Science.gov

Sample records for hyperpolarized mri image

  1. Hyperpolarized 129Xe MRI: A Viable Functional Lung Imaging Modality?

    PubMed Central

    Patz, Samuel; Hersman, F. William; Muradian, Iga; Hrovat, Mirko I.; Ruset, Iulian C.; Ketel, Stephen; Jacobson, Francine; Topulos, George P.; Hatabu, Hiroto; Butler, James P.

    2008-01-01

    The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used 3He as their imaging agent of choice rather than 129Xe. This preference has been predominantly due to, 3He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized 129Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized 129Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO2) by observation of 129Xe signal decay. We note that the measurement of pO2 by observation of 129Xe signal decay is more complex than that for 3He because of an additional signal loss mechanism due to interphase diffusion of 129Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO2 that accounts for both traditional T1 decay from pO2 and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output. PMID:17890035

  2. Development of hyperpolarized noble gas MRI

    NASA Astrophysics Data System (ADS)

    Albert, M. S.; Balamore, D.

    1998-02-01

    Magnetic resonance imaging using the MR signal from hyperpolarized noble gases 129Xe and 3He may become an important new diagnostic technique. Alex Pines (adapting the hyperpolarization technique pioneered by William Happer) presented MR spectroscopy studies using hyperpolarized 129Xe. The current authors recognized that the enormous enhancement in the detectability of 129Xe, promised by hyperpolarization, would solve the daunting SNR problems impeding their attempts to use 129Xe as an in vivo MR probe, especially in order to study the action of general anesthetics. It was hoped that hyperpolarized 129Xe MRI would yield resolutions equivalent to that achievable with conventional 1H 2O MRI, and that xenon's solubility in lipids would facilitate investigations of lipid-rich tissues that had as yet been hard to image. The publication of hyperpolarized 129Xe images of excised mouse lungs heralded the emergence of hyperpolarized noble-gas MRI. Using hyperpolarized 3He, researchers have obtained images of the lung gas space of guinea pigs and of humans. Lung gas images from patients with pulmonary disease have recently been reported. 3He is easier to hyperpolarize than 129Xe, and it yields a stronger MR signal, but its extremely low solubility in blood precludes its use for the imaging of tissue. Xenon, however, readily dissolves in blood, and the T1 of dissolved 129Xe is long enough for sufficient polarization to be carried by the circulation to distal tissues. Hyperpolarized 129Xe dissolved-phase tissue spectra from the thorax and head of rodents and humans have been obtained, as have chemical shift 129Xe images from the head of rats. Lung gas 129Xe images of rodents, and more recently of humans, have been reported. Hyperpolarized 129Xe MRI (HypX-MRI) may elucidate the link between the structure of the lung and its function. The technique may also be useful in identifying ventilation-perfusion mismatch in patients with pulmonary embolism, in staging and tracking the

  3. A method for quantitative analysis of regional lung ventilation using deformable image registration of CT and hybrid hyperpolarized gas/1H MRI.

    PubMed

    Tahir, Bilal A; Swift, Andrew J; Marshall, Helen; Parra-Robles, Juan; Hatton, Matthew Q; Hartley, Ruth; Kay, Richard; Brightling, Christopher E; Vos, Wim; Wild, Jim M; Ireland, Rob H

    2014-12-01

    Hyperpolarized gas magnetic resonance imaging (MRI) generates highly detailed maps of lung ventilation and physiological function while CT provides corresponding anatomical and structural information. Fusion of such complementary images enables quantitative analysis of pulmonary structure-function. However, direct image registration of hyperpolarized gas MRI to CT is problematic, particularly in lungs whose boundaries are difficult to delineate due to ventilation heterogeneity. This study presents a novel indirect method of registering hyperpolarized gas MRI to CT utilizing (1)H-structural MR images that are acquired in the same breath-hold as the gas MRI. The feasibility of using this technique for regional quantification of ventilation of specific pulmonary structures is demonstrated for the lobes.The direct and indirect methods of hyperpolarized gas MRI to CT image registration were compared using lung images from 15 asthma patients. Both affine and diffeomorphic image transformations were implemented. Registration accuracy was evaluated using the target registration error (TRE) of anatomical landmarks identified on (1)H MRI and CT. The Wilcoxon signed-rank test was used to test statistical significance.For the affine transformation, the indirect method of image registration was significantly more accurate than the direct method (TRE = 14.7 ± 3.2 versus 19.6 ± 12.7 mm, p = 0.036). Using a deformable transformation, the indirect method was also more accurate than the direct method (TRE = 13.5 ± 3.3 versus 20.4 ± 12.8 mm, p = 0.006).Accurate image registration is critical for quantification of regional lung ventilation with hyperpolarized gas MRI within the anatomy delineated by CT. Automatic deformable image registration of hyperpolarized gas MRI to CT via same breath-hold (1)H MRI is more accurate than direct registration. Potential applications include improved multi-modality image fusion, functionally weighted radiotherapy planning, and quantification of

  4. Medical Imaging of Hyperpolarized Gases

    NASA Astrophysics Data System (ADS)

    Miller, G. Wilson

    2009-08-01

    Since the introduction of hyperpolarized 3He and 129Xe as gaseous MRI contrast agents more than a decade ago, a rich variety of imaging techniques and medical applications have been developed. Magnetic resonance imaging of the inhaled gas depicts ventilated lung airspaces with unprecedented detail, and allows one to track airflow and pulmonary mechanics during respiration. Information about lung structure and function can also be obtained using the physical properties of the gas, including spin relaxation in the presence of oxygen, restricted diffusion inside the alveolar airspaces, and the NMR frequency shift of xenon dissolved in blood and tissue.

  5. An image acquisition and registration strategy for the fusion of hyperpolarized helium-3 MRI and x-ray CT images of the lung

    NASA Astrophysics Data System (ADS)

    Ireland, Rob H.; Woodhouse, Neil; Hoggard, Nigel; Swinscoe, James A.; Foran, Bernadette H.; Hatton, Matthew Q.; Wild, Jim M.

    2008-11-01

    The purpose of this ethics committee approved prospective study was to evaluate an image acquisition and registration protocol for hyperpolarized helium-3 magnetic resonance imaging (3He-MRI) and x-ray computed tomography. Nine patients with non-small cell lung cancer (NSCLC) gave written informed consent to undergo a free-breathing CT, an inspiration breath-hold CT and a 3D ventilation 3He-MRI in CT position using an elliptical birdcage radiofrequency (RF) body coil. 3He-MRI to CT image fusion was performed using a rigid registration algorithm which was assessed by two observers using anatomical landmarks and a percentage volume overlap coefficient. Registration of 3He-MRI to breath-hold CT was more accurate than to free-breathing CT; overlap 82.9 ± 4.2% versus 59.8 ± 9.0% (p < 0.001) and mean landmark error 0.75 ± 0.24 cm versus 1.25 ± 0.60 cm (p = 0.002). Image registration is significantly improved by using an imaging protocol that enables both 3He-MRI and CT to be acquired with similar breath holds and body position through the use of a birdcage 3He-MRI body RF coil and an inspiration breath-hold CT. Fusion of 3He-MRI to CT may be useful for the assessment of patients with lung diseases.

  6. Hyperpolarized Xenon for NMR and MRI Applications

    PubMed Central

    Witte, Christopher; Kunth, Martin; Döpfert, Jörg; Rossella, Federica; Schröder, Leif

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature 1. Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) or require excessive acquisition times. This limits our ability to exploit the very useful molecular specificity of NMR signals for many biochemical and medical applications. However, novel approaches have emerged in the past few years: Manipulation of the detected spin species prior to detection inside the NMR/MRI magnet can dramatically increase the magnetization and therefore allows detection of molecules at much lower concentration 2. Here, we present a method for polarization of a xenon gas mixture (2-5% Xe, 10% N2, He balance) in a compact setup with a ca. 16000-fold signal enhancement. Modern line-narrowed diode lasers allow efficient polarization 7 and immediate use of gas mixture even if the noble gas is not separated from the other components. The SEOP apparatus is explained and determination of the achieved spin polarization is demonstrated for performance control of the method. The hyperpolarized gas can be used for void space imaging, including gas flow imaging or diffusion studies at the interfaces with other materials 8,9. Moreover, the Xe NMR signal is extremely sensitive to its molecular environment 6. This enables the option to use it as an NMR/MRI contrast agent when dissolved in aqueous solution with functionalized molecular hosts that temporarily trap the gas 10,11. Direct detection and high-sensitivity indirect detection of such constructs is demonstrated in both spectroscopic and imaging mode. PMID:22986346

  7. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    SciTech Connect

    Huang, Q; Zhang, Y; Liu, Y; Hu, L; Yin, F; Cai, J; Miller, W

    2014-06-15

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE. Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different DIR

  8. Hyperpolarized 83Kr MRI of lungs

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.; Pavlovskaya, Galina E.; Elkins, Nancy D.; Stupic, Karl F.; Repine, John E.; Meersmann, Thomas

    2008-12-01

    Hyperpolarized (hp) 83Kr (spin I = 9/2) is a promising gas-phase contrast agent that displays sensitivity to the surface chemistry, surface-to-volume ratio, and surface temperature of the surrounding environment. This proof-of-principle study demonstrates the feasibility of ex vivo hp 83Kr magnetic resonance imaging (MRI) of lungs using natural abundance krypton gas (11.5% 83Kr) and excised, but otherwise intact, rat lungs located within a custom designed ventilation chamber. Experiments comparing the 83Kr MR signal intensity from lungs to that arising from a balloon with no internal structure inflated to the same volume with krypton gas mixture suggest that most of the observed signal originated from the alveoli and not merely the conducting airways. The 83Kr longitudinal relaxation times in the rat lungs ranged from 0.7 to 3.7 s but were reproducible for a given lung. Although the source of these variations was not explored in this work, hp 83Kr T1 differences may ultimately lead to a novel form of MRI contrast in lungs. The currently obtained 1200-fold signal enhancement for hp 83Kr at 9.4 T field strength is found to be 180 times below the theoretical upper limit.

  9. Quantitative imaging of alveolar recruitment with hyperpolarized gas MRI during mechanical ventilation.

    PubMed

    Cereda, Maurizio; Emami, Kiarash; Kadlecek, Stephen; Xin, Yi; Mongkolwisetwara, Puttisarn; Profka, Harrilla; Barulic, Amy; Pickup, Stephen; Månsson, Sven; Wollmer, Per; Ishii, Masaru; Deutschman, Clifford S; Rizi, Rahim R

    2011-02-01

    The aim of this study was to assess the utility of (3)He MRI to noninvasively probe the effects of positive end-expiratory pressure (PEEP) maneuvers on alveolar recruitment and atelectasis buildup in mechanically ventilated animals. Sprague-Dawley rats (n = 13) were anesthetized, intubated, and ventilated in the supine position ((4)He-to-O(2) ratio: 4:1; tidal volume: 10 ml/kg, 60 breaths/min, and inspiration-to-expiration ratio: 1:2). Recruitment maneuvers consisted of either a stepwise increase of PEEP to 9 cmH(2)O and back to zero end-expiratory pressure or alternating between these two PEEP levels. Diffusion MRI was performed to image (3)He apparent diffusion coefficient (ADC) maps in the middle coronal slices of lungs (n = 10). ADC was measured immediately before and after two recruitment maneuvers, which were separated from each other with a wait period (8-44 min). We detected a statistically significant decrease in mean ADC after each recruitment maneuver. The relative ADC change was -21.2 ± 4.1 % after the first maneuver and -9.7 ± 5.8 % after the second maneuver. A significant relative increase in mean ADC was observed over the wait period between the two recruitment maneuvers. The extent of this ADC buildup was time dependent, as it was significantly related to the duration of the wait period. The two postrecruitment ADC measurements were similar, suggesting that the lungs returned to the same state after the recruitment maneuvers were applied. No significant intrasubject differences in ADC were observed between the corresponding PEEP levels in two rats that underwent three repeat maneuvers. Airway pressure tracings were recorded in separate rats undergoing one PEEP maneuver (n = 3) and showed a significant relative difference in peak inspiratory pressure between pre- and poststates. These observations support the hypothesis of redistribution of alveolar gas due to recruitment of collapsed alveoli in presence of atelectasis, which was also supported by

  10. Perspectives of hyperpolarized noble gas MRI beyond 3He

    PubMed Central

    Lilburn, David M.L.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed. PMID:23290627

  11. Hyperpolarized Gas MRI: Technique and Applications

    PubMed Central

    McAdams, Holman P.; Kaushik, S. Sivaram; Driehuys, Bastiaan

    2015-01-01

    Synopsis Functional imaging today offers a rich world of information that is more sensitive to changes in lung structure and function than traditionally obtained pulmonary function tests. Hyperpolarized helium (3He) and xenon (129Xe) MR imaging of the lungs provided new sensitive contrast mechanisms to probe changes in pulmonary ventilation, microstructure and gas exchange. With the recent scarcity in the supply of 3He the field of hyperpolarized gas imaging shifted to the use of cheaper and naturally available 129Xe. Xenon is well tolerated and recent technical advances have ensured that the 129Xe image quality is on par with that of 3He. The added advantage of 129Xe is its solubility in pulmonary tissue, which allows exploring specific lung function characteristics involved in gas exchange and alveolar oxygenation. With a plethora of contrast mechanisms, hyperpolarized gases and 129Xe in particular, stands to be an excellent probe of pulmonary structure and function, and provide sensitive and non-invasive biomarkers for a wide variety of pulmonary diseases. PMID:25952516

  12. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  13. In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization**

    PubMed Central

    Barskiy, Danila A.; Kovtunov, Kirill V.; Koptyug, Igor V.; He, Ping; Groome, Kirsten A.; Best, Quinn A.; Shi, Fan; Goodson, Boyd M.; Shchepin, Roman V.; Truong, Milton L.; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2015-01-01

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202

  14. Constant-variable flip angles for hyperpolarized media MRI

    NASA Astrophysics Data System (ADS)

    Deng, He; Zhong, Jianping; Ruan, Weiwei; Chen, Xian; Sun, Xianping; Ye, Chaohui; Liu, Maili; Zhou, Xin

    2016-02-01

    The longitudinal magnetization of hyperpolarized media, such as hyperpolarized 129Xe, 3He, etc., is nonrenewable. When the MRI data acquisition begins at the k-domain center, a constant flip angle (CFA) results in an image of high signal-to-noise ratio (SNR) but sacrifices the accuracy of spatial information. On the other hand, a variable flip angle (VFA) strategy results in high accuracy but suffers from a low SNR. In this paper, we propose a novel scheme to optimize both the SNR and accuracy, called constant-variable flip angles (CVFA). The proposed scheme suggests that hyperpolarized magnetic resonance signals are firstly acquired through a train of n∗ CFA excitation pulses, followed by a train of N-n∗ VFA excitation pulses. We simulate and optimize the flip angle used in the CFA section, the number of CFA excitation pulses, the number of VFA excitation pulses, and the initial and final variable flip angles adopted in the VFA section. Phantom and in vivo experiments demonstrate the good performance of the CVFA designs and their ability to maintain both high SNR and spatial resolution.

  15. Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis

    DOEpatents

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2008-06-10

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  16. Enhancement of NMR and MRI in the presence of hyperpolarized noble gases

    DOEpatents

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2004-11-16

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  17. Validating Excised Rodent Lungs for Functional Hyperpolarized Xenon-129 MRI

    PubMed Central

    Lilburn, David M. L.; Hughes-Riley, Theodore; Six, Joseph S.; Stupic, Karl F.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp) 129Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp 129Xe. Straightforward hp 129Xe MRI protocols provide residual lung volume (RV) data and permit for spatially resolved tracking of small hp 129Xe probe volumes during the inhalation cycle. Hp 129Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies. PMID:24023683

  18. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as noninvasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate.

    PubMed

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H Douglas; Munasinghe, Jeeva P; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P; Mitchell, James B; Krishna, Murali C

    2013-05-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3-bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3-bromopyruvate was substantially attenuated in hypoxic tumor regions (pO2<10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 is the major transporter for pyruvate and the analog 3-bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter-1 in vivo. Expression of monocarboxylate transporter-1 was enhanced in moderately hypoxic (8-15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia-activated drugs. PMID:22692861

  19. NMR/MRI with hyperpolarized gas and high Tc SQUID

    DOEpatents

    Schlenga, Klaus; de Souza, Ricardo E.; Wong-Foy, Annjoe; Clarke, John; Pines, Alexander

    2000-01-01

    A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.

  20. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner

    PubMed Central

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13C-CO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq 18F-FDG. 13C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized 13C-pyruvate. Peak heights of 13C-pyruvate and 13C-lactate were quantified using a general linear model. Anatomic 1H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased 13C-lactate production, which also corresponded to high 18F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high 18F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high 13C-lactate production. Accordingly, this clearly demonstrates how the Warburg Effect directly

  1. Magnetic resonance imaging of dissolved hyperpolarized 129Xe using a membrane-based continuous flow system

    NASA Astrophysics Data System (ADS)

    Amor, N.; Zänker, P. P.; Blümler, P.; Meise, F. M.; Schreiber, L. M.; Scholz, A.; Schmiedeskamp, J.; Spiess, H. W.; Münnemann, K.

    2009-11-01

    A technique for continuous production of solutions containing hyperpolarized 129Xe is explored for MRI applications. The method is based on hollow fiber membranes which inhibit the formation of foams and bubbles. A systematic analysis of various carrier agents for hyperpolarized 129Xe has been carried out, which are applicable as contrast agents for in vivo MRI. The image quality of different hyperpolarized Xe solutions is compared and MRI results obtained in a clinical as well as in a nonclinical MRI setting are provided. Moreover, we demonstrate the application of 129Xe contrast agents produced with our dissolution method for lung MRI by imaging hyperpolarized 129Xe that has been both dissolved in and outgassed from a carrier liquid in a lung phantom, illustrating its potential for the measurement of lung perfusion and ventilation.

  2. Hyperpolarized 129Xe MRI of the Human Lung

    PubMed Central

    Mugler, John P.; Altes, Talissa A.

    2012-01-01

    By permitting direct visualization of the airspaces of the lung, MR imaging using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized 3He, recent contraction in the supply of 3He and consequent increases in price have turned attention to the alternative agent, hyperpolarized 129Xe. Compared to 3He, 129Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized 129Xe comparable to those previously demonstrated using hyperpolarized 3He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized 129Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using 3He. Preliminary results from methods for imaging 129Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research lab. PMID:23355432

  3. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using (13)C Metabolic Contrast Agents.

    PubMed

    Coffey, Aaron M; Shchepin, Roman V; Truong, Milton L; Wilkens, Ken; Pham, Wellington; Chekmenev, Eduard Y

    2016-08-16

    An open-source hyperpolarizer producing (13)C hyperpolarized contrast agents using parahydrogen induced polarization (PHIP) for biomedical and other applications is presented. This PHIP hyperpolarizer utilizes an Arduino microcontroller in conjunction with a readily modified graphical user interface written in the open-source processing software environment to completely control the PHIP hyperpolarization process including remotely triggering an NMR spectrometer for efficient production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization. Key advantages of this hyperpolarizer include: (i) use of open-source software and hardware seamlessly allowing for replication and further improvement as well as readily customizable integration with other NMR spectrometers or MRI scanners (i.e., this is a multiplatform design), (ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance is demonstrated by production of a dose (∼2-3 mL) of hyperpolarized (13)C-succinate with %P13C ∼ 28% and 30 mM concentration and (13)C-phospholactate at %P13C ∼ 15% and 25 mM concentration in aqueous medium. These contrast agents are used for ultrafast molecular imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion of hyperpolarized (13)C-phospholactate to (13)C-lactate in vivo is used here to demonstrate the feasibility of ultrafast multislice (13)C MRI after tail vein injection of hyperpolarized (13)C-phospholactate in mice. PMID:27478927

  4. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  5. Quantitative Assessment of Lung Using Hyperpolarized Magnetic Resonance Imaging

    PubMed Central

    Emami, Kiarash; Stephen, Michael; Kadlecek, Stephen; Cadman, Robert V.; Ishii, Masaru; Rizi, Rahim R.

    2009-01-01

    Improvements in the quantitative assessment of structure, function, and metabolic activity in the lung, combined with improvements in the spatial resolution of those assessments, enhance the diagnosis and evaluation of pulmonary disorders. Radiologic methods are among the most attractive techniques for the comprehensive assessment of the lung, as they allow quantitative assessment of this organ through measurements of a number of structural, functional, and metabolic parameters. Hyperpolarized nuclei magnetic resonance imaging (MRI) has opened up new territories for the quantitative assessment of lung function and structure with an unprecedented spatial resolution and sensitivity. This review article presents a survey of recent developments in the field of pulmonary imaging using hyperpolarized nuclei MRI for quantitative imaging of different aspects of the lung, as well as preclinical applications of these techniques to diagnose and evaluate specific pulmonary diseases. After presenting a brief overview of various hyperpolarization techniques, this survey divides the research activities of the field into four broad areas: lung microstructure, ventilation, oxygenation, and perfusion. Finally, it discusses the challenges currently faced by researchers in this field to translate this rich body of methodology into wider-scale clinical applications. PMID:19687215

  6. Probing lung microstructure with hyperpolarized 3He gradient echo MRI.

    PubMed

    Sukstanskii, Alexander L; Quirk, James D; Yablonskiy, Dmitriy A

    2014-12-01

    In this paper we demonstrate that gradient echo MRI with hyperpolarized (3)He gas can be used for simultaneously extracting in vivo information about lung ventilation properties, alveolar geometrical parameters, and blood vessel network structure. This new approach is based on multi-gradient-echo experimental measurements of hyperpolarized (3)He gas MRI signal from human lungs and a proposed theoretical model of this signal. Based on computer simulations of (3)He atoms diffusing in the acinar airway tree in the presence of an inhomogeneous magnetic field induced by the susceptibility differences between lung tissue (alveolar septa, blood vessels) and lung airspaces, we derive analytical expressions relating the time-dependent MR signal to the geometrical parameters of acinar airways and the blood vessel network. Data obtained on eight healthy volunteers are in good agreement with literature values. This information is complementary to the information obtained by means of the in vivo lung morphometry technique with hyperpolarized 3He diffusion MRI previously developed by our group, and opens new opportunities to study lung microstructure in health and disease. PMID:24920182

  7. Large Production of Hyperpolarized 129-Xe for MRI Applications

    NASA Astrophysics Data System (ADS)

    Ruset, Iulian; Hersman, F. W.; Distelbrink, Jan; Ketel, Stephen; Covrig, Silviu; Muradian, Iga; Sindile, Adrian

    2007-03-01

    Although 129-Xe was the first hyperpolarized gas to be used in MRI studies, the research community has focused on 3-He, mainly because of the larger quantities of hyperpolarized gas available. Xenon has advantages over helium, such as natural abundance, lower diffusion, and high solubility in blood. It presents a large frequency chemical shift when dissolved in blood, tissue, brain, or trapped in molecular cages. A new design of a high-flow low-pressure spin-exchange optical pumping Rb-Xe polarizer was recently demonstrated by our group. The concept of counterflowing the gas mixture against laser light and dividing the polarizing cell in three operational zones has resulted in an increase with over an order of magnitude in the output magnetization compared with previously reported polarizers. We were able to produce hyperpolarized xenon at 64% polarization for 0.3 liters/hour flow rate and 22% polarization at 6 liters/hour. We also demonstrated a new design of freezing and thawing hyperpolarized xenon with minimum losses. We will present the concept of the high-flow low-pressure counterflowing xenon polarizer, its performance, as well as new optical pumping laser technologies. We will discuss optimization plans for xenon polarizing systems based on experimental observed limitations and theoretical modeling.

  8. Hyperpolarized helium-3 mouse lung MRI: Studies of lung structure and function

    NASA Astrophysics Data System (ADS)

    Dugas, Joseph Paul

    Hyperpolarized 3He magnetic resonance imaging (MRI) of human and animal lungs has displayed promising and useful applications to studies of lung structure and function in both healthy and diseased lungs. Hyperpolarized 3He MRI allows the visualization of gas in the gas-exchange spaces of the lungs (as opposed to tissue) and has proven especially effective in studying diseases that are characterized by ventilation defects, such as emphysema. In particular, in-vivo measurements of the 3He apparent diffusion coefficient (ADC) can quantify lung structure by measuring its restrictive effects on the motion of 3He spins. This allows for detection and longitudinal tracking of changes in micro-architecture that result from disease destruction of alveolar walls. Due, in part, to the difficulties inherent in administering and imaging hyperpolarized 3He within the small (0.5 cc volume) mouse lung, applications of hyperpolarized 3He MRI techniques to laboratory mice are scarce. We have been able to implement and improve the techniques of hyperpolarized 3He mouse lung MRI and subsequently apply them to studies of several mouse models of disease, including elastase-induced emphysema, smoking-induced emphysema, and lung cancer. Here we detail the design, development, and implementation of a versatile, electronically-controlled, small animal ventilator that is capable of delivering tiny volumes of hyperpolarized 3He, mixed with oxygen, to the mouse and is also compatible with both the easily depolarized 3He gas and the highly magnetic environment within and around an imaging magnet. Also described are NM techniques developed to improve the signal-to-noise ratio of our images and effectively utilize the gas hyperpolarization. Applications of these technologies and techniques to small animal models of disease are presented wherein we have measured up to a 35% increase in 3He ADC in mice with elastase-induced emphysema as compared to healthy mice. We also demonstrate the potential

  9. Distribution of Hyperpolarized Xenon in the Brain Following Sensory Stimulation: Preliminary MRI Findings

    PubMed Central

    Mazzanti, Mary L.; Walvick, Ronn P.; Zhou, Xin; Sun, Yanping; Shah, Niral; Mansour, Joey; Gereige, Jessica; Albert, Mitchell S.

    2011-01-01

    In hyperpolarized xenon magnetic resonance imaging (HP 129Xe MRI), the inhaled spin-1/2 isotope of xenon gas is used to generate the MR signal. Because hyperpolarized xenon is an MR signal source with properties very different from those generated from water-protons, HP 129Xe MRI may yield structural and functional information not detectable by conventional proton-based MRI methods. Here we demonstrate the differential distribution of HP 129Xe in the cerebral cortex of the rat following a pain stimulus evoked in the animal's forepaw. Areas of higher HP 129Xe signal corresponded to those areas previously demonstrated by conventional functional MRI (fMRI) methods as being activated by a forepaw pain stimulus. The percent increase in HP 129Xe signal over baseline was 13–28%, and was detectable with a single set of pre and post stimulus images. Recent innovations in the production of highly polarized 129Xe should make feasible the emergence of HP 129Xe MRI as a viable adjunct method to conventional MRI for the study of brain function and disease. PMID:21789173

  10. Directly detected (55)Mn MRI: application to phantoms for human hyperpolarized (13)C MRI development.

    PubMed

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B

    2014-12-01

    In this work we demonstrate for the first time directly detected manganese-55 ((55)Mn) magnetic resonance imaging (MRI) using a clinical 3T MRI scanner designed for human hyperpolarized (13)C clinical studies with no additional hardware modifications. Due to the similar frequency of the (55)Mn and (13)C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective "(13)C" MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, (55)Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical (13)C phantom MRI, at greatly reduced cost as compared with large (13)C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d=8 cm) containing concentrated aqueous sodium permanganate (2.7 M) was scanned rapidly by (55)Mn MRI in a human head coil tuned for (13)C, using a balanced steady state free precession acquisition. The requisite penetration of radiofrequency magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for (55)Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image signal-to-noise ratio of ~60 at 0.5 cm(3) spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP (13)C coils and methods designed for human studies. PMID:25179135

  11. MRI of the lung gas-space at very low-field using hyperpolarized noble gases

    NASA Technical Reports Server (NTRS)

    Venkatesh, Arvind K.; Zhang, Adelaide X.; Mansour, Joey; Kubatina, Lyubov; Oh, Chang Hyun; Blasche, Gregory; Selim Unlu, M.; Balamore, Dilip; Jolesz, Ferenc A.; Goldberg, Bennett B.; Albert, Mitchell S.

    2003-01-01

    In hyperpolarized (HP) noble-gas magnetic resonance imaging, large nuclear spin polarizations, about 100,000 times that ordinarily obtainable at thermal equilibrium, are created in 3He and 129Xe. The enhanced signal that results can be employed in high-resolution MRI studies of void spaces such as in the lungs. In HP gas MRI the signal-to-noise ratio (SNR) depends only weakly on the static magnetic field (B(0)), making very low-field (VLF) MRI possible; indeed, it is possible to contemplate portable MRI using light-weight solenoids or permanent magnets. This article reports the first in vivo VLF MR images of the lungs in humans and in rats, obtained at a field of only 15 millitesla (150 Gauss).

  12. Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI

    PubMed Central

    Branca, Rosa Tamara; He, Ting; Zhang, Le; Floyd, Carlos S.; Freeman, Matthew; White, Christian; Burant, Alex

    2014-01-01

    The study of brown adipose tissue (BAT) in human weight regulation has been constrained by the lack of a noninvasive tool for measuring this tissue and its function in vivo. Existing imaging modalities are nonspecific and intrinsically insensitive to the less active, lipid-rich BAT of obese subjects, the target population for BAT studies. We demonstrate noninvasive imaging of BAT in mice by hyperpolarized xenon gas MRI. We detect a greater than 15-fold increase in xenon uptake by BAT during stimulation of BAT thermogenesis, which enables us to acquire background-free maps of the tissue in both lean and obese mouse phenotypes. We also demonstrate in vivo MR thermometry of BAT by hyperpolarized xenon gas. Finally, we use the linear temperature dependence of the chemical shift of xenon dissolved in adipose tissue to directly measure BAT temperature and to track thermogenic activity in vivo. PMID:25453088

  13. High-resolution low-field molecular magnetic resonance imaging of hyperpolarized liquids.

    PubMed

    Coffey, Aaron M; Kovtunov, Kirill V; Barskiy, Danila A; Koptyug, Igor V; Shchepin, Roman V; Waddell, Kevin W; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-09-16

    We demonstrate the feasibility of microscale molecular imaging using hyperpolarized proton and carbon-13 MRI contrast media and low-field (47.5 mT) preclinical scale (38 mm i.d.) 2D magnetic resonance imaging (MRI). Hyperpolarized proton images with 94 × 94 μm(2) spatial resolution and hyperpolarized carbon-13 images with 250 × 250 μm(2) in-plane spatial resolution were recorded in 4-8 s (largely limited by the electronics response), surpassing the in-plane spatial resolution (i.e., pixel size) achievable with micro-positron emission tomography (PET). These hyperpolarized proton and (13)C images were recorded using large imaging matrices of up to 256 × 256 pixels and relatively large fields of view of up to 6.4 × 6.4 cm(2). (13)C images were recorded using hyperpolarized 1-(13)C-succinate-d2 (30 mM in water, %P(13C) = 25.8 ± 5.1% (when produced) and %P(13C) = 14.2 ± 0.7% (when imaged), T1 = 74 ± 3 s), and proton images were recorded using (1)H hyperpolarized pyridine (100 mM in methanol-d4, %P(H) = 0.1 ± 0.02% (when imaged), T1 = 11 ± 0.1 s). Both contrast agents were hyperpolarized using parahydrogen (>90% para-fraction) in an automated 5.75 mT parahydrogen induced polarization (PHIP) hyperpolarizer. A magnetized path was demonstrated for successful transportation of a (13)C hyperpolarized contrast agent (1-(13)C-succinate-d2, sensitive to fast depolarization when at the Earth's magnetic field) from the PHIP polarizer to the 47.5 mT low-field MRI. While future polarizing and low-field MRI hardware and imaging sequence developments can further improve the low-field detection sensitivity, the current results demonstrate that microscale molecular imaging in vivo is already feasible at low (<50 mT) fields and potentially at low (~1 mM) metabolite concentrations. PMID:25162371

  14. High-Resolution Low-Field Molecular Magnetic Resonance Imaging of Hyperpolarized Liquids

    PubMed Central

    2015-01-01

    We demonstrate the feasibility of microscale molecular imaging using hyperpolarized proton and carbon-13 MRI contrast media and low-field (47.5 mT) preclinical scale (38 mm i.d.) 2D magnetic resonance imaging (MRI). Hyperpolarized proton images with 94 × 94 μm2 spatial resolution and hyperpolarized carbon-13 images with 250 × 250 μm2 in-plane spatial resolution were recorded in 4–8 s (largely limited by the electronics response), surpassing the in-plane spatial resolution (i.e., pixel size) achievable with micro-positron emission tomography (PET). These hyperpolarized proton and 13C images were recorded using large imaging matrices of up to 256 × 256 pixels and relatively large fields of view of up to 6.4 × 6.4 cm2. 13C images were recorded using hyperpolarized 1-13C-succinate-d2 (30 mM in water, %P13C = 25.8 ± 5.1% (when produced) and %P13C = 14.2 ± 0.7% (when imaged), T1 = 74 ± 3 s), and proton images were recorded using 1H hyperpolarized pyridine (100 mM in methanol-d4, %PH = 0.1 ± 0.02% (when imaged), T1 = 11 ± 0.1 s). Both contrast agents were hyperpolarized using parahydrogen (>90% para-fraction) in an automated 5.75 mT parahydrogen induced polarization (PHIP) hyperpolarizer. A magnetized path was demonstrated for successful transportation of a 13C hyperpolarized contrast agent (1-13C-succinate-d2, sensitive to fast depolarization when at the Earth’s magnetic field) from the PHIP polarizer to the 47.5 mT low-field MRI. While future polarizing and low-field MRI hardware and imaging sequence developments can further improve the low-field detection sensitivity, the current results demonstrate that microscale molecular imaging in vivo is already feasible at low (<50 mT) fields and potentially at low (∼1 mM) metabolite concentrations. PMID:25162371

  15. Monitoring Chemotherapeutic Response by Hyperpolarized 13C-Fumarate MRS and Diffusion MRI

    PubMed Central

    Mignion, Lionel; Dutta, Prasanta; Martinez, Gary V.; Foroutan, Parastou; Gillies, Robert J.; Jordan, Bénédicte F.

    2015-01-01

    Targeted chemotherapeutic agents often do not result in tumor shrinkage, so new biomarkers that correlate with clinical efficacy are needed. In this study, we investigated noninvasive imaging protocols to monitor responses to sorafenib, a multikinase inhibitor approved for treatment of renal cell and hepatocellular carcinoma. Healthy cells are impermeable to fumarate, so conversion of this metabolite to malate as detected by 13C-magnetic resonance spectroscopy (MRS) has been suggested as one marker for cell death and treatment response in tumors. Diffusion MRI also has been suggested as a measure of therapy-induced cytotoxic edema because viable cells act as a diffusion barrier in tissue. For these reasons, we assessed sorafenib responses using hyperpolarized 13C-fumarate, diffusion-weighted MRI (DW-MRI) in a xenograft model of human breast cancer in which daily administration of sorafenib was sufficient to stabilize tumor growth. We detected signals from fumarate and malate following intravenous administration of hyperpolarized fumarate with a progressive increase in the malate-to-fumarate (MA/FA) ratio at days 2 to 5 after sorafenib infusion. The apparent diffusion coefficient (ADC) measured by DW-MRI increased in the treated group consistent with cytotoxic edema. However, the MA/FA ratio was a more sensitive marker of therapeutic response than ADC, with 2.8-fold versus 1.3-fold changes, respectively, by day 5 of drug treatment. Histologic analyses confirmed cell death in the sorafenib-treated cohort. Notably, 13C-pyruvate-to-lactate conversion was not affected by sorafenib in the breast cancer model examined. Our results illustrate how combining hyperpolarized substrates with DW-MRI can allow noninvasive monitoring of targeted therapeutic responses at relatively early times after drug administration. PMID:24285723

  16. Monitoring chemotherapeutic response by hyperpolarized 13C-fumarate MRS and diffusion MRI.

    PubMed

    Mignion, Lionel; Dutta, Prasanta; Martinez, Gary V; Foroutan, Parastou; Gillies, Robert J; Jordan, Bénédicte F

    2014-02-01

    Targeted chemotherapeutic agents often do not result in tumor shrinkage, so new biomarkers that correlate with clinical efficacy are needed. In this study, we investigated noninvasive imaging protocols to monitor responses to sorafenib, a multikinase inhibitor approved for treatment of renal cell and hepatocellular carcinoma. Healthy cells are impermeable to fumarate, so conversion of this metabolite to malate as detected by (13)C-magnetic resonance spectroscopy (MRS) has been suggested as one marker for cell death and treatment response in tumors. Diffusion MRI also has been suggested as a measure of therapy-induced cytotoxic edema because viable cells act as a diffusion barrier in tissue. For these reasons, we assessed sorafenib responses using hyperpolarized (13)C-fumarate, diffusion-weighted MRI (DW-MRI) in a xenograft model of human breast cancer in which daily administration of sorafenib was sufficient to stabilize tumor growth. We detected signals from fumarate and malate following intravenous administration of hyperpolarized fumarate with a progressive increase in the malate-to-fumarate (MA/FA) ratio at days 2 to 5 after sorafenib infusion. The apparent diffusion coefficient (ADC) measured by DW-MRI increased in the treated group consistent with cytotoxic edema. However, the MA/FA ratio was a more sensitive marker of therapeutic response than ADC, with 2.8-fold versus 1.3-fold changes, respectively, by day 5 of drug treatment. Histologic analyses confirmed cell death in the sorafenib-treated cohort. Notably, (13)C-pyruvate-to-lactate conversion was not affected by sorafenib in the breast cancer model examined. Our results illustrate how combining hyperpolarized substrates with DW-MRI can allow noninvasive monitoring of targeted therapeutic responses at relatively early times after drug administration. PMID:24285723

  17. Nuclear magnetic resonance imaging with hyper-polarized noble gases

    SciTech Connect

    Schmidt, D.M.; George, J.S.; Penttila, S.I.; Caprihan, A.

    1997-10-01

    This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The nuclei of noble gases can be hyper polarized through a laser-driven spin exchange to a degree many orders of magnitude larger than that attainable by thermal polarization without requiring a strong magnetic field. The increased polarization from the laser pumping enables a good nuclear magnetic resonance (NMR) signal from a gas. The main goal of this project was to demonstrate diffusion-weighted imaging of such hyper-polarized noble gas with magnetic resonance imaging (MRI). Possible applications include characterizing porosity of materials and dynamically imaging pressure distributions in biological or acoustical systems.

  18. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    SciTech Connect

    Neal, B; Chen, Q

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phase based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.

  19. Molecular MRI in the Earth's Magnetic Field Using Continuous Hyperpolarization of a Biomolecule in Water.

    PubMed

    Rovedo, Philipp; Knecht, Stephan; Bäumlisberger, Tim; Cremer, Anna Lena; Duckett, Simon B; Mewis, Ryan E; Green, Gary G R; Burns, Michael; Rayner, Peter J; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; Pütz, Gerhard; von Elverfeldt, Dominik; Hövener, Jan-Bernd

    2016-06-30

    In this work, we illustrate a method to continuously hyperpolarize a biomolecule, nicotinamide, in water using parahydrogen and signal amplification by reversible exchange (SABRE). Building on the preparation procedure described recently by Truong et al. [ J. Phys. Chem. B , 2014 , 118 , 13882 - 13889 ], aqueous solutions of nicotinamide and an Ir-IMes catalyst were prepared for low-field NMR and MRI. The (1)H-polarization was continuously renewed and monitored by NMR experiments at 5.9 mT for more than 1000 s. The polarization achieved corresponds to that induced by a 46 T magnet (P = 1.6 × 10(-4)) or an enhancement of 10(4). The polarization persisted, although reduced, if cell culture medium (DPBS with Ca(2+) and Mg(2+)) or human cells (HL-60) were added, but was no longer observable after the addition of human blood. Using a portable MRI unit, fast (1)H-MRI was enabled by cycling the magnetic field between 5 mT and the Earth's field for hyperpolarization and imaging, respectively. A model describing the underlying spin physics was developed that revealed a polarization pattern depending on both contact time and magnetic field. Furthermore, the model predicts an opposite phase of the dihydrogen and substrate signal after one exchange, which is likely to result in the cancelation of some signal at low field. PMID:27228166

  20. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  1. Magnetic Resonance Imaging with Hyperpolarized 13C Contrast Agents

    NASA Astrophysics Data System (ADS)

    Gordon, Jeremy W.

    Hyperpolarized 13C substrates offer the potential to non-invasively image metabolism and enzymatic activity. However, hyperpolarization introduces a number of difficulties, and imaging is hampered by non-equilibrium magnetization and the need for spectral encoding. There is therefore a need for fast and RF efficient spectral imaging techniques. This work presents a number of new methods that can be used to improve polarization, increase RF efficiency and improve modeling accuracy in hyperpolarized 13C experiments. In particular, a novel encoding and reconstruction algorithm is presented that can generate spatially and spectrally resolved images with a single RF excitation and echo time. This reconstruction framework increases data acquisition efficiency, enabling accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Overall, the methods enumerated in this dissertation have the potential to improve modeling accuracy and to mitigate the conventional tradeoffs between SNR, spatial resolution, and temporal resolution that govern image quality in hyperpolarized 13C experiments.

  2. MR imaging of the lungs with hyperpolarized helium-3 gas transported by air.

    PubMed

    Wild, J M; Schmiedeskamp, J; Paley, M N J; Filbir, F; Fichele, S; Kasuboski, L; Knitz, F; Woodhouse, N; Swift, A; Heil, W; Mill, G H; Wolf, M; Griffiths, P D; Otten, E; van Beek, E J R

    2002-07-01

    Hyperpolarized noble gas MRI shows promise in the functional imaging of the pulmonary air spaces. The production of hyperpolarized (HP) gas requires specialized laser optical pumping apparatus, which is not likely to be home built in the majority of clinical MRI radiology centres. There are two routes through which HP gas will be made available to hospitals for clinical use: either the apparatus will be installed locally at a considerable expense to the centre, or a central facility will produce the gas and then deliver it to remote MRI sites as and when required. In this study, the feasibility of transporting large quantities of HP gas for in vivo MR imaging from a remote production facility in Mainz, Germany, by airfreight to Sheffield, UK, was successfully demonstrated. PMID:12164592

  3. Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging

    PubMed Central

    Atkins, Tonya M.; Cassidy, Maja C.; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M.; Kauzlarich, Susan M.

    2013-01-01

    We describe the synthesis, materials characterization and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted 29Si spin lattice relaxation (T1) times (> 600 s), which are retained after hyperpolarization by low temperature DNP. PMID:23350651

  4. Hyperpolarized Xenon-129 Magnetic Resonance Imaging of Functional Lung Microstructure

    NASA Astrophysics Data System (ADS)

    Dregely, Isabel

    Hyperpolarized 129Xe (HXe) is a non-invasive contrast agent for lung magnetic resonance imaging (MRI), which upon inhalation follows the functional pathway of oxygen in the lung by dissolving into lung tissue structures and entering the blood stream. HXe MRI therefore provides unique opportunities for functional lung imaging of gas exchange which occurs from alveolar air spaces across the air-blood boundary into parenchymal tissue. However challenges in acquisition speed and signal-to-noise ratio have limited the development of a HXe imaging biomarker to diagnose lung disease. This thesis addresses these challenges by introducing parallel imaging to HXe MRI. Parallel imaging requires dedicated hardware. This work describes design, implementation, and characterization of a 32-channel phased-array chest receive coil with an integrated asymmetric birdcage transmit coil tuned to the HXe resonance on a 3 Tesla MRI system. Using the newly developed human chest coil, a functional HXe imaging method, multiple exchange time xenon magnetization transfer contrast (MXTC) is implemented. MXTC dynamically encodes HXe gas exchange into the image contrast. This permits two parameters to be derived regionally which are related to gas-exchange functionality by characterizing tissue-to-alveolar-volume ratio and alveolar wall thickness in the lung parenchyma. Initial results in healthy subjects demonstrate the sensitivity of MXTC by quantifying the subtle changes in lung microstructure in response to orientation and lung inflation. Our results in subjects with lung disease show that the MXTC-derived functional tissue density parameter exhibits excellent agreement with established imaging techniques. The newly developed dynamic parameter, which characterizes the alveolar wall, was elevated in subjects with lung disease, most likely indicating parenchymal inflammation. In light of these observations we believe that MXTC has potential as a biomarker for the regional quantification of 1

  5. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    NASA Astrophysics Data System (ADS)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2014-03-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.

  6. Development and testing of hyperpolarized 13C MR calibrationless parallel imaging

    PubMed Central

    Feng, Yesu; Gordon, Jeremy W.; Shin, Peter J.; von Morze, Cornelius; Lustig, Michael; Larson, Peder E.Z.; Ohliger, Michael A.; Carvajal, Lucas; Tropp, James; Pauly, John M.; Vigneron, Daniel B.

    2016-01-01

    A calibrationless parallel imaging technique developed previously for 1H MRI was modified and tested for hyperpolarized 13C MRI for applications requiring large FOV and high spatial resolution. The technique was demonstrated with both retrospective and prospective under-sampled data acquired in phantom and in vivo rat studies. A 2-fold acceleration was achieved using a 2D symmetric EPI readout equipped with random blips on the phase encode dimension. Reconstructed images showed excellent qualitative agreement with fully sampled data. Further acceleration can be achieved using acquisition schemes that incorporate multi-dimensional under-sampling. PMID:26679288

  7. 3D hyperpolarized He-3 MRI of ventilation using a multi-echo projection acquisition

    PubMed Central

    Holmes, James H.; O’Halloran, Rafael L.; Brodsky, Ethan K.; Jung, Youngkyoo; Block, Walter F.; Fain, Sean B.

    2010-01-01

    A method is presented for high resolution 3D imaging of the whole lung using inhaled hyperpolarized (HP) He-3 MR with multiple half-echo radial trajectories that can accelerate imaging through undersampling. A multiple half-echo radial trajectory can be used to reduce the level of artifact for undersampled 3D projection reconstruction (PR) imaging by increasing the amount of data acquired per unit time for HP He-3 lung imaging. The point spread functions (PSFs) for breath-held He-3 MRI using multiple half-echo trajectories were evaluated using simulations to predict the effects of T2* and gas diffusion on image quality. Results from PSF simulations were consistent with imaging results in volunteer studies showing improved image quality with increasing number of echoes using up to 8 half-echoes. The 8 half-echo acquisition is shown to accommodate lost breath-holds as short as 6 s using a retrospective reconstruction at reduced resolution as well as to allow reduced breath-hold time compared to an equivalent Cartesian trajectory. Furthermore, preliminary results from a 3D dynamic inhalation-exhalation maneuver are demonstrated using the 8 half-echo trajectory. Results demonstrate the first high resolution 3D PR imaging of ventilation and respiratory dynamics in humans using HP He-3 MR. PMID:18429034

  8. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  9. Long-Lived Spin States for Low-Field Hyperpolarized Gas MRI

    PubMed Central

    Kovtunov, Kirill V.; Truong, Milton L.; Barskiy, Danila A.; Koptyug, Igor V.; Coffey, Aaron M.; Waddell, Kevin W.

    2015-01-01

    Parahydrogen induced polarization was employed to prepare a relatively long-lived correlated nuclear spin state between methylene and methyl protons in propane gas. Conventionally, such states are converted into a strong NMR signal enhancement by transferring the reaction product to a high magnetic field in an adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiment. However, the relaxation time T1 of ~0.6 s of the resulting hyperpolarized propane is too short for potential biomedical applications. The presented alternative approach employs low-field MRI to preserve the initial correlated state with a much longer decay time TLLSS=(4.7 ± 0.5) s. While the direct detection at low-magnetic fields (e.g. 0.0475 T) is challenging, we demonstrate here that spin-lock induced crossing (SLIC) at this low magnetic field transforms the long-lived correlated state into an observable nuclear magnetization suitable for MRI with sub-millimeter and sub-second spatial and temporal resolution, respectively. Propane is a non-toxic gas, and therefore, these results potentially enable low-cost high-resolution high-speed MRI of gases for functional imaging of lungs and other applications. PMID:25263795

  10. Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness

    PubMed Central

    Lui, Justin K.; Parameswaran, Harikrishnan; Albert, Mitchell S.; Lutchen, Kenneth R.

    2015-01-01

    Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject’s forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P < 0.0001), the difference between high and low frequency lung resistance (R = 0.668, P < 0.0001), and low-frequency lung elastance (R = 0.547, P = 0.0003). In asthmatic subjects with PC20 values <25 mg/mL, the coefficient of variation at baseline exhibited a strong negative trend (R = -0.798, P = 0.02) to PC20 dose. Our findings were consistent with the notion of peripheral rather than central involvement of ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy. PMID:26569412

  11. Hyperpolarized Gas Diffusion MRI for the Study of Atelectasis and Acute Respiratory Distress Syndrome

    PubMed Central

    Cereda, Maurizio; Xin, Yi; Kadlecek, Stephen; Hamedani, Hooman; Rajaei, Jennia; Clapp, Justin; Rizi, Rahim R.

    2014-01-01

    Considerable uncertainty remains about the best ventilator strategies for the mitigation of atelectasis and associated airspace stretch in patients with acute respiratory distress syndrome (ARDS). In addition to several immediate physiological effects, atelectasis increases the risk of ventilator-associated lung injury (VALI), which has been shown to significantly worsen ARDS outcomes. A number of lung imaging techniques have made substantial headway in clarifying the mechanisms of atelectasis. This paper reviews the contributions of CT, PET, and conventional MRI to understanding this phenomenon. In doing so, it also reveals several important shortcomings inherent to each of these approaches. Once these shortcomings have been made apparent, we describe how hyperpolarized gas magnetic resonance imaging (HP MRI)—a technique that is uniquely able to assess responses to mechanical ventilation and lung injury in peripheral airspaces—is poised to fill several of these knowledge gaps. The HP-MRI-derived apparent diffusion coefficient (ADC) quantifies the restriction of 3He diffusion by peripheral airspaces, thereby obtaining pulmonary structural information at an extremely small scale. Lastly, this paper reports the results of a series of experiments that measured ADC in mechanically ventilated rats in order to investigate (i) the effect of atelectasis on ventilated airspaces; (ii) the relationship between positive end-expiratory pressure (PEEP), hysteresis, and the dimensions of peripheral airspaces; and (iii) the ability of PEEP and surfactant to reduce airspace dimensions after lung injury. An increase in ADC was found to be a marker of atelectasis-induced overdistension. With recruitment, higher airway pressures were shown to reduce stretch rather than worsen it. Moving forward, HP MRI has significant potential to shed further light on the atelectatic processes that occur during mechanical ventilation. PMID:24920074

  12. Hyperpolarized 129Xe magnetic resonance imaging of a rat model of transient Ischemic Stroke

    NASA Astrophysics Data System (ADS)

    Walvick, Ronn P.; Bastan, Birgul; Reno, Austin; Mansour, Joey; Sun, Yanping; Zhou, Xin; Mazzani, Mary; Fisher, Marc; Sotak, Christopher H.; Albert, Mitchell S.

    2009-02-01

    Ischemic stroke accounts for nearly 80% of all stroke cases. Although proton diffusion and perfusion magnetic resonance imaging (MRI) are the gold standards in ischemic stroke diagnostics, the use of hyperpolarized 129Xe MRI has a potential role to contribute to the diagnostic picture. The highly lipophilic hyperpolarized 129Xe can be non-invasively delivered via inhalation into the lungs where it is dissolved into the blood and delivered to other organs such as the brain. As such, we expect hyperpolarized 129Xe to act as a perfusion tracer which will result in a signal deficit in areas of blood deprived tissue. In this work, we present imaging results from an animal model of transient ischemic stroke characterized through 129Xe MRI. In this model, a suture is used to occlude the middle cerebral artery (MCA) in the rat brain, thus causing an ischemic event. After a period of MCA occlusion, the suture can then be removed to reperfuse the ischemic area. During the ischemic phase of the stroke, a signal void was observed in the MCA territory; which was subsequently restored by normal 129Xe MRI signal once perfusion was reinstated. Further, a higher resolution one-dimensional chemical shift image shows a sharp signal drop in the area of ischemia. Validation of ischemic damage was shown through both proton diffusion-weighted MRI (DWI) and by 2,3,5-triphenyltetrazoliumchloride (TTC) staining. The results show the potential of 129Xe to act as a perfusion tracer; information that may add to the diagnostic and prognostic utility of the clinical picture of stroke.

  13. Hyperpolarized Gas Magnetic Resonance Lung Imaging in Children and Young Adults.

    PubMed

    Flors, Lucia; Mugler, John P; de Lange, Eduard E; Miller, Grady W; Mata, Jaime F; Tustison, Nick; Ruset, Iulian C; Hersman, F William; Altes, Talissa A

    2016-09-01

    The assessment of early pulmonary disease and its severity can be difficult in young children, as procedures such as spirometry cannot be performed on them. Computed tomography provides detailed structural images of the pulmonary parenchyma, but its major drawback is that the patient is exposed to ionizing radiation. In this context, magnetic resonance imaging (MRI) is a promising technique for the evaluation of pediatric lung disease, especially when serial imaging is needed. Traditionally, MRI played a small role in evaluating the pulmonary parenchyma. Because of its low proton density, the lungs display low signal intensity on conventional proton-based MRI. Hyperpolarized (HP) gases are inhaled contrast agents with an excellent safety profile and provide high signal within the lung, allowing for high temporal and spatial resolution imaging of the lung airspaces. Besides morphologic information, HP MR images also offer valuable information about pulmonary physiology. HP gas MRI has already made new contributions to the understanding of pediatric lung diseases and may become a clinically useful tool. In this article, we discuss the HP gas MRI technique, special considerations that need to be made when imaging children, and the role of MRI in 2 of the most common chronic pediatric lung diseases, asthma and cystic fibrosis. We also will discuss how HP gas MRI may be used to evaluate normal lung growth and development and the alterations occurring in chronic lung disease of prematurity and in patients with a congenital diaphragmatic hernia. PMID:27428024

  14. Real-Time MRI-Guided Catheter Tracking Using Hyperpolarized Silicon Particles

    NASA Astrophysics Data System (ADS)

    Whiting, Nicholas; Hu, Jingzhe; Shah, Jay V.; Cassidy, Maja C.; Cressman, Erik; Zacharias Millward, Niki; Menter, David G.; Marcus, Charles M.; Bhattacharya, Pratip K.

    2015-08-01

    Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥40 minutes—allowing imaging experiments over extended time durations. The particles are affixed to the tip of standard medical-grade catheters and are used to track passage under set distal and temporal points in phantoms and live mouse models. With continued development, this method has the potential to supplement x-ray fluoroscopy and other MRI-guided catheter tracking methods as a zero-background, positive contrast agent that does not require ionizing radiation.

  15. Real-Time MRI-Guided Catheter Tracking Using Hyperpolarized Silicon Particles.

    PubMed

    Whiting, Nicholas; Hu, Jingzhe; Shah, Jay V; Cassidy, Maja C; Cressman, Erik; Millward, Niki Zacharias; Menter, David G; Marcus, Charles M; Bhattacharya, Pratip K

    2015-01-01

    Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥ 40 minutes--allowing imaging experiments over extended time durations. The particles are affixed to the tip of standard medical-grade catheters and are used to track passage under set distal and temporal points in phantoms and live mouse models. With continued development, this method has the potential to supplement x-ray fluoroscopy and other MRI-guided catheter tracking methods as a zero-background, positive contrast agent that does not require ionizing radiation. PMID:26239953

  16. Real-Time MRI-Guided Catheter Tracking Using Hyperpolarized Silicon Particles

    PubMed Central

    Whiting, Nicholas; Hu, Jingzhe; Shah, Jay V.; Cassidy, Maja C.; Cressman, Erik; Zacharias Millward, Niki; Menter, David G.; Marcus, Charles M.; Bhattacharya, Pratip K.

    2015-01-01

    Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥40 minutes—allowing imaging experiments over extended time durations. The particles are affixed to the tip of standard medical-grade catheters and are used to track passage under set distal and temporal points in phantoms and live mouse models. With continued development, this method has the potential to supplement x-ray fluoroscopy and other MRI-guided catheter tracking methods as a zero-background, positive contrast agent that does not require ionizing radiation. PMID:26239953

  17. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications☆

    PubMed Central

    Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M.L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. PMID:24135800

  18. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications.

    PubMed

    Hughes-Riley, Theodore; Six, Joseph S; Lilburn, David M L; Stupic, Karl F; Dorkes, Alan C; Shaw, Dominick E; Pavlovskaya, Galina E; Meersmann, Thomas

    2013-12-01

    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp (129)Xe or hp (83)Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp (129)Xe handling, while (83)Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The (83)Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of (129)Xe in corresponding mixtures. The experimental setup also facilitated (129)Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. PMID:24135800

  19. Nuclear spin imaging with hyperpolarized nuclei created by brute force method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayoshi; Kunimatsu, Takayuki; Fujiwara, Mamoru; Kohri, Hideki; Ohta, Takeshi; Utsuro, Masahiko; Yosoi, Masaru; Ono, Satoshi; Fukuda, Kohji; Takamatsu, Kunihiko; Ueda, Kunihiro; Didelez, Jean-P.; Prossati, Giorgio; de Waard, Arlette

    2011-05-01

    We have been developing a polarized HD target for particle physics at the SPring-8 under the leadership of the RCNP, Osaka University for the past 5 years. Nuclear polarizaton is created by means of the brute force method which uses a high magnetic field (~17 T) and a low temperature (~ 10 mK). As one of the promising applications of the brute force method to life sciences we started a new project, "NSI" (Nuclear Spin Imaging), where hyperpolarized nuclei are used for the MRI (Magnetic Resonance Imaging). The candidate nuclei with spin ½hslash are 3He, 13C, 15N, 19F, 29Si, and 31P, which are important elements for the composition of the biomolecules. Since the NMR signals from these isotopes are enhanced by orders of magnitudes, the spacial resolution in the imaging would be much more improved compared to the practical MRI used so far. Another advantage of hyperpolarized MRI is that the MRI is basically free from the radiation, while the problems of radiation exposure caused by the X-ray CT or PET (Positron Emission Tomography) cannot be neglected. In fact, the risk of cancer for Japanese due to the radiation exposure through these diagnoses is exceptionally high among the advanced countries. As the first step of the NSI project, we are developing a system to produce hyperpolarized 3He gas for the diagnosis of serious lung diseases, for example, COPD (Chronic Obstructive Pulmonary Disease). The system employs the same 3He/4He dilution refrigerator and superconducting solenoidal coil as those used for the polarized HD target with some modification allowing the 3He Pomeranchuk cooling and the following rapid melting of the polarized solid 3He to avoid the depolarization. In this report, the present and future steps of our project will be outlined with some latest experimental results.

  20. Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer.

    PubMed

    Whiting, Nicholas; Hu, Jingzhe; Zacharias, Niki M; Lokesh, Ganesh L R; Volk, David E; Menter, David G; Rupaimoole, Rajesha; Previs, Rebecca; Sood, Anil K; Bhattacharya, Pratip

    2016-07-01

    Silicon-based nanoparticles are ideally suited for use as biomedical imaging agents due to their biocompatibility, biodegradability, and simple surface chemistry that facilitates drug loading and targeting. A method of hyperpolarizing silicon particles using dynamic nuclear polarization, which increases magnetic resonance imaging signals by several orders-of-magnitude through enhanced nuclear spin alignment, has recently been developed to allow silicon particles to function as contrast agents for in vivo magnetic resonance imaging. The enhanced spin polarization of silicon lasts significantly longer than other hyperpolarized agents (tens of minutes, whereas [Formula: see text] for other species at room temperature), allowing a wide range of potential applications. We report our recent characterizations of hyperpolarized silicon particles, with the ultimate goal of targeted, noninvasive, and nonradioactive molecular imaging of various cancer systems. A variety of particle sizes (20 nm to [Formula: see text]) were found to have hyperpolarized relaxation times ranging from [Formula: see text] to 50 min. The addition of various functional groups to the particle surface had no effect on the hyperpolarization buildup or decay rates and allowed in vivo imaging over long time scales. Additional in vivo studies examined a variety of particle administration routes in mice, including intraperitoneal injection, rectal enema, and oral gavage. PMID:27547777

  1. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor.

    PubMed

    Schröder, Leif; Lowery, Thomas J; Hilty, Christian; Wemmer, David E; Pines, Alexander

    2006-10-20

    A magnetic resonance approach is presented that enables high-sensitivity, high-contrast molecular imaging by exploiting xenon biosensors. These sensors link xenon atoms to specific biomolecular targets, coupling the high sensitivity of hyperpolarized nuclei with the specificity of biochemical interactions. We demonstrated spatial resolution of a specific target protein in vitro at micromolar concentration, with a readout scheme that reduces the required acquisition time by >3300-fold relative to direct detection. This technique uses the signal of free hyperpolarized xenon to dramatically amplify the sensor signal via chemical exchange saturation transfer (CEST). Because it is approximately 10,000 times more sensitive than previous CEST methods and other molecular magnetic resonance imaging techniques, it marks a critical step toward the application of xenon biosensors as selective contrast agents in biomedical applications. PMID:17053143

  2. Real Time Molecular Imaging of TCA Cycle Metabolism in vivo By Hyperpolarized 1-13C Diethyl Succinate

    PubMed Central

    Zacharias, Niki M.; Chan, Henry R.; Sailasuta, Napapon; Ross, Brian D.

    2011-01-01

    The Krebs tricarboxylic acid cycle (TCA) is central to metabolic energy production and is known to be altered in many disease states. Real time molecular imaging of TCA cycle in vivo will be important in understanding the metabolic basis of several diseases. Positron emission tomography (PET) using FDG-glucose (2-[18F]fluoro-2-deoxy-D-glucose) is already being used as a metabolic imaging agent in clinics. However, FDG-glucose does not reveal anything past glucose uptake and phosphorylation. We have developed a new metabolic imaging agent, hyperpolarized diethyl 1-13C 2,3-d2 succinate, that allows for real time in vivo imaging and spectroscopy of the TCA cycle. Diethyl succinate can be hyperpolarized using parahydrogen induced polarization (PHIP) in an aqueous solution with signal enhancement of 5000 compared to Boltzmann polarization. 13C magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) were achieved in vivo seconds after injection of 10 to 20 μmol of hyperpolarized diethyl succinate into normal mice. The downstream metabolites of hyperpolarized diethyl succinate were identified in vivo as malate, succinate, fumarate and aspartate. The metabolism of diethyl succinate was altered after exposing the animal to 3-nitropropionate, a known irreversible inhibitor of succinate dehydrogenase. Based on our results, hyperpolarized diethyl succinate allows for in real time in vivo MRI and MRS with a high signal to noise ratio and with visualization of multiple steps of the TCA cycle. Hyperpolarization of diethyl succinate and its in vivo applications may reveal an entirely new regime wherein the local status of TCA cycle metabolism is interrogated on the time scale of seconds to minutes with unprecedented chemical specificity and MR sensitivity. PMID:22146049

  3. Time resolved spectroscopic NMR imaging using hyperpolarized 129Xe.

    PubMed

    Han, S; Kühn, H; Häsing, F W; Münnemann, K; Blümich, B; Appelt, S

    2004-04-01

    We have visualized the melting and dissolution processes of xenon (Xe) ice into different solvents using the methods of nuclear magnetic resonance (NMR) spectroscopy, imaging, and time resolved spectroscopic imaging by means of hyperpolarized 129Xe. Starting from the initial condition of a hyperpolarized solid Xe layer frozen on top of an ethanol (ethanol/water) ice block we measured the Xe phase transitions as a function of time and temperature. In the pure ethanol sample, pieces of Xe ice first fall through the viscous ethanol to the bottom of the sample tube and then form a thin layer of liquid Xe/ethanol. The xenon atoms are trapped in this liquid layer up to room temperature and keep their magnetization over a time period of 11 min. In the ethanol/water mixture (80 vol%/20%), most of the polarized Xe liquid first stays on top of the ethanol/water ice block and then starts to penetrate into the pores and cracks of the ethanol/water ice block. In the final stage, nearly all the Xe polarization is in the gas phase above the liquid and trapped inside the pores. NMR spectra of homogeneous samples of pure ethanol containing thermally polarized Xe and the spectroscopic images of the melting process show that very high concentrations of hyperpolarized Xe (about half of the density of liquid Xe) can be stored or delivered in pure ethanol. PMID:15040986

  4. Hyperpolarized helium-3 magnetic resonance imaging of asthma: short-term reproducibility

    NASA Astrophysics Data System (ADS)

    Wheatley, Andrew; McKay, Shayna; Mathew, Lindsay; Santyr, Giles; McCormack, David G.; Parraga, Grace

    2008-03-01

    We examined subjects with exercise-induced asthma to assess the short-term reproducibility of hyperpolarized (Hp) helium-3 ( 3He) magnetic resonance imaging (MRI) of regional ventilation defects before asthma exacerbation. Our objective was to evaluate pre-exercise interscan Hp 3He MRI measurement reproducibility of subjects scanned on three separate occasions (5 +/- 2 days between sessions). Magnetic resonance imaging was performed at 3.0 Tesla with a custom-built rigid elliptical 3He chest coil. Images for six subjects were evaluated by two observers; one who quantified ventilation defect score and ventilation defect volume and another who quantified percent ventilated volume. For all six subjects, pre-exercise ventilation defect location and number of defects were similar at all three visits suggesting persistence of many defects, but changes in defect volume and percent ventilated volume were detected.

  5. Dynamic MRI of Grid-Tagged Hyperpolarized Helium-3 for the Assessment of Lung Motion During Breathing

    SciTech Connect

    Cai Jing; Sheng Ke; Benedict, Stanley H.; Read, Paul W.; Larner, James M.; Mugler, John P.; Lange, Eduard E. de; Cates, Gordon D.; Miller, G. Wilson

    2009-09-01

    Purpose: To develop a dynamic magnetic resonance imaging (MRI) tagging technique using hyperpolarized helium-3 (HP He-3) to track lung motion. Methods and Materials: An accelerated non-Cartesian k-space trajectory was used to gain acquisition speed, at the cost of introducing image artifacts, providing a viable strategy for obtaining whole-lung coverage with adequate temporal resolution. Multiple-slice two-dimensional dynamic images of the lung were obtained in three healthy subjects after inhaling He-3 gas polarized to 35%-40%. Displacement, strain, and ventilation maps were computed from the observed motion of the grid peaks. Results: Both temporal and spatial variations of pulmonary mechanics were observed in normal subjects, including shear motion between different lobes of the same lung. Conclusion: These initial results suggest that dynamic imaging of grid-tagged hyperpolarized magnetization may potentially be a powerful tool for observing and quantifying pulmonary biomechanics on a regional basis and for assessing, validating, and improving lung deformable image registration algorithms.

  6. In vivo lung morphometry with hyperpolarized 3He diffusion MRI: Theoretical background

    NASA Astrophysics Data System (ADS)

    Sukstanskii, A. L.; Yablonskiy, D. A.

    2008-02-01

    MRI-based study of 3He gas diffusion in lungs may provide important information on lung microstructure. Lung acinar airways can be described in terms of cylinders covered with alveolar sleeve [Haefeli-Bleuer, Weibel, Anat. Rec. 220 (1988) 401]. For relatively short diffusion times (on the order of a few ms) this geometry allows description of the 3He diffusion attenuated MR signal in lungs in terms of two diffusion coefficients—longitudinal (D) and transverse (D) with respect to the individual acinar airway axis [Yablonskiy et al., PNAS 99 (2002) 3111]. In this paper, empirical relationships between D and D and the geometrical parameters of airways and alveoli are found by means of computer Monte Carlo simulations. The effects of non-Gaussian signal behavior (dependence of D and D on b-value) are also taken into account. The results obtained are quantitatively valid in the physiologically important range of airway parameters characteristic of healthy lungs and lungs with mild emphysema. In lungs with advanced emphysema, the results provide only "apparent" characteristics but still could potentially be used to evaluate emphysema progression. This creates a basis for in vivo lung morphometry—evaluation of the geometrical parameters of acinar airways from hyperpolarized 3He diffusion MRI, despite the airways being too small to be resolved by direct imaging. These results also predict a rather substantial dependence of 3He ADC on the experimentally-controllable diffusion time, Δ. If Δ is decreased from 3 ms to 1 ms, the ADC in normal human lungs may increase by almost 50%. This effect should be taken into account when comparing experimental data obtained with different pulse sequences.

  7. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ... Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of safe, painless testing ...

  8. Imaging of Lung Function using Hyperpolarized Helium-3 Magnetic Resonance Imaging: Review of Current and Emerging Translational Methods and Applications

    PubMed Central

    Fain, Sean; Schiebler, Mark L.; McCormack, David G; Parraga, Grace

    2010-01-01

    During the past several years there has been extensive development and application of hyperpolarized helium-3 (HP 3He) magnetic resonance imaging (MRI) in clinical respiratory indications such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, radiation-induced lung injury and transplantation. This review focuses on the state-of-the-art of hyperpolarized 3He MRI and its application to clinical pulmonary research. This is not an overview of the physics of the method, as this topic has been covered previously. We focus here on the potential of this imaging method and its challenges in demonstrating new types of information that has the potential to influence clinical research and decision making in pulmonary medicine. Particular attention is given to functional imaging approaches related to ventilation and diffusion-weighted imaging with applications in chronic obstructive pulmonary disease, cystic fibrosis, asthma and radiation-induced lung injury. The strengths and challenges of the application of 3He MRI in these indications are discussed along with a comparison to established and emerging imaging techniques. PMID:21105144

  9. 3D MRI of impaired hyperpolarized 129Xe uptake in a rat model of pulmonary fibrosis.

    PubMed

    Cleveland, Zackary I; Virgincar, Rohan S; Qi, Yi; Robertson, Scott H; Degan, Simone; Driehuys, Bastiaan

    2014-12-01

    A variety of pulmonary pathologies, in particular interstitial lung diseases, are characterized by thickening of the pulmonary blood-gas barrier, and this thickening results in reduced gas exchange. Such diffusive impairment is challenging to quantify spatially, because the distributions of the metabolically relevant gases (CO2 and O2) cannot be detected directly within the lungs. Hyperpolarized (HP) (129)Xe is a promising surrogate for these metabolic gases, because MR spectroscopy and imaging allow gaseous alveolar (129)Xe to be detected separately from (129)Xe dissolved in the red blood cells (RBCs) and the adjacent tissues, which comprise blood plasma and lung interstitium. Because (129)Xe reaches the RBCs by diffusing across the same barrier tissues (blood plasma and interstitium) as O2, barrier thickening will delay (129)Xe transit and, thus, reduce RBC-specific (129)Xe MR signal. Here we have exploited these properties to generate 3D, MR images of (129)Xe uptake by the RBCs in two groups of rats. In the experimental group, unilateral fibrotic injury was generated prior to imaging by instilling bleomycin into one lung. In the control group, a unilateral sham instillation of saline was performed. Uptake of (129)Xe by the RBCs, quantified as the fraction of RBC signal relative to total dissolved (129)Xe signal, was significantly reduced (P = 0.03) in the injured lungs of bleomycin-treated animals. In contrast, no significant difference (P = 0.56) was observed between the saline-treated and untreated lungs of control animals. Together, these results indicate that 3D MRI of HP (129)Xe dissolved in the pulmonary tissues can provide useful biomarkers of impaired diffusive gas exchange resulting from fibrotic thickening. PMID:24816478

  10. Transport and imaging of brute-force (13)C hyperpolarization.

    PubMed

    Hirsch, Matthew L; Smith, Bryce A; Mattingly, Mark; Goloshevsky, Artem G; Rosay, Melanie; Kempf, James G

    2015-12-01

    We demonstrate transport of hyperpolarized frozen 1-(13)C pyruvic acid from its site of production to a nearby facility, where a time series of (13)C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained (13)C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., T<∼2K and B∼14T) to pre-polarize protons to a large Boltzmann value (∼0.4% (1)H polarization). After polarizing the neat, frozen sample, ejection quickly (<1s) passed it through a low field (B<100G) to establish the (1)H pre-polarization spin temperature on (13)C via the process known as low-field thermal mixing (yielding ∼0.1% (13)C polarization). By avoiding polarization agents (a.k.a. relaxation agents) that are needed to hyperpolarize by the competing method of dissolution dynamic nuclear polarization (d-DNP), the (13)C relaxation time was sufficient to transport the sample for ∼10min before finally dissolving in warm water and obtaining a (13)C image of the hyperpolarized, dilute, aqueous product (∼0.01% (13)C polarization, a >100-fold gain over thermal signals in the 1T scanner). An annealing step, prior to polarizing the sample, was also key for increasing T1∼30-fold during transport. In that time, HP was maintained using only modest cryogenics and field (T∼60K and B=1.3T), for T1((13)C) near 5min. Much greater time and distance (with much smaller losses) may be covered using more-complete annealing and only slight improvements on transport conditions (e.g., yielding T1∼5h at 30K, 2T), whereas even intercity transfer is possible (T1>20h) at reasonable conditions of 6K and 2T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 10(2)-fold more) by polarizing below 100mK, where nanoparticle

  11. Transport and imaging of brute-force 13C hyperpolarization

    NASA Astrophysics Data System (ADS)

    Hirsch, Matthew L.; Smith, Bryce A.; Mattingly, Mark; Goloshevsky, Artem G.; Rosay, Melanie; Kempf, James G.

    2015-12-01

    We demonstrate transport of hyperpolarized frozen 1-13C pyruvic acid from its site of production to a nearby facility, where a time series of 13C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained 13C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., T < ∼2 K and B ∼ 14 T) to pre-polarize protons to a large Boltzmann value (∼0.4% 1H polarization). After polarizing the neat, frozen sample, ejection quickly (<1 s) passed it through a low field (B < 100 G) to establish the 1H pre-polarization spin temperature on 13C via the process known as low-field thermal mixing (yielding ∼0.1% 13C polarization). By avoiding polarization agents (a.k.a. relaxation agents) that are needed to hyperpolarize by the competing method of dissolution dynamic nuclear polarization (d-DNP), the 13C relaxation time was sufficient to transport the sample for ∼10 min before finally dissolving in warm water and obtaining a 13C image of the hyperpolarized, dilute, aqueous product (∼0.01% 13C polarization, a >100-fold gain over thermal signals in the 1 T scanner). An annealing step, prior to polarizing the sample, was also key for increasing T1 ∼ 30-fold during transport. In that time, HP was maintained using only modest cryogenics and field (T ∼ 60 K and B = 1.3 T), for T1(13C) near 5 min. Much greater time and distance (with much smaller losses) may be covered using more-complete annealing and only slight improvements on transport conditions (e.g., yielding T1 ∼ 5 h at 30 K, 2 T), whereas even intercity transfer is possible (T1 > 20 h) at reasonable conditions of 6 K and 2 T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 102-fold more) by polarizing below 100 mK, where

  12. A Molecular Imaging Approach to Mercury Sensing Based on Hyperpolarized (129)Xe Molecular Clamp Probe.

    PubMed

    Guo, Qianni; Zeng, Qingbin; Jiang, Weiping; Zhang, Xiaoxiao; Luo, Qing; Zhang, Xu; Bouchard, Louis-S; Liu, Maili; Zhou, Xin

    2016-03-14

    Mercury pollution, in the form of mercury ions (Hg(2+)), is a major health and environmental hazard. Commonly used sensors are invasive and limited to point measurements. Fluorescence-based sensors do not provide depth resolution needed to image spatial distributions. Herein we report a novel sensor capable of yielding spatial distributions by MRI using hyperpolarized (129)Xe. A molecular clamp probe was developed consisting of dipyrrolylquinoxaline (DPQ) derivatives and twocryptophane-A cages. The DPQ derivatives act as cation receptors whereas cryptophane-A acts as a suitable host molecule for xenon. When the DPQ moiety interacts with mercury ions, the molecular clamp closes on the ion. Due to overlap of the electron clouds of the two cryptophane-A cages, the shielding effect on the encapsulated Xe becomes important. This leads to an upfield change of the chemical shift of the encapsulated Xe. This sensor exhibits good selectivity and sensitivity toward the mercury ion. This mercury-activated hyperpolarized (129)Xe-based chemosensor is a new concept method for monitoring Hg(2+) ion distributions by MRI. PMID:26792102

  13. Evaluation of carrier agents for hyperpolarized xenon MRI

    NASA Technical Reports Server (NTRS)

    Venkatesh, A. K.; Zhao, L.; Balamore, D.; Jolesz, F. A.; Albert, M. S.

    2000-01-01

    Several biocompatible carrier agents, in which xenon is highly soluble and has a long T(1), were tested, and injected in living rats. These included saline, Intralipid suspension, perfluorocarbon emulsion and (129)Xe gas-filled liposomes. The T(1) of (129)Xe in these compounds ranged from 47 to 116 s. Vascular injection of these carrier agents was tolerated well, encouraging their use for further experiments in live animals. In vivo spectra, obtained from gas-filled liposomes and perfluorocarbon solutions, suggest that these carrier agents have potential for use in angiography and perfusion imaging. Copyright 2000 John Wiley & Sons, Ltd.

  14. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  15. Hyperpolarized (3)He magnetic resonance imaging-derived pulmonary pressure-volume curves.

    PubMed

    Choy, Stephen; Wheatley, Andrew; McCormack, David G; Parraga, Grace

    2010-08-01

    We aimed to evaluate the potential for the use of hyperpolarized helium-3 magnetic resonance imaging (MRI) apparent diffusion coefficient (ADC) surrogates of alveolar size, together with literature-based morphological parameters in a theoretical model of lung mechanics to simulate noninvasive transpulmonary pressure-volume curves. Fourteen ex-smokers with chronic obstructive pulmonary disease (COPD) (n = 8 stage II, n = 6 stage III/IV COPD) and five age-matched never-smokers, provided written, informed consent and were evaluated at baseline and 26 + or - 2 mo later (n = 15 subjects) using plethysmography, spirometry, and (3)He MRI at 3.0 T. Total lung capacity, residual volume, and literature-based morphological parameters were used with alveolar volumes derived from (3)He ADC to simulate noninvasive pressure-volume curves. The resultant anterior-posterior transpulmonary pressure gradient was significantly decreased for stage II COPD (P < 0.01) and stage III COPD subjects (P < 0.001) compared with healthy volunteers. Both COPD subgroups showed increased alveolar radius compared with healthy subjects (P < 0.01, stage II COPD; P < 0.001, stage III COPD). In addition, surface area and surface tension were significantly increased in stage III COPD compared with healthy volunteers (P < 0.01). These results suggest that (3)He MRI provides a potential noninvasive approach to evaluate lung mechanics regionally and further supports the use of ADC values as a regional noninvasive probe of pulmonary microstructure and compliance. PMID:20538846

  16. Real-time tracking of dissociation of hyperpolarized 89Y-DTPA: a model for degradation of open-chain Gd3+ MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Kovacs, Zoltan; Lumata, Lloyd

    Gadolinium (Gd) complexes are widely used relaxation-based clinical contrast agents in magnetic resonance imaging (MRI). Gd-based MRI contrast agents with open-chain ligand such as Gd-DTPA, commercially known as magnevist, are less stable compared to Gd complexes with macrocyclic ligands such as GdDOTA (Dotarem). The dissociation of Gd-DPTA into Gd ion and DTPA ligand under certain biological conditions such as high zinc levels can potentially cause kidney damage. Since Gd is paramagnetic, direct NMR detection of the Gd-DTPA dissociation is quite challenging due to ultra-short relaxation times. In this work, we have investigated Y-DTPA as a model for Gd-DPTA dissociation under high zinc content solutions. Using dissolution dynamic nuclear polarization (DNP), the 89Y NMR signal is amplified by several thousand-fold. Due to the the relatively long T1 relaxation time of 89Y which translates to hyperpolarization lifetime of several minutes, the dissociation of Y-DTPA can be tracked in real-time by hyperpolarized 89Y NMR spectroscopy. Dissociation kinetic rates and implications on the degradation of open-chain Gd3+ MRI contrast agents will be discussed. This work was supported by the U.S. Department of Defense Award Number W81XWH-14-1-0048 and by the Robert A. Welch Foundation research Grant Number AT-1877.

  17. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... some MRI exams, intravenous (IV) drugs, such as gadolinium-based contrast agents (GBCAs) are used to change the contrast of the MR image. Gadolinium-based contrast agents are rare earth metals that ...

  18. Models and Applications of in Vivo Lung Morphometry with Hyperpolarized 3He MRI in a Mild COPD Population

    NASA Astrophysics Data System (ADS)

    Quirk, James D.; Sukstanskii, Alexander L.; Gierada, David S.; Woods, Jason C.; Conradi, Mark S.; Yablonskiy, Dmitriy A.

    2008-12-01

    Hyperpolarized 3He diffusion MRI is increasingly used to non-invasively quantify local alveolar structure changes, such as those from Chronic Obstructive Pulmonary Disease (COPD). Previously, we described an in vivo lung morphometry technique that decouples the helium apparent diffusion coefficient (ADC) into components oriented along the longitudinal (DL) and transverse (DT) axes of the acinar airways. Herein, we discuss our recent expansion of this theory, which relates the anisotropy of the MRI diffusion signal to the geometrical parameters of the acinar airways. We demonstrate the utility of this model in human studies and compare the measured airway radii with prior ex vivo experiments.

  19. Development and application of methods to quantify spatial and temporal hyperpolarized 3He MRI ventilation dynamics: preliminary results in chronic obstructive pulmonary disease

    NASA Astrophysics Data System (ADS)

    Kirby, Miranda; Wheatley, Andrew; McCormack, David G.; Parraga, Grace

    2010-03-01

    Hyperpolarized helium-3 (3He) magnetic resonance imaging (MRI) has emerged as a non-invasive research method for quantifying lung structural and functional changes, enabling direct visualization in vivo at high spatial and temporal resolution. Here we described the development of methods for quantifying ventilation dynamics in response to salbutamol in Chronic Obstructive Pulmonary Disease (COPD). Whole body 3.0 Tesla Excite 12.0 MRI system was used to obtain multi-slice coronal images acquired immediately after subjects inhaled hyperpolarized 3He gas. Ventilated volume (VV), ventilation defect volume (VDV) and thoracic cavity volume (TCV) were recorded following segmentation of 3He and 1H images respectively, and used to calculate percent ventilated volume (PVV) and ventilation defect percent (VDP). Manual segmentation and Otsu thresholding were significantly correlated for VV (r=.82, p=.001), VDV (r=.87 p=.0002), PVV (r=.85, p=.0005), and VDP (r=.85, p=.0005). The level of agreement between these segmentation methods was also evaluated using Bland-Altman analysis and this showed that manual segmentation was consistently higher for VV (Mean=.22 L, SD=.05) and consistently lower for VDV (Mean=-.13, SD=.05) measurements than Otsu thresholding. To automate the quantification of newly ventilated pixels (NVp) post-bronchodilator, we used translation, rotation, and scaling transformations to register pre-and post-salbutamol images. There was a significant correlation between NVp and VDV (r=-.94 p=.005) and between percent newly ventilated pixels (PNVp) and VDP (r=- .89, p=.02), but not for VV or PVV. Evaluation of 3He MRI ventilation dynamics using Otsu thresholding and landmark-based image registration provides a way to regionally quantify functional changes in COPD subjects after treatment with beta-agonist bronchodilators, a common COPD and asthma therapy.

  20. Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI

    PubMed Central

    Nikolaou, Panayiotis; Coffey, Aaron M.; Walkup, Laura L.; Gust, Brogan M.; Whiting, Nicholas; Newton, Hayley; Barcus, Scott; Muradyan, Iga; Dabaghyan, Mikayel; Moroz, Gregory D.; Rosen, Matthew S.; Patz, Samuel; Barlow, Michael J.; Chekmenev, Eduard Y.; Goodson, Boyd M.

    2013-01-01

    The exquisite NMR spectral sensitivity and negligible reactivity of hyperpolarized xenon-129 (HP129Xe) make it attractive for a number of magnetic resonance applications; moreover, HP129Xe embodies an alternative to rare and nonrenewable 3He. However, the ability to reliably and inexpensively produce large quantities of HP129Xe with sufficiently high 129Xe nuclear spin polarization (PXe) remains a significant challenge—particularly at high Xe densities. We present results from our “open-source” large-scale (∼1 L/h) 129Xe polarizer for clinical, preclinical, and materials NMR and MRI research. Automated and composed mostly of off-the-shelf components, this “hyperpolarizer” is designed to be readily implementable in other laboratories. The device runs with high resonant photon flux (up to 200 W at the Rb D1 line) in the xenon-rich regime (up to 1,800 torr Xe in 500 cc) in either single-batch or stopped-flow mode, negating in part the usual requirement of Xe cryocollection. Excellent agreement is observed among four independent methods used to measure spin polarization. In-cell PXe values of ∼90%, ∼57%, ∼50%, and ∼30% have been measured for Xe loadings of ∼300, ∼500, ∼760, and ∼1,570 torr, respectively. PXe values of ∼41% and ∼28% (with ∼760 and ∼1,545 torr Xe loadings) have been measured after transfer to Tedlar bags and transport to a clinical 3 T scanner for MR imaging, including demonstration of lung MRI with a healthy human subject. Long “in-bag” 129Xe polarization decay times have been measured (T1 ∼38 min and ∼5.9 h at ∼1.5 mT and 3 T, respectively)—more than sufficient for a variety of applications. PMID:23946420

  1. Sub-second Proton Imaging of 13C Hyperpolarized Contrast Agents in Water

    PubMed Central

    Truong, Milton L.; Coffey, Aaron M.; Shchepin, Roman V.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2014-01-01

    Indirect proton detection of 13C hyperpolarized contrast agents potentially enables greater sensitivity. Presented here is a study of sub-second projection imaging of hyperpolarized 13C contrast agent addressing the obstacle posed by water suppression for indirect detection in vivo. Sodium acetate phantoms were used to develop and test water suppression and sub-second imaging with frequency selective RF pulses using spectroscopic and imaging indirect proton detection. A 9.8 mM aqueous solution of 13C PHIP hyperpolarized 2-hydroxyethyl-13C-propionate-d2,3,3 (HEP),

    ~25% was used for demonstration of indirect proton sub-second imaging detection. Balanced 2D FSSFP (Fast Steady State Free Precession) allowed recording proton images with FOV = 64×64 mm2 and spatial resolution 2×2 mm2 with total acquisition time of less than 0.2 s. In thermally polarized sodium 1-13C-acetate, 13C to 1H polarization transfer efficiency of 45.1% of the theoretically predicted values was observed in imaging detection corresponding to an 11 fold of overall sensitivity improvement compared to direct 13C FSSFP imaging. 13C to 1H polarization transfer efficiency of 27% was observed in imaging detection corresponding to a 3.25 fold sensitivity improvement compared to direct 13C FSSFP imaging with hyperpolarized HEP. The range of potential applications and limitations of this sub-second and ultra-sensitive imaging approach are discussed. PMID:24753438

  2. Quantification of regional fractional ventilation in human subjects by measurement of hyperpolarized 3He washout with 2D and 3D MRI.

    PubMed

    Horn, Felix C; Deppe, Martin H; Marshall, Helen; Parra-Robles, Juan; Wild, Jim M

    2014-01-15

    Multiple-breath washout hyperpolarized (3)He MRI was used to calculate regional parametric images of fractional ventilation (r) as the ratio of fresh gas entering a volume unit to the total end inspiratory volume of the unit. Using a single dose of inhaled hyperpolarized gas and a total acquisition time of under 1 min, gas washout was measured by dynamic acquisitions during successive breaths with a fixed delay. A two-dimensional (2D) imaging protocol was investigated in four healthy subjects in the supine position, and in a second protocol the capability of extending the washout imaging to a three-dimensional (3D) acquisition covering the whole lungs was tested. During both protocols, subjects were breathing comfortably, only restricted by synchronization of breathing to the sequence timings. The 3D protocol was also successfully tested on one patient with cystic fibrosis. Mean r values from each volunteer were compared with global gas volume turnover, as calculated from flow measurement at the mouth divided by total lung volume (from MRI images), and a significant correlation (r = 0.74, P < 0.05) was found. The effects of gravity on R were investigated, and an average decrease in r of 5.5%/cm (Δr = 0.016 ± 0.006 cm(-1)) from posterior to anterior was found in the right lung. Intersubject reproducibility of r imaging with the 2D and 3D protocol was tested, and a significant correlation between repeated experiments was found in a pixel-by-pixel comparison. The proposed methods can be used to measure r on a regional basis. PMID:24311749

  3. Monitoring tumor response of prostate cancer to radiation therapy by multi-parametric 1H and hyperpolarized 13C magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Vickie Yi

    Radiation therapy is one of the most common curative therapies for patients with localized prostate cancer, but despite excellent success rates, a significant number of patients suffer post- treatment cancer recurrence. The accurate characterization of early tumor response remains a major challenge for the clinical management of these patients. Multi-parametric MRI/1H MR spectroscopy imaging (MRSI) has been shown to increase the diagnostic performance in evaluating the effectiveness of radiation therapy. 1H MRSI can detect altered metabolic profiles in cancerous tissue. In this project, the concentrations of prostate metabolites from snap-frozen biopsies of recurrent cancer after failed radiation therapy were correlated with histopathological findings to identify quantitative biomarkers that predict for residual aggressive versus indolent cancer. The total choline to creatine ratio was significantly higher in recurrent aggressive versus indolent cancer, suggesting that use of a higher threshold tCho/Cr ratio in future in vivo 1H MRSI studies could improve the selection and therapeutic planning for patients after failed radiation therapy. Varying radiation doses may cause a diverse effect on prostate cancer micro-environment and metabolism, which could hold the key to improving treatment protocols for individual patients. The recent development and clinical translation of hyperpolarized 13C MRI have provided the ability to monitor both changes in the tumor micro-environment and its metabolism using a multi-probe approach, [1-13C]pyruvate and 13C urea, combined with 1H Multi-parametric MRI. In this thesis, hyperpolarized 13C MRI, 1H dynamic contrast enhancement, and diffusion weighted imaging were used to identify early radiation dose response in a transgenic prostate cancer model. Hyperpolarized pyruvate to lactate metabolism significantly decreased in a dose dependent fashion by 1 day after radiation therapy, prior to any changes observed using 1H DCE and diffusion

  4. A general chemical shift decomposition method for hyperpolarized (13) C metabolite magnetic resonance imaging.

    PubMed

    Wang, Jian-Xiong; Merritt, Matthew E; Sherry, Dean; Malloy, Craig R

    2016-08-01

    Metabolic imaging with hyperpolarized carbon-13 allows sequential steps of metabolism to be detected in vivo. Potential applications in cancer, brain, muscular, myocardial, and hepatic metabolism suggest that clinical applications could be readily developed. A primary concern in imaging hyperpolarized nuclei is the irreversible decay of the enhanced magnetization back to thermal equilibrium. Multiple methods for rapid imaging of hyperpolarized substrates and their products have been proposed with a multi-point Dixon method distinguishing itself as a robust protocol for imaging [1-(13) C]pyruvate. We describe here a generalized chemical shift decomposition method that incorporates a single-shot spiral imaging sequence plus a spectroscopic sequence to retain as much spin polarization as possible while allowing detection of metabolites that have a wide range of chemical shift values. The new method is demonstrated for hyperpolarized [1-(13) C]pyruvate, [1-(13) C]acetoacetate, and [2-(13) C]dihydroxyacetone. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27060361

  5. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents.

    PubMed

    Rogers, Nicola J; Hill-Casey, Fraser; Stupic, Karl F; Six, Joseph S; Lesbats, Clémentine; Rigby, Sean P; Fraissard, Jacques; Pavlovskaya, Galina E; Meersmann, Thomas

    2016-03-22

    Hyperpolarized (hp) (83)Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of (83)Kr that enable unique MRI contrast also complicate the production of hp (83)Kr. This work presents a previously unexplored approach in the generation of hp (83)Kr that can likewise be used for the production of hp (129)Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P =29% for(83)Kr and P= 63% for (129)Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either (83)Kr or (129)Xe. Highly spin-polarized (83)Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp (83)Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp(129)Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp (129)Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized (129)Xe. PMID:26961001

  6. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Rogers, Nicola J.; Hill-Casey, Fraser; Stupic, Karl F.; Six, Joseph S.; Lesbats, Clémentine; Rigby, Sean P.; Fraissard, Jacques; Pavlovskaya, Galina E.; Meersmann, Thomas

    2016-03-01

    Hyperpolarized (hp) 83Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of 83Kr that enable unique MRI contrast also complicate the production of hp 83Kr. This work presents a previously unexplored approach in the generation of hp 83Kr that can likewise be used for the production of hp 129Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P = 29% for 83Kr and P = 63% for 129Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either 83Kr or 129Xe. Highly spin-polarized 83Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp 83Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp 129Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp 129Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized 129Xe.

  7. Fast Determination of Flip Angle and T1 in Hyperpolarized Gas MRI During a Single Breath-Hold

    NASA Astrophysics Data System (ADS)

    Zhong, Jianping; Ruan, Weiwei; Han, Yeqing; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-05-01

    MRI of hyperpolarized media, such as 129Xe and 3He, shows great potential for clinical applications. The optimal use of the available spin polarization requires accurate flip angle calibrations and T1 measurements. Traditional flip angle calibration methods are time-consuming and suffer from polarization losses during T1 relaxation. In this paper, we propose a method to simultaneously calibrate flip angles and measure T1 in vivo during a breath-hold time of less than 4 seconds. We demonstrate the accuracy, robustness and repeatability of this method and contrast it with traditional methods. By measuring the T1 of hyperpolarized gas, the oxygen pressure in vivo can be calibrated during the same breath hold. The results of the calibration have been applied in variable flip angle (VFA) scheme to obtain a stable steady-state transverse magnetization. Coupled with this method, the ultra-short TE (UTE) and constant VFA (CVFA) schemes are expected to give rise to new applications of hyperpolarized media.

  8. Fast Determination of Flip Angle and T1 in Hyperpolarized Gas MRI During a Single Breath-Hold

    PubMed Central

    Zhong, Jianping; Ruan, Weiwei; Han, Yeqing; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-01-01

    MRI of hyperpolarized media, such as 129Xe and 3He, shows great potential for clinical applications. The optimal use of the available spin polarization requires accurate flip angle calibrations and T1 measurements. Traditional flip angle calibration methods are time-consuming and suffer from polarization losses during T1 relaxation. In this paper, we propose a method to simultaneously calibrate flip angles and measure T1 in vivo during a breath-hold time of less than 4 seconds. We demonstrate the accuracy, robustness and repeatability of this method and contrast it with traditional methods. By measuring the T1 of hyperpolarized gas, the oxygen pressure in vivo can be calibrated during the same breath hold. The results of the calibration have been applied in variable flip angle (VFA) scheme to obtain a stable steady-state transverse magnetization. Coupled with this method, the ultra-short TE (UTE) and constant VFA (CVFA) schemes are expected to give rise to new applications of hyperpolarized media. PMID:27169670

  9. Fast Determination of Flip Angle and T1 in Hyperpolarized Gas MRI During a Single Breath-Hold.

    PubMed

    Zhong, Jianping; Ruan, Weiwei; Han, Yeqing; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-01-01

    MRI of hyperpolarized media, such as (129)Xe and (3)He, shows great potential for clinical applications. The optimal use of the available spin polarization requires accurate flip angle calibrations and T1 measurements. Traditional flip angle calibration methods are time-consuming and suffer from polarization losses during T1 relaxation. In this paper, we propose a method to simultaneously calibrate flip angles and measure T1 in vivo during a breath-hold time of less than 4 seconds. We demonstrate the accuracy, robustness and repeatability of this method and contrast it with traditional methods. By measuring the T1 of hyperpolarized gas, the oxygen pressure in vivo can be calibrated during the same breath hold. The results of the calibration have been applied in variable flip angle (VFA) scheme to obtain a stable steady-state transverse magnetization. Coupled with this method, the ultra-short TE (UTE) and constant VFA (CVFA) schemes are expected to give rise to new applications of hyperpolarized media. PMID:27169670

  10. Abnormalities in hyperpolarized (129)Xe magnetic resonance imaging and spectroscopy in two patients with pulmonary vascular disease.

    PubMed

    Dahhan, Talal; Kaushik, Shiv S; He, Mu; Mammarappallil, Joseph G; Tapson, Victor F; McAdams, Holman P; Sporn, Thomas A; Driehuys, Bastiaan; Rajagopal, Sudarshan

    2016-03-01

    The diagnosis of pulmonary vascular disease (PVD) is usually based on hemodynamic and/or clinical criteria. Noninvasive imaging of the heart and proximal vasculature can also provide useful information. An alternate approach to such criteria in the diagnosis of PVD is to image the vascular abnormalities in the lungs themselves. Hyperpolarized (HP) (129)Xe magnetic resonance imaging (MRI) is a novel technique for assessing abnormalities in ventilation and gas exchange in the lungs. We applied this technique to two patients for whom there was clinical suspicion of PVD. Two patients who had significant hypoxemia and dyspnea with no significant abnormalities on computed tomography imaging or ventilation-perfusion scan and only mild or borderline pulmonary arterial hypertension at catheterization were evaluated. They underwent HP (129)Xe imaging and subsequently had tissue diagnosis obtained from lung pathology. In both patients, HP (129)Xe imaging demonstrated normal ventilation but markedly decreased gas transfer to red blood cells with focal defects on imaging, a pattern distinct from those previously described for idiopathic pulmonary fibrosis or obstructive lung disease. Pathology on both patients later demonstrated severe PVD. These findings suggest that HP (129)Xe MRI may be useful in the diagnosis of PVD and monitoring response to therapy. Further studies are required to determine its sensitivity and specificity in these settings. PMID:27162620

  11. Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research

    PubMed Central

    Kurhanewicz, John; Vigneron, Daniel B; Brindle, Kevin; Chekmenev, Eduard Y; Comment, Arnaud; Cunningham, Charles H; DeBerardinis, Ralph J; Green, Gary G; Leach, Martin O; Rajan, Sunder S; Rizi, Rahim R; Ross, Brian D; Warren, Warren S; Malloy, Craig R

    2011-01-01

    A major challenge in cancer biology is to monitor and understand cancer metabolism in vivo with the goal of improved diagnosis and perhaps therapy. Because of the complexity of biochemical pathways, tracer methods are required for detecting specific enzyme-catalyzed reactions. Stable isotopes such as 13C or 15N with detection by nuclear magnetic resonance provide the necessary information about tissue biochemistry, but the crucial metabolites are present in low concentration and therefore are beyond the detection threshold of traditional magnetic resonance methods. A solution is to improve sensitivity by a factor of 10,000 or more by temporarily redistributing the populations of nuclear spins in a magnetic field, a process termed hyperpolarization. Although this effect is short-lived, hyperpolarized molecules can be generated in an aqueous solution and infused in vivo where metabolism generates products that can be imaged. This discovery lifts the primary constraint on magnetic resonance imaging for monitoring metabolism—poor sensitivity—while preserving the advantage of biochemical information. The purpose of this report was to briefly summarize the known abnormalities in cancer metabolism, the value and limitations of current imaging methods for metabolism, and the principles of hyperpolarization. Recent preclinical applications are described. Hyperpolarization technology is still in its infancy, and current polarizer equipment and methods are suboptimal. Nevertheless, there are no fundamental barriers to rapid translation of this exciting technology to clinical research and perhaps clinical care. PMID:21403835

  12. Two and three-dimensional segmentation of hyperpolarized 3He magnetic resonance imaging of pulmonary gas distribution

    NASA Astrophysics Data System (ADS)

    Heydarian, Mohammadreza; Kirby, Miranda; Wheatley, Andrew; Fenster, Aaron; Parraga, Grace

    2012-03-01

    A semi-automated method for generating hyperpolarized helium-3 (3He) measurements of individual slice (2D) or whole lung (3D) gas distribution was developed. 3He MRI functional images were segmented using two-dimensional (2D) and three-dimensional (3D) hierarchical K-means clustering of the 3He MRI signal and in addition a seeded region-growing algorithm was employed for segmentation of the 1H MRI thoracic cavity volume. 3He MRI pulmonary function measurements were generated following two-dimensional landmark-based non-rigid registration of the 3He and 1H pulmonary images. We applied this method to MRI of healthy subjects and subjects with chronic obstructive lung disease (COPD). The results of hierarchical K-means 2D and 3D segmentation were compared to an expert observer's manual segmentation results using linear regression, Pearson correlations and the Dice similarity coefficient. 2D hierarchical K-means segmentation of ventilation volume (VV) and ventilation defect volume (VDV) was strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.97, p<.0001) and mean Dice coefficients were greater than 92% for all subjects. 3D hierarchical K-means segmentation of VV and VDV was also strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.64, p<.0001) and the mean Dice coefficients were greater than 91% for all subjects. Both 2D and 3D semi-automated segmentation of 3He MRI gas distribution provides a way to generate novel pulmonary function measurements.

  13. Robust hyperpolarized (13)C metabolic imaging with selective non-excitation of pyruvate (SNEP).

    PubMed

    Chen, Way Cherng; Teo, Xing Qi; Lee, Man Ying; Radda, George K; Lee, Philip

    2015-08-01

    In vivo metabolic imaging using hyperpolarized [1-(13)C]pyruvate provides localized biochemical information and is particularly useful in detecting early disease changes, as well as monitoring disease progression and treatment response. However, a major limitation of hyperpolarized magnetization is its unrecoverable decay, due not only to T1 relaxation but also to radio-frequency (RF) excitation. RF excitation schemes used in metabolic imaging must therefore be able to utilize available hyperpolarized magnetization efficiently and robustly for the optimal detection of substrate and metabolite activities. In this work, a novel RF excitation scheme called selective non-excitation of pyruvate (SNEP) is presented. This excitation scheme involves the use of a spectral selective RF pulse to specifically exclude the excitation of [1-(13)C]pyruvate, while uniformly exciting the key metabolites of interest (namely [1-(13)C]lactate and [1-(13)C]alanine) and [1-(13)C]pyruvate-hydrate. By eliminating the loss of hyperpolarized [1-(13)C]pyruvate magnetization due to RF excitation, the signal from downstream metabolite pools is increased together with enhanced dynamic range. Simulation results, together with phantom measurements and in vivo experiments, demonstrated the improvement in signal-to-noise ratio (SNR) and the extension of the lifetime of the [1-(13)C]lactate and [1-(13)C]alanine pools when compared with conventional non-spectral selective (NS) excitation. SNEP has also been shown to perform comparably well with multi-band (MB) excitation, yet SNEP possesses distinct advantages, including ease of implementation, less stringent demands on gradient performance, increased robustness to frequency drifts and B0 inhomogeneity as well as easier quantification involving the use of [1-(13)C]pyruvate-hydrate as a proxy for the actual [1-(13)C] pyruvate signal. SNEP is therefore a promising alternative for robust hyperpolarized [1-(13)C]pyruvate metabolic imaging with high

  14. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry

    PubMed Central

    Reed, Galen D.; von Morze, Cornelius; Verkman, Alan S.; Koelsch, Bertram L.; Chaumeil, Myriam M.; Lustig, Michael; Ronen, Sabrina M.; Bok, Robert A.; Sands, Jeff M.; Larson, Peder E. Z.; Wang, Zhen J.; Larsen, Jan Henrik Ardenkjær; Kurhanewicz, John; Vigneron, Daniel B.

    2016-01-01

    In vivo spin spin relaxation time (T2) heterogeneity of hyperpolarized [13C,15N2]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized 13C signal with a macromolecular relaxation agent revealed that a long-T2 component of the [13C,15N2]urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the [13C,15N2]urea to be distinguished via multi-exponential analysis. The T2 response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized [13C,15N2]urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-2H8. Large T2 increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis. Therefore, [13C,15N2]urea relaxometry is sensitive to two steps of the renal urea handling process: glomerular filtration and the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Simple motion correction and subspace denoising algorithms are presented to aid in the multi exponential data analysis. Furthermore, a T2-edited, ultra long echo time sequence was developed for sub-2 mm3 resolution 3D encoding of urea by exploiting relaxation differences in the vascular and filtrate pools. PMID:27570835

  15. A 32-Channel Phased-Array Receive with Asymmetric Birdcage Transmit RF Coil for Hyperpolarized Xenon-129 Lung Imaging

    PubMed Central

    Dregely, Isabel; Ruset, Iulian C.; Wiggins, Graham; Mareyam, Azma; Mugler, John P.; Altes, Talissa A.; Meyer, Craig; Ruppert, Kai; Wald, Lawrence L.; Hersman, F. William

    2012-01-01

    Hyperpolarized xenon-129 (HP Xe) has the potential to become a non-invasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio (SNR), excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the HP Xe resonance at 3T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high resolution ventilation images with high SNR. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, SNR, and acquisition speed. PMID:23132336

  16. Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.

    This dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption

  17. Diffusion Pore Imaging by Hyperpolarized Xenon-129 Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Kuder, Tristan Anselm; Bachert, Peter; Windschuh, Johannes; Laun, Frederik Bernd

    2013-07-01

    While NMR diffusion measurements are widely used to derive parameters indirectly related to the microstructure of biological tissues and porous media, direct imaging of pore shapes would be of high interest. Here we demonstrate experimentally that complexly shaped closed pores can be imaged by diffusion acquisitions. Collecting the signal from the whole sample eliminates the problem of vanishing signal at increasing resolution of conventional NMR imaging. This approach may be used to noninvasively obtain structural information inaccessible so far such as pore or cell shapes, cell density, or axon integrity.

  18. Hyperpolarized xenon magnetic resonance of the lung and the brain

    NASA Astrophysics Data System (ADS)

    Venkatesh, Arvind Krishnamachari

    2001-04-01

    Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI

  19. Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129.

    PubMed

    Mugler, John P; Altes, Talissa A; Ruset, Iulian C; Dregely, Isabel M; Mata, Jaime F; Miller, G Wilson; Ketel, Stephen; Ketel, Jeffrey; Hersman, F William; Ruppert, Kai

    2010-12-14

    Despite a myriad of technical advances in medical imaging, as well as the growing need to address the global impact of pulmonary diseases, such as asthma and chronic obstructive pulmonary disease, on health and quality of life, it remains challenging to obtain in vivo regional depiction and quantification of the most basic physiological functions of the lung-gas delivery to the airspaces and gas uptake by the lung parenchyma and blood-in a manner suitable for routine application in humans. We report a method based on MRI of hyperpolarized xenon-129 that permits simultaneous observation of the 3D distributions of ventilation (gas delivery) and gas uptake, as well as quantification of regional gas uptake based on the associated ventilation. Subjects with lung disease showed variations in gas uptake that differed from those in ventilation in many regions, suggesting that gas uptake as measured by this technique reflects such features as underlying pathological alterations of lung tissue or of local blood flow. Furthermore, the ratio of the signal associated with gas uptake to that associated with ventilation was substantially altered in subjects with lung disease compared with healthy subjects. This MRI-based method provides a way to quantify relationships among gas delivery, exchange, and transport, and appears to have significant potential to provide more insight into lung disease. PMID:21098267

  20. Hyperpolarized Renal Magnetic Resonance Imaging: Potential and Pitfalls.

    PubMed

    Laustsen, Christoffer

    2016-01-01

    The introduction of dissolution dynamic nuclear polarization (d-DNP) technology has enabled a new paradigm for renal imaging investigations. It allows standard magnetic resonance imaging complementary renal metabolic and functional fingerprints within seconds without the use of ionizing radiation. Increasing evidence supports its utility in preclinical research in which the real-time interrogation of metabolic turnover can aid the physiological and pathophysiological metabolic and functional effects in ex vivo and in vivo models. The method has already been translated to humans, although the clinical value of this technology is unknown. In this paper, I review the potential benefits and pitfalls associated with dissolution dynamic nuclear polarization in preclinical research and its translation to renal patients. PMID:26973539

  1. Hyperpolarized Renal Magnetic Resonance Imaging: Potential and Pitfalls

    PubMed Central

    Laustsen, Christoffer

    2016-01-01

    The introduction of dissolution dynamic nuclear polarization (d-DNP) technology has enabled a new paradigm for renal imaging investigations. It allows standard magnetic resonance imaging complementary renal metabolic and functional fingerprints within seconds without the use of ionizing radiation. Increasing evidence supports its utility in preclinical research in which the real-time interrogation of metabolic turnover can aid the physiological and pathophysiological metabolic and functional effects in ex vivo and in vivo models. The method has already been translated to humans, although the clinical value of this technology is unknown. In this paper, I review the potential benefits and pitfalls associated with dissolution dynamic nuclear polarization in preclinical research and its translation to renal patients. PMID:26973539

  2. Hyperpolarized noble gas magnetic resonance imaging of the animal lung: Approaches and applications

    NASA Astrophysics Data System (ADS)

    Santyr, Giles E.; Lam, Wilfred W.; Parra-Robles, Juan M.; Taves, Timothy M.; Ouriadov, Alexei V.

    2009-05-01

    Hyperpolarized noble gas (HNG) magnetic resonance (MR) imaging is a very promising noninvasive tool for the investigation of animal models of lung disease, particularly to follow longitudinal changes in lung function and anatomy without the accumulated radiation dose associated with x rays. The two most common noble gases for this purpose are H3e (helium 3) and X129e (xenon 129), the latter providing a cost-effective approach for clinical applications. Hyperpolarization is typically achieved using spin-exchange optical pumping techniques resulting in ˜10 000-fold improvement in available magnetization compared to conventional Boltzmann polarizations. This substantial increase in polarization allows high spatial resolution (<1 mm) single-slice images of the lung to be obtained with excellent temporal resolution (<1 s). Complete three-dimensional images of the lungs with 1 mm slice thickness can be obtained within reasonable breath-hold intervals (<20 s). This article provides an overview of the current methods used in HNG MR imaging with an emphasis on ventilation studies in animals. Special MR hardware and software considerations are described in order to use the strong but nonrecoverable magnetization as efficiently as possible and avoid depolarization primarily by molecular oxygen. Several applications of HNG MR imaging are presented, including measurement of gross lung anatomy (e.g., airway diameters), microscopic anatomy (e.g., apparent diffusion coefficient), and a variety of functional parameters including dynamic ventilation, alveolar oxygen partial pressure, and xenon diffusing capacity.

  3. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    PubMed

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. PMID:27414749

  4. A comparison of quantitative methods for clinical imaging with hyperpolarized 13C‐pyruvate

    PubMed Central

    Daniels, Charlie J.; McLean, Mary A.; Schulte, Rolf F.; Robb, Fraser J.; Gill, Andrew B.; McGlashan, Nicholas; Graves, Martin J.; Schwaiger, Markus; Lomas, David J.; Brindle, Kevin M.

    2016-01-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized 13C‐labelled molecules, such as the conversion of [1‐13C]pyruvate to [1‐13C]lactate, to be dynamically and non‐invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model‐free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two‐way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time‐to‐peak and the lactate‐to‐pyruvate area under the curve ratio were simple model‐free approaches that accurately represented the full reaction, with the time‐to‐peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized 13C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:27414749

  5. Cardiac perfusion imaging using hyperpolarized 13c urea using flow sensitizing gradients

    PubMed Central

    Miller, Jack J.; Robson, Matthew D.; Tyler, Damian J.

    2015-01-01

    Purpose To demonstrate the feasibility of imaging the first passage of a bolus of hyperpolarized 13C urea through the rodent heart using flow‐sensitizing gradients to reduce signal from the blood pool. Methods A flow‐sensitizing bipolar gradient was optimized to reduce the bright signal within the cardiac chambers, enabling improved contrast of the agent within the tissue capillary bed. The gradient was incorporated into a dynamic golden angle spiral 13C imaging sequence. Healthy rats were scanned during rest (n = 3) and under adenosine stress‐induced hyperemia (n = 3). Results A two‐fold increase in myocardial perfusion relative to rest was detected during adenosine stress‐induced hyperemia, consistent with a myocardial perfusion reserve of two in rodents. Conclusion The new pulse sequence was used to obtain dynamic images of the first passage of hyperpolarized 13C urea in the rodent heart, without contamination from bright signal within the neighboring cardiac lumen. This probe of myocardial perfusion is expected to enable new hyperpolarized 13C studies in which the cardiac metabolism/perfusion mismatch can be identified. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1474–1483, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. PMID:25991580

  6. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging

    NASA Technical Reports Server (NTRS)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)

    2000-01-01

    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  7. Hyperpolarized 83Kr magnetic resonance imaging of alveolar degradation in a rat model of emphysema.

    PubMed

    Lilburn, David M L; Lesbats, Clémentine; Six, Joseph S; Dubuis, Eric; Yew-Booth, Liang; Shaw, Dominick E; Belvisi, Maria G; Birrell, Mark A; Pavlovskaya, Galina E; Meersmann, Thomas

    2015-06-01

    Hyperpolarized (83)Kr surface quadrupolar relaxation (SQUARE) generates MRI contrast that was previously shown to correlate with surface-to-volume ratios in porous model surface systems. The underlying physics of SQUARE contrast is conceptually different from any other current MRI methodology as the method uses the nuclear electric properties of the spin I = 9/2 isotope (83)Kr. To explore the usage of this non-radioactive isotope for pulmonary pathophysiology, MRI SQUARE contrast was acquired in excised rat lungs obtained from an elastase-induced model of emphysema. A significant (83)Kr T1 relaxation time increase in the SQUARE contrast was found in the elastase-treated lungs compared with the baseline data from control lungs. The SQUARE contrast suggests a reduction in pulmonary surface-to-volume ratio in the emphysema model that was validated by histology. The finding supports usage of (83)Kr SQUARE as a new biomarker for surface-to-volume ratio changes in emphysema. PMID:25994296

  8. Hyperpolarized 83Kr magnetic resonance imaging of alveolar degradation in a rat model of emphysema

    PubMed Central

    Lilburn, David M. L.; Lesbats, Clémentine; Six, Joseph S.; Dubuis, Eric; Yew-Booth, Liang; Shaw, Dominick E.; Belvisi, Maria G.; Birrell, Mark A.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2015-01-01

    Hyperpolarized 83Kr surface quadrupolar relaxation (SQUARE) generates MRI contrast that was previously shown to correlate with surface-to-volume ratios in porous model surface systems. The underlying physics of SQUARE contrast is conceptually different from any other current MRI methodology as the method uses the nuclear electric properties of the spin I = 9/2 isotope 83Kr. To explore the usage of this non-radioactive isotope for pulmonary pathophysiology, MRI SQUARE contrast was acquired in excised rat lungs obtained from an elastase-induced model of emphysema. A significant 83Kr T1 relaxation time increase in the SQUARE contrast was found in the elastase-treated lungs compared with the baseline data from control lungs. The SQUARE contrast suggests a reduction in pulmonary surface-to-volume ratio in the emphysema model that was validated by histology. The finding supports usage of 83Kr SQUARE as a new biomarker for surface-to-volume ratio changes in emphysema. PMID:25994296

  9. Hyperpolarized 3He MR imaging of the lung: Effect of subject immobilization on the occurrence of ventilation defects

    PubMed Central

    Mata, Jaime; Altes, Talissa; Knake, Jeffrey; Mugler, John; Brookeman, James; de Lange, Eduard

    2008-01-01

    Purpose To investigate immobilization-induced ventilation defects when performing hyperpolarized 3He (H3He) MRI of the lung. Methods and Materials Twelve healthy subjects underwent MRI of the lungs following inhalation of H3He gas at three time points: 1) immediately after having been positioned supine on the MR scanner table, 2) at 45 minutes while remaining supine, 3) and immediately thereafter after having turned prone. All image sets were reviewed in random order by three independent, blinded readers who recorded number, location and size of H3He ventilation defects. Scores were averaged for each time point and comparisons were made to determine change in number, location and size of ventilation defects with time and positioning of the subject in the scanner. Results At baseline supine there were small numbers of defects in the dependent (posterior) and non-dependent (anterior) portions of the lung (p=0.625). At 45 minutes there was a significant increase in the mean number of ventilation defects/slice (VDS) for the dependent (p=0.005) and a decrease for the non-dependent lung portions (p=0.021). After subjects turned prone, mean VDS for posterior defects decreased significantly (p=0.011) while those for anterior defects increased (p=0.010). Most defects were less than 3 cm in diameter. Conclusion It was found that immobilization of the subject for an extended period of time led to increased number of H3He ventilation defects in the dependent portions of the lung. Therefore, after a subject is positioned in the scanner, H3He MR imaging should be performed quickly to avoid the occurrence of the immobilization-induced ventilation defects, and possible overestimation of disease. PMID:18206626

  10. In Vivo MR Imaging of Pulmonary Perfusion and Gas Exchange in Rats via Continuous Extracorporeal Infusion of Hyperpolarized 129Xe

    PubMed Central

    Cleveland, Zackary I.; Möller, Harald E.; Hedlund, Laurence W.; Nouls, John C.; Freeman, Matthew S.; Qi, Yi; Driehuys, Bastiaan

    2012-01-01

    Background Hyperpolarized (HP) 129Xe magnetic resonance imaging (MRI) permits high resolution, regional visualization of pulmonary ventilation. Additionally, its reasonably high solubility (>10%) and large chemical shift range (>200 ppm) in tissues allow HP 129Xe to serve as a regional probe of pulmonary perfusion and gas transport, when introduced directly into the vasculature. In earlier work, vascular delivery was accomplished in rats by first dissolving HP 129Xe in a biologically compatible carrier solution, injecting the solution into the vasculature, and then detecting HP 129Xe as it emerged into the alveolar airspaces. Although easily implemented, this approach was constrained by the tolerable injection volume and the duration of the HP 129Xe signal. Methods and Principal Findings Here, we overcome the volume and temporal constraints imposed by injection, by using hydrophobic, microporous, gas-exchange membranes to directly and continuously infuse 129Xe into the arterial blood of live rats with an extracorporeal (EC) circuit. The resulting gas-phase 129Xe signal is sufficient to generate diffusive gas exchange- and pulmonary perfusion-dependent, 3D MR images with a nominal resolution of 2×2×2 mm3. We also show that the 129Xe signal dynamics during EC infusion are well described by an analytical model that incorporates both mass transport into the blood and longitudinal relaxation. Conclusions Extracorporeal infusion of HP 129Xe enables rapid, 3D MR imaging of rat lungs and, when combined with ventilation imaging, will permit spatially resolved studies of the ventilation-perfusion ratio in small animals. Moreover, EC infusion should allow 129Xe to be delivered elsewhere in the body and make possible functional and molecular imaging approaches that are currently not feasible using inhaled HP 129Xe. PMID:22363613

  11. Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging

    PubMed Central

    2014-01-01

    Signal amplification by reversible exchange (SABRE) of a substrate and parahydrogen at a catalytic center promises to overcome the inherent insensitivity of magnetic resonance. In order to apply the new approach to biomedical applications, there is a need to develop experimental equipment, in situ quantification methods, and a biocompatible solvent. We present results detailing a low-field SABRE polarizer which provides well-controlled experimental conditions, defined spins manipulations, and which allows in situ detection of thermally polarized and hyperpolarized samples. We introduce a method for absolute quantification of hyperpolarization yield in situ by means of a thermally polarized reference. A maximum signal-to-noise ratio of ∼103 for 148 μmol of substance, a signal enhancement of 106 with respect to polarization transfer field of SABRE, or an absolute 1H-polarization level of ≈10–2 is achieved. In an important step toward biomedical application, we demonstrate 1H in situ NMR as well as 1H and 13C high-field MRI using hyperpolarized pyridine (d3) and 13C nicotinamide in pure and 11% ethanol in aqueous solution. Further increase of hyperpolarization yield, implications of in situ detection, and in vivo application are discussed. PMID:24397559

  12. Hyperpolarized (13)C MR imaging detects no lactate production in mutant IDH1 gliomas: Implications for diagnosis and response monitoring.

    PubMed

    Chaumeil, Myriam M; Radoul, Marina; Najac, Chloé; Eriksson, Pia; Viswanath, Pavithra; Blough, Michael D; Chesnelong, Charles; Luchman, H Artee; Cairncross, J Gregory; Ronen, Sabrina M

    2016-01-01

    Metabolic imaging of brain tumors using (13)C Magnetic Resonance Spectroscopy (MRS) of hyperpolarized [1-(13)C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM) models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-(13)C] lactate produced from [1-(13)C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-(13)C] lactate. However, to date, lower grade gliomas had not been investigated using this approach. The most prevalent mutation in lower grade gliomas is the isocitrate dehydrogenase 1 (IDH1) mutation, which, in addition to initiating tumor development, also induces metabolic reprogramming. In particular, mutant IDH1 gliomas are associated with low levels of lactate dehydrogenase A (LDHA) and monocarboxylate transporters 1 and 4 (MCT1, MCT4), three proteins involved in pyruvate metabolism to lactate. We therefore investigated the potential of (13)C MRS of hyperpolarized [1-(13)C] pyruvate for detection of mutant IDH1 gliomas and for monitoring of their therapeutic response. We studied patient-derived mutant IDH1 glioma cells that underexpress LDHA, MCT1 and MCT4, and wild-type IDH1 GBM cells that express high levels of these proteins. Mutant IDH1 cells and tumors produced significantly less hyperpolarized [1-(13)C] lactate compared to GBM, consistent with their metabolic reprogramming. Furthermore, hyperpolarized [1-(13)C] lactate production was not affected by chemotherapeutic treatment with temozolomide (TMZ) in mutant IDH1 tumors, in contrast to previous reports in GBM. Our results demonstrate the unusual metabolic imaging profile of mutant IDH1 gliomas, which, when combined with other clinically available imaging methods, could be used to detect the presence of the IDH1 mutation in vivo. PMID:27437179

  13. Teratoma - MRI scan (image)

    MedlinePlus

    This MRI scan shows a tumor (teratoma) at the base of the spine (seen on the left lower edge of the screen), located in the sacrum and coccyx (sacrococcygeal) area. Teratomas are present at birth and may contain hair, teeth, and other tissues.

  14. Regional Mapping of Gas Uptake by Blood and Tissue in the Human Lung using Hyperpolarized Xenon-129 MRI

    PubMed Central

    Qing, Kun; Ruppert, Kai; Jiang, Yun; Mata, Jaime F.; Miller, G. Wilson; Shim, Y. Michael; Wang, Chengbo; Ruset, Iulian C.; Hersman, F. William; Altes, Talissa A.; Mugler, John P.

    2013-01-01

    Purpose To develop a breath-hold acquisition for regional mapping of ventilation and the fractions of hyperpolarized xenon-129 (Xe129) dissolved in tissue (lung parenchyma and plasma) and red blood cells (RBCs), and to perform an exploratory study to characterize data obtained in human subjects. Materials and Methods A three-dimensional, multi-echo, radial-trajectory pulse sequence was developed to obtain ventilation (gaseous Xe129), tissue and RBC images in healthy subjects, smokers and asthmatics. Signal ratios (total dissolved Xe129 to gas, tissue-to-gas, RBC-to-gas and RBC-to-tissue) were calculated from the images for quantitative comparison. Results Healthy subjects demonstrated generally uniform values within coronal slices, and a gradient in values along the anterior-to-posterior direction. In contrast, images and associated ratio maps in smokers and asthmatics were generally heterogeneous and exhibited values mostly lower than those in healthy subjects. Whole-lung values of total dissolved Xe129 to gas, tissue-to-gas, and RBC-to-gas ratios in healthy subjects were significantly larger than those in diseased subjects. Conclusion Regional maps of tissue and RBC fractions of dissolved Xe129 were obtained from a short breath-hold acquisition, well tolerated by healthy volunteers and subjects with obstructive lung disease. Marked differences were observed in spatial distributions and overall amounts of Xe129 dissolved in tissue and RBCs among healthy subjects, smokers and asthmatics. PMID:23681559

  15. 3D MR Imaging of Impaired Hyperpolarized 129Xe Uptake in a Rat Model of Pulmonary Fibrosis

    PubMed Central

    Cleveland, Zackary I.; Virgincar, Rohan, S.; Qi, Yi; Robertson, Scott H.; Degan, Simone; Driehuys, Bastiaan

    2014-01-01

    A variety of pulmonary pathologies, in particular interstitial lung diseases, are characterized by thickening of the pulmonary blood-gas barrier tissues, and this thickening results in reduced gas exchange. Such diffusive impairment is challenging to quantify spatially, because the distributions of the metabolically relevant gases (CO2 and O2) cannot be detected directly within the lungs. Hyperpolarized (HP) 129Xe is a promising surrogate for these metabolic gases, because MR spectroscopy and imaging allow gaseous alveolar 129Xe to be detected separately from 129Xe dissolved in the red blood cells (RBCs) and in the adjacent barrier tissues (blood plasma and lung interstitium). Further, because 129Xe reaches the RBCs by diffusing across the same barrier tissues as O2barrier thickening will delay 129Xe transit and, thus, reduce RBC-specific 129Xe MR signal. Here we exploited these properties to generate 3D, MR images of 129Xe uptake by the RBCs in two groups of rats. In the experimental group, unilateral fibrotic injury was generated prior to imaging by instilling Bleomycin into one lung. In the control group, a unilateral sham instillation of saline was performed. Uptake of 129Xe by the RBCs, quantified as the fraction of RBC signal relative to total dissolved 129Xe signal, was significantly reduced (P = 0.03) in the injured lungs of Bleomycin-treated animals. In contrast, no significant difference (P=0.56) was observed between the saline-treated and untreated lungs of control animals. Together, these results indicate that 3D MRI of HP 129Xe dissolved in the pulmonary tissues can provide useful biomarkers of impaired diffusive gas exchange resulting from fibrotic thickening. PMID:24816478

  16. High resolution (13)C MRI with hyperpolarized urea: in vivo T(2) mapping and (15)N labeling effects.

    PubMed

    Reed, Galen D; von Morze, Cornelius; Bok, Robert; Koelsch, Bertram L; Van Criekinge, Mark; Smith, Kenneth J; Hong Shang; Larson, Peder E Z; Kurhanewicz, John; Vigneron, Daniel B

    2014-02-01

    (13)C steady state free precession (SSFP) magnetic resonance imaging and effective spin-spin relaxation time (T2) mapping were performed using hyperpolarized [(13)C] urea and [(13) C,(15)N2] urea injected intravenously in rats. (15)N labeling gave large T2 increases both in solution and in vivo due to the elimination of a strong scalar relaxation pathway. The T2 increase was pronounced in the kidney, with [(13) C,(15) N2] urea giving T2 values of 6.3±1.3 s in the cortex and medulla, and 11±2 s in the renal pelvis. The measured T2 in the aorta was 1.3±0.3 s. [(13)C] urea showed shortened T2 values in the kidney of 0.23±0.03 s compared to 0.28±0.03 s measured in the aorta. The enhanced T2 of [(13)C,(15)N2] urea was utilized to generate large signal enhancement by SSFP acquisitions with flip angles approaching the fully refocused regime. Projection images at 0.94 mm in-plane resolution were acquired with both urea isotopes, with [(13)C,(15) N2] urea giving a greater than four-fold increase in signal-to-noise ratio over [(13)C] urea. PMID:24235273

  17. SU-E-QI-11: Measurement of Renal Pyruvate-To-Lactate Exchange with Hyperpolarized 13C MRI

    SciTech Connect

    Adamson, E; Johnson, K; Fain, S; Gordon, J

    2014-06-15

    Purpose: Previous work [1] modeling the metabolic flux between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in magnetic resonance spectroscopic imaging (MRSI) experiments failed to account for vascular signal artifacts. Here, we investigate a method to minimize the vascular signal and its impact on the fidelity of metabolic modeling. Methods: MRSI was simulated for renal metabolism in MATLAB both with and without bipolar gradients. The resulting data were fit to a two-site exchange model [1], and the effects of vascular partial volume artifacts on kinetic modeling were assessed. Bipolar gradients were then incorporated into a gradient echo sequence to validate the simulations experimentally. The degree of diffusion weighting (b = 32 s/mm{sup 2}) was determined empirically from 1H imaging of murine renal vascular signal. The method was then tested in vivo using MRSI with bipolar gradients following injection of hyperpolarized [1-{sup 13}C]pyruvate (∼80 mM at 20% polarization). Results: In simulations, vascular signal contaminated the renal metabolic signal at resolutions as high as 2 × 2 mm{sup 2} due to partial volume effects. The apparent exchange rate from pyruvate to lactate (k{sub p}) was underestimated in the presence of these artifacts due to contaminating pyruvate signal. Incorporation of bipolar gradients suppressed vascular signal and improved the accuracy of kp estimation. Experimentally, the in vivo results supported the ability of bipolar gradients to suppress vascular signal. The in vivo exchange rate increased, as predicted in simulations, from k{sub p} = 0.012 s-{sup 1} to k{sub p} = 0.020-{sup 1} after vascular signal suppression. Conclusion: We have demonstrated the limited accuracy of the two-site exchange model in the presence of vascular partial volume artifacts. The addition of bipolar gradients suppressed vascular signal and improved model accuracy in simulations. Bipolar gradients largely affected kp estimation in vivo. Currently

  18. Evaluation of high intensity focused ultrasound ablation of prostate tumor with hyperpolarized 13C imaging biomarkers

    NASA Astrophysics Data System (ADS)

    Lee, Jessie E.; Diederich, Chris J.; Salgaonkar, Vasant A.; Bok, Robert; Taylor, Andrew G.; Kurhanewicz, John

    2015-03-01

    Real-time hyperpolarized (HP) 13C MR can be utilized during high-intensity focal ultrasound (HIFU) therapy to improve treatment delivery strategies, provide treatment verification, and thus reduce the need for more radical therapies for lowand intermediate-risk prostate cancers. The goal is to develop imaging biomarkers specific to thermal therapies of prostate cancer using HIFU, and to predict the success of thermal coagulation and identify tissues potentially sensitized to adjuvant treatment by sub-ablative hyperthermic heat doses. Mice with solid prostate tumors received HIFU treatment (5.6 MHz, 160W/cm2, 60 s), and the MR imaging follow-ups were performed on a wide-bore 14T microimaging system. 13C-labeled pyruvate and urea were used to monitor tumor metabolism and perfusion accordingly. After treatment, the ablated tumor tissue had a loss in metabolism and perfusion. In the regions receiving sub-ablative heat dose, a timedependent change in metabolism and perfusion was observed. The untreated regions behaved as a normal untreated TRAMP prostate tumor would. This promising preliminary study shows the potential of using 13C MR imaging as biomarkers of HIFU/thermal therapies.

  19. Fast volumetric imaging of ethanol metabolism in rat liver with hyperpolarized [1-13C]-pyruvate

    PubMed Central

    Josan, Sonal; Spielman, Daniel; Yen, Yi-Fen; Hurd, Ralph; Pfefferbaum, Adolf; Mayer, Dirk

    2012-01-01

    Rapid, volumetric imaging of hyperpolarized 13C compounds allows the real time measurement of metabolic activity and can be useful in distinguishing between normal and diseased tissues. This work extends a fast 2D under-sampled spiral magnetic resonance spectroscopic imaging (MRSI) sequence to provide volumetric coverage, acquiring a 16×16×12 matrix with a nominal 5 mm isotropic resolution in 4.5 s. The rapid acquisition enables a high temporal resolution for dynamic imaging. This dynamic 3D MRSI method was used to investigate hyperpolarized [1-13C]-pyruvate metabolism modulated by the administration of ethanol in rat liver. A significant increase in the pyruvate to lactate conversion was observed in the liver due to the greater availability of NADH from ethanol metabolism. PMID:22331837

  20. Nuclear hyperpolarization comes of age

    NASA Astrophysics Data System (ADS)

    Jeschke, Gunnar; Frydman, Lucio

    2016-03-01

    The last decade has seen transformative developments and previously unthinkable opportunities opening in the fields of solid-state, solution and imaging NMR, thanks to the advent of methods for hyperpolarizing the nuclear spins. Probably since the introduction of the Fourier Transform, and to some extent for similar reasons, few single concepts have had the potential to affect so many areas of magnetic resonance, as the dissemination of these sensitivity-enhancing methods. The generality of these methods, particularly those based on dynamic nuclear polarization (DNP), has triggered exciting new research over a wide range of applications ranging from material sciences and structural biology to metabolic analysis, biochemistry, biology and clinical diagnosis. This excitement has been accompanied by concurrent efforts to better understand the physical basis of nuclear hyperpolarization to optimize the instrumentation that will achieve higher levels of nuclear polarization over a wide range of conditions, and with new NMR and MRI sequences and experiments that will better fit the particular demands of these experiments. This concentrated attention has also brought in close synergy the electron and nuclear magnetic resonance communities, particularly as the former showed the latter that electrons could be exploited via DNP to originate nuclear hyperpolarization over a wide range of solution and solid state systems. Such "DNP revolution" also rekindled similar searches based on alternatives such as para-Hydrogen induced polarization and optical pumping. The kind of NMR enhancement that all these techniques could provide would have been unreachable by traditional approaches, for instance further optimizations of the NMR receiving hardware or increasing the NMR/MRI observation fields.

  1. A Variability Study of Regional Alveolar Oxygen Tension Measurement in Humans Using Hyperpolarized 3He MRI

    PubMed Central

    Hamedani, Hooman; Kadlecek, Stephen J.; Ishii, Masaru; Emami, Kiarash; Kuzma, Nicholas N.; Xin, Yi; Rossman, Milton; Rizi, Rahim R.

    2013-01-01

    To presents the first systematic reproducibility measurement of alveolar partial pressure of oxygen (pAO2) in the human lung, regional variability is defined in terms of an intraclass correlation coefficient (ICC) between co-localized, same-subject measurements separated by one-week or couple of minutes (short-term). In addition, the repeatability of the average lung pAO2 is compared to that of the standard pulmonary function tests (PFT). PFT and pAO2 imaging were performed on eight subjects: 4 nonsmokers (1 man, 3 women; 56 ± 1.7 years), 4 smokers (1 woman, 3 men; 52 ± 7.5 years) in three visits during two weeks. Regional variability was assessed based on a mixed-effects model and an ICC. The coefficient of variation (CV) of mean and standard deviation of pAO2 in three days was also compared to CV of PFT results. Short-term regional reproducibility based on ICC was 0.71 and 0.63 for nonsmokers and smokers; respectively. The one-week variability was lower (ICC=0.59 and 0.47; respectively). The CV of whole-lung average pAO2 was significantly higher than that of FVC(forced vital capacity; P=0.02) but not from DLCO (diffusing capacity). The smoker group shows more variability in pAO2 measurements both between experiments and in each individual pAO2 maps. pAO2 had a similar repeatability to DLCO. PMID:23382040

  2. Analysis of hyperpolarized dynamic 13C lactate imaging in a transgenic mouse model of prostate cancer☆

    PubMed Central

    Lupo, Janine M.; Chen, Albert P.; Zierhut, Matthew L.; Bok, Robert A.; Cunningham, Charles H.; Kurhanewicz, John; Vigneron, Daniel B.; Nelson, Sarah J.

    2011-01-01

    This study investigated the application of an acquisition that selectively excites the [1-13C]lactate resonance and allows dynamic tracking of the conversion of 13C-lactate from hyperpolarized 13C-pyruvate at a high spatial resolution. In order to characterize metabolic processes occurring in a mouse model of prostate cancer, 20 sequential 3D images of 13C-lactate were acquired 5 s apart using a pulse sequence that incorporated a spectral–spatial excitation pulse and a flyback echo-planar readout to track the time course of newly converted 13C-lactate after injection of prepolarized 13C-pyruvate. The maximum lactate signal (MLS), full-width half-maximum (FWHM), time to the peak 13C-lactate signal (TTP) and area under the dynamic curve were calculated from the dynamic images of 10 TRAMP mice and two wild-type controls. The regional variation in 13C-lactate associated with the injected pyruvate was demonstrated by the peak of the 13C-lactate signal occurring earlier in the kidney than in the tumor region. The intensity of the dynamic 13C-lactate curves also varied spatially within the tumor, illustrating the heterogeneity in metabolism that was most prominent in more advanced stages of disease development. The MLS was significantly higher in TRAMP mice that had advanced disease. PMID:19695815

  3. Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Nelson, Sarah J.; Ozhinsky, Eugene; Li, Yan; Park, Il woo; Crane, Jason

    2013-04-01

    In vivo MRSI is an important imaging modality that has been shown in numerous research studies to give biologically relevant information for assessing the underlying mechanisms of disease and for monitoring response to therapy. The increasing availability of high field scanners and multichannel radiofrequency coils has provided the opportunity to acquire in vivo data with significant improvements in sensitivity and signal to noise ratio. These capabilities may be used to shorten acquisition time and provide increased coverage. The ability to acquire rapid, volumetric MRSI data is critical for examining heterogeneity in metabolic profiles and for relating serial changes in metabolism within the same individual during the course of the disease. In this review we discuss the implementation of strategies that use alternative k-space sampling trajectories and parallel imaging methods in order to speed up data acquisition. The impact of such methods is demonstrated using three recent examples of how these methods have been applied. These are to the acquisition of robust 3D 1H MRSI data within 5-10 min at a field strength of 3 T, to obtaining higher sensitivity for 1H MRSI at 7 T and to using ultrafast volumetric and dynamic 13C MRSI for monitoring the changes in signals that occur following the injection of hyperpolarized 13C agents.

  4. Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging.

    PubMed

    Nelson, Sarah J; Ozhinsky, Eugene; Li, Yan; Park, Il woo; Crane, Jason

    2013-04-01

    In vivo MRSI is an important imaging modality that has been shown in numerous research studies to give biologically relevant information for assessing the underlying mechanisms of disease and for monitoring response to therapy. The increasing availability of high field scanners and multichannel radiofrequency coils has provided the opportunity to acquire in vivo data with significant improvements in sensitivity and signal to noise ratio. These capabilities may be used to shorten acquisition time and provide increased coverage. The ability to acquire rapid, volumetric MRSI data is critical for examining heterogeneity in metabolic profiles and for relating serial changes in metabolism within the same individual during the course of the disease. In this review we discuss the implementation of strategies that use alternative k-space sampling trajectories and parallel imaging methods in order to speed up data acquisition. The impact of such methods is demonstrated using three recent examples of how these methods have been applied. These are to the acquisition of robust 3D (1)H MRSI data within 5-10 min at a field strength of 3 T, to obtaining higher sensitivity for (1)H MRSI at 7 T and to using ultrafast volumetric and dynamic (13)C MRSI for monitoring the changes in signals that occur following the injection of hyperpolarized (13)C agents. PMID:23453759

  5. In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate.

    PubMed

    Kohler, S J; Yen, Y; Wolber, J; Chen, A P; Albers, M J; Bok, R; Zhang, V; Tropp, J; Nelson, S; Vigneron, D B; Kurhanewicz, J; Hurd, R E

    2007-07-01

    We present for the first time dynamic spectra and spectroscopic images acquired in normal rats at 3T following the injection of (13)C-1-pyruvate that was hyperpolarized by the dynamic nuclear polarization (DNP) method. Spectroscopic sampling was optimized for signal-to-noise ratio (SNR) and for spectral resolution of (13)C-1-pyruvate and its metabolic products (13)C-1-alanine, (13)C-1-lactate, and (13)C-bicarbonate. Dynamic spectra in rats were collected with a temporal resolution of 3 s from a 90-mm axial slab using a dual (1)H-(13)C quadrature birdcage coil to observe the combined effects of metabolism, flow, and T(1) relaxation. In separate experiments, spectroscopic imaging data were obtained during a 17-s acquisition of a 20-mm axial slice centered on the rat kidney region to provide information on the spatial distribution of the metabolites. Conversion of pyruvate to lactate, alanine, and bicarbonate occurred within a minute of injection. Alanine was observed primarily in skeletal muscle and liver, while pyruvate, lactate, and bicarbonate concentrations were relatively high in the vasculature and kidneys. In contrast to earlier work at 1.5 T, bicarbonate was routinely observed in skeletal muscle as well as the kidney and vasculature. PMID:17659629

  6. Posture-Dependent Human 3He Lung Imaging in an Open Access MRI System: Initial Results

    PubMed Central

    Tsai, L. L.; Mair, R. W.; Li, C.-H.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-01-01

    Rationale and Objectives The human lung and its functions are extremely sensitive to orientation and posture, and debate continues as to the role of gravity and the surrounding anatomy in determining lung function and heterogeneity of perfusion and ventilation. However, study of these effects is difficult. The conventional high-field magnets used for most hyperpolarized 3He MRI of the human lung, and most other common radiological imaging modalities including PET and CT, restrict subjects to lying horizontally, minimizing most gravitational effects. Materials and Methods In this paper, we briefly review the motivation for posture-dependent studies of human lung function, and present initial imaging results of human lungs in the supine and vertical body orientations using inhaled hyperpolarized 3He gas and an open-access MRI instrument. The open geometry of this MRI system features a “walk-in” capability that permits subjects to be imaged in vertical and horizontal positions, and potentially allows for complete rotation of the orientation of the imaging subject in a two-dimensional plane. Results Initial results include two-dimensional lung images acquired with ~ 4 × 8 mm in-plane resolution and three-dimensional images with ~ 2 cm slice thickness. Conclusion Effects of posture variation are observed, including posture-related effects of the diaphragm and distension of the lungs while vertical. PMID:18486009

  7. Sparse representation of complex MRI images.

    PubMed

    Nandakumar, Hari Prasad; Ji, Jim

    2008-01-01

    Sparse representation of images acquired from Magnet Resonance Imaging (MRI) has several potential applications. MRI is unique in that the raw images are complex. Complex wavelet transforms (CWT) can be used to produce flexible signal representations when compared to Discrete Wavelet Transform (DWT). In this work, five different schemes using CWT or DWT are tested for sparse representation of MRI images which are in the form of complex values, separate real/imaginary, or separate magnitude/phase. The experimental results on real in-vivo MRI images show that appropriate CWT, e.g., dual-tree CWT (DTCWT), can achieve sparsity better than DWT with similar Mean Square Error. PMID:19162677

  8. Detection of Early Response to Temozolomide Treatment in Brain Tumors Using Hyperpolarized 13C MR Metabolic Imaging

    PubMed Central

    Park, Ilwoo; Bok, Robert; Ozawa, Tomoko; Phillips, Joanna J.; James, C. David; Vigneron, Daniel B.; Ronen, Sabrina M.; Nelson, Sarah J.

    2016-01-01

    Purpose To demonstrate the feasibility of using DNP hyperpolarized [1-13C]-pyruvate to measure early response to temozolomide (TMZ) therapy using an orthotopic human glioblastoma xenograft model. Materials and Methods Twenty athymic rats with intracranial implantation of human glioblastoma cells were divided into two groups: one group received an oral administration of 100 mg/kg TMZ (n = 10) and the control group received vehicle only (n = 10). 13C 3D magnetic resonance spectroscopic imaging (MRSI) data were acquired following injection of 2.5 mL (100 mM) hyperpolarized [1-13C]-pyruvate using a 3T scanner prior to treatment (day D0), at D1 (days from treatment) or D2. Results Tumor metabolism as assessed by the ratio of lactate to pyruvate (Lac/Pyr) was significantly altered at D1 for the TMZ-treated group but tumor volume did not show a reduction until D5 to D7. The percent change in Lac/Pyr from baseline was statistically different between the two groups at D1 and D2 (P < 0.008), while percent tumor volume was not (P > 0.2). Conclusion The results from this study suggest that metabolic imaging with hyperpolarized [1-13C]-pyruvate may provide a unique tool that clinical neuro-oncologists can use in the future to monitor tumor response to therapy for patients with brain tumors. PMID:21590996

  9. Live nephron imaging by MRI.

    PubMed

    Qian, Chunqi; Yu, Xin; Pothayee, Nikorn; Dodd, Stephen; Bouraoud, Nadia; Star, Robert; Bennett, Kevin; Koretsky, Alan

    2014-11-15

    The local sensitivity of MRI can be improved with small MR detectors placed close to regions of interest. However, to maintain such sensitivity advantage, local detectors normally need to communicate with the external amplifier through cable connections, which prevent the use of local detectors as implantable devices. Recently, an integrated wireless amplifier was developed that can efficiently amplify and broadcast locally detected signals, so that the local sensitivity was enhanced without the need for cable connections. This integrated detector enabled the live imaging of individual glomeruli using negative contrast introduced by cationized ferritin, and the live imaging of renal tubules using positive contrast introduced by gadopentetate dimeglumine. Here, we utilized the high blood flow to image individual glomeruli as hyperintense regions without any contrast agent. These hyperintense regions were identified for pixels with signal intensities higher than the local average. Addition of Mn(2+) allowed the simultaneous detection of both glomeruli and renal tubules: Mn(2+) was primarily reabsorbed by renal tubules, which would be distinguished from glomeruli due to higher enhancement in T1-weighted MRI. Dynamic studies of Mn(2+) absorption confirmed the differential absorption affinity of glomeruli and renal tubules, potentially enabling the in vivo observation of nephron function. PMID:25186296

  10. Top-Level System Designs for Hybrid Low-Field MRI-CT with Potential of Pulmonary Imaging

    NASA Astrophysics Data System (ADS)

    Yelleswarapu, Venkata R.; Liu, Fenglin; Cong, Wenxiang; Wang, Ge

    2014-11-01

    We previously discussed "omni-tomography", but intrinsic conflicts between the magnetic fields of the MRI and the X-ray tube within the CT are inherent. We propose that by using low-field MRI with a negligible fringe field at the site of the CT source, it is possible to create a CT-MRI system with minimal interference. Low field MRI is particularly useful for lung imaging, where hyperpolarized gas can enhance the signal. Three major designs were considered and simulated, with modifications in coil design and axis allowing for further variation. The first uses Halbach arrays to minimize magnetic fields outside, the second uses solenoids pairs with active shielding, and the third uses a rotating compact MRI-CT. Each system is low field, which may allow the implementation of a standard rotating CT. Both structural and functional information can be acquired simultaneously for a true hybrid image with matching temporal and spatial image acquisition.

  11. High altitude may alter oxygen availability and renal metabolism in diabetics as measured by hyperpolarized [1-(13)C]pyruvate magnetic resonance imaging.

    PubMed

    Laustsen, Christoffer; Lycke, Sara; Palm, Fredrik; Østergaard, Jakob A; Bibby, Bo M; Nørregaard, Rikke; Flyvbjerg, Allan; Pedersen, Michael; Ardenkjaer-Larsen, Jan H

    2014-07-01

    The kidneys account for about 10% of the whole body oxygen consumption, whereas only 0.5% of the total body mass. It is known that intrarenal hypoxia is present in several diseases associated with development of kidney disease, including diabetes, and when renal blood flow is unaffected. The importance of deranged oxygen metabolism is further supported by deterioration of kidney function in patients with diabetes living at high altitude. Thus, we argue that reduced oxygen availability alters renal energy metabolism. Here, we introduce a novel magnetic resonance imaging (MRI) approach to monitor metabolic changes associated with diabetes and oxygen availability. Streptozotocin diabetic and control rats were given reduced, normal, or increased inspired oxygen in order to alter tissue oxygenation. The effects on kidney oxygen metabolism were studied using hyperpolarized [1-(13)C]pyruvate MRI. Reduced inspired oxygen did not alter renal metabolism in the control group. Reduced oxygen availability in the diabetic kidney altered energy metabolism by increasing lactate and alanine formation by 23% and 34%, respectively, whereas the bicarbonate flux was unchanged. Thus, the increased prevalence and severity of nephropathy in patients with diabetes at high altitudes may originate from the increased sensitivity toward inspired oxygen. This increased lactate production shifts the metabolic routs toward hypoxic pathways. PMID:24352155

  12. Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI

    NASA Astrophysics Data System (ADS)

    Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; Leawoods, Jason C.; Gierada, David S.; Bretthorst, G. Larry; Lefrak, Stephen S.; Cooper, Joel D.; Conradi, Mark S.

    2002-03-01

    The study of lung emphysema dates back to the beginning of the 17th century. Nevertheless, a number of important questions remain unanswered because a quantitative localized characterization of emphysema requires knowledge of lung structure at the alveolar level in the intact living lung. This information is not available from traditional imaging modalities and pulmonary function tests. Herein, we report the first in vivo measurements of lung geometrical parameters at the alveolar level obtained with 3He diffusion MRI in healthy human subjects and patients with severe emphysema. We also provide the first experimental data demonstrating that 3He gas diffusivity in the acinus of human lung is highly anisotropic. A theory of anisotropic diffusion is presented. Our results clearly demonstrate substantial differences between healthy and emphysematous lung at the acinar level and may provide new insights into emphysema progression. The technique offers promise as a clinical tool for early diagnosis of emphysema.

  13. NMR Hyperpolarization Techniques for Biomedicine

    PubMed Central

    Nikolaou, Panayiotis; Goodson, Boyd M.

    2015-01-01

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities—ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566

  14. Hyperpolarized Magnetic Resonance: A Novel Technique for the In Vivo Assessment of Cardiovascular Disease

    PubMed Central

    Schroeder, Marie A.; Clarke, Kieran; Neubauer, Stefan; Tyler, Damian J.

    2011-01-01

    Non-invasive imaging plays a central role in cardiovascular disease for determining diagnosis, prognosis, and optimizing patient management. Recent experimental studies have demonstrated that monitoring hyperpolarized 13C-labelled tracers with magnetic resonance imaging and spectroscopy (MRI and MRS) offers a new way to investigate the normal and diseased heart, and that the technology may be useful in patients with heart disease. In this review, we show how hyperpolarized 13C-labelled tracers are generated and have been applied experimentally, and outline the methodological advances currently underway to enable translation of hyperpolarized 13C MRI and MRS into the clinic. Using hyperpolarized 13C-labelled metabolites and metabolic MRI and MRS could help assessment of many human cardiovascular diseases, including coronary artery disease, heart failure and metabolic cardiomyopathies. We discuss the clinical areas in which the technology may, in the future, aid in the diagnosis and management of patients with cardiovascular diseases, including dynamic investigations of in vivo metabolism, coronary angiography and quantitative perfusion imaging. It is possible that, in the future, hyperpolarized magnetic resonance will play a major role in clinical cardiology. PMID:21969318

  15. MODEL-BASED IMAGE RECONSTRUCTION FOR MRI

    PubMed Central

    Fessler, Jeffrey A.

    2010-01-01

    Magnetic resonance imaging (MRI) is a sophisticated and versatile medical imaging modality. Traditionally, MR images are reconstructed from the raw measurements by a simple inverse 2D or 3D fast Fourier transform (FFT). However, there are a growing number of MRI applications where a simple inverse FFT is inadequate, e.g., due to non-Cartesian sampling patterns, non-Fourier physical effects, nonlinear magnetic fields, or deliberate under-sampling to reduce scan times. Such considerations have led to increasing interest in methods for model-based image reconstruction in MRI. PMID:21135916

  16. MRI Reporter Genes for Noninvasive Molecular Imaging.

    PubMed

    Yang, Caixia; Tian, Rui; Liu, Ting; Liu, Gang

    2016-01-01

    Magnetic resonance imaging (MRI) is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase), the receptor on the cells (e.g., transferrin receptor), and endogenous reporter genes (e.g., ferritin reporter gene). However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies. PMID:27213309

  17. Functional MRI Using Regularized Parallel Imaging Acquisition

    PubMed Central

    Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M.; Belliveau, John W.; Wald, Lawrence L.; Kwong, Kenneth K.

    2013-01-01

    Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions. PMID:16032694

  18. Effects of corticosteroid treatment on airway inflammation, mechanics, and hyperpolarized ³He magnetic resonance imaging in an allergic mouse model.

    PubMed

    Thomas, Abraham C; Kaushik, S Sivaram; Nouls, John; Potts, Erin N; Slipetz, Deborah M; Foster, W Michael; Driehuys, Bastiaan

    2012-05-01

    The purpose of this study was to assess the effects of corticosteroid therapy on a murine model of allergic asthma using hyperpolarized (3)He magnetic resonance imaging (MRI) and respiratory mechanics measurements before, during, and after methacholine (MCh) challenge. Three groups of mice were prepared, consisting of ovalbumin sensitized/ovalbumin challenged (Ova/Ova, n = 5), Ova/Ova challenged but treated with the corticosteroid dexamethasone (Ova/Ova+Dex, n = 3), and ovalbumin-sensitized/saline-challenged (Ova/PBS, n = 4) control animals. All mice underwent baseline 3D (3)He MRI, then received a MCh challenge while 10 2D (3)He MR images were acquired for 2 min, followed by post-MCh 3D (3)He MRI. Identically treated groups underwent respiratory mechanics evaluation (n = 4/group) and inflammatory cell counts (n = 4/group). Ova/Ova animals exhibited predominantly large whole lobar defects at baseline, with significantly higher ventilation defect percentage (VDP = 19 ± 4%) than Ova/PBS (+2 ± 1%, P = 0.01) animals. Such baseline defects were suppressed by dexamethasone (0%, P = 0.009). In the Ova/Ova group, MCh challenge increased VDP on both 2D (+30 ± 8%) and 3D MRI scans (+14 ± 2%). MCh-induced VDP changes were diminished in Ova/Ova+Dex animals on both 2D (+21 ± 9%, P = 0.63) and 3D scans (+7 ± 2%, P = 0.11) and also in Ova/PBS animals on 2D (+6 ± 3%, P = 0.07) and 3D (+4 ± 1%, P = 0.01) scans. Because MCh challenge caused near complete cessation of ventilation in four of five Ova/Ova animals, even as large airways remained patent, this implies that small airway (<188 μm) obstruction predominates in this model. This corresponds with respiratory mechanics observations that MCh challenge significantly increases elastance and tissue damping but only modestly affects Newtonian airway resistance. PMID:22241062

  19. Magnetic Resonance Imaging (MRI) -- Head

    MedlinePlus Videos and Cool Tools

    ... any recent surgeries. Some conditions, such as severe kidney disease, may prevent you from being given gadolinium ... an MRI. If you have a history of kidney disease or liver transplant, it will be necessary ...

  20. Accelerating hyperpolarized metabolic imaging of the heart by exploiting spatiotemporal correlations.

    PubMed

    Weiss, Kilian; Sigfridsson, Andreas; Wissmann, Lukas; Busch, Julia; Batel, Michael; Krajewski, Marcin; Ernst, Matthias; Kozerke, Sebastian

    2013-11-01

    Hyperpolarized (13)C-labeled pyruvate is a promising tool to investigate cardiac metabolism. It has been shown that changes in substrate metabolism occur following the induction of ischemia. To investigate the metabolic changes that are confined to spatial regions, high spatiotemporal resolution is required. The present work exploits both spatial and temporal correlations using k-t principal component analysis (PCA) to undersample the spatiotemporal domain, thereby speeding up data acquisition. A numerical model was implemented to investigate optimal acquisition and reconstruction parameters for pyruvate, lactate and bicarbonate maps of the heart. Subsequently, prospectively undersampled in vivo data on rat hearts were acquired using a combination of spectral-spatial signal excitation and a variable-density single-shot echo planar readout. Using five-fold k-t PCA, a spatial resolution of 1 × 1 mm(2) at a temporal resolution of 3 s was achieved. PMID:23616307

  1. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  2. Development of spatial-temporal ventilation heterogeneity and probability analysis tools for hyperpolarized 3He magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Choy, S.; Ahmed, H.; Wheatley, A.; McCormack, D. G.; Parraga, G.

    2010-03-01

    We developed image analysis tools to evaluate spatial and temporal 3He magnetic resonance imaging (MRI) ventilation in asthma and cystic fibrosis. We also developed temporal ventilation probability maps to provide a way to describe and quantify ventilation heterogeneity over time, as a way to test respiratory exacerbations or treatment predictions and to provide a discrete probability measurement of 3He ventilation defect persistence.

  3. Hyperpolarized 3He magnetic resonance imaging ventilation defects in asthma: relationship to airway mechanics.

    PubMed

    Leary, Del; Svenningsen, Sarah; Guo, Fumin; Bhatawadekar, Swati; Parraga, Grace; Maksym, Geoffrey N

    2016-04-01

    In patients with asthma, magnetic resonance imaging (MRI) provides direct measurements of regional ventilation heterogeneity, the etiology of which is not well-understood, nor is the relationship of ventilation abnormalities with lung mechanics. In addition, respiratory resistance and reactance are often abnormal in asthmatics and the frequency dependence of respiratory resistance is thought to reflect ventilation heterogeneity. We acquiredMRIventilation defect maps, forced expiratory volume in one-second (FEV1), and airways resistance (Raw) measurements, and used a computational airway model to explore the relationship of ventilation defect percent (VDP) with simulated measurements of respiratory system resistance (Rrs) and reactance (Xrs).MRIventilation defect maps were experimentally acquired in 25 asthmatics before, during, and after methacholine challenge and these were nonrigidly coregistered to the airway tree model. Using the model coregistered to ventilation defect maps, we narrowed proximal (9th) and distal (14th) generation airways that were spatially related to theMRIventilation defects. The relationships forVDPwith Raw measured using plethysmography (r = 0.79), and model predictions of Rrs>14(r = 0.91,P < 0.0001) and Rrs>9(r = 0.88,P < 0.0001) were significantly stronger (P = 0.005;P = 0.03, respectively) than withFEV1(r = -0.68,P = 0.0001). The slopes for the relationship ofVDPwith simulated lung mechanics measurements were different (P < 0.0001); among these, the slope for theVDP-Xrs0.2relationship was largest, suggesting thatVDPwas dominated by peripheral airway heterogeneity in these patients. In conclusion, as a first step toward understanding potential links between lung mechanics and ventilation defects, impedance predictions were made using a computational airway tree model with simulated constriction of airways related to ventilation defects measured in mild-moderate asthmatics. PMID:27053294

  4. Hyperpolarized 13C MR spectroscopic imaging can be used to monitor Everolimus treatment in vivo in an orthotopic rodent model of glioblastoma

    PubMed Central

    Chaumeil, Myriam M.; Ozawa, Tomoko; Park, IlWoo; Scott, Kristen; James, C. David; Nelson, Sarah J.; Ronen, Sabrina M.

    2011-01-01

    Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in humans. Because the phosphatidylinositol-3-kinase (PI3K) signaling pathway is activated in more than 88% of GBM, new drugs which target this pathway, such as the mTOR inhibitor Everolimus, are currently in clinical trials. Early tumor response to molecularly targeted treatments remains challenging to assess non-invasively, because it is often associated with tumor stasis or slower tumor growth. Innovative neuroimaging methods are therefore critically needed to provide metabolic or functional information that is indicative of targeted therapeutic action at early time points during the course of treatment. In this study, we demonstrated for the first time that hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) can be used on a clinical MR system to monitor early metabolic response of orthotopic GBM tumors to Everolimus treatment through measurement of the HP lactate-to-pyruvate ratios. The study was performed on a highly invasive non-enhancing orthotopic GBM tumor model in rats (GS-2 tumors), which replicates many fundamental features of human GBM tumors. Seven days after initiation of treatment there was a significant drop in the HP lactate-to-pyruvate ratio from the tumor tissue in treated animals relative to day 0 (67%±27% decrease). In the control group, no significant changes in the HP lactate-to-pyruvate ratios were observed. Importantly, at the 7 day time point, conventional MR imaging (MRI) was unable to detect a significant difference in tumor size between control and treated groups. Inhibition of tumor growth by conventional MRI was observed from day 15 of treatment. This implies that the decrease in the HP lactate-to-pyruvate ratio could be detected before any treatment-induced inhibition of tumor growth. Using immunohistochemical staining to further examine tumor response to treatment, we found that the decrease in the HP lactate-to-pyruvate ratio was

  5. Pomeranchuk cell for hyperpolarized 3He based on the brute force method

    NASA Astrophysics Data System (ADS)

    Makino, Seiji; Tanaka, Masayoshi; Ueda, Kunihiro; Fujiwara, Mamoru; Fujimura, Hisako; Yosoi, Masaru; Ohta, Takeshi; Frossati, Giorgio; de Waard, Arlette; Rouille, Gerard

    2014-09-01

    MRI (Magnetic Resonance Imaging) has been used for the medical diagnosis as a radiation-free imaging equipment. Since the proton has been mainly used for medical MRI, usefulness has been rather restrictive. As an example for expanding the range of applicability, MRI with hyperpolarized 3He gas has been used for the lung disease. Here, ``hyperpolarized'' means ``polarized higher than the thermal equilibrium polarization.'' For producing a large amount of hyperpolarized 3He gas at a time, we have been developing a hyperpolarization technique based on the brute force method which uses an ultralow temperature of a few mK and a strong magnetic field around 17 T in combination with the principle of the Pomeranchuk cooling. The Pomeranchuk cell made with non-metallic materials of small heat capacity is attached to the 3He/4He dilution refrigerator using a sintered silver allowing large heat conduction. After the sensors to monitor the temperature and pressure of 3He are calibrated and the Pomeranchuk cell is constructed, the system is tested. Then, the solidification of 3He and the measurement of NMR (Nuclear Magnetic Resonance) signals of 3He under the magnetic field of 17 T are carried out. The current status is reported in this talk.

  6. Measuring glomerular number from kidney MRI images

    NASA Astrophysics Data System (ADS)

    Thiagarajan, Jayaraman J.; Natesan Ramamurthy, Karthikeyan; Kanberoglu, Berkay; Frakes, David; Bennett, Kevin; Spanias, Andreas

    2016-03-01

    Measuring the glomerular number in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. Commonly used approaches either require destruction of the entire kidney or perform extrapolation from measurements obtained from a few isolated sections. A recent magnetic resonance imaging (MRI) method, based on the injection of a contrast agent (cationic ferritin), has been used to effectively identify glomerular regions in the kidney. In this work, we propose a robust, accurate, and low-complexity method for estimating the number of glomeruli from such kidney MRI images. The proposed technique has a training phase and a low-complexity testing phase. In the training phase, organ segmentation is performed on a few expert-marked training images, and glomerular and non-glomerular image patches are extracted. Using non-local sparse coding to compute similarity and dissimilarity graphs between the patches, the subspace in which the glomerular regions can be discriminated from the rest are estimated. For novel test images, the image patches extracted after pre-processing are embedded using the discriminative subspace projections. The testing phase is of low computational complexity since it involves only matrix multiplications, clustering, and simple morphological operations. Preliminary results with MRI data obtained from five kidneys of rats show that the proposed non-invasive, low-complexity approach performs comparably to conventional approaches such as acid maceration and stereology.

  7. Hyperpolarized (129)Xe T (1) in oxygenated and deoxygenated blood

    NASA Technical Reports Server (NTRS)

    Albert, M. S.; Balamore, D.; Kacher, D. F.; Venkatesh, A. K.; Jolesz, F. A.

    2000-01-01

    The viability of the new technique of hyperpolarized (129)Xe MRI (HypX-MRI) for imaging organs other than the lungs depends on whether the spin-lattice relaxation time, T(1), of (129)Xe is sufficiently long in the blood. In previous experiments by the authors, the T(1) was found to be strongly dependent upon the oxygenation of the blood, with T(1) increasing from about 3 s in deoxygenated samples to about 10 s in oxygenated samples. Contrarily, Tseng et al. (J. Magn. Reson. 1997; 126: 79-86) reported extremely long T(1) values deduced from an indirect experiment in which hyperpolarized (129)Xe was used to create a 'blood-foam'. They found that oxygenation decreased T(1). Pivotal to their experiment is the continual and rapid exchange of hyperpolarized (129)Xe between the gas phase (within blood-foam bubbles) and the dissolved phase (in the skin of the bubbles); this necessitated a complicated analysis to extract the T(1) of (129)Xe in blood. In the present study, the experimental design minimizes gas exchange after the initial bolus of hyperpolarized (129)Xe has been bubbled through the sample. This study confirms that oxygenation increases the T(1) of (129)Xe in blood, from about 4 s in freshly drawn venous blood, to about 13 s in blood oxygenated to arterial levels, and also shifts the red blood cell resonance to higher frequency. Copyright 2000 John Wiley & Sons, Ltd. Abbreviations used BOLD blood oxygen level dependent NOE nuclear overhouses effect PO(2) oxygen partial pressure RBC red blood cells RF radio frequency SNR signal-to-noise ratio.

  8. Investigation of Lung Structure-Function Relationships Using Hyperpolarized Noble Gases

    NASA Astrophysics Data System (ADS)

    Thomen, Robert P.

    Magnetic Resonance Imaging (MRI) is an application of the nuclear magnetic resonance (NMR) phenomenon to non-invasively generate 3D tomographic images. MRI is an emerging modality for the lung, but it suffers from low sensitivity due to inherent low tissue density and short T(*/2) . Hyperpolarization is a process by which the nuclear contribution to NMR signal is greatly enhanced to more than 100,000 times that of samples in thermal equilibrium. The noble gases 3He and 129Xe are most often hyperpolarized by transfer of light angular momentum through the electron of a vaporized alkali metal to the noble gas nucleus (called Spin Exchange Optical Pumping). The enhancement in NMR signal is so great that the gas itself can be imaged via MRI, and because noble gases are chemically inert, they can be safely inhaled by a subject, and the gas distribution within the interior of the lung can be imaged. The mechanics of respiration is an elegant physical process by which air is is brought into the distal airspaces of the lungs for oxygen/carbon dioxide gas exchange with blood. Therefore proper description of lung function is intricately related to its physical structure , and the basic mechanical operation of healthy lungs -- from pressure driven airflow, to alveolar airspace gas kinetics, to gas exchange by blood/gas concentration gradients, to elastic contraction of parenchymal tissue -- is a process decidedly governed by the laws of physics. This dissertation will describe experiments investigating the relationship of lung structure and function using hyperpolarized (HP) noble gas MRI. In particular HP gases will be applied to the study of several pulmonary diseases each of which demonstrates unique structure-function abnormalities: asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Successful implementation of an HP gas acquisition protocol for pulmonary studies is an involved and stratified undertaking which requires a solid theoretical foundation in NMR

  9. Micro-imaging of the Mouse Lung via MRI

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Another important application of the imaging technique is the study of lung regeneration in a pneumonectomy (PNX) model. Partial resection of the lung by unilateral PNX is a robust model of compensatory lung growth. It is typically studied by postmortem morphometry in which longitudinal assessment in the same animal cannot be achieved. Here we successfully assess the microstructural changes and quantify the compensatory lung growth in vivo in the PNX mouse model via 1H and hyperpolarized 3He diffusion MRI. Our results show complete restoration in lung volume and total alveolar number with enlargement of alveolar size, which is consistent with prior histological studies conducted in different animals at various time points. This dissertation demonstrates that 3He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and can be applied to a variety of mouse pulmonary models. Particularly, it has great potential to become a valuable tool in understanding the time course and the mechanism of lung growth in individual animals and may provide insight into post-natal lung growth and lung regeneration.

  10. Voxel-by-voxel correlations of perfusion, substrate, and metabolite signals in dynamic hyperpolarized (13) C imaging.

    PubMed

    Lau, Justin Y C; Chen, Albert P; Gu, Yi-Ping; Cunningham, Charles H

    2016-08-01

    In this study, a mixture of pyruvic acid and the perfusion agent HP001 was co-polarized for simultaneous assessment of perfusion and metabolism in vivo. The pre-polarized mixture was administered to rats with subcutaneous MDA-MB-231 breast cancer xenografts and imaged using an interleaved sequence with designed spectral-spatial pulses and flyback echo-planar readouts. Voxel-by-voxel signal correlations from 10 animals (15 data sets) were analyzed for tumour, kidney, and muscle regions of interest. The relationship between perfusion and hyperpolarized signal was explored on a voxel-by-voxel basis in various metabolically active tissues, including tumour, healthy kidneys, and skeletal muscle. Positive pairwise correlations between lactate, pyruvate, and HP001 observed in all 10 tumours suggested that substrate delivery was the dominant factor limiting the conversion of pyruvate to lactate in the tumour model used in this study. On the other hand, in cases where conversion is the limiting factor, such as in healthy kidneys, both pyruvate and lactate can act as excellent perfusion markers. In intermediate cases between the two limits, such as in skeletal muscle, some perfusion information may be inferred from the (pyruvate + lactate) signal distribution. Co-administration of pyruvate with a dynamic nuclear polarization (DNP) perfusion agent is an effective approach for distinguishing between slow metabolism and poor perfusion and a practical strategy for lactate signal normalization to account for substrate delivery, especially in cases of rapid pyruvate-to-lactate conversion and in poorly perfused regions with inadequate pyruvate signal-to-noise ratio for reliable determination of the lactate-to-pyruvate ratio. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27295304

  11. Multi-channel metabolic imaging, with SENSE reconstruction, of hyperpolarized [1- 13C] pyruvate in a live rat at 3.0 tesla on a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Tropp, James; Lupo, Janine M.; Chen, Albert; Calderon, Paul; McCune, Don; Grafendorfer, Thomas; Ozturk-Isik, Esin; Larson, Peder E. Z.; Hu, Simon; Yen, Yi-Fen; Robb, Fraser; Bok, Robert; Schulte, Rolf; Xu, Duan; Hurd, Ralph; Vigneron, Daniel; Nelson, Sarah

    2011-01-01

    We report metabolic images of 13C, following injection of a bolus of hyperpolarized [1-13C] pyruvate in a live rat. The data were acquired on a clinical scanner, using custom coils for volume transmission and array reception. Proton blocking of all carbon resonators enabled proton anatomic imaging with the system body coil, to allow for registration of anatomic and metabolic images, for which good correlation was achieved, with some anatomic features (kidney and heart) clearly visible in a carbon image, without reference to the corresponding proton image. Parallel imaging with sensitivity encoding was used to increase the spatial resolution in the SI direction of the rat. The signal to noise ratio in was in some instances unexpectedly high in the parallel images; variability of the polarization among different trials, plus partial volume effects, are noted as a possible cause of this.

  12. Target image search using fMRI signals

    NASA Astrophysics Data System (ADS)

    Xiong, Shi; Song, Sutao; Zhan, Yu; Zhang, Jiacai

    2014-03-01

    Recent neural signal decoding studies based on functional magnetic resonance imaging (fMRI) have identified the specific image presenting to the subject from a set of potential images, and some studies extend neural decoding into image reconstruction, i.e. image contents that the subject perceived were decoded from the fMRI signals recorded during the subject looking at images. In this paper, we decoded the target images using fMRI signals and described a target image searching method based on the relationship between target image stimuli and fMRI activity. We recorded fMRI data during a serial visual stimuli image presentation task, some of the stimuli images were target images and the rest images were non-target ones. Our fMRI data analysis results showed that in the serial visual presentation task, target images elicited a stereotypical response in the fMRI, which can be detected by multi-voxel pattern analysis (MVPA). Classifiers designed with support vector machine (SVM) used this response to decipher target images from non-target images. The leave-one-run-out cross-validation showed that we can pick out the target images with a possibility far above the chance level, which indicate that there's a neural signatures correlated with the target image recognition process in the human systems.

  13. Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization

    PubMed Central

    Gajan, David; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Melzi, Roberto; van Kalkeren, Henri A.; Veyre, Laurent; Thieuleux, Chloé; Conley, Matthew P.; Grüning, Wolfram R.; Schwarzwälder, Martin; Lesage, Anne; Copéret, Christophe; Bodenhausen, Geoffrey; Emsley, Lyndon; Jannin, Sami

    2014-01-01

    Hyperpolarization of substrates for magnetic resonance spectroscopy (MRS) and imaging (MRI) by dissolution dynamic nuclear polarization (D-DNP) usually involves saturating the ESR transitions of polarizing agents (PAs; e.g., persistent radicals embedded in frozen glassy matrices). This approach has shown enormous potential to achieve greatly enhanced nuclear spin polarization, but the presence of PAs and/or glassing agents in the sample after dissolution can raise concerns for in vivo MRI applications, such as perturbing molecular interactions, and may induce the erosion of hyperpolarization in spectroscopy and MRI. We show that D-DNP can be performed efficiently with hybrid polarizing solids (HYPSOs) with 2,2,6,6-tetramethyl-piperidine-1-oxyl radicals incorporated in a mesostructured silica material and homogeneously distributed along its pore channels. The powder is wetted with a solution containing molecules of interest (for example, metabolites for MRS or MRI) to fill the pore channels (incipient wetness impregnation), and DNP is performed at low temperatures in a very efficient manner. This approach allows high polarization without the need for glass-forming agents and is applicable to a broad range of substrates, including peptides and metabolites. During dissolution, HYPSO is physically retained by simple filtration in the cryostat of the DNP polarizer, and a pure hyperpolarized solution is collected within a few seconds. The resulting solution contains the pure substrate, is free from any paramagnetic or other pollutants, and is ready for in vivo infusion. PMID:25267650

  14. A Bloch-McConnell simulator with pharmacokinetic modeling to explore accuracy and reproducibility in the measurement of hyperpolarized pyruvate

    NASA Astrophysics Data System (ADS)

    Walker, Christopher M.; Bankson, James A.

    2015-03-01

    Magnetic resonance imaging (MRI) of hyperpolarized (HP) agents has the potential to probe in-vivo metabolism with sensitivity and specificity that was not previously possible. Biological conversion of HP agents specifically for cancer has been shown to correlate to presence of disease, stage and response to therapy. For such metabolic biomarkers derived from MRI of hyperpolarized agents to be clinically impactful, they need to be validated and well characterized. However, imaging of HP substrates is distinct from conventional MRI, due to the non-renewable nature of transient HP magnetization. Moreover, due to current practical limitations in generation and evolution of hyperpolarized agents, it is not feasible to fully experimentally characterize measurement and processing strategies. In this work we use a custom Bloch-McConnell simulator with pharmacokinetic modeling to characterize the performance of specific magnetic resonance spectroscopy sequences over a range of biological conditions. We performed numerical simulations to evaluate the effect of sequence parameters over a range of chemical conversion rates. Each simulation was analyzed repeatedly with the addition of noise in order to determine the accuracy and reproducibility of measurements. Results indicate that under both closed and perfused conditions, acquisition parameters can affect measurements in a tissue dependent manner, suggesting that great care needs to be taken when designing studies involving hyperpolarized agents. More modeling studies will be needed to determine what effect sequence parameters have on more advanced acquisitions and processing methods.

  15. Regenerative hyperpolarization in rods.

    PubMed Central

    Werblin, F S

    1975-01-01

    further hyperpolarize the membrane. 6. The reversal potential for the light response was measured at the outer segment but not at the cell body. The regenerative hyperpolarization was measured at the cell body but not at the outer segment. Thus, the outer segment and cell body appear to have different electrical properties: a light-elicited resistance increase at the outer segment causes a potential-dependent transient decrease at the inner rod. 7. An electrical model of the rod, based upon estimates of the membrane resistances and membrane e.m.f.s. in the dark, was derived from the data. This model predicts the appropriate response potentials at outer segment and cell body when perturbed by the measured light-elicited resistance increase at the outer segment. An estimate of membrane current in dark, of 0-2 mA, is also derived from the model. Images Plate 1 PMID:1123772

  16. Clinical image: MRI during migraine with aura

    SciTech Connect

    McNeal, A.C.

    1996-03-01

    Migraine refers to severe headaches that are usually unilateral, throbbing, and associated with nausea, vomiting, photophobia, and phonophobia. Migraine with aura (formerly called {open_quotes}classic migraine{close_quotes}) consists of the headache preceded or accompanied by neurological dysfunction. This dysfunction (aura) usually involves visual and sensory symptoms. The patient described herein experienced migraine with aura. MRI during and after the attack showed a reversible abnormality of the right posterior cerebral artery, with no parenchymal lesions. This appears to be the first report of abnormal MR vascular imaging during migraine with aura. 10 refs., 2 figs.

  17. An Open-Access, Very-Low-Field MRI System for Posture-Dependent 3He Human Lung Imaging

    PubMed Central

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-01-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in-vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons. PMID:18550402

  18. An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging

    NASA Astrophysics Data System (ADS)

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-08-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons.

  19. Hemorrhage detection in MRI brain images using images features

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela

    2013-11-01

    The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.

  20. MRI

    MedlinePlus

    ... scan is an imaging test that uses powerful magnets and radio waves to create pictures of the ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  1. Low-field MRI for studies of human pulmonary physiology and traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wilson, Alyssa; Devience, Stephen; Rosen, Matthew; Walsworth, Ronald

    2011-05-01

    We describe recent progress on the development of an open-access low-magnetic-field MRI system for studies of human pulmonary physiology and traumatic brain injury. Low-field MRI benefits from reduced magnetic susceptibility effects and can provide high-resolution images of the human body when used with hyperpolarized media such as 3He and 129Xe.

  2. Multiresolution segmentation technique for spine MRI images

    NASA Astrophysics Data System (ADS)

    Li, Haiyun; Yan, Chye H.; Ong, Sim Heng; Chui, Cheekong K.; Teoh, Swee H.

    2002-05-01

    In this paper, we describe a hybrid method for segmentation of spinal magnetic resonance imaging that has been developed based on the natural phenomenon of stones appearing as water recedes. The candidate segmentation region corresponds to the stones with characteristics similar to that of intensity extrema, edges, intensity ridge and grey-level blobs. The segmentation method is implemented based on a combination of wavelet multiresolution decomposition and fuzzy clustering. First thresholding is performed dynamically according to local characteristic to detect possible target areas, We then use fuzzy c-means clustering in concert with wavelet multiscale edge detection to identify the maximum likelihood anatomical and functional target areas. Fuzzy C-Means uses iterative optimization of an objective function based on a weighted similarity measure between the pixels in the image and each of c cluster centers. Local extrema of this objective function are indicative of an optimal clustering of the input data. The multiscale edges can be detected and characterized from local maxima of the modulus of the wavelet transform while the noise can be reduced to some extent by enacting thresholds. The method provides an efficient and robust algorithm for spinal image segmentation. Examples are presented to demonstrate the efficiency of the technique on some spinal MRI images.

  3. Robust and high resolution hyperpolarized metabolic imaging of the rat heart at 7 t with 3d spectral‐spatial EPI

    PubMed Central

    Miller, Jack J.; Lau, Angus Z.; Teh, Irvin; Schneider, Jürgen E.; Kinchesh, Paul; Smart, Sean; Ball, Vicky; Sibson, Nicola R.

    2015-01-01

    Purpose Hyperpolarized metabolic imaging has the potential to revolutionize the diagnosis and management of diseases where metabolism is dysregulated, such as heart disease. We investigated the feasibility of imaging rodent myocardial metabolism at high resolution at 7 T. Methods We present here a fly‐back spectral‐spatial radiofrequency pulse that sidestepped maximum gradient strength requirements and enabled high resolution metabolic imaging of the rodent myocardium. A 3D echo‐planar imaging readout followed, with centric ordered z‐phase encoding. The cardiac gated sequence was used to image metabolism in rodents whose metabolic state had been manipulated by being fasted, fed, or fed and given the pyruvate dehydrogenase kinase inhibitor dichloroacetate. Results We imaged hyperpolarized metabolites with a spatial resolution of 2×2×3.8 mm3 and a temporal resolution of 1.8 s in the rat heart at 7 T. Significant differences in myocardial pyruvate dehydrogenase flux were observed between the three groups of animals, concomitant with the known biochemistry. Conclusion The proposed sequence was able to image in vivo metabolism with excellent spatial resolution in the rat heart. The field of view enabled the simultaneous multi‐organ acquisition of metabolic information from the rat, which is of great utility for preclinical research in cardiovascular disease. Magn Reson Med 000:000–000, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1515–1524, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. PMID:25991606

  4. Spin Relaxation in Hyperpolarized He-3 Fermi Liquids

    NASA Astrophysics Data System (ADS)

    Stanton, Liam; Bedell, Kevin

    2004-03-01

    In the past few years, attention has been drawn towards the hyperpolarized gases of Xenon-129 and Helium-3 isotopes. Medical research has explored the possibilities of using these isotopes for magnetic resonance imaging (MRI) of the lungs in both human and animal test subjects. Because the atoms of hyperpolarized gas are forced into a specific spin state, the MRI signal is enhanced. While the spin relaxation times of Helium-3 can be calculated in the high and low temperature limits, there exists no exact analytic solution for intermediate temperatures. The intention of this research was to numerically connect these limits with an accurate approximation. To do this, various analytic and numerical methods were used to reduce the spin relaxation time to a function of temperature, chemical potential, and particle number. Additional numerical methods were then used to calculate the chemical potential of Helium-3. The data show that a minimum occurs in the spin relaxation time at the order of the Fermi temperature, after which the classical limit is rapidly approached. These computational results seem to coincide with those expected.

  5. Assessment of the lung microstructure in patients with asthma using hyperpolarized 3He diffusion MRI at two time scales: Comparison with healthy subjects and patients with COPD

    PubMed Central

    Wang, Chengbo; Altes, Talissa A.; Mugler, John P.; Miller, G. Wilson; Ruppert, Kai; Mata, Jaime F.; Cates, Gordon D.; Borish, Larry; de Lange, Eduard E.

    2010-01-01

    Purpose To investigate short- and long-time-scale 3He diffusion in asthma. Materials and methods A hybrid MRI sequence was developed to obtain co-registered short- and long-time-scale ADC maps during a single breath-hold. Study groups: asthma (n=14); healthy (n=14); COPD (n=9). Correlations were made between mean-ADC and %ADC-abn (%pixels with ADC>mean+2SD of healthy) at both time-scales, and spirometry. Sensitivities were determined using ROC analysis. Results For asthmatics, the short- and long-time-scale group-mean ADC were 0.254±0.032 cm2/s and 0.0237±0.0055 cm2/s, respectively, representing a 9% and 27% (p=0.038 and p=0.005) increase compared to healthy group. The group-mean %ADC-abn were 6.4%±3.7% and 17.5%±14.2%, representing a 107% and 272% (p=0.004 and p=0.006) increase. For COPD much greater elevations were observed. %ADC-abn provided better discrimination than mean-ADC between asthmatic and healthy subjects. In asthmatics ADC did not correlate with spirometry. Conclusion With long-time-scale 3He diffusion magnetic resonance imaging (MRI) changes in lung microstructure were detected in asthma that were more conspicuous regionally than at the short time scale. The hybrid diffusion method is a novel means of identifying small airway disease. PMID:18581381

  6. Current Status of Hybrid PET/MRI in Oncologic Imaging

    PubMed Central

    Rosenkrantz, Andrew B.; Friedman, Kent; Chandarana, Hersh; Melsaether, Amy; Moy, Linda; Ding, Yu-Shin; Jhaveri, Komal; Beltran, Luis; Jain, Rajan

    2016-01-01

    OBJECTIVE This review article explores recent advancements in PET/MRI for clinical oncologic imaging. CONCLUSION Radiologists should understand the technical considerations that have made PET/MRI feasible within clinical workflows, the role of PET tracers for imaging various molecular targets in oncology, and advantages of hybrid PET/MRI compared with PET/CT. To facilitate this understanding, we discuss clinical examples (including gliomas, breast cancer, bone metastases, prostate cancer, bladder cancer, gynecologic malignancy, and lymphoma) as well as future directions, challenges, and areas for continued technical optimization for PET/MRI. PMID:26491894

  7. PET/MRI in Oncological Imaging: State of the Art

    PubMed Central

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  8. PET/MRI in Oncological Imaging: State of the Art.

    PubMed

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  9. TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI

    SciTech Connect

    Paulson, E

    2014-06-15

    Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T using a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in

  10. High resolution spectroscopy and chemical shift imaging of hyperpolarized 129Xe dissolved in the human brain in vivo at 1.5 tesla

    PubMed Central

    Rao, Madhwesha; Stewart, Neil J.; Norquay, Graham; Griffiths, Paul D.

    2016-01-01

    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in‐house and 129Xe gas was polarized using spin‐exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two‐dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo. Magn Reson Med 75:2227–2234, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27080441

  11. Fusion of PET and MRI for Hybrid Imaging

    NASA Astrophysics Data System (ADS)

    Cho, Zang-Hee; Son, Young-Don; Kim, Young-Bo; Yoo, Seung-Schik

    Recently, the development of the fusion PET-MRI system has been actively studied to meet the increasing demand for integrated molecular and anatomical imaging. MRI can provide detailed anatomical information on the brain, such as the locations of gray and white matter, blood vessels, axonal tracts with high resolution, while PET can measure molecular and genetic information, such as glucose metabolism, neurotransmitter-neuroreceptor binding and affinity, protein-protein interactions, and gene trafficking among biological tissues. State-of-the-art MRI systems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures including neuronal bundles in the pons, fine blood vessels (such as lenticulostriate arteries) without invasive contrast agents, in vivo hippocampal substructures, and substantia nigra with excellent image contrast. High-resolution PET, known as High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable of imaging minute changes of chemicals, such as neurotransmitters and -receptors, with high spatial resolution and sensitivity. The synergistic power of the two, i.e., ultra high-resolution anatomical information offered by a 7.0 T MRI system combined with the high-sensitivity molecular information offered by HRRT-PET, will significantly elevate the level of our current understanding of the human brain, one of the most delicate, complex, and mysterious biological organs. This chapter introduces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in detail.

  12. LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization

    NASA Astrophysics Data System (ADS)

    Theis, Thomas; Truong, Milton; Coffey, Aaron M.; Chekmenev, Eduard Y.; Warren, Warren S.

    2014-11-01

    Nuclear spin hyperpolarization overcomes the sensitivity limitations of traditional NMR and MRI, but the most general method demonstrated to date (dynamic nuclear polarization) has significant limitations in scalability, cost, and complex apparatus design. As an alternative, signal amplification by reversible exchange (SABRE) of parahydrogen on transition metal catalysts can hyperpolarize a variety of substrates, but to date this scheme has required transfer of the sample to low magnetic field or very strong RF irradiation. Here we demonstrate "Low-Irradiation Generation of High Tesla-SABRE" (LIGHT-SABRE) which works with simple pulse sequences and low power deposition; it should be usable at any magnetic field and for hyperpolarization of many different nuclei. This approach could drastically reduce the cost and complexity of producing hyperpolarized molecules.

  13. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  14. Future image acquisition trends for PET/MRI.

    PubMed

    Boss, Andreas; Weiger, Markus; Wiesinger, Florian

    2015-05-01

    Hybrid PET/MRI scanners have become commercially available in the past years but are not yet widely distributed. The combination of a state-of-the-art PET with a state-of-the-art MRI scanner provides numerous potential advantages compared with the established PET/CT hybrid systems, namely, increased soft tissue contrast; functional information from MRI such as diffusion, perfusion, and blood oxygenation level-dependent techniques; true multiplanar data acquisition; and reduced radiation exposure. On the contrary, current PET/MRI technology is hampered by several shortcomings compared with PET/CT, the most important issues being how to use MR data for PET attenuation correction and the low sensitivity of MRI for small-scale pulmonary pathologies compared with high-resolution CT. Moreover, the optimal choice for hybrid PET/MRI acquisition protocols needs to be defined providing the highest possible degree of sensitivity and specificity within the constraints of the available measurement time. A multitude of new acquisition strategies of PET and MRI not only offer to overcome current obstacles of hybrid PET/MRI but also provide deeper insights into the pathophysiology of oncological, inflammatory, or degenerative diseases from the combination of molecular and functional imaging techniques. PMID:25841275

  15. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT. PMID:27075745

  16. Texture analysis on MRI images of non-Hodgkin lymphoma.

    PubMed

    Harrison, L; Dastidar, P; Eskola, H; Järvenpää, R; Pertovaara, H; Luukkaala, T; Kellokumpu-Lehtinen, P-L; Soimakallio, S

    2008-04-01

    The aim here is to show that texture parameters of magnetic resonance imaging (MRI) data changes in lymphoma tissue during chemotherapy. Ten patients having non-Hodgkin lymphoma masses in the abdomen were imaged for chemotherapy response evaluation three consecutive times. The analysis was performed with MaZda texture analysis (TA) application. The best discrimination in lymphoma MRI texture was obtained within T2-weighted images between the pre-treatment and the second response evaluation stage. TA proved to be a promising quantitative means of representing lymphoma tissue changes during medication follow-up. PMID:18342845

  17. Initial tests of a prototype MRI-compatible PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .

  18. Assessment of radiofrequency ablation margin by MRI-MRI image fusion in hepatocellular carcinoma

    PubMed Central

    Wang, Xiao-Li; Li, Kai; Su, Zhong-Zhen; Huang, Ze-Ping; Wang, Ping; Zheng, Rong-Qin

    2015-01-01

    AIM: To investigate the feasibility and clinical value of magnetic resonance imaging (MRI)-MRI image fusion in assessing the ablative margin (AM) for hepatocellular carcinoma (HCC). METHODS: A newly developed ultrasound workstation for MRI-MRI image fusion was used to evaluate the AM of 62 tumors in 52 HCC patients after radiofrequency ablation (RFA). The lesions were divided into two groups: group A, in which the tumor was completely ablated and 5 mm AM was achieved (n = 32); and group B, in which the tumor was completely ablated but 5 mm AM was not achieved (n = 29). To detect local tumor progression (LTP), all patients were followed every two months by contrast-enhanced ultrasound, contrast-enhanced MRI or computed tomography (CT) in the first year after RFA. Then, the follow-up interval was prolonged to every three months after the first year. RESULTS: Of the 62 tumors, MRI-MRI image fusion was successful in 61 (98.4%); the remaining case had significant deformation of the liver and massive ascites after RFA. The time required for creating image fusion and AM evaluation was 15.5 ± 5.5 min (range: 8-22 min) and 9.6 ± 3.2 min (range: 6-14 min), respectively. The follow-up period ranged from 1-23 mo (14.2 ± 5.4 mo). In group A, no LTP was detected in 32 lesions, whereas in group B, LTP was detected in 4 of 29 tumors, which occurred at 2, 7, 9, and 15 mo after RFA. The frequency of LTP in group B (13.8%; 4/29) was significantly higher than that in group A (0/32, P = 0.046). All of the LTPs occurred in the area in which the 5 mm AM was not achieved. CONCLUSION: The MRI-MRI image fusion using an ultrasound workstation is feasible and useful for evaluating the AM after RFA for HCC. PMID:25954109

  19. PCA-based groupwise image registration for quantitative MRI.

    PubMed

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  20. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer

    PubMed Central

    Chen, Chen; Wu, Chang Qiang; Chen, Tian Wu; Tang, Meng Yue; Zhang, Xiao Ming

    2015-01-01

    Despite the variety of approaches that have been improved to achieve a good understanding of pancreatic cancer (PC), the prognosis of PC remains poor, and the survival rates are dismal. The lack of early detection and effective interventions is the main reason. Therefore, considerable ongoing efforts aimed at identifying early PC are currently being pursued using a variety of methods. In recent years, the development of molecular imaging has made the specific targeting of PC in the early stage possible. Molecular imaging seeks to directly visualize, characterize, and measure biological processes at the molecular and cellular levels. Among different imaging technologies, the magnetic resonance (MR) molecular imaging has potential in this regard because it facilitates noninvasive, target-specific imaging of PC. This topic is reviewed in terms of the contrast agents for MR molecular imaging, the biomarkers related to PC, targeted molecular probes for MRI, and the application of MRI in the diagnosis of PC. PMID:26579537

  1. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  2. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    NASA Astrophysics Data System (ADS)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  3. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection.

    PubMed

    Sinharay, Sanhita; Pagel, Mark D

    2016-06-12

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized (13)C to detect the agent with outstanding sensitivity. These hyperpolarized (13)C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  4. Magnetic resonance imaging (MRI): A review of genetic damage investigations.

    PubMed

    Vijayalaxmi; Fatahi, Mahsa; Speck, Oliver

    2015-01-01

    Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic medical imaging technique widely used to acquire detailed information about anatomy and function of different organs in the body, in both health and disease. It utilizes electromagnetic fields of three different frequency bands: static magnetic field (SMF), time-varying gradient magnetic fields (GMF) in the kHz range and pulsed radiofrequency fields (RF) in the MHz range. There have been some investigations examining the extent of genetic damage following exposure of bacterial and human cells to all three frequency bands of electromagnetic fields, as used during MRI: the rationale for these studies is the well documented evidence of positive correlation between significantly increased genetic damage and carcinogenesis. Overall, the published data were not sufficiently informative and useful because of the small sample size, inappropriate comparison of experimental groups, etc. Besides, when an increased damage was observed in MRI-exposed cells, the fate of such lesions was not further explored from multiple 'down-stream' events. This review provides: (i) information on the basic principles used in MRI technology, (ii) detailed experimental protocols, results and critical comments on the genetic damage investigations thus far conducted using MRI equipment and, (iii) a discussion on several gaps in knowledge in the current scientific literature on MRI. Comprehensive, international, multi-centered collaborative studies, using a common and widely used MRI exposure protocol (cardiac or brain scan) incorporating several genetic/epigenetic damage end-points as well as epidemiological investigations, in large number of individuals/patients are warranted to reduce and perhaps, eliminate uncertainties raised in genetic damage investigations in cells exposed in vitro and in vivo to MRI. PMID:26041266

  5. Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Watabe, Tadashi; Watabe, Hiroshi; Aoki, Masaaki; Sugiyama, Eiji; Imaizumi, Masao; Kanai, Yasukazu; Shimosegawa, Eku; Hatazawa, Jun

    2012-01-01

    The silicon photomultiplier (Si-PM) is a promising photo-detector for PET for use in magnetic resonance imaging (MRI) systems because it has high gain and is insensitive to static magnetic fields. Recently we developed a Si-PM-based depth-of-interaction PET system for small animals and performed simultaneous measurements by combining the Si-PM-based PET and the 0.15 T permanent MRI to test the interferences between the Si-PM-based PET and an MRI. When the Si-PM was inside the MRI and installed around the radio frequency (RF) coil of the MRI, significant noise from the RF sequence of the MRI was observed in the analog signals of the PET detectors. However, we did not observe any artifacts in the PET images; fluctuation increased in the count rate of the Si-PM-based PET system. On the MRI side, there was significant degradation of the signal-to-noise ratio (S/N) in the MRI images compared with those without PET. By applying noise reduction procedures, the degradation of the S/N was reduced. With this condition, simultaneous measurements of a rat brain using a Si-PM-based PET and an MRI were made with some degradation in the MRI images. We conclude that simultaneous measurements are possible using Si-PM-based PET and MRI.

  6. Gas Phase UTE MRI of Propane and Propene

    PubMed Central

    Kovtunov, Kirill V.; Romanov, Alexey S.; Salnikov, Oleg G.; Barskiy, Danila A.; Chekmenev, Eduard Y.; Koptyug, Igor V.

    2016-01-01

    1H MRI of gases can potentially enable functional lung imaging to probe gas ventilation and other functions. In this work, 1H MR images of hyperpolarized and thermally polarized propane gas were obtained using UTE (ultrashort echo time) pulse sequence. A 2D image of thermally polarized propane gas with ~0.9×0.9 mm2 spatial resolution was obtained in less than 2 seconds, demonstrating that even non-hyperpolarized hydrocarbon gases can be successfully utilized for conventional proton MRI. The experiments were also performed with hyperpolarized propane gas and demonstrated acquisition of high-resolution multi-slice FLASH 2D images in ca. 510 s and non slice-selective 2D UTE MRI images in ca. 2 s. The UTE approach adopted in this study can be potentially used for medical lung imaging. Furthermore, the possibility to combine UTE with selective suppression of 1H signals from one of the two gases in a mixture is demonstrated in this MRI study. The latter can be useful for visualizing industrially important processes where several gases may be present, e.g., gas-solid catalytic reactions. PMID:27478870

  7. Breast imaging with ultrasound tomography: a comparative study with MRI

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan; Littrup, Peter; Duric, Neb; Li, Cuiping; Schmidt, Steven; Lupinacci, Jessica; Myc, Lukasz; Szczepanski, Amy; Rama, Olsi; Bey-Knight, Lisa

    2010-03-01

    The purpose of this study was to investigate the performance of an ultrasound tomography (UST) prototype relative to magnetic resonance (MR) for imaging overall breast anatomy and accentuating tumors relative to background tissue. The study was HIPAA compliant, approved by the Institutional Review Board, and performed after obtaining the requisite informed consent. Twenty-three patients were imaged with MR and the UST prototype. T1 weighted images with fat saturation, with and without gadolinium enhancement, were used to examine anatomical structures and tumors, while T2 weighted images were used to identify cysts. The UST scans generated sound speed, attenuation, and reflection images. A qualitative visual comparison of the MRI and UST images was then used to identify anatomical similarities. A more focused approach that involved a comparison of reported masses, lesion volumes, and breast density was used to quantify the findings from the visual assessment. Our acoustic tomography prototype imaged distributions of fibrous stroma, parenchyma, fatty tissues, and lesions in patterns similar to those seen in the MR images. The range of thresholds required to establish tumor volume equivalency between MRI and UST suggested that a universal threshold for isolating masses relative to background tissue is feasible with UST. UST has demonstrated the ability to visualize and characterize breast tissues in a manner comparable to MRI. Thresholding techniques accentuate masses relative to background anatomy, which may prove clinically useful for early cancer detection.

  8. Combustion resistance of the 129Xe hyperpolarized nuclear spin state.

    PubMed

    Stupic, Karl F; Six, Joseph S; Olsen, Michael D; Pavlovskaya, Galina E; Meersmann, Thomas

    2013-01-01

    Using a methane-xenon mixture for spin exchange optical pumping, MRI of combustion was enabled. The (129)Xe hyperpolarized nuclear spin state was found to sufficiently survive the complete passage through the harsh environment of the reaction zone. A velocity profile (V(z)(z)) of a flame was recorded to demonstrate the feasibility of MRI velocimetry of transport processes in combustors. PMID:23165418

  9. Pitfalls of adrenal imaging with chemical shift MRI.

    PubMed

    Schieda, N; Al Dandan, O; Kielar, A Z; Flood, T A; McInnes, M D F; Siegelman, E S

    2014-11-01

    Chemical shift (CS) MRI of the adrenal glands exploits the different precessional frequencies of fat and water protons to differentiate the intracytoplasmic lipid-containing adrenal adenoma from other adrenal lesions. The purpose of this review is to illustrate both technical and interpretive pitfalls of adrenal imaging with CS MRI and emphasize the importance of adherence to strict technical specifications and errors that may occur when other imaging features and clinical factors are not incorporated into the diagnosis. When performed properly, the specificity of CS MRI for the diagnosis of adrenal adenoma is over 90%. Sampling the in-phase and opposed-phase echoes in the correct order and during the same breath-hold are essential requirements, and using the first echo pair is preferred, if possible. CS MRI characterizes more adrenal adenomas then unenhanced CT but may be non-diagnostic in a proportion of lipid-poor adenomas; CT washout studies may be able to diagnose these lipid-poor adenomas. Other primary and secondary adrenal tumours and supra-renal disease entities may contain lipid or gross fat and mimic adenoma or myelolipoma. Heterogeneity within an adrenal lesion that contains intracytoplasmic lipid could be due to myelolipoma, lipomatous metaplasia of adenoma, or collision tumour. Correlation with previous imaging, other imaging features, clinical history, and laboratory investigations can minimize interpretive errors. PMID:25062926

  10. Opening the black box: imaging nanoparticle transport with MRI

    NASA Astrophysics Data System (ADS)

    Phoenix, V.; Holmes, W. M.

    2009-12-01

    While most renown for its use in medicine, magnetic resonance imaging (MRI) has tremendous potential in the study of environmental processes. Its ability to non-invasively image inside materials that are opaque to other imaging methods (in particular light based techniques) is a particular strength. MRI has already been used, for example, to study fluid flow in rocks and image mass transport and biogeochemical processes in biofilms [1-4]. Here, we report of the use of MRI to image nanoparticle transport through porous geologic media (in this case packed gravel columns). Packed column experiments are key to understanding nanoparticulate transport in porous geologic media. Whilst highly informative, the data obtained can be a bulk average of a complex and heterogeneous array of interactions within the column. Natural environmental systems are often complex, displaying heterogeneity in geometry, hydrodynamics, geochemistry and microbiology throughout. MRI enables us to quantify better how this heterogeneity may influence nanoparticle transport and fate by enabling us to look inside the column and image the movement of nanoparticles within. To make the nanoparticle readily visible to MRI, it is labelled with a paramagnetic tag (commonly gadolinium). Indeed, a wide variety of off-the-shelf paramagnetically tagged nanoparticles and macromolecules are available, each with different properties enabling us to explore the impact of particle charge, size etc on their transport behaviour. In this preliminary study, packed columns of quartz or marble based gravels (approx 5 mm diameter) were first imaged to check their suitability for MR imaging. This was done as geologic material can contain sufficiently high concentrations of ferro- and paramagnetic ions to induce unwanted artefacts in the MR image. All gravels imaged (Rose quartz, Creswick quartz gravel and Ben Deulin white marble) produced minimal or no artefacts. A solution of the nanoparticle GadoCELLTrack (BioPAL), was

  11. Magnetic resonance imaging of hyperpolarized 129Xe produced by spin exchange with diode-laser pumped Cs

    NASA Astrophysics Data System (ADS)

    Levron, D.; Walter, D. K.; Appelt, S.; Fitzgerald, R. J.; Kahn, D.; Korbly, S. E.; Sauer, K. L.; Happer, W.; Earles, T. L.; Mawst, L. J.; Botez, D.; Harvey, M.; DiMarco, L.; Connolly, J. C.; Möller, H. E.; Chen, X. J.; Cofer, G. P.; Johnson, G. A.

    1998-11-01

    We report the results of experiments leading to the production of an image of a polarized 129Xe sample prepared by spin exchange with Cs, optically pumped with a spectrally narrowed 894.3 nm diode laser. Representative images of the average electron spin polarization are shown. Appreciable cesium electron polarization values were achieved, and a nuclear polarization of about 2.5% was measured for 129Xe. The absolute nuclear polarization was measured by water-calibrated free induction decay of the nuclear magnetic resonance signal, and the polarized xenon imaged using a 2 T magnetic resonance imaging system.

  12. SQUID-sensor-based ultra-low-field MRI calibration with phantom images: Towards quantitative imaging

    NASA Astrophysics Data System (ADS)

    Dabek, Juhani; Vesanen, Panu T.; Zevenhoven, Koos C. J.; Nieminen, Jaakko O.; Sepponen, Raimo; Ilmoniemi, Risto J.

    2012-11-01

    In ultra-low-field magnetic resonance imaging (ULF MRI), measured resonance signals oscillate at Larmor frequencies around 1 kHz compared to even above 100 MHz in high-field MRI. Thus, detection by induction coils in ULF MRI is not feasible, whereas superconducting quantum interference device (SQUID) sensors can measure these femtotesla-level signals. The signal-to-noise ratio is enhanced by prepolarization in a field that is typically 100-1000 times higher than the field during acquisition. Based on both measurements and simulations, a procedure for calibrating a SQUID-sensor-based MRI system with MR images is presented in this article. Magnetoencephalography (MEG) can be integrated with ULF MRI, and may also benefit from such a calibration procedure. Conventionally, electromagnet probe signals have been used for the SQUID-sensor calibration in MEG; the presented ULF-MRI-based approach using an imaging phantom could replace this procedure in hybrid MEG-MRI or ULF MRI alone. The necessary theory is provided here with experimental verification. The calibration procedure opens the possibility of performing quantitative ULF MRI without sample-specific reference scans.

  13. Assessment of Lung Function in Asthma and COPD using Hyperpolarized 129Xe Chemical Shift Saturation Recovery Spectroscopy and Dissolved-Phase MR Imaging

    PubMed Central

    Qing, Kun; Mugler, John P.; Altes, Talissa A.; Jiang, Yun; Mata, Jaime F.; Miller, G. Wilson; Ruset, Iulian C.; Hersman, F. William; Ruppert, Kai

    2014-01-01

    Magnetic-resonance spectroscopy and imaging using hyperpolarized xenon-129 show great potential for evaluation of the most important function of the human lung -- gas exchange. In particular, Chemical Shift Saturation Recovery (CSSR) xenon-129 spectroscopy provides important physiological information for the lung as a whole by characterizing the dynamic process of gas exchange, while dissolved-phase xenon-129 imaging captures the time-averaged regional distribution of gas uptake by lung tissue and blood. Herein, we present recent advances in assessing lung function using CSSR spectroscopy and dissolved-phase imaging in a total of 45 subjects (23 healthy, 13 chronic obstructive pulmonary disease (COPD) and 9 asthma). From CSSR acquisitions, the COPD subjects showed red blood cell to tissue/plasma (RBC-to-TP) ratios below the average for the healthy subjects (p<0.001), but significantly higher septal wall thicknesses, as compared with the healthy subjects (p<0.005); the RBC-to-TP ratios for the asthmatics fell outside 2 standard deviations (either higher or lower) from the mean of the healthy subjects although there was no statistically significant difference for the average ratio of the study group as a whole. Similarly, from the 3D DP imaging acquisitions, we found all the ratios (TP-to-GP, RBC-to-GP, RBC-to-TP) measured in the COPD subjects were lower than those from the healthy subjects (p<0.05 for all ratios), while these ratios in the asthmatics differed considerably between subjects. Despite having been performed at different lung inflation levels, the RBC-to-TP ratios measured by CSSR and 3D DP imaging were fairly consistent with each other, with a mean difference of 0.037 (ratios from 3D DP imaging larger). In ten subjects the RBC-to-GP ratios obtained from the 3D DP imaging acquisitions were also highly correlated with their DLCO/Va ratios measured by pulmonary function testing (R=0.91). PMID:25146558

  14. Magnetic Particle Imaging (MPI) for NMR and MRI Researchers

    PubMed Central

    Goodwill, Patrick W.; Croft, Laura R.; Konkle, Justin J.; Lu, Kuan; Zheng, Bo; Conolly, Steven M.

    2012-01-01

    Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for chronic kidney disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the “black blood” contrast generated by SPIOs in MRI due to increased T2* dephasing, SPIOs in MPI generate positive, “bright blood” contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. PMID:23305842

  15. Magnetic Particle Imaging (MPI) for NMR and MRI researchers

    NASA Astrophysics Data System (ADS)

    Saritas, Emine U.; Goodwill, Patrick W.; Croft, Laura R.; Konkle, Justin J.; Lu, Kuan; Zheng, Bo; Conolly, Steven M.

    2013-04-01

    Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the “black blood” contrast generated by SPIOs in MRI due to increased T2∗ dephasing, SPIOs in MPI generate positive, “bright blood” contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field.

  16. Magnetic resonance imaging (MRI) of bruises: a pilot study.

    PubMed

    Langlois, Neil E I; Ross, Claire G; Byard, Roger W

    2013-09-01

    The purpose of this study was to investigate if magnetic resonance imaging (MRI) could be used to image the presence of hemosiderin in bruises and if there was the potential for this technique to be applied as a non-invasive method to estimate the age of bruises. To achieve this aim an animal model to produce lesions resembling bruises was created by injecting blood obtained from the tail vein subcutaneously into an area of the abdominal wall. The animals were euthanized at 3, 6, 12 h, 1, 2, 3, 5, and 7 days post injection and the skin of the abdominal wall was excised for MRI scanning and histological examination. The injected blood appeared as hypointense (dark) areas on the T2* MRI at 3 and 6 h. The image of the injected areas became indistinct at 12 h and continued to be indistinct at 1 and 2 days, although there appeared to be transitioning from hypointensity to hyperintensity (light). The magnetic resonance image appeared to better correspond to the histological appearance at 3 and 5 days, with the "bruise" appearing hyperintense (white); however, some hypointense (darker) areas at 3 day possibly corresponded to the development of hemosiderin. At 7 day the injected blood had been converted to hemosiderin with possible correlation between areas of blue staining in Perls' stained histologic sections and areas of extreme hypointensity in the T2* magnetic resonance image. This study has shown that a series of changes occur on MRI of bruises in an animal model that may relate to histological changes. Although variability in the intensity of the MRI signal and considerable soft tissue artifact currently make interpretations difficult, this may be a technique worth pursuing in the non-invasive evaluation of bruises. PMID:23760862

  17. Imaging industry expectations for compressed sensing in MRI

    NASA Astrophysics Data System (ADS)

    King, Kevin F.; Kanwischer, Adriana; Peters, Rob

    2015-09-01

    Compressed sensing requires compressible data, incoherent acquisition and a nonlinear reconstruction algorithm to force creation of a compressible image consistent with the acquired data. MRI images are compressible using various transforms (commonly total variation or wavelets). Incoherent acquisition of MRI data by appropriate selection of pseudo-random or non-Cartesian locations in k-space is straightforward. Increasingly, commercial scanners are sold with enough computing power to enable iterative reconstruction in reasonable times. Therefore integration of compressed sensing into commercial MRI products and clinical practice is beginning. MRI frequently requires the tradeoff of spatial resolution, temporal resolution and volume of spatial coverage to obtain reasonable scan times. Compressed sensing improves scan efficiency and reduces the need for this tradeoff. Benefits to the user will include shorter scans, greater patient comfort, better image quality, more contrast types per patient slot, the enabling of previously impractical applications, and higher throughput. Challenges to vendors include deciding which applications to prioritize, guaranteeing diagnostic image quality, maintaining acceptable usability and workflow, and acquisition and reconstruction algorithm details. Application choice depends on which customer needs the vendor wants to address. The changing healthcare environment is putting cost and productivity pressure on healthcare providers. The improved scan efficiency of compressed sensing can help alleviate some of this pressure. Image quality is strongly influenced by image compressibility and acceleration factor, which must be appropriately limited. Usability and workflow concerns include reconstruction time and user interface friendliness and response. Reconstruction times are limited to about one minute for acceptable workflow. The user interface should be designed to optimize workflow and minimize additional customer training. Algorithm

  18. Lossless Compression on MRI Images Using SWT.

    PubMed

    Anusuya, V; Raghavan, V Srinivasa; Kavitha, G

    2014-10-01

    Medical image compression is one of the growing research fields in biomedical applications. Most medical images need to be compressed using lossless compression as each pixel information is valuable. With the wide pervasiveness of medical imaging applications in health-care settings and the increased interest in telemedicine technologies, it has become essential to reduce both storage and transmission bandwidth requirements needed for archival and communication of related data, preferably by employing lossless compression methods. Furthermore, providing random access as well as resolution and quality scalability to the compressed data has become of great utility. Random access refers to the ability to decode any section of the compressed image without having to decode the entire data set. The system proposes to implement a lossless codec using an entropy coder. 3D medical images are decomposed into 2D slices and subjected to 2D-stationary wavelet transform (SWT). The decimated coefficients are compressed in parallel using embedded block coding with optimized truncation of the embedded bit stream. These bit streams are decoded and reconstructed using inverse SWT. Finally, the compression ratio (CR) is evaluated to prove the efficiency of the proposal. As an enhancement, the proposed system concentrates on minimizing the computation time by introducing parallel computing on the arithmetic coding stage as it deals with multiple subslices. PMID:24848945

  19. Hyperpolarized nanodiamond with long spin-relaxation times

    PubMed Central

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E.J.; Reilly, David J.

    2015-01-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance. PMID:26450570

  20. Hyperpolarized nanodiamond with long spin-relaxation times

    NASA Astrophysics Data System (ADS)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  1. Targeted Molecular Imaging of Cancer Cells Using MS2-Based (129)Xe NMR.

    PubMed

    Jeong, Keunhong; Netirojjanakul, Chawita; Munch, Henrik K; Sun, Jinny; Finbloom, Joel A; Wemmer, David E; Pines, Alexander; Francis, Matthew B

    2016-08-17

    We have synthesized targeted, selective, and highly sensitive (129)Xe NMR nanoscale biosensors using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized (129)Xe NMR signal contrast and hyper-CEST (129)Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized (129)Xe NMR nanoscale biosensor for future applications in cancer detection in vivo. PMID:27454679

  2. Renal compartment segmentation in DCE-MRI images.

    PubMed

    Yang, Xin; Le Minh, Hung; Tim Cheng, Kwang-Ting; Sung, Kyung Hyun; Liu, Wenyu

    2016-08-01

    Renal compartment segmentation from Dynamic Contrast-Enhanced MRI (DCE-MRI) images is an important task for functional kidney evaluation. Despite advancement in segmentation methods, most of them focus on segmenting an entire kidney on CT images, there still lacks effective and automatic solutions for accurate segmentation of internal renal structures (i.e. cortex, medulla and renal pelvis) from DCE-MRI images. In this paper, we introduce a method for renal compartment segmentation which can robustly achieve high segmentation accuracy for a wide range of DCE-MRI data, and meanwhile requires little manual operations and parameter settings. The proposed method consists of five main steps. First, we pre-process the image time series to reduce the motion artifacts caused by the movement of the patients during the scans and enhance the kidney regions. Second, the kidney is segmented as a whole based on the concept of Maximally Stable Temporal Volume (MSTV). The proposed MSTV detects anatomical structures that are homogeneous in the spatial domain and stable in terms of temporal dynamics. MSTV-based kidney segmentation is robust to noises and does not require a training phase. It can well adapt to kidney shape variations caused by renal dysfunction. Third, voxels in the segmented kidney are described by principal components (PCs) to remove temporal redundancy and noises. And then k-means clustering of PCs is applied to separate voxels into multiple clusters. Fourth, the clusters are automatically labeled as cortex, medulla and pelvis based on voxels' geometric locations and intensity distribution. Finally, an iterative refinement method is introduced to further remove noises in each segmented compartment. Experiments on 14 real clinical kidney datasets and 12 synthetic dataset demonstrate that results produced by our method match very well with those segmented manually and the performance of our method is superior to the other five existing methods. PMID:27236222

  3. Brain CT and MRI: differential diagnosis of imaging findings.

    PubMed

    Masdeu, Joseph C; Gadhia, Rajan; Faridar, Alireza

    2016-01-01

    Following a traditional approach, in Chapters 5 and 14-29 in the previous volume, diverse brain diseases are listed and their imaging findings described in detail. In this chapter the approach is from the imaging finding to the disease: for instance, what list of diseases can give rise to a contrast-enhancing mass in the cerebellopontine angle? Imaging findings that are reviewed in succession include the location of the lesion, its multiplicity and symmetry, its volume, ranging from atrophy to mass effect, its homogeneity, its density, measurable by computed tomography (CT), its appearance on T1, T2, and diffusion magnetic resonance imaging (MRI), and, finally, its characteristics after the infusion of intravenous contrast. A differential diagnosis for each finding is provided. While the approach adopted in this chapter is unconventional, we hope that it will be most helpful to anyone reading images. Furthermore, it could serve as the basis to create or complete image databases to guide in the interpretation of brain CT and MRI. PMID:27430457

  4. Photo-magnetic imaging: resolving optical contrast at MRI resolution

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Gao, Hao; Thayer, David; Luk, Alex L.; Gulsen, Gultekin

    2013-06-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely photo-magnetic imaging (PMI). PMI uses a laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of the optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite-element-based algorithm with an iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional diffuse optical tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium are recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentrations are also recovered successfully.

  5. Complete fourier direct magnetic resonance imaging (CFD-MRI) for diffusion MRI

    PubMed Central

    Özcan, Alpay

    2013-01-01

    The foundation for an accurate and unifying Fourier-based theory of diffusion weighted magnetic resonance imaging (DW–MRI) is constructed by carefully re-examining the first principles of DW–MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW–MRI signal by including all of its elements (e.g., imaging gradients) using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time) and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW–MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex vivo baboon brain. PMID:23596401

  6. Functional MRI studies of human vision on a clinical imager

    SciTech Connect

    George, J.S.; Lewine, J.D.; Aine, C.J.; van Hulsteyn, D.; Wood, C.C.; Sanders, J.; Maclin, E.; Belliveau, J.W.; Caprihan, A.

    1992-09-01

    During the past decade, Magnetic Resonance Imaging (MRI) has become the method of choice for imaging the anatomy of the human brain. Recently, Belliveau and colleagues have reported the use of echo planar magnetic resonance imaging (EPI) to image patterns of neural activity. Here, we report functional MR imaging in response to visual stimulation without the use of contrast agents, and without the extensive hardware modifications required for EPI. Regions of activity were observed near the expected locations of V1, V2 and possibly V3 and another active region was observed near the parietal-occipital sulcus on the superior surface of the cerebrum. These locations are consistent with sources observed in neuromagnetic studies of the human visual response.

  7. Functional MRI studies of human vision on a clinical imager

    SciTech Connect

    George, J.S.; Lewine, J.D.; Aine, C.J.; van Hulsteyn, D.; Wood, C.C. ); Sanders, J.; Maclin, E. ); Belliveau, J.W. ); Caprihan, A. )

    1992-01-01

    During the past decade, Magnetic Resonance Imaging (MRI) has become the method of choice for imaging the anatomy of the human brain. Recently, Belliveau and colleagues have reported the use of echo planar magnetic resonance imaging (EPI) to image patterns of neural activity. Here, we report functional MR imaging in response to visual stimulation without the use of contrast agents, and without the extensive hardware modifications required for EPI. Regions of activity were observed near the expected locations of V1, V2 and possibly V3 and another active region was observed near the parietal-occipital sulcus on the superior surface of the cerebrum. These locations are consistent with sources observed in neuromagnetic studies of the human visual response.

  8. Automatic determination of the imaging plane in lumbar MRI

    NASA Astrophysics Data System (ADS)

    Masaki, Tsurumaki; Lee, Yongbum; Tsai, Du-Yih; Sekiya, Masaru; Kazama, Kiyoko

    2006-03-01

    In this paper we describe a method for assisting radiological technologists in their routine work to automatically determine the imaging plane in lumbar MRI. The method is first to recognize the spinal cord and the intervertebral disk (ID) from the lumbar vertebra 3-plane localizer image, and then the imaging plane is automatically determined according to the recognition results. To determine the imaging plane, the spinal cord and the ID are automatically recognized from the lumbar vertebra 3-plane localizer image with a series of image processing techniques. The proposed method consists of three major steps. First, after removing the air and fat regions from the 3-plane localizer image by use of histogram analysis, the rachis region is specified with Sobel edge detection filter. Second, the spinal cord and the ID were respectively extracted from the specified rachis region making use of global thresholding and the line detection filter. Finally, the imaging plane is determined by finding the straight line between the spinal cord and the ID with the Hough transform. Image data of 10 healthy volunteers were used for investigation. To validate the usefulness of our proposed method, manual determination of the imaging plane was also conducted by five experienced radiological technologists. Our experimental results showed that the concordance rate between the manual setting and automatic determination reached to 90%. Moreover, a remarkable reduction in execution time for imaging-plane determination was also achieved.

  9. Physical interactions of hyperpolarized gas in the lung

    NASA Astrophysics Data System (ADS)

    Chen, Xiu-Hao Josette

    1999-09-01

    This thesis addresses key interactions of hyperpolarized (HP) gas within the biological environment of the lung using magnetic resonance imaging (MRI). The first excised lung image was obtained in 1994 by Albert et al ., indicating the relative youth of the HP gas MRI field. Thus, there are a multitude of parameters which need to be explored to optimize contrast mechanisms and pulse sequences for in vivo applications. To perform HP gas MRI, both the production of HP gas and development of appropriate MRI pulse sequences were necessary. The apparatus for gas polarization was transferred from Princeton University, then modified and optimized to provide larger quantities and higher polarizations. It was ultimately replaced by a prototype commercial apparatus. Existing MRI pulse sequences were changed to accommodate and exploit the unique situation of non-equilibrium polarized gas. Several physical parameters of the gas relating to structure and function in the lung were investigated. It was found that using a range of excitation powers, acquisition windows, and ventilatory cycle segments yielded dramatically different types of images in the guinea pig. Spatially localized lineshapes of HP 3He showed differentiated peaks (corresponding to frequency shifts) which represent gas in major airways (2 ppm) and alveoli (1-2 ppm). Quantitative maps of the diffusion coefficient (D) showed evidence of free diffusion in the trachea (average of 2.4 cm2/s for 3He and 0.68 cm2/s for 129Xe) and restricted diffusion combined with effects of gas mixtures in the distal pulmonary airspaces (average of 0.16 cm2/s for 3He and 0.021 cm2/s for 129Xe). Experimental measurements were verified with gas mixture and porous media theory for both 3He and 129Xe. The dephasing parameter, T*2 , was mapped showing sensitivity to changes in tidal volume and oxygen level. The T*2 values ranged from 9.2 to 15.9 ms in the intrapulmonary airspaces depending on the breathing paradigm. Experimental results

  10. Physics of Hyperpolarized Noble Gases

    NASA Astrophysics Data System (ADS)

    Happer, William

    1999-11-01

    The production of highly spin-polarized (hyperpolarized) gases by optical pumping with lasers involves spin-dependent interactions of atoms in gases, liquids, solids and on surfaces. Although enough is understood about these interactions to allow large quantities of hyperpolarized gas to be prepared, some of the basic physics is still mysterious. A better understanding of the physics would lead to worthwhile improvements in the performance of polarization systems. The most important physics involved in the production of hyperpolarized gases will be reviewed, with particular emphasis on areas where the physics is still not understood.

  11. Quality assurance of PASADENA hyperpolarization for 13C biomolecules

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Tran, Thao T.; Bhattacharya, Pratip

    2009-01-01

    Object Define MR quality assurance procedures for maximal PASADENA hyperpolarization of a biological 13C molecular imaging reagent. Materials and methods An automated PASADENA polarizer and a parahydrogen generator were installed. 13C enriched hydroxyethyl acrylate, 1-13C, 2,3,3-d3 (HEA), was converted to hyperpolarized hydroxyethyl propionate, 1-13C, 2,3,3-d3 (HEP) and fumaric acid, 1-13C, 2,3-d2 (FUM) to hyperpolarized succinic acid, 1-13C, 2,3-d2 (SUC), by reaction with parahydrogen and norbornadiene rhodium catalyst. Incremental optimization of successive steps in PASADENA was implemented. MR spectra and in vivo images of hyperpolarized 13C imaging agents were acquired at 1.5 and 4.7 T. Results Application of quality assurance (QA) criteria resulted in incremental optimization of the individual steps in PASADENA implementation. Optimal hyperpolarization of HEP of P = 20% was achieved by calibration of the NMR unit of the polarizer (B0 field strength ± 0.002 mT). Mean hyperpolarization of SUC, P = [15.3 ± 1.9]% (N = 16) in D2O, and P = [12.8 ± 3.1]% (N = 12) in H2O, was achieved every 5–8 min (range 13–20%). An in vivo 13C succinate image of a rat was produced. Conclusion PASADENA spin hyperpolarization of SUC to 15.3% in average was demonstrated (37,400 fold signal enhancement at 4.7 T). The biological fate of 13C succinate, a normally occurring cellular intermediate, might be monitored with enhanced sensitivity. PMID:19067009

  12. Propane-d6 Heterogeneously Hyperpolarized by Parahydrogen

    PubMed Central

    2015-01-01

    Long-lived spin states of hyperpolarized propane-d6 gas were demonstrated following pairwise addition of parahydrogen gas to propene-d6 using heterogeneous parahydrogen-induced polarization (HET-PHIP). Hyperpolarized molecules were synthesized using Rh/TiO2 solid catalyst with 1.6 nm Rh nanoparticles. Hyperpolarized (PH ∼ 1%) propane-d6 was detected at high magnetic field (9.4 T) spectroscopically and by high-resolution 3D gradient-echo MRI (4.7 T) as the gas flowed through the radiofrequency coil with a spatial and temporal resolution of 0.5 × 0.5 × 0.5 mm3 and 17.7 s, respectively. Stopped-flow hyperpolarized propane-d6 gas was also detected at 0.0475 T with an observed nuclear spin polarization of PH ∼ 0.1% and a relatively long lifetime with T1,eff = 6.0 ± 0.3 s. Importantly, it was shown that the hyperpolarized protons of the deuterated product obtained via pairwise parahydrogen addition could be detected directly at low magnetic field. Importantly, the relatively long low-field T1,eff of HP propane-d6 gas is not susceptible to paramagnetic impurities as tested by exposure to ∼0.2 atm oxygen. This long lifetime and nontoxic nature of propane gas could be useful for bioimaging applications including potentially pulmonary low-field MRI. The feasibility of high-resolution low-field 2D gradient-echo MRI was demonstrated with 0.88 × 0.88 mm2 spatial and ∼0.7 s temporal resolution, respectively, at 0.0475 T. PMID:25506406

  13. PASADENA hyperpolarization of 13C biomolecules: equipment design and installation

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Robertson, Larry W.; Bhattacharya, Pratip

    2009-01-01

    Object The PASADENA method has achieved hyperpolarization of 16–20% (exceeding 40,000-fold signal enhancement at 4.7 T), in liquid samples of biological molecules relevant to in vivo MRI and MRS. However, there exists no commercial apparatus to perform this experiment conveniently and reproducibly on the routine basis necessary for translation of PASADENA to questions of biomedical importance. The present paper describes equipment designed for rapid production of six to eight liquid samples per hour with high reproducibility of hyperpolarization. Materials and methods Drawing on an earlier, but unpublished, prototype, we provide diagrams of a delivery circuit, a laminar-flow reaction chamber within a low field NMR contained in a compact, movable housing. Assembly instructions are provided from which a computer driven, semiautomated PASADENA polarizer can be constructed. Results Together with an available parahydrogen generator, the polarizer, which can be operated by a single investigator, completes one cycle of hyperpolarization each 52 s. Evidence of efficacy is presented. In contrast to competing, commercially available devices for dynamic nuclear polarization which characteristically require 90 min per cycle, PASADENA provides a low-cost alternative for high throughput. Conclusions This equipment is suited to investigators who have an established small animal NMR and wish to explore the potential of heteronuclear (13C and 15N) MRI, MRS, which harnesses the enormous sensitivity gain offered by hyperpolarization. PMID:19067008

  14. Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications

    PubMed Central

    2015-01-01

    Whole-body magnetic resonance imaging (MRI) is increasingly used in children to evaluate the extent and distribution of various neoplastic and non-neoplastic diseases. Not using ionizing radiation is a major advantage of pediatric whole-body MRI. Coronal and sagittal short tau inversion recovery imaging is most commonly used as the fundamental whole-body MRI protocol. Diffusion-weighted imaging and Dixon-based imaging, which has been recently incorporated into whole-body MRI, are promising pulse sequences, particularly for pediatric oncology. Other pulse sequences may be added to increase diagnostic capability of whole-body MRI. Of importance, the overall whole-body MRI examination time should be less than 30-60 minutes in children, regardless of the imaging protocol. Established and potentially useful clinical applications of pediatric whole-body MRI are described. PMID:26355493

  15. Statistical shape model-based segmentation of brain MRI images.

    PubMed

    Bailleul, Jonathan; Ruan, Su; Constans, Jean-Marc

    2007-01-01

    We propose a segmentation method that automatically delineates structures contours from 3D brain MRI images using a statistical shape model. We automatically build this 3D Point Distribution Model (PDM) in applying a Minimum Description Length (MDL) annotation to a training set of shapes, obtained by registration of a 3D anatomical atlas over a set of patients brain MRIs. Delineation of any structure from a new MRI image is first initialized by such registration. Then, delineation is achieved in iterating two consecutive steps until the 3D contour reaches idempotence. The first step consists in applying an intensity model to the latest shape position so as to formulate a closer guess: our model requires far less priors than standard model in aiming at direct interpretation rather than compliance to learned contexts. The second step consists in enforcing shape constraints onto previous guess so as to remove all bias induced by artifacts or low contrast on current MRI. For this, we infer the closest shape instance from the PDM shape space using a new estimation method which accuracy is significantly improved by a huge increase in the model resolution and by a depth-search in the parameter space. The delineation results we obtained are very encouraging and show the interest of the proposed framework. PMID:18003193

  16. Nanomedicine strategies for molecular targets with MRI and optical imaging

    PubMed Central

    Pan, Dipanjan; Caruthers, Shelton D; Chen, Junjie; Winter, Patrick M; SenPan, Angana; Schmieder, Anne H; Wickline, Samuel A

    2010-01-01

    The science of ‘theranostics’ plays a crucial role in personalized medicine, which represents the future of patient management. Over the last decade an increasing research effort has focused on the development of nanoparticle-based molecular-imaging and drug-delivery approaches, emerging as a multidisciplinary field that shows promise in understanding the components, processes, dynamics and therapies of a disease at a molecular level. The potential of nanometer-sized agents for early detection, diagnosis and personalized treatment of diseases is extraordinary. They have found applications in almost all clinically relevant biomedical imaging modality. In this review, a number of these approaches will be presented with a particular emphasis on MRI and optical imaging-based techniques. We have discussed both established molecular-imaging approaches and recently developed innovative strategies, highlighting the seminal studies and a number of successful examples of theranostic nanomedicine, especially in the areas of cardiovascular and cancer therapy. PMID:20485473

  17. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma.

    PubMed

    Attia, Amalina Binte Ebrahim; Ho, Chris Jun Hui; Chandrasekharan, Prashant; Balasundaram, Ghayathri; Tay, Hui Chien; Burton, Neal C; Chuang, Kai-Hsiang; Ntziachristos, Vasilis; Olivo, Malini

    2016-07-01

    Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation. PMID:27091626

  18. CNS Animal fMRI imaging in Pain and Analgesia

    PubMed Central

    Borsook, David; Becerra, Lino

    2010-01-01

    Animal imaging of brain systems offers exciting opportunities to better understand the neurobiology of pain and analgesia. Overall functional studies have lagged behind human studies as a result of technical issues including the use of anesthesia. Now that many of these issues have been overcome including the possibility of imaging awake animals, there are new opportunities to study whole brain systems neurobiology of acute and chronic pain as well as analgesic effects on brain systems de novo (using pharmacological MRI) or testing in animal models of pain. Understanding brain networks in these areas may provide new insights into translational science, and use neural networks as a “language of translation” between preclinical to clinical models. In this review we evaluate the role of functional and anatomical imaging in furthering our understanding in pain and analgesia. PMID:21126534

  19. Phagocytic activity and hyperpolarizing responses in L-strain mouse fibroblasts.

    PubMed Central

    Okada, Y; Tsuchiya, W; Yada, T; Yano, J; Yawo, H

    1981-01-01

    1. Fibroblastic L cells not only respond with a slow hyperpolarizing potential change to a mechanical or electrical stimulus but also show spontaneous, repetitive hyperpolarizations (i.e. membrane potential oscillation). 2. Almost all the cells can actively take up latex beads whose surfaces were treated by U.V. irradiation. 3. Non-phagocytic L cells hardly showed hyperpolarizing responses, while hyperpolarizing responses were obtained in all the phagocytic L cells. The exposure of the cell surface to beads, however, did not trigger the generation of hyperpolarizing responses. 4. Metabolic inhibitors, low temperature and cytochalasin B inhibited both the uptake of beads and the hyperpolarizing responses. 5. Increasing the external concentration of Ca2+ induced a remarkable stimulation of the phagocytosis of beads. Mg2+ and Ba2+, which inhibited hyperpolarizing responses due to competition for Ca2+ sites on the outer surface of the membrane, significantly suppressed the uptake of beads. 6. Verapamil, a Ca2+ channel blocker, inhibited not only hyperpolarizing membrane responses but also ingestion of beads. 7. It is concluded that the Ca2+ inflow on the hyperpolarizing membrane responses is closely associated with the phagocytic activity in L cells, probably through activation of the microfilament assembly. Images Plate 1 PMID:7024506

  20. Imaging mouse lung allograft rejection with 1H MRI

    PubMed Central

    Guo, Jinbang; Huang, Howard J.; Wang, Xingan; Wang, Wei; Ellison, Henry; Thomen, Robert P.; Gelman, Andrew E.; Woods, Jason C.

    2014-01-01

    Purpose To demonstrate that longitudinal, non-invasive monitoring via MRI can characterize acute cellular rejection (ACR) in mouse orthotopic lung allografts. Methods Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig vs anti-CD4/anti-CD8 treated groups. A two-dimensional multi-slice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at post-operative days 3, 7 and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. Results Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 post transplantation (0.046→0.789, P < 0.05), despite large inter-mouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003, P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. Conclusion Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment. PMID:24954886

  1. Elasticity reconstructive imaging by means of stimulated echo MRI.

    PubMed

    Chenevert, T L; Skovoroda, A R; O'Donnell, M; Emelianov, S Y

    1998-03-01

    A method is introduced to measure internal mechanical displacement and strain by means of MRI. Such measurements are needed to reconstruct an image of the elastic Young's modulus. A stimulated echo acquisition sequence with additional gradient pulses encodes internal displacements in response to an externally applied differential deformation. The sequence provides an accurate measure of static displacement by limiting the mechanical transitions to the mixing period of the simulated echo. Elasticity reconstruction involves definition of a region of interest having uniform Young's modulus along its boundary and subsequent solution of the discretized elasticity equilibrium equations. Data acquisition and reconstruction were performed on a urethane rubber phantom of known elastic properties and an ex vivo canine kidney phantom using <2% differential deformation. Regional elastic properties are well represented on Young's modulus images. The long-term objective of this work is to provide a means for remote palpation and elasticity quantitation in deep tissues otherwise inaccessible to manual palpation. PMID:9498605

  2. Continuous flow Overhauser dynamic nuclear polarization of water in the fringe field of a clinical magnetic resonance imaging system for authentic image contrast

    PubMed Central

    Lingwood, Mark D.; Siaw, Ting Ann; Sailasuta, Napapon; Ross, Brian D.; Bhattacharya, Pratip; Han, Songi

    2016-01-01

    We describe and demonstrate a system to generate hyperpolarized water in the 0.35 T fringe field of a clinical 1.5 T whole-body magnetic resonance imaging (MRI) magnet. Once generated, the hyperpolarized water is quickly and continuously transferred from the 0.35 T fringe to the 1.5 T center field of the same magnet for image acquisition using standard MRI equipment. The hyperpolarization is based on Overhauser dynamic nuclear polarization (DNP), which effectively and quickly transfers the higher spin polarization of free radicals to nuclear spins at ambient temperatures. We visualize the dispersion of hyperpolarized water as it flows through water-saturated systems by utilizing an observed −15 fold DNP signal enhancement with respect to the unenhanced 1H MRI signal of water at 1.5 T. The experimental DNP apparatus presented here is readily portable and can be brought to and used with any conventional unshielded MRI system. A new method of immobilizing radicals to gel beads via polyelectrolyte linker arms is described, which led to superior flow Overhauser DNP performance compared to previously presented gels. We discuss the general applicability of Overhauser DNP hyperpolarization of water and aqueous solutions in the fringe field of commercially available magnets with central fields up to 4.7 Tesla. PMID:20541445

  3. Simulation of 3D MRI brain images for quantitative evaluation of image segmentation algorithms

    NASA Astrophysics Data System (ADS)

    Wagenknecht, Gudrun; Kaiser, Hans-Juergen; Obladen, Thorsten; Sabri, Osama; Buell, Udalrich

    2000-06-01

    To model the true shape of MRI brain images, automatically classified T1-weighted 3D MRI images (gray matter, white matter, cerebrospinal fluid, scalp/bone and background) are utilized for simulation of grayscale data and imaging artifacts. For each class, Gaussian distribution of grayscale values is assumed, and mean and variance are computed from grayscale images. A random generator fills up the class images with Gauss-distributed grayscale values. Since grayscale values of neighboring voxels are not correlated, a Gaussian low-pass filtering is done, preserving class region borders. To simulate anatomical variability, a Gaussian distribution in space with user-defined mean and variance can be added at any user-defined position. Several imaging artifacts can be added: (1) to simulate partial volume effects, every voxel is averaged with neighboring voxels if they have a different class label; (2) a linear or quadratic bias field can be added with user-defined strength and orientation; (3) additional background noise can be added; and (4) artifacts left over after spoiling can be simulated by adding a band with increasing/decreasing grayscale values. With this method, realistic-looking simulated MRI images can be produced to test classification and segmentation algorithms regarding accuracy and robustness even in the presence of artifacts.

  4. High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.

    2015-11-01

    Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.

  5. TH-A-BRF-08: Deformable Registration of MRI and CT Images for MRI-Guided Radiation Therapy

    SciTech Connect

    Zhong, H; Wen, N; Gordon, J; Movsas, B; Chetty, I

    2014-06-15

    Purpose: To evaluate the quality of a commercially available MRI-CT image registration algorithm and then develop a method to improve the performance of this algorithm for MRI-guided prostate radiotherapy. Methods: Prostate contours were delineated on ten pairs of MRI and CT images using Eclipse. Each pair of MRI and CT images was registered with an intensity-based B-spline algorithm implemented in Velocity. A rectangular prism that contains the prostate volume was partitioned into a tetrahedral mesh which was aligned to the CT image. A finite element method (FEM) was developed on the mesh with the boundary constraints assigned from the Velocity generated displacement vector field (DVF). The resultant FEM displacements were used to adjust the Velocity DVF within the prism. Point correspondences between the CT and MR images identified within the prism could be used as additional boundary constraints to enforce the model deformation. The FEM deformation field is smooth in the interior of the prism, and equal to the Velocity displacements at the boundary of the prism. To evaluate the Velocity and FEM registration results, three criteria were used: prostate volume conservation and center consistence under contour mapping, and unbalanced energy of their deformation maps. Results: With the DVFs generated by the Velocity and FEM simulations, the prostate contours were warped from MRI to CT images. With the Velocity DVFs, the prostate volumes changed 10.2% on average, in contrast to 1.8% induced by the FEM DVFs. The average of the center deviations was 0.36 and 0.27 cm, and the unbalance energy was 2.65 and 0.38 mJ/cc3 for the Velocity and FEM registrations, respectively. Conclusion: The adaptive FEM method developed can be used to reduce the error of the MIbased registration algorithm implemented in Velocity in the prostate region, and consequently may help improve the quality of MRI-guided radiation therapy.

  6. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms

    NASA Astrophysics Data System (ADS)

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-01

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  7. Single-Step Assembly of Multimodal Imaging Nanocarriers: MRI and Long-Wavelength Fluorescence Imaging.

    PubMed

    Pinkerton, Nathalie M; Gindy, Marian E; Calero-DdelC, Victoria L; Wolfson, Theodore; Pagels, Robert F; Adler, Derek; Gao, Dayuan; Li, Shike; Wang, Ruobing; Zevon, Margot; Yao, Nan; Pacheco, Carlos; Therien, Michael J; Rinaldi, Carlos; Sinko, Patrick J; Prud'homme, Robert K

    2015-06-24

    Magnetic resonance imaging (MRI)- and near-infrared (NIR)-active, multimodal composite nanocarriers (CNCs) are prepared using a simple one-step process, flash nanoprecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) (PEG) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 × 10(-3) m(-1) s(-1) for CNCs formulated with 4-16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver-targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm(3) non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye tris-(porphyrinato)zinc(II) into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents. PMID:25925128

  8. Advances in multimodality imaging through a hybrid PET/MRI system.

    PubMed

    Fatemi-Ardekani, Ali; Samavati, Navid; Tang, Jin; Kamath, Markad V

    2009-01-01

    The development of integrated imaging systems for magnetic resonance imaging (MRI) and positron emission tomography (PET) is currently being explored in a number of laboratories and industrial settings. PET/MRI scanners for both preclinical and human research applications are being developed. PET/MRI overcomes many limitations of PET/computed tomography (CT), such as limited tissue contrast and high radiation doses delivered to the patient or the animal being studied. In addition, recent PET/MRI designs allow for simultaneous rather than sequential acquisition of PET and MRI data, which could not have been achieved through a combination of PET and CT scanners. In a combined PET/CT scanner, while both scanners share a common patient bed, they are hard-wired back-to-back and therefore do not allow simultaneous data acquisition. While PET/MRI offers the possibility of novel imaging strategies, it also creates considerable challenges for acquiring artifact-free images from both modalities. In this review, we discuss motivations, challenges, and potential research applications of developing PET/MRI technology. A brief overview of both MRI and PET is presented and preclinical and clinical applications of PET/MRI are identified. Finally, issues and concerns about image quality, clinical practice, and economic feasibility are discussed. PMID:20565381

  9. Evolution of imaging in rectal cancer: multimodality imaging with MDCT, MRI, and PET.

    PubMed

    Raman, Siva P; Chen, Yifei; Fishman, Elliot K

    2015-04-01

    Magnetic resonance imaging (MRI), multidetector computed tomography (MDCT), and positron emission tomography (PET) are complementary imaging modalities in the preoperative staging of patients with rectal cancer, and each offers their own individual strengths and weaknesses. MRI is the best available radiologic modality for the local staging of rectal cancers, and can play an important role in accurately distinguishing which patients should receive preoperative chemoradiation prior to total mesorectal excision. Alternatively, both MDCT and PET are considered primary modalities when performing preoperative distant staging, but are limited in their ability to locally stage rectal malignancies. This review details the role of each of these three modalities in rectal cancer staging, and how the three imaging modalities can be used in conjunction. PMID:25830037

  10. Evolution of imaging in rectal cancer: multimodality imaging with MDCT, MRI, and PET

    PubMed Central

    Chen, Yifei; Fishman, Elliot K.

    2015-01-01

    Magnetic resonance imaging (MRI), multidetector computed tomography (MDCT), and positron emission tomography (PET) are complementary imaging modalities in the preoperative staging of patients with rectal cancer, and each offers their own individual strengths and weaknesses. MRI is the best available radiologic modality for the local staging of rectal cancers, and can play an important role in accurately distinguishing which patients should receive preoperative chemoradiation prior to total mesorectal excision. Alternatively, both MDCT and PET are considered primary modalities when performing preoperative distant staging, but are limited in their ability to locally stage rectal malignancies. This review details the role of each of these three modalities in rectal cancer staging, and how the three imaging modalities can be used in conjunction. PMID:25830037

  11. Image to physical space registration of supine breast MRI for image guided breast surgery

    NASA Astrophysics Data System (ADS)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  12. Unsupervised segmentation of MRI knees using image partition forests

    NASA Astrophysics Data System (ADS)

    Marčan, Marija; Voiculescu, Irina

    2016-03-01

    Nowadays many people are affected by arthritis, a condition of the joints with limited prevention measures, but with various options of treatment the most radical of which is surgical. In order for surgery to be successful, it can make use of careful analysis of patient-based models generated from medical images, usually by manual segmentation. In this work we show how to automate the segmentation of a crucial and complex joint -- the knee. To achieve this goal we rely on our novel way of representing a 3D voxel volume as a hierarchical structure of partitions which we have named Image Partition Forest (IPF). The IPF contains several partition layers of increasing coarseness, with partitions nested across layers in the form of adjacency graphs. On the basis of a set of properties (size, mean intensity, coordinates) of each node in the IPF we classify nodes into different features. Values indicating whether or not any particular node belongs to the femur or tibia are assigned through node filtering and node-based region growing. So far we have evaluated our method on 15 MRI knee images. Our unsupervised segmentation compared against a hand-segmented gold standard has achieved an average Dice similarity coefficient of 0.95 for femur and 0.93 for tibia, and an average symmetric surface distance of 0.98 mm for femur and 0.73 mm for tibia. The paper also discusses ways to introduce stricter morphological and spatial conditioning in the bone labelling process.

  13. MRI imaging of displaced meniscal tears: Report of a case highlighting new potential pitfalls of the MRI signs

    PubMed Central

    Prasad, Abhishek; Brar, Rahat; Rana, Shaleen

    2014-01-01

    Magnetic resonance imaging (MRI) has been found to be an excellent imaging tool for meniscal injuries. Various MRI signs have been described to detect displaced meniscal injuries, specifically the bucket-handle tears. Although these signs are quite helpful in diagnosing meniscal tears, various pitfalls have also been reported for these signs. Double anterior cruciate ligament (ACL) sign refers to presence of a linear hypointense soft tissue anterior to the ACL, which represented the flipped bucket-handle tear of the meniscus. Disproportional posterior horn and flipped meniscus signs represent asymmetrically thickened horns of the menisci due to overlying displaced meniscal fragments. We report a case wherein MRI of the knee showed tear and displacement of the medial patellofemoral ligament (MPFL) and vastus medialis complex, medial collateral ligament (MCL), and posterior cruciate ligament (PCL) mimicking these signs. To our knowledge, internally displaced MPFL and MCLs have not been described as mimics for displaced meniscal fragments. PMID:25114394

  14. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    SciTech Connect

    Wang, Ge Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang; Vannier, Michael

    2015-10-15

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.

  15. Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI)

    PubMed Central

    Pawela, Christopher P.; Biswal, Bharat B.; Hudetz, Anthony G.; Li, Rupeng; Jones, Seth R.; Cho, Younghoon R.; Matloub, Hani S.; Hyde, James S.

    2009-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) studies in rat brain show brain reorganization following peripheral nerve injury. Subacute neuroplasticity was observed two weeks following transection of the four major nerves of the brachial plexus. Direct functional magnetic resonance imaging (fMRI) stimulation of the intact radial nerve reveals an activation pattern in the forelimb regions of the sensory and motor cortices that is significantly different from that observed in normal rats. Results of this fMRI experiment were used to determine seed voxel regions for fcMRI analysis. Intrahemispheric connectivities in the sensorimotor forelimb representations in both hemispheres are largely unaffected by deafferentation, whereas substantial disruption of interhemispheric sensorimotor cortical connectivity occurs. In addition, significant intra- and interhemispheric changes in connectivities of thalamic nuclei were found. These are the central findings of the study. They could not have been obtained from fMRI studies alone—both fMRI and fcMRI are needed. The combination provides a general marker for brain plasticity. The rat visual system was studied in the same animals as a control. No neuroplastic changes in connectivities were found in the primary visual cortex upon forelimb deafferentation. Differences were noted in regions responsible for processing multisensory visual-motor information. This incidental discovery is considered to be significant. It may provide insight into phantom limb epiphenomena. PMID:19796693

  16. Imaging in head and neck squamous cell carcinoma: the potential role of PET/MRI

    PubMed Central

    Zaidi, Habib

    2014-01-01

    In head and neck oncology, the information provided by positron emission tomography (PET)/CT and MRI is often complementary because both the methods are based on different biophysical foundations. Therefore, combining diagnostic information from both modalities can provide additional diagnostic gain. Debates about integrated PET/MRI systems have become fashionable during the past few years, since the introduction and wide adoption of software-based multimodality image registration and fusion and the hardware implementation of integrated hybrid PET/MRI systems in pre-clinical and clinical settings. However, combining PET with MRI has proven to be technically and clinically more challenging than initially expected and, as such, research into the potential clinical role of PET/MRI in comparison with PET/CT, diffusion-weighted MRI (DW MRI) or the combination thereof is still ongoing. This review focuses on the clinical applications of PET/MRI in head and neck squamous cell carcinoma (HNSCC). We first discuss current evidence about the use of combined PET/CT and DW MRI, and, then, we explain the rationale and principles of PET/MR image fusion before summarizing the state-of-the-art knowledge regarding the diagnostic performance of PET/MRI in HNSCC. Feasibility and quantification issues, diagnostic pitfalls and challenges in clinical settings as well as ongoing research and potential future applications are also discussed. PMID:24649835

  17. Assessing the reliability of MRI-CBCT image registration to visualize temporomandibular joints

    PubMed Central

    Jaremko, J L; Alsufyani, N; Jibri, Z; Lai, H; Major, P W

    2015-01-01

    Objectives: To evaluate image quality of two methods of registering MRI and CBCT images of the temporomandibular joint (TMJ), particularly regarding TMJ articular disc–condyle relationship and osseous abnormality. Methods: MR and CBCT images for 10 patients (20 TMJs) were obtained and co-registered using two methods (non-guided and marker guided) using Mirada XD software (Mirada Medical Ltd, Oxford, UK). Three radiologists independently and blindly evaluated three types of images (MRI, CBCT and registered MRI-CBCT) at two times (T1 and T2) on two criteria: (1) quality of MRI-CBCT registrations (excellent, fair or poor) and (2) TMJ disc–condylar position and articular osseous abnormalities (osteophytes, erosions and subcortical cyst, surface flattening, sclerosis). Results: 75% of the non-guided registered images showed excellent quality, and 95% of the marker-guided registered images showed poor quality. Significant difference was found between the non-guided and marker-guided registration (χ2 = 108.5; p < 0.01). The interexaminer variability of the disc position in MRI [intraclass correlation coefficient (ICC) = 0.50 at T1, 0.56 at T2] was lower than that in MRI-CBCT registered images [ICC = 0.80 (0.52–0.92) at T1, 0.84 (0.62–0.93) at T2]. Erosions and subcortical cysts were noticed less frequently in the MRI-CBCT images than in CBCT images. Conclusions: Non-guided registration proved superior to marker-guided registration. Although MRI-CBCT fused images were slightly more limited than CBCT alone to detect osseous abnormalities, use of the fused images improved the consistency among examiners in detecting disc position in relation to the condyle. PMID:25734241

  18. The Role of Imaging for Trigeminal Neuralgia: A Segmental Approach to High-Resolution MRI.

    PubMed

    Seeburg, Daniel P; Northcutt, Benjamin; Aygun, Nafi; Blitz, Ari M

    2016-07-01

    High-resolution MRI affords exquisite anatomic detail and allows radiologists to scrutinize the entire course of the trigeminal nerve (cranial nerve [CN] V). This article focuses first on the normal MRI appearance of the course of CN V and how best to image each segment. Special attention is then devoted to the role of MRI in presurgical evaluation of patients with neurovascular conflict and in identifying secondary causes of trigeminal neuralgia, including multiple sclerosis. Fundamental concepts in postsurgical imaging after neurovascular decompression are also addressed. Finally, how imaging has been used to better understand the etiology of trigeminal neuralgia is discussed. PMID:27324998

  19. Recent Advances in the Imaging Diagnosis of Hepatocellular Carcinoma: Value of Gadoxetic Acid-Enhanced MRI

    PubMed Central

    Joo, Ijin; Lee, Jeong Min

    2016-01-01

    Magnetic resonance imaging (MRI) using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DPTA), or gadoxetic acid for short, is a hepatocyte-specific contrast agent which is now increasingly used for the detection and characterization of focal hepatic lesions, particularly in patients at high-risk of developing hepatocellular carcinomas (HCC). In fact, several recent guidelines now recognize gadoxetic acid-enhanced MRI (Gd-EOB-MRI) as the primary diagnostic imaging modality for the noninvasive diagnosis of HCC, although it must be noted that several major guidelines still include only extracellular contrast media-enhanced computed tomography and MRI. The primary merits of Gd-EOB-MRI lie in the fact that it can provide not only dynamic imaging, but also hepatobiliary phase (HBP) imaging which can lead to high lesion-to-liver contrast and give additional information regarding hepatocyte uptake via organic anion transporting polypeptides. This, in turn, allows higher sensitivity in detecting small HCCs and helps provide additional information regarding the multistep process of hepatocarcinogenesis. Indeed, many recent studies have investigated the diagnostic value of Gd-EOB-MRI for early HCCs as well as its role as a potential imaging biomarker in predicting outcome. We herein review the recent advances in the imaging diagnosis of HCCs focusing on the applications of Gd-EOB-MRI and the challenging issues that remain. PMID:26989660

  20. Recent Advances in the Imaging Diagnosis of Hepatocellular Carcinoma: Value of Gadoxetic Acid-Enhanced MRI.

    PubMed

    Joo, Ijin; Lee, Jeong Min

    2016-02-01

    Magnetic resonance imaging (MRI) using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DPTA), or gadoxetic acid for short, is a hepatocyte-specific contrast agent which is now increasingly used for the detection and characterization of focal hepatic lesions, particularly in patients at high-risk of developing hepatocellular carcinomas (HCC). In fact, several recent guidelines now recognize gadoxetic acid-enhanced MRI (Gd-EOB-MRI) as the primary diagnostic imaging modality for the noninvasive diagnosis of HCC, although it must be noted that several major guidelines still include only extracellular contrast media-enhanced computed tomography and MRI. The primary merits of Gd-EOB-MRI lie in the fact that it can provide not only dynamic imaging, but also hepatobiliary phase (HBP) imaging which can lead to high lesion-to-liver contrast and give additional information regarding hepatocyte uptake via organic anion transporting polypeptides. This, in turn, allows higher sensitivity in detecting small HCCs and helps provide additional information regarding the multistep process of hepatocarcinogenesis. Indeed, many recent studies have investigated the diagnostic value of Gd-EOB-MRI for early HCCs as well as its role as a potential imaging biomarker in predicting outcome. We herein review the recent advances in the imaging diagnosis of HCCs focusing on the applications of Gd-EOB-MRI and the challenging issues that remain. PMID:26989660

  1. Echo Planar Imaging before and after fMRI: A personal history

    PubMed Central

    Cohen, Mark S.; Schmitt, Franz

    2012-01-01

    Echo-planar imaging (EPI) plays a crucial role in functional MRI. Focusing especially on the period from 1988 to 1992, the authors offer personal recollections, on the development of practical means of deploying EPI, the people that participated, and its impact on MRI in general. PMID:22266173

  2. The role of MRI in diagnostic imaging of the injured knee

    SciTech Connect

    Stull, M.A.; Nelson, M.C. )

    1990-02-01

    Clinical evaluation of the acutely injured knee is often supplemented by radiographic studies. Magnetic resonance imaging (MRI) is rapidly replacing other techniques as the study of choice for evaluating knee injuries. MRI can delineate meniscal tears, cruciate and collateral ligament injuries, and tendon, capsule and cartilage problems.

  3. Multimodal in vivo MRI and NIRF imaging of bladder tumor using peptide conjugated glycol chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Leary, James F.

    2012-03-01

    Exact detection and complete removal of cancer is a key point to minimize cancer recurrence. However, it is currently very difficult to detect small tumors inside human body and continuously monitor tumors using a non-invasive imaging modality. Presently, positron emission tomography (PET) can provide the most sensitive cancer images in the human body. However, PET imaging has very limited imaging time because they typically use isotopes with short halflives. PET imaging cannot also visualize anatomical information. Magnetic resonance imaging (MRI) can provide highresolution images inside the body but it has a low sensitivity, so MRI contrast agents are necessary to enhance the contrast of tumor. Near infrared fluorescent (NIRF) imaging has a good sensitivity to visualize tumor using optical probes, but it has a very limited tissue penetration depth. Therefore, we developed multi-modality nanoparticles for MRI based diagnosis and NIRF imaging based surgery of cancer. We utilized glycol chitosan of 350 nm as a vehicle for MRI contrast agents and NIRF probes. The glycol chitosan nanoparticles were conjugated with NIRF dye, Cy5.5 and bladder cancer targeting peptides to increase the internalization of cancer. For MR contrast effects, iron oxide based 22 nm nanocubes were physically loaded into the glycol chitosan nanoparticles. The nanoparticles were characterized and evaluated in bladder tumor bearing mice. Our study suggests the potential of our nanoparticles by both MRI and NIRF imaging for tumor diagnosis and real-time NIRF image-guided tumor surgery.

  4. Delineating potential epileptogenic areas utilizing resting functional magnetic resonance imaging (fMRI) in epilepsy patients.

    PubMed

    Pizarro, Ricardo; Nair, Veena; Meier, Timothy; Holdsworth, Ryan; Tunnell, Evelyn; Rutecki, Paul; Sillay, Karl; Meyerand, Mary E; Prabhakaran, Vivek

    2016-08-01

    Seizure localization includes neuroimaging like electroencephalogram, and magnetic resonance imaging (MRI) with limited ability to characterize the epileptogenic network. Temporal clustering analysis (TCA) characterizes epileptogenic network congruent with interictal epileptiform discharges by clustering together voxels with transient signals. We generated epileptogenic areas for 12 of 13 epilepsy patients with TCA, congruent with different areas of seizure onset. Resting functional MRI (fMRI) scans are noninvasive, and can be acquired quickly, in patients with different levels of severity and function. Analyzing resting fMRI data using TCA is quick and can complement clinical methods to characterize the epileptogenic network. PMID:27362339

  5. MRI-SPECT image registration using multiple MR pulse sequences to examine osteoarthritis of the knee

    NASA Astrophysics Data System (ADS)

    Lynch, John A.; Peterfy, Charles G.; White, David L.; Hawkins, Randall A.; Genant, Harry K.

    1999-05-01

    We have examined whether automated image registration can be used to combine metabolic information from SPECT knee scans with anatomical information from MRI. Ten patients, at risk of developing OA due to meniscal surgery, were examined. 99mTc methyldiphosphonate SPECT, T2-weighted fast spin echo (FSE) MRI, and T1-weighted, 3D fat-suppressed gradient recalled echo (SPGR) MRI images were obtained. Registration was performed using normalized mutual information. For each patient, FSE data was registered to SPGR data, providing a composite MRI image with each voxel represented by two intensities (ISPGR, IFSE). Modifications to the registration algorithm were made to allow registration of SPECT data (one intensity per voxel) to composite MRI data (2 intensities per voxel). Registration sources was assessed by visual inspection of uptake localization over expected anatomical locations, and the absence of uptake over unlikely sites. Three patients were discarded from SPECT-MRI registration tests since they had metallic artifacts that prevented co-registration of MR data. Registration of SPECT to SPGR or FSE data alone proved unreliable, with less than 50% of attempts succeeding. The modified algorithm, treating co-registered SPGR and FSE data as a two-value-per-voxel image, proved most reliable, allowing registration of all patients with no metallic artifacts on MRI.

  6. A comparison of five standard methods for evaluating image intensity uniformity in partially parallel imaging MRI

    PubMed Central

    Goerner, Frank L.; Duong, Timothy; Stafford, R. Jason; Clarke, Geoffrey D.

    2013-01-01

    Purpose: To investigate the utility of five different standard measurement methods for determining image uniformity for partially parallel imaging (PPI) acquisitions in terms of consistency across a variety of pulse sequences and reconstruction strategies. Methods: Images were produced with a phantom using a 12-channel head matrix coil in a 3T MRI system (TIM TRIO, Siemens Medical Solutions, Erlangen, Germany). Images produced using echo-planar, fast spin echo, gradient echo, and balanced steady state free precession pulse sequences were evaluated. Two different PPI reconstruction methods were investigated, generalized autocalibrating partially parallel acquisition algorithm (GRAPPA) and modified sensitivity-encoding (mSENSE) with acceleration factors (R) of 2, 3, and 4. Additionally images were acquired with conventional, two-dimensional Fourier imaging methods (R = 1). Five measurement methods of uniformity, recommended by the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) were considered. The methods investigated were (1) an ACR method and a (2) NEMA method for calculating the peak deviation nonuniformity, (3) a modification of a NEMA method used to produce a gray scale uniformity map, (4) determining the normalized absolute average deviation uniformity, and (5) a NEMA method that focused on 17 areas of the image to measure uniformity. Changes in uniformity as a function of reconstruction method at the same R-value were also investigated. Two-way analysis of variance (ANOVA) was used to determine whether R-value or reconstruction method had a greater influence on signal intensity uniformity measurements for partially parallel MRI. Results: Two of the methods studied had consistently negative slopes when signal intensity uniformity was plotted against R-value. The results obtained comparing mSENSE against GRAPPA found no consistent difference between GRAPPA and mSENSE with regard to signal intensity uniformity

  7. Oxygen-dependent hyperpolarized (129) Xe brain MR.

    PubMed

    Li, Haidong; Zhang, Zhiying; Zhong, Jianping; Ruan, Weiwei; Han, Yeqing; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-03-01

    Hyperpolarized (HP) (129) Xe MR offers unique advantages for brain functional imaging (fMRI) because of its extremely high sensitivity to different chemical environments and the total absence of background noise in biological tissues. However, its advancement and applications are currently plagued by issues of signal strength. Generally, xenon atoms found in the brain after inhalation are transferred from the lung via the bloodstream. The longitudinal relaxation time (T1 ) of HP (129) Xe is inversely proportional to the pulmonary oxygen concentration in the lung because oxygen molecules are paramagnetic. However, the T1 of (129) Xe is proportional to the pulmonary oxygen concentration in the blood, because the higher pulmonary oxygen concentration will result in a higher concentration of diamagnetic oxyhemoglobin. Accordingly, there should be an optimal pulmonary oxygen concentration for a given quantity of HP (129) Xe in the brain. In this study, the relationship between pulmonary oxygen concentration and HP (129) Xe signal in the brain was analyzed using a theoretical model and measured through in vivo experiments. The results from the theoretical model and experiments in rats are found to be in good agreement with each other. The optimal pulmonary oxygen concentration predicted by the theoretical model was 21%, and the in vivo experiments confirmed the presence of such an optimal ratio by reporting measurements between 25% and 35%. These findings are helpful for improving the (129) Xe signal in the brain and make the most of the limited spin polarization available for brain experiments. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26915791

  8. Long-lived states to sustain hyperpolarized magnetization

    PubMed Central

    Vasos, P. R.; Comment, A.; Sarkar, R.; Ahuja, P.; Jannin, S.; Ansermet, J.-P.; Konter, J. A.; Hautle, P.; van den Brandt, B.; Bodenhausen, G.

    2009-01-01

    Major breakthroughs have recently been reported that can help overcome two inherent drawbacks of NMR: the lack of sensitivity and the limited memory of longitudinal magnetization. Dynamic nuclear polarization (DNP) couples nuclear spins to the large reservoir of electrons, thus making it possible to detect dilute endogenous substances in magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI). We have designed a method to preserve enhanced (“hyperpolarized”) magnetization by conversion into long-lived states (LLS). It is shown that these enhanced long-lived states can be generated for proton spins, which afford sensitive detection. Even in complex molecules such as peptides, long-lived proton states can be sustained effectively over time intervals on the order of tens of seconds, thus allowing hyperpolarized substrates to reach target areas and affording access to slow metabolic pathways. The natural abundance carbon-13 polarization has been enhanced ex situ by almost four orders of magnitude in the dipeptide Ala-Gly. The sample was transferred by the dissolution process to a high-resolution magnet where the carbon-13 polarization was converted into a long-lived state associated with a pair of protons. In Ala-Gly, the lifetime TLLS associated with the two nonequivalent Hα glycine protons, sustained by suitable radio-frequency irradiation, was found to be seven times longer than their spin-lattice relaxation time constant (TLLS/T1 = 7). At desired intervals, small fractions of the populations of long-lived states were converted into observable magnetization. This opens the way to observing slow chemical reactions and slow transport phenomena such as diffusion by enhanced magnetic resonance. PMID:19841270

  9. Integrated megavoltage portal imaging with a 1.5 T MRI linac

    NASA Astrophysics Data System (ADS)

    Raaymakers, B. W.; de Boer, J. C. J.; Knox, C.; Crijns, S. P. M.; Smit, K.; Stam, M. K.; van den Bosch, M. R.; Kok, J. G. M.; Lagendijk, J. J. W.

    2011-10-01

    In this note, the feasibility of complementing our hybrid 1.5 T MRI linac (MRL) with a megavoltage (MV) portal imager is investigated. A standard aSi MV detector panel is added to the system and both qualitative and quantitative performances are determined. Simultaneous MR imaging and transmission imaging can be performed without mutual interference. The MV image quality is compromised by beam transmission and longer isocentre distance; still, the field edges and bony anatomy can be detected at very low dose levels of 0.4 cGy. MV imaging integrated with the MRL provides an independent and well-established position verification tool, a field edge check and a calibration for alignment of the coordinate systems of the MRI and the accelerator. The portal imager can also be a valuable means for benchmarking MRI-guided position verification protocols on a patient-specific basis in the introductory phase.

  10. [MRI, geometric distortion of the image and stereotaxy].

    PubMed

    Derosier, C; Delegue, G; Munier, T; Pharaboz, C; Cosnard, G

    1991-01-01

    The MRI technology may be the starting-point of geometric distorsion. The mathematical preciseness of a spatial location may be disturbed and alter the guidance of an MRI interventionnal act, especially in stereotactic brain biopsy. A review of the literature shows errors of 1 to 1.5 mm. Our results show an error of 0.16 +/- 0.66 mm. The control of quality: homogeneity and calibration of magnetic-field gradients, permit an improve of the balistic preciseness and give permission to realize the guidance of a stereotactic brain biopsy with the alone MRI. PMID:1880779