase or pyruvate carboxylase followed by subsequent decarboxylation via phosphoenolpyruvate carboxykinase (gluconeogenesis) could play a role. Here we tested which metabolic fate of pyruvate contributed to the appearance of HP [(13) C]bicarbonate during metabolism of HP [1-(13) C]pyruvate by the liver in rats after 21 h of fasting compared to rats with free access to food. The (13) C NMR of HP [(13) C]bicarbonate was observed in the liver of fed rats, but not in fasted rats where pyruvate carboxylation and gluconeogenesis was active. To further explore the relative fluxes through pyruvate carboxylase versus pyruvate dehydrogenase in the liver under typical conditions of hyperpolarization studies, separate parallel experiments were performed with rats given non-hyperpolarized [2,3-(13) C]pyruvate. (13) C NMR analysis of glutamate isolated from the liver of rats revealed that flux from injected pyruvate through pyruvate dehydrogenase was dominant under fed conditions whereas flux through pyruvate carboxylase dominated under fasted conditions. The NMR signal of HP [(13) C]bicarbonate does not parallel pyruvate carboxylase activity followed by subsequent decarboxylation reaction leading to glucose production. In the liver of healthy well-fed rats, the appearance of HP [(13) C]bicarbonate exclusively reflects decarboxylation of HP [1-(13) C]pyruvate via pyruvate dehydrogenase. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26836042

  12. HYPERPOLARIZED 13C MAGNETIC RESONANCE AND ITS USE IN METABOLIC ASSESSMENT OF CULTURED CELLS AND PERFUSED ORGANS

    PubMed Central

    Lumata, Lloyd; Yang, Chendong; Ragavan, Mukundan; Carpenter, Nicholas; DeBerardinis, Ralph J.; Merritt, Matthew E.

    2016-01-01

    Diseased tissue is often characterized by abnormalities in intermediary metabolism. Observing these alterations in situ may lead to an improved understanding of pathological processes and novel ways to monitor these processes non-invasively in human patients. Although 13C is a stable isotope safe for use in animal models of disease as well as human subjects, its utility as a metabolic tracer has largely been limited to ex vivo analyses employing analytical techniques like mass spectrometry or nuclear magnetic resonance spectroscopy. Neither of these techniques is suitable for non-invasive metabolic monitoring, and the low abundance and poor gyromagnetic ratio of conventional 13C make it a poor nucleus for imaging. However, the recent advent of hyperpolarization methods, particularly dynamic nuclear polarization (DNP), make it possible to enhance the spin polarization state of 13C by many orders of magnitude, resulting in a temporary amplification of the signal sufficient for monitoring kinetics of enzyme-catalyzed reactions in living tissue through magnetic resonance spectroscopy or magnetic resonance imaging. Here we review DNP techniques to monitor metabolism in cultured cells, perfused hearts, and perfused livers, focusing on our experiences with hyperpolarized [1-13C]pyruvate. We present detailed approaches to optimize the DNP procedure, streamline biological sample preparation, and maximize detection of specific metabolic activities. We also discuss practical aspects in the choice of metabolic substrates for hyperpolarization studies, and outline some of the current technical and conceptual challenges in the field, including efforts to use hyperpolarization to quantify metabolic rates in vivo. PMID:26358902

  13. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  14. A general chemical shift decomposition method for hyperpolarized (13) C metabolite magnetic resonance imaging.

    PubMed

    Wang, Jian-Xiong; Merritt, Matthew E; Sherry, Dean; Malloy, Craig R

    2016-08-01

    Metabolic imaging with hyperpolarized carbon-13 allows sequential steps of metabolism to be detected in vivo. Potential applications in cancer, brain, muscular, myocardial, and hepatic metabolism suggest that clinical applications could be readily developed. A primary concern in imaging hyperpolarized nuclei is the irreversible decay of the enhanced magnetization back to thermal equilibrium. Multiple methods for rapid imaging of hyperpolarized substrates and their products have been proposed with a multi-point Dixon method distinguishing itself as a robust protocol for imaging [1-(13) C]pyruvate. We describe here a generalized chemical shift decomposition method that incorporates a single-shot spiral imaging sequence plus a spectroscopic sequence to retain as much spin polarization as possible while allowing detection of metabolites that have a wide range of chemical shift values. The new method is demonstrated for hyperpolarized [1-(13) C]pyruvate, [1-(13) C]acetoacetate, and [2-(13) C]dihydroxyacetone. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27060361

  15. The Feasibility of Assessing Branched-Chain Amino Acid Metabolism in Cellular Models of Prostate Cancer with Hyperpolarized [1-13C]-Ketoisocaproate

    PubMed Central

    Billingsley, Kelvin L.; Park, Jae Mo; Josan, Sonal; Hurd, Ralph; Mayer, Dirk; Spielman-Sun, Eleanor; Nishimura, Dwight G.; Brooks, James D.; Spielman, Daniel

    2014-01-01

    Recent advancements in the field of hyperpolarized 13C magnetic resonance spectroscopy (MRS) have yielded powerful techniques capable of real-time analysis of metabolic pathways. These non-invasive methods have increasingly shown application in impacting disease diagnosis and have further been employed in mechanistic studies of disease onset and progression. Our goals were to investigate branched-chain aminotransferase (BCAT) activity in prostate cancer with a novel molecular probe, hyperpolarized [1-13C]-2-ketoisocaproate ([1-13C]-KIC), and explore the potential of branched-chain amino acid (BCAA) metabolism to serve as a biomarker. Using traditional spectrophotometric assays, BCAT enzymatic activities were determined in vitro for various sources of prostate cancer (human, transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse and human cell lines). These preliminary studies indicated that low levels of BCAT activity were present in all models of prostate cancer but enzymatic levels are altered significantly in prostate cancer relative to healthy tissue. The MR spectroscopic studies were conducted with two cellular models (PC-3 and DU-145) that exhibited levels of BCAA metabolism comparable to the human disease state. Hyperpolarized [1-13C]-KIC was administered to prostate cancer cell lines, and the conversion of [1-13C]-KIC to the metabolic product, [1-13C]-leucine ([1-13C]-Leu), could be monitored via hyperpolarized 13C MRS. PMID:24907854

  16. Analysis of hyperpolarized dynamic 13C lactate imaging in a transgenic mouse model of prostate cancer☆

    PubMed Central

    Lupo, Janine M.; Chen, Albert P.; Zierhut, Matthew L.; Bok, Robert A.; Cunningham, Charles H.; Kurhanewicz, John; Vigneron, Daniel B.; Nelson, Sarah J.

    2011-01-01

    This study investigated the application of an acquisition that selectively excites the [1-13C]lactate resonance and allows dynamic tracking of the conversion of 13C-lactate from hyperpolarized 13C-pyruvate at a high spatial resolution. In order to characterize metabolic processes occurring in a mouse model of prostate cancer, 20 sequential 3D images of 13C-lactate were acquired 5 s apart using a pulse sequence that incorporated a spectral–spatial excitation pulse and a flyback echo-planar readout to track the time course of newly converted 13C-lactate after injection of prepolarized 13C-pyruvate. The maximum lactate signal (MLS), full-width half-maximum (FWHM), time to the peak 13C-lactate signal (TTP) and area under the dynamic curve were calculated from the dynamic images of 10 TRAMP mice and two wild-type controls. The regional variation in 13C-lactate associated with the injected pyruvate was demonstrated by the peak of the 13C-lactate signal occurring earlier in the kidney than in the tumor region. The intensity of the dynamic 13C-lactate curves also varied spatially within the tumor, illustrating the heterogeneity in metabolism that was most prominent in more advanced stages of disease development. The MLS was significantly higher in TRAMP mice that had advanced disease. PMID:19695815

  17. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization

    PubMed Central

    Keshari, Kayvan R.; Wilson, David M.

    2014-01-01

    The study of transient chemical phenomena by conventional NMR has proved elusive, particularly for non-1H nuclei. For 13C, hyperpolarization using the dynamic nuclear polarization (DNP) technique has emerged as a powerful means to improve SNR. The recent development of rapid dissolution DNP methods has facilitated previously impossible in vitro and in vivo study of small molecules. This review presents the basics of the DNP technique, identification of appropriate DNP substrates, and approaches to increase hyperpolarized signal lifetimes. Also addressed are the biochemical events to which DNP-NMR has been applied, with descriptions of several probes that have met with in vivo success. PMID:24363044

  18. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization.

    PubMed

    Keshari, Kayvan R; Wilson, David M

    2014-03-01

    The study of transient chemical phenomena by conventional NMR has proved elusive, particularly for non-(1)H nuclei. For (13)C, hyperpolarization using the dynamic nuclear polarization (DNP) technique has emerged as a powerful means to improve SNR. The recent development of rapid dissolution DNP methods has facilitated previously impossible in vitro and in vivo study of small molecules. This review presents the basics of the DNP technique, identification of appropriate DNP substrates, and approaches to increase hyperpolarized signal lifetimes. Also addressed are the biochemical events to which DNP-NMR has been applied, with descriptions of several probes that have met with in vivo success. PMID:24363044

  19. 13C NMR spectroscopy applications to brain energy metabolism

    PubMed Central

    Rodrigues, Tiago B.; Valette, Julien; Bouzier-Sore, Anne-Karine

    2013-01-01

    13C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of 13C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the 13C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of 13C NMR data. Finally, new perspectives and applications offered by 13C hyperpolarization are described. PMID:24367329

  20. A Catalyzing Phantom for Reproducible Dynamic Conversion of Hyperpolarized [1-13C]-Pyruvate

    PubMed Central

    Walker, Christopher M.; Lee, Jaehyuk; Ramirez, Marc S.; Schellingerhout, Dawid; Millward, Steven; Bankson, James A.

    2013-01-01

    In vivo real time spectroscopic imaging of hyperpolarized 13C labeled metabolites shows substantial promise for the assessment of physiological processes that were previously inaccessible. However, reliable and reproducible methods of measurement are necessary to maximize the effectiveness of imaging biomarkers that may one day guide personalized care for diseases such as cancer. Animal models of human disease serve as poor reference standards due to the complexity, heterogeneity, and transient nature of advancing disease. In this study, we describe the reproducible conversion of hyperpolarized [1-13C]-pyruvate to [1-13C]-lactate using a novel synthetic enzyme phantom system. The rate of reaction can be controlled and tuned to mimic normal or pathologic conditions of varying degree. Variations observed in the use of this phantom compare favorably against within-group variations observed in recent animal studies. This novel phantom system provides crucial capabilities as a reference standard for the optimization, comparison, and certification of quantitative imaging strategies for hyperpolarized tracers. PMID:23977006

  1. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    NASA Astrophysics Data System (ADS)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2014-03-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.

  2. Multiparametric human hepatocellular carcinoma characterization and therapy response evaluation by hyperpolarized (13) C MRSI.

    PubMed

    Düwel, Stephan; Durst, Markus; Gringeri, Concetta V; Kosanke, Yvonne; Gross, Claudia; Janich, Martin A; Haase, Axel; Glaser, Steffen J; Schwaiger, Markus; Schulte, Rolf F; Braren, Rickmer; Menzel, Marion I

    2016-07-01

    Individual tumor characterization and treatment response monitoring based on current medical imaging methods remain challenging. This work investigates hyperpolarized (13) C compounds in an orthotopic rat hepatocellular carcinoma (HCC) model system before and after transcatheter arterial embolization (TAE). HCC ranks amongst the top six most common cancer types in humans and accounts for one-third of cancer-related deaths worldwide. Early therapy response monitoring could aid in the development of personalized therapy approaches and novel therapeutic concepts. Measurements with selectively (13) C-labeled and hyperpolarized urea, pyruvate and fumarate were performed in tumor-bearing rats before and after TAE. Two-dimensional, slice-selective MRSI was used to obtain spatially resolved maps of tumor perfusion, cell energy metabolic conversion rates and necrosis, which were additionally correlated with immunohistochemistry. All three injected compounds, taken together with their respective metabolites, exhibited similar signal distributions. TAE induced a decrease in blood flow into the tumor and thus a decrease in tumor to muscle and tumor to liver ratios of urea, pyruvate and its metabolites, alanine and lactate, whereas conversion rates remained stable or increased on TAE in tumor, muscle and liver tissue. Conversion from fumarate to malate successfully indicated individual levels of necrosis, and global malate signals after TAE suggested the washout of fumarase or malate itself on necrosis. This study presents a combination of three (13) C compounds as novel candidate biomarkers for a comprehensive characterization of genetically and molecularly diverse HCC using hyperpolarized MRSI, enabling the simultaneous detection of differences in tumor perfusion, metabolism and necrosis. If, as in this study, bolus dynamics are not required and qualitative perfusion information is sufficient, the desired information could be extracted from hyperpolarized fumarate and

  3. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    PubMed

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. PMID:27414749

  4. Cardiac perfusion imaging using hyperpolarized 13c urea using flow sensitizing gradients

    PubMed Central

    Miller, Jack J.; Robson, Matthew D.; Tyler, Damian J.

    2015-01-01

    Purpose To demonstrate the feasibility of imaging the first passage of a bolus of hyperpolarized 13C urea through the rodent heart using flow‐sensitizing gradients to reduce signal from the blood pool. Methods A flow‐sensitizing bipolar gradient was optimized to reduce the bright signal within the cardiac chambers, enabling improved contrast of the agent within the tissue capillary bed. The gradient was incorporated into a dynamic golden angle spiral 13C imaging sequence. Healthy rats were scanned during rest (n = 3) and under adenosine stress‐induced hyperemia (n = 3). Results A two‐fold increase in myocardial perfusion relative to rest was detected during adenosine stress‐induced hyperemia, consistent with a myocardial perfusion reserve of two in rodents. Conclusion The new pulse sequence was used to obtain dynamic images of the first passage of hyperpolarized 13C urea in the rodent heart, without contamination from bright signal within the neighboring cardiac lumen. This probe of myocardial perfusion is expected to enable new hyperpolarized 13C studies in which the cardiac metabolism/perfusion mismatch can be identified. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1474–1483, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. PMID:25991580

  5. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  6. In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate.

    PubMed

    Kohler, S J; Yen, Y; Wolber, J; Chen, A P; Albers, M J; Bok, R; Zhang, V; Tropp, J; Nelson, S; Vigneron, D B; Kurhanewicz, J; Hurd, R E

    2007-07-01

    We present for the first time dynamic spectra and spectroscopic images acquired in normal rats at 3T following the injection of (13)C-1-pyruvate that was hyperpolarized by the dynamic nuclear polarization (DNP) method. Spectroscopic sampling was optimized for signal-to-noise ratio (SNR) and for spectral resolution of (13)C-1-pyruvate and its metabolic products (13)C-1-alanine, (13)C-1-lactate, and (13)C-bicarbonate. Dynamic spectra in rats were collected with a temporal resolution of 3 s from a 90-mm axial slab using a dual (1)H-(13)C quadrature birdcage coil to observe the combined effects of metabolism, flow, and T(1) relaxation. In separate experiments, spectroscopic imaging data were obtained during a 17-s acquisition of a 20-mm axial slice centered on the rat kidney region to provide information on the spatial distribution of the metabolites. Conversion of pyruvate to lactate, alanine, and bicarbonate occurred within a minute of injection. Alanine was observed primarily in skeletal muscle and liver, while pyruvate, lactate, and bicarbonate concentrations were relatively high in the vasculature and kidneys. In contrast to earlier work at 1.5 T, bicarbonate was routinely observed in skeletal muscle as well as the kidney and vasculature. PMID:17659629

  7. Time-course metabolic changes in high-fat diet-induced obesity rats: A pilot study using hyperpolarized (13)C dynamic MRS.

    PubMed

    Kim, Gwang-Won; Ahn, Kyu-Youn; Kim, Yun-Hyeon; Jeong, Gwang-Woo

    2016-10-01

    The purpose of this study was to investigate the time-course metabolic changes based on hyperpolarized (13)C magnetic resonance spectroscopy (MRS) in high-fat diet (HFD)-induced obesity rats and the correlation between metabolic and serum enzyme levels. Sprague-Dawley rats were fed either HFD (60% fat) or normal diet (10% fat) for 6weeks. A HyperSense DNP was used to hyperpolarize [1-(13)C] pyruvic acid and the hyperpolarized (13)C MRS was examined every 2weeks in the course of 6weeks using a 3T GE MR750 scanner. The body weight of HFD-induced obese rats was significantly increased compared to normal rats at the 6th week after the onset of feeding (p=0.05). Simultaneously, the HFD-induced obese rats showed significantly increased levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and low-density lipoprotein (LDL)-cholesterol compared to normal rats (p≤0.05). In the dynamic (13)C MR spectra acquired at the 6th week, the obese rats showed significantly increased ratios of [1-(13)C] lactate/[1-(13)C] pyruvate and [1-(13)C] alanine/[1-(13)C] pyruvate (p=0.05). The (13)C spectral outcomes are positively correlated with the enzyme levels of ALT and LDH in the HFD-induced obesity. The [1-(13)C] lactate and [1-(13)C] alanine are potentially considered as noninvasive biomarkers for the HFD-induced obesity. PMID:27374624

  8. Development and testing of hyperpolarized 13C MR calibrationless parallel imaging

    PubMed Central

    Feng, Yesu; Gordon, Jeremy W.; Shin, Peter J.; von Morze, Cornelius; Lustig, Michael; Larson, Peder E.Z.; Ohliger, Michael A.; Carvajal, Lucas; Tropp, James; Pauly, John M.; Vigneron, Daniel B.

    2016-01-01

    A calibrationless parallel imaging technique developed previously for 1H MRI was modified and tested for hyperpolarized 13C MRI for applications requiring large FOV and high spatial resolution. The technique was demonstrated with both retrospective and prospective under-sampled data acquired in phantom and in vivo rat studies. A 2-fold acceleration was achieved using a 2D symmetric EPI readout equipped with random blips on the phase encode dimension. Reconstructed images showed excellent qualitative agreement with fully sampled data. Further acceleration can be achieved using acquisition schemes that incorporate multi-dimensional under-sampling. PMID:26679288

  9. Directly detected (55)Mn MRI: application to phantoms for human hyperpolarized (13)C MRI development.

    PubMed

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B

    2014-12-01

    In this work we demonstrate for the first time directly detected manganese-55 ((55)Mn) magnetic resonance imaging (MRI) using a clinical 3T MRI scanner designed for human hyperpolarized (13)C clinical studies with no additional hardware modifications. Due to the similar frequency of the (55)Mn and (13)C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective "(13)C" MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, (55)Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical (13)C phantom MRI, at greatly reduced cost as compared with large (13)C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d=8 cm) containing concentrated aqueous sodium permanganate (2.7 M) was scanned rapidly by (55)Mn MRI in a human head coil tuned for (13)C, using a balanced steady state free precession acquisition. The requisite penetration of radiofrequency magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for (55)Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image signal-to-noise ratio of ~60 at 0.5 cm(3) spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP (13)C coils and methods designed for human studies. PMID:25179135

  10. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  11. Acute porcine renal metabolic effect of endogastric soft drink administration assessed with hyperpolarized [1‐13c]pyruvate

    PubMed Central

    Hansen, Esben Søvsø Szocska; Kjærgaard, Uffe; Bertelsen, Lotte Bonde; Ringgaard, Steffen; Stødkilde‐Jørgensen, Hans

    2015-01-01

    Purpose Our aim was to determine the quantitative reproducibility of metabolic breakdown products in the kidney following intravenous injection of hyperpolarized [1‐13C]pyruvate and secondly to investigate the metabolic effect on the pyruvate metabolism of oral sucrose load using dissolution dynamic nuclear polarization. By this technique, metabolic alterations in several different metabolic related diseases and their metabolic treatment responses can be accessed. Methods In four healthy pigs the lactate‐to‐pyruvate, alanine‐to‐pyruvate and bicarbonate‐to‐pyruvate ratio was measured following administration of regular cola and consecutive injections of hyperpolarized [1‐13C]pyruvate four times within an hour. Results The overall lactate‐to‐pyruvate metabolic profile changed significantly over one hour following an acute sucrose load leading to a significant rise in blood glucose. Conclusion The reproducibility of hyperpolarized magnetic resonance spectroscopy in the healthy pig kidney demonstrated a repeatability of more than 94% for all metabolites and, furthermore, that the pyruvate to lactate conversion and the blood glucose level is elevated following endogastric sucrose administration. Magn Reson Med 74:558–563, 2015. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID:26014387

  12. Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle.

    PubMed

    Park, Jae Mo; Josan, Sonal; Mayer, Dirk; Hurd, Ralph E; Chung, Youngran; Bendahan, David; Spielman, Daniel M; Jue, Thomas

    2015-10-01

    The production of glycolytic end products, such as lactate, usually evokes a cellular shift from aerobic to anaerobic ATP generation and O2 insufficiency. In the classical view, muscle lactate must be exported to the liver for clearance. However, lactate also forms under well-oxygenated conditions, and this has led investigators to postulate lactate shuttling from non-oxidative to oxidative muscle fiber, where it can serve as a precursor. Indeed, the intracellular lactate shuttle and the glycogen shunt hypotheses expand the vision to include a dynamic mobilization and utilization of lactate during a muscle contraction cycle. Testing the tenability of these provocative ideas during a rapid contraction cycle has posed a technical challenge. The present study reports the use of hyperpolarized [1-(13)C]lactate and [2-(13)C]pyruvate in dynamic nuclear polarization (DNP) NMR experiments to measure the rapid pyruvate and lactate kinetics in rat muscle. With a 3 s temporal resolution, (13)C DNP NMR detects both [1-(13)C]lactate and [2-(13)C]pyruvate kinetics in muscle. Infusion of dichloroacetate stimulates pyruvate dehydrogenase activity and shifts the kinetics toward oxidative metabolism. Bicarbonate formation from [1-(13)C]lactate increases sharply and acetyl-l-carnitine, acetoacetate and glutamate levels also rise. Such a quick mobilization of pyruvate and lactate toward oxidative metabolism supports the postulated role of lactate in the glycogen shunt and the intracellular lactate shuttle models. The study thus introduces an innovative DNP approach to measure metabolite transients, which will help delineate the cellular and physiological role of lactate and glycolytic end products. PMID:26347554

  13. Transmembrane Exchange of Hyperpolarized 13C-Urea in Human Erythrocytes: Subminute Timescale Kinetic Analysis

    PubMed Central

    Pagès, Guilhem; Puckeridge, Max; Liangfeng, Guo; Tan, Yee Ling; Jacob, Chacko; Garland, Marc; Kuchel, Philip W.

    2013-01-01

    The rate of exchange of urea across the membranes of human erythrocytes (red blood cells) was quantified on the 1-s to 2-min timescale. 13C-urea was hyperpolarized and subjected to rapid dissolution and the previously reported (partial) resolution of 13C NMR resonances from the molecules inside and outside red blood cells in suspensions was observed. This enabled a stopped-flow type of experiment to measure the (initially) zero-trans transport of urea with sequential single-pulse 13C NMR spectra, every second for up to ∼2 min. Data were analyzed using Bayesian reasoning and a Markov chain Monte Carlo method with a set of simultaneous nonlinear differential equations that described nuclear magnetic relaxation combined with transmembrane exchange. Our results contribute to quantitative understanding of urea-exchange kinetics in the whole body; and the methodological approach is likely to be applicable to other cellular systems and tissues in vivo. PMID:24209840

  14. Evaluation of high intensity focused ultrasound ablation of prostate tumor with hyperpolarized 13C imaging biomarkers

    NASA Astrophysics Data System (ADS)

    Lee, Jessie E.; Diederich, Chris J.; Salgaonkar, Vasant A.; Bok, Robert; Taylor, Andrew G.; Kurhanewicz, John

    2015-03-01

    Real-time hyperpolarized (HP) 13C MR can be utilized during high-intensity focal ultrasound (HIFU) therapy to improve treatment delivery strategies, provide treatment verification, and thus reduce the need for more radical therapies for lowand intermediate-risk prostate cancers. The goal is to develop imaging biomarkers specific to thermal therapies of prostate cancer using HIFU, and to predict the success of thermal coagulation and identify tissues potentially sensitized to adjuvant treatment by sub-ablative hyperthermic heat doses. Mice with solid prostate tumors received HIFU treatment (5.6 MHz, 160W/cm2, 60 s), and the MR imaging follow-ups were performed on a wide-bore 14T microimaging system. 13C-labeled pyruvate and urea were used to monitor tumor metabolism and perfusion accordingly. After treatment, the ablated tumor tissue had a loss in metabolism and perfusion. In the regions receiving sub-ablative heat dose, a timedependent change in metabolism and perfusion was observed. The untreated regions behaved as a normal untreated TRAMP prostate tumor would. This promising preliminary study shows the potential of using 13C MR imaging as biomarkers of HIFU/thermal therapies.

  15. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  16. Hyperpolarized 13C urea relaxation mechanism reveals renal changes in diabetic nephropathy

    PubMed Central

    Stokholm Nørlinger, Thomas; Christoffer Hansen, David; Qi, Haiyun; Mose Nielsen, Per; Bonde Bertelsen, Lotte; Henrik Ardenkjaer‐Larsen, Jan; Stødkilde Jørgensen, Hans

    2015-01-01

    Purpose Our aim was to assess a novel 13C radial fast spin echo golden ratio single shot method for interrogating early renal changes in the diabetic kidney, using hyperpolarized (HP) [13C,15N2]urea as a T2 relaxation based contrast bio‐probe. Methods A novel HP 13C MR contrast experiment was conducted in a group of streptozotocin type‐1 diabetic rat model and age matched controls. Results A significantly different relaxation time (P = 0.004) was found in the diabetic kidney (0.49 ± 0.03 s) compared with the controls (0.64 ± 0.02 s) and secondly, a strong correlation between the blood oxygen saturation level and the relaxation times were observed in the healthy controls. Conclusion HP [13C,15N2]urea apparent T2 mapping may be a useful for interrogating local renal pO2 status and renal tissue alterations. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. Magn Reson Med 75:515–518, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:26584247

  17. Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Nelson, Sarah J.; Ozhinsky, Eugene; Li, Yan; Park, Il woo; Crane, Jason

    2013-04-01

    In vivo MRSI is an important imaging modality that has been shown in numerous research studies to give biologically relevant information for assessing the underlying mechanisms of disease and for monitoring response to therapy. The increasing availability of high field scanners and multichannel radiofrequency coils has provided the opportunity to acquire in vivo data with significant improvements in sensitivity and signal to noise ratio. These capabilities may be used to shorten acquisition time and provide increased coverage. The ability to acquire rapid, volumetric MRSI data is critical for examining heterogeneity in metabolic profiles and for relating serial changes in metabolism within the same individual during the course of the disease. In this review we discuss the implementation of strategies that use alternative k-space sampling trajectories and parallel imaging methods in order to speed up data acquisition. The impact of such methods is demonstrated using three recent examples of how these methods have been applied. These are to the acquisition of robust 3D 1H MRSI data within 5-10 min at a field strength of 3 T, to obtaining higher sensitivity for 1H MRSI at 7 T and to using ultrafast volumetric and dynamic 13C MRSI for monitoring the changes in signals that occur following the injection of hyperpolarized 13C agents.

  18. Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging.

    PubMed

    Nelson, Sarah J; Ozhinsky, Eugene; Li, Yan; Park, Il woo; Crane, Jason

    2013-04-01

    In vivo MRSI is an important imaging modality that has been shown in numerous research studies to give biologically relevant information for assessing the underlying mechanisms of disease and for monitoring response to therapy. The increasing availability of high field scanners and multichannel radiofrequency coils has provided the opportunity to acquire in vivo data with significant improvements in sensitivity and signal to noise ratio. These capabilities may be used to shorten acquisition time and provide increased coverage. The ability to acquire rapid, volumetric MRSI data is critical for examining heterogeneity in metabolic profiles and for relating serial changes in metabolism within the same individual during the course of the disease. In this review we discuss the implementation of strategies that use alternative k-space sampling trajectories and parallel imaging methods in order to speed up data acquisition. The impact of such methods is demonstrated using three recent examples of how these methods have been applied. These are to the acquisition of robust 3D (1)H MRSI data within 5-10 min at a field strength of 3 T, to obtaining higher sensitivity for (1)H MRSI at 7 T and to using ultrafast volumetric and dynamic (13)C MRSI for monitoring the changes in signals that occur following the injection of hyperpolarized (13)C agents. PMID:23453759

  19. Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd

    Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  20. Monitoring tumor response of prostate cancer to radiation therapy by multi-parametric 1H and hyperpolarized 13C magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Vickie Yi

    Radiation therapy is one of the most common curative therapies for patients with localized prostate cancer, but despite excellent success rates, a significant number of patients suffer post- treatment cancer recurrence. The accurate characterization of early tumor response remains a major challenge for the clinical management of these patients. Multi-parametric MRI/1H MR spectroscopy imaging (MRSI) has been shown to increase the diagnostic performance in evaluating the effectiveness of radiation therapy. 1H MRSI can detect altered metabolic profiles in cancerous tissue. In this project, the concentrations of prostate metabolites from snap-frozen biopsies of recurrent cancer after failed radiation therapy were correlated with histopathological findings to identify quantitative biomarkers that predict for residual aggressive versus indolent cancer. The total choline to creatine ratio was significantly higher in recurrent aggressive versus indolent cancer, suggesting that use of a higher threshold tCho/Cr ratio in future in vivo 1H MRSI studies could improve the selection and therapeutic planning for patients after failed radiation therapy. Varying radiation doses may cause a diverse effect on prostate cancer micro-environment and metabolism, which could hold the key to improving treatment protocols for individual patients. The recent development and clinical translation of hyperpolarized 13C MRI have provided the ability to monitor both changes in the tumor micro-environment and its metabolism using a multi-probe approach, [1-13C]pyruvate and 13C urea, combined with 1H Multi-parametric MRI. In this thesis, hyperpolarized 13C MRI, 1H dynamic contrast enhancement, and diffusion weighted imaging were used to identify early radiation dose response in a transgenic prostate cancer model. Hyperpolarized pyruvate to lactate metabolism significantly decreased in a dose dependent fashion by 1 day after radiation therapy, prior to any changes observed using 1H DCE and diffusion

  1. Effects of fasting on serial measurements of hyperpolarized [1‐13C]pyruvate metabolism in tumors

    PubMed Central

    Serrao, Eva M.; Rodrigues, Tiago B.; Gallagher, Ferdia A.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Vowler, Sarah L.; Burling, Keith A.

    2016-01-01

    Imaging of the metabolism of hyperpolarized [1‐13C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of 13C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non‐fasted animals. The fasted state showed lower intra‐individual variability, although the [1‐13C]lactate/[1‐13C]pyruvate signal ratio was significantly greater in fasted than in non‐fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of 13C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:27309986

  2. Effects of fasting on serial measurements of hyperpolarized [1-(13) C]pyruvate metabolism in tumors.

    PubMed

    Serrao, Eva M; Rodrigues, Tiago B; Gallagher, Ferdia A; Kettunen, Mikko I; Kennedy, Brett W C; Vowler, Sarah L; Burling, Keith A; Brindle, Kevin M

    2016-08-01

    Imaging of the metabolism of hyperpolarized [1-(13) C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of (13) C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non-fasted animals. The fasted state showed lower intra-individual variability, although the [1-(13) C]lactate/[1-(13) C]pyruvate signal ratio was significantly greater in fasted than in non-fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of (13) C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:27309986

  3. Detection of Early Response to Temozolomide Treatment in Brain Tumors Using Hyperpolarized 13C MR Metabolic Imaging

    PubMed Central

    Park, Ilwoo; Bok, Robert; Ozawa, Tomoko; Phillips, Joanna J.; James, C. David; Vigneron, Daniel B.; Ronen, Sabrina M.; Nelson, Sarah J.

    2016-01-01

    Purpose To demonstrate the feasibility of using DNP hyperpolarized [1-13C]-pyruvate to measure early response to temozolomide (TMZ) therapy using an orthotopic human glioblastoma xenograft model. Materials and Methods Twenty athymic rats with intracranial implantation of human glioblastoma cells were divided into two groups: one group received an oral administration of 100 mg/kg TMZ (n = 10) and the control group received vehicle only (n = 10). 13C 3D magnetic resonance spectroscopic imaging (MRSI) data were acquired following injection of 2.5 mL (100 mM) hyperpolarized [1-13C]-pyruvate using a 3T scanner prior to treatment (day D0), at D1 (days from treatment) or D2. Results Tumor metabolism as assessed by the ratio of lactate to pyruvate (Lac/Pyr) was significantly altered at D1 for the TMZ-treated group but tumor volume did not show a reduction until D5 to D7. The percent change in Lac/Pyr from baseline was statistically different between the two groups at D1 and D2 (P < 0.008), while percent tumor volume was not (P > 0.2). Conclusion The results from this study suggest that metabolic imaging with hyperpolarized [1-13C]-pyruvate may provide a unique tool that clinical neuro-oncologists can use in the future to monitor tumor response to therapy for patients with brain tumors. PMID:21590996

  4. Fast volumetric imaging of ethanol metabolism in rat liver with hyperpolarized [1-13C]-pyruvate

    PubMed Central

    Josan, Sonal; Spielman, Daniel; Yen, Yi-Fen; Hurd, Ralph; Pfefferbaum, Adolf; Mayer, Dirk

    2012-01-01

    Rapid, volumetric imaging of hyperpolarized 13C compounds allows the real time measurement of metabolic activity and can be useful in distinguishing between normal and diseased tissues. This work extends a fast 2D under-sampled spiral magnetic resonance spectroscopic imaging (MRSI) sequence to provide volumetric coverage, acquiring a 16×16×12 matrix with a nominal 5 mm isotropic resolution in 4.5 s. The rapid acquisition enables a high temporal resolution for dynamic imaging. This dynamic 3D MRSI method was used to investigate hyperpolarized [1-13C]-pyruvate metabolism modulated by the administration of ethanol in rat liver. A significant increase in the pyruvate to lactate conversion was observed in the liver due to the greater availability of NADH from ethanol metabolism. PMID:22331837

  5. Evaluation of Hyperpolarized [1-13C]-Pyruvate by Magnetic Resonance to Detect Ionizing Radiation Effects in Real Time

    PubMed Central

    Sandulache, Vlad C.; Chen, Yunyun; Lee, Jaehyuk; Rubinstein, Ashley; Ramirez, Marc S.; Skinner, Heath D.; Walker, Christopher M.; Williams, Michelle D.; Tailor, Ramesh; Court, Laurence E.; Bankson, James A.; Lai, Stephen Y.

    2014-01-01

    Ionizing radiation (IR) cytotoxicity is primarily mediated through reactive oxygen species (ROS). Since tumor cells neutralize ROS by utilizing reducing equivalents, we hypothesized that measurements of reducing potential using real-time hyperpolarized (HP) magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) can serve as a surrogate marker of IR induced ROS. This hypothesis was tested in a pre-clinical model of anaplastic thyroid carcinoma (ATC), an aggressive head and neck malignancy. Human ATC cell lines were utilized to test IR effects on ROS and reducing potential in vitro and [1-13C] pyruvate HP-MRS/MRSI imaging of ATC orthotopic xenografts was used to study in vivo effects of IR. IR increased ATC intra-cellular ROS levels resulting in a corresponding decrease in reducing equivalent levels. Exogenous manipulation of cellular ROS and reducing equivalent levels altered ATC radiosensitivity in a predictable manner. Irradiation of ATC xenografts resulted in an acute drop in reducing potential measured using HP-MRS, reflecting the shunting of reducing equivalents towards ROS neutralization. Residual tumor tissue post irradiation demonstrated heterogeneous viability. We have adapted HP-MRS/MRSI to non-invasively measure IR mediated changes in tumor reducing potential in real time. Continued development of this technology could facilitate the development of an adaptive clinical algorithm based on real-time adjustments in IR dose and dose mapping. PMID:24475215

  6. High resolution (13)C MRI with hyperpolarized urea: in vivo T(2) mapping and (15)N labeling effects.

    PubMed

    Reed, Galen D; von Morze, Cornelius; Bok, Robert; Koelsch, Bertram L; Van Criekinge, Mark; Smith, Kenneth J; Hong Shang; Larson, Peder E Z; Kurhanewicz, John; Vigneron, Daniel B

    2014-02-01

    (13)C steady state free precession (SSFP) magnetic resonance imaging and effective spin-spin relaxation time (T2) mapping were performed using hyperpolarized [(13)C] urea and [(13) C,(15)N2] urea injected intravenously in rats. (15)N labeling gave large T2 increases both in solution and in vivo due to the elimination of a strong scalar relaxation pathway. The T2 increase was pronounced in the kidney, with [(13) C,(15) N2] urea giving T2 values of 6.3±1.3 s in the cortex and medulla, and 11±2 s in the renal pelvis. The measured T2 in the aorta was 1.3±0.3 s. [(13)C] urea showed shortened T2 values in the kidney of 0.23±0.03 s compared to 0.28±0.03 s measured in the aorta. The enhanced T2 of [(13)C,(15)N2] urea was utilized to generate large signal enhancement by SSFP acquisitions with flip angles approaching the fully refocused regime. Projection images at 0.94 mm in-plane resolution were acquired with both urea isotopes, with [(13)C,(15) N2] urea giving a greater than four-fold increase in signal-to-noise ratio over [(13)C] urea. PMID:24235273

  7. Direct Monitoring of γ-Glutamyl Transpeptidase Activity In Vivo Using a Hyperpolarized (13) C-Labeled Molecular Probe.

    PubMed

    Nishihara, Tatsuya; Yoshihara, Hikari A I; Nonaka, Hiroshi; Takakusagi, Yoichi; Hyodo, Fuminori; Ichikawa, Kazuhiro; Can, Emine; Bastiaansen, Jessica A M; Takado, Yuhei; Comment, Arnaud; Sando, Shinsuke

    2016-08-26

    The γ-glutamyl transpeptidase (GGT) enzyme plays a central role in glutathione homeostasis. Direct detection of GGT activity could provide critical information for the diagnosis of several pathologies. We propose a new molecular probe, γ-Glu-[1-(13) C]Gly, for monitoring GGT activity in vivo by hyperpolarized (HP) (13) C magnetic resonance (MR). The properties of γ-Glu-[1-(13) C]Gly are suitable for in vivo HP (13) C metabolic analysis since the chemical shift between γ-Glu-[1-(13) C]Gly and its metabolic product, [1-(13) C]Gly, is large (4.3 ppm) and the T1 of both compounds is relatively long (30 s and 45 s, respectively, in H2 O at 9.4 T). We also demonstrate that γ-Glu-[1-(13) C]Gly is highly sensitive to in vivo modulation of GGT activity induced by the inhibitor acivicin. PMID:27483206

  8. Increasing Pyruvate Dehydrogenase Flux as a Treatment for Diabetic Cardiomyopathy: A Combined 13C Hyperpolarized Magnetic Resonance and Echocardiography Study

    PubMed Central

    Le Page, Lydia M.; Rider, Oliver J.; Lewis, Andrew J.; Ball, Vicky; Clarke, Kieran; Johansson, Edvin; Carr, Carolyn A.; Heather, Lisa C.; Tyler, Damian J.

    2015-01-01

    Although diabetic cardiomyopathy is widely recognised, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate utilisation, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type-II diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate utilisation and improve cardiac function. All animals underwent in vivo hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function respectively. Diabetic animals showed significantly higher blood glucose (10.8±0.7mM vs 8.4±0.5mM), lower PDH flux (0.005±0.001s−1 vs 0.017±0.002s−1) and significantly impaired diastolic function (E/E’ 12.2±0.8 vs 20±2) in keeping with early diabetic cardiomyopathy. Twenty-eight days treatment with dichloroacetate restored PDH flux to normal levels (0.018±0.002s−1), reversed diastolic dysfunction (E/E’ 14±1) and normalized blood glucose (7.5±0.7mM). Treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction and normalised blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy. PMID:25795215

  9. Local and bulk 13C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations

    PubMed Central

    Álvarez, Gonzalo A.; Bretschneider, Christian O.; Fischer, Ran; London, Paz; Kanda, Hisao; Onoda, Shinobu; Isoya, Junichi; Gershoni, David; Frydman, Lucio

    2015-01-01

    Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing 13C nuclei from free electrons in bulk usually demand operation at cryogenic temperatures. Room temperature approaches targeting diamonds with nitrogen-vacancy centres could alleviate this need; however, hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron-13C spin-alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron–nuclear spin manifold. 13C-detected nuclear magnetic resonance experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant 13Cs throughout the nuclear bulk ensemble. This method opens new perspectives for applications of diamond nitrogen-vacancy centres in nuclear magnetic resonance, and in quantum information processing. PMID:26404169

  10. Local and bulk (13)C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations.

    PubMed

    Álvarez, Gonzalo A; Bretschneider, Christian O; Fischer, Ran; London, Paz; Kanda, Hisao; Onoda, Shinobu; Isoya, Junichi; Gershoni, David; Frydman, Lucio

    2015-01-01

    Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing (13)C nuclei from free electrons in bulk usually demand operation at cryogenic temperatures. Room temperature approaches targeting diamonds with nitrogen-vacancy centres could alleviate this need; however, hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron-(13)C spin-alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron-nuclear spin manifold. (13)C-detected nuclear magnetic resonance experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant (13)Cs throughout the nuclear bulk ensemble. This method opens new perspectives for applications of diamond nitrogen-vacancy centres in nuclear magnetic resonance, and in quantum information processing. PMID:26404169

  11. Modeling non-linear kinetics of hyperpolarized [1-(13)C] pyruvate in the crystalloid-perfused rat heart.

    PubMed

    Mariotti, E; Orton, M R; Eerbeek, O; Ashruf, J F; Zuurbier, C J; Southworth, R; Eykyn, T R

    2016-04-01

    Hyperpolarized (13)C MR measurements have the potential to display non-linear kinetics. We have developed an approach to describe possible non-first-order kinetics of hyperpolarized [1-(13)C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass of the hyperpolarized signal. Simultaneous fitting to a second-order model for conversion of [1-(13)C] pyruvate to bicarbonate, lactate and alanine was well described in the isolated rat heart perfused with Krebs buffer containing glucose as sole energy substrate, or glucose supplemented with pyruvate. Second-order modeling yielded significantly improved fits of pyruvate-bicarbonate kinetics compared with the more traditionally used first-order model and suggested time-dependent decreases in pyruvate-bicarbonate flux. Second-order modeling gave time-dependent changes in forward and reverse reaction kinetics of pyruvate-lactate exchange and pyruvate-alanine exchange in both groups of hearts during the infusion of pyruvate; however, the fits were not significantly improved with respect to a traditional first-order model. The mechanism giving rise to second-order pyruvate dehydrogenase (PDH) kinetics was explored experimentally using surface fluorescence measurements of nicotinamide adenine dinucleotide reduced form (NADH) performed under the same conditions, demonstrating a significant increase of NADH during pyruvate infusion. This suggests a simultaneous depletion of available mitochondrial NAD(+) (the cofactor for PDH), consistent with the non-linear nature of the kinetics. NADH levels returned to baseline following cessation of the pyruvate infusion, suggesting this to be a transient effect. PMID:26777799

  12. Modeling non‐linear kinetics of hyperpolarized [1‐13C] pyruvate in the crystalloid‐perfused rat heart

    PubMed Central

    Mariotti, E.; Orton, M. R.; Eerbeek, O.; Ashruf, J. F.; Zuurbier, C. J.; Southworth, R.

    2016-01-01

    Hyperpolarized 13C MR measurements have the potential to display non‐linear kinetics. We have developed an approach to describe possible non‐first‐order kinetics of hyperpolarized [1‐13C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass of the hyperpolarized signal. Simultaneous fitting to a second‐order model for conversion of [1‐13C] pyruvate to bicarbonate, lactate and alanine was well described in the isolated rat heart perfused with Krebs buffer containing glucose as sole energy substrate, or glucose supplemented with pyruvate. Second‐order modeling yielded significantly improved fits of pyruvate–bicarbonate kinetics compared with the more traditionally used first‐order model and suggested time‐dependent decreases in pyruvate–bicarbonate flux. Second‐order modeling gave time‐dependent changes in forward and reverse reaction kinetics of pyruvate–lactate exchange and pyruvate–alanine exchange in both groups of hearts during the infusion of pyruvate; however, the fits were not significantly improved with respect to a traditional first‐order model. The mechanism giving rise to second‐order pyruvate dehydrogenase (PDH) kinetics was explored experimentally using surface fluorescence measurements of nicotinamide adenine dinucleotide reduced form (NADH) performed under the same conditions, demonstrating a significant increase of NADH during pyruvate infusion. This suggests a simultaneous depletion of available mitochondrial NAD+ (the cofactor for PDH), consistent with the non‐linear nature of the kinetics. NADH levels returned to baseline following cessation of the pyruvate infusion, suggesting this to be a transient effect. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26777799

  13. Low-field thermal mixing in [1-(13)C] pyruvic acid for brute-force hyperpolarization.

    PubMed

    Peat, David T; Hirsch, Matthew L; Gadian, David G; Horsewill, Anthony J; Owers-Bradley, John R; Kempf, James G

    2016-07-28

    We detail the process of low-field thermal mixing (LFTM) between (1)H and (13)C nuclei in neat [1-(13)C] pyruvic acid at cryogenic temperatures (4-15 K). Using fast-field-cycling NMR, (1)H nuclei in the molecule were polarized at modest high field (2 T) and then equilibrated with (13)C nuclei by fast cycling (∼300-400 ms) to a low field (0-300 G) that activates thermal mixing. The (13)C NMR spectrum was recorded after fast cycling back to 2 T. The (13)C signal derives from (1)H polarization via LFTM, in which the polarized ('cold') proton bath contacts the unpolarised ('hot') (13)C bath at a field so low that Zeeman and dipolar interactions are similar-sized and fluctuations in the latter drive (1)H-(13)C equilibration. By varying mixing time (tmix) and field (Bmix), we determined field-dependent rates of polarization transfer (1/τ) and decay (1/T1m) during mixing. This defines conditions for effective mixing, as utilized in 'brute-force' hyperpolarization of low-γ nuclei like (13)C using Boltzmann polarization from nearby protons. For neat pyruvic acid, near-optimum mixing occurs for tmix∼ 100-300 ms and Bmix∼ 30-60 G. Three forms of frozen neat pyruvic acid were tested: two glassy samples, (one well-deoxygenated, the other O2-exposed) and one sample pre-treated by annealing (also well-deoxygenated). Both annealing and the presence of O2 are known to dramatically alter high-field longitudinal relaxation (T1) of (1)H and (13)C (up to 10(2)-10(3)-fold effects). Here, we found smaller, but still critical factors of ∼(2-5)× on both τ and T1m. Annealed, well-deoxygenated samples exhibit the longest time constants, e.g., τ∼ 30-70 ms and T1m∼ 1-20 s, each growing vs. Bmix. Mixing 'turns off' for Bmix > ∼100 G. That T1m≫τ is consistent with earlier success with polarization transfer from (1)H to (13)C by LFTM. PMID:27362505

  14. Frequency correction method for improved spatial correlation of hyperpolarized 13C metabolites and anatomy.

    PubMed

    Cunningham, Charles H; Dominguez Viqueira, William; Hurd, Ralph E; Chen, Albert P

    2014-02-01

    Blip-reversed echo-planar imaging (EPI) is investigated as a method for measuring and correcting the spatial shifts that occur due to bulk frequency offsets in (13)C metabolic imaging in vivo. By reversing the k-space trajectory for every other time point, the direction of the spatial shift for a given frequency is reversed. Here, mutual information is used to find the 'best' alignment between images and thereby measure the frequency offset. Time-resolved 3D images of pyruvate/lactate/urea were acquired with 5 s temporal resolution over a 1 min duration in rats (N = 6). For each rat, a second injection was performed with the demodulation frequency purposely mis-set by +35 Hz, to test the correction for erroneous shifts in the images. Overall, the shift induced by the 35 Hz frequency offset was 5.9 ± 0.6 mm (mean ± standard deviation). This agrees well with the expected 5.7 mm shift based on the 2.02 ms delay between k-space lines (giving 30.9 Hz per pixel). The 0.6 mm standard deviation in the correction corresponds to a frequency-detection accuracy of 4 Hz. A method was presented for ensuring the spatial registration between (13)C metabolic images and conventional anatomical images when long echo-planar readouts are used. The frequency correction method was shown to have an accuracy of 4 Hz. Summing the spatially corrected frames gave a signal-to-noise ratio (SNR) improvement factor of 2 or greater, compared with the highest single frame. PMID:24353129

  15. SU-E-QI-11: Measurement of Renal Pyruvate-To-Lactate Exchange with Hyperpolarized 13C MRI

    SciTech Connect

    Adamson, E; Johnson, K; Fain, S; Gordon, J

    2014-06-15

    Purpose: Previous work [1] modeling the metabolic flux between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in magnetic resonance spectroscopic imaging (MRSI) experiments failed to account for vascular signal artifacts. Here, we investigate a method to minimize the vascular signal and its impact on the fidelity of metabolic modeling. Methods: MRSI was simulated for renal metabolism in MATLAB both with and without bipolar gradients. The resulting data were fit to a two-site exchange model [1], and the effects of vascular partial volume artifacts on kinetic modeling were assessed. Bipolar gradients were then incorporated into a gradient echo sequence to validate the simulations experimentally. The degree of diffusion weighting (b = 32 s/mm{sup 2}) was determined empirically from 1H imaging of murine renal vascular signal. The method was then tested in vivo using MRSI with bipolar gradients following injection of hyperpolarized [1-{sup 13}C]pyruvate (∼80 mM at 20% polarization). Results: In simulations, vascular signal contaminated the renal metabolic signal at resolutions as high as 2 × 2 mm{sup 2} due to partial volume effects. The apparent exchange rate from pyruvate to lactate (k{sub p}) was underestimated in the presence of these artifacts due to contaminating pyruvate signal. Incorporation of bipolar gradients suppressed vascular signal and improved the accuracy of kp estimation. Experimentally, the in vivo results supported the ability of bipolar gradients to suppress vascular signal. The in vivo exchange rate increased, as predicted in simulations, from k{sub p} = 0.012 s-{sup 1} to k{sub p} = 0.020-{sup 1} after vascular signal suppression. Conclusion: We have demonstrated the limited accuracy of the two-site exchange model in the presence of vascular partial volume artifacts. The addition of bipolar gradients suppressed vascular signal and improved model accuracy in simulations. Bipolar gradients largely affected kp estimation in vivo. Currently

  16. State-of-the-Art Direct 13C and Indirect 1H-[13C] NMR Spectroscopy In Vivo

    PubMed Central

    de Graaf, Robin A.; Rothman, Douglas L.; Behar, Kevin L.

    2013-01-01

    Carbon-13 NMR spectroscopy in combination with 13C-labeled substrate infusion is a powerful technique to measure a large number of metabolic fluxes non-invasively in vivo. It has been used to quantify glycogen synthesis rates, establish quantitative relationships between energy metabolism and neurotransmission and evaluate the importance of different substrates. All measurements can, in principle, be performed through direct 13C NMR detection or via indirect 1H-[13C] NMR detection of the protons attached to 13C nuclei. The choice for detection scheme and pulse sequence depends on the magnetic field strength, whereas substrate selection depends on the metabolic pathways that are studied. 13C NMR spectroscopy remains a challenging technique that requires several non-standard hardware modifications, infusion of 13C-labeled substrates and sophisticated processing and metabolic modeling. Here the various aspects of direct 13C and indirect 1H-[13C] NMR are reviewed with the aim of providing a practical guide. PMID:21919099

  17. Accurate quantitative 13C NMR spectroscopy: repeatability over time of site-specific 13C isotope ratio determination.

    PubMed

    Caytan, Elsa; Botosoa, Eliot P; Silvestre, Virginie; Robins, Richard J; Akoka, Serge; Remaud, Gérald S

    2007-11-01

    The stability over time (repeatability) for the determination of site-specific 13C/12C ratios at natural abundance by quantitative 13C NMR spectroscopy has been tested on three probes: enriched bilabeled [1,2-13C2]ethanol; ethanol at natural abundance; and vanillin at natural abundance. It is shown in all three cases that the standard deviation for a series of measurements taken every 2-3 months over periods between 9 and 13 months is equal to or smaller than the standard deviation calculated from 5-10 replicate measurements made on a single sample. The precision which can be achieved using the present analytical 13C NMR protocol is higher than the prerequisite value of 1-2 per thousand for the determination of site-specific 13C/12C ratios at natural abundance (13C-SNIF-NMR). Hence, this technique permits the discrimination of very small variations in 13C/12C ratios between carbon positions, as found in biogenic natural products. This observed stability over time in 13C NMR spectroscopy indicates that further improvements in precision will depend primarily on improved signal-to-noise ratio. PMID:17900175

  18. Non-invasive differentiation of benign renal tumors from clear cell renal cell carcinomas using clinically translatable hyperpolarized 13C pyruvate magnetic resonance

    PubMed Central

    Sriram, Renuka; Van Criekinge, Mark; DeLos Santos, Justin; Keshari, Kayvan R.; Wilson, David M.; Peehl, Donna; Kurhanewicz, John; Wang, Zhen J.

    2016-01-01

    Localized renal tumors are increasingly detected incidentally at imaging. Conventional imaging cannot reliably differentiate the 20% of these tumors that are benign from malignant renal cell carcinomas (RCCs), leading to unnecessary surgical resection and resulting morbidity associated with surgery. Here, we investigated hyperpolarized 13C pyruvate metabolism in live patient-derived renal tumor tissue slices using a novel magnetic resonance (MR) -compatible bioreactor platform. We demonstrated for the first time that clear cell RCCs (ccRCCs), which account for 70–80% of all RCCs, have increased lactate production as well as rapid lactate efflux compared to benign renal tumors. This difference is attributed to increased lactate dehydrogenase A and monocarboxylate transporter 4 expression in ccRCCs. This distinctive metabolic phenotype can be used to differentiate RCCs from benign renal tumors using clinically translatable hyperpolarized 13C pyruvate MR. PMID:27227168

  19. Hyperpolarized (13) C-lactate to (13) C-bicarbonate ratio as a biomarker for monitoring the acute response of anti-vascular endothelial growth factor (anti-VEGF) treatment.

    PubMed

    Park, Jae Mo; Spielman, Daniel M; Josan, Sonal; Jang, Taichang; Merchant, Milton; Hurd, Ralph E; Mayer, Dirk; Recht, Lawrence D

    2016-05-01

    Hyperpolarized [1-(13) C]pyruvate MRS provides a unique imaging opportunity to study the reaction kinetics and enzyme activities of in vivo metabolism because of its favorable imaging characteristics and critical position in the cellular metabolic pathway, where it can either be reduced to lactate (reflecting glycolysis) or converted to acetyl-coenzyme A and bicarbonate (reflecting oxidative phosphorylation). Cancer tissue metabolism is altered in such a way as to result in a relative preponderance of glycolysis relative to oxidative phosphorylation (i.e. Warburg effect). Although there is a strong theoretical basis for presuming that readjustment of the metabolic balance towards normal could alter tumor growth, a robust noninvasive in vivo tool with which to measure the balance between these two metabolic processes has yet to be developed. Until recently, hyperpolarized (13) C-pyruvate imaging studies had focused solely on [1-(13) C]lactate production because of its strong signal. However, without a concomitant measure of pyruvate entry into the mitochondria, the lactate signal provides no information on the balance between the glycolytic and oxidative metabolic pathways. Consistent measurement of (13) C-bicarbonate in cancer tissue, which does provide such information, has proven difficult, however. In this study, we report the reliable measurement of (13) C-bicarbonate production in both the healthy brain and a highly glycolytic experimental glioblastoma model using an optimized (13) C MRS imaging protocol. With the capacity to obtain signal in all tumors, we also confirm for the first time that the ratio of (13) C-lactate to (13) C-bicarbonate provides a more robust metric relative to (13) C-lactate for the assessment of the metabolic effects of anti-angiogenic therapy. Our data suggest a potential application of this ratio as an early biomarker to assess therapeutic effectiveness. Furthermore, although further study is needed, the results suggest that anti

  20. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  1. Spectral editing for in vivo 13C magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiang, Yun; Shen, Jun

    2012-01-01

    In vivo detection of carboxylic/amide carbons is a promising technique for studying cerebral metabolism and neurotransmission due to the very low RF power required for proton decoupling. In the carboxylic/amide region, however, there is severe spectral overlap between acetate C1 and glutamate C5, complicating studies that use acetate as an astroglia-specific substrate. There are no known in vivo MRS techniques that can spectrally resolve acetate C1 and glutamate C5 singlets. In this study, we propose to spectrally separate acetate C1 and glutamate C5 by a two-step J-editing technique after introducing homonuclear 13C- 13C scalar coupling between carboxylic/amide carbons and aliphatic carbons. By infusing [1,2- 13C 2]acetate instead of [1- 13C]acetate the acetate doublet can be spectrally edited because of the large separation between acetate C2 and glutamate C4 in the aliphatic region. This technique can be applied to studying acetate transport and metabolism in brain in the carboxylic/amide region without spectral interference.

  2. Multi-channel metabolic imaging, with SENSE reconstruction, of hyperpolarized [1- 13C] pyruvate in a live rat at 3.0 tesla on a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Tropp, James; Lupo, Janine M.; Chen, Albert; Calderon, Paul; McCune, Don; Grafendorfer, Thomas; Ozturk-Isik, Esin; Larson, Peder E. Z.; Hu, Simon; Yen, Yi-Fen; Robb, Fraser; Bok, Robert; Schulte, Rolf; Xu, Duan; Hurd, Ralph; Vigneron, Daniel; Nelson, Sarah

    2011-01-01

    We report metabolic images of 13C, following injection of a bolus of hyperpolarized [1-13C] pyruvate in a live rat. The data were acquired on a clinical scanner, using custom coils for volume transmission and array reception. Proton blocking of all carbon resonators enabled proton anatomic imaging with the system body coil, to allow for registration of anatomic and metabolic images, for which good correlation was achieved, with some anatomic features (kidney and heart) clearly visible in a carbon image, without reference to the corresponding proton image. Parallel imaging with sensitivity encoding was used to increase the spatial resolution in the SI direction of the rat. The signal to noise ratio in was in some instances unexpectedly high in the parallel images; variability of the polarization among different trials, plus partial volume effects, are noted as a possible cause of this.

  3. Dipolar-coupling-mediated total correlation spectroscopy in solid-state 13C NMR: Selection of individual 13C- 13C dipolar interactions

    NASA Astrophysics Data System (ADS)

    Spano, Justin; Wi, Sungsool

    2010-06-01

    Herein is described a useful approach in solid-state NMR, for selecting homonuclear 13C- 13C spin pairs in a multiple- 13C homonuclear dipolar coupled spin system. This method builds upon the zero-quantum (ZQ) dipolar recoupling method introduced by Levitt and coworkers (Marin-Montesinos et al., 2006 [30]) by extending the originally introduced one-dimensional (1D) experiment into a two-dimensional (2D) method with selective irradiation scheme, while moving the 13C- 13C mixing scheme from the transverse to the longitudinal mode, together with a dramatic improvement in the proton decoupling efficiency. Selective spin-pair recoupling experiments incorporating Gaussian and cosine-modulated Gaussian pulses for inverting specific spins were performed, demonstrating the ability to detect informative, simplified/individualized, long-range 13C- 13C homonuclear dipolar coupling interactions more accurately by removing less informative, stronger, short-range 13C- 13C interactions from 2D correlation spectra. The capability of this new approach was demonstrated experimentally on uniformly 13C-labeled Glutamine and a tripeptide sample, GAL.

  4. Ascorbic acid prolongs the viability and stability of isolated perfused lungs: A mechanistic study using 31P and hyperpolarized 13C nuclear magnetic resonance.

    PubMed

    Shaghaghi, Hoora; Kadlecek, Stephen; Siddiqui, Sarmad; Pourfathi, Mehrdad; Hamedani, Hooman; Clapp, Justin; Profka, Harrilla; Rizi, Rahim

    2015-12-01

    Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia-reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using (31)P and hyperpolarized (13)C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized (13)C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung's energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung's mitochondrial activity through an independent interaction with the electron transport chain complexes. PMID:26165188

  5. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized 13C labeled pyruvate

    PubMed Central

    Xu, He N.; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim

    2016-01-01

    Background Clinically translatable hyperpolarized (HP) 13C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP 13C-pyruvate into the subject, which is converted to 13C labeled lactate by the enzyme. Parameters such as 13C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP 13C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP 13C-NMR data and investigate if they can be potential predictors of lung inflammation. Methods Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP 13C-pyruvate for injecting into the lungs. A 20 mm 1H/13C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the 13C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of 13C labeled pyruvate and lactate. Results The apparent forward rate constant kp=(3.67±3.31)×10−4 s−1, reverse rate constant kl=(4.95±2.90)×10−2 s−1, rate constant ratio kp/kl=(7.53±5.75)×10−3 for the control lungs; kp=(11.71±4.35)×10−4 s−1, kl=(9.89±3.89)×10−2 s−1, and kp/kl=(12.39±4.18)×10−3 for the inflamed lungs at the 7th day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly

  6. Voxel-by-voxel correlations of perfusion, substrate, and metabolite signals in dynamic hyperpolarized (13) C imaging.

    PubMed

    Lau, Justin Y C; Chen, Albert P; Gu, Yi-Ping; Cunningham, Charles H

    2016-08-01

    In this study, a mixture of pyruvic acid and the perfusion agent HP001 was co-polarized for simultaneous assessment of perfusion and metabolism in vivo. The pre-polarized mixture was administered to rats with subcutaneous MDA-MB-231 breast cancer xenografts and imaged using an interleaved sequence with designed spectral-spatial pulses and flyback echo-planar readouts. Voxel-by-voxel signal correlations from 10 animals (15 data sets) were analyzed for tumour, kidney, and muscle regions of interest. The relationship between perfusion and hyperpolarized signal was explored on a voxel-by-voxel basis in various metabolically active tissues, including tumour, healthy kidneys, and skeletal muscle. Positive pairwise correlations between lactate, pyruvate, and HP001 observed in all 10 tumours suggested that substrate delivery was the dominant factor limiting the conversion of pyruvate to lactate in the tumour model used in this study. On the other hand, in cases where conversion is the limiting factor, such as in healthy kidneys, both pyruvate and lactate can act as excellent perfusion markers. In intermediate cases between the two limits, such as in skeletal muscle, some perfusion information may be inferred from the (pyruvate + lactate) signal distribution. Co-administration of pyruvate with a dynamic nuclear polarization (DNP) perfusion agent is an effective approach for distinguishing between slow metabolism and poor perfusion and a practical strategy for lactate signal normalization to account for substrate delivery, especially in cases of rapid pyruvate-to-lactate conversion and in poorly perfused regions with inadequate pyruvate signal-to-noise ratio for reliable determination of the lactate-to-pyruvate ratio. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27295304

  7. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-06-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ, ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1-40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1-40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16-21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1-40 fibrils in 4 h or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples.

  8. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  9. Two-dimensional (13)C-(13)C correlation spectroscopy with magic angle spinning and dynamic nuclear polarization.

    PubMed

    Rosay, Melanie; Weis, Volker; Kreischer, Kenneth E; Temkin, Richard J; Griffin, Robert G

    2002-04-01

    The sensitivity of solid-state NMR experiments can be enhanced with dynamic nuclear polarization (DNP), a technique that transfers the high Boltzmann polarization of unpaired electrons to nuclei. Signal enhancements of up to 23 have been obtained for magic angle spinning (MAS) experiments at 5 T and 85-90 K using a custom-designed high-power gyrotron. The extended stability of MAS/DNP experiments at low temperature is demonstrated with (1)H-driven (13)C spin-diffusion experiments on the amino acid proline. These (13)C-(13)C chemical shift correlation spectra are the first two-dimensional MAS/DNP experiments performed at high field (>1.4 T). PMID:11916398

  10. Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling.

    PubMed

    Deelchand, Dinesh Kumar; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2006-02-01

    Most in vivo 13C NMR spectroscopy studies in the brain have been performed using 1H decoupling during acquisition. Decoupling imposes significant constraints on the experimental setup (particularly for human studies at high magnetic field) in order to stay within safety limits for power deposition. We show here that incorporation of the 13C label from 13C-labeled glucose into brain amino acids can be monitored accurately using localized 13C NMR spectroscopy without the application of 1H decoupling. Using LCModel quantification with prior knowledge of one-bond and multiple-bond J(CH) coupling constants, the uncertainty on metabolites concentrations was only 35% to 91% higher (depending on the carbon resonance of interest) in undecoupled spectra compared to decoupled spectra in the rat brain at 9.4 Tesla. Although less sensitive, 13C NMR without decoupling dramatically reduces experimental constraints on coil setup and pulse sequence design required to keep power deposition within safety guidelines. This opens the prospect of safely measuring 13C NMR spectra in humans at varied brain locations (not only the occipital lobe) and at very high magnetic fields above 4 Tesla. PMID:16345037

  11. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  12. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as noninvasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate.

    PubMed

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H Douglas; Munasinghe, Jeeva P; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P; Mitchell, James B; Krishna, Murali C

    2013-05-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3-bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3-bromopyruvate was substantially attenuated in hypoxic tumor regions (pO2<10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 is the major transporter for pyruvate and the analog 3-bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter-1 in vivo. Expression of monocarboxylate transporter-1 was enhanced in moderately hypoxic (8-15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia-activated drugs. PMID:22692861

  13. High altitude may alter oxygen availability and renal metabolism in diabetics as measured by hyperpolarized [1-(13)C]pyruvate magnetic resonance imaging.

    PubMed

    Laustsen, Christoffer; Lycke, Sara; Palm, Fredrik; Østergaard, Jakob A; Bibby, Bo M; Nørregaard, Rikke; Flyvbjerg, Allan; Pedersen, Michael; Ardenkjaer-Larsen, Jan H

    2014-07-01

    The kidneys account for about 10% of the whole body oxygen consumption, whereas only 0.5% of the total body mass. It is known that intrarenal hypoxia is present in several diseases associated with development of kidney disease, including diabetes, and when renal blood flow is unaffected. The importance of deranged oxygen metabolism is further supported by deterioration of kidney function in patients with diabetes living at high altitude. Thus, we argue that reduced oxygen availability alters renal energy metabolism. Here, we introduce a novel magnetic resonance imaging (MRI) approach to monitor metabolic changes associated with diabetes and oxygen availability. Streptozotocin diabetic and control rats were given reduced, normal, or increased inspired oxygen in order to alter tissue oxygenation. The effects on kidney oxygen metabolism were studied using hyperpolarized [1-(13)C]pyruvate MRI. Reduced inspired oxygen did not alter renal metabolism in the control group. Reduced oxygen availability in the diabetic kidney altered energy metabolism by increasing lactate and alanine formation by 23% and 34%, respectively, whereas the bicarbonate flux was unchanged. Thus, the increased prevalence and severity of nephropathy in patients with diabetes at high altitudes may originate from the increased sensitivity toward inspired oxygen. This increased lactate production shifts the metabolic routs toward hypoxic pathways. PMID:24352155

  14. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner

    PubMed Central

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13C-CO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq 18F-FDG. 13C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized 13C-pyruvate. Peak heights of 13C-pyruvate and 13C-lactate were quantified using a general linear model. Anatomic 1H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased 13C-lactate production, which also corresponded to high 18F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high 18F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high 13C-lactate production. Accordingly, this clearly demonstrates how the Warburg Effect directly

  15. Continuous field measurements of delta(13)C-CO(2) and trace gases by FTIR spectroscopy.

    PubMed

    Mohn, Joachim; Zeeman, Matthias J; Werner, Roland A; Eugster, Werner; Emmenegger, Lukas

    2008-09-01

    Continuous analysis of the (13)C/(12)C ratio of atmospheric CO(2) (delta(13)C-CO(2)) is a powerful tool to quantify CO(2) flux strengths of the two major ecosystem processes assimilation and respiration. Traditional laboratory techniques such as isotope ratio mass spectrometry (IRMS) in combination with flask sampling are subject to technical limitations that do not allow to fully characterising variations of atmospheric delta(13)C-CO(2) at all relevant timescales. In our study, we demonstrate the strength of Fourier transform infrared (FTIR) spectroscopy in combination with a PLS-based calibration strategy for online analysis of delta(13)C-CO(2) in ambient air. The ability of the instrument to measure delta(13)C-CO(2) was tested on a grassland field-site and compared with standard laboratory-based IRMS measurements made on field-collected flask samples. Both methods were in excellent agreement, with an average difference of 0.4 per thousand (n=81). Simultaneously, other important trace gases such as CO, N(2)O and CH(4) were analysed by FTIR spectroscopy. PMID:18763182

  16. Application of 13C NMR spectroscopy to paratope mapping for larger antigen-Fab complexes.

    PubMed

    Kim, H; Kato, K; Yamato, S; Igarashi, T; Matsunaga, C; Ohtsuka, H; Higuchi, A; Nomura, N; Noguchi, H; Arata, Y

    1994-06-13

    For the purpose of engineering the antibody combining site, mapping residues that are involved in antigen binding provide us with valuable information. By use of 13C NMR spectroscopy with selectively 13C-labeled Fv fragments, we have established a general strategy to identify the residues that are perturbed upon binding of small antigen (hapten) molecules [(1990) Biochemistry 30, 6604-6610]. In the present paper, we demonstrate that this strategy can be extended to molecular structural analyses of the complexes of an Fab fragment and a larger antigen molecule such as Pseudomonas aeruginosa exotoxin A with a molecular mass of 67 kDa. PMID:8013642

  17. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  18. Hyperpolarized 13C MR spectroscopic imaging can be used to monitor Everolimus treatment in vivo in an orthotopic rodent model of glioblastoma

    PubMed Central

    Chaumeil, Myriam M.; Ozawa, Tomoko; Park, IlWoo; Scott, Kristen; James, C. David; Nelson, Sarah J.; Ronen, Sabrina M.

    2011-01-01

    Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in humans. Because the phosphatidylinositol-3-kinase (PI3K) signaling pathway is activated in more than 88% of GBM, new drugs which target this pathway, such as the mTOR inhibitor Everolimus, are currently in clinical trials. Early tumor response to molecularly targeted treatments remains challenging to assess non-invasively, because it is often associated with tumor stasis or slower tumor growth. Innovative neuroimaging methods are therefore critically needed to provide metabolic or functional information that is indicative of targeted therapeutic action at early time points during the course of treatment. In this study, we demonstrated for the first time that hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) can be used on a clinical MR system to monitor early metabolic response of orthotopic GBM tumors to Everolimus treatment through measurement of the HP lactate-to-pyruvate ratios. The study was performed on a highly invasive non-enhancing orthotopic GBM tumor model in rats (GS-2 tumors), which replicates many fundamental features of human GBM tumors. Seven days after initiation of treatment there was a significant drop in the HP lactate-to-pyruvate ratio from the tumor tissue in treated animals relative to day 0 (67%±27% decrease). In the control group, no significant changes in the HP lactate-to-pyruvate ratios were observed. Importantly, at the 7 day time point, conventional MR imaging (MRI) was unable to detect a significant difference in tumor size between control and treated groups. Inhibition of tumor growth by conventional MRI was observed from day 15 of treatment. This implies that the decrease in the HP lactate-to-pyruvate ratio could be detected before any treatment-induced inhibition of tumor growth. Using immunohistochemical staining to further examine tumor response to treatment, we found that the decrease in the HP lactate-to-pyruvate ratio was

  19. Online Compound-Specific δ13C and δD Determinations Using Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saad, N.; Hoffnagle, J.

    2012-04-01

    A unique laser spectroscopic approach for making online high-precision compound-specific isotope analysis (CSIA) of both δ13C and δD of the CO2 and H2O organic combustion products is described. The system consists of a gas chromatograph (GC) for the separation of an organic mixture coupled to a novel micro-fabricated microreactor (MFMR) for the complete combustion of each organic compound into CO2 and H2O and the precise measurements of δ13C in the CO2 gas and δ2H in the H2O vapor from the well established infrared spectrum of both gases, using an isotopic CO2 Cavity Ring-Down Spectroscopy (CRDS) analyzer and an isotopic H2O vapor CRDS analyzer, respectively. Light hydrocarbons are used as our test compounds in this study. The analyses of CH4, C2H6 and C3H8 for δ13C and δ2H values resulted in precisions of SD(δ13C)<1‰ and SD(δ2H)<2‰, respectively. These results were further compared to the gold standard method using Dual Inlet IRMS (DI-IRMS) and showed excellent agreements in isotopic measurements. The preliminary results presented here pave the way for a single CRDS analyzer-based system that simultaneously measures δ13C and δD, is field-deployable, less costly and necessitates less operator expertise than IRMS-based systems.

  20. Compartmentalized Cerebral Metabolism of [1,6-13C]Glucose Determined by in vivo 13C NMR Spectroscopy at 14.1 T

    PubMed Central

    Duarte, João M. N.; Lanz, Bernard; Gruetter, Rolf

    2011-01-01

    Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by 13C nuclear magnetic resonance (NMR) spectroscopy upon infusion of 13C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-13C]glucose and 13C enrichment in the brain metabolites was measured by 13C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining 13C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (VTCA) and neurotransmission rate (VNT) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial VTCA was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (VPC) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism. PMID:21713114

  1. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.

    PubMed

    Engtrakul, Chaiwat; Davis, Mark F; Gennett, Thomas; Dillon, Anne C; Jones, Kim M; Heben, Michael J

    2005-12-14

    The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique. PMID:16332107

  2. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  3. High-resolution magic-angle spinning (13)C spectroscopy of brain tissue at natural abundance.

    PubMed

    Yang, Yongxia; Chen, Lei; Gao, Hongchang; Zeng, Danlin; Yue, Yong; Liu, Maili; Lei, Hao; Deng, Feng; Ye, Chaohui

    2006-03-01

    High-resolution magic-angle spinning (MAS) (1)H and (13)C magnetic resonance spectroscopy (MRS) has recently been applied to study the metabolism in intact biological tissue samples. Because of the low natural abundance and the low gyromagnetic ratio of the (13)C nuclei, signal enhancement techniques such as cross-polarization (CP) and distortionless enhancement by polarization transfer (DEPT) are often employed in MAS (13)C MRS to improve the detection sensitivity. In this study, several sensitivity enhancement techniques commonly used in liquid- and solid-state NMR, including CP, DEPT and nuclear Overhauser enhancement (NOE), were combined with MAS to acquire high-resolution (13)C spectra on intact rat brain tissue at natural abundance, and were compared for their performances. The results showed that different signal enhancement techniques are sensitive to different classes of molecules/metabolites, depending on their molecular weights and mobility. DEPT was found to enhance the signals of low-molecular weight metabolites exclusively, while the signals of lipids, which often are associated with membranes and have relatively lower mobility, were highly sensitive to CP enhancement. PMID:16477685

  4. Hard and elastic amorphous carbon nitride thin films studied by 13C nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Malyarenko, D. I.; Kraft, O.; Hoatson, G. L.; Reilly, A. C.; Holloway, B. C.

    2002-10-01

    The chemical bonding of hard and elastic amorphous carbon nitride (a-CNx) thin films was examined using solid-state 13C NMR spectroscopy. The films were deposited by DC magnetron sputtering in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests reveal a recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. This combination of low modulus and high strength means the material can be regarded as hard and elastic; the material gives when pressed on and recovers its shape when the load is released. The 13C NMR results conclusively demonstrate that hard and elastic a-CNx has an sp2 carbon bonded structure and that sp3 hybridized carbons are absent. Our results stand in contrast with earlier work that proposed that the interesting mechanical properties of hard and elastic a-CNx were due, in part, to sp3 bonded carbon.

  5. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  6. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].

    PubMed

    Xu, Dong-yu; Jin, Jie; Yan, Yu; Han, Lan-fang; Kang, Ming-jie; Wang, Zi-ying; Zhao, Ye; Sun, Ke

    2014-12-01

    The wood (willow branch) and grass (rice straw) materials were pyrolyzed at different temperatures (300, 450 and 600 °C) to obtain the biochars used in the present study. The biochars were characterized using elementary analysis, X-ray photoelectron spectroscopy (XPS) and solid state 13C cross-polarization and magic angle spinning nuclear magnetic resonance spectroscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass. The results showed that the H/C, O/C and (O+N)/C ratios of the biochars decreased with the increase in the pyrolysis temperatures. The surface polarity and ash content of the grass-derived biochars were higher than those of the wood-derived biochars. The minerals of the wood-derived biochars were mainly covered by the organic matter; in contrast, parts of the mineral surfaces of the grass-derived biochars were not covered by organic matter? The 13C NMR of the low temperature-derived biochars revealed a large contribution of aromatic carbon, aliphatic carbon, carboxyl and carbonyl carbon, while the high temperature-derived biochars contained a large amount of aromatic carbon. Moreover, the wood-derived biochars produced at low heat treatment temperatures contained more lignin residues than grass-derived ones, probably due to the existence of high lignin content in the feedstock soures of wood-derived biochars. The results of the study would be useful for environmental application of biochars. PMID:25881450

  7. In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization**

    PubMed Central

    Barskiy, Danila A.; Kovtunov, Kirill V.; Koptyug, Igor V.; He, Ping; Groome, Kirsten A.; Best, Quinn A.; Shi, Fan; Goodson, Boyd M.; Shchepin, Roman V.; Truong, Milton L.; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2015-01-01

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202

  8. High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules.

    PubMed

    Aursand, Marit; Standal, Inger B; Axelson, David E

    2007-01-10

    13C NMR (nuclear magnetic resonance) spectroscopy, in conjunction with multivariate analysis of commercial fish oil-related health food products, have been used to provide discrimination concerning the nature, composition, refinement, and/or adulteration or authentication of the products. Supervised (probabilistic neural networks, PNN) and unsupervised (principal component analysis, PCA; Kohonen neural networks; generative topographic mapping, GTM) pattern recognition techniques were used to visualize and classify samples. Simple PCA score plots demonstrated excellent, but not totally unambiguous, class distinctions, whereas Kohonen and GTM visualization provided better results. Quantitative class predictions with accuracies >95% were achieved with PNN analysis. Trout, salmon, and cod oils were completely and correctly classified. Samples reported to be salmon oils and cod liver oils did not cluster with true salmon and cod liver oil samples, indicating mislabeling or adulteration. PMID:17199311

  9. Study of the metabolism of /sup 13/C labeled substrates by /sup 13/C NMR spectroscopy of intact cells, tissues, and organs

    SciTech Connect

    Matwiyoff, N.A.; London, R.E.; Hutson, J.Y.

    1982-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy, in conjunction with carbon-13 labeling, has become an important analytical technique for the study of biological systems and biologically important molecules. The growing list of its well established applications to isolated molecules in solution includes the investigation of: metabolic pathways; the microenvironments of ligands bound to proteins; the architecture and dynamics of macromolecules; the structures of coenzymes and other natural products; and the mechanisms of reactions. Recently interest has been reawakened in the use of the technique for the study of metabolic pathways and structural components in intact organelles, cells, and tissues. The promise and problems in the use of /sup 13/C labeling in such investigations can be illustrated by the results on suspensions of the yeast, Candida utilis.

  10. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C NMR spectroscopy (SIE-DOSY 13C NMR)

    NASA Astrophysics Data System (ADS)

    Vermillion, Karl; Price, Neil P. J.

    2009-06-01

    The feasibility of obtaining high quality homonuclear or heteronuclear diffusion-ordered 13C NMR data is shown to be greatly improved by using 13C isotopically-enriched samples. Stable isotope-enhanced diffusion ordered (SIE-DOSY) 13C NMR has been applied to 13C-enriched carbohydrates, and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, and a disaccharide and trisaccharide. These 2D spectra were obtained with as little as 8 min of acquisition time. Fully resolved 3D DOSY-HMQC NMR spectra of [U- 13C]xylose, [U- 13C]glucose, and [1- 13C gal]lactose were obtained in 5 h. Sample derivatization with [ carbonyl- 13C]acetate (peracetylation) extends the usefulness of the technique to included non-labeled sugars; the 13C-carbonyl - carbohydrate ring proton 1H- 13C correlations also provide additional structural information, as shown for the 3-D DOSY-HMQC analysis of a mixture of maltotriose and lactose per-[ carbonyl- 13C]acetates.

  11. Characterization and quantitation of urinary metabolites of [1,2,3-13C]acrylamide in rats and mice using 13C nuclear magnetic resonance spectroscopy.

    PubMed

    Sumner, S C; MacNeela, J P; Fennell, T R

    1992-01-01

    Acrylamide, widely used for the production of polymers and as a grouting agent, causes neurotoxic effects in humans and neurotoxic, genotoxic, reproductive, and carcinogenic effects in laboratory animals. In this study, 13C NMR spectroscopy was used to detect metabolites of acrylamide directly in the urine of rats and mice following administration of [1,2,3-13C]acrylamide (50 mg/kg po). Two-dimensional NMR experiments were used to correlate carbon signals for each metabolite in the urine samples and to determine the number of hydrogens attached to each carbon. Metabolite structures were identified from the NMR data together with calculated values of shift for biochemically feasible metabolites and by comparison with standards. The metabolites assigned in rat and mouse urine are N-acetyl-S-(3-amino-3-oxopropyl)cysteine, N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine, N-acetyl-S-(1-carbamoyl-2-hydroxy-ethyl)cysteine, glycidamide, and 2,3-dihydroxypropionamide. These metabolites arise from direct conjugation of acrylamide with glutathione or from oxidation to the epoxide, glycidamide, and further metabolism. Acrylamide was also detected in the urine. Quantitation was carried out by integrating the metabolite carbon signals with respect to that of dioxane added at a known concentration. The major metabolite for both the rat (70% of total metabolites excreted) and the mouse (40%) was formed from direct conjugation of acrylamide with glutathione. The remaining metabolites for the rat (30%) and mouse (60%) are derived from glycidamide. The species differences in extent of metabolism through glycidamide may have important consequences for the toxic and carcinogenic effects of acrylamide. PMID:1581543

  12. Thz Spectroscopy of Acetaldehyde and Search of 13C Species in Orion

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.

    2012-06-01

    Acetaldehyde (CH_3CHO) is one of the high priority complex organic molecules for the astrophysical community. There is a lack of data concerning the 13C species since the measurements are limited to 40 GHz up to date. This molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with RAM36 code which used the Rho Axis Method. Last year we presented the analysis of the millimeterwave spectra of the 13CH_3CHO species. We extended the analysis to the THz range of the vibrational ground state for both species. We are also analyzing the first torsional state (≈140 cm-1) for two reasons: first, this permits to remove correlation between parameters. Second, this state contribute to the partition function even at ISM temperature (100--150 K) since there is an influence on the column density determined in case of detection. The searches of these isotopomers are in progress in ORION. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under the ANR-08-BLAN-0054. Kilb, R.W.; Lin, C.C.; and Wilson, E.B. J. Chem. Phys. 26, (1957) 1695 Ilyushin, V.V. et al J. Mol. Spectrosc. 259, (2010) 26 Margules, L. et al. FA07, 66th International Symposium on Molecular Spectroscopy (2011)

  13. 13C NMR spectroscopy of methane adsorbed in SAPO-11 molecular sieve

    NASA Astrophysics Data System (ADS)

    Koskela, Tuomas; Ylihautala, Mika; Vaara, Juha; Jokisaari, Jukka

    1996-10-01

    Static 13C and 13C-{ 1H} NMR spectra of carbon-13 enriched methane ( 13CH 4) adsorbed into SAPO-11 molecular sieve were recorded at variable temperatures. Moreover, the corresponding MAS NMR spectra were measured. These experiments reveal a temperature-dependent, anisotropic and asymmetric 13C nuclear shielding tensor. Ab initio model calculations of methane in the field of a positive point charge suggest that the deformation of the shielding tensor may be related to the interaction between the methane molecule and the charge-compensating protons. A comparison with existing Xe data is made.

  14. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C-NMR spectroscopy (SIE-DOSY 13C-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable Isotope-Enhanced Diffusion Ordered (SIE-DOSY) 13C-NMR has been applied to 13C-enriched carbohydrates and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, a disaccharide and a trisaccharide. These 2D spectra were obtained with as little as 8 min of acq...

  15. Study of molecular interactions with 13C DNP-NMR

    NASA Astrophysics Data System (ADS)

    Lerche, Mathilde H.; Meier, Sebastian; Jensen, Pernille R.; Baumann, Herbert; Petersen, Bent O.; Karlsson, Magnus; Duus, Jens Ø.; Ardenkjær-Larsen, Jan H.

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct 13C NMR ligand binding studies at natural isotopic abundance of 13C gets feasible in this way. Resultant screens are easy to interpret and can be performed at 13C concentrations below μM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  16. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  17. Ethanol reassimilation and ethanol tolerance in Pitchia stipitis CBS 6054 as studied by [sup 13]C nuclear magnetic resonance spectroscopy

    SciTech Connect

    Skoog, K.; Hahn-Haegerdal, B. ); Degn, H.; Jacobsen, H.S.; Jacobsen, J.P. )

    1992-08-01

    Ethanol reassimilation in Pichia stipitis CBS 6054 was studied by using continuous cultures, and the oxidation of [1-[sup 13]C] ethanol was monitored by in vivo and in vitro [sup 13]C nuclear magnetic resonance spectroscopy. Acetate was formed when ethanol was reassimilated. The ATP/ADP ratio and the carbon dioxide production decreased, whereas the malate dehydrogenase activity increased, in ethanol-reassimilating cells. The results are discussed in terms of the low ethanol tolerance in P. stipitis compared with that in Saccharomyces cerevisiae.

  18. NMR spectroscopy of hyperpolarized ^129Xe at high fields: Maintaining spin polarization after optical pumping.

    NASA Astrophysics Data System (ADS)

    Patton, Brian; Kuzma, Nicholas N.; Lisitza, Natalia V.; Happer, William

    2003-05-01

    Spin-polarized ^129Xe has become an invaluable tool in nuclear magnetic resonance research, with applications ranging from medical imaging to high-resolution spectroscopy. High-field NMR studies using hyperpolarized xenon as a spectroscopic probe benefit from the high signal-to-noise ratios and large chemical shifts typical of optically-pumped noble gases. The experimental sensitivity is ultimately determined by the absolute polarization of the xenon in the sample, which can be substantially decreased during purification and transfer. NMR of xenon at high fields (9.4 Tesla) will be discussed, and potential mechanisms of spin relaxation during the distillation, storage(N. N. Kuzma, B. Patton, K. Raman, and W. Happer, Phys. Rev. Lett. 88), 147602 (2002)., and delivery of hyperpolarized xenon will be analyzed.

  19. (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy.

    PubMed

    Idström, Alexander; Schantz, Staffan; Sundberg, Johan; Chmelka, Bradley F; Gatenholm, Paul; Nordstierna, Lars

    2016-10-20

    From the assignment of the solid-state (13)C NMR signals in the C4 region, distinct types of crystalline cellulose, cellulose at crystalline surfaces, and disordered cellulose can be identified and quantified. For regenerated cellulose, complete (13)C assignments of the other carbon regions have not previously been attainable, due to signal overlap. In this study, two-dimensional (2D) NMR correlation methods were used to resolve and assign (13)C signals for all carbon atoms in regenerated cellulose. (13)C-enriched bacterial nanocellulose was biosynthesized, dissolved, and coagulated as highly crystalline cellulose II. Specifically, four distinct (13)C signals were observed corresponding to conformationally different anhydroglucose units: two signals assigned to crystalline moieties and two signals assigned to non-crystalline species. The C1, C4 and C6 regions for cellulose II were fully examined by global spectral deconvolution, which yielded qualitative trends of the relative populations of the different cellulose moieties, as a function of wetting and drying treatments. PMID:27474592

  20. Metabolic pathways for ketone body production. /sup 13/C NMR spectroscopy of rat liver in vivo using /sup 13/C-multilabeled fatty acids

    SciTech Connect

    Pahl-Wostl, C.; Seelig, J.

    1986-11-04

    The hormonal regulation of ketogenesis in the liver of living rat has been studied noninvasively with /sup 13/C nuclear magnetic resonance. The spatial selection for the liver was better than 90%, with extrahepatic adipose tissue contribution only a very small amount of signal. The metabolic activities of the liver were investigated by infusion of /sup 13/C-labeled butyrate in the jugular vein of the anesthetized rat. The rate of butyrate infusion was chosen to be close to the maximum oxidative capacity of the rat liver, and the /sup 13/C signal intensities were enhanced by using doubly labeled (1,3-/sup 13/C)butyrate as a substrate. Different /sup 13/C NMR spectra and hence different metabolites were observed depending on the hormonal state of the animal. The /sup 13/C NMR studies demonstrate that even when rate of acetyl-CoA production are high, the disposal of this compound is not identical in fasted and diabetic animals. This supports previous suggestions that the redox state of the mitochondrion represents the most important factor in regulation. For a given metabolic state of the animal, different signal intensities were obtained depending on whether butyrate was labeled at C-1, C-3, or C-1,3. From the ratios of incorporation of /sup 13/C label into the carbons of 3-hydroxybutyrate, it could be estimated that a large fraction of butyrate evaded ..beta..-oxidation to acetyl-CoA but was converted directly to acetoacetyl-CoA. /sup 13/C-labeled glucose could be detected in vivo in the liver of diabetic rats.

  1. Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging

    PubMed Central

    2014-01-01

    Signal amplification by reversible exchange (SABRE) of a substrate and parahydrogen at a catalytic center promises to overcome the inherent insensitivity of magnetic resonance. In order to apply the new approach to biomedical applications, there is a need to develop experimental equipment, in situ quantification methods, and a biocompatible solvent. We present results detailing a low-field SABRE polarizer which provides well-controlled experimental conditions, defined spins manipulations, and which allows in situ detection of thermally polarized and hyperpolarized samples. We introduce a method for absolute quantification of hyperpolarization yield in situ by means of a thermally polarized reference. A maximum signal-to-noise ratio of ∼103 for 148 μmol of substance, a signal enhancement of 106 with respect to polarization transfer field of SABRE, or an absolute 1H-polarization level of ≈10–2 is achieved. In an important step toward biomedical application, we demonstrate 1H in situ NMR as well as 1H and 13C high-field MRI using hyperpolarized pyridine (d3) and 13C nicotinamide in pure and 11% ethanol in aqueous solution. Further increase of hyperpolarization yield, implications of in situ detection, and in vivo application are discussed. PMID:24397559

  2. Evidence of 13C non-covalent isotope effects obtained by quantitative 13C nuclear magnetic resonance spectroscopy at natural abundance during normal phase liquid chromatography.

    PubMed

    Botosoa, Eliot P; Silvestre, Virginie; Robins, Richard J; Rojas, Jose Manuel Moreno; Guillou, Claude; Remaud, Gérald S

    2009-10-16

    Quantitative isotopic (13)C NMR at natural abundance has been used to determine the site-by-site (13)C/(12)C ratios in vanillin and a number of related compounds eluted from silica gel chromatography columns under similar conditions. Head-to-tail isotope fractionation is observed in all compounds at the majority of carbon positions. Furthermore, the site-specific isotope deviations show signatures characteristic of the position and functionality of the substituents present. The observed effects are more complex than would be obtained by simply summing the individual effects. Such detail is hidden when only the global (13)C content is measured by mass spectrometry. In particular, carbon positions within the aromatic ring are found to show site-specific isotope fractionation between the solute and the stationary phase. These interactions, defined as non-covalent isotope effects, can be normal or inverse and vary with the substitution pattern present. PMID:19748628

  3. 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Frye, J. S.

    1987-01-01

    13C NMR spectra have been obtained of the insoluble carbon residues resulting from HF-digestion of three carbonaceous chondrites, Orgueil (C1), Murchison (CM2), and Allende (CV3). Spectra obtained using the cross polarization magic-angle spinning technique show two major features attributable respectively to carbon in aliphatic/olefinic structures. The spectrum obtained from the Allende sample was weak, presumably as a consequence of its low hydrogen content. Single pulse excitation spectra, which do not depend on 1H-13C polarization transfer for signal enhancement were also obtained. These spectra, which may be more representative of the total carbon in the meteorite samples, indicate a greater content of carbon in aromatic/olefinic structures. These results suggest that extensive polycyclic aromatic sheets are important structural features of the insoluble carbon of all three meteorites. The Orgueil and Murchison materials contain additional hydrogenated aromatic/olefinic and aliphatic groups.

  4. THz spectroscopy and first ISM detection of excited torsional states of 13C-methyl formate

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Carvajal, M.; Tercero, B.; Kleiner, I.; López, A.; Cernicharo, J.; Motiyenko, R. A.; Huet, T. R.; Guillemin, J. C.; Margulès, L.

    2014-08-01

    Context. An astronomical survey of interstellar molecular clouds needs a previous analysis of the spectra in the microwave and sub-mm energy range of organic molecules to be able to identify them. We obtained very accurate spectroscopic constants in a comprehensive laboratory analysis of rotational spectra. These constants can be used to predict the transitions frequencies very precisely that were not measured in the laboratory. Aims: We present the experimental study and its theoretical analysis for two 13C-methyl formate isotopologues to detect these two isotopologues for the first time in their excited torsional states, which lie at 130 cm-1 (200 K) in Orion-KL. Methods: New spectra of HCOO13CH3 (13C2) methyl formate were recorded with the mm- and submm-wave spectrometer in Lille from 50 to 940 GHz. A global fit for vt = 0 and 1 was accomplished with the BELGI program to reproduce the experimental spectra with greater accuracy. Results: We analysed 5728 and 2881 new lines for vt = 0 and 1 for HCOO13CH3. These new lines were globally fitted with 846 previously published lines for vt = 0. In consequence, 52 parameters of the RAM Hamiltonian were accurately determined and the value of the barrier height (V3 = 369.93168(395) cm-1) was improved. We report the detection of the first excited torsional states (vt = 1) in Orion-KL for the 13C2 and 13C1 methyl formate based on the present analysis and previously published data. We provide column densities, isotopic abundances, and vibrational temperatures for these species. Conclusions: Following this work, accurate prediction can be provided. This permits detecting 135 features of the first excited torsional states of 13C-methyl formate isotopologues in Orion-KL in the 80-280 GHz frequency range, without missing lines. Full Table A.1 and the IRAM spectra as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568

  5. Use of laser spectroscopy to measure the 13C/12C and 18O/16O compositions of carbonate minerals.

    PubMed

    Barker, Shaun L L; Dipple, Gregory M; Dong, Feng; Baer, Douglas S

    2011-03-15

    The stable carbon and oxygen isotope compositions of carbonate minerals are utilized throughout the earth and environmental sciences for various purposes. Here, we demonstrate the first application of a prototype instrument, based on off-axis integrated cavity output laser spectroscopy, to measure the carbon and oxygen isotope composition of CO(2) gas evolved from the acidification of carbonate minerals. The carbon and oxygen isotope ratios were recorded from absorption spectra of (12)C(16)O(16)O, (13)C(16)O(16)O, and (12)C(16)O(18)O in the near-infrared wavelength region. The instrument was calibrated using CaCO(3) minerals with known δ(13)C(VPDB) and δ(18)O(VSMOW) values, which had been previously calibrated by isotope ratio mass spectrometry relative to the international isotopic standards NBS 18 and NBS 19. Individual analyses are demonstrated to have internal precision (1 SE) of better than 0.15‰ for δ(13)C and 0.6‰ for δ(18)O. Analysis of four carbonate standards of known isotopic composition over 2 months, determined using the original instrumental calibration, indicates that analyses are accurate to better than 0.5‰ for both δ(13)C and δ(18)O without application of standard-sample-standard corrections. PMID:21341717

  6. Differentiation of histidine tautomeric states using 15N selectively filtered 13C solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C, 15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture.

  7. Differentiation of histidine tautomeric states using (15)N selectively filtered (13)C solid-state NMR spectroscopy.

    PubMed

    Miao, Yimin; Cross, Timothy A; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional (15)N selectively filtered (13)C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all (13)C resonances of the individual imidazole rings in a mixture of tautomeric states. When (15)N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the (13)C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of (13)C, (15)N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture. PMID:25026459

  8. Differentiation of Histidine Tautomeric States using 15N Selectively Filtered 13C Solid-State NMR Spectroscopy

    PubMed Central

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-01-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C,15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture. PMID:25026459

  9. Area per Lipid and Cholesterol Interactions in Membranes from Separated Local-Field 13C NMR Spectroscopy

    PubMed Central

    Leftin, Avigdor; Molugu, Trivikram R.; Job, Constantin; Beyer, Klaus; Brown, Michael F.

    2014-01-01

    Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state 13C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved 13C-1H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the 13C-1H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state 13C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive. PMID:25418296

  10. Purity analysis of hydrogen cyanide, cyanogen chloride and phosgene by quantitative (13)C NMR spectroscopy.

    PubMed

    Henderson, Terry J; Cullinan, David B

    2007-11-01

    Hydrogen cyanide, cyanogen chloride and phosgene are produced in tremendously large quantities today by the chemical industry. The compounds are also particularly attractive to foreign states and terrorists seeking an inexpensive mass-destruction capability. Along with contemporary warfare agents, therefore, the US Army evaluates protective equipment used by warfighters and domestic emergency responders against the compounds, and requires their certification at > or = 95 carbon atom % before use. We have investigated the (13)C spin-lattice relaxation behavior of the compounds to develop a quantitative NMR method for characterizing chemical lots supplied to the Army. Behavior was assessed at 75 and 126 MHz for temperatures between 5 and 15 degrees C to hold the compounds in their liquid states, dramatically improving detection sensitivity. T(1) values for cyanogen chloride and phosgene were somewhat comparable, ranging between 20 and 31 s. Hydrogen cyanide values were significantly shorter at 10-18 s, most likely because of a (1)H--(13)C dipolar contribution to relaxation not possible for the other compounds. The T(1) measurements were used to derive relaxation delays for collecting the quantitative (13)C data sets. At 126 MHz, only a single data acquisition with a cryogenic probehead gave a signal-to-noise ratio exceeding that necessary for certifying the compounds at > or = 95 carbon atom % and 99% confidence. Data acquired at 75 MHz with a conventional probehead, however, required > or = 5 acquisitions to reach this certifying signal-to-noise ratio for phosgene, and >/= 12 acquisitions were required for the other compounds under these same conditions. In terms of accuracy and execution time, the NMR method rivals typical chromatographic methods. PMID:17924355

  11. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy

    PubMed Central

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR. PMID:27022916

  12. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    PubMed

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR. PMID:27022916

  13. Thz Spectroscopy of 13C Isotopic Species of a "weed": Acetaldehyde

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.

    2011-06-01

    Our studies of the isotopic species of 13C and D isotopologues of methyl formate (HCOOCH_3), have allowed the detection of more than 600 lines in Orion. This confirms that many observed U-lines are coming from isotopic species of one of the most abundant molecules in space. Since its first detection in 1976 in SgrB2 and in Orion A, acetaldehyde (CH_3CHO) was detected in many other numerous objects. If its deuterated species (CD_3CHO and CH_3CDO) have been previously studied in the millimeterwave range, the data concerning the 13C species are limited to few lines measured in 1957 up to 40 GHz. In this context we decided to study the 13C species of acetaldehyde. Acetaldehyde molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with the Rho Axis Method. Recent versions of the codes include high orders term in order to reproduce the observed frequencies for large quantum numbers values as J-values as high as 70a,b,. Measurements and analysis of the rotational spectra of 13C isotopic species are in progress in Lille with a solid-state submillimetre-wave spectrometer (50-950 GHz), the first results will be presented. This work is supported by the contract ANR-08-BLAN-0054 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Carvajal, M.; Margulès, L.; Tercero, B.; et al.A&A 500, (2009) 1109 Margulès, L.; Huet, T. R.; Demaison J.; et al.,ApJ 714, (2010) 1120. Ikeda, M.; Ohishi, M.; Nummelin, A.; et al., ApJ, 560, (2001) 792 Kleiner, I.; Lopez, J.-C.; Blanco, S.; et al.J. Mol. Spectrosc. 197, (1999) 275 Elkeurti M.; Coudert, L. H.; Medvedev, I. R.; et al.J. Mol. Spectrosc. 263, (2010) 145 Kilb, R.W.; Lin, C.C.; and Wilson, E.B.J. Chem. Phys. 26, (1957) 1695 Kleiner, I. J. Mol. Spectrosc. 260, (2010) 1 Ilyushin, V.V.; Kryvda, A; and Alekseev, E;J. Mol. Spectrosc. 255, (2009) 32

  14. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  15. Spectroscopic characterization of the 1-substituted 3,3-diphenyl-4-(2'-hydroxyphenyl)azetidin-2-ones: Application of 13C NMR, 1H- 13C COSY NMR and mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Girija S.; Pheko, Tshepo

    2008-08-01

    The article deals with spectroscopic characterization of azetidin-2-ones. The presence of substituents like hydroxyl, fluoro, methoxy and benzhydryl, etc., on the azetidin-2-one ring significantly affects the IR absorption and 13C NMR frequencies of the carbonyl group present in these compounds. The presence of an ester carbonyl group or too many methine protons in the molecule has been observed to limit the scope of IR and 1H NMR spectroscopy in unambiguous assignment of the structure. The application of 13C NMR, 2D NMR ( 1H- 13C COSY) and mass spectroscopy in characterization of complex azetidin-2-ones is discussed. An application of the latter two techniques is described in deciding unequivocally between an azetidin-2-one ring and chroman-2-one ring structure for the product obtained by treatment of the 1-substituted 3,3-diphenyl-4-[2'-( O-diphenylacyl)hydroxyphenyl]-2-azetidinones with ethanolic sodium hydroxide at room temperature.

  16. Solution NMR of polypeptides hyperpolarized by dynamic nuclear polarization.

    PubMed

    Ragavan, Mukundan; Chen, Hsueh-Ying; Sekar, Giridhar; Hilty, Christian

    2011-08-01

    Hyperpolarization of nuclear spins through techniques such as dynamic nuclear polarization (DNP) can greatly increase the signal-to-noise ratio in NMR measurements, thus eliminating the need for signal averaging. This enables the study of many dynamic processes which would otherwise not be amenable to study by NMR spectroscopy. A report of solid- to liquid-state DNP of a short peptide, bacitracin A, as well as of a full-length protein, L23, is presented here. The polypeptides are hyperpolarized at low temperature and dissolved for NMR signal acquisition in the liquid state in mixtures of organic solvent and water. Signal enhancements of 300-2000 are obtained in partially deuterated polypeptide when hyperpolarized on (13)C and of 30-180 when hyperpolarized on (1)H. A simulated spectrum is used to identify different resonances in the hyperpolarized (13)C spectra, and the relation between observed signal enhancement for various groups in the protein and relaxation parameters measured from the hyperpolarized samples is discussed. Thus far, solid- to liquid-state DNP has been used in conjunction with small molecules. The results presented here, however, demonstrate the feasibility of hyperpolarizing larger proteins, with potential applications toward the study of protein folding or macromolecular interactions. PMID:21651293

  17. Quantitative Determination of Methylcyclohexanone Mixtures Using 13C NMR Spectroscopy: A Project for an Advanced Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Lefevre, Joseph W.; Silveira, Augustine, Jr.

    2000-01-01

    The percentage composition of mixtures of four methylcyclohexanones was determined using 13C NMR spectroscopy as a quantitative analytical method. The data were acquired using standard broadband proton decoupling and inverse-gated decoupling, the latter done both with and without the paramagnetic relaxation reagent chromium(III) acetylacetonate [Cr(acac)3]. The standard broadband decoupled spectrum resulted in percentages far from the actual values owing to the varying nuclear Overhauser enhancements (NOEs) and spin-lattice relaxation times (T1's) of the various carbon atoms. These effects were eliminated in the inverse-gated experiments, and the results were very close to the actual percentages. Before examining the mixtures, the students studied a pure sample of 2-methylcyclohexanone. They assigned the 13C spectrum and determined the T1 of the carbonyl group both with and without Cr(acac)3 using the inversion-recovery method. Then a five-times-T1 delay was inserted between pulses in all subsequent inverse-gated decoupling experiments. This project provides students with valuable experience with modern NMR techniques. These include COrrelated SpectroscopY (COSY), Distortionless Enhancement by Polarization Transfer (DEPT) spectroscopy, HETeronuclear CORrelated (HETCOR) spectroscopy, T1 determination, standard broadband versus inverse-gated decoupling, and the addition of a paramagnetic relaxation reagent to dramatically shorten both the T

  18. Reduced glutamate neurotransmission in patients with Alzheimer's disease -- an in vivo (13)C magnetic resonance spectroscopy study.

    PubMed

    Lin, Alexander P; Shic, Frederick; Enriquez, Cathleen; Ross, Brian D

    2003-02-01

    Cognitive impairment in Alzheimer's disease (AD) is not fully explained. PET indicates reduced cerebral metabolic rate for glucose. Since glutamate neurotransmission (GNT) consumes more than 80% of the ATP generated from metabolism, a pilot study was carried out to determine the neuronal tricarboxylic acid cycle (TCA) based on the hypothesis that reduced GNT could contribute to cognitive impairment in AD. Three AD patients with cognitive impairment (mini-mental state exam: 24 vs 30, P<0.05) and significant reduction in both N-acetyl aspartate (NAA)/Creatine (Cr) ( P<0.009) and NAA/myo-inositol (mI) ratio ( P<0.01), and three age-matched controls each received 0.014-0.016 g/kg/min 99%1-13C glucose IV. Quantitative (1)H and proton-decoupled (13)C MR brain spectra were acquired from combined posterior-parietal white matter and posterior-cingulate gray matter every 5 min for 140 min.(13)C magnetic resonance spectroscopy (MRS) measures of glucose oxidation and neuronal TCA rate, including prolonged time to (13)C enrichment of glutamate (Glu2) ( P<0.004) and bicarbonate (HCO(3)) ( P<0.03) as well as reduced relative enrichment of Glu(2)/Glu(4) between 60 and 100 min ( P<0.04), were significantly different in AD patients vs. controls. (13)C measures of GNT, glutamine (Gln)(2)/Glu(2) ( P<0.02) and rates of glutamate enrichment (Glu(2)/glucose: 0.34 vs 0.86, P=ns and Glu(4)/glucose 0.26 vs 0.83, P=ns), were also reduced.(13)C MRS measures of neuronal TCA cycle, glucose oxidation and GNT were significantly correlated with measures of neuronal integrity: NAA/Cr, [NAA] and mI/NAA as determined by (1)H MRS ( R(2)=0.73-0.95; P<0.05-0.01), suggesting that impairment of GNT may be a contributing factor in the cognitive impairment characteristic of AD. PMID:12695884

  19. Characterization of aging in organic materials on atomic-, meso- and macro-length scales by {sup 13}C NMR spectroscopy

    SciTech Connect

    Assink, R.A.; Jamison, G.M.; Alam, T.M.; Gillen, K.T.

    1997-10-01

    A fundamental understanding of aging in an organic material requires that one understand how aging affects the chemical structure of a material, and how these chemical changes are related to the material`s macroscopic properties. This level of understanding is usually achieved by examining the material on a variety of length scales ranging from atomic to meso-scale to macroscopic. The authors are developing and applying several {sup 13}C nuclear magnetic resonance (NMR) spectroscopy experiments to characterize the aging process of organic materials over a broad range of length scales. Examples of studies which range from atomic to macroscopic will be presented.

  20. Biosynthesis of pyrroloquinoline quinone. 1. Identification of biosynthetic precursors using /sup 13/C labeling and NMR spectroscopy

    SciTech Connect

    Houck, D.R.; Hanners, J.L.; Unkefer, C.J.

    1988-09-28

    The biosynthesis of pyrroloquinoline quinone (PQQ) in the methylotropic bacterium methylobacterium AM1 has been investigated using /sup 13/C-labelling of the products and NMR spectroscopy. The data indicated that the quinoline portion of PQQ is formed by a novel condensation of N-1, C-2, -3, and -4 of glutamate with a symmetrical six-carbon ring derived from the shikimate pathway. It is postulated that tyrosine is the shikimate-derived percursor, since pyrrole could be formed by the internal cyclization of the amino acid backbone. 18 references, 2 figures, 2 tables.

  1. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  2. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  3. Glutamatergic and GABAergic energy metabolism measured in the rat brain by (13) C NMR spectroscopy at 14.1 T.

    PubMed

    Duarte, João M N; Gruetter, Rolf

    2013-09-01

    Energy metabolism supports both inhibitory and excitatory neurotransmission processes. This study investigated the specific contribution of astrocytic metabolism to γ-aminobutyric acid (GABA) synthesis and inhibitory GABAergic neurotransmission that remained to be ilucidated in vivo. Therefore, we measured (13)C incorporation into brain metabolites by dynamic (13)C nuclear magnetic resonance spectroscopy at 14.1 T in rats under α-chloralose anaesthesia during infusion of [1,6-(13)C]glucose. The enhanced sensitivity at 14.1 T allowed to quantify incorporation of (13) C into the three aliphatic carbons of GABA non-invasively. Metabolic fluxes were determined with a mathematical model of brain metabolism comprising glial, glutamatergic and GABAergic compartments. GABA synthesis rate was 0.11 ± 0.01 μmol/g/min. GABA-glutamine cycle was 0.053 ± 0.003 μmol/g/min and accounted for 22 ± 1% of total neurotransmitter cycling between neurons and glia. Cerebral glucose oxidation was 0.47 ± 0.02 μmol/g/min, of which 35 ± 1% and 7 ± 1% was diverted to the glutamatergic and GABAergic tricarboxylic acid cycles, respectively. The remaining fraction of glucose oxidation was in glia, where 12 ± 1% of the TCA cycle flux was dedicated to oxidation of GABA. 16 ± 2% of glutamine synthesis was provided to GABAergic neurons. We conclude that substantial metabolic activity occurs in GABAergic neurons and that glial metabolism supports both glutamatergic and GABAergic neurons in the living rat brain. PMID:23745684

  4. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    PubMed

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. PMID:27343582

  5. Continuous Flow - Cavity RingDown Spectroscopy Using a Novel Universal Interface for High-Precision Bulk 13C Analysis

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Richman, Bruce

    2010-05-01

    We have developed the world's first optical spectroscopy-based system for bulk stable isotope analysis of 13C. The system is based on a novel universal interface, named LIAISON, capable of coupling to almost any CO2-generating sample preparation front-end ranging from an elemental analyzer to any dissolved carbon analysis module, which are of significant use in geochemical, ecological and food authentication studies. In one specific application, we have coupled LIAISON to an elemental analyzer (EA) and to a cavity ring-down spectrometer (CRDS) for 13C isotopic analysis of adulterated honey samples. Another application was developed to analyze dissolved inorganic carbon in water samples. LIAISON is suited for handling a high-throughput sample analysis process by running three different gas handling operations in parallel: Admitting combustion gas from the EA into a first gas bellows, analyzing the previous sample collected into a second gas bellows with CRDS, and flushing and purging a third gas bellows in preparation for the upcoming sample collection operation. The sample-to-sample analysis time is 10 minutes and the operation is completely automated for the whole front-end auto-sampler tray capacity, requiring no operator intervention. The CRDS data are collected, tabulated and saved into an output text file. The memory effect between the USGS L-Glutamic acid standard at natural abundance and the moderately enriched USGS L-Glutamic acid standard is excluded by the selection of the adequate number and duration of flush and purge cycles of the gas sample bags. The system's proven accuracy was cross-checked with EA-IRMS and its achieved precision was typically less than 0.2 permil, including the 13C-enriched tested samples. The LIAISON-CRDS system presented here provides a fully automated solution for 13C bulk stable isotope analysis with unprecedented ease-of-use and possible field portability and application with the availability of a compact front-end. In

  6. Continuous-flow 13C-filtered 1H NMR spectroscopy of ethanol metabolism in rat liver perfusate.

    PubMed

    Albert, K; Sudmeier, J L; Anwer, M S; Bachovchin, W W

    1989-09-01

    Using a 188.5-microliters continuous-flow dual probe 1H[13C] spin-echo difference spectra of rat liver perfusate were acquired. The conversion of [1-13C]ethanol to [1-13C]-acetaldehyde was readily monitored as a function of time. In combination with 1-1 water nonexcitation and WALTZ 13C decoupling, this method proved to be superior in sensitivity and selectivity to direct 1H or 13C detection. PMID:2779419

  7. Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C NMR Spectroscopy of Perfused Tumor Cells.

    PubMed

    Shestov, Alexander A; Mancuso, Anthony; Lee, Seung-Cheol; Guo, Lili; Nelson, David S; Roman, Jeffrey C; Henry, Pierre-Gilles; Leeper, Dennis B; Blair, Ian A; Glickson, Jerry D

    2016-03-01

    A network model for the determination of tumor metabolic fluxes from (13)C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-(13)C2]glucose under normoxic conditions at 37 °C and monitored by (13)C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼ 50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼ 6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism. PMID:26703469

  8. The Contribution of Blood Lactate to Brain Energy Metabolism in Humans Measured by Dynamic 13C Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    BOUMEZBEUR, Fawzi; PETERSEN, Kitt F.; CLINE, Gary W.; MASON, Graeme F.; BEHAR, Kevin L; SHULMAN, Gerald I.; ROTHMAN, Douglas L.

    2010-01-01

    To determine whether plasma lactate can be a significant fuel for human brain energy metabolism infusions of [3-13C]lactate and 1H-13C polarization transfer spectroscopy were used to detect the entry and utilization of lactate. During the 2-hour infusion study, 13C incorporation in the amino acid pools of glutamate and glutamine were measured with a 5 minutes time-resolution. With a plasma concentration ([Lac]P) being in the 0.8–2.8 mmol/L range, the tissue lactate concentration ([Lac]B) was assessed as well as the fractional contribution of lactate to brain energy metabolism (CMRlac). From the measured relationship between unidirectional lactate influx (Vin) and plasma and brain lactate concentrations lactate transport constants were calculated using a reversible Michaelis-Menten model. The results show (i) that in the physiological range plasma lactate unidirectional transport (Vin) and concentration in tissue increases close to linearly with the lactate concentration in plasma, (ii) the maximum potential contribution of plasma lactate to brain metabolism is 10% under basal plasma lactate conditions of ~ 1.0 mmol/L and as much as 60% at supra-physiological plasma lactate concentrations when the transporters are saturated, (iii) the half-saturation constant KT is 5.1±2.7 mmol/L and VMAX is 0.40±0.13 μmol/g/min (68% confidence interval), (iv) the majority of plasma lactate is metabolized in neurons similar to glucose. PMID:20962220

  9. Recent applications of /sup 13/C NMR spectroscopy to biological systems

    SciTech Connect

    Matwiyoff, N.A.

    1981-01-01

    Carbon-13 nuclear magnetic resonance (NMR) spectroscopy, in conjunction with carbon-13 labelling, is a powerful new analytical technique for the study of metabolic pathways and structural components in intact organelles, cells, and tissues. The technique can provide, rapidly and non-destructively, unique information about: the architecture and dynamics of structural components; the nature of the intracellular environment; and metabolic pathways and relative fluxes of individual carbon atoms. With the aid of results recently obtained by us and those reported by a number of other laboratories, the problems and potentialities of the technique will be reviewed with emphasis on: the viscosities of intracellular fluids; the structure and dynamics of the components of membranes; and the primary and secondary metabolic pathways of carbon in microorganisms, plants, and mammalian cells in culture.

  10. In Situ Determination of Fructose Isomer Concentrations in Wine Using (13)C Quantitative Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Colombo, Cinzia; Aupic, Clara; Lewis, Andrew R; Pinto, B Mario

    2015-09-30

    A practical method for simultaneously quantifying fructose and ethanol contents in wines using (13)C quantitative nuclear magnetic resonance (qNMR) spectroscopy is reported. Less than 0.6 mL of wine is needed, and the method leaves an unmodified sample available for subsequent testing or additional analyses. The relative ratios of the five known fructose isomers in ethanolic solutions at different pH and their variations with the temperature are also reported. The data are correlated with the sweetness of wines. The technique was applied to commercially available wines, and the results are compared to other methods. Sugar levels above 0.6 g/L can also be measured. A simple adaptation of the method permits measurement of different carbohydrates using integration of single peaks for each compound, in combination with an external reference (13)C qNMR spectrum of a sample with a known concentration. The method can be applied at all stages of wine production, including grape must, during fermentation, and before and after bottling. PMID:26350157

  11. Observation of cytoplasmic and vacuolar malate in maize root tips by sup 13 C-NMR spectroscopy. [Zea mays L

    SciTech Connect

    Chang, K.; Roberts, J.K.M. )

    1989-01-01

    The accumulation of malate by maize (Zea mays L.) root tips perfused with KH{sup 13}CO{sub 3} was followed by {sup 13}C nuclear magnetic resonance spectroscopy. In vivo nuclear magnetic resonance spectra contained distinct signals from two pools of malate in maize root tips, one at a pH {approximately}5.3 (assigned to the vacuole) and one at a pH > 6.5 (assigned to the cytoplasm). The ratio of cytoplasmic to vacuolar malate was lower in 12 millimeter long root tips than in 2 millimeter root tips. The relatively broad width of the signals from C1- and C4-labeled vacuolar malate indicated heterogeneity in vacuolar pH. During the 3 hour KH{sup 13}CO{sub 3} treatment, {sup 13}C-malate accumulated first primarily in the cytoplasm, increasing to a fairly constant level of {approximately}6 millimolar by 1 hour. After a lag, vacuolar malate increased throughout the experiment.

  12. Evolution of organic matter during composting of different organic wastes assessed by CPMAS {sup 13}C NMR spectroscopy

    SciTech Connect

    Caricasole, P.; Provenzano, M.R.; Senesi, N.

    2011-03-15

    In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS {sup 13}C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS {sup 13}C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.

  13. Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing

    USGS Publications Warehouse

    Kogel-Knabner, I.; Hatcher, P.G.

    1989-01-01

    Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

  14. In Situ Determination of Tacticity, Deactivation, and Kinetics in [rac-(C2H4(1-Indenyl)2)ZrMe][B(C6F5)4] and [Cp2ZrMe][B(C6F5)4]-Catalyzed Polymerization of 1-Hexene Using (13)C Hyperpolarized NMR.

    PubMed

    Chen, Chia-Hsiu; Shih, Wei-Chun; Hilty, Christian

    2015-06-01

    The stereochemistry, kinetics, and mechanism of olefin polymerization catalyzed by a set of zirconium-based metallocenes was studied by NMR using dissolution dynamic nuclear polarization (DNP). Hyperpolarized 1-hexene was polymerized in situ with a C2 symmetric catalyst, [(EBI)ZrMe][B(C6F5)4] (EBI = rac-(C2H4(1-indenyl)2)), and a C2v symmetric catalyst, [(Cp)2ZrMe][B(C6F5)4] (Cp = cyclopentadienyl). Hyperpolarized (13)C NMR spectra were used to characterize product tacticity following initiation of the reaction. At the same time, a signal gain of 3 orders of magnitude from (13)C hyperpolarization enabled the real time observation of catalyst-polymeryl species and deactivation products, such as vinylidene and a Zr-allyl complex. The compounds appearing in the reaction provide evidence for the existence of β-hydride elimination and formation of a dormant site via a methane-generating mechanism. The presence of a deactivating mechanism was incorporated in a model used to determine kinetic parameters of the reaction. On this basis, rate constants were measured between 0.8 and 6.7 mol % of catalyst. The concentration dependence of the rate constants obtained indicates a second-order process for polymerization concomitant with a first-order process for deactivation. The simultaneous observation of both processes in the time evolution of (13)C NMR signals over the course of several seconds underlines the utility of hyperpolarized NMR for quantifying early events in polymerization reactions. PMID:25961793

  15. Furanose ring anomerization: kinetic and thermodynamic studies of the D-2-pentuloses by 13C-n.m.r. spectroscopy.

    PubMed

    Wu, J; Serianni, A S; Vuorinen, T

    1990-09-30

    The tautomeric compositions of D-erythro-2-pentulose (D-ribulose) and D-threo-2-pentulose (D-xylulose) in aqueous solution have been studied by 13C-n.m.r. spectroscopy at various temperatures using 2-13C-substituted compounds. The alpha-furanose, beta-furanose, and acyclic carbonyl (keto) forms were detected at all temperatures, whereas the acyclic hydrate (gem-diol) form was not observed. The percentage of keto form increased with increasing temperature, at the expense of the furanose forms. Thermodynamic (delta G0, delta H0, delta S0) and kinetic parameters for the interconversion of alpha- and beta-furanoses with the acyclic carbonyl form were determined and compared with those determined under similar conditions for the structurally-related aldotetrofuranoses. The ring-opening rate constant (kopen) measured by 13C saturation-transfer n.m.r. spectroscopy in 50mM sodium acetate (pH 4.0) at 55 degrees were as follows: beta-threofuranose (0.65 s-1) greater than alpha-erythrofuranose (0.51 s-1) greater than beta-erythrofuranose (0.37 s-1) approximately beta-threo-2-pentulofuranose (0.35 s-1) greater than alpha-threofuranose (0.25 s-1) greater than alpha-threo-2-pentulofuranose (0.20 s-1) approximately alpha-erythro-2-pentulofuranose (0.18 s-1) approximately beta-erythro-2-pentulofuranose (0.18 s-1). Within each structural type the pentulofuranose anomer having O-2 and O-3 cis (O-1 and O-2 cis in aldotetrofuranoses) opens faster than, or at a similar rate to, the alternative anomer having these oxygen atoms trans. Ring-closing rate constants (kclose), calculated from kopen and Keq, decrease in the order beta-erythrofuranose (15 s-1) greater than beta-threofuranose (12 s-1) greater than alpha-erythrofuranose (9.9 s-1) greater than alpha-threofuranose (6.2 s-1) greater than beta-threo-2-pentulofuranose (0.71 s-1) greater than alpha-erythro-2-pentulofuranose (0.38 s-1) greater than alpha-threo-2-pentulofuranose (0.13 s-1) approximately beta-erythro-2-pentulofuranose (0

  16. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  17. The guest ordering and dynamics in urea inclusion compounds studied by solid-state 1H and 13C MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xiaorong; Müller, Klaus

    2011-12-01

    Urea inclusion compounds with different guest species were studied by 13C CP MAS and 1H MAS NMR spectroscopy. It is possible to arrange the asymmetric guest species in three different ways: head-head, head-tail and tail-tail. 13C CP MAS NMR studies indicate that the preference arrangement is determined by the interaction strength of the end functional groups. 13C relaxation experiments are used to study the dynamic properties of urea inclusion compounds. 13C relaxation studies on urea inclusion compounds with n-alkane or decanoic acid show that the 13C T1 and 13C T1ρ values exhibit the position dependence towards the center of the chain, indicating internal chain mobility. The analysis of variable-temperature 13C T1ρ experiments on urea inclusion compounds with hexadecane and pentadecane, for the first time, suggests that chain fluctuations and lateral motion of n-alkane guests may contribute to the 13C T1ρ relaxation.

  18. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. PMID:24750769

  19. The use of dynamic nuclear polarization 13C-pyruvate MRS in cancer

    PubMed Central

    Gutte, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth; Clemmensen, Andreas Ettrup; Ardenkjær-Larsen, Jan Henrik; Nielsen, Carsten Haagen; Kjær, Andreas

    2015-01-01

    In recent years there has been an immense development of new targeted anti-cancer drugs. For practicing precision medicine, a sensitive method imaging for non-invasive, assessment of early treatment response and for assisting in developing new drugs is warranted. Magnetic Resonance Spectroscopy (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real-time investigation of in vivo metabolism. The development of this new method has been demonstrated to enhance the nuclear polarization more than 10,000-fold, thereby significantly increasing the sensitivity of the MRS with a spatial resolution to the millimeters and a temporal resolution at the subsecond range. Furthermore, the method enables measuring kinetics of conversion of substrates into cell metabolites and can be integrated with anatomical proton magnetic resonance imaging (MRI). Many nuclei and substrates have been hyperpolarized using the DNP method. Currently, the most widely used compound is 13C-pyruvate due to favoring technicalities. Intravenous injection of the hyperpolarized 13C-pyruvate results in appearance of 13C-lactate, 13C-alanine and 13C-bicarbonate resonance peaks depending on the tissue, disease and the metabolic state probed. In cancer, the lactate level is increased due to increased glycolysis. The use of DNP enhanced 13C-pyruvate has in preclinical studies shown to be a sensitive method for detecting cancer and for assessment of early treatment response in a variety of cancers. Recently, a first-in-man 31-patient study was conducted with the primary objective to assess the safety of hyperpolarized 13C-pyruvate in healthy subjects and prostate cancer patients. The study showed an elevated 13C-lactate/13C-pyruvate ratio in regions of biopsy

  20. Using 13C-labeled benzene and Raman gas spectroscopy to investigate respiration and biodegradation kinetics following soil contamination

    NASA Astrophysics Data System (ADS)

    Jochum, Tobias; Popp, Juergen; Frosch, Torsten

    2016-04-01

    Soil and groundwater contamination with benzene can cause serious environmental damages. However, many soil microorganisms are capable to adapt and known to strongly control the fate of organic contamination. Cavity enhanced Raman gas spectroscopy (CERS) was applied to investigate the short-term response of indigenous soil bacteria to a sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. 13C-labeled benzene was spiked on a silty-loamy soil column (sampled from Hainich National Park, Germany) in order to track and separate the changes in heterotrophic soil respiration - involving 12CO2 and O2 - from the microbial process of benzene degradation, which ultimately forms 13CO2.1 The respiratory quotient (RQ) of 0.98 decreased significantly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with maximum 13CO2 concentration rates (0.63 μ mol m-2 s-1), indicating highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into 13CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore.1 The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration. In summary, this study shows the potential of combining Raman gas spectroscopy and stable isotopes to follow soil microbial biodegradation dynamics while simultaneously monitoring the underlying respiration behavior. Support by the Collaborative Research Center 1076 Aqua Diva is kindly acknowledged. We thank Beate Michalzik for soil analysis and discussion. 1. T. Jochum, B. Michalzik, A. Bachmann, J. Popp and T. Frosch, Analyst, 2015, 140, 3143-3149.

  1. Characterization of pyrogenic organic matter by 2-dimenstional HETeronucleus CORelation solid-state 13C NMR (HETCOR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    technique was used for monitoring the chemical changes occurring during charring of biomass derived from model compounds, fire-affected and unaffected NOM. The 2D 13C HETCOR NMR spectrum of the fire- unaffected soils revealed that most of the carboxyl C occurs as ester or amide. Aside from cross peaks typically seen in spectra of NOM, the spectrum of the respective fire-affected counterpart shows additional signals assignable to PyOM.

  2. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    USGS Publications Warehouse

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  3. Determination of Oxidative Glucose Metabolism in vivo in the Young Rat Brain using Localized Direct-detected 13C NMR Spectroscopy

    PubMed Central

    Ennis, Kathleen; Deelchand, Dinesh Kumar; Tkac, Ivan; Henry, Pierre-Gilles; Rao, Raghavendra

    2011-01-01

    Determination of oxidative metabolism in the brain using in vivo 13C NMR spectroscopy (13C MRS) typically requires repeated blood sampling throughout the study to measure blood glucose concentration and fractional enrichment (input function). However, drawing blood from small animals, such as young rats, placed deep inside the magnet is technically difficult due to their small total blood volume. In the present study, a custom-built animal holder enabled temporary removal of the animal from the magnet for blood collection, followed by accurate repositioning in the exact presampling position without degradation of B0 shimming. 13C label incorporation into glutamate C4 and C3 positions during a 120 min [1,6-13C2] glucose infusion was determined in 28-day-old rats (n = 4) under α-chloralose sedation using localized, direct-detected in vivo 13C MRS at 9.4T. The tricarboxylic acid cycle activity rate (VTCA) determined using a one-compartment metabolic modeling was 0.67 ± 0.13 µmol/g/min, a value comparable to previous ex vivo studies. This methodology opens the avenue for in vivo measurements of brain metabolic rates using 13C MRS in small animals. PMID:21660589

  4. Hyperpolarized Magnetic Resonance: A Novel Technique for the In Vivo Assessment of Cardiovascular Disease

    PubMed Central

    Schroeder, Marie A.; Clarke, Kieran; Neubauer, Stefan; Tyler, Damian J.

    2011-01-01

    Non-invasive imaging plays a central role in cardiovascular disease for determining diagnosis, prognosis, and optimizing patient management. Recent experimental studies have demonstrated that monitoring hyperpolarized 13C-labelled tracers with magnetic resonance imaging and spectroscopy (MRI and MRS) offers a new way to investigate the normal and diseased heart, and that the technology may be useful in patients with heart disease. In this review, we show how hyperpolarized 13C-labelled tracers are generated and have been applied experimentally, and outline the methodological advances currently underway to enable translation of hyperpolarized 13C MRI and MRS into the clinic. Using hyperpolarized 13C-labelled metabolites and metabolic MRI and MRS could help assessment of many human cardiovascular diseases, including coronary artery disease, heart failure and metabolic cardiomyopathies. We discuss the clinical areas in which the technology may, in the future, aid in the diagnosis and management of patients with cardiovascular diseases, including dynamic investigations of in vivo metabolism, coronary angiography and quantitative perfusion imaging. It is possible that, in the future, hyperpolarized magnetic resonance will play a major role in clinical cardiology. PMID:21969318

  5. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  6. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  7. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    PubMed

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes. PMID:26653886

  8. High-field 13C NMR spectroscopy of tissue in Vivo. A double-resonance surface-coil probe

    NASA Astrophysics Data System (ADS)

    Reo, Nicholas V.; Ewy, Coleen S.; Siegfried, Barry A.; Ackerman, Joseph J. H.

    A double-resonance surface-coil NMR probe is described for performance of high-field (8.5 T) proton decoupled carbon-13 experiments with tissue in vivo. The probe may be accommodated in standard, 89 mm i.d. clear bore, commercial spectrometers and is suitable for studies utilizing small laboratory animals such as mice, hamsters, and rats. A coaxial coil design is employed (10 mm diameter 13C coil, 20 mm diameter 1H coil) which provides ca. 40 dB attenuation between the 13C observe and 1H decouple channels. The inherent efficiency of the surface-coil configuration provides a sensitivity comparable to a commercial probe of the same nominal dimension (10 mm Helmholtz coil) and assures adequate decoupling in conductive samples with ca. 3-5 W power. In the absence of 13C isotopic enrichment, NMR spectra of rat leg, liver, and brain in vivo provide signalto-noise sufficient for 10 min time resolution. Administration of 100 mg of 90% 13C-labeled glucose into a peripheral vein of a ca. 300 g rat resulted in a liver glucose resonance which could be monitored with good signal-to-noise and 3 min time resolution.

  9. Effect of Oxygen Concentration on Viability and Metabolism in a Fluidized-Bed Bioartificial Liver Using 31P and 13C NMR Spectroscopy

    PubMed Central

    Jeffries, Rex E.; Gamcsik, Michael P.; Keshari, Kayvan R.; Pediaditakis, Peter; Tikunov, Andrey P.; Young, Gregory B.; Lee, Haakil; Watkins, Paul B.

    2013-01-01

    Many oxygen mass-transfer modeling studies have been performed for various bioartificial liver (BAL) encapsulation types; yet, to our knowledge, there is no experimental study that directly and noninvasively measures viability and metabolism as a function of time and oxygen concentration. We report the effect of oxygen concentration on viability and metabolism in a fluidized-bed NMR-compatible BAL using in vivo 31P and 13C NMR spectroscopy, respectively, by monitoring nucleotide triphosphate (NTP) and 13C-labeled nutrient metabolites, respectively. Fluidized-bed bioreactors eliminate the potential channeling that occurs with packed-bed bioreactors and serve as an ideal experimental model for homogeneous oxygen distribution. Hepatocytes were electrostatically encapsulated in alginate (avg. diameter, 500 μm; 3.5×107 cells/mL) and perfused at 3 mL/min in a 9-cm (inner diameter) cylindrical glass NMR tube. Four oxygen treatments were tested and validated by an in-line oxygen electrode: (1) 95:5 oxygen:carbon dioxide (carbogen), (2) 75:20:5 nitrogen:oxygen:carbon dioxide, (3) 60:35:5 nitrogen:oxygen:carbon dioxide, and (4) 45:50:5 nitrogen:oxygen:carbon dioxide. With 20% oxygen, β-NTP steadily decreased until it was no longer detected at 11 h. The 35%, 50%, and 95% oxygen treatments resulted in steady β-NTP levels throughout the 28-h experimental period. For the 50% and 95% oxygen treatment, a 13C NMR time course (∼5 h) revealed 2-13C-glycine and 2-13C-glucose to be incorporated into [2-13C-glycyl]glutathione (GSH) and 2-13C-lactate, respectively, with 95% having a lower rate of lactate formation. 31P and 13C NMR spectroscopy is a noninvasive method for determining viability and metabolic rates. Modifying tissue-engineered devices to be NMR compatible is a relatively easy and inexpensive process depending on the bioreactor shape. PMID:22835003

  10. Dynamic nuclear polarization of biocompatible (13)C-enriched carbonates for in vivo pH imaging.

    PubMed

    Korenchan, D E; Flavell, R R; Baligand, C; Sriram, R; Neumann, K; Sukumar, S; VanBrocklin, H; Vigneron, D B; Wilson, D M; Kurhanewicz, J

    2016-02-18

    A hyperpolarization technique using carbonate precursors of biocompatible molecules was found to yield high concentrations of hyperpolarized (13)C bicarbonate in solution. This approach enabled large signal gains for low-toxicity hyperpolarized (13)C pH imaging in a phantom and in vivo in a murine model of prostate cancer. PMID:26792559

  11. Assessment of metabolic fluxes in the mouse brain in vivo using 1H-[13C] NMR spectroscopy at 14.1 Tesla.

    PubMed

    Xin, Lijing; Lanz, Bernard; Lei, Hongxia; Gruetter, Rolf

    2015-05-01

    (13)C magnetic resonance spectroscopy (MRS) combined with the administration of (13)C labeled substrates uniquely allows to measure metabolic fluxes in vivo in the brain of humans and rats. The extension to mouse models may provide exclusive prospect for the investigation of models of human diseases. In the present study, the short-echo-time (TE) full-sensitivity (1)H-[(13)C] MRS sequence combined with high magnetic field (14.1 T) and infusion of [U-(13)C6] glucose was used to enhance the experimental sensitivity in vivo in the mouse brain and the (13)C turnover curves of glutamate C4, glutamine C4, glutamate+glutamine C3, aspartate C2, lactate C3, alanine C3, γ-aminobutyric acid C2, C3 and C4 were obtained. A one-compartment model was used to fit (13)C turnover curves and resulted in values of metabolic fluxes including the tricarboxylic acid (TCA) cycle flux VTCA (1.05 ± 0.04 μmol/g per minute), the exchange flux between 2-oxoglutarate and glutamate Vx (0.48 ± 0.02 μmol/g per minute), the glutamate-glutamine exchange rate V(gln) (0.20 ± 0.02 μmol/g per minute), the pyruvate dilution factor K(dil) (0.82 ± 0.01), and the ratio for the lactate conversion rate and the alanine conversion rate V(Lac)/V(Ala) (10 ± 2). This study opens the prospect of studying transgenic mouse models of brain pathologies. PMID:25605294

  12. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    SciTech Connect

    Cozar, O.; Filip, C.; Tripon, C.; Cioica, N.; Coţa, C.; Nagy, E. M.

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  13. A magnetic tunnel to shelter hyperpolarized fluids

    SciTech Connect

    Milani, Jonas Vuichoud, Basile; Bornet, Aurélien; Miéville, Pascal; Mottier, Roger; Jannin, Sami; Bodenhausen, Geoffrey

    2015-02-15

    To shield solutions carrying hyperpolarized nuclear magnetization from rapid relaxation during transfer through low fields, the transfer duct can be threaded through an array of permanent magnets. The advantages are illustrated for solutions containing hyperpolarized {sup 1}H and {sup 13}C nuclei in a variety of molecules.

  14. Ionic Dynamics in [C4mim]NTf2 in the Glassy and Liquid States: Results from 13C and 1H NMR Spectroscopy.

    PubMed

    Endo, Takatsugu; Sen, Sabyasachi

    2014-12-26

    The ionic dynamics of the room temperature ionic liquid 1-butyl-3-methylimdiazolium bis((trifluoromethyl)sulfonyl)amide ([C(4)mim]NTf(2)) is studied using (13)C and (1)H nuclear magnetic resonance (NMR) spectroscopy over a wide temperature range encompassing the glassy and liquid states. The temperature dependence of the (13)C spin-lattice relaxation time is analyzed with four different models to derive the rotational dynamics of the RTIL in the nano to picosecond range. It was found that the extended model-free approach bridges the data obtained from the BPP and DC models, and describes ion dynamics of the RTIL well. Three different motions are observed based on the approach: an overall ion rotation, a slow and a fast local rotational motion. The time scale of the slow local rotational motion, particularly of the imidazolium ring carbons, is strongly coupled to the time scale of the overall ion rotation, above the melting point. Below the melting point these two time scales show strong decoupling and the local rotation displays nanosecond dynamics in the glassy state. The analyses of the second moment (M(2)) of the (1)H and (13)C nuclides indicate that, in addition to the axial rotations of the two methyl groups (cation) and the CF(3) group (anion), all (13)C sites including the imidazolium ring carbon and CF(3) show evidence of mobility, even in the glassy state. PMID:25458921

  15. FTIR and NDIR spectroscopies as valuable alternatives to IRMS spectrometry for the δ(13)C analysis of food.

    PubMed

    Pironti, Concetta; Proto, Antonio; Camin, Federica; Cucciniello, Raffaele; Zarrella, Ilaria; Motta, Oriana

    2016-11-01

    The (13)C/(12)C carbon isotope ratio is a chemical parameter with many important applications in several scientific area and the technique of choice currently used for the δ(13)C determination is the isotope ratio mass spectrometry (IRMS). This latter is highly accurate (0.1‰) and sensitive (up to 0.01‰), but at the same time expensive and complex. The objective of this work was to assess the reliability of FTIR and NDIRS techniques for the measurement of carbon stable isotope ratio of food sample, in comparison to IRMS. IRMS, NDIRS and FTIR were used to analyze samples of food, such as oil, durum, cocoa, pasta and sugar, in order to determine the natural abundance isotopic ratio of carbon in a parallel way. The results were comparable, showing a close relationship among the three techniques. The main advantage in using FTIR and NDIRS is related to their cheapness and easy-to-operate in comparison to IRMS. PMID:27591614

  16. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    PubMed

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at < or = 25 microg/mL were easily detected in a sample where the 1H solvent signal was approximately 58,000-fold more intense than the analyte 1H signals. The problem of overlapping signals typically observed in conventional 1H spectroscopy was essentially eliminated, while 1H and 13C chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental

  17. Distortion-free {sup 13}C NMR spectroscopy in coal: {sup 1}H rotating-frame dynamic nuclear polarization and {sup 1}H-{sup 13}C cross-polarization

    SciTech Connect

    Wind, R.A.

    1993-12-31

    A {sup 1}H-{sup 13}C cross-polarization (CP) experiment is described in which the {sup 1}H magnetization, used in CP, is obtained via dynamic nuclear polarization (DNP) in the proton rotating frame (RF DNP). This experiment can be carried out in coal and other solids containing unpaired electrons. In this so-called RF DNP-CP experiment, interplay effects between the {sup 1}H-{sup 13}C polarization-transfer times and the {sup 1}H rotating-frame relaxation time are avoided; thus {sup 13}C spectral distortions due to these effects are prevented. Moreover, multiple-contact RF DNP-CP experiments are possible, and these experiments reduce the measuring time of a {sup 13}C spectrum. An application of the RF DNP-CP technique in a low-volatile bituminous coal is given. 25 refs., 3 figs.

  18. Solid-state 13C-NMR spectroscopy of adduction products of 2,5-hexanedione with ribonuclease, albumin, and rat neurofilament protein.

    PubMed

    Yan, B; DeCaprio, A P; Zhu, M; Bank, S

    1996-10-21

    The Paal-Knorr condensation reaction between the gamma-diketone 2,5-hexanedione (2,5-HD) and epsilon-amine moieties of proteins of various molecular weight, including ribonuclease (RNase), bovine serum albumin (BSA) and rat neurofilament (NF), has been investigated by solid-state 13C-NMR spectroscopy. These proteins all reacted with 2,5-HD with the formation of 2,5-dimethylpyrrole (2,5-DMP) derivatives. The size and complexity of the protein affected the rate of formation of 2,5-DMP derivatives. Using the selective reducing reagent NaCNBH3, the Paal-Knorr reaction intermediates were trapped by conversion into amines, which were identified by solid-state NMR spectroscopy. The secondary autoxidation reaction following the formation of 2,5-DMP derivatives was also studied by solid-state NMR spectroscopy. PMID:8950225

  19. Solid-state /sup 13/C nuclear magnetic resonance spectroscopy of simultaneously metabolized acetate and phenol in a soil Pseudomonas sp

    SciTech Connect

    Heiman, A.S.; Copper, W.T.

    1987-01-01

    An investigation was made of the concentration-dependent primary and secondary substrate relationships in the simultaneous metabolism of the ubiquitous pollutant phenol and the naturally occurring substrate acetate by a Pseudomonas sp. soil isolate capable of utilizing either substance as a sole source of carbon and energy. In addition to conventional analytical techniques, solid-state /sup 13/C nuclear magnetic resonance spectroscopy was used to follow the cellular distribution of (1-/sup 13/C)acetate in the presence of unlabeled phenol. These results suggest that, when phenol is present as the primary substrate, acetate is preferentially shuttled into fatty acyl chain synthesis, whereas phenol carbon is funnelled into the tricarboxylic acid cycle. Thus, simultaneous use of a xenobiotic compound and a natural substrate apparently does occur, and the relative concentrations of the two substrates do influence the rate and manner in which the compounds are utilized. These results also demonstrate the unique advantage of using solid-state nuclear magnetic resonance techniques combined with /sup 13/C labeling of specific sites in substrates when doing microbial degradation studies. In this work, the entire cellular biomass was examined directly without extensive extraction, fractionation, or isolation of subcellular units; thus, there is no uncertainty about chemical alteration of substrate metabolites as a result of these often harsh treatments.

  20. Hydrogen bonding induced distortion of CO3 units and kinetic stabilization of amorphous calcium carbonate: results from 2D (13)C NMR spectroscopy.

    PubMed

    Sen, Sabyasachi; Kaseman, Derrick C; Colas, Bruno; Jacob, Dorrit E; Clark, Simon M

    2016-07-27

    Systematic correlation in alkaline-earth carbonate compounds between the deviation of the CO3 units from the perfect D3h symmetry and their (13)C nuclear magnetic resonance (NMR) chemical shift anisotropy (CSA) parameters is established. The (13)C NMR CSA parameters of amorphous calcium carbonate (ACC) are measured using two-dimensional (13)C phase adjusted spinning sidebands (PASS) NMR spectroscopy and are analyzed on the basis of this correlation. The results indicate a distortion of the CO3 units in ACC in the form of an in-plane displacement of the C atom away from the centroid of the O3 triangle, resulting from hydrogen bonding with the surrounding H2O molecules, without significant out-of-plane displacement. Similar distortion for all C atoms in the structure of ACC suggests a uniform spatial disposition of H2O molecules around the CO3 units forming a hydrogen-bonded amorphous network. This amorphous network is stabilized against crystallization by steric frustration, while additives such as Mg presumably provide further stabilization by increasing the energy of dehydration. PMID:27276013

  1. Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle.

    PubMed

    Thakur, Chandar S; Sama, Jacob N; Jackson, Melantha E; Chen, Bin; Dayie, T Kwaku

    2010-12-01

    Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on (13)C-2-glycerol and (13)C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in (13)C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3' and C5' carbon positions. Consequently the C1', C2' and C4' positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with (13)C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a (13)C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4' carbon position, such that the C2' and C3' positions suffer from multiplet splitting but the C5' position remains singlet and the C1' position shows a small amount of residual C1'-C2' coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with (13)C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5' position (~90%) that makes it particularly attractive for NMR applications involving CH(2)-TROSY modules without the need for decoupling the C4' carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed, which indicates

  2. Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: method development and first intercomparison results

    NASA Astrophysics Data System (ADS)

    Eyer, S.; Tuzson, B.; Popa, M. E.; van der Veen, C.; Röckmann, T.; Rothe, M.; Brand, W. A.; Fisher, R.; Lowry, D.; Nisbet, E. G.; Brennwald, M. S.; Harris, E.; Zellweger, C.; Emmenegger, L.; Fischer, H.; Mohn, J.

    2015-08-01

    In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called TRace gas EXtractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, μmole/mole) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on replicate measurements of compressed air during a two-week intercomparison campaign, the repeatability of the TREX-QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass-spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX-QCLAS data and bag/flask sampling-IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. Thus, the intercomparison also reveals the need for reference air samples with accurately determined isotopic composition of CH4 to further improve the interlaboratory compatibility.

  3. The mobility of chondroitin sulfate in articular and artificial cartilage characterized by 13C magic-angle spinning NMR spectroscopy.

    PubMed

    Scheidt, Holger A; Schibur, Stephanie; Magalhães, Alvicler; de Azevedo, Eduardo R; Bonagamba, Tito J; Pascui, Ovidiu; Schulz, Ronny; Reichert, Detlef; Huster, Daniel

    2010-06-01

    We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying (13)C high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T(1) relaxation times are rather similar, the T(2) relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in natural and artificial cartilage are different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue. PMID:20091673

  4. Germination of Saccharomyces cerevisiae ascospores without trehalose mobilization as revealed by in vivo 13C nuclear magnetic resonance spectroscopy.

    PubMed Central

    Donnini, C; Puglisi, P P; Vecli, A; Marmiroli, N

    1988-01-01

    Saccharomyces cerevisiae ascospores germinate in the presence of acetate without any detectable trehalose degradation, as revealed by high-resolution nuclear magnetic resonance spectroscopy and by a standard colorimetric assay. The results presented here substantiate the hypothesis that in S. cerevisiae trehalose supplies energy during dormancy of the spores and not during the germination process. PMID:3042762

  5. In Vivo13C Magnetic Resonance Spectroscopy of Human Brain on a Clinical 3 Tesla Scanner Using [2-13C]Glucose Infusion and Low Power Stochastic Decoupling

    PubMed Central

    Li, Shizhe; Zhang, Yan; Wang, Shumin; Yang, Jehoon; Araneta, Maria Ferraris; Farris, Amanda; Johnson, Christopher; Fox, Stephen; Innis, Robert; Shen, Jun

    2009-01-01

    This study presents the detection of [2-13C]glucose metabolism in the carboxylic/amide region in the human brain, and demonstrates that the cerebral metabolism of [2-13C]glucose can be studied in human subjects in the presence of severe hardware constraints of widely available 3 T clinical scanners and with low power stochastic decoupling. In the carboxylic/amide region of human brain, the primary products of 13C label incorporation from [2-13C]glucose into glutamate, glutamine, aspartate, γ-aminobutyric acid, and N-acetylaspartate were detected. Unlike the commonly used alkanyl region where lipid signals spread over a broad frequency range, the carboxylic carbon signal of lipids was found to be confined to a narrow range centered at 172.5 ppm and present no spectral interference in the absence of lipid suppression. Comparison using phantoms shows that stochastic decoupling is far superior than the commonly used WALTZ sequence at very low decoupling power at 3 T. It was found that glutamine C1 and C5 can be decoupled using stochastic decoupling at 2.2 W although glutamine protons span a frequency range of ∼700 Hz. Detailed specific absorption rate analysis was also performed using finite difference time domain numerical simulation. PMID:19526500

  6. Real-time analysis of δ13C- and δD-CH4 by high precision laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Eyer, Simon; Emmenegger, Lukas; Tuzson, Béla; Fischer, Hubertus; Mohn, Joachim

    2014-05-01

    analysis of CH4 isotopologues. The infrared radiation emitted by the two cw-QC laser sources are combined and coupled into a 0.5 L astigmatic multipass absorption cell with an optical path length of 76 m. An Allan variance minimum of the isotope ratio time-series of 0.1 o for δ13C-CH4 and 0.3 o for δD-CH4 has been achieved using 300 s integration time. First experiments of the developed analytical technique demonstrate its potential with respect to field-applicability and temporal resolving power. References: [1] WMO, Greenhouse Gas Bulletin No. 9, 2013, WMO GAW, pp. 4. [2] H. Fischer, M. Behrens, M. Bock, U. Richter, J. Schmitt, L. Loulergue, J. Chappellaz, R. Spahni, T. Blunier, M. Leuenberger and T. F. Stocker, Nature, 2008, 452, 864-867. [3] J. Mohn, B. Tuzson, A. Manninen, N. Yoshida, S. Toyoda, W. A. Brand, and L. Emmenegger, Atmos. Meas. Tech., 2012, 5, 1601-1609. [4] Tuzson, B., Hiller, R. V., Zeyer, K., Eugster, W., Neftel, A., Ammann, C., and L. Emmenegger, Atmos. Meas. Tech., 2010, 3,1519-1531.

  7. The 'Nuts and Bolts' of 13C NMR Spectroscopy at Elevated-Pressures and -Temperatures for Monitoring In Situ CO2 Conversion to Metal Carbonates

    NASA Astrophysics Data System (ADS)

    Moore, J. K.; Surface, J. A.; Skemer, P. A.; Conradi, M. S.; Hayes, S. E.

    2013-12-01

    characterization of multiple metastable mineral phases in pure forms and in mixtures. Notably, NMR spectroscopy is able to observe signals from amorphous materials, and mixtures of both crystalline and amorphous species can be analyzed. NMR results are verified through a combination of Raman spectroscopy and powder XRD (of crystalline species). Further, we have examined the effects on mineralization reactions of pH gradients in the sample--also monitored in situ by NMR--and these results will be presented. Reference: 'In Situ Measurement of Magnesium Carbonate Formation from CO2 Using Static High-Pressure and -Temperature 13C NMR' J. Andrew Surface, Philip Skemer, Sophia E. Hayes, and Mark S. Conradi, Environ. Sci. Technol. 2013, 47, 119-125. DOI: 10.1021/es301287n

  8. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field

    PubMed Central

    Tee, Sui Seng; DiGialleonardo, Valentina; Eskandari, Roozbeh; Jeong, Sangmoo; Granlund, Kristin L.; Miloushev, Vesselin; Poot, Alex J.; Truong, Steven; Alvarez, Julio A.; Aldeborgh, Hannah N.; Keshari, Kayvan R.

    2016-01-01

    Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting 13C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength. PMID:27597137

  9. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field.

    PubMed

    Tee, Sui Seng; DiGialleonardo, Valentina; Eskandari, Roozbeh; Jeong, Sangmoo; Granlund, Kristin L; Miloushev, Vesselin; Poot, Alex J; Truong, Steven; Alvarez, Julio A; Aldeborgh, Hannah N; Keshari, Kayvan R

    2016-01-01

    Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting (13)C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength. PMID:27597137

  10. Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: Method development and intercomparison

    NASA Astrophysics Data System (ADS)

    Harris, E. J.; Eyer, S.; Mohn, J.; Röckmann, T.; Popa, E.; Lowry, D.; Nisbet, E. G.; Fisher, R. E.; Brennwald, M. S.; Fischer, H.; Emmenegger, L.; Tuzson, B.; Zellweger, C.

    2015-12-01

    Methane (CH4) is the second most important anthropogenically emitted greenhouse gas after carbon dioxide (CO2). Its mole fraction has increased from around 722 ppb in pre-industrial times to 1824 ppb in 2013 and the anthropogenic fraction is estimated to be 60 % of the total emissions. A promising approach to improve the understanding of the CH4 budget is the use of isotopologues to distinguish between various CH4 source processes. In the presented study in situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called TRace gas EXtractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, mmole/mole) methane is 0.1‰ and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. [1] Based on replicate measurements of compressed air during a two-week intercomparison campaign, the repeatability of the TREX-QCLAS was determined to be 0.19 ‰ and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to IRMS based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers (Figure). Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX-QCLAS data and bag/flask sampling-IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and

  11. Estimates of Oil and Gas Potential of Source Rock by 13C Nuclear Magnetic Resonance (NMR) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Longbottom, T. L.; Hockaday, W. C.; Boling, K. S.; Dworkin, S. I.

    2014-12-01

    Kerogen is defined as the insoluble fraction of organic matter preserved in sediments. Due to its structural complexity, kerogen is poorly understood, yet it holds vast economic importance as petroleum source rock, and represents the largest organic carbon pool on earth. Kerogen originates from a mixture of organic biomolecules and tends to be dominated by the polymeric components of cell walls and cellular membranes, which undergo interactions with sedimentary minerals at elevated temperature and pressure upon burial. Due to the importance of burial diagenesis to petroleum formation, much of our knowledge of chemical properties of kerogens is related to diagenetic and catagenetic effects. The more common geochemical evaluations of the oil and gas potentials of source rock are based upon proximate analyses such as hydrogen and oxygen indices and thermal stability indices, such as those provided by Fisher assay and Rock Eval®. However, proximate analyses provide limited information regarding the chemical structure of kerogens, and therefore provide little insight to the processes of kerogen formation. NMR spectra of kerogen have been previously shown to be useful in estimating oil and gas potential, and the proposed study seeks to refine nuclear magnetic resonance spectroscopy as a tool in kerogen characterization, specifically for the purpose of oil and gas potential calculations.

  12. Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.

    This dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption

  13. Comparative Analysis of the Chemical Composition of Mixed and Pure Cultures of Green Algae and Their Decomposed Residues by 13C Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Zelibor, J. L.; Romankiw, L.; Hatcher, P. G.; Colwell, R. R.

    1988-01-01

    It is known that macromolecular organic matter in aquatic environments, i.e., humic substances, is highly aliphatic. These aliphatic macromolecules, predominantly paraffinic in structure, are prevalent in marine and lacustrine sediments and are believed to originate from algae or bacteria. A comparative study of mixed and pure cultures of green algae and their decomposed residues was performed by using solid-state 13C nuclear magnetic resonance spectroscopy as the primary analytical method. Results obtained in this study confirm the presence of components that are chemically refractory and that are defined as alghumin and hydrolyzed alghumin. These were detected in heterogeneous, homogeneous, and axenic biomasses composed of several genera of Chlorophyta. Although the chemical composition of algal biomass varied with culture conditions, the chemical structure of the alghumin and hydrolyzed alghumin, demonstrated by 13C nuclear magnetic resonance spectroscopy appeared to be constant for members of the Chlorophyta examined in this study. The alghumin was dominated by carbohydrate-carbon, with minor amounts of amide or carboxyl carbon and paraffinic carbon, the latter surviving strong hydrolysis by 6 N HCI (hydrolyzed alghumin). Bacterial decomposition of heterogeneous algal biomass labeled with 13C was conducted under both aerobic and anaerobic conditions to determine chemical structure and stability of the refractory material. The refractory fraction ranged from 33% in aerobic to 44% in anaerobic cultures. The refractory fraction recovered from either aerobic or anaerobic degradation comprised 40% alghumin, which represented an enrichment by 10% relative to the proportion of alghumin derived from whole cells of algae. The paraffinic component in the hydrolyzed alghumin of whole algal cells was found to be 1.8% and increased to 5.1 and 6.9% after aerobic and anaerobic bacterial degradation, respectively. It is concluded that members of the Chlorophyta contain a

  14. Characterization of the humic substances isolated from postfire soils of scotch pine forest in Togljatty city, Samara region by the 13C-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2016-04-01

    Postpyrogenic soil dynamics is an informative tool for studying of soil elementary processes in extreme temperature conditions and for predicting of short time environmental changes in conditions of catastrophic landscape changes. Soil organic matter (SOM) system evolution is the most rapid process of postpyrogenic soil development. In this relation the evaluation of humus accumulation rates and humification trend were conducted with use of the classical chemical and modern spectroscopy methods. Soil restoration after spontaneous forest fires near Togljatty city (Samara region, Russia) was abandoned in 2010, and further monitoring over the next four years was organized to evaluate the speed of biogenic processes and humus accumulation dynamics. Three key soil plots were studied for estimating SOM quality changes under the forest fire effect: surface forest fire, crown forest fire and control. Total carbon and nitrogen content as well as Cha/Cfa ratios (content of humic acids/ content of fulvic acids), were estimated to assess the dynamics of soil restoration. Humic acid powders were extracted and analyzed by elemental composition and 13C-NMR spectroscopy to assess changes in humic substance structure and composition. The data obtained indicate that burning of a forest floor and sod (humic) horizon led to humus losses and decreases in total carbon stocks. As a result of the fires, the content of humic acids in the pyrogenic horizon increased, leading alterations of humus type. Greater increases in the degree of organic matter humification were observed for surface fires than crown fires. It was shown that the humus molecular composition was substantially affected by the wildfires. The data show an increase in aromaticity, a loss of oxygen-containing groups and dehydrogenation of humic acids. Humic acids in the soils of the control plots and after wildfires were significantly different, especially in the ratios of hydrogen, oxygen and carbon. The increase in the

  15. Dynamic nuclear polarization of carbonyl and methyl 13C spins in acetate using trityl OX063

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Lumata, Lloyd

    2015-03-01

    Hyperpolarization via dissolution dynamic nuclear polarization (DNP) is a physics technique that amplifies the magnetic resonance signals by several thousand-fold for biomedical NMR spectroscopy and imaging (MRI). Herein we have investigated the effect of carbon-13 isotopic location on the DNP of acetate (one of the biomolecules commonly used for hyperpolarization) at 3.35 T and 1.4 K using a narrow ESR linewidth free radical trityl OX063. We have found that the carbonyl 13C spins yielded about twice the polarization produced in methyl 13C spins. Deuteration of the methyl group, beneficial in the liquid-state, did not produce an improvement in the polarization level at cryogenic conditions. Concurrently, the solid-state nuclear relaxation of these samples correlate with the polarization levels achieved. These results suggest that the location of the 13C isotopic labeling in acetate has a direct impact on the solid-state polarization achieved and is mainly governed by the nuclear relaxation leakage factor.

  16. On-site analysis of d13C- and dD-CH4 by laser spectroscopy for the allocation of source processes

    NASA Astrophysics Data System (ADS)

    Eyer, Simon; Tuzson, Béla; Popa, Elena; van der Veen, Carina; Röckmann, Thomas; Brand, Willi A.; Fisher, Rebecca; Lowry, David; Nisbet, Euan G.; Brennwald, Matthias S.; Harris, Eliza; Emmenegger, Lukas; Fischer, Hubertus; Mohn, Joachim

    2015-04-01

    Analysis of the most abundant methane isotopologues 12CH4, 13CH4 and 12CH3D can be used to disentangle source/sink processes (Fischer et al. 2008) and to develop target oriented reduction strategies. Isotopic analysis of CH4 is accomplished by isotope-ratio mass-spectrometry (IRMS) and more recently by mid-infrared laser spectroscopy. For high precision measurements in ambient air, however, both techniques rely on preconcentration of the target gas (Eyer et al. 2014). We developed a field-deployable analyser for real-time, on-site analysis of CH4 isotopologues which is based on a dual quantum cascade laser absorption spectrometer (QCLAS) in combination with an innovative preconcentration technique named trace gas extractor (TREX). The core part of the 19 ″ rack-mounted preconcentration unit is a highly efficient adsorbent trap attached to the cold end of a Stirling cooler. The system achieves preconcentration factors >500. For fast desorption and optimal heat management, the trap is decoupled from the cooler during desorption. The QCLAS has been developed based on a previously described instrument (Tuzson 2010). It comprises two cw-QC laser sources combined and coupled into an astigmatic multipass absorption cell with 76 m optical path. The developed technique reaches an unsurpassed precision of 0.1‰ for d13C-CH4 and <0.5‰ for dD-CH4 at 600 s spectral averaging. The potential of the new analytical system for field applications has been shown in June 2014, where the system has achieved an overall repeatability of 0.19‰ for d13C and 1.7‰ for dD-CH4 for repeated target gas measurements. Compatibility of TREX - QCLAS with flask sampling - IRMS for analysis of ambient CH4 fulfilled the extended WMO/GAW compatibility goals of 0.2‰ for d13C-CH4 and 5‰ for dD-CH4. References: Fischer, H., Behrens, M., Bock, M., Richter, U., Schmitt, J., Loulergue, L., Chappellaz, J., Spahni, R., Blunier, T., Leuenberger, M., Stocker, T. F. (2008) Nature 452: 864-867. Eyer, S

  17. /sup 18/O isotope effect in /sup 13/C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    SciTech Connect

    Parente, J.E.; Risley, J.M.; Van Etten, R.L.

    1984-12-26

    The /sup 18/O isotope-induced shifts in /sup 13/C and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the /sup 18/O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, (..cap alpha..-/sup 13/C,ester-/sup 18/O)benzyl phosphate and (ester-/sup 18/O)benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 75/sup 0/C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 < pH < 2.0, there is a mixture of C-O and P-O bond scission, the latter progressively predominating as the pH is raised; at pH greater than or equal to 2.0, the hydrolysis proceeds with exclusive P-O bond scission. (S)-(+)-(..cap alpha..-/sup 2/H)Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables.

  18. Modification of local electronic state by BEDT-STF doping to κ -(BEDT-TTF)2Cu[N (CN ) 2]Br salt studied by 13C NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ihara, Y.; Kawamoto, A.

    2016-03-01

    We present the results of site-selective 13C NMR spectroscopy on an organic superconductor κ -(BEDT-TTF)2Cu[N (CN ) 2]Br (κ -Br) doped with BEDT-STF molecules. We reveal microscopically the modulation of the local electronic state caused by the BEDT-STF doping from the 13C NMR measurement on two types of samples, which are 13C enriched κ -Br doped with naturally abundant BEDT-STF molecules, and natural κ -Br doped with 13C enriched BEDT-STF molecules. The results of the nuclear spin-lattice relaxation rate 1 /T1 measured both in the normal and superconducting state suggest that the potential disorder at the BEDT-STF sites scatters antiferromagnetic interaction and superconducting Cooper pairs.

  19. Stability and biodegradability of humic substances from Arctic soils of Western Siberia: insights from 13C-NMR spectroscopy and elemental analysis

    NASA Astrophysics Data System (ADS)

    Ejarque, E.; Abakumov, E.

    2015-11-01

    Arctic soils contain large amounts of organic matter which, globally, exceed the amount of carbon stored in vegetation biomass and in the atmosphere. Recent studies emphasize the potential sensitivity for this soil organic matter (SOM) to be mineralised when faced with increasing ambient temperatures. In order to better refine the predictions about the response of SOM to climate warming, there is a need to increase the spatial coverage of empirical data on SOM quantity and quality in the Arctic area. This study provides, for the first time, a characterisation of SOM from the Gydan Peninsula in the Yamal Region, Western Siberia, Russia. On the one hand, soil humic acids and their humification state were characterised by measuring the elemental composition and diversity of functional groups using solid-state 13C-NMR spectroscopy. Also, the total mineralisable carbon was measured. Our results show that there is a uniformity of SOM characteristics throughout the studied region, as well as within soil profiles. Such in-depth homogeneity, together with a predominance of aliphatic carbon structures, suggests the accumulation in soil of raw and slightly decomposed organic matter. Moreover, results on total mineralisable carbon suggest a high lability of these compounds. The mineralisation rate was found to be independent of SOM quality, and to be mainly explained solely by the total carbon content. Overall, our results provide further evidence on the fundamental role that the soils of Western Siberia may have on regulating the global carbon balance when faced with increasing ambient temperatures.

  20. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from 13C-NMR spectroscopy and elemental analysis

    NASA Astrophysics Data System (ADS)

    Ejarque, Elisabet; Abakumov, Evgeny

    2016-04-01

    Arctic soils contain large amounts of organic matter which, globally, exceed the amount of carbon stored in vegetation biomass and in the atmosphere. Recent studies emphasize the potential sensitivity for this soil organic matter (SOM) to be mineralised when faced with increasing ambient temperatures. In order to better refine the predictions about the response of SOM to climate warming, there is a need to increase the spatial coverage of empirical data on SOM quantity and quality in the Arctic area. This study provides, for the first time, a characterisation of SOM from the Gydan Peninsula in the Yamal Region, Western Siberia, Russia. On the one hand, soil humic acids and their humification state were characterised by measuring the elemental composition and diversity of functional groups using solid-state 13C-NMR spectroscopy. Also, the total mineralisable carbon was measured. Our results show that there is a predominance of aliphatic carbon structures, with a distribution of functional groups that has a minimal variation both regionally and within soil depth. Such vertical homogeneity and low level of aromaticity reflects the accumulation in soil of lowly decomposed organic matter due to cold temperatures. Mineralisation rates were found to be independent of SOM quality, and to be mainly explained solely by the total carbon content. Overall, our results provide further evidence on the sensitivity that the soils of Western Siberia may have to increasing ambient temperatures and highlight the important role that this region can play in the global carbon balance under the effects of climate warming.

  1. Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional 13C NMR Correlation Spectroscopy

    PubMed Central

    Li, Xiaoming; Shen, Qirong; Zhang, Dongqing; Mei, Xinlan; Ran, Wei; Xu, Yangchun; Yu, Guanghui

    2013-01-01

    While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D) 13C nuclear magnetic resonance (NMR) correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The results showed that the agricultural biomass carbonized to biochars was a dehydroxylation/dehydrogenation and aromatization process, mainly involving the cleavage of O-alkylated carbons and anomeric O-C-O carbons in addition to the production of fused-ring aromatic structures and aromatic C-O groups. With increasing charring temperature, the mass cleavage of O-alkylated groups and anomeric O-C-O carbons occurred prior to the production of fused-ring aromatic structures. The regression analysis between functional groups and biochar properties (pH and electrical conductivity) further demonstrated that the pH and electrical conductivity of rice straw derived biochars were mainly determined by fused-ring aromatic structures and anomeric O-C-O carbons, but the pH of rice bran derived biochars was determined by both fused-ring aromatic structures and aliphatic O-alkylated (HCOH) carbons. In summary, this work suggests a novel tool for characterising the development of functional groups in biochars. PMID:23840381

  2. Hyperpolarized NMR of plant and cancer cell extracts at natural abundance.

    PubMed

    Dumez, Jean-Nicolas; Milani, Jonas; Vuichoud, Basile; Bornet, Aurélien; Lalande-Martin, Julie; Tea, Illa; Yon, Maxime; Maucourt, Mickaël; Deborde, Catherine; Moing, Annick; Frydman, Lucio; Bodenhausen, Geoffrey; Jannin, Sami; Giraudeau, Patrick

    2015-09-01

    Natural abundance (13)C NMR spectra of biological extracts are recorded in a single scan provided that the samples are hyperpolarized by dissolution dynamic nuclear polarization combined with cross polarization. Heteronuclear 2D correlation spectra of hyperpolarized breast cancer cell extracts can also be obtained in a single scan. Hyperpolarized NMR of extracts opens many perspectives for metabolomics. PMID:26215673

  3. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: insights from 13C-NMR spectroscopy and elemental analysis

    NASA Astrophysics Data System (ADS)

    Ejarque, E.; Abakumov, E.

    2016-01-01

    Arctic soils contain large amounts of organic matter which, globally, exceed the amount of carbon stored in vegetation biomass and in the atmosphere. Recent studies emphasise the potential sensitivity for this soil organic matter (SOM) to be mineralised when faced with increasing ambient temperatures. In order to better refine the predictions about the response of SOM to climate warming, there is a need to increase the spatial coverage of empirical data on SOM quantity and quality in the Arctic area. This study provides, for the first time, a characterisation of SOM from the Gydan Peninsula in the Yamal Region, Western Siberia, Russia. On the one hand, soil humic acids and their humification state were characterised by measuring the elemental composition and diversity of functional groups using solid-state 13C-nuclear magnetic resonance (NMR) spectroscopy. Also, the total mineralisable carbon was measured. Our results indicate that there is a predominance of aliphatic carbon structures, with a minimal variation of their functional-group composition both regionally and within soil depth. This vertical homogeneity and low level of aromaticity reflects the accumulation in soil of lowly decomposed organic matter due to cold temperatures. Mineralisation rates were found to be independent of SOM quality, and to be mainly explained solely by the total carbon content. Overall, our results provide further evidence on the sensitivity that the soils of Western Siberia may have to increasing ambient temperatures and highlight the important role that this region can play in the global carbon balance under the effects of climate warming.

  4. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, X.; Mastalerz, Maria; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J.

    2011-01-01

    Four lithotypes (vitrain, bright clarain, clarain, and fusain) of a high volatile bituminous Springfield Coal from the Illinois Basin were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR techniques included quantitative direct polarization/magic angle spinning (DP/MAS), cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CHn selection, and recoupled C-H long-range dipolar dephasing techniques. The lithotypes that experienced high-pressure CO2 adsorption isotherm analysis were also analyzed to determine possible changes in coal structure as a result of CO2 saturation at high pressure and subsequent evacuation. The main carbon functionalities present in original vitrain, bright clarain, clarain and fusain were aromatic carbons (65.9%-86.1%), nonpolar alkyl groups (9.0%-28.9%), and aromatic C-O carbons (4.1%-9.5%). Among these lithotypes, aromaticity increased in the order of clarain, bright clarain, vitrain, and fusain, whereas the fraction of alkyl carbons decreased in the same order. Fusain was distinct from other three lithotypes in respect to its highest aromatic composition (86.1%) and remarkably small fraction of alkyl carbons (11.0%). The aromatic cluster size in fusain was larger than that in bright clarain. The lithotypes studied responded differently to high pressure CO2 saturation. After exposure to high pressure CO2, vitrain and fusain showed a decrease in aromaticity but an increase in the fraction of alkyl carbons, whereas bright clarain and clarain displayed an increase in aromaticity but a decrease in the fraction of alkyl carbons. Aromatic fused-rings were larger for bright clarain but smaller for fusain in the post-CO2 adsorption samples compared to the original lithotypes. These observations suggested chemical CO2-coal interactions at high pressure and the selectivity of lithotypes in response to CO2 adsorption. ?? 2011 Elsevier B.V.

  5. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state (13)C NMR and solution (31)P NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state (13)C NMR and solution (31)P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes. PMID:26624522

  6. Towards a vibrational analysis of spheroidene. Resonance Raman spectroscopy of 13C-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    PubMed

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Hoff, A F; Farhoosh, R; Frank, H A

    1994-04-28

    We report resonance Raman spectra of the carotenoid spheroidene and its 14'-13C and 15'-13C substituted analogues in petroleum ether and bound to the reaction centre of Rhodobacter sphaeroides R26. The spectra in petroleum ether correspond to planar all-trans spheroidene while those of the reaction centres are consistent with a nonplanar 15,15'-cis spheroidene. The effect of 13C labelling is largest in the carbon-carbon double-bond stretching region. The 15'-13C substitution of the reaction centre bound spheroidene, however, hardly changes the C=C band as compared to that for the natural abundance spheroidene apart from a new weak band at 1508 cm(-1). This observation has been interpreted as a decoupling of the C15=C15' stretch from the other double-bond stretches in combination with a small intrinsic Raman intensity of this local mode for 15,15'-cis spheroidene. PMID:8167135

  7. Hyperpolarized nanodiamond with long spin-relaxation times

    PubMed Central

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E.J.; Reilly, David J.

    2015-01-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance. PMID:26450570

  8. Hyperpolarized nanodiamond with long spin-relaxation times

    NASA Astrophysics Data System (ADS)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  9. Simultaneous two-voxel localized 1H-observed 13C-edited spectroscopy for in vivo MRS on rat brain at 9.4 T: Application to the investigation of excitotoxic lesions

    NASA Astrophysics Data System (ADS)

    Doan, Bich-Thuy; Autret, Gwennhael; Mispelter, Joël; Méric, Philippe; Même, William; Montécot-Dubourg, Céline; Corrèze, Jean-Loup; Szeremeta, Frédéric; Gillet, Brigitte; Beloeil, Jean-Claude

    2009-05-01

    13C spectroscopy combined with the injection of 13C-labeled substrates is a powerful method for the study of brain metabolism in vivo. Since highly localized measurements are required in a heterogeneous organ such as the brain, it is of interest to augment the sensitivity of 13C spectroscopy by proton acquisition. Furthermore, as focal cerebral lesions are often encountered in animal models of disorders in which the two brain hemispheres are compared, we wished to develop a bi-voxel localized sequence for the simultaneous bilateral investigation of rat brain metabolism, with no need for external additional references. Two sequences were developed at 9.4 T: a bi-voxel 1H-( 13C) STEAM-POCE (Proton Observed Carbon Edited) sequence and a bi-voxel 1H-( 13C) PRESS-POCE adiabatically decoupled sequence with Hadamard encoding. Hadamard encoding allows both voxels to be recorded simultaneously, with the same acquisition time as that required for a single voxel. The method was validated in a biological investigation into the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions. Following an excitotoxic quinolinate-induced localized lesion in the rat cortex and the infusion of U- 13C glucose, two 1H-( 13C) spectra of distinct (4 × 4 × 4 mm 3) voxels, one centred on the injured hemisphere and the other on the contralateral hemisphere, were recorded simultaneously. Two 1H bi-voxel spectra were also recorded and showed a significant decrease in N-acetyl aspartate, and an accumulation of lactate in the ipsilateral hemisphere. The 1H-( 13C) spectra could be recorded dynamically as a function of time, and showed a fall in the glutamate/glutamine ratio and the presence of a stable glutamine pool, with a permanent increase of lactate in the ipsilateral hemisphere. This bi-voxel 1H-( 13C) method can be used to investigate simultaneously both brain hemispheres, and to perform dynamic studies. We report here the neuronal damage and the

  10. Simultaneous two-voxel localized (1)H-observed (13)C-edited spectroscopy for in vivo MRS on rat brain at 9.4T: Application to the investigation of excitotoxic lesions.

    PubMed

    Doan, Bich-Thuy; Autret, Gwennhael; Mispelter, Joël; Méric, Philippe; Même, William; Montécot-Dubourg, Céline; Corrèze, Jean-Loup; Szeremeta, Frédéric; Gillet, Brigitte; Beloeil, Jean-Claude

    2009-05-01

    (13)C spectroscopy combined with the injection of (13)C-labeled substrates is a powerful method for the study of brain metabolism in vivo. Since highly localized measurements are required in a heterogeneous organ such as the brain, it is of interest to augment the sensitivity of (13)C spectroscopy by proton acquisition. Furthermore, as focal cerebral lesions are often encountered in animal models of disorders in which the two brain hemispheres are compared, we wished to develop a bi-voxel localized sequence for the simultaneous bilateral investigation of rat brain metabolism, with no need for external additional references. Two sequences were developed at 9.4T: a bi-voxel (1)H-((13)C) STEAM-POCE (Proton Observed Carbon Edited) sequence and a bi-voxel (1)H-((13)C) PRESS-POCE adiabatically decoupled sequence with Hadamard encoding. Hadamard encoding allows both voxels to be recorded simultaneously, with the same acquisition time as that required for a single voxel. The method was validated in a biological investigation into the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions. Following an excitotoxic quinolinate-induced localized lesion in the rat cortex and the infusion of U-(13)C glucose, two (1)H-((13)C) spectra of distinct (4x4x4mm(3)) voxels, one centred on the injured hemisphere and the other on the contralateral hemisphere, were recorded simultaneously. Two (1)H bi-voxel spectra were also recorded and showed a significant decrease in N-acetyl aspartate, and an accumulation of lactate in the ipsilateral hemisphere. The (1)H-((13)C) spectra could be recorded dynamically as a function of time, and showed a fall in the glutamate/glutamine ratio and the presence of a stable glutamine pool, with a permanent increase of lactate in the ipsilateral hemisphere. This bi-voxel (1)H-((13)C) method can be used to investigate simultaneously both brain hemispheres, and to perform dynamic studies. We report here the neuronal

  11. FOURIER TRANSFORM EMISSION SPECTROSCOPY OF THE B {sup 2}{Sigma}{sup +}-X {sup 2}{Sigma}{sup +} (VIOLET) SYSTEM OF {sup 13}C{sup 14}N

    SciTech Connect

    Ram, R. S.; Bernath, P. F.

    2011-06-01

    Emission spectra of the B {sup 2}{Sigma}{sup +}-X {sup 2}{Sigma}{sup +} transition of {sup 13}C{sup 14}N have been observed at high resolution using the Fourier transform spectrometer associated with the McMath-Pierce Solar Telescope of the National Solar Observatory. The spectra have been measured in the 21000-30000 cm{sup -1} region and a total of 52 vibrational bands involving vibrational levels up to v = 15 of the ground and excited states have been rotationally analyzed to provide a much improved set of spectroscopic constants. An experimental line list and calculated term values are provided. The results of the present analysis should prove useful in the identification of additional {sup 13}C{sup 14}N lines in comets and cool stars, and will help in the determination of the {sup 12}C/{sup 13}C abundance ratio.

  12. Improvement of the inverse-gated-decoupling sequence for a faster quantitative analysis of various samples by 13C NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Baguet, Evelyne

    2006-05-01

    The inverse-gated-decoupling sequence enables quantitative 1H decoupled 13C spectra to be obtained. We modified this sequence so as to obtain the same result in less time for molecules containing carbons with various relaxation properties. For that, we determined the optimal 13C longitudinal-magnetization initial value for a faster relaxation while 1H decoupler is stopped. This value can be calculated precisely via the nuclear Overhauser effects, the longitudinal relaxation times, together with the determination of the relaxation rate constants of carbons while 1H are out of equilibrium. A supplementary delay of 1H decoupling and/or a series of selective pulses applied at the beginning of the recovery delay allow an acceleration of 13C longitudinal relaxation. We applied this method to the molecule of vanillin. The simultaneous quantification of all carbons was carried out with a recovery delay divided by two compared to the usual sequence.

  13. The structural properties of the transmembrane segment of the integral membrane protein phospholamban utilizing (13)C CPMAS, (2)H, and REDOR solid-state NMR spectroscopy.

    PubMed

    Karp, Ethan S; Tiburu, Elvis K; Abu-Baker, Shadi; Lorigan, Gary A

    2006-06-01

    Solid-state NMR spectroscopic techniques were used to investigate the secondary structure of the transmembrane peptide phospholamban (TM-PLB), a sarcoplasmic Ca(2+) regulator. (13)C cross-polarization magic angle spinning spectra of (13)C carbonyl-labeled Leu39 of TM-PLB exhibited two peaks in a pure 1-palmitoyl-2-oleoyl-phosphocholine (POPC) bilayer, each due to a different structural conformation of phospholamban as characterized by the corresponding (13)C chemical shift. The addition of a negatively charged phospholipid (1-palmitoyl-2-oleoylphosphatidylglycerol (POPG)) to the POPC bilayer stabilized TM-PLB to an alpha-helical conformation as monitored by an enhancement of the alpha-helical carbonyl (13)C resonance in the corresponding NMR spectrum. (13)C-(15)N REDOR solid-state NMR spectroscopic experiments revealed the distance between the (13)C carbonyl carbon of Leu39 and the (15)N amide nitrogen of Leu42 to be 4.2+/-0.2A indicating an alpha-helical conformation of TM-PLB with a slight deviation from an ideal 3.6 amino acid per turn helix. Finally, the quadrupolar splittings of three (2)H labeled leucines (Leu28, Leu39, and Leu51) incorporated in mechanically aligned DOPE/DOPC bilayers yielded an 11 degrees +/-5 degrees tilt of TM-PLB with respect to the bilayer normal. In addition to elucidating valuable TM-PLB secondary structure information, the solid-state NMR spectroscopic data indicates that the type of phospholipids and the water content play a crucial role in the secondary structure and folding of TM-PLB in a phospholipid bilayer. PMID:16839519

  14. Detection of radiation induced lung injury in rats using dynamic hyperpolarized {sup 129}Xe magnetic resonance spectroscopy

    SciTech Connect

    Fox, Matthew S.; Ouriadov, Alexei; Hegarty, Elaine; Thind, Kundan; Wong, Eugene; Hope, Andrew; Santyr, Giles E.

    2014-07-15

    Purpose: Radiation induced lung injury (RILI) is a common side effect for patients undergoing thoracic radiation therapy (RT). RILI can lead to temporary or permanent loss of lung function and in extreme cases, death. Combining functional lung imaging information with conventional radiation treatment plans may lead to more desirable treatment plans that reduce lung toxicity and improve the quality of life for lung cancer survivors. Magnetic Resonance Imaging of the lung following inhalation of hyperpolarized{sup 129}Xe may provide a useful nonionizing approach for probing changes in lung function and structure associated with RILI before, during, or after RT (early and late time-points). Methods: In this study, dynamic{sup 129}Xe MR spectroscopy was used to measure whole-lung gas transfer time constants for lung tissue and red blood cells (RBC), respectively (T{sub Tr-tissue} and T{sub Tr-RBC}) in groups of rats at two weeks and six weeks following 14 Gy whole-lung exposure to radiation from a {sup 60}Co source. A separate group of six healthy age-matched rats served as a control group. Results: T{sub Tr-tissue} values at two weeks post-irradiation (51.6 ± 6.8 ms) were found to be significantly elevated (p < 0.05) with respect to the healthy control group (37.2 ± 4.8 ms). T{sub Tr-RBC} did not show any significant changes between groups. T{sub Tr-tissue} was strongly correlated with T{sub Tr-RBC} in the control group (r = 0.9601 p < 0.05) and uncorrelated in the irradiated groups. Measurements of arterial partial pressure of oxygen obtained by arterial blood sampling were found to be significantly decreased (p < 0.05) in the two-week group (54.2 ± 12.3 mm Hg) compared to those from a representative control group (85.0 ± 10.0 mm Hg). Histology of a separate group of similarly irradiated animals confirmed the presence of inflammation due to radiation exposure with alveolar wall thicknesses that were significantly different (p < 0.05). At six weeks post

  15. Estimation of procyanidin/prodelphinidin and cis/trans flavanol ratios of condensed tannin fractions by 1H-13C HSQC NMR spectroscopy: Correlation with thiolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of cross-peak contours of H/C-2’,6’ signals from prodelphinidin (PD) and of H/C-6’ signals from procyanidin (PC) units in 1H-13C HSQC nuclear magnetic resonance (NMR) spectra of condensed tannins yielded nuclei-adjusted PC/PD estimates that were highly correlated with PC/PD ratios obtain...

  16. Rovibrational constants of the ground state and v8 = 1 state of 13C2HD3 by high-resolution FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ng, L. L.; Tan, T. L.

    2016-06-01

    The Fourier transform infrared (FTIR) spectrum of the c-type ν8 band of 13C2HD3 was recorded for the first time at a unapodized resolution of 0.0063 cm-1 in the wavenumber region of 830-1000 cm-1. Through the fitting of a total of 1057 assigned infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation, rovibrational constants for the upper state (v8 = 1) up to five quartic centrifugal distortion terms were derived for the first time with a root-mean-square (rms) deviation of 0.00073 cm-1. The band center of ν8 of 13C2HD3 was found to be 913.011021(55) cm-1. Ground state rovibrational constants up to five quartic terms of 13C2HD3 were also determined from a fit of 453 ground state combination-differences from the present infrared measurements with an rms deviation of 0.00072 cm-1 for the first time. The uncertainty of the measured infrared lines was estimated to be ±0.0012 cm-1. From the ground state rotational constants, the inertial defect of 13C2HD3 was calculated to be 0.06973(16) uÅ2, showing the high planarity of the molecule.

  17. 1H-13C HSQC NMR spectroscopy for estimating procyanidin/prodelphinidin and cis/trans flavan-3-ol ratios of condensed tannin samples: correlation with thiolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies with a diverse array of 22 condensed tannin (CT) fractions from 9 plant species demonstrated that procyanidin/prodelphinidin (PC/PD) and cis/trans flavan-3-ol ratios can be appraised by 1H-13C HSQC NMR. The method was developed from fractions containing 44 to ~100% CT, PC/PD ratios ranging f...

  18. High resolution spectroscopy and chemical shift imaging of hyperpolarized 129Xe dissolved in the human brain in vivo at 1.5 tesla

    PubMed Central

    Rao, Madhwesha; Stewart, Neil J.; Norquay, Graham; Griffiths, Paul D.

    2016-01-01

    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in‐house and 129Xe gas was polarized using spin‐exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two‐dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo. Magn Reson Med 75:2227–2234, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27080441

  19. Rovibrational constants of the ground state and v9 = 1 state of 13C2D4 by high-resolution Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Gabona, M. G.; Woo, J. Q.; Ng, L. L.; Wong, Andy; McNaughton, Don

    2016-03-01

    The Fourier transform infrared (FTIR) rovibrational spectrum of the b-type ν9 band of 13C2D4 was recorded at a unapodized resolution of 0.0063 cm-1 in the 2230-2450 cm-1 region. By assigning and fitting a total of 1171 rotationally resolved infrared transitions of the ν9 band and using the Watson's A-reduced Hamiltonian in the Ir representation, rovibrational constants for the upper state (v9 = 1) up to five quartic centrifugal distortion terms were derived for the first time. The root-mean-square (rms) deviation of the infrared fit was 0.00043 cm-1. The ground state constants of 13C2D4 were determined with higher accuracy than previously by fitting 1485 ground state combination-differences (GSCDs) from the present and previous infrared measurements, with rms deviation of 0.00034 cm-1. The band center of ν9 band of 13C2D4 was determined to be at 2324.3593 cm-1. The equilibrium state rovibrational constants up to all 5 quartic terms were derived from theoretical harmonic calculations at three levels of theory: B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CCSD/cc-pVTZ using the principal axis coordinate system. These constants agreed reasonably well with the ground state constants of 13C2D4 derived from the present experimental GSCD fit. Furthermore, all 3 rotational constants of the upper state (v9 = 1) and of the ground state of 13C2D4 were obtained from anharmonic calculations using B3LYP and MP2 levels with the cc-pVTZ basis set. The calculated rotational constants were found to agree with those derived experimentally within 0.40%.

  20. /sup 13/C spin diffusion of adamantane

    SciTech Connect

    Bronniman, C.E.; Szeverenyi, N.M.; Maciel, G.E.

    1983-10-15

    Two-dimensional exchange spectroscopy of natural abundance /sup 13/C--/sup 13/C spin diffusion in solid adamantane illustrates the influence that /sup 13/C--/sup 1/H dipole--dipole coupling exerts on /sup 13/C spin diffusion by determining spectral overlap in the /sup 13/C system. 2D /sup 13/C spectra were obtained for several values of mixing time tau/sub m/ and compared with spectra calculated in the limit of nearest-neighbor coupling. Good agreement is obtained for short tau/sub m/, during which the equilibration of neighboring spins dominates. For longer tau/sub m/, slower spin diffusion that is not acounted for by the simple model is seen; after nearest-neighbor spins equilibrate, communication over larger distances produces further mixing. It is possible to modify spin diffusion rates by altering experimental conditions, e.g., magic-angle spinning, low-power /sup 1/H decoupling, or spin locking /sup 13/C in the rotating frame during tau/sub m/.

  1. Effects of post-reactor functionalization on the phase behaviour of an ethylene-1-octene copolymer studied using solid-state high resolution 13C NMR spectroscopy.

    PubMed

    Calucci, Lucia; Cicogna, Francesca; Forte, Claudia

    2013-10-01

    The effects of post-reactor functionalization with naphthoate-TEMPO on the structure and morphology of an ethylene-1-octene copolymer were investigated by means of solid-state NMR techniques and DSC measurements. Selective (13)C MAS experiments allowed the orthorhombic and the monoclinic crystalline phases and two amorphous phases with different degree of mobility to be detected and quantified. (13)C and (1)H relaxation time measurements and spin diffusion experiments gave insight into the polymer dynamics within the different phases, the crystalline domain dimensions, and the rate of chain diffusion between amorphous and crystalline phases. Comparison of the results obtained for the pristine copolymer and the functionalized samples clearly indicated that the functionalization procedure causes redistribution within the crystalline and the amorphous phases with no relevant change in the degree of crystallinity or in the crystalline domain average size, and slows down chain diffusion. PMID:23942957

  2. Simultaneous 13C/12C and (18)O/(16)O isotope ratio measurements on CO2 based on off-axis integrated cavity output spectroscopy.

    PubMed

    Jost, Hans-Jürg; Castrillo, Antonio; Wilson, H William

    2006-03-01

    A prototype off-axis integrated cavity output spectrometer (OA-ICOS) utilizing two identical cavities together with a near-infrared (1.63 microm) external cavity tunable diode laser is described. The two-cavity design-one for a reference gas and one for a sample gas-takes advantage of classical double-beam infrared spectrometer characteristics in reducing uncertainties due to laser scan or power instabilities and major temperature variations by a factor of three or better compared with a single-cavity scheme. This is the first OA-ICOS instrument designed to determine 13C/12C and (18)O/(16)O ratios from CO2 rotation/vibration fine structure in three different combination bands. Preliminary results indicate that at 0.8 Hz a precision of 3.3 and 2.8 per thousand is obtained for delta13C and delta(18)O, respectively, over a period of 10 h and a pure CO2 gas sample at 26 hPa. By averaging 100 spectra over a subset of the data, we achieved a precision of 1.6 and 0.8 \\permil\\ for delta13C and delta(18)O, respectively. PMID:16500753

  3. FOURIER TRANSFORM EMISSION SPECTROSCOPY OF THE A {sup 2}{Pi}-X {sup 2}{Sigma}{sup +} (RED) SYSTEM OF {sup 13}C{sup 14}N

    SciTech Connect

    Ram, R. S.; Bernath, P. F.; Wallace, L.; Hinkle, K.

    2010-06-15

    Emission spectra of the A {sup 2{Pi}}-X {sup 2}{Sigma}{sup +} transition (red system) of {sup 13}C{sup 14}N have been measured in the 4000-15,000 cm{sup -1} region using the Fourier transform spectrometer associated with the McMath-Pierce Solar Telescope of the National Solar Observatory. The {sup 13}C{sup 14}N free radical was produced in microwave discharge of a mixture of {sup 13}CH{sub 4} and {sup 14}N{sub 2}. Rotational analysis of 22 vibrational bands involving vibrational levels up to v' = 8 and v'' = 5 of the excited and ground states has been obtained and much improved spectroscopic constants have been determined. An experimental line list and calculated term values are provided. The results of the present analysis are useful for the identification of {sup 13}C{sup 14}N lines in late-type stars in the red and near-infrared spectral regions.

  4. Secondary structure and side-chain sup 1 H and sup 13 C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy

    SciTech Connect

    Ikura, Mitsuhiko; Spera, S.; Barbato, G.; Kay, L.E.; Bax, A. ); Krinks, M. )

    1991-09-24

    Heteronuclear 2D and 3D NMR experiments were carried out on recombinant Drosophila calmodulin (CaM), a protein of 148 residues and with molecular mass of 16.7 kDa, that is uniformly labeled with {sup 15}N and {sup 13}C to a level of > 95%. Nearly complete {sup 1}H and {sup 13}C side-chain assignments for all amino acid residues are obtained by using the 3D HCCH-COSY and HCCH-TOCSY experiments that rely on large heteronuclear one-bond scalar couplings to transfer magnetization and establish through-bond connectivities. The secondary structure of this protein in solution has been elucidated by a qualitative interpretation of nuclear Overhauser effects, hydrogen exchange data, and {sup 3}J{sub HNH{alpha}} coupling constants. A clear correlation between the {sup 13}C{alpha} chemical shift and secondary structure is found. The secondary structure in the two globular domains of Drosophila CaM in solution is essentially identical with that of the X-ray crystal structure of mammalian CaM which consists of two pairs of a helix-loop-helix motif in each globular domain. The existence of a short antiparallel {beta}-sheet between the two loops in each domain has been confirmed. The eight {alpha}-helix segments identified from the NMR data are located at Glu-6 to Phe-19, thr-29 to Ser-38, Glu-45 to Glu-54, Phe-65 to Lys-77, Glu-82 to Asp-93, Ala-102 to Asn-111, Asp-118 to Glu-127, and Tyr-138 to Thr-146. Although the crystal structure has a long central helix from Phe-65 to Phe-92 that connects the two globular domains, NMR data indicate that residues Asp-78 to Ser-81 of this central helix adopt a nonhelical conformation with considerable flexibility.

  5. Detecting a new source for photochemically induced dynamic nuclear polarization in the LOV2 domain of phototropin by magnetic-field dependent (13)C NMR spectroscopy.

    PubMed

    Kothe, Gerd; Lukaschek, Michail; Link, Gerhard; Kacprzak, Sylwia; Illarionov, Boris; Fischer, Markus; Eisenreich, Wolfgang; Bacher, Adelbert; Weber, Stefan

    2014-10-01

    Phototropin is a flavin mononucleotide (FMN) containing blue-light receptor, which regulates, governed by its two LOV domains, the phototropic response of higher plants. Upon photoexcitation, the FMN cofactor triplet state, (3)F, reacts with a nearby cysteine to form a covalent adduct. Cysteine-to-alanine mutants of LOV domains instead generate a flavin radical upon illumination. Here, we explore the formation of photochemically induced dynamic nuclear polarization (CIDNP) in LOV2-C450A of Avena sativa phototropin and demonstrate that photo-CIDNP observed in solution (13)C NMR spectra can reliably be interpreted in terms of solid-state mechanisms including a novel triplet mechanism. To minimize cross-polarization, which transfers light-induced magnetization to adjacent (13)C nuclei, our experiments were performed on proteins reconstituted with specifically (13)C-labeled flavins. Two potential sources for photo-CIDNP can be identified: The photogenerated triplet state, (3)F, and the triplet radical pair (3)(F(-•)W(+•)), formed by electron abstraction of (3)F from tryptophan W491. To separate the two contributions, photo-CIDNP studies were performed at four different magnetic fields ranging from 4.7 to 11.8 T. Analysis revealed that, at fields <9 T, both (3)(F(-•)W(+•)) and (3)F contribute to photo-CIDNP, whereas at high magnetic fields, the calculated enhancement factors of (3)F agree favorably with their experimental counterparts. Thus, we have for the first time detected that a triplet state is the major source for photo-CIDNP in a photoactive protein. Since triplet states are frequently encountered upon photoexcitation of flavoproteins, the novel triplet mechanism opens up new means of studying electronic structures of the active cofactors in these proteins at atomic resolution. PMID:25207844

  6. Short hydrogen bonds in salts of dicarboxylic acids; structural correlations from solid-state 13C and 2H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalsbeek, Nicoline; Schaumburg, Kjeld; Larsen, Sine

    1993-10-01

    Solid-state 13C and 2H NMR spectra are found to very suitable for characterizing the short Osbnd H...O hydrogen bonds observed in acid salts of dicarboxylic acids. The majority of the investigated compounds are acid salts of malonic, succinic and tartaric acid with monovalent cations derived from alkali metals and small aliphatic amines. They include systems with symmetric and asymmetric hydrogen bonds. Accurate structural information about their geometry is available from low-temperature X-ray diffraction data. The 13C chemical shifts of the C atoms in the different carboxy groups display a linear variation with the absolute difference between the two Csbnd O bond lengths. Theoretical ab initio calculations for model systems showed that the nuclear quadrupole coupling constant NQCC for 2H increases with increasing asymmetry of the hydrogen-bonded system. NQCC values for 2H in the short symmetric hydrogen-bonded systems are in the range 53-59 kHz compared with the larger values of up to 166kHz found in systems with longer asymmetric hydrogen bonds. The 2H NQCC values display a perfect linear dependence on the asymmetry of the hydrogen bond. 2H NQCC decreases with decreasing temperature in the symmetric hydrogen bonds showing that the corresponding potential has a single well.

  7. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Byg, Inge; Damager, Iben; Diaz, Jerome; Engelsen, Søren B; Ulvskov, Peter

    2011-05-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by (13)C single-pulse (SP) magic-angle-spinning (MAS) and (13)C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by (2)H SP/MAS NMR experiments. The study shows that the arabinan side chains hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose-galacturonic acid (Rha-GalA) backbone in RG-I. Potential food ingredient uses of RG-I by tailoring of its structure are discussed. PMID:21462966

  8. Direct Detection of Supramolecular Reaction Centers in the Methanol-to-Olefins Conversion over Zeolite H-ZSM-5 by (13)C-(27)Al Solid-State NMR Spectroscopy.

    PubMed

    Wang, Chao; Wang, Qiang; Xu, Jun; Qi, Guodong; Gao, Pan; Wang, Weiyu; Zou, Yunyun; Feng, Ningdong; Liu, Xiaolong; Deng, Feng

    2016-02-12

    Hydrocarbon-pool chemistry is important in methanol to olefins (MTO) conversion on acidic zeolite catalysts. The hydrocarbon-pool (HP) species, such as methylbenzenes and cyclic carbocations, confined in zeolite channels during the reaction are essential in determining the reaction pathway. Herein, we experimentally demonstrate the formation of supramolecular reaction centers composed of organic hydrocarbon species and the inorganic zeolite framework in H-ZSM-5 zeolite by advanced (13)C-(27)Al double-resonance solid-state NMR spectroscopy. Methylbenzenes and cyclic carbocations located near Brønsted acid/base sites form the supramolecular reaction centers in the zeolite channel. The internuclear spatial interaction/proximity between the (13)C nuclei (associated with HP species) and the (27) Al nuclei (associated with Brønsted acid/base sites) determines the reactivity of the HP species. The closer the HP species are to the zeolite framework Al, the higher their reactivity in the MTO reaction. PMID:26732748

  9. Conformations of solid 2-methyl-4-( p-X-phenylazo)imidazoles by 13C CP MAS NMR spectroscopy and PM3 semi-empirical calculations

    NASA Astrophysics Data System (ADS)

    Maciejewska, Dorota

    1999-03-01

    Solid 2-methyl-4-( p-X-phenylazo)imidazoles form hydrogen bonded chains with N-H⋯N bonds and C-H⋯O or C-H⋯N interaction. Depending on the nature and orientation of the substituents X it was possible to identify one tautomer if XH ( 2), Br ( 3), NO 2 ( 4) and the two, a- and b-tautomers in the crystal unit if XOCH 3 ( 1). The 13C CP MAS NMR spectra of ( 4) indicate the presence of phenyl ring dynamics. A preferred structure present in the solid state is that with different lengths of C1'-N and C4-N bonds and with higher dipole moment.

  10. Delineation of conformational and structural features of the amikacin-Cu(II) complex in water solution by 13C-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaggelli, Elena; Gaggelli, Nicola; Maccotta, Antonella; Valensin, Gianni; Marini, Domenico; Di Cocco, Maria Enrica; Manetti, Cesare; Delfini, Maurizio

    1998-12-01

    The copper (II) complex of amikacin in water solution at pH 5.5 was investigated by 13C-NMR. The temperature dependence of spin-lattice relaxation rates was measured and fast exchange conditions were shown to apply. The motional correlation time of the complex was approximated by the pseudo-isotropic rotational correlation time of free amikacin in water solution ( τc=0.17 ns at 300 K). Formation of a pseudo-tetrahedral 1:1 complex was demonstrated by relaxation rates analysis and also by UV-Vis spectrophotometry. Two amino nitrogens of amikacin, together with the amide nitrogen and the hydroxyl in the hydroxyl-aminopropyl carbonyl side chain, were assigned as the copper-binding sites and a model of the complex was built by using copper-carbon distances obtained by NMR analysis as input parameters.

  11. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  12. Abnormalities in hyperpolarized (129)Xe magnetic resonance imaging and spectroscopy in two patients with pulmonary vascular disease.

    PubMed

    Dahhan, Talal; Kaushik, Shiv S; He, Mu; Mammarappallil, Joseph G; Tapson, Victor F; McAdams, Holman P; Sporn, Thomas A; Driehuys, Bastiaan; Rajagopal, Sudarshan

    2016-03-01

    The diagnosis of pulmonary vascular disease (PVD) is usually based on hemodynamic and/or clinical criteria. Noninvasive imaging of the heart and proximal vasculature can also provide useful information. An alternate approach to such criteria in the diagnosis of PVD is to image the vascular abnormalities in the lungs themselves. Hyperpolarized (HP) (129)Xe magnetic resonance imaging (MRI) is a novel technique for assessing abnormalities in ventilation and gas exchange in the lungs. We applied this technique to two patients for whom there was clinical suspicion of PVD. Two patients who had significant hypoxemia and dyspnea with no significant abnormalities on computed tomography imaging or ventilation-perfusion scan and only mild or borderline pulmonary arterial hypertension at catheterization were evaluated. They underwent HP (129)Xe imaging and subsequently had tissue diagnosis obtained from lung pathology. In both patients, HP (129)Xe imaging demonstrated normal ventilation but markedly decreased gas transfer to red blood cells with focal defects on imaging, a pattern distinct from those previously described for idiopathic pulmonary fibrosis or obstructive lung disease. Pathology on both patients later demonstrated severe PVD. These findings suggest that HP (129)Xe MRI may be useful in the diagnosis of PVD and monitoring response to therapy. Further studies are required to determine its sensitivity and specificity in these settings. PMID:27162620

  13. Development of hyperpolarized noble gas MRI

    NASA Astrophysics Data System (ADS)

    Albert, M. S.; Balamore, D.

    1998-02-01

    Magnetic resonance imaging using the MR signal from hyperpolarized noble gases 129Xe and 3He may become an important new diagnostic technique. Alex Pines (adapting the hyperpolarization technique pioneered by William Happer) presented MR spectroscopy studies using hyperpolarized 129Xe. The current authors recognized that the enormous enhancement in the detectability of 129Xe, promised by hyperpolarization, would solve the daunting SNR problems impeding their attempts to use 129Xe as an in vivo MR probe, especially in order to study the action of general anesthetics. It was hoped that hyperpolarized 129Xe MRI would yield resolutions equivalent to that achievable with conventional 1H 2O MRI, and that xenon's solubility in lipids would facilitate investigations of lipid-rich tissues that had as yet been hard to image. The publication of hyperpolarized 129Xe images of excised mouse lungs heralded the emergence of hyperpolarized noble-gas MRI. Using hyperpolarized 3He, researchers have obtained images of the lung gas space of guinea pigs and of humans. Lung gas images from patients with pulmonary disease have recently been reported. 3He is easier to hyperpolarize than 129Xe, and it yields a stronger MR signal, but its extremely low solubility in blood precludes its use for the imaging of tissue. Xenon, however, readily dissolves in blood, and the T1 of dissolved 129Xe is long enough for sufficient polarization to be carried by the circulation to distal tissues. Hyperpolarized 129Xe dissolved-phase tissue spectra from the thorax and head of rodents and humans have been obtained, as have chemical shift 129Xe images from the head of rats. Lung gas 129Xe images of rodents, and more recently of humans, have been reported. Hyperpolarized 129Xe MRI (HypX-MRI) may elucidate the link between the structure of the lung and its function. The technique may also be useful in identifying ventilation-perfusion mismatch in patients with pulmonary embolism, in staging and tracking the

  14. Towards Real-time Metabolic Profiling of Cancer with Hyperpolarized Succinate

    PubMed Central

    Zacharias, Niki M.; McCullough, Christopher R.; Wagner, Shawn; Sailasuta, Napapon; Chan, Henry R.; Lee, Youngbok; Hu, Jingzhe; Perman, William H.; Henneberg, Cameron; Ross, Brian D.; Bhattacharya, Pratip

    2016-01-01

    Purpose The energy-yielding mitochondrial Krebs cycle has been shown in many cancers and other diseases to be inhibited or mutated. In most cells, the Krebs cycle with oxidative phosphorylation generates approximately 90% of the adenosine triphosphate in the cell. We designed and hyperpolarized carbon-13 labeled succinate (SUC) and its derivative diethyl succinate (DES) to interrogate the Krebs cycle in real-time in cancer animal models. Procedures Using Parahydrogen Induced Polarization (PHIP), we generated hyperpolarized SUC and DES by hydrogenating their respective fumarate precursors. DES and SUC metabolism was studied in five cancer allograft animal models: breast (4T1), Renal Cell Carcinoma (RENCA), colon (CT26), lymphoma NSO, and lymphoma A20. Results The extent of hyperpolarization was 8 ± 2% for SUC and 2.1 ± 0.6% for DES. The metabolism of DES and SUC in the Krebs cycle could be followed in animals 5 s after tail vein injection. The biodistribution of the compounds was observed using 13C FISP imaging. We observed significant differences in uptake and conversion of both compounds in different cell types both in vivo and in vitro. Conclusion With hyperpolarized DES and SUC, we are able to meet many of the requirements for a useable in vivo metabolic imaging compound – high polarization, relatively long T1 values, low toxicity and high water solubility. However, succinate and its derivative DES are metabolized robustly by RENCA but not by the other cancer models. Our results underscore the heterogeneity of cancer cells and the role cellular uptake plays in hyperpolarized metabolic spectroscopy.

  15. Dephosphorylation and biodistribution of 1-13C-phospholactate in vivo†

    PubMed Central

    Shchepin, Roman V.; Pham, Wellington; Chekmenev, Eduard Y.

    2015-01-01

    Here, we present a new approach for the delivery of a metabolic contrast agent for in vivo molecular imaging. The use of a phosphate-protecting group that facilitates parahydrogen-induced polarization of 1-13C-phospholactate potentially enables the in vivo administration of a hydrogenated hyperpolarized adduct. When injected, nonhyperpolarized 1-13C-phospholactate is retained in the vasculature during its metabolic conversion to 1-13C-lactate by blood phosphatases as demonstrated here using a mucin 1 mouse model of breast cancer and ex vivo high-resolution 13C NMR. This multisecond process is a suitable mechanism for the delivery of relatively short-lived 13C and potentially 15N hyperpolarized contrast agents using –OH phosphorylated small molecules, which is demonstrated here for the first time as an example of 1-13C-phospholactate. Through this approach, DL-1-13C-lactate is taken up by tissues and organs including the liver, kidneys, brain, heart, and tumors according to a timescale amenable to hyperpolarized magnetic resonance imaging. PMID:24995802

  16. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Sevelsted, Tine F.; Skibsted, Jørgen

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  17. High Resolution Laser Spectroscopy of Mg12C12CD, Mg13C13CH and Mg12C_4H

    NASA Astrophysics Data System (ADS)

    Forthomme, D.; Linton, C.; Tokaryk, D. W.; Adam, A. G.; Granger, A. D.

    2010-06-01

    Carbon and magnesium are abundant elements in the interstellar medium, so it is possible that carbon chain molecules containing a magnesium atom may exist in this environment. With this in mind, radical molecules of the form MgC2nH (n = 1,2,3) have been frequent subjects of both experimental and theoretical studies In this presentation we will discuss our high-resolution experiments of the ~A2Π-~X2Σ+ transitions in the isotopologues Mg12C12CD and Mg13C13CH, which complement our earlier investigation of this spectrum in Mg12C12CH^b. The data permit us to determine the lengths of individual bonds to high precision. In addition, we have expanded on previous studies of the ~A2Π-~X2Σ+ transition of Mg12C_4H, conducted at medium resolution. The parameters obtained from our high-resolution spectra are compared with those obtained from theoretical structure calculations. H. Ding, C. Apetrei, L. Chacaga, J. P. Maier, Astrophys. J. 677 (2008) 348-352 D. W. Tokaryk, A. G. Adam, W. S. Hopkins, J. Mol. Spectrosc. 230 (2005) 54-61 D. E. Woon, Chem. Phys. Lett. 274 (1997) 299-305 C. A. Thompson and L. Andrews, J. Am. Chem. Soc. 118 (1996) 10242-10249 X. Guo, J. Zhang, J. Li, L. Jiang, J. Zhang, Chem. Phys 360 (2009) 27-31 E. Chasovskikh, E. B. Jochnowitz, J. P. Maier, J. Phys. Chem. A. 112 (2008) 8686-8689.

  18. Determination of molecular structure of kerogens using 13C NMR spectroscopy: II. The effects of thermal maturation on kerogens from marine sediments

    NASA Astrophysics Data System (ADS)

    Patience, R. L.; Mann, A. L.; Poplett, I. J. F.

    1992-07-01

    Solid state 13C nuclear magnetic resonance (NMR) spectrometry has been used to analyse kerogens isolated from marine sediments, to obtain information about relative changes in average molecular structures with increases in thermal maturity. Three suites of samples, all of which vary from immature to mature with respect to petroleum generation, were investigated: (a) seven samples of the Cretaceous Brown Limestone Formation (BLF), Gulf of Suez; (b) six from the Miocene Monterey Formation (MF), California; (c) seven from the Upper Jurassic to Lower Cretaceous Kimmeridge Clay Formation (KCF), UK continental shelf (UKCS). Each NMR spectrum has been quantified in terms of fourteen different carbon types. The immature KCF samples have a somewhat higher initial aromaticity (f a) than immature representatives of the other two suites, perhaps due to a slightly greater terrestrial organic input. With increasing maturity, only a modest increase in f a occurs in all three suites, until petroleum generation commences. The latter results in a sharp increase in f a, because alkyl carbon types are progressively lost from kerogen. No preferential loss of particular alkyl carbon types is seen within the resolution of the method. The percentage of heteroatom-bonded carbon (to O or S) declines consistently with increasing maturation and prior to the onset of petroleum generation. The distribution of aromatic carbon types changes substantially with increasing maturity, in that the relative abundances of bridgehead (ring junction) and protonated aromatic carbons increase, whereas phenolic and alkylated aromatic carbon decline or remain roughly constant, respectively. The data acquired have been used to monitor the hydrogen budget during maturation. Firstly, aromatisation reactions seem to occur during petroleum generation (increasing aromaticity is not simply a concentration of existing aromatic carbon) and, secondly, sufficient or excess hydrogen is liberated during these reactions to

  19. Strategies for the Hyperpolarization of Acetonitrile and Related Ligands by SABRE

    PubMed Central

    2014-01-01

    We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing 1H and 13C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the 1H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3]+ is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)]+ and the resulting acetonitrile 1H signal enhancement increases to 20- and 60-fold, respectively. In 13C NMR studies, polarization transfers optimally to the quaternary 13C nucleus of MeCN while the methyl 13C is hardly polarized. Transfer to 13C is shown to occur first via the 1H–1H coupling between the hydrides and the methyl protons and then via either the 2J or 1J couplings to the respective 13Cs, of which the 2J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of 1H nuclei in the three-spin methyl group are created. Two-spin order states, between the 1H and 13C nuclei, are also created, and their existence is confirmed for Me13CN in both the 1H and 13C NMR spectra using the Only Parahydrogen Spectroscopy protocol. PMID:25539423

  20. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.

    2013-02-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.

  1. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    DOE PAGESBeta

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; Shin, Chang S.; Page, Ralph H.; Avalos, Claudia E.; Wang, Hai-Jing; Pines, Alexander

    2015-12-07

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal ofmore » the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.« less

  2. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    SciTech Connect

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; Shin, Chang S.; Page, Ralph H.; Avalos, Claudia E.; Wang, Hai-Jing; Pines, Alexander

    2015-12-07

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal of the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.

  3. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    PubMed Central

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; Shin, Chang S.; Page, Ralph H.; Avalos, Claudia E.; Wang, Hai-Jing; Pines, Alexander

    2015-01-01

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ∼170,000 over thermal equilibrium. The signal of the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. Hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions. PMID:26639147

  4. Secondary Structure, Backbone Dynamics, and Structural Topology of Phospholamban and Its Phosphorylated and Arg9Cys-Mutated Forms in Phospholipid Bilayers Utilizing 13C and 15N Solid-State NMR Spectroscopy

    PubMed Central

    2015-01-01

    Phospholamban (PLB) is a membrane protein that regulates heart muscle relaxation rates via interactions with the sarcoplasmic reticulum Ca2+ ATPase (SERCA). When PLB is phosphorylated or Arg9Cys (R9C) is mutated, inhibition of SERCA is relieved. 13C and 15N solid-state NMR spectroscopy is utilized to investigate conformational changes of PLB upon phosphorylation and R9C mutation. 13C=O NMR spectra of the cytoplasmic domain reveal two α-helical structural components with population changes upon phosphorylation and R9C mutation. The appearance of an unstructured component is observed on domain Ib. 15N NMR spectra indicate an increase in backbone dynamics of the cytoplasmic domain. Wild-type PLB (WT-PLB), Ser16-phosphorylated PLB (P-PLB), and R9C-mutated PLB (R9C-PLB) all have a very dynamic domain Ib, and the transmembrane domain has an immobile component. 15N NMR spectra indicate that the cytoplasmic domain of R9C-PLB adopts an orientation similar to P-PLB and shifts away from the membrane surface. Domain Ib (Leu28) of P-PLB and R9C-PLB loses the alignment. The R9C-PLB adopts a conformation similar to P-PLB with a population shift to a more extended and disordered state. The NMR data suggest the more extended and disordered forms of PLB may relate to inhibition relief. PMID:24511878

  5. Hyperpolarized functional magnetic resonance of murine skeletal muscle enabled by multiple tracer-paradigm synchronizations.

    PubMed

    Leftin, Avigdor; Roussel, Tangi; Frydman, Lucio

    2014-01-01

    Measuring metabolism's time- and space-dependent responses upon stimulation lies at the core of functional magnetic resonance imaging. While focusing on water's sole resonance, further insight could arise from monitoring the temporal responses arising from the metabolites themselves, in what is known as functional magnetic resonance spectroscopy. Performing these measurements in real time, however, is severely challenged by the short functional timescales and low concentrations of natural metabolites. Dissolution dynamic nuclear polarization is an emerging technique that can potentially alleviate this, as it provides a massive sensitivity enhancement allowing one to probe low-concentration tracers and products in a single-scan. Still, conventional implementations of this hyperpolarization approach are not immediately amenable to the repeated acquisitions needed in real-time functional settings. This work proposes a strategy for functional magnetic resonance of hyperpolarized metabolites that bypasses this limitation, and enables the observation of real-time metabolic changes through the synchronization of stimuli-triggered, multiple-bolus injections of the metabolic tracer 13C1-pyruvate. This new approach is demonstrated with paradigms tailored to reveal in vivo thresholds of murine hind-limb skeletal muscle activation, involving the conversion of 13C1-pyruvate to 13C1-lactate and 13C1-alanine. These functional hind-limb studies revealed that graded skeletal muscle stimulation causes commensurate increases in glycolytic metabolism in a frequency- and amplitude-dependent fashion, that can be monitored on the seconds/minutes timescale using dissolution dynamic nuclear polarization. Spectroscopic imaging further allowed the in vivo visualization of uptake, transformation and distribution of the tracer and products, in fast-twitch glycolytic and in slow-twitch oxidative muscle fiber groups. While these studies open vistas in time and sensitivity for metabolic

  6. Hyperpolarized Functional Magnetic Resonance of Murine Skeletal Muscle Enabled by Multiple Tracer-Paradigm Synchronizations

    PubMed Central

    Leftin, Avigdor; Roussel, Tangi; Frydman, Lucio

    2014-01-01

    Measuring metabolism's time- and space-dependent responses upon stimulation lies at the core of functional magnetic resonance imaging. While focusing on water's sole resonance, further insight could arise from monitoring the temporal responses arising from the metabolites themselves, in what is known as functional magnetic resonance spectroscopy. Performing these measurements in real time, however, is severely challenged by the short functional timescales and low concentrations of natural metabolites. Dissolution dynamic nuclear polarization is an emerging technique that can potentially alleviate this, as it provides a massive sensitivity enhancement allowing one to probe low-concentration tracers and products in a single-scan. Still, conventional implementations of this hyperpolarization approach are not immediately amenable to the repeated acquisitions needed in real-time functional settings. This work proposes a strategy for functional magnetic resonance of hyperpolarized metabolites that bypasses this limitation, and enables the observation of real-time metabolic changes through the synchronization of stimuli-triggered, multiple-bolus injections of the metabolic tracer 13C1-pyruvate. This new approach is demonstrated with paradigms tailored to reveal in vivo thresholds of murine hind-limb skeletal muscle activation, involving the conversion of 13C1-pyruvate to 13C1-lactate and 13C1-alanine. These functional hind-limb studies revealed that graded skeletal muscle stimulation causes commensurate increases in glycolytic metabolism in a frequency- and amplitude-dependent fashion, that can be monitored on the seconds/minutes timescale using dissolution dynamic nuclear polarization. Spectroscopic imaging further allowed the in vivo visualization of uptake, transformation and distribution of the tracer and products, in fast-twitch glycolytic and in slow-twitch oxidative muscle fiber groups. While these studies open vistas in time and sensitivity for metabolic

  7. Effect of ionic interaction between a hyperpolarized magnetic resonance chemical probe and a gadolinium contrast agent for the hyperpolarized lifetime after dissolution

    NASA Astrophysics Data System (ADS)

    Takakusagi, Yoichi; Inoue, Kaori; Naganuma, Tatsuya; Hyodo, Fuminori; Ichikawa, Kazuhiro

    2016-09-01

    In hyperpolarization of 13C-enriched magnetic resonance chemical probes in the solid-state, a trace amount of gadolinium (Gd) contrast agent can be used to maximize polarization of the 13C nuclear spins. Here, we report systematic measurement of the spin-lattice relaxation time (T1) and enhancement level of 13C-enriched chemical probes in the presence of various Gd contrast agents in the liquid-state after dissolution. Using two different 13C probes having opposite electric charges at neutral pH, we clearly show the T1 of hyperpolarized 13C was barely affected by the use of a Gd complex that displays repulsive interaction with the 13C probe in solution, whilst T1 was drastically shortened when there was ionic attraction between probe and complex.

  8. Effect of ionic interaction between a hyperpolarized magnetic resonance chemical probe and a gadolinium contrast agent for the hyperpolarized lifetime after dissolution.

    PubMed

    Takakusagi, Yoichi; Inoue, Kaori; Naganuma, Tatsuya; Hyodo, Fuminori; Ichikawa, Kazuhiro

    2016-09-01

    In hyperpolarization of (13)C-enriched magnetic resonance chemical probes in the solid-state, a trace amount of gadolinium (Gd) contrast agent can be used to maximize polarization of the (13)C nuclear spins. Here, we report systematic measurement of the spin-lattice relaxation time (T1) and enhancement level of (13)C-enriched chemical probes in the presence of various Gd contrast agents in the liquid-state after dissolution. Using two different (13)C probes having opposite electric charges at neutral pH, we clearly show the T1 of hyperpolarized (13)C was barely affected by the use of a Gd complex that displays repulsive interaction with the (13)C probe in solution, whilst T1 was drastically shortened when there was ionic attraction between probe and complex. PMID:27490303

  9. Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide.

    PubMed

    Wahl, Ed H; Fidric, Bernard; Rella, Chris W; Koulikov, Sergei; Kharlamov, Boris; Tan, Sze; Kachanov, Alexander A; Richman, Bruce A; Crosson, Eric R; Paldus, Barbara A; Kalaskar, Shashi; Bowling, David R

    2006-03-01

    Recent measurements of carbon isotopes in carbon dioxide using near-infrared, diode-laser-based cavity ring-down spectroscopy (CRDS) are presented. The CRDS system achieved good precision, often better than 0.2 per thousand, for 4% CO2 concentrations, and also achieved 0.15-0.25 per thousand precision in a 78 min measurement time with cryotrap-based pre-concentration of ambient CO2 concentrations (360 ppmv). These results were obtained with a CRDS system possessing a data rate of 40 ring-downs per second and a loss measurement of 4.0 x 10(-11) cm(-1) Hz(-1/2). Subsequently, the measurement time has been reduced to under 10 min. This standard of performance would enable a variety of high concentration (3-10%) isotopic measurements, such as medical human breath analysis or animal breath experiments. The extension of this ring-down to the 2 microm region would enable isotopic analysis at ambient concentrations, which, combined with the small size, robust design, and potential for frequent measurements at a remote site, make CRDS technology attractive for remote atmospheric measurement applications. PMID:16500752

  10. Hyperpolarized NMR Probes for Biological Assays

    PubMed Central

    Meier, Sebastian; Jensen, Pernille R.; Karlsson, Magnus; Lerche, Mathilde H.

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771