Science.gov

Sample records for hypervelocity impact damage

  1. Dynamic Optical Investigations of Hypervelocity Impact Damage

    NASA Astrophysics Data System (ADS)

    Lamberson, Leslie Elise

    One of the prominent threats in the endeavor to develop next-generation space assets is the risk of space debris impact in earth's orbit and micrometeoroid impact damage in near-earth orbit and deep space. To date, there is no study available which concentrates on the analysis of dynamic crack growth from hypervelocity impacts on such structures, resulting in their eventual catastrophic degradation. Experiments conducted using a unique two-stage light-gas gun facility have examined the in situ dynamic fracture of brittle polymers subjected to this high-energy-density event. Optical techniques of caustics and photoelasticity, combined with high-speed photography up to 100 million frames per second, analyze crack growth behavior of Mylar and Homalite 100 thin plates after impact by a 1.8 mm diameter nylon 6-6 right cylindrical slug at velocities ranging from 3 to 7 km/s (7000--15500 mph). Crack speeds in both polymers averaged between 0.2 and 0.47 cR, the Rayleigh wave speed (450--1000 mph). Shadow spots and surrounding caustics reveal time histories of the dynamic stress intensity factor, as well as the energy release rate ahead of the mode-I, or opening, crack tips. Results indicate that even under extreme impact conditions of out of-plane loading, highly localized heating, and energetic impact phenomena involving plasma formation and ejecta, the dynamic fracture process occurs during a deformation regime dominated by in-plane loading. These findings imply that the reliability of impacted, thin-walled, plate and shell space structures, idealized by the experimental configuration investigated, can be predicted by the well defined principles of classical dynamic fracture mechanics.

  2. Hypervelocity impact damage assessment for Space Station

    NASA Technical Reports Server (NTRS)

    Coronado, Alex R.; Gibbins, Martin N.; Stern, Paul H.

    1988-01-01

    To inhibit damage and limit the probability of penetration of the Space Station pressure wall by micrometeoroids and orbital debris, a shield placed away from the wall is used to form a double wall. To determine shield effectiveness and assess impact damage, existing test data were reviewed and additional testing was performed for Space Station double wall designs. Empirical spallation and penetration functions derived from the data show that shield thickness and impact angle affect the damage to the wall. Thick shields reduce wall damage for low angle impacts but increase damage for oblique impacts. Multilayer insulation between the shield and wall reduces impact damage to the wall. A relationship between impact velocity and spall damage to the wall is demonstrated. Preliminary test results on Li-Al shield material indicate possible improved effectiveness over Al shields.

  3. Structural Damage Prediction and Analysis for Hypervelocity Impact: Consulting

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A portion of the contract NAS8-38856, 'Structural Damage Prediction and Analysis for Hypervelocity Impacts,' from NASA Marshall Space Flight Center (MSFC), included consulting which was to be documented in the final report. This attachment to the final report contains memos produced as part of that consulting.

  4. Damage Analysis for Hypervelocity Impact Experiments on Spaceship Windows Glass

    NASA Astrophysics Data System (ADS)

    Jiyun, Y.; Jidong, Z.; Zizheng, G.; Hewei, P.

    2010-06-01

    The hypervelocity impact characteristics in fused silica glass, which is used for the outermost pane of the windshield as the critical part of the thermal protection system of spacecraft, were studied by 37 impact experiments with different millimeter diameter projectiles up to the velocity of 7 km/s launched by two stage light-gas-gun facility. The empirical damage equations were obtained from experiment data by the least square method and they were compared with NASA damage equations.

  5. Hypervelocity impact damage tolerance of fused silica glass

    NASA Technical Reports Server (NTRS)

    Edelstein, K. S.

    1992-01-01

    A test program was conducted at the NASA/Johnson Space Center (JSC) concerning hypervelocity impact damage in fused silica glass. The objectives of this test program were: to expand the penetration equation data base in the velocity range between 2 and 8 km/s; to determine how much strength remains in a glass pane that has sustained known impact damage; and to develop a relationship between crater measurements and residual strength predictions that can be utilized in the Space Shuttle and Space Station programs. The results and conclusions of the residual strength testing are discussed below. Detailed discussion of the penetration equation studies will follow in future presentations.

  6. Structural Damage Prediction and Analysis for Hypervelocity Impacts: Handbook

    NASA Technical Reports Server (NTRS)

    Elfer, N. C.

    1996-01-01

    This handbook reviews the analysis of structural damage on spacecraft due to hypervelocity impacts by meteoroid and space debris. These impacts can potentially cause structural damage to a Space Station module wall. This damage ranges from craters, bulges, minor penetrations, and spall to critical damage associated with a large hole, or even rupture. The analysis of damage depends on a variety of assumptions and the area of most concern is at a velocity beyond well controlled laboratory capability. In the analysis of critical damage, one of the key questions is how much momentum can actually be transfered to the pressure vessel wall. When penetration occurs without maximum bulging at high velocity and obliquities (if less momentum is deposited in the rear wall), then large tears and rupture may be avoided. In analysis of rupture effects of cylindrical geometry, biaxial loading, bending of the crack, a central hole strain rate and R-curve effects are discussed.

  7. Real-Time Observation of Early Stage Damage During Hypervelocity Impacts into Basalt Targets

    NASA Astrophysics Data System (ADS)

    Kimberley, J.; Ramesh, K. T.

    2012-03-01

    Hypervelocity impacts were conducted on basalt targets bonded to glass allowing for the early stages of damage accumulation to be observed in real time. Results show that significant damage accumulates before the arrival of tensile wave reflections.

  8. Structural Damage Prediction and Analysis for Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Elfer, Norman

    1995-01-01

    It is necessary to integrate a wide variety of technical disciplines to provide an analysis of structural damage to a spacecraft due to hypervelocity impact. There are many uncertainties, and more detailed investigation is warranted, in each technical discipline. However, a total picture of the debris and meteoroid hazard is required to support manned spaceflight in general, and the international Space Station in particular. In the performance of this contract, besides producing a handbook, research and development was conducted in several different areas. The contract was broken into six separate tasks. Each task objectives and accomplishments will be reviewed in the following sections. The Handbook and separate task reports are contained as attachments to the final report. The final section summarizes all of the recommendations coming out of this study. The analyses and comments are general design guidelines and not necessarily applicable to final Space Station designs since several configuration and detailed design changes were being made during the course of this contract. Rather, the analyses and comments may indicate either a point-in-time concept analysis, available test data, or desirable protection goals, not hindered by the design and operation constraints faced by Space Station designers.

  9. Characterization of space station multilayer insulation damage due to hypervelocity space debris impact

    NASA Technical Reports Server (NTRS)

    Rule, William Keith

    1990-01-01

    Four main tasks were accomplished. The first three tasks were related to the goal of measuring the degradation of the insulating capabilities of Space Station multilayer insulation (MLI) due to simulated space debris impacts at hypervelocities. The last task was associated with critically reviewing a Boeing document on the fracture characteristics of the Space Station pressure wall when subjected to a simulated hypervelocity space debris impact. In Task 1, a thermal test procedure for impact damaged MLI specimens was written. In Task 2, damaged MLI specimens were prepared. In Task 3, a computer program was written to simulate MLI thermal tests. In Task 4, the author reviewed a Boeing document describing hypervelocity impact testing on biaxially stressed plates.

  10. Hypervelocity impact physics

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Bean, Alan J.; Darzi, Kent

    1991-01-01

    All large spacecraft are susceptible to impacts by meteoroids and orbiting space debris. These impacts occur at extremely high speed and can damage flight-critical systems, which can in turn lead to a catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for a long-duration mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystems components. The work performed under the contract consisted of applied research on the effects of meteoroid/space debris impacts on candidate materials, design configurations, and support mechanisms of long term space vehicles. Hypervelocity impact mechanics was used to analyze the damage that occurs when a space vehicle is impacted by a micrometeoroid or a space debris particle. An impact analysis of over 500 test specimens was performed to generate by a hypervelocity impact damage database.

  11. Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.

  12. Damage Characteristics of the Logical Chip Module Due to Plasma Created by Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Tang, Enling; Wu, Jin; Wang, Meng; Zhang, Lijiao; Xiang, Shenghai; Xia, Jin; Liu, Shuhua; He, Liping; Han, Yafei; Xu, Mingyang; Zhang, Shuang; Yuan, Jianfei

    2016-04-01

    To researching the damage characteristics of typical logical chip modules in spacecraft due to plasma generated by hypervelocity impacts, we have established a triple Langmuir probe diagnostic system and a logical chips measurement system, which were used to diagnose plasma characteristic parameters and the logical chip module's logical state changes due to the plasma created by a 7075 aluminum projectile hypervelocity impact on the 2A12 aluminum target. Three sets of experiments were performed with the collision speeds of 2.85 km/s, 3.1 km/s and 2.20 km/s, at the same incident angles of 30 degrees and logical chip module's positions by using a two-stage light gas gun loading system, a plasma characteristic parameters diagnostic system and a logical chip module's logical state measurement system, respectively. Electron temperature and density were measured at given position and azimuth, and damage estimation was performed for the logical chip module by using the data acquisition system. Experimental results showed that temporary damage could be induced on logical chip modules in spacecraft by plasma generated by hypervelocity impacts under the given experimental conditions and the sensors' position and azimuth. supported by National Natural Science Foundation of China (Nos. 10972145, 11272218, 11472178), Program for Liaoning Excellent Talents in University of China (No. LR2013008), Open Foundation of Key Laboratory of Liaoning Weapon Science and Technology, Liaoning Province Talents Engineering Projects of China (No. 2012921044)

  13. Empirical predictions of hypervelocity impact damage to the space station

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Hayashida, K. B.

    1991-01-01

    A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft is described. The spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and the pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on Earth. A module of the program facilitates the creation of the data base of experimental results that are used by the damage prediction modules of the code. The user has the choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall. One prediction module is based on fitting low order polynomials through subsets of the experimental data. Another prediction module fits functions based on nondimensional parameters through the data. The last prediction technique is a unique approach that is based on weighting the experimental data according to the distance from the design point.

  14. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Chris; Rodriquez, Karen; Miller, Joshua; Bohl, William

    2011-01-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  15. Burst pressure failure of titanium tanks damaged by secondary plumes from hypervelocity impacts on aluminum shields

    NASA Astrophysics Data System (ADS)

    Nahra, Henry; Ghosn, L.; Christiansen, E.; Davis, B. A.; Keddy, C.; Rodriguez, K.; Miller, J.; Bohl, W.

    2012-03-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  16. Shuttle Hypervelocity Impact Database

    NASA Technical Reports Server (NTRS)

    Hyde, James I.; Christiansen, Eric I.; Lear, Dana M.

    2011-01-01

    With three flights remaining on the manifest, the shuttle impact hypervelocity database has over 2800 entries. The data is currently divided into tables for crew module windows, payload bay door radiators and thermal protection system regions, with window impacts compromising just over half the records. In general, the database provides dimensions of hypervelocity impact damage, a component level location (i.e., window number or radiator panel number) and the orbiter mission when the impact occurred. Additional detail on the type of particle that produced the damage site is provided when sampling data and definitive analysis results are available. The paper will provide details and insights on the contents of the database including examples of descriptive statistics using the impact data. A discussion of post flight impact damage inspection and sampling techniques that were employed during the different observation campaigns will be presented. Future work to be discussed will be possible enhancements to the database structure and availability of the data for other researchers. A related database of ISS returned surfaces that are under development will also be introduced.

  17. Shuttle Hypervelocity Impact Database

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.

    2011-01-01

    With three missions outstanding, the Shuttle Hypervelocity Impact Database has nearly 3000 entries. The data is divided into tables for crew module windows, payload bay door radiators and thermal protection system regions, with window impacts compromising just over half the records. In general, the database provides dimensions of hypervelocity impact damage, a component level location (i.e., window number or radiator panel number) and the orbiter mission when the impact occurred. Additional detail on the type of particle that produced the damage site is provided when sampling data and definitive analysis results are available. Details and insights on the contents of the database including examples of descriptive statistics will be provided. Post flight impact damage inspection and sampling techniques that were employed during the different observation campaigns will also be discussed. Potential enhancements to the database structure and availability of the data for other researchers will be addressed in the Future Work section. A related database of returned surfaces from the International Space Station will also be introduced.

  18. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    NASA Astrophysics Data System (ADS)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Christopher; Rodriguez, Karen; Miller, Joshua; Bohl, William

    2011-06-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium (Ti) pressure vessels burst pressure and characteristics. The series consists of a pair of HVI impact tests on water-filled Ti tanks (water as a surrogate to the propellant) and subsequent burst tests of these tanks and an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis that provides insight into how the cracks associated with a spall site initiate a failure cascade is discussed.

  19. Numerical Simulation on the Damage Characteristics of Ice Targets by Projectile Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wei, Gang; Mu, Zhong-Cheng

    2009-06-01

    Interpretation of cratering records on planetary surfaces including the Earth has primarily been concerned with rocky surfaces, most notably the lunar surface and more recently Mars and Venus. Recently, the survey of craters on icy surfaces in the Solar System has been augmented by data from spacecraft close encounters, such as the Galileo mission to the jovian system. To fully understand these cratering records, the physics of hypervelocity impacts needs to be understood. The numerical simulation on the damage characteristics of ice targets by projectile normally hypervelocity impact has been performed using the hydro-code AUTODYN. The 1mm spherical projectile is aluminum 2017 alloy. The targets are water ice. The simulation velocities were in the range of 1km/s-10km/s. The material models are consisted of Tillotson and Polynomial equation of state, Mohr-Coulomb and Johnson-Holmqiust strength model and Johnson-Holmqiust and principle stress failure model. The damage characteristics include peak ejection angle, peak temperature and pressure, maximum crater depth and diameter etc. The simulation results are given and compared with the experimental results of Burchell 2002. The simulation results are consistent very well with the experimental results.

  20. Numerical Simulation on the Damage Characteristics of Ice Targets by Projectile Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Wei, Zhang; Gang, Wei; Zhong-Cheng, Mu; Chang, Liu

    2009-12-01

    Interpretation of cratering records on planetary surfaces including the Earth has primarily been concerned with rocky surfaces, most notably the lunar surface and more recently Mars and Venus. Recently, the survey of craters on icy surfaces in the Solar System has been augmented by data from spacecraft close encounters, such as the Galileo mission to the Jovian system. To fully understand these cratering records, the physics of hypervelocity impacts needs to be understood. The numerical simulation on the damage characteristics of ice targets by projectile normal hypervelocity impact has been performed using the hydro-code AUTODYN. The 1 mm spherical projectile is aluminum 2017 alloy. The targets are water ice. The simulation velocities were in the range of 1 km/s-10 km/s. The damage characteristics include peak ejection angle, maximum crater depth and diameter etc. The simulation results are given and compared with the experimental results of Shrine et al. 2002. The simulation results are consistent with the experimental results.

  1. Hypervelocity impacts into graphite

    NASA Astrophysics Data System (ADS)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  2. Study of Damage of Gas-filled Spherical Pressure Vassel Subjected to Hypervelocity Impact by Space Debris with Different Velocity

    NASA Astrophysics Data System (ADS)

    Cai, Yuan; Pang, Baojun; Jia, Bin

    2013-08-01

    As an important component of spacecraft, if a gas-filled pressure vessel is impacted by space debris, it might occur even overall bursting. Spherical aluminum projectiles are used to simulate space debris impacting gas-filled spherical pressure vessel with hypervelocity. Projectiles impact places with the same thickness in different tests. By analyzing the maximum gas pressure of the spherical vessel, the inflation pressure is determined: 1.075MPa. By numerical simulation, the critical impact velocity to perforate the front wall is determined: 2.02mm ~ 2.31mm. As the projectile velocity increases, the damage patterns of the back wall are of different bulged outwards patterns.

  3. Hypervelocity impact damage response and characterization of thin plate targets at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Corbett, Brooke Myers

    The performance of a typical International Space Station (ISS) shield against the meteoroid and orbital debris (M/OD) impact threat is generally modeled by damage equations for the outer shield and the rear pressure wall. In their current forms, these damage equations neglect the on-orbit temperature extremes witnessed by the ISS. To address IF and HOW temperature extremes affect the performance of the ISS' typical M/OD shield, a comprehensive study was undertaken that investigated hole diameters in .063" thick 6061-T6 aluminum targets impacted at velocities from ˜2-7 km/s at 20°C, 110°C, and 210°C. Robust graphical and analytical analyses confirmed the existence of a statistically significant temperature effect, i.e., hole diameters in heated targets were larger than those in room temperature targets. A new temperature-dependent model was found via multivariable regression analysis that incorporates a linear velocity term and a temperature term based on a form of the cumulative distribution function. Numerical modeling of hypervelocity impacts (HVI) into elevated temperature targets was also performed to determine whether or not currently available material and failure models can adequately simulate the differences observed between room and elevated temperature target hole diameters. Statistical analyses showed that AUTODYN simulated the heated data almost as well as the room temperature data. However, the slightly worse Goodness of Fit (GOF) values between the heated empirical vs. simulated comparisons suggest that the simulations do not completely account for the observed temperature effect. A series of materials tests and observations were carried out on the post-impacted target plates to help explain the empirical data results with respect to material variability and deformation features. Rockwell B and K macro-hardness tests revealed that the hardness values for the targets impacted at 110°C were statistically significantly higher compared to those

  4. Analysis of oblique hypervelocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1988-01-01

    This paper describes the results of an experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to a meteoroid or space debris environement.

  5. An investigation of oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1987-01-01

    This report describes the results of an investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multi-sheet aluminum structures. A model to be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations relating crater and perforation damage of a multi-sheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multi-sheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the hazardous meteoroid and space debris environment.

  6. Hypervelocity impact shield

    NASA Technical Reports Server (NTRS)

    Cour-Palais, Burton G. (Inventor); Crews, Jeanne Lee (Inventor)

    1991-01-01

    A hypervelocity impact shield and method for protecting a wall structure, such as a spacecraft wall, from impact with particles of debris having densities of about 2.7 g/cu cm and impact velocities up to 16 km/s are disclosed. The shield comprises a stack of ultra thin sheets of impactor disrupting material supported and arranged by support means in spaced relationship to one another and mounted to cover the wall in a position for intercepting the particles. The sheets are of a number and spacing such that the impacting particle and the resulting particulates of the impacting particle and sheet material are successively impact-shocked to a thermal state of total melt and/or vaporization to a degree as precludes perforation of the wall. The ratio of individual sheet thickness to the theoretical diameter of particles of debris which may be of spherical form is in the range of 0.03 to 0.05. The spacing between adjacent sheets is such that the debris cloud plume of liquid and vapor resulting from an impacting particle penetrating a sheet does not puncture the next adjacent sheet prior to the arrival thereat of fragment particulates of sheet material and the debris particle produced by a previous impact.

  7. Deformation mechanisms and damage in α-alumina under hypervelocity impact loading

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Branicio, Paulo S.

    2008-04-01

    Deformation mechanisms in α-alumina under hypervelocity impact are investigated using molecular dynamics simulations containing 540×106 atoms. A cylindrical projectile impacting normal to the (0001) surface at 18km/s generates large temperature and pressure gradients around the impact face, and consequently local amorphization of the substrate in a surrounding hemispherical region is produced. Away from the impact face, a wide range of deformations emerge and disappear as a function of time under the influence of local stress fields, e.g., basal and pyramidal slips and basal and rhombohedral twins, all of which show good agreement with the experimental and theoretical results. New deformation modes are observed, such as twins along {01¯11}, which propagate at a roughly constant speed of 8km/s and nucleate a large amount of defects where subsequent fractures initiate. The relation between deformation patterns and local stress levels is investigated. During unloading, we observe that microcracks nucleate extensively at the intersections of previous deformations within an hourglass-shaped volume that connects top and bottom free surfaces. From the simulation, the fracture toughness of alumina is estimated to be 2.0±0.5MPa√m. The substrate eventually fails along the surface of the hourglass region during spallation when clusters of substrate material are ejected from both free surfaces.

  8. Hypervelocity Impacts on ISS Handrails and Evaluation of Alternative Materials to Prevent Extravehicular Mobility Unit (EMU) Glove Damage During EVA

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eruc; Davis, B. Alan; Ordonez, Erick

    2009-01-01

    During post-flight processing of STS-116, damage to crewmember Robert Curbeam's Phase VI Glove Thermal Micrometeoroid Garment was discovered. This damage consisted of: loss of RTV-157 palm pads on the thumb area on the right glove, a 0.75 inch cut in the Vectran adjacent to the seam and thumb pad (single event cut), constituting the worst glove damage ever recorded for the U.S. space program. The underlying bladder and restraint were found not be damaged by this event. Evaluation of glove damage found that the outer Vectran fibers were sliced as a result of contact with a sharp edge or pinch point rather than general wear or abrasion (commonly observed on the RTV pads). Damage to gloves was also noted on STS-118 and STS-120. One potential source of EMU glove damages are sharp crater lips on external handrails, generated by micrometeoroid and orbital debris (MMOD) impacts. In this paper, the results of a hypervelocity impact (HVI) test program on representative and actual ISS handrails are presented. These tests were performed in order to characterize impact damage profiles on ISS handrails and evaluate alternatives for limiting risk to future missions. It was determined that both penetrating and non-penetrating MMOD impacts on aluminum and steel ISS handrails are capable of generating protruding crater profiles which exceed the heights required for EMU glove abrasion risk by an order of magnitude. Testing demonstrated that flexible overwraps attached to the outside of existing handrails are capable of limiting contact between hazardous crater formations and crewmember gloves during extravehicular activity (EVA). Additionally, replacing metallic handrails with high strength, low ductility, fiber reinforced composite materials would limit the formation of protruding crater lips on new ISS modules.

  9. Sunspot: A program to model the behavior of hypervelocity impact damaged multilayer insulation in the Sunspot thermal vacuum chamber of Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Hayashida, K. B.

    1992-01-01

    The development of a computer program to predict the degradation of the insulating capabilities of the multilayer insulation (MLI) blanket of Space Station Freedom due to a hypervelocity impact with a space debris particle is described. A finite difference scheme is used for the calculations. The computer program was written in Microsoft BASIC. Also described is a test program that was undertaken to validate the numerical model. Twelve MLI specimens were impacted at hypervelocities with simulated debris particles using a light gas gun at Marshall Space Flight Center. The impact-damaged MLI specimens were then tested for insulating capability in the space environment of the Sunspot thermal vacuum chamber at MSFC. Two undamaged MLI specimens were also tested for comparison with the test results of the damaged specimens. The numerical model was found to adequately predict behavior of the MLI specimens in the Sunspot chamber. A parameter, called diameter ratio, was developed to relate the nominal MLI impact damage to the apparent (for thermal analysis purposes) impact damage based on the hypervelocity impact conditions of a specimen.

  10. Structural Damage Prediction and Analysis for Hypervelocity Impact: Properties of Largest Fragment Produced by Hypervelocity Impact of Aluminum Spheres with Thin Aluminum Sheets

    NASA Technical Reports Server (NTRS)

    Piekutowski, Andrew J.

    1995-01-01

    Results of a series of hypervelocity impact tests are presented. In these tests, 1.275-g, 9.53-mm-diameter, 2017-T4 aluminum spheres were fired at normal incidence at eight thicknesses of 6061-T6 aluminum sheet. Bumper thickness to projectile diameter (t/D) ratio ranged from 0.026 to 0.424. Nominal impact velocity was 6.7 km/s. Results of five tests using 6.35, 9.53, and 12.70-mm-diameter aluminum spheres and other aluminum alloy bumpers are also given. A large chunky fragment of projectile was observed at the center of the debris clouds produced by the impacts. The equivalent diameter of this large fragment ranged from 5.5 mm for the lowest t/D ratio to a minimum of 0.6 mm for the case where maximum breakup of the projectile occurred (t/D approximately 0.2 to 0.3). When the t/D ratio was 0.42, numerous large flaky fragments were evenly distributed in the external bubble of bumper debris. Velocity of the large central fragments decreased continuously with increasing t/D ratio, ranging from about 99 percent to less than 80 percent of the impact velocity. The change in the velocity of small fragments spalling from the rear of the projectile was used to obtain a relationship showing a linear increase in the size of the central projectile fragment with decrease in the shock-induced stress in the projectile.

  11. AXAF hypervelocity impact test results

    NASA Technical Reports Server (NTRS)

    Frost, Cynthia L.; Rodriguez, Pedro I.

    1997-01-01

    Composite and honeycomb panels are commonly used for spacecraft structural components. The impact test results and analysis of six different composite and honeycomb combinations for use on the advanced X-ray astrophysics facility (AXAF) are reported. The AXAF consists of an X-ray telescope and the associated detecting devices attached to an octagonal spacecraft with an internal propulsion system. The spacecraft's structural panels and optical bench are made of two different graphite fiber reinforced polyimides or composite panels bonded to either side of an aluminum honeycomb. The instrument is required to have at least a 0.92 probability of no failure of any of the critical elements due to meteoroids and debris. In relation to the no-failure probability determination in its low earth orbit environment, hypervelocity impact testing was performed to determine the ballistic limit range and the extent of damage due to impact. The test results for a power and signal cable bundle located behind a panel are presented. Tests planned for a multilayer insulation (MLI) blanket and four types of cable bundles are discussed.

  12. MLIBlast: A program to empirically predict hypervelocity impact damage to the Space Station

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1991-01-01

    MLIBlast is described, which consists of a number of DOC PC based MIcrosoft BASIC program modules written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft. The Spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and a pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impact on spacecraft. One module of MLIBlast facilitates creation of the data base of experimental results that is used by the damage prediction modules of the code. The user has a choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall.

  13. Hypervelocity impact tests on Space Shuttle Orbiter thermal protection material

    NASA Technical Reports Server (NTRS)

    Humes, D. H.

    1977-01-01

    Hypervelocity impact tests were conducted to simulate the damage that meteoroids will produce in the Shuttle Orbiter leading edge structural subsystem material. The nature and extent of the damage is reported and the probability of encountering meteoroids with sufficient energy to produce such damage is discussed.

  14. Penetration and ricochet phenomena in oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1989-01-01

    An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectile on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.

  15. Hypervelocity impact testing of non-metallic materials

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1990-01-01

    A comparative analysis of impact damage in composite and ceramic specimens and in geometrically similar aluminum specimens is performed to determine the advantages and disadvantages of employing certain composite and ceramic materials in the design of structural wall systems for long-duration spacecraft. A similar analysis of the damage in single panel lexan and multi-plane glass windows shows that glass window systems are rather resilent under hypervelocity impact loadings. It is concluded that thin Kevlar 49, IM6/3501-6 graphite/epoxy, and alumina panels offer no advantage over equivalent aluminum 6061-T6 panels in reducing the penetration threat of hypervelocity projectiles.

  16. Hypervelocity impact simulations of Whipple shields

    NASA Technical Reports Server (NTRS)

    Segletes, Steven B.; Zukas, Jonas A.

    1992-01-01

    The problem associated with protecting space vehicles from space debris impact is described. Numerical simulation is espoused as a useful complement to experimentation: as a means to help understand and describe the hypervelocity impact phenomena. The capabilities of a PC-based hydrocode, ZeuS, are described, for application to the problem of hypervelocity impact. Finally, results of ZeuS simulations, as applied to the problem of bumper shield impact, are presented and compared with experimental results.

  17. Hypervelocity Impact (HVI). Volume 1; General Introduction

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. This volume contains an executive summary, overview of the method, brief descriptions of all targets, and highlights of results and conclusions.

  18. Hypervelocity impact technology and applications: 2007.

    SciTech Connect

    Reinhart, William Dodd; Chhabildas, Lalit C.

    2008-07-01

    The Hypervelocity Impact Society is devoted to the advancement of the science and technology of hypervelocity impact and related technical areas required to facilitate and understand hypervelocity impact phenomena. Topics of interest include experimental methods, theoretical techniques, analytical studies, phenomenological studies, dynamic material response as related to material properties (e.g., equation of state), penetration mechanics, and dynamic failure of materials, planetary physics and other related phenomena. The objectives of the Society are to foster the development and exchange of technical information in the discipline of hypervelocity impact phenomena, promote technical excellence, encourage peer review publications, and hold technical symposia on a regular basis. It was sometime in 1985, partly in response to the Strategic Defense Initiative (SDI), that a small group of visionaries decided that a conference or symposium on hypervelocity science would be useful and began the necessary planning. A major objective of the first Symposium was to bring the scientists and researchers up to date by reviewing the essential developments of hypervelocity science and technology between 1955 and 1985. This Symposia--HVIS 2007 is the tenth Symposium since that beginning. The papers presented at all the HVIS are peer reviewed and published as a special volume of the archival journal International Journal of Impact Engineering. HVIS 2007 followed the same high standards and its proceedings will add to this body of work.

  19. Further investigations of oblique hypervelocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1988-01-01

    The results of a continuing investigation of the phenomena associated with the oblique hypervelocity impact of spherical projectiles onto multi-sheet aluminum structures are described. A series of equations that quantitatively describes these phenomena is obtained through a regression of experimental data. These equations characterize observed ricoshet and penetration damage phenomena in a multi-sheet structure as functions of the geometric parameters of the structure and the diameter, obliquity, and velocity of the impacting projectile. Crater damage observed on the ricochet witness plates is used to determine the sizes and speeds of the ricochet debris particles that caused the damage. It is shown that, in general, the most damaging ricochet debris particle is approximately 0.25 cm (0.10 in) in diameter and travels at the speed of approximately 2.1 km/sec (6,890 ft/sec). The equations necessary for the design of shielding panels that will protect external systems from such ricochet debris damage are also developed. The dimensions of these shielding panels are shown to be strongly dependent on their inclination and on their circumferential distribution around the spacecraft. It is concluded that obliquity effects of high-speed impacts must be considered in the design of any structure exposed to the meteoroid and space debris environment.

  20. Morphology correlation of craters formed by hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Crawford, Gary D.; Rose, M. Frank; Zee, Ralph H.

    1993-01-01

    Dust-sized olivine particles were fired at a copper plate using the Space Power Institute hypervelocity facility, simulating micrometeoroid damage from natural debris to spacecraft in low-Earth orbit (LEO). Techniques were developed for measuring crater volume, particle volume, and particle velocity, with the particle velocities ranging from 5.6 to 8.7 km/s. A roughly linear correlation was found between crater volume and particle energy which suggested that micrometeoroids follow standard hypervelocity relationships. The residual debris analysis showed that for olivine impacts of up to 8.7 km/s, particle residue is found in the crater. By using the Space Power Institute hypervelocity facility, micrometeoroid damage to satellites can be accurately modeled.

  1. Hydrocode modelling of hypervelocity impacts on ice

    NASA Astrophysics Data System (ADS)

    Fendyke, S.; Price, M. C.; Burchell, M. J.

    2013-08-01

    Experimental data are now widely available for the size of craters resulting from hypervelocity impacts of millimetre scale projectiles onto water ice targets. At such size scales the bowl shaped crater formed in ductile materials, or in larger scale impacts, is here surrounded by a large spallation zone due to the brittle nature of the ice. Modelling of these impacts therefore has to take account of this spallation. Here we used the iSALE2 hydrocode to simulate such impacts and compared the results to experimental data. We found that it was possible to reproduce the experimental data over a range of speeds (1-7 km s-1) for aluminium and copper projectiles. Initially, to reproduce the large spallation regions around the craters it was assumed that above a certain degree of damage, material was removed by spallation. However this simple one-parameter model failed to model the crater depth adequately. Accordingly, to obtain the best agreement of the simulations with the experimental data, a two-step ice strength was introduced, whereby above a critical amount of damage (0.95), the yield strength reduced from 1 MPa (intact) to 70 kPa (damaged). As a result, experimental data for crater depth and diameter and the results of the simulations agree to within 6% for diameter and 5% for depth over the impact energy range used in the experiments (1-240 J).

  2. Element fracture technique for hypervelocity impact simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-tian; Li, Xiao-gang; Liu, Tao; Jia, Guang-hui

    2015-05-01

    Hypervelocity impact dynamics is the theoretical support of spacecraft shielding against space debris. The numerical simulation has become an important approach for obtaining the ballistic limits of the spacecraft shields. Currently, the most widely used algorithm for hypervelocity impact is the smoothed particle hydrodynamics (SPH). Although the finite element method (FEM) is widely used in fracture mechanics and low-velocity impacts, the standard FEM can hardly simulate the debris cloud generated by hypervelocity impact. This paper presents a successful application of the node-separation technique for hypervelocity impact debris cloud simulation. The node-separation technique assigns individual/coincident nodes for the adjacent elements, and it applies constraints to the coincident node sets in the modeling step. In the explicit iteration, the cracks are generated by releasing the constrained node sets that meet the fracture criterion. Additionally, the distorted elements are identified from two aspects - self-piercing and phase change - and are deleted so that the constitutive computation can continue. FEM with the node-separation technique is used for thin-wall hypervelocity impact simulations. The internal structures of the debris cloud in the simulation output are compared with that in the test X-ray graphs under different material fracture criteria. It shows that the pressure criterion is more appropriate for hypervelocity impact. The internal structures of the debris cloud are also simulated and compared under different thickness-to-diameter ratios (t/D). The simulation outputs show the same spall pattern with the tests. Finally, the triple-plate impact case is simulated with node-separation FEM.

  3. Hypervelocity impact testing of spacecraft optical sensors

    SciTech Connect

    1995-07-01

    Hypervelocity tests of spacecraft optical sensors were conducted to determine if the optical signature from an impact inside the optical sensor sunshade resembled signals that have been observed on-orbit. Impact tests were conducted in darkness and with the ejected debris illuminated. The tests were conducted at the Johnson Space Center Hypervelocity Impact Test Facility. The projectile masses and velocities that may be obtained at the facility are most representative of the hypervelocity particles thought to be responsible for a group of anomalous optical sensors responses that have been observed on-orbit. The projectiles are a few micrograms, slightly more massive than the microgram particles thought to be responsible for the signal source. The test velocities were typically 7.3 km/s, which are somewhat slower than typical space particles.

  4. MLITemp: A computer program to predict the thermal effects associated with hypervelocity impact damage to space station MLI

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Giridharan, V.

    1991-01-01

    A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft are described. Spacecraft wall temperatures and condensate formation is also predicted. The spacecraft wall configuration is assumed to consist of multilayered insulation (MLI) placed between a Whipple style bumper and the pressure wall. Impact damage predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on earth. A module of the program facilitates the creation of the database of experimental results that is used by the damage prediction modules to predict damage to the bumper, the MLI, and the pressure wall. A finite difference technique is used to predict temperature distributions in the pressure wall, the MLI, and the bumper. Condensate layer thickness is predicted for the case where the pressure wall temperature drops below the dew point temperature of the spacecraft atmosphere.

  5. Simulating plasma production from hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Fletcher, Alex; Close, Sigrid; Mathias, Donovan

    2015-09-01

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30-72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff

  6. Electromagnetic Pulses Generated by Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Close, S.

    2011-12-01

    Hypervelocity impacts on spacecraft are known to cause mechanical damage, but their electrical effect on spacecraft systems are not well-characterized. We present a theory to explain plasma production and subsequent electric fields occurring when a meteoroid or piece of space debris strikes a spacecraft, ionizing itself and part of the spacecraft. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP), potentially causing catastrophic damage if the impact is relatively near an area with low shielding or an open umbilical. The plasma density, and hence plasma frequency, sweeps down as the plasma expands ballistically into the vacuum causing a chirp. Subsequent plasma oscillations can also emit significant power and may be responsible for many reported satellite anomalies. The presented theory discusses both a dust-free plasma expansion with coherent electron oscillation and a dusty plasma expansion with macroscopic charge separation. We show that significant RF can be emitted from frequencies ranging from VLF through S-band.

  7. Progress in hypervelocity impact and protection

    NASA Astrophysics Data System (ADS)

    Thoma, K.; Schaefer, F.; Hiermaier, S.; Schneider, E.

    Starting with an introduction into the field of hypervelocity impacts, an overview of current activities in the area of protection against space debris and micrometeoroids is given. After a description of the relevant distributions of debris masses and velocities in orbit, the physical phenomena during a hypervelocity impact will be highlighted using high -speed photographs and flash x-ray pictures. Progress in shield design against space debris can be achieved only, when a combined approach of advanced numerical methods, specific mat erial models and experimental determination of input parameters for these models is used. Examples of experimental methods for material characterization are given, covering the range from quasi static to very high strain rates for materials like Nextel and carbon fiber reinforced materials. Mesh free numerical methods have extraordinary capabilities in the simulation of extreme material behaviour including complete failure with phase changes, combined with shock wave phenomena and the interaction with structural components. In addition to numerical methods, engineering models, summarizing knowledge gained from experiments and/or from numerical simulation, play an important role, for example for system studies and parametric investigations. New material types are developed for applications outside of hypervelocity impact and protection. A permanent screening of new materials with respect to their behaviour under hypervelocity impact loads is necessary to identify materials with a potential for increased protection efficiency. Aim of our paper is to demonstrate the favours of combining numerical methods, material modelling, detailed experimental methods and engineering formulas in shield design. We do this by discussing the following examples: - Hypervelocity impact on pressure vessels: Pressure vessels are integral components of any spacecraft. Therefore research has been focussed on their behaviour under the combined load of internal

  8. Optimum Structure of Whipple Shield against Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Lee, Minhyung

    2013-06-01

    It has been known that the spacecraft protection issues against space debris or meteoroid impact damage are of great importance. Whipple shield structures (double spaced plates) have been investigated and empirical ballistic limit curve (BLCs) are developed. In this paper, we like to investigate an optimum Whipple Shield structure of fixed areal density and space. To do this, a new in-house SPH code has been used. Last 20 years SPH (Smoothed Particle Hydrodynamics) numerical scheme has been widely applied to the hypervelocity impact problems because of the limited velocity range and cost of test. We first examined the extent of debris spreading which seems to be a key factor to the back plate impact. The debris cloud expansion angle shows a maximum value. Then, a series of hypervelocity impact simulations were conducted to predict the critical impacting sphere diameter. It has been found that there is an optimum thickness ratio of front bumper to real wall.

  9. Hypervelocity Impact (HVI). Volume 5; WLE High Fidelity Specimen Fg(RCC)-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-1 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  10. Hypervelocity Impact (HVI). Volume 3; WLE Small-Scale Fiberglass Panel Flat Target C-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-1 was to study hypervelocity impacts on the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  11. Hypervelocity Impact (HVI). Volume 7; WLE High Fidelity Specimen RCC16R

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target RCC16R was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  12. Hypervelocity Impact (HVI). Volume 6; WLE High Fidelity Specimen Fg(RCC)-2

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-2 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  13. Hypervelocity impact response of aluminum multi-wall structures

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Bean, Alan J.

    1991-01-01

    The results of an investigation in which the perforation resistance of aluminum multiwall structures is analyzed under a variety of hypervelocity impact loading conditions are presented. A comparative analysis of the impact damage in structural systems with two or more bumpers and the damage in single-bumper systems of similar weight is performed to determine the advantages and disadvantages of employing more than one bumper in structural wall systems for long-duration spacecraft. A significant increase in protection against perforation by hypervelocity projectiles can be achieved if a single bumper is replaced by two bumpers of similar weight while the total wall spacing is kept constant. It is found that increasing the number of bumpers beyond two while keeping the total stand-off distance constant does not result in a substantial increase in protection over that offered by two bumpers of similar weight.

  14. Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.

    2000-01-01

    This paper presents results from arc jet tests conducted at the NASA Johnson Space Center on reinforced carbon-carbon (RCC) samples subjected to hypervelocity impact. The RCC test specimens are representative of RCC components used on the Space Shuttle Orbiter. The arc jet testing established the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris, impact the RCC material. In addition to developing correlations for use in trajectory simulations, we discuss analytical modeling of the increased material oxidation in the impacted area using measured hole growth data. Entry flight simulations are useful in assessing the increased Space Shuttle RCC component degradation as a result of impact damage and the hot gas flow through an enlarging hole into the wing leading-edge cavity.

  15. On propagation of shock waves generated under hypervelocity impact (HVI) and application to characterizing orbital debris-induced damage in space vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Menglong; Su, Zhongqing

    2015-03-01

    The propagation characteristics of shock waves generated under hypervelocity impact (HVI) (an impact velocity leading to the case that inertial forces outweigh the material strength, usually on the order over 1 km/s) and guided by plate-like structures were interrogated. A hybrid numerical modeling approach, based on the Smoothed-Particle Hydrodynamics (SPH) and Finite Element Method, was developed, to scrutinize HVI scenarios in which a series of aluminum plates, 1.5- mm, 3-mm and 5-mm in thickness, was considered to be impacted by an aluminum sphere, 3.2-mm in diameter, at an initial velocity of 3100 m/s, 3050 m/s and 2490 m/s, respectively. The meshless nature of SPH algorithm circumvented the inefficiency and inaccuracy in simulating large structural distortion associated with HVI when traditional finite element methods used. The particle density was particularly intensified in order to acquire wave components of higher frequencies. With the developed modeling approach, shock waves generated under concerned HVI scenarios were captured at representative gauging points, and the signals were examined in both time and frequency domains. The simulation results resembled those from earlier experiment, demonstrating a capability of the developed modeling approach in canvassing shock waves under HVI. It has been concluded that in the regions near the impact point, the shock waves propagate with higher velocities than bulk waves; as propagation distance increases, the waves slow down and can be described as fundamental and higher-order symmetric and anti-symmetric plate-guided wave modes, propagating at distinct velocities in different frequency bands. The results will facilitate detection of orbital debris-induced damage in space vehicles.

  16. Hypervelocity Impact of Explosive Transfer Lines

    NASA Technical Reports Server (NTRS)

    Bjorkman, Michael D.; Christiansen, Eric L.

    2012-01-01

    Hypervelocity impact tests of 2.5 grains per foot flexible confined detonating chord (FCDC) shielded by a 1 mm thick 2024-T3 aluminum alloy bumper standing off 51 mm from the FCDC were performed. Testing showed that a 6 mm diameter 2017-T4 aluminum alloy ball impacting the bumper at 6.97 km/s and 45 degrees impact angle initiated the FCDC. However, impact by the same diameter and speed ball at 0 degrees angle of impact did not initiate the FCDC. Furthermore, impact at 45 degrees and the same speed by a slightly smaller diameter ball (5.8 mm diameter) also did not initiate the FCDC.

  17. NOTE: Survivability of Bacteria in Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Burchell, Mark J.; Mann, Jo; Bunch, Alan W.; Brandão, Pedro F. B.

    2001-12-01

    Bacteria belonging to the genus Rhodococcus have been tested for their survivability in hypervelocity impacts at 5.1±0.1 km s -1. This is similar to the martian escape velocity for example but is slower than the mean velocities typical of impacts from space on planets like Mars (typically 14 km s -1) and Earth (typically 20-25 km s -1). The bacteria fired were loaded on a projectile using a two-stage light-gas gun. The targets were plates of nutrient media. Analysis techniques including pyrolysis mass spectrometry and selective growth in acetonitrile confirmed that the bacterium grown on a target plate after a shot was the original strain. The indication is that, if fired on a projectile, bacteria can survive a hypervelocity impact and subsequently grow. This holds implications for the study of possible natural migration of life around the Solar System on minor bodies which end up impacting target planets, thus transferring life if the bacteria can survive the resulting hypervelocity impact.

  18. Simulating plasma production from hypervelocity impacts

    SciTech Connect

    Fletcher, Alex Close, Sigrid; Mathias, Donovan

    2015-09-15

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent

  19. Hypervelocity impact calculations using CTH: Case studies

    SciTech Connect

    Trucano, T.G.; McGlaun, J.M.

    1989-01-01

    In this paper, we discuss the application of CTH, a multi-dimensional Eulerian shock wave physics code, by discussing its application to hypervelocity impact problems. CTH is heavily used for this and other types of applications. We will not attempt to provide a broad discussion of examples and capabilities. Rather, we choose to focus on certain features of CTH that are of interest in gaining understanding of some of the more delicate issues of numerical impact simulations. 14 refs., 15 figs., 1 tab.

  20. Orbiter Window Hypervelocity Impact Strength Evaluation

    NASA Technical Reports Server (NTRS)

    Estes, Lynda R.

    2011-01-01

    When the Space Shuttle Orbiter incurs damage on its windowpane during flight from particles traveling at hypervelocity speeds, it produces a distinctive damage that reduces the overall strength of the pane. This damage has the potential to increase the risk associated with a safe return to Earth. Engineers at Boeing and NASA/JSC are called to Mission Control to evaluate the damage and provide an assessment on the risk to the crew. Historically, damages like these were categorized as "accepted risk" associated with manned spaceflight, and as long as the glass was intact, engineers gave a "go ahead" for entry for the Orbiter. Since the Columbia accident, managers have given more scrutiny to these assessments, and this has caused the Orbiter window engineers to capitalize on new methods of assessments for these damages. This presentation will describe the original methodology that was used to asses the damages, and introduce a philosophy new to the Shuttle program for assessing structural damage, reliability/risk-based engineering. The presentation will also present a new, recently adopted method for assessing the damage and providing management with a reasonable assessment on the realities of the risk to the crew and vehicle for return.

  1. Hypervelocity Impact Studies on Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Best, Stevie R.

    2001-01-01

    Space environmental effects have caused severe problems as satellites move toward increased power and operating voltage levels. The greatest unknown, however, is the effect of high velocity micrometeoroid impacts on high voltage arrays (>200V). Understanding such impact phenomena is necessary for the design of future reliable, high voltage solar arrays, especially for Space Solar Power applications. Therefore, the objective of this work was to study the effect of hypervelocity impacts on high voltage solar arrays. Initially, state of the art, 18% efficient GaAs solar cell strings were targeted. The maximum bias voltage on a two-cell string was -200 V while the adjacent string was held at -140 V relative to the plasma potential. A hollow cathode device provided the plasma. Soda lime glass particles 40-120 micrometers in diameter were accelerated in the Hypervelocity Impact Facility to velocities as high as 11.6 km/sec. Coordinates and velocity were obtained for each of the approximately 40 particle impact sites on each shot. Arcing did occur, and both discharging and recharging of arcs between the two strings was observed. The recharging phenomena appeared to stop at approximately 66V string differential. No arcing was observed at 400 V on concentrator cell modules for the Stretched Lens Array.

  2. ALE advantage in hypervelocity impact calculations

    SciTech Connect

    Gerassimenko, M.; Rathkopf, J.

    1998-10-01

    The ALE3D code is used to model experiments relevant to hypervelocity impact lethality, carried out in the 4-5 km/s velocity range. The code is run in the Eulerian and ALE modes. Zoning in the calculations is refined beyond the level found in most lethality calculations, but still short of convergence. The level of zoning refinement that produces equivalent results in uniformly zoned Eulerian calculations and ALE ones utilizing specialized zoning, weighting and relaxation techniques is established. It takes 11 times fewer zones and about 60% as many cycles when ALE capabilities are used. Calculations are compared to experimental results.

  3. An analysis of penetration and ricochet phenomena in oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.

    1988-01-01

    An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.

  4. Hypervelocity impact survivability experiments for carbonaceous impactors

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, Luann; Bada, Jeffrey; Macklin, John; Radicatidibrozolo, Filippo; Fleming, R. H.; Erlichman, Jozef

    1993-01-01

    We performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, fullerenes, phthalic acid crystals, and Murchison meteorite) into Al plate at velocities between 4.2 and 6.1 km/s. These tests were made to do the following: (1) determine the survivability of carbon forms and organize molecules in low hypervelocity impact; (2) characterize carbonaceous impactor residues; and (3) determine whether or not fullerenes could form from carbonaceous impactors, under our experimental conditions, or survive as impactors. An analytical protocol of field emission SEM imagery, SEM-EDX, laser Raman spectroscopy, single and 2-stage laser mass spectrometry, and laser induced fluorescence (LIF) found the following: (1) diamonds did not survive impact at 4.8 km/s, but were transformed into various forms of disordered graphite; (2) intact, well-ordered graphite impactors did survive impact at 5.9 km/sec, but were only found in the crater bottom centers; the degree of impact-induced disorder in the graphite increases outward (walls, rims, ejecta); (3) phthalic acid crystals were destroyed on impact (at 4.2 km/s, although a large proportion of phthalic acid molecules did survive impact); (4) fullerenes did not form as products of carbonaceous impactors (5.9 - 6.1 km/s, fullerene impactor molecules mostly survived impact at 5.9 km/s; and (5) two Murchison meteorite samples (launched at 4.8 and 5.9 km/s) show preservation of some higher mass polycyclic aromatic hydrocarbons (PAHs) compared with the non-impacted sample. Each impactor type shows unique impactor residue morphologies produced at a given impact velocity. An expanded methodology is presented to announce relatively new analytical techniques together with innovative modifications to other methods that can be used to characterize small impact residues in LDEF craters, in addition to other acquired extraterrestrial samples.

  5. Glasses formed by hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.

    1984-01-01

    This paper presents description, classification, and geological setting of impact glasses, which are formed as a result of meteorite impacts with the planetary surface, and discusses the impact-glass formation process in the context of cratering mechanics. Impact glasses can be classified as belonging to two major groups: (1) mineral glasses, which are identical in composition to a mineral, and (2) rock glasses, which have the composition of a rock or a mixture of various rocks. Rock glasses may be (1) melt ejecta, (2) parts of a coherent melt layer inside the crater cavity, or (3) dikes or veins. The composition of rock glasses at a particular crater can be matched by that of the target. In nonporous rocks, the formation of rock glasses requires peak pressures in excess of 60-80 GPa, while mineral glasses are formed in the pressure range of about 25 to 55 GPa; in porous rocks, interstitial glass forms at pressures as low as 5 GPa.

  6. Hypervelocity Impact (HVI). Volume 4; WLE Small-Scale Fiberglass Panel Flat Target C-2

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-2 was to study impacts through the reinforced carboncarbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  7. Improving Metallic Thermal Protection System Hypervelocity Impact Resistance Through Design of Experiments Approach

    NASA Technical Reports Server (NTRS)

    Poteet, Carl C.; Blosser, Max L.

    2001-01-01

    A design of experiments approach has been implemented using computational hypervelocity impact simulations to determine the most effective place to add mass to an existing metallic Thermal Protection System (TPS) to improve hypervelocity impact protection. Simulations were performed using axisymmetric models in CTH, a shock-physics code developed by Sandia National Laboratories, and validated by comparison with existing test data. The axisymmetric models were then used in a statistical sensitivity analysis to determine the influence of five design parameters on degree of hypervelocity particle dispersion. Several damage metrics were identified and evaluated. Damage metrics related to the extent of substructure damage were seen to produce misleading results, however damage metrics related to the degree of dispersion of the hypervelocity particle produced results that corresponded to physical intuition. Based on analysis of variance results it was concluded that the most effective way to increase hypervelocity impact resistance is to increase the thickness of the outer foil layer. Increasing the spacing between the outer surface and the substructure is also very effective at increasing dispersion.

  8. Subsurface Deformation of Nonporous Rocks Induced by Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Poelchau, M. H.; Michalski, C.; Kenkmann, T.

    2015-09-01

    Two hypervelocity impact experiments into quarzite and marble were conducted under similar impact condition. Both experiments show tensile failure; quarzite developed zones of strong grain size reduction, while marble shows intragranular fracturing.

  9. Hypervelocity Impact (HVI). Volume 8; Tile Small Targets A-1, Ag-1, B-1, and Bg-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, Ag-1, B-1, and Bg-1 was to study hypervelocity impacts on the reinforced Shuttle Heat Shield Tiles of the Wing. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  10. Hypervelocity Impact Test Results for a Metallic Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Karr, Katherine L.; Poteet, Carl C.; Blosser, Max L.

    2003-01-01

    Hypervelocity impact tests have been performed on specimens representing metallic thermal protection systems (TPS) developed at NASA Langley Research Center for use on next-generation reusable launch vehicles (RLV). The majority of the specimens tested consists of a foil gauge exterior honeycomb panel, composed of either Inconel 617 or Ti-6Al-4V, backed with 2.0 in. of fibrous insulation and a final Ti-6Al-4V foil layer. Other tested specimens include titanium multi-wall sandwich coupons as well as TPS using a second honeycomb sandwich in place of the foil backing. Hypervelocity impact tests were performed at the NASA Marshall Space Flight Center Orbital Debris Simulation Facility. An improved test fixture was designed and fabricated to hold specimens firmly in place during impact. Projectile diameter, honeycomb sandwich material, honeycomb sandwich facesheet thickness, and honeycomb core cell size were examined to determine the influence of TPS configuration on the level of protection provided to the substructure (crew, cabin, fuel tank, etc.) against micrometeoroid or orbit debris impacts. Pictures and descriptions of the damage to each specimen are included.

  11. Experimental Study of Spacecraft Material Ejected upon Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Francesconi, A.; Giacomuzzo, C.; Barilaro, L.; Segato, E.; Sansone, F.

    2013-08-01

    Twenty-eight hypervelocity impact experiments were carried out at CISAS impact facility, with the aim of assessing the amount of ejecta from three different targets representative of spacecraft materials, i.e. simple aluminum-alloy plates, silicon solar cells and simple aluminum-alloy plates covered by MLI blankets. Projectiles having different size (1, 1.5 and 2.3 mm diameter) were launched at speed ranging from 4 to 5.5 km/s and impact angle from 0° to 80° (the impact angle dependence was evaluated for simple aluminium targets only). Experiments pointed out that the number of ejecta produced after HVI is significantly high (order of thousands). Moreover, it was shown that brittle materials produce more fragments than ductile ones, but the environment pollution and the damage potential of particles coming from metals are much more critical, since large and heavy fragments are prevalent in this case.

  12. Ejecta Dynamics during Hypervelocity Impacts into Dry and Wet Sandstone

    NASA Astrophysics Data System (ADS)

    Hoerth, T.; Schäfer, F.; Thoma, K.; Poelchau, M.; Kenkmann, T.; Deutsch, A.

    2011-03-01

    Hypervelocity impact experiments into dry and water saturated porous Seeberger sandstone were conducted at the two-stage light gas accelerator at the Ernst-Mach-Institute (EMI) and the ejecta dynamics were analyzed.

  13. The XLLGG — A Hypervelocity Launcher for Impact Cratering Research

    NASA Astrophysics Data System (ADS)

    Lexow, B.; Bückle, A.; Wickert, M.; Hiermaier, S.

    2015-09-01

    Hypervelocity launchers are used to accelerate projectiles that simulate impacting meteoroids or asteroids. The XLLGG (eXtra Large Light Gas Gun) at the EMI (Ernst-Mach-Institute) was used within the MEMIN program.

  14. Discrete shear failure planes resulting from oblique hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2014-08-01

    A combination of laboratory and numerical experiments examines the role of shear localization in subsurface damage following very oblique (15-30°) hypervelocity impacts. Laboratory experiments reveal subsurface damage planes ("blades") parallel to the impact trajectory for highly oblique impacts (15-30°), which are characterized by unique surface textures relative to other failure regions. Observations of growth rate and surface texture of the damage planes combined with three-dimensional CTH simulations indicate that the blades are the result of frictional processes during localized shear deformation. Laboratory experiments also reveal that impact angle and projectile failure play a role in the development of these blades: aluminum projectiles result in distinct along-trajectory blades for both 15° and 30° impacts, whereas the blades are weakly developed for Pyrex projectiles and nonexistent for planar polymethylmethacrylate projectiles. The blades form early in the cratering process and are signatures of the projectile momentum being transferred into the target. Based on the growth rate, and melting seen along the surface of these damage planes, the blades may provide an analog for the generation of pseudotachylytes during the early stages of impact crater formation.

  15. Hypervelocity Impact Testing of Space Station Freedom Solar Cells

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-01-01

    Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.

  16. Characteristics of plasma generated by hypervelocity impact

    SciTech Connect

    Song, Weidong; Li, Jianqiao; Ning, Jianguo

    2013-09-15

    The characteristics of plasma generated by hypervelocity impact were studied through both theoretical analysis and numerical simulation. Based on thermodynamics and statistical physics, a thermal ionization model was proposed to explore the relationships of ionization degree and plasma conductivity to temperature with consideration of the velocity distribution law in the thermodynamic equilibrium state. In order to derive the temperature, internal energy, and density of the plasma generated by the impact for the above relationships, a 3-D model for the impact of an aluminum spherical projectile on an aluminum target was established and five cases with different impact angles were numerically simulated. Then, the temperature calculated from the internal energy and the Thomas Fermi (TF) model, the internal energy and the density of the plasma were put into the function of the ionization degree to study the characteristics of plasma. Finally, based on the experimental data, a good agreement was obtained between the theoretical predictions and the experimental results, and the feasibility of this theoretical model was verified.

  17. Oblique hypervelocity impact response of dual-sheet structures

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1989-01-01

    The results of a continuing investigation of the phenomena associated with the oblique hypervelocity impact of spherical projectiles onto multi-sheet aluminum structures are given. A series of equations that quantitatively describes these phenomena is obtained through a regression of experimental data. These equations characterize observed ricochet and penetration damage phenomena in a multi-sheet structure as functions of geometric parameters of the structure and the diameter, obliquity, and velocity of the impacting projectile. Crater damage observed on the ricochet witness plates is used to determine the sizes and speeds of the ricochet debris particles that caused the damage. It is observed that the diameter of the most damaging ricochet debris particle can be as large as 40 percent of the original particle diameter and can travel at speeds between 24 percent and 36 percent of the original projectile impact velocity. The equations necessary for the design of shielding panels that will protect external systems from such ricochet debris damage are also developed. The dimensions of these shielding panels are shown to be strongly dependent on their inclination and on their circumferential distribution around the spacecraft.

  18. Thermodynamics analysis of aluminum plasma transition induced by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiang; Zhang, Qingming; Ju, Yuanyuan

    2016-02-01

    The production of plasmas during hypervelocity meteoroid and space debris impact has been proposed to explain the presence of paleomagnetic fields on the lunar surface, and also the electromagnetic damage to spacecraft electronic devices. Based on Gibbs' ensemble theory, we deduce Saha equation of state and figure out the ionization degree; further, by using the derivation of Clausius-Clapeyron equation, we obtain the entropy increase and latent heat of plasma transition after vaporization; finally, we analyze the conversion efficiency of kinetic energy into internal energy, present two key contradictions, and revise them with the entropy increase, latent heat, and conversion efficiency. We analyze the aluminum plasma transition from multiple perspectives of the equation of state, latent heat of phase transition, and conversion efficiency and propose the internal energy and impact velocity criterion, based on the laws of thermodynamics.

  19. Crater and cavity depth in hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Kadono, T.; Fujiwara, A.

    2003-04-01

    Hypervelocity impact experiments with low-density mediums (e.g., foams) have been so far carried out to develop the instruments for intact capture of interplanetary dust particles. The results show that the impact leads a "cavity", a cylindrical or carrot (spindle) shaped vestige. Its shape depends on the condition of projectiles; when impact velocity is so low that projectiles are intact, the depth increases with impact velocity, while it decreases or is constant with impact velocity when the impact velocity is so high that projectiles are broken (e.g., Kadono, Planet. Space Sci. 47, 305--318, 1999). On the other hand, as described by Summers (NASA TN D-94, 1959), crater shape with high density targets (comparable to projectile density) also changes with impact velocity. At low velocities, the strength of projectile's materials is greater than the dynamic impact pressure and the projectile penetrates the target intact. The crater produced is deep and narrow. With increase in impact velocity, a point is reached at which the impact pressure is sufficient to cause the projectile to fragment into a few large pieces at impact. Then as the impact velocity is increased further, the projectile shatters into numerous small pieces and the penetration actually decreases. Finally a velocity is reached at which the typical fluid impact occurs, the crater formed is nearly hemispherical in shape. It appears that the situation in cavity formation with low density targets is quite similar to that in cratering with high density targets at low impact velocity. This similarity allows us to discuss cavity formation and cratering in a unified view. As described above, the previous experiments clearly suggest that the condition of projectiles plays important roles in both cratering and cavity formation. Hence here, by introducing a parameter that characterizes the condition of projectiles at the instance of impact, cratering processes such as projectile penetration and shock wave

  20. Capacitors Would Help Protect Against Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Edwards, David; Hubbs, Whitney; Hovater, Mary

    2007-01-01

    A proposal investigates alternatives to the present bumper method of protecting spacecraft against impacts of meteoroids and orbital debris. The proposed method is based on a British high-voltage-capacitance technique for protecting armored vehicles against shaped-charge warheads. A shield, according to the proposal, would include a bare metal outer layer separated by a gap from an inner metal layer covered with an electrically insulating material. The metal layers would constitute electrodes of a capacitor. A bias potential would be applied between the metal layers. A particle impinging at hypervelocity on the outer metal layer would break apart into a debris cloud that would penetrate the electrical insulation on the inner metal layer. The cloud would form a path along which electric current could flow between the metal layers, thereby causing the capacitor to discharge. With proper design, the discharge current would be large enough to vaporize the particles in the debris cloud to prevent penetration of the spacecraft. The shield design can be mass optimized to be competitive with existing bumper designs. Parametric studies were proposed to determine optimum correction between bias voltage, impacting particle velocity, gap space, and insulating material required to prevent spacecraft penetration.

  1. Effects of oblique impact on hypervelocity shield performance

    SciTech Connect

    Brewer, E.D.; Hendrich, W.R.; Thomas, D.G.; Smith, J.E.

    1990-01-01

    As part of the Advanced Shield Phenomenology Program, conducted from 1987 to 1989, a study of the effects of oblique impact on hypervelocity shield damage was performed. The specific threat used was an aluminum cylinder with a mass of 1.75 grams and a length to diameter ratio of one. Incidence angles of 30{degree}, 60{degree}, and 90{degree} were studied. The same layered shield assembly was tested at the different incidence angles. Testing was performed at the Arnold Engineering Development Center, Arnold Air Force Base, Tullahoma, Tennessee. Hydrocode analysis of the interaction of the projectile with the front plate was performed for each of the different incidence angles. 10 refs., 23 figs., 3 tabs.

  2. Study of hypervelocity meteoroid impact on orbital space stations

    NASA Technical Reports Server (NTRS)

    Leimbach, K. R.; Prozan, R. J.

    1973-01-01

    Structural damage resulting in hypervelocity impact of a meteorite on a spacecraft is discussed. Of particular interest is the backside spallation caused by such a collision. To treat this phenomenon two numerical schemes were developed in the course of this study to compute the elastic-plastic flow fracture of a solid. The numerical schemes are a five-point finite difference scheme and a four-node finite element scheme. The four-node finite element scheme proved to be less sensitive to the type of boundary conditions and loadings. Although further development work is needed to improve the program versatility (generalization of the network topology, secondary storage for large systems, improving of the coding to reduce the run time, etc.), the basic framework is provided for a utilitarian computer program which may be used in a wide variety of situations. Analytic results showing the program output are given for several test cases.

  3. Hypervelocity impact cratering - A catastrophic terrestrial geologic process

    NASA Astrophysics Data System (ADS)

    Grieve, Richard A. F.

    It is possible to infer a 5.4 x 10 to the 15th/sq km per year terrestrial impact cratering rate for hypervelocity impact structures with diameters greater than 20 km. These craters often contain such shock-metamorphic effects as shatter cones, tectosilicate microscopic planar features, diapleptic solid-state glasses, and impact melting. Impact melt rocks may contain siderophile anomalies indicative of siderophile material admixtures. Hypervelocity impacts have gained recognition as catastrophes with potentially severe biological effects; the cratering record is such as to suggest that the earth may be subjected to periodic cometary showers.

  4. Measurement Techniques for Hypervelocity Impact Test Fragments

    NASA Technical Reports Server (NTRS)

    Hill, Nicole E.

    2008-01-01

    The ability to classify the size and shape of individual orbital debris fragments provides a better understanding of the orbital debris environment as a whole. The characterization of breakup fragmentation debris has gradually evolved from a simplistic, spherical assumption towards that of describing debris in terms of size, material, and shape parameters. One of the goals of the NASA Orbital Debris Program Office is to develop high-accuracy techniques to measure these parameters and apply them to orbital debris observations. Measurement of the physical characteristics of debris resulting from groundbased, hypervelocity impact testing provides insight into the shapes and sizes of debris produced from potential impacts in orbit. Current techniques for measuring these ground-test fragments require determination of dimensions based upon visual judgment. This leads to reduced accuracy and provides little or no repeatability for the measurements. With the common goal of mitigating these error sources, allaying any misunderstandings, and moving forward in fragment shape determination, the NASA Orbital Debris Program Office recently began using a computerized measurement system. The goal of using these new techniques is to improve knowledge of the relation between commonly used dimensions and overall shape. The immediate objective is to scan a single fragment, measure its size and shape properties, and import the fragment into a program that renders a 3D model that adequately demonstrates how the object could appear in orbit. This information would then be used to aid optical methods in orbital debris shape determination. This paper provides a description of the measurement techniques used in this initiative and shows results of this work. The tradeoffs of the computerized methods are discussed, as well as the means of repeatability in the measurements of these fragments. This paper serves as a general description of methods for the measurement and shape analysis of

  5. Hypervelocity Impact Initiation of Explosive Transfer Lines

    NASA Technical Reports Server (NTRS)

    Bjorkman, Michael D.; Christiansen, Eric L.

    2012-01-01

    The Gemini, Apollo and Space Shuttle spacecraft utilized explosive transfer lines (ETL) in a number of applications. In each case the ETL was located behind substantial structure and the risk of impact initiation by micrometeoroids and orbital debris was negligible. A current NASA program is considering an ETL to synchronize the actuation of pyrobolts to release 12 capture latches in a contingency. The space constraints require placing the ETL 50 mm below the 1 mm thick 2024-T72 Whipple shield. The proximity of the ETL to the thin shield prompted analysts at NASA to perform a scoping analysis with a finite-difference hydrocode to calculate impact parameters that would initiate the ETL. The results suggest testing is required and a 12 shot test program with surplused Shuttle ETL is scheduled for February 2012 at the NASA White Sands Test Facility. Explosive initiation models are essential to the analysis and one exists in the CTH library for HNS I, but not the HNS II used in the Shuttle 2.5 gr/ft rigid shielded mild detonating cord (SMDC). HNS II is less sensitive than HNS I so it is anticipated that these results using the HNS I model are conservative. Until the hypervelocity impact test results are available, the only check on the analysis was comparison with the Shuttle qualification test result that a 22 long bullet would not initiate the SMDC. This result was reproduced by the hydrocode simulation. Simulations of the direct impact of a 7 km/s aluminum ball, impacting at 0 degree angle of incidence, onto the SMDC resulted in a 1.5 mm diameter ball initiating the SMDC and 1.0 mm ball failing to initiate it. Where one 1.0 mm ball could not initiate the SMDC, a cluster of six 1.0 mm diameter aluminum balls striking simultaneously could. Thus the impact parameters that will result in initiating SMDC located behind a Whipple shield will depend on how well the shield fragments the projectile and spreads the fragments. An end-to-end simulation of the impact of an

  6. The Recent Research Progresses in Space Debris Hypervelocity Impact Test in CAST

    NASA Astrophysics Data System (ADS)

    Gong, Zizheng; Dai, Fu; Yang, Jiyun; Hou, Mingqiang; Zheng, Jiandong; Tong, Jingyu; Pang, Hewei

    2009-06-01

    A more perfect projectile/sabot aerodynamic separating technique in hypervelocity impact experiment was developed. By using this technique, the Al sphere with diameters from 10 mm to 1 mm were separated with sabot 100% successfully in the velocity ranges of 3˜ 7km/s, on the two-stage-light-gas gun with 18 mm caliber. The technique of flier-plate with graded wave impedance in hypervelocity launcher was developed, and a titanium plate with 4mm in diameter and 2 mm in thickness was launched to 10km/s. The ballistic limit curve of typical aluminum alloy whipple shield was investigated by both experiment and numerical simulation, the results were compared with Christiansen equation, and a jump phenomena were found at velocity between 8.5km/s and 11km/s in simulation results. The hypervelocity impact damage characteristic and damage model of fused silica glass outer windshield was obtained by using the two-stage-light-gas gun up to 6.5 km/s impacting velocity. The hypervelocity impacts on the outer surfaces functional material, such as the thermal control material, window glass, and OSR etc., by using The Laser-driven Flyer system are also reviewed.

  7. A model for debris clouds produced by impact of hypervelocity projectiles on multiplate structures

    NASA Astrophysics Data System (ADS)

    Zhang, Qingming; Long, Renrong; Huang, Fenglei; Chen, Li; Fu, Yuesheng

    2008-11-01

    Hypervelocity impact of spherical and cylindrical projectiles on multipate shields at velocities between 4 and 6km/s was investigated experimentally. A model was developed to describe the motion of the debris clouds generated. Good agreement was obtained between the experimental and simulation results. The model is capable of predicting damage induced by the impact and can be applied to the optimization and design of multiplate shields.

  8. Study of Hypervelocity Projectile Impact on Thick Metal Plates

    SciTech Connect

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; Hixson, Robert S.; Becker, Steven; Pena, Michael T.; Jennings, Richard; Somasoundaram, Deepak; Matthes, Melissa; Daykin, Edward P.; Machorro, Eric

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments: Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.

  9. Study of hypervelocity projectile impact on thick metal plates

    DOE PAGESBeta

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; Hixson, Robert S.; Becker, Steven; Pena, Michael T.; Jennings, Richard; Somasoundaram, Deepak; Matthes, Melissa; Daykin, Edward P.; et al

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments:more » Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.« less

  10. Study of hypervelocity projectile impact on thick metal plates

    SciTech Connect

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; Hixson, Robert S.; Becker, Steven; Pena, Michael T.; Jennings, Richard; Somasoundaram, Deepak; Matthes, Melissa; Daykin, Edward P.; Machorro, Eric

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments: Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.

  11. Modelling hypervelocity impacts into aluminum structures based on LDEF data

    NASA Technical Reports Server (NTRS)

    Coombs, C. R.; Atkinson, D. R.; Watts, A. J.; Wagner, J. R.; Allbrooks, M. K.; Hennessy, C. J.

    1993-01-01

    Realizing and understanding the effects of the near-Earth space environment on a spacecraft during its mission lifetime is becoming more important with the regeneration of America's space program. Included among these potential effects are the following: erosion and surface degradation due to atomic oxygen impingement; ultraviolet exposure embrittlement; and delamination, pitting, cratering, and ring formation due to micrometeoroid and debris impacts. These effects may occur synergistically and may alter the spacecraft materials enough to modify the resultant crater, star crack, and/or perforation. This study concentrates on modelling the effects of micrometeoroid and debris hypervelocity impacts into aluminum materials (6061-T6). Space debris exists in all sizes, and has the possibility of growing into a potentially catastrophic problem, particularly since self-collisions between particles can rapidly escalate the number of small impactors. We have examined the morphologies of the Long Duration Exposure Facility (LDEF) impact craters and the relationship between the observed impact damage on LDEF versus the existing models for both the natural (micrometeoroid) and manmade (debris) environments in order to better define these environments.

  12. Analysis of hypervelocity impact test data

    SciTech Connect

    Canavan, G.H.

    1998-01-01

    Experiments conducted by the Department of Defense provide an adequate basis for the determination of the fragment distribution and number from hypervelocity collisions. Models trained on only a portion of the data are shown to bias samples too far from the population to be useful for averaging over debris distributions or estimating fragment production rates. The average fragment production exponent is more appropriate for those purposes.

  13. Hypervelocity Impact (HVI). Volume 2; WLE Small-Scale Fiberglass Panel Flat Multi-Layer Targets A-1, A-2, and B-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, A-2, and B-2 was to study hypervelocity impacts through multi-layered panels simulating Whipple shields on spacecraft. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  14. Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Yasensky, John; Christiansen, Eric L.

    2007-01-01

    A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.

  15. SPH (smoothed particle hydrodynamics) simulations of hypervelocity impacts

    SciTech Connect

    Cloutman, L.D.

    1991-01-24

    The smoothed particle hydrodynamics (SPH) method has been used to simulate several cases of hypervelocity impact in an exploratory study to determine the suitability of the method for such problems. The calculations compare favorably with experimental results and with other numerical simulations. We discuss the requirements that must be satisfied for SPH to produce accurate simulations of such problems. 18 refs., 9 figs.

  16. Survey of the hypervelocity impact technology and applications.

    SciTech Connect

    Chhabildas, Lalit Chandra; Orphal, Dennis L.

    2006-05-01

    HVIS 2005 was a clear success. The Symposium brought together nearly two hundred active researchers and students from thirteen countries around the world. The 84 papers presented at HVIS 2005 constitute an ''update'' on current research and the state-of-the-art of hypervelocity science. Combined with the over 7000 pages of technical papers from the eight previous Symposia, beginning in 1986, all published in the International Journal of Impact Engineering, the papers from HVIS 2005 add to the growing body of knowledge and the progressing state-of-the-art of hypervelocity science. It is encouraging to report that even with the limited funding resources compared to two decades ago, creativity and ingenuity in hypervelocity science are alive and well. There is considerable overlap in different disciplines that allows researchers to leverage. Experimentally, higher velocities are now available in the laboratory and are ideally suited for space applications that can be tied to both civilian (NASA) and DoD military applications. Computationally, there is considerable advancement both in computer and modeling technologies. Higher computing speeds and techniques such as parallel processing allow system level type applications to be addressed directly today, much in contrast to the situation only a few years ago. Needless to say, both experimentally and computationally, the ultimate utility will depend on the curiosity and the probing questions that will be incumbent upon the individual researcher. It is quite satisfying that over two dozen students attended the symposium. Hopefully this is indicative of a good pool of future researchers that will be needed both in the government and civilian industries. It is also gratifying to note that novel thrust areas exploring different and new material phenomenology relevant to hypervelocity impact, but a number of other applications as well, are being pursued. In conclusion, considerable progress is still being made that is

  17. Classical molecular dynamics simulations of hypervelocity nanoparticle impacts on amorphous silica

    SciTech Connect

    Samela, Juha; Nordlund, Kai

    2010-02-01

    We have investigated the transition from the atomistic to the macroscopic impact mechanism by simulating large Argon cluster impacts on amorphous silica. The transition occurs at cluster sizes less than 50 000 atoms at hypervelocity regime (22 km/s). After that, the crater volume increases linearly with the cluster size opposite to the nonlinear scaling typical of small cluster impacts. The simulations demonstrate that the molecular dynamics method can be used to explore atomistic mechanisms that lead to damage formation in small particle impacts, for example, in impacts of micrometeorites on spacecraft.

  18. Classical molecular dynamics simulations of hypervelocity nanoparticle impacts on amorphous silica

    NASA Astrophysics Data System (ADS)

    Samela, Juha; Nordlund, Kai

    2010-02-01

    We have investigated the transition from the atomistic to the macroscopic impact mechanism by simulating large Argon cluster impacts on amorphous silica. The transition occurs at cluster sizes less than 50000 atoms at hypervelocity regime (22 km/s). After that, the crater volume increases linearly with the cluster size opposite to the nonlinear scaling typical of small cluster impacts. The simulations demonstrate that the molecular dynamics method can be used to explore atomistic mechanisms that lead to damage formation in small particle impacts, for example, in impacts of micrometeorites on spacecraft.

  19. Experimental hypervelocity impact effects on simulated planetesimal materials

    SciTech Connect

    Tedeschi, W.J.; Schulze, J.F.; Remo, J.L.; Young, R.P. Jr

    1994-08-01

    Experimental results are presented from a series of hypervelocity impact tests on simulated comet and asteroid materials for the purpose of characterizing their response to hypervelocity kinetic energy impacts. Nine tests were conducted at the Air Force Arnold Engineering Development Center (AEDC) S1 Range Facility on ice, rock, and iron target samples using a spherical 2.39 mm diameter aluminum impactor (0.0192 gm) at impact velocities of from 7.6 to 8.4 km/sec. The test objectives were to collect target response phenomenology data on cratering, momentum deposition and enhancement, target fragmentation, and material response under hypervelocity impact loading conditions. A carefully designed ballistic pendulum was used to measure momentum deposition into the targets. Observations and measurements of the impacted samples provide important insights into the response of these materials to kinetic energy impacts, especially in regards to unexpectedly large measured values of momentum enhancement to some of the targets. Such information is required to allow us to successfully deflect or fragment comets or asteroids which might someday be detected on collision trajectories with Earth.

  20. Spacecraft outer thermal blankets as hypervelocity impact bumpers

    NASA Astrophysics Data System (ADS)

    Cour-Palais, B. G.

    1996-05-01

    A thermal barrier consisting of a woven fabric outer layer followed by several layers of aluminized mylar insulation has been the primary impact protection against micrometeoroid and orbital impacts for many spacecraft currently in orbit. This paper examines its effectiveness as a hypervelocity "bumper" based on the performance of a NASA space suit. In this case, the thermal barrier consisted of a fabric layer followed by five layers of the aluminized mylar, which shielded either an aluminum rear wall or a rubberized pressure garment. The total areal density of the fabric and mylar layers was 0.052 g/cm2 and the fabric stand-off was 4 mm from the protected surfaces, with the aluminized mylar filling the space. Test results obtained with hypervelocity aluminum projectile impacts up to 8.5 km/s on the thermal barrier and aluminum wall are described, and a semi-empirical equation for this type of shielding is suggested.

  1. Impact sensor network for detection of hypervelocity impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Schäfer, Frank; Janovsky, Rolf

    2007-11-01

    With regard to hypervelocity impact detection, a sensor network that can be applied on typical spacecraft structures is under development at Fraunhofer EMI (Ernst-Mach-Institut), supported by OHB-System. For impact detection, acoustic transducers are used. The structure types investigated are a 2 mm thick plate from aluminium alloy and a 49 mm thick sandwich panel with aluminium face-sheets and aluminium honeycomb core. One impact test was performed on each of the panels, which were instrumented with 6 ultrasonic transducers. The signals recorded at the various sensor locations varied with regard to peak amplitude and elapse time of the signal. Using this information and combining it with a localization algorithm, the impact location could be successfully determined. A description of the impact sensor network and the mathematical model to determine the impact location is provided. The impact tests on the spacecraft structure, the response of the sensor network and the analysis performed to determine the impact location are described.

  2. Hypervelocity impact response of honeycomb sandwich panels

    NASA Astrophysics Data System (ADS)

    Schonberg, William; Schäfer, Frank; Putzar, Robin

    2010-02-01

    Man-made orbital poses a serious threat to spacecraft that are launched to operate in Earth orbit because it can strike such spacecraft at very high velocities and consequently damage mission-critical systems. This paper describes the findings of a study whose objective was to develop a system of empirical equations that can be used to predict the trajectories and spread of the debris clouds that exit the rear facesheet following a high speed perforating impact of a honeycomb sandwich panel (HC/SP). These equations are based on a database containing the results of nearly 400 tests from 13 previously published papers and reports. Overall the correlation coefficient values for the various regression equations obtained are fairly reasonable, and range from near 60% to well above 90%. This indicates that the chosen forms of the equations are a good fit to the data, and that they are capable of picking up most of the variations in the data that result from changes in test conditions. These equations can now be used to estimate the amount of mass in a debris cloud if an HC/SP is perforated by a high speed impact, where this mass will travel, and what spacecraft components will be impacted by it. This information can then be fed into a risk assessment code to calculate the probability of spacecraft failure under a prescribed set of impact conditions.

  3. Hypervelocity impact simulation for micrometeorite and debris shield design

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1992-01-01

    A new capability has been developed for direct computer simulation of hypervelocity impacts on multi-plate orbital debris shields, for combinations of low shield thickness and wide shield spacing which place extreme demands on conventional Eulerian analysis techniques. The modeling methodology represents a novel approach to debris cloud dynamics simulation, a problem of long term interest in the design of space structures. Software implementation of the modeling methodology provides a new design tool for engineering analysis of proposed orbital debris protection systems.

  4. Methodology of design and analysis of external walls of space station for hypervelocity impacts by meteoroids and space debris

    NASA Technical Reports Server (NTRS)

    Batla, F. A.

    1986-01-01

    The development of criteria and methodology for the design and analysis of Space Station wall elements for collisions with meteoroids and space debris at hypervelocities is discussed. These collisions will occur at velocities of 10 km/s or more and can be damaging to the external wall elements of the Space Station. The wall elements need to be designed to protect the pressurized modules of the Space Station from functional or structural failure due to these collisions at hypervelocities for a given environment and population of meteoroids and space debris. The design and analysis approach and the associated computer program presented is to achieve this objective, including the optimization of the design for a required overall probability of no penetration. The approach is based on the presently available experimental and actual data on meteoroids and space debris flux and damage assessments and the empirical relationships resulting from the hypervelocity impact studies in laboratories.

  5. Theoretical and numerical predictions of hypervelocity impact-generated plasma

    SciTech Connect

    Li, Jianqiao; Song, Weidong Ning, Jianguo

    2014-08-15

    The hypervelocity impact generated plasmas (HVIGP) in thermodynamic non-equilibrium state were theoretically analyzed, and a physical model was presented to explore the relationship between plasma ionization degree and internal energy of the system by a group of equations including a chemical reaction equilibrium equation, a chemical reaction rate equation, and an energy conservation equation. A series of AUTODYN 3D (a widely used software in dynamic numerical simulations and developed by Century Dynamic Inc.) numerical simulations of the impacts of hypervelocity Al projectile on its targets at different incident angles were performed. The internal energy and the material density obtained from the numerical simulations were then used to calculate the ionization degree and the electron temperature. Based on a self-developed 2D smooth particle hydrodynamic (SPH) code and the theoretical model, the plasmas generated by 6 hypervelocity impacts were directly simulated and their total charges were calculated. The numerical results are in good agreements with the experimental results as well as the empirical formulas, demonstrating that the theoretical model is justified by the AUTODYN 3D and self-developed 2D SPH simulations and applicable to predict HVIGPs. The study is of significance for astrophysical and cosmonautic researches and safety.

  6. Hyper-velocity impact risk assessment study for LOFT

    NASA Astrophysics Data System (ADS)

    Perinati, Emanuele

    Within the ESA Cosmic Vision programme, the Large Observatory For x-ray Timing (LOFT) mission is one of the candidates for the M3 slot opportunity. LOFT is an x-ray (2-30 keV) experiment with two instruments on-board: the Large Area Detector (LAD) and the Wide Field Monitor (WFM). Both are based on Silicon Drift Detectors (SDDs). Due to the design of the instrumental configuration, hyper-velocity impacts of micrometeoroids and orbital debris represent a significant hazard factor. During the three-year assessment phase of LOFT, we performed experimental test campaigns at the MPIK Van de Graaff accelerator to measure the degradation of LOFT SDD prototypes induced by hyper-velocity impacts. For the WFM, to mitigate the impact risk we designed and tested at the TUM plasma accelerator a compact double-wall shield using thin (~10 micron) foils of Kapton and Polypropylene, capable to effectively stop hyper-velocity particles up to 70 micron in size, in a remarkable agreement with simulations performed in ESABASE2. We present the results of these activities in the context of LOFT, and brievly discuss the potential applicability of the SDD as a debris detector.

  7. Hypervelocity impact effects on solar cells

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    One of the space hazards of concern is the problem of natural matter and space debris impacting spacecraft. In addition to mechanical damage, impact velocities greater than 5 km/sec can produce shock induced ionization effects with resultant surface charging and complex chemical interactions. The upper limit of the velocity distribution for these particles is on the order of 70 km/sec. The second source of particulate matter is due to the presence of man and the machinery needed to place satellites in orbit. This 'man made' component of the space debris consists of waste, rocket exhaust, and debris caused by satellite break-up. Most of the particles are small. However as the size increases, debris purposefully thrown overboard such as garbage and human waste, combined with paint chips, plastic, wire fragments, bolts, etc., become formidable hazards which completely dominate the distribution function for some orbits. These larger fragments can produce penetration and spalling of the thick metallic structures associated with spacecraft. The particles most often encountered are aluminum oxide, associated with fuel residue, and paint chips. These debris types can have a wide range of particle sizes. It has been stated that the design of spacecraft will have to take the debris evolution into account and provide additional suitable armor for key components in the near future. The purpose of this work was to subject samples from solar power arrays, one of the key components of any spacecraft, to a debris flux typical of what might be found in space, and measure the degradation of the power panels after impact.

  8. Hypervelocity Impact Testing of IM7/977-3 with Micro-Sized Particles

    NASA Technical Reports Server (NTRS)

    Smith, J. G.; Jegley, D. C.; Siochi, E. J.; Wells, B. K.

    2010-01-01

    Ground-based hypervelocity imapct testing was conducted on IM7/977-3 quasi-isotropic flat panels at normal incidence using micron-sized particles (i.e. less than or equal to 100 microns) of soda lime glass and olivine. Testing was performed at room temperature (RT) and 175 C with results from the 175 C test compared to those obtained at RT. Between 10 and 30 particles with velocities ranging from 5 to 13 km/s impacted each panel surface for each test temperature. Panels were ultrasonically scanned prior to and after impact testing to assess internal damage. Post-impact analysis included microscopic examination of the surface, determination of particle speed and location, and photomicroscopy for microcrack assessment. Internal damage was observed by ultrasonic inspection on panels impacted at 175 C, whereas damage for the RT impacted panels was confined to surface divets/craters as determined by microscopic analysis.

  9. Axial focusing of energy from a hypervelocity impact on earth

    SciTech Connect

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  10. Survivability of bacteria ejected from icy surfaces after hypervelocity impact.

    PubMed

    Burchell, Mark J; Galloway, James A; Bunch, Alan W; Brandão, Pedro F B

    2003-02-01

    Both the Saturnian and Jovian systems contain satellites with icy surfaces. If life exists on any of these icy bodies (in putative subsurface oceans for example) then the possibility exists for transfer of life from icy body to icy body. This is an application of the idea of Panspermia, wherein life migrates naturally through space. A possible mechanism would be that life, here taken as bacteria, could become frozen in the icy surface of one body. If a high-speed impact occurred on that surface, ejecta containing the bacteria could be thrown into space. It could then migrate around the local region of space until it arrived at a second icy body in another high-speed impact. In this paper we consider some of the necessary steps for such a process to occur, concentrating on the ejection of ice bearing bacteria in the initial impact, and on what happens when bacteria laden projectiles hit an icy surface. Laboratory experiments using high-speed impacts with a light gas gun show that obtaining icy ejecta with viable bacterial loads is straightforward. In addition to demonstrating the viability of the bacteria carried on the ejecta, we have also measured the angular and size distribution of the ejecta produced in hypervelocity impacts on ice. We have however been unsuccessful at transferring viable bacteria to icy surfaces from bacteria laden projectiles impacting at hypervelocities. PMID:12967273

  11. PVDF gauge characterization of hypervelocity-impact-generated debris clouds

    SciTech Connect

    Boslough, M.B.; Chhabildas, L.C.; Reinhart, W.D.; Hall, C.A.; Miller, J.M.; Hickman, R.; Mullin, S.A.; Littlefield, D.L.

    1993-08-01

    We have used PVDF gauges to determine time-resolved stresses resulting from interaction between hypervelocity-impact-generated debris clouds and various target gauge blocks. Debris clouds were generated from three different impact configurations: (1) steel spheres impacting steel bumper sheets at 4.5 to 6.0 km/s, (2) aluminum inhibited shaped-charge jets impacting aluminum bumper sheets at 11.4 km/s, and (3) titanium disks impacting titanium bumper sheets at 7.6 to 10.1 km/s. Additional data were collected from the various experiments using flash X-ray radiography, pulsed laser photography, impact flash measurements, time-resolved strain gauge measurements, and velocity interferometry (VISAR). Data from these various techniques are in general agreement with one another and with hydrocode predictions, and provide a quantitative and comprehensive picture of impact-generated debris clouds.

  12. Survival of fossils under extreme shocks induced by hypervelocity impacts

    PubMed Central

    Burchell, M. J.; McDermott, K. H.; Price, M. C.; Yolland, L. J.

    2014-01-01

    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s−1, corresponding to mean peak pressures of 0.2–19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon. PMID:25071234

  13. Survival of fossils under extreme shocks induced by hypervelocity impacts.

    PubMed

    Burchell, M J; McDermott, K H; Price, M C; Yolland, L J

    2014-08-28

    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s(-1), corresponding to mean peak pressures of 0.2-19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon. PMID:25071234

  14. Ejecta from Hypervelocity Dust Impacts Based on Light Flash Measurements

    NASA Astrophysics Data System (ADS)

    Drake, Keith; Sternovsky, Z.; Horányi, M.; Kempf, S.; Srama, R.

    2013-10-01

    Ejecta from hypervelocity dust impacts have been shown to depend on the impinging particles’ velocity, mass, composition, etc. (J. Friichtenicht 1965, G. Eichhorn 1976). Ejecta is thought to be responsible for developing rings and dusty atmospheres of moons throughout the solar system. In order for rings to be produced, dust velocities must be greater than the moon’s escape speed. To understand the dust impact yield; impact ejecta parameters (velocities, masses, angular distributions) must be well understood. Laboratory experiments provide direct information about the ejecta production rates and impactor fluxes. Using hypervelocity (1-60km/s) iron dust at the University of Colorado dust accelerator in Boulder, Colorado we measured the time characteristics and intensities of light flashes produced on a quartz disc from primary and secondary impacts. The flashes were measured with a photomultiplier tube at varying distances and angles. By analyzing the light flashes produced by such impacts we show that this method is a viable technique for measuring these parameters. These measurements provide detailed information about the secondary mass and velocity profiles, leading to insights into the formation of dusty rings and atmospheres.

  15. Ground Testing Of Hypervelocity Impact Effects Of Micrometeoroids And Space Debris On Solar Arrays

    NASA Astrophysics Data System (ADS)

    Schimmerohn, Martin; Rott, Martin; Gerhard, Andreas; Osterholz, Jens; Schafer, Frank; D'Accolti, Gianfelice

    2011-10-01

    Solar arrays are the satellite component most exposed to micrometeoroid and space debris (MM/SD) impacts. The damage potential of hypervelocity impacts (HVI) is characterized by considerable energy released at the impact interface leading to mechanical damage and the generation of plasma. Impact experiments performed in the past indicate that the impact plasma can induce arcing, which consequently may lead to permanent power losses as known from electrostatic discharges. An ESA study is currently ongoing, the objective of which is to study and test the susceptibility of state-of-the art solar arrays to HVI. This paper describes potential failure modes, a ground testing approach to simulate them and its implementation for the test campaign, which will be performed at Fraunhofer EMI using a light gas gun and at Technische Universität München using a plasma-dynamic accelerator. Solar array simulation equipment and comprehensive plasma diagnostics are to be applied for ground testing.

  16. Optimum structure of Whipple shield against hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Lee, M.

    2014-05-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  17. Design of orbital debris shields for oblique hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric P.

    1994-02-01

    A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.

  18. Design of orbital debris shields for oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1994-01-01

    A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.

  19. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Technical Reports Server (NTRS)

    Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather

    2015-01-01

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  20. Hyper-velocity impact experiments with electrostatic dust accelerators

    NASA Astrophysics Data System (ADS)

    Mocker, Anna; Aust, Thomas; Bugiel, Sebastian; Hillier, Jonathan; Hornung, Klaus; Li, Yan-Wei; Strack, Heiko; Ralf, Srama

    2015-06-01

    Hypervelocity impacts (HVI) of micrometer-sized particles play an important role in a variety of fields such as the investigation of matter at extreme pressures and temperatures, shock waves in solid bodies, planetology and cosmic dust. The physical phenomena occurring upon impact are fragmentation and cratering, shock waves, the production of neutral and ionized gas, and light flashes. Advanced analysis techniques promise new insights into short time-scale high-pressure states of matter, requiring the production of high speed projectiles. Electrostatic accelerators act as a source of micrometer and sub-micrometer particles as projectiles for HVI experiments. This paper describes an HVI facility, capable of accelerating particles to over 100 km/s, currently located at the Max Planck Institute for Nuclear Physics in Heidelberg, together with planned improvements. The facility is about to be relocated to the University of Stuttgart. This is an opportunity to enhance the facility to meet the requirements of future experimental campaigns, necessary to better understand the micrometeoroid hypervelocity impact process and develop new in situ dust experiments. We will present the design of the new facility and the planned enhancements, including new diagnostic apparatus.

  1. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  2. Investigation on plasma generated during hypervelocity impact at different impact velocities and angles

    SciTech Connect

    Song, Weidong Lv, Yangtao; Wang, Cheng; Li, Jianqiao

    2015-12-15

    A 3D Smoothed Particle Hydrodynamics code was developed to investigate plasma generation by considering a chemical reaction process in hypervelocity impacts of an aluminum projectile on an aluminum target. The chemical reaction process was described by the reaction rate based on the Arrhenius equation and used to calculate the plasma generation during the impact simulation. The predicted result was verified by empirical formulas and a new empirical formula was proposed based on the comparisons and analyses. The influence of the impact angle was discussed for different impact velocities. Then, the application of both the new and original empirical formulas for protection design from plasma generated by hypervelocity impact was discussed, which demonstrated that the code and model were useful in the prediction of hypervelocity impacts on spacecraft.

  3. Investigation on plasma generated during hypervelocity impact at different impact velocities and angles

    NASA Astrophysics Data System (ADS)

    Song, Weidong; Lv, Yangtao; Wang, Cheng; Li, Jianqiao

    2015-12-01

    A 3D Smoothed Particle Hydrodynamics code was developed to investigate plasma generation by considering a chemical reaction process in hypervelocity impacts of an aluminum projectile on an aluminum target. The chemical reaction process was described by the reaction rate based on the Arrhenius equation and used to calculate the plasma generation during the impact simulation. The predicted result was verified by empirical formulas and a new empirical formula was proposed based on the comparisons and analyses. The influence of the impact angle was discussed for different impact velocities. Then, the application of both the new and original empirical formulas for protection design from plasma generated by hypervelocity impact was discussed, which demonstrated that the code and model were useful in the prediction of hypervelocity impacts on spacecraft.

  4. Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Silberschmidt, Vadim V.

    2015-09-01

    The mechanical response of CFRP-Al/HC (carbon fibre-reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact (up to 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by mean of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria, delamination modelled using cohesive-zone elements. The damaged Al/HC core is assessed on the basis of a Johnson Cook dynamic failure model while its hydrodynamic response is captured using the Mie-Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing HC core.

  5. Survival of seeds in hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Jerling, Aaron; Burchell, Mark J.; Tepfer, David

    2008-10-01

    Panspermia (‘seeds everywhere’) postulates that life naturally migrates through space. Laboratory studies of Panspermia often examine the survival of Earth's species under the conditions thought to occur during transfer through space. Much of this research has centred on bacteria, but here we consider seeds themselves. We simulated the extreme accelerations necessary for their hypothetical ejection from a planetary surface and the impacts associated with their arrival on another planet. Seeds of tobacco, alfalfa and cress were fired into water at speeds in the range 1 3 km s-1, corresponding to impact shock pressures of circa 0.24 2.4 GPa. No seeds remained intact and able to germinate, even at the lowest speeds. Although fragmentation occurred, even at 3 km s-1 the size of some of the fragments was about 25% that of the seeds. Thus, whilst the seeds themselves did not survive extreme shocks, a substantial fraction of their mass did and might successfully deliver complex organic materials after impact. These results are discussed with respect to ancient Panspermia and the potential of contemporary impacts to eject living organisms into space.

  6. Numerical Simulation of Debris Cloud Propagation inside Gas-Filled Pressure Vessels under Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Gai, F. F.; Pang, B. J.; Guan, G. S.

    2009-03-01

    In the paper SPH methods in AUTODYN-2D is used to investigate the characteristics of debris clouds propagation inside the gas-filled pressure vessels for hypervelocity impact on the pressure vessels. The effect of equation of state on debris cloud has been investigated. The numerical simulation performed to analyze the effect of the gas pressure and the impact condition on the propagation of the debris clouds. The result shows that the increase of gas pressure can reduce the damage of the debris clouds' impact on the back wall of vessels when the pressure value is in a certain range. The smaller projectile lead the axial velocity of the debris cloud to stronger deceleration and the debris cloud deceleration is increasing with increased impact velocity. The time of venting begins to occur is related to the "vacuum column" at the direction of impact-axial. The paper studied the effect of impact velocities on gas shock wave.

  7. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Hereil, Pierre-Louis; Plassard, Fabien; Mespoulet, Jérôme

    2015-09-01

    Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics) overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  8. Physics of debris clouds from hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Zee, Ralph

    1993-01-01

    The protection scheme developed for long duration space platforms relies primarily upon placing thin metal plates or 'bumpers' around flight critical components. The effectiveness of this system is highly dependent upon its ability to break up and redistribute the momentum of any particle which might otherwise strike the outer surface of the spacecraft. Therefore it is of critical importance to design the bumpers such that maximum dispersion of momentum is achieved. This report is devoted to an in-depth study into the design and development of a laboratory instrument which would permit the in-situ monitoring of the momentum distribution as the impact event occurs. A series of four designs were developed, constructed and tested culminating with the working instrument which is currently in use. Each design was individually tested using the Space Environmental Effects Facility (SEEF) at the Marshall Space Flight Center in Huntsville, Alabama. Along with the development of the device, an experimental procedure was developed to assist in the investigation of various bumper materials and designs at the SEEF. Preliminary results were used to compute data which otherwise were not experimentally obtainable. These results were shown to be in relative agreement with previously obtained values derived through other methods. The results of this investigation indicated that momentum distribution could in fact be measured in-situ as the impact event occurred thus giving a more accurate determination of the effects of experimental parameters on the momentum spread. Data produced by the instrument indicated a Gaussian-type momentum distribution. A second apparatus was developed and it was placed before the shield in the line of travel utilized a plate to collect impact debris scattered backwards. This plate had a passage hole in the center to allow the particle to travel through it and impact the proposed shield material. Applying the law of conservation of angular momentum a

  9. Time-resolved temperature measurements in hypervelocity dust impact

    NASA Astrophysics Data System (ADS)

    Collette, A.; Drake, K.; Mocker, A.; Sternovsky, Z.; Munsat, T.; Horanyi, M.

    2013-12-01

    We present time-resolved temperature measurements of the debris cloud generated by hypervelocity dust impact. Micron- and submicron-sized iron grains were accelerated to speeds of 1-32 km/s using the 3 MV electrostatic dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies, and impacted on a tungsten target. The resulting light flashes were analyzed by an array of photomultiplier tubes equipped with narrowband interference filters to determine the blackbody temperature and radiant power of the impact-generated cloud as a function of time. We find time-averaged temperatures in the range of 2500-5000 K, increasing with velocity over the range studied; initial temperatures up to approximately twice the time averaged temperature persisting on short timescales (<1μs) compared to the 20μs duration of the flash; and that the temperature falls in a manner consistent with radiative cooling.

  10. Theoretical model for plasma expansion generated by hypervelocity impact

    SciTech Connect

    Ju, Yuanyuan; Zhang, Qingming Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei; Gong, Zizheng

    2014-09-15

    The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e}) ∝ v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.

  11. Multi-Dimensional Hydrocode Analyses of Penetrating Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Bessette, G. C.; Lawrence, R. J.; Chhabildas, L. C.; Reinhart, W. D.; Thornhill, T. F.; Saul, W. V.

    2004-07-01

    The Eulerian hydrocode, CTH, has been used to study the interaction of hypervelocity flyer plates with thin targets at velocities from 6 to 11 km/s. These penetrating impacts produce debris clouds that are subsequently allowed to stagnate against downstream witness plates. Velocity histories from this latter plate are used to infer the evolution and propagation of the debris cloud. This analysis, which is a companion to a parallel experimental effort, examined both numerical and physics-based issues. We conclude that numerical resolution and convergence are important in ways we had not anticipated. The calculated release from the extreme states generated by the initial impact shows discrepancies with related experimental observations, and indicates that even for well-known materials (e.g., aluminum), high-temperature failure criteria are not well understood, and that non-equilibrium or rate-dependent equations of state may be influencing the results.

  12. Multi-dimensional hydrocode analyses of penetrating hypervelocity impacts.

    SciTech Connect

    Saul, W. Venner; Reinhart, William Dodd; Thornhill, Tom Finley, III; Lawrence, Raymond Jeffery Jr.; Chhabildas, Lalit Chandra; Bessette, Gregory Carl

    2003-08-01

    The Eulerian hydrocode, CTH, has been used to study the interaction of hypervelocity flyer plates with thin targets at velocities from 6 to 11 km/s. These penetrating impacts produce debris clouds that are subsequently allowed to stagnate against downstream witness plates. Velocity histories from this latter plate are used to infer the evolution and propagation of the debris cloud. This analysis, which is a companion to a parallel experimental effort, examined both numerical and physics-based issues. We conclude that numerical resolution and convergence are important in ways we had not anticipated. The calculated release from the extreme states generated by the initial impact shows discrepancies with related experimental observations, and indicates that even for well-known materials (e.g., aluminum), high-temperature failure criteria are not well understood, and that non-equilibrium or rate-dependent equations of state may be influencing the results.

  13. An Exponential Luminous Efficiency Model for Hypervelocity Impact into Regolith

    NASA Technical Reports Server (NTRS)

    Swift, W. R.; Moser, D. E.; Suggs, R. M.; Cooke, W. J.

    2011-01-01

    The flash of thermal radiation produced as part of the impact-crater forming process can be used to determine the energy of the impact if the luminous efficiency is known. From this energy the mass and, ultimately, the mass flux of similar impactors can be deduced. The luminous efficiency, eta, is a unique function of velocity with an extremely large variation in the laboratory range of under 6 km/s but a necessarily small variation with velocity in the meteoric range of 20 to 70 km/s. Impacts into granular or powdery regolith, such as that on the moon, differ from impacts into solid materials in that the energy is deposited via a serial impact process which affects the rate of deposition of internal (thermal) energy. An exponential model of the process is developed which differs from the usual polynomial models of crater formation. The model is valid for the early time portion of the process and focuses on the deposition of internal energy into the regolith. The model is successfully compared with experimental luminous efficiency data from both laboratory impacts and from lunar impact observations. Further work is proposed to clarify the effects of mass and density upon the luminous efficiency scaling factors. Keywords hypervelocity impact impact flash luminous efficiency lunar impact meteoroid 1

  14. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Wu, Yiyong; Lv, Gang; Rubanov, Sergey; Jamieson, David N.

    2015-04-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5-30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11-68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the differences

  15. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas.

    PubMed

    Goel, A; Tarantino, P M; Lauben, D S; Close, S

    2015-04-01

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments. PMID:25933852

  16. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    NASA Astrophysics Data System (ADS)

    Goel, A.; Tarantino, P. M.; Lauben, D. S.; Close, S.

    2015-04-01

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  17. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    SciTech Connect

    Goel, A. Tarantino, P. M.; Lauben, D. S.; Close, S.

    2015-04-15

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  18. Survivability to Hypervelocity Impacts of Electrodynamic Tape Tethers for Deorbiting Spacecraft in LEO

    NASA Astrophysics Data System (ADS)

    Francesconi, A.; Giacomuzzo, C.; Lorenzini, E. C.

    2013-08-01

    This paper reports the results of 16 hypervelocity impact experiments on a composite flat electrodynamic tether for LEO spacecraft end-of-life deorbiting. The system is being developed within the EU FP7 BETs program. Impact tests were carried out at CISAS impact facility, with the aim of deriving failure equations that include the impact angle dependence up to grazing incidence. Experiments were realised with 1.5 and 2.3 mm aluminium spheres, at velocities between 3 and 5 km/s and impact angle from 0° to 90° from the tape normal. After a preliminary post-impact inspection of the target, the damage extension on the tape was evaluated using an automatic image processing technique. Ballistic limit equations were developed in the experimental range using a procedure that allows to estimate the uncertainty in the failure predictions starting from the measurement of the damage area. Experiments showed that the impact damage is very close to the projectile size in case of normal impact, while it increases significantly at highly oblique impact angles.

  19. Hypervelocity Impact Test Facility: A gun for hire

    NASA Technical Reports Server (NTRS)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  20. Correlation between speed and size for ejecta from hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Sachse, M.; Schmidt, J.; Kempf, S.; Spahn, F.

    2015-11-01

    Ejecta created in hypervelocity impacts of micrometeoroids on atmosphereless bodies are an efficient source for circumplanetary and interplanetary dust. The impact erodes the target surface and releases material into space. The ejecta are typically micron sized and populate a dust cloud around the parent body, whose number density decreases with increasing distance from the target. Unbound particles escape and add to the planetary dust environment. Here we explore the influence of a correlation between the fragment size and the ejection speed, such that larger fragments are (on average) launched with lower speeds. This behavior is suggested by theoretical considerations and impact experiments. We find that such a correlation provides a dynamical filter that removes large ejecta from high altitudes. The effect is stronger for bigger ejecta and for more massive parent bodies. Our results suggest that large particles found in the circumplanetary and interplanetary dust environment either originate from impacts on smaller moons, impacts of unusually large or fast impactors, or an entirely different process of dust production.

  1. Time Resolved Temperature Measurement of Hypervelocity Impact Generated Plasma Using a Global Optimization Method

    NASA Astrophysics Data System (ADS)

    Hew, Y. M.; Linscott, I.; Close, S.

    2015-12-01

    Meteoroids and orbital debris, collectively referred to as hypervelocity impactors, travel between 7 and 72 km/s in free space. Upon their impact onto the spacecraft, the energy conversion from kinetic to ionization/vaporization occurs within a very brief timescale and results in a small and dense expanding plasma with a very strong optical flash. The radio frequency (RF) emission produced by this plasma can potentially lead to electrical anomalies within the spacecraft. In addition, space weather, such as solar activity and background plasma, can establish spacecraft conditions which can exaggerate the damages done by these impacts. During the impact, a very strong impact flash will be generated. Through the studying of this emission spectrum of the impact, we hope to study the impact generated gas cloud/plasma properties. The impact flash emitted from a ground-based hypervelocity impact test is long expected by many scientists to contain the characteristics of the impact generated plasma, such as plasma temperature and density. This paper presents a method for the time-resolved plasma temperature estimation using three-color visible band photometry data with a global pattern search optimization method. The equilibrium temperature of the plasma can be estimated using an optical model which accounts for both the line emission and continuum emission from the plasma. Using a global pattern search based optimizer, the model can isolate the contribution of the continuum emission versus the line emission from the plasma. The plasma temperature can thus be estimated. Prior to the optimization step, a Gaussian process is also applied to extract the optical emission signal out of the noisy background. The resultant temperature and line-to-continuum emission weighting factor are consistent with the spectrum of the impactor material and current literature.

  2. Substrate Effects from Oblique Hypervelocity Impacts into Layered Targets

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2011-03-01

    We experimentally and numerically examine effects of low-impedance layers on subsurface target damage. Oblique impacts into targets with low-impedance surface layers exhibit reduced peak pressures, subsurface damage and crater size in the substrate.

  3. Modeling the oblique hypervelocity impact of orbital debris particles on spacecraft structures using elementary shock physics

    NASA Astrophysics Data System (ADS)

    Ebrahim, Ahmed Roushdy

    1998-11-01

    During their missions in space, spacecraft are subjected to high velocity impacts by orbital debris particles. Such impacts are expected to occur at non-normal angles of incidence and can cause severe damage to the spacecraft as well as its internal and external flight- critical systems. In order to ensure crew safety as well as the proper function of internal and external spacecraft systems, the characteristics of the debris clouds generated from orbital debris impacts must be determined. The effects of these debris clouds can then be considered in the design of spacecraft protective systems. In this dissertation, a new first principles- based analytical model is developed for the characterization of the penetration and ricochet debris clouds created by an oblique hypervelocity impact of a spherical projectile on a thin bumper plate. This model employs normal and oblique shock wave theories to characterize the penetration and ricochet processes. The model formulation consists of two mechanisms. The first predicts the leading edge velocities and trajectories of centers of mass of the normal and in-line debris clouds created in an oblique hypervelocity impact of a spherical projectile on a thin plate. The second predicts the leading edge velocity and trajectory of center of mass of ricochet debris cloud. In each of these two mechanisms, a new functional form of a reflected Hugoniot is developed to approximate the release of the bumper material. It was found that, unlike normal impact where there is only one reflected Hugoniot, the release of the bumper material in case of an oblique impact is approximated by a set of reflected Hugoniots that depends upon the impact obliquity angle. The methodology for characterizing the debris clouds created in an oblique hypervelocity impact uses the conservation equations that, governing the impact event, calculates the debris clouds' leading edge velocities and trajectories of debris cloud centers-of- mass using an elementary

  4. Enhanced magnetic field production during oblique hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1992-01-01

    The natural remanent magnetization of the lunar surface as displayed in returned lunar samples and the data returned by the Apollo subsatellite magnetometer has an unexpectedly high magnitude and exhibits spatial variation at all scales. The origin of the lunar remanent fields may be due to crustal remanence of a core dynamo field occurring early in lunar history prior to extensive modification by impact or remanence of transient fields, particularly associated with impacts, occurring on a local scale throughout lunar history. The presence of an early core dynamo field would have strong consequences for the formation and early evolution of the Moon, yet to deconvolve the role that an internally generated core dynamo field may have had, it is necessary to understand how the magnetic state of the lunar surface has developed through time. Impact-induced magnetism may be an important component of the present magnetic state of the lunar surface. New theoretical considerations suggest that transient magnetic fields within plasma produced by hypervelocity meteorite impacts may have greater significance at larger scales than previously thought.

  5. High pressure composite tank behaviour under an hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Salome, Roland; Albouys, Vincent; Le Floch, Christian; Sornette, Didier; Vila, Jean Paul

    2001-10-01

    Space debris represent a threat to spacecraft in near earth orbits and protection against them is a key requirement for the Space Station. Thus, regulations are being issued in order to prevent new debris generation from a spacecraft which can be impacted by a debris. Due to their risk of burst, pressurized vessels are classified as critical components, and high pressure composite overwrapped vessels are considered as specially critical. Furthermore, the design of a protection device is closely depending of the behaviour of the vessel under impact. CNES has started a R&D action in order to characterize the behaviour of a high pressure composite vessel under an hypervelocity impact. This study is managed by EADS/Launch vehicles in collaboration with Nice Sciences University and INSA Toulouse. The pressure vessel considered is an over-wrapped carbon fibre on a titanium liner loaded with xenon or helium under high pressure (15 Mpa or 31 Mpa). In a first phase, the theoretical approach to predict the tank behaviour consists in a 2D and 3D simulation using a SPH code (Smoothed Particle Hydrodynamics). An experimental validation of the numerical model will be conducted in the future.

  6. Hypervelocity impact survivability experiments for carbonaceous impactors, part 2

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Paque, Julie M.; Becker, Luann; Vedder, James F.; Erlichman, Jozef

    1995-01-01

    Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH's) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH's were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). We also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.

  7. Detection of meteoroid hypervelocity impacts on the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Mann, Ingrid; Kero, Johan; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkanen, Timo; Pellinen-Wannberg, Asta

    2016-07-01

    There are several methods to measure the cosmic dust entering the Earth's atmosphere such as space-born dust detectors, meteor and HPLA radars, and optical imaging. One complementary method could be to use electric field instruments initially designed to measure electric waves. A plasma cloud generated by a hypervelocity dust impact on a spacecraft body can be detected by the electric field instruments commonly operated on the spacecraft. Since Earth-orbiting missions are generally not equipped with conventional dust detectors, the electric field instruments offer an alternative method to measure the Earth's dust environment. We present the first detection of dust impacts on one of the Earth-orbiting Cluster satellites recorded by the Wide-Band Data (WBD) instrument. We describe the concept of dust impact detection focused on specifics of the Cluster spacecraft and the WBD instrument and their influence on dust impact detection. The detected pulses are compared with theoretical shape based on the model of the recollection of plasma clouds electrons. The estimation of the size and the velocity of the impinging dust grains from the amplitude of the Cluster voltage pulses shown that such impacts can be generated by grains of radius of r = 0.1 μm impacting with the velocity v ˜100 km/s or by grains of radius r = 1 μm impacting with the velocity v ˜10 km/s. We discuss the sensitivity of this method for dust grain detection showing that grains of radius r = 0.01 μm can be detected when impacting with velocity v ˜300 km/s and grains of radius r = 10 μm with velocity v ˜1 km/s if the WBD instrument operates in the high gain level (75 dB).

  8. Hypervelocity impact survivability experiments for carbonaceous impactors, part 2

    SciTech Connect

    Bunch, T.E.; Paque, J.M.; Becker, L.; Vedder, J.F.; Erlichman, J. ||

    1995-02-01

    Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH`s) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH`s were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). The authors also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.

  9. Debris area distribution of spacecraft under hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Lan, Sheng-wei; Liu, Sen; Li, Yi; Ke, Fa-wei; Huang, Jie

    2014-12-01

    Cross-sectional area is an important parameter for spacecraft breakup debris as it is the directly measured data in space observation. It is significant for observing and analysing the spacecraft breakup event to accurately modelling the area distribution of the breakup debris. In this paper, experimental study has been performed on debris area distribution characteristics of spacecraft under hypervelocity impact. The tests are carried out at the ballistic ranges of CARDC. Aluminium projectiles are launched to normally impact the simulated spacecrafts at about 3.0 km/s. The simulated spacecrafts are made up of aluminium plates, filled with some simulated electronics boxes, each of which was installed with a circuit board. "Soft-catch" devices are used to recover the breakup fragments. The test results show that: 1) the relationship between the cross-sectional area and the characteristic length of debris, which can be obtained in the logarithmic coordinates by linear fitting, represents the debris shape characteristic in a certain extent; 2) the area-to-mass ratios of fragments show normal distributions in the logarithmic coordinates; 3) debris made of different materials can be distinguished by different peaks on the distribution curves; 4) the area-to-mass ratio distributions can be expressed by a linear superimposition of several normal functions which represent the main materials of the spacecraft.

  10. Induction Heating of Hypervelocity Impact Samples to 2500 Degrees Centigrade

    NASA Technical Reports Server (NTRS)

    Simmons, Joshua; Pardo, Art; Henderson, Don; Rodriguez, Karen

    2014-01-01

    The Remote Hypervelocity Test Laboratory (RHTL) at White Sands Test Facility (WSTF) was asked to heat samples up to 2500 degrees Centigrade (4532 degrees Fahrenheit) to simulate reentry scenarios of crafts where heated shields are impacted with single small particles ranging from 0.2 to 1.0 millimeters (.008 to.039 inches) of various materials. The team decided an electromagnetic induction (induction heater) was the best method to achieve and control the temperatures in a rapid manner. The samples consisted of three-dimensional carbon-carbon and two-dimensional carbon-phenolic, which are both electrically conductive. After several attempts the team was able to achieve over 2500 degrees Centigrade (4532 degrees Fahrenheit) in ambient atmosphere. When the system was moved to the target chamber and the vacuum system evacuated down to 250 millitorr, arcing occurred between the bus bars and tank, the feedthrough fittings that carried the coolant and current, and between the target sample and coil. To overcome this arcing, conformal coatings, room temperature vulcanization (RTV) silicone, and other non-conductive materials were used to isolate the electromagnetic fields.

  11. Scaling of sub-surface deformation in hypervelocity impact experiments on porous sandstone

    NASA Astrophysics Data System (ADS)

    Buhl, Elmar; Poelchau, Michael; Dresen, Georg; Kenkmann, Thomas

    2014-11-01

    Two hypervelocity impact experiments into dry sandstone (Seeberger Sandstein, ~ 23% porosity), performed under similar impact conditions but with different projectile sizes, have been analyzed to investigate the size scaling of impact damage. For one experiment a 2.5 mm steel projectile was impacted at 4.8 km s- 1 onto a sandstone cube of 20 cm side length. For the other experiment a 10 mm iron meteorite projectile was impacted at 4.6 km s- 1 onto a sandstone cube of 50 cm side length. The resulting kinetic impact energies of 773 and 42,627 J led to crater cavities of 7600 and 612,000 mm3. Investigation of thin sections along cross-sections through both craters revealed that the same deformation microstructures are present in both experiments. The occurrence of different microstructural patterns was mapped and zones of characteristic deformation were defined. This mapping was used to calculate the volumes of material deformed by specific mechanisms. Comparing the results, normalized to the size of the projectile, showed that the sub-surface damage is very similar in size, volume and geometry for both experiments. Analysis of deformation bands found in both experiments regarding their long axes orientation showed that these features are developed under shear deformation. Particle size distributions (PSD), expressed as power-law fits, were measured to quantify the impact damage. Comparison showed that the decay of the power-law exponents with increasing distance from the impact point source is similar for both experiments. Reconstruction of the loading path allowed to infer the stresses under which distinct deformation microstructures are developed.

  12. MMOD Impact Damage to ISS

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric; Lear, Dana M.

    2014-01-01

    Paper will describe micrometeoroid and orbital debris (MMOD) damage that has been observed on the International Space Station (ISS). Several hundred documented MMOD damage sites on ISS have been identified through imagery from the windows of ISS modules or docked vehicles. Sites that are observable from ISS or shuttle windows exhibiting distinct features of hypervelocity impact damage are usually greater than 5mm in diameter. Many smaller features are revealed in on-orbit imagery are typically less distinct and difficult to characterize but could be MMOD damage. Additional images of on-orbit damage features have been collected by astronauts during extra vehicular activities. Ground inspection of returned ISS hardware has also contributed to the database of ISS MMOD impact damage. A handful of orbital replacement units (ORU) from the ISS active thermal control and electrical power subsystems were swapped out and returned during the Space Shuttle program. In addition, a reusable logistics module was deployed on ISS for a total 59.4 days on 11 shuttle missions between 2001 and 2011 and then brought back in the shuttle payload bay. All of this returned hardware was subjected to detailed post-flight inspections for MMOD damage, and a database with nearly 1000 impact records has been collected. A description of the largest observed damages will be provided in the paper. In addition, a discussion of significant MMOD impact sites with operational or design aspects will be presented. Some of the ISS modules/subsystems damaged by MMOD to be included in the discussion are (1) Solar Arrays, (2) US and Russian windows, (3) EVA handrails, (4) Radiators, and (5) Russian FGB module.

  13. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    SciTech Connect

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effect at larger scales, higher impact velocities, or both.

  14. Hypervelocity impact induced arcing and Kapton pyrolization in a plasma environment

    NASA Astrophysics Data System (ADS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-03-01

    Tests were performed on the Space Station Freedom (SSF) solar array flat conductor circuit (FCC) to determine if hypervelocity impacts could induce pyrolization of Kapton and/or cross-conductor arcing. A sample piece of FCC was placed in a plasma environment and biased to +200 V relative to the plasma potential. The FCC was then impacted with particles in the 100 micron size range with hypervelocities of about 7 km/s. These tests were unable to induce Kapton pyrolization, cross-conductor arcing, or any other plasma interaction.

  15. Influence of impact conditions on plasma generation during hypervelocity impact by aluminum projectile

    NASA Astrophysics Data System (ADS)

    Song, Weidong; Lv, Yangtao; Li, Jianqiao; Wang, Cheng; Ning, Jianguo

    2016-07-01

    For describing hypervelocity impact (relative low-speed as related to space debris and much lower than travelling speed of meteoroids) phenomenon associated with plasma generation, a self-developed 3D code was advanced to numerically simulate projectiles impacting on a rigid wall. The numerical results were combined with a new ionization model which was developed in an early study to calculate the ionized materials during the impact. The calculated results of ionization were compared with the empirical formulas concluded by experiments in references and a good agreement was obtained. Then based on the reliable 3D numerical code, a series of impacts with different projectile configurations were simulated to investigate the influence of impact conditions on hypervelocity impact generated plasma. It was found that the form of empirical formula needed to be modified. A new empirical formula with a critical impact velocity was advanced to describe the velocity dependence of plasma generation and the parameters of the modified formula were ensured by the comparison between the numerical predictions and the empirical formulas. For different projectile configurations, the changes of plasma charges with time are different but the integrals of charges on time almost stayed in the same level.

  16. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  17. Detection of electromagnetic pulses produced by hypervelocity micro particle impact plasmas

    SciTech Connect

    Close, Sigrid; Lee, Nicolas; Johnson, Theresa; Goel, Ashish; Fletcher, Alexander; Linscott, Ivan; Strauss, David; Lauben, David; Srama, Ralf; Mocker, Anna; Bugiel, Sebastian

    2013-09-15

    Hypervelocity micro particles (mass < 1 ng), including meteoroids and space debris, routinely impact spacecraft and produce plasmas that are initially dense (∼10{sup 28} m{sup −3}), but rapidly expand into the surrounding vacuum. We report the detection of radio frequency (RF) emission associated with electromagnetic pulses (EMPs) from hypervelocity impacts of micro particles in ground-based experiments using micro particles that are 15 orders of magnitude less massive than previously observed. The EMP production is a stochastic process that is influenced by plasma turbulence such that the EMP detection rate that is strongly dependent on impact speed and on the electrical charge conditions at the impact surface. In particular, impacts of the fastest micro particles occurring under spacecraft charging conditions representative of high geomagnetic activity are the most likely to produce RF emission. This new phenomenon may provide a source for unexplained RF measurements on spacecraft charged to high potentials.

  18. Response of Organic Materials to Hypervelocity Impacts (up to 11.2 km/sec)

    NASA Astrophysics Data System (ADS)

    Bass, D. S.; Murphy, W. M.; Miller, G. P.; Grosch, D. J.; Walker, J. D.; Mullin, A.; Waite, J. H.

    1998-09-01

    It is speculated that organic-rich planetesimals played a role in the origin of life on Earth. However, the mechanism by which organics could have been delivered from space to a planetary surface is difficult to determine. Particularly problematic is the question of the stability of organic material under hypervelocity impact conditions. Although some evidence suggests organic molecules cannot survive impacts from projectile velocities greater than about 10 km/sec [1], other investigators have found that impacts create a favorable environment for post-shock recombination of organic molecules in the plume phase [2, 3]. Understanding the mechanisms involved in delivering organics to a planetary surface remains difficult to assess due to the lack of experimental results of hypervelocity impacts, particularly in the velocity range of tens of km/sec. Organic material preservation and destruction from impact shocks, the synthesis of organics in the post-impact plume environment, and implications of these processes for Earth and Mars can be investigated by launching an inorganic projectile into an analog planetesimal-and-bolide organic-rich target. We explored the pressure and temperature ranges of hypervelocity impacts (11.2 km/sec) through simulations with CTH impact physics computer code. Using an inhibited shaped-charge launcher, we also experimentally determined the response of organic material to hypervelocity impacts. Initial work focused on saturating well-characterized zeolitic tuff with an aqueous solution containing dissolved naphthalene, a common polycyclic aromatic hydrocarbon (PAH). Porosity measurements, thin section, and x-ray diffraction analyses were performed to determine that the tuff is primarily fine-grained clinoptilolite. In order to distinguish between contaminants and compounds generated or destroyed in the impact, we tagged the aqueous component of our target with deuterium. Experimental tests revealed that to first order, naphthalene survived

  19. Hypervelocity impact study: The effect of impact angle on crater morphology

    NASA Technical Reports Server (NTRS)

    Crawford, Gary; Hill, David; Rose, Frank E.; Zee, Ralph; Best, Steve; Crumpler, Mike

    1993-01-01

    The Space Power Institute (SPI) of Auburn University has conducted preliminary tests on the effects of impact angle on crater morphology for hypervelocity impacts. Copper target plates were set at angles of 30 deg and 60 deg from the particle flight path. For the 30 deg impact, the craters looked almost identical to earlier normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution. Further research on angle effects is planned, because the particle velocities for these shots were relatively slow (7 km/s or less).

  20. Hypervelocity Impact Effect of Molecules from Enceladus' Plume and Titan's Upper Atmosphere on NASA's Cassini Spectrometer from Reactive Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Jaramillo-Botero, Andres; An, Qi; Cheng, Mu-Jeng; Goddard, William A., III; Beegle, Luther W.; Hodyss, Robert

    2012-11-01

    The NASA/ESA Cassini probe of Saturn analyzed the molecular composition of plumes emanating from one of its moons, Enceladus, and the upper atmosphere of another, Titan. However, interpretation of this data is complicated by the hypervelocity (HV) flybys of up to ˜18km/sec that cause substantial molecular fragmentation. To interpret this data we use quantum mechanical based reactive force fields to simulate the HV impact of various molecular species and ice clathrates on oxidized titanium surfaces mimicking those in Cassini’s neutral and ion mass spectrometer (INMS). The predicted velocity dependent fragmentation patterns and composition mixing ratios agree with INMS data providing the means for identifying the molecules in the plume. We used our simulations to predict the surface damage from the HV impacts on the INMS interior walls, which we suggest acts as a titanium sublimation pump that could alter the instrument’s readings. These results show how the theory can identify chemical events from hypervelocity impacts in space plumes and atmospheres, providing in turn clues to the internal structure of the corresponding sources (e.g., Enceladus). This may be valuable in steering modifications in future missions.

  1. Hypervelocity impact effect of molecules from Enceladus' plume and Titan's upper atmosphere on NASA's Cassini spectrometer from reactive dynamics simulation.

    PubMed

    Jaramillo-Botero, Andres; An, Qi; Cheng, Mu-Jeng; Goddard, William A; Beegle, Luther W; Hodyss, Robert

    2012-11-21

    The NASA/ESA Cassini probe of Saturn analyzed the molecular composition of plumes emanating from one of its moons, Enceladus, and the upper atmosphere of another, Titan. However, interpretation of this data is complicated by the hypervelocity (HV) flybys of up to ~18 km/sec that cause substantial molecular fragmentation. To interpret this data we use quantum mechanical based reactive force fields to simulate the HV impact of various molecular species and ice clathrates on oxidized titanium surfaces mimicking those in Cassini's neutral and ion mass spectrometer (INMS). The predicted velocity dependent fragmentation patterns and composition mixing ratios agree with INMS data providing the means for identifying the molecules in the plume. We used our simulations to predict the surface damage from the HV impacts on the INMS interior walls, which we suggest acts as a titanium sublimation pump that could alter the instrument's readings. These results show how the theory can identify chemical events from hypervelocity impacts in space plumes and atmospheres, providing in turn clues to the internal structure of the corresponding sources (e.g., Enceladus). This may be valuable in steering modifications in future missions. PMID:23215593

  2. Hypervelocity impact on brittle materials of semi-infinite thickness: fracture morphology related to projectile diameter

    NASA Astrophysics Data System (ADS)

    Taylor, Emma A.; Kay, Laurie; Shrine, Nick R. G.

    Hypervelocity impact on brittle materials produces features not observed on ductile targets. Low fracture toughness and high yield strength produce a range of fracture morphologies including cracking, spallation and shatter. For sub-mm diameter projectiles, impact features are characterised by petaloid spallation separated by radial cracks. The conchoidal or spallation diameter is a parameter in current cratering equations. An alternative method for interpreting hypervelocity impacts on glass targets of semi-infinite thickness is tested against impact data produced using the Light Gas Gun (LGG) facility at the University of Kent at Canterbury (UKC), U.K. Spherical projectiles of glass and other materials with diameters 30-300 μm were fired at ~5 km s^-1 at a glass target of semi-infinite thickness. The data is used to test a power law relationship between projectile diameter and crack length. The results of this work are compared with published cratering/spallation equations for brittle materials.

  3. STS-118 Radiator Impact Damage

    NASA Technical Reports Server (NTRS)

    Lear, Dana M.; Hyde, J.; Christiansen, E.; Herrin, J.; Lyons, F.

    2008-01-01

    During the August 2007 STS-118 mission to the International Space Station, a micro-meteoroid or orbital debris (MMOD) particle impacted and completely penetrated one of shuttle Endeavour s radiator panels and the underlying thermal control system (TCS) blanket, leaving deposits on (but no damage to) the payload bay door. While it is not unusual for shuttle orbiters to be impacted by small MMOD particles, the damage from this impact is larger than any previously seen on the shuttle radiator panels. A close-up photograph of the radiator impact entry hole is shown in Figure 1, and the location of the impact on Endeavour s left-side aft-most radiator panel is shown in Figure 2. The aft radiator panel is 0.5-inches thick and consists of 0.011 inch thick aluminum facesheets on the front and back of an aluminum honeycomb core. The front facesheet is additionally covered by a 0.005 inch thick layer of silver-Teflon thermal tape. The entry hole in the silver-Teflon tape measured 8.1 mm by 6.4 mm (0.32 inches by 0.25 inches). The entry hole in the outer facesheet measured 7.4 mm by 5.3 mm (0.29 inches by 0.21 inches) (0.23 inches). The impactor also perforated an existing 0.012 inch doubler that had been bonded over the facesheet to repair previous impact damage (an example that lightning can strike the same place twice, even for MMOD impact). The peeled-back edge around the entry hole, or lip , is a characteristic of many hypervelocity impacts. High velocity impact with the front facesheet fragmented the impacting particle and caused it to spread out into a debris cloud. The debris cloud caused considerable damage to the internal honeycomb core with 23 honeycomb cells over a region of 28 mm by 26 mm (1.1 inches by 1.0 inches) having either been completely destroyed or partially damaged. Figure 3 is a view of the exit hole in the rear facesheet, and partially shows the extent of the honeycomb core damage and clearly shows the jagged petaled exit hole through the backside

  4. The Technology of Modeling Debris Cloud Produced by Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Ma, Zhaoxia; Huang, Jie; Liang, Shichang; Zhou, Zhixuan; Ren, Leisheng; Liu, Sen

    2013-08-01

    Because of the large amount of debris in a debris cloud, it is hard to achieve a complete description of all the debris by a simple function. One workable approach is to use a group of complete distribution functions and MonteCarlo method to simplify the debris cloud simulation. Enough debris samples are produced by SPH simulation and debris identification program firstly. According to the distribution functions of debris mass, velocity and space angles determined by statistical analysis, the engineering model of debris cloud is set up. Combining the engineering model and MonteCarlo method, the fast simulation of debris cloud produced by an aluminum projectile impacting an aluminum plate is realized. An application example of the debris cloud engineering model to predict satellite damage caused by space debris impact is given at the end.

  5. Hypervelocity Dust Impacts in Space and the Laboratory

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  6. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGESBeta

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  7. 3D laser scanning microscopy of hypervelocity impact features in metal and aerogel targets

    NASA Astrophysics Data System (ADS)

    Hillier, J. K.; Postberg, F.; Price, M. C.; Trieloff, M.; Li, Y. W.; Srama, R.

    2012-09-01

    We present the results of a study into the mapping of hypervelocity impact features using a Keyence VK-X200 3D laser scanning microscope. The impact features observed are impact craters in a variety of different metal targets (Al, Au and Cu) and impact tracks in aerogel targets, similar to those used in the Stardust mission. Differences in crater morphology between different target materials and impact velocities, as well as differences in track depth and diameter in aerogel, for particles of known constant dimensions, are discussed.

  8. Hypervelocity impact of tungsten cubes on spaced armour

    NASA Astrophysics Data System (ADS)

    Chandel, Pradeep S.; Sood, Dharmanshu; Kumar, Rajeev; Sharma, Prince; Sewak, Bhupinder; Bhardwaj, Vikas; Athwal, Manoj; Mangla, Vikas; Biswas, Ipsita; Singh, Manjit

    2012-07-01

    The paper summarizes the experimental observations and simulation studies of damage potential of tungsten alloy cubes on relatively thin mild steel spaced armour target plates in the velocity regime 1300 - 4000 ms-1 using Two Stage Light Gas Gun technique. The cubes of size 9.5 mm and 12 mm having mass 15 g and 30 g respectively were made to impact normally on three target plates of size 300 mm × 300 mm of thickness 4, 4 and 10 mm at 100 mm distance apart. Flash radiography has been used to image the projectile-target interaction in the nitrogen environment at 300 mbar vacuum at room temperature. The results reveal clear perforation by 9.5 mm cube in all the three target plates up to impact velocity of about 2000 m/s. While 12 mm cube can perforate the spaced armour upto impact velocity of 4000 m/s. This shows that 9.5mm tungsten alloy cube is not effective beyond 2000 m/s while 12 mm tungsten alloy cube can defeat the spaced armour upto 4000 m/s. The simulation studies have been carried out using Autodyn 3D nonlinear code using Lagrange solver at velocities 1200 - 4000 m/s. The simulation results are in good agreement with the experimental findings.

  9. Hypervelocity impact effects on solar cells. Final technical report

    SciTech Connect

    Rose, M.F.

    1993-01-01

    One of the space hazards of concern is the problem of natural matter and space debris impacting spacecraft. This phenomena has been studied since the early sixties and a methodology has been established to determine the relative abundance of meteoroids as a function of mass. As the mass decreases, the probability of suffering collisions increases, resulting in a constant bombardment from particles in the sub-micron range. The composition of this cosmic dust is primarily Fe, Ni, Al, Mg, Na, Ca, Cr, H, O, and Mn. In addition to mechanical damage, impact velocities greater than 5 km/sec can produce shock induced ionization effects with resultant surface charging and complex chemical interactions. The upper limit of the velocity distribution for these particles is on the order of 70 km/sec. The purpose of this work was to subject samples from solar power arrays to debris flux typical of what would be encountered in space, and measure the degradation of the panels after impact.

  10. The Laser-driven Flyer System for Space Debris Hypervelocity Impact Simulations

    NASA Astrophysics Data System (ADS)

    Gong, Zizheng; Dai, Fu; Yang, Jiyun; Hou, Mingqiang; Zheng, Jiandong; Tong, Jingyu; Pang, Hewei

    2009-06-01

    The Laser-driven flyer (LDF) technique is showing promiseful in simulating micro meteoroids and orbital debris (M/OD) hypervelocity impacting effects. LDF system with a single pulses from a Q-switched Nd: glass laser, of 15 ns duration and up to 20J energy, launched the aluminum films of 5 μm thickness up to 8.3km/s velocity was developed in Beijing Institute of Spacecrafts Environment Engineering(BISEE), CAST. The quantitative relationships between the flyer velocity and the laser energy, the width of laser pulse, the diameter of laser focal spot, and the flyer thickness were analyzed, according to Lawrence-Gurney model, and compared with the experimental results. Some experimental aspects in our efforts on the space debris Hypervelocity impacts on the outer surfaces functional material, such as the thermal control material, window glass, and OSR etc., are reviewed. Though still developing, the Laser-driven flyer technique has been demonstrated promise in simulating micro M/OD hypervelocity impacting effects.

  11. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in

  12. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic centimeter), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic centimeter. Projectile incidence angles examined included 0 degrees, 45 degrees , and 60 degrees from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the

  13. Spontaneous magnetic field generation in hypervelocity impacts. [of meteoroids onto lunar and planetary surfaces

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.

    1977-01-01

    Hypervelocity impacts of meteoroids onto early planetary surfaces may have generated short-lived magnetic fields. The high specific power densities of the impacts, plasma production in the ejecta clouds, and the chemically layered targets of the meteoroids are analyzed in describing the evolution of the magnetic fields. Durations from about one millionth of a minute to one minute, as well as strengths up to 100 tesla, are posited for the impact-generated magnetic fields. The analogy of magnetic-field generation in laser-target experiments is also mentioned. The acquisition of shock remanence and thermoremanence by the ejecta and nearby rock following impact is discussed.

  14. Predicting multi-wall structural response to hypervelocity impact using the hull code

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1993-01-01

    Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.

  15. Survivability of copper projectiles during hypervelocity impacts in porous ice: A laboratory investigation of the survivability of projectiles impacting comets or other bodies

    NASA Astrophysics Data System (ADS)

    McDermott, K. H.; Price, M. C.; Cole, M.; Burchell, M. J.

    2016-04-01

    During hypervelocity impact (>a few km s-1) the resulting cratering and/or disruption of the target body often outweighs interest on the outcome of the projectile material, with the majority of projectiles assumed to be vaporised. However, on Earth, fragments, often metallic, have been recovered from impact sites, meaning that metallic projectile fragments may survive a hypervelocity impact and still exist within the wall, floor and/or ejecta of the impact crater post-impact. The discovery of the remnant impactor composition within the craters of asteroids, planets and comets could provide further information regarding the impact history of a body. Accordingly, we study in the laboratory the survivability of 1 and 2 mm diameter copper projectiles fired onto ice at speeds between 1.00 and 7.05 km s-1. The projectile was recovered intact at speeds up to 1.50 km s-1, with no ductile deformation, but some surface pitting was observed. At 2.39 km s-1, the projectile showed increasing ductile deformation and broke into two parts. Above velocities of 2.60 km s-1 increasing numbers of projectile fragments were identified post impact, with the mean size of the fragments decreasing with increasing impact velocity. The decrease in size also corresponds with an increase in the number of projectile fragments recovered, as with increasing shock pressure the projectile material is more intensely disrupted, producing smaller and more numerous fragments. The damage to the projectile is divided into four classes with increasing speed and shock pressure: (1) minimal damage, (2) ductile deformation, start of break up, (3) increasing fragmentation, and (4) complete fragmentation. The implications of such behaviour is considered for specific examples of impacts of metallic impactors onto Solar System bodies, including LCROSS impacting the Moon, iron meteorites onto Mars and NASA's "Deep Impact" mission where a spacecraft impacted a comet.

  16. Hypervelocity Impact of Unstressed and Stressed Titanium in a Whipple Configuration in Support of the Orion Crew Exploration Vehicle Service Module Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Christiansen, Eric; Piekutowski, Andrew; Lyons, Frankel; Keddy, Christopher; Salem, Jonathan; Poormon, Kevin; Bohl, William; Miller, Joshua; Greene, Nathanael; Rodriquez, Karen

    2010-01-01

    Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium: shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the defInition of the penetration criteria of the propellant and oxidizer tanks dome surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.

  17. Hypervelocity Impact of Unstressed and Stressed Titanium in a Whipple Configuration in Support of the Orion Crew Exploration Vehicle Service Module Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Christiansen, Eric; Piekutowski, Andrew; Lyons, Frankel; Keddy, Christopher; Salem, Jonathan; Miller, Joshua; Bohl, William; Poormon, Kevin; Greene, Nathanel; Rodriquez, Karen

    2010-01-01

    Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the definition of the penetration criteria of the propellant tanks surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.

  18. Demonstration of Hazardous Hypervelocity Test Capability

    NASA Technical Reports Server (NTRS)

    Rodriquez, Karen M.

    1991-01-01

    NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) participated in a joint test program with NASA JSC Hypervelocity Impact Research Laboratory (HIRL) to determine if JSC was capable of performing hypervelocity impact tests on hazardous targets. Seven pressurized vessels were evaluated under hypervelocity impact conditions. The vessels were tested with various combinations of liquids and gasses at various pressures. Results from the evaluation showed that vessels containing 100-percent pressurized gas sustained more severe damage and had a higher potential for damaging nearby equipment, than vessels containing 75-percent liquid, 25-percent inert pressurized gas. Two water-filled test vessels, one of which was placed behind an aluminum shield, failed by bulging and splitting open at the impact point; pressure was relieved without the vessel fragmenting or sustaining internal damage. An additional water-filled test vessel, placed a greater distance behind an aluminum shield, sustained damage that resembled a shotgun blast, but did not bulge or split open; again, pressure was relieved without the vessel fragmenting. Two test vessels containing volatile liquids (nitro methane and hydrazine) also failed by bulging and splitting open; neither liquid detonated under hypervelocity test conditions. A test vessel containing nitrogen gas failed by relieving pressure through a circular entry hole; multiple small penetrations opposite the point of entry provided high velocity target debris to surrounding objects. A high-pressure oxygen test vessel fragmented upon impact; the ensuing fire and high velocity fragments caused secondary damage to surrounding objects. The results from the evaluation of the pressurized vessels indicated that JSC is capable of performing hypervelocity impact tests on hazardous targets.

  19. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  20. Meteoroids and space debris hypervelocity impact penetrations in LDEF map foils compared with hydrocode simulations

    NASA Astrophysics Data System (ADS)

    Tanner, W. G.; McDonnell, J. A. M.; Yano, H.; Fitzgerald, H. J.; Gardner, D. J.

    The continued analyses of penetrating impacts on MAP foils of Aluminium and Brass have produced data for several LDEF faces, i.e., Space, West, and East. These data have immediate bearing on the interpretation and design of devices to detect the penetration of a thin metallic film by a dust grain which have been tested both in the laboratory and in space. A crucial component of the analysis has been the theoretical calculation utilizing CTH, a Sandia National Laboratory Hydrodynamic computer code /1/ to assess the parameters of the hypervelocity penetration event. In particular theoretical hydrodynamic calculations have been conducted to simulate the hypervelocity impact event where various cosmic dust grain candidates, e.g., density = 0.998, 2.700, 7.870 (gm/cm^3), and velocities, i.e., 7 - 16 km/s, have been utilized to reproduce the events. Theoretical analyses of hypervelocity impact events will be reported which span an extensive matrix of values for velocity, density and size. Through a comparison between LDEF MAP foil measurements and CTH hydrocode calculations these analyses will provide an interpretation of the most critical parameters measured for space returned materials, i.e., for thin films, the diameter of the penetration hole, D_h, and for semi-infinite targets, the depth-to-diameter ratio of craters, D_c/T_c. An immediate consequence of a comparison of CTH calculations with space exposed materials will be an enhancement of the coherent model developed by UKC-USS researchers to describe penetration dynamics associated with LDEF MAP foils.

  1. The effect of impact angle on craters formed by hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank; Best, Steve R.; Crumpler, Michael S.; Crawford, Gary D.; Zee, Ralph H.-C.; Bozack, Michael J.

    1995-01-01

    The Space Power Institute (SPI) at Auburn University has conducted experiments on the effects of impact angle on crater morphology and impactor residue retention for hypervelocity impacts. Copper target plates were set at angles of 30 deg, 45 deg, 60 deg, and 75 deg from the particle flight path. For the 30 deg and 45 deg impacts, in the velocity regime greater than 8 km s(exp -1) the resultant craters are almost identical to normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg and 75 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution in the same velocity regime. Impactor residue shock fractionation effects have been quantified in first-order. It is concluded that a combination of analysis techniques can yield further information on impact velocity, direction, and angle of incidence.

  2. Analysis of energy dissipation and deposition in elastic bodies impacting at hypervelocities

    NASA Technical Reports Server (NTRS)

    Medina, David F.; Allahdadi, Firooz A.

    1992-01-01

    A series of impact problems were analyzed using the Eulerian hydrocode CTH. The objective was to quantify the amount of energy dissipated locally by a projectile-infinite plate impact. A series of six impact problems were formulated such that the mass and speed of each projectile were varied in order to allow for increasing speed with constant kinetic energy. The properties and dimensions of the plate were the same for each projectile impact. The resulting response of the plate was analyzed for global Kinetic Energy, global momentum, and local maximum shear stress. The percentage of energy dissipated by the various hypervelocity impact phenomena appears as a relative change of shear stress at a point away from the impact in the plate.

  3. Microfractures produced by a laboratory scale hypervelocity impact into granite. [for lunar sample crack spectra interpretation

    NASA Technical Reports Server (NTRS)

    Siegfried, R. W., II; Simmons, G.; Richter, D.; Hoerz, F.

    1977-01-01

    Differential strain analysis and scanning electron microscopy are employed to study the microcracks produced in a granite block by shock waves from a hypervelocity impact. The anisotropy of the pre-shock cracks appears to control the orientations of the microcracks. Over the range 2 to 20 kbar, total crack porosity proves to be linearly related to shock pressure. The effect of the peak shock pressure on the width and median closure pressure of the crack spectra is also investigated. The results of the microcrack study may be useful in interpreting lunar samples.

  4. An Ellipsoidal Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 1

    NASA Technical Reports Server (NTRS)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A number of coupled particle-element and hybrid particle-element methods have been developed for the simulation of hypervelocity impact problems, to avoid certain disadvantages associated with the use of pure continuum based or pure particle based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particles entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models.

  5. A Kernel-Free Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 4

    NASA Technical Reports Server (NTRS)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    An improved hybrid particle-finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized coordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three dimensional simulation.

  6. Effects of barrel joints on hypervelocity projectiles

    SciTech Connect

    Shahinpoor, M.; Asay, J.R.; Dixon, W.R.; Hawke, R.S.

    1987-01-01

    Development of new hypervelocity launchers is necessary for equation of state (EOS) studies at high impact velocities. The requirements for barrel joint alignment and concentricity at high velocities place severe constraints on fabrication and assembly procedures; small steps or longitudinal direction changes at joints may cause major damage to precision projectiles. Research has been initiated to identify the technical limits of fabrication and assembly tolerances for hypervelocity gun barrels. Numerical and experimental studies have evaluated projectile performance at velocities of 6 to 15 km/s and have identified failure modes for Lexan projectiles with thin metal facings.

  7. Hypervelocity Impact Experiments in the Laboratory Relating to Lunar Astrobiology

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Parnell, J.; Bowden, S. A.; Crawford, I. A.

    2010-12-01

    The results of a set of laboratory impact experiments (speeds in the range 1-5 km s-1) are reviewed. They are discussed in the context of terrestrial impact ejecta impacting the Moon and hence lunar astrobiology through using the Moon to learn about the history of life on Earth. A review of recent results indicates that survival of quite complex organic molecules can be expected in terrestrial meteorites impacting the lunar surface, but they may have undergone selective thermal processing both during ejection from the Earth and during lunar impact. Depending on the conditions of the lunar impact (speed, angle of impact etc.) the shock pressures generated can cause significant but not complete sterilisation of any microbial load on a meteorite (e.g. at a few GPa 1-0.1% of the microbial load can survive, but at 20 GPa this falls to typically 0.01-0.001%). For more sophisticated biological products such as seeds (trapped in rocks) the lunar impact speeds generate shock pressures that disrupt the seeds (experiments show this occurs at approximately 1 GPa or semi-equivalently 1 km s-1). Overall, the delivery of terrestrial material of astrobiological interest to the Moon is supported by these experiments, although its long term survival on the Moon is a separate issue not discussed here.

  8. Composition of Plasma Formed from Hypervelocity Dust Impacts

    NASA Astrophysics Data System (ADS)

    Lee, N.; Close, S.; Rymer, A. M.; Mocker, A.

    2012-12-01

    Dust impacts can occur on all solar system bodies but are especially prevalent in the case of the Saturnian moons that are near or within the dust torus produced by Enceladus's plumes. Depending on the mass and charge on these plume particles, they will be influenced by both gravitational and electrodynamic forces, resulting in a range of possible impact speeds on the moons. The plasma formed upon impact can have very different characteristics depending on impact speed and on the electric field due to surface charging at the impact point. Through recent tests conducted at the Max Planck Institute for Nuclear Physics using a Van de Graaff dust accelerator, iron dust particles were electrostatically accelerated to speeds of 3-65 km/s and impacted on a variety of target materials including metallic and glassy surfaces. The target surfaces were connected to a biasing supply to represent surface charging effects. Because of the high specific kinetic energy of the dust particles, upon impact they vaporize along with part of the target surface and a fraction of this material is ionized forming a dense plasma. The impacts produced both positive and negative ions. We made measurements of the net current imparted by this expanding plasma at a distance of several centimeters from the impact point. By setting the bias of the target, we impose an electric field on the charge population, allowing a measurement of plasma composition through time of flight analysis. The figure shows representative measurements of the net current measured by a retarding potential analyzer (RPA) from separate 18 and 19 km/s impacts of 7 fg particles on a glassy surface that was negatively and positively biased, respectively. This target was an optical solar reflector donated by J. Likar of Lockheed Martin for these experiments. These results show that ions of both positive and negative charge can be formed through the mechanism of dust impacts, and has implications on the surface plasma environment

  9. Properties of largest fragment produced by hypervelocity impact of aluminum spheres with thin aluminum sheets

    NASA Technical Reports Server (NTRS)

    Piekutowski, Andrew J.

    1992-01-01

    Results are presented from hypervelocity impact tests in which 1.275 g spheres of 2017-T4 Al alloy were fired at normal incidence at eight thicknesses of 6061-T6 Al alloy sheets, with impact velocity of about 6.7 km/sec; additional data are presented for smaller and larger spheres than these, in the cases of other Al alloy impact bumpers. A large fragment of the projectile is observable at the center of the debris clouds generated upon impact. The velocity of these large fragments decreased continuously with increasing bumper thickness/projectile diameter ratio, from 99 percent to less than 80 percent of impact velocity; there is a linear increase in the size of the central projectile fragment with decreasing shock-induced stress in the projectile.

  10. Numerical investigations on pressurized AL-composite vessel response to hypervelocity impacts: Comparison between experimental works and a numerical code

    NASA Astrophysics Data System (ADS)

    Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre-Louis

    2015-09-01

    Response of pressurized composite-Al vessels to hypervelocity impact of aluminum spheres have been numerically investigated to evaluate the influence of initial pressure on the vulnerability of these vessels. Investigated tanks are carbon-fiber overwrapped prestressed Al vessels. Explored internal air pressure ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from experiments (Xray radiographies, particle velocity measurement and post-mortem vessels) have been compared to numerical results given from LS-DYNA ALE-Lagrange-SPH full coupling models. Simulations exhibit an under estimation in term of debris cloud evolution and shock wave propagation in pressurized air but main modes of damage/rupture on the vessels given by simulations are coherent with post-mortem recovered vessels from experiments. First results of this numerical work are promising and further simulation investigations with additional experimental data will be done to increase the reliability of the simulation model. The final aim of this crossed work is to numerically explore a wide range of impact conditions (impact angle, projectile weight, impact velocity, initial pressure) that cannot be explore experimentally. Those whole results will define a rule of thumbs for the definition of a vulnerability analytical model for a given pressurized vessel.

  11. Analysis of simulated hypervelocity impacts on a titanium fuel tank from the Salyut 7 space station

    NASA Astrophysics Data System (ADS)

    Jantou, V.; McPhail, D. S.; Chater, R. J.; Kearsley, A.

    2006-07-01

    The aim of this project was to gain a better understanding of the microstructural effects of hypervelocity impacts (HVI) in titanium alloys. We investigated a titanium fuel tank recovered from the Russian Salyut 7 space station, which was launched on April 19, 1982 before being destroyed during an un-controlled re-entry in 1991, reportedly scattering debris over parts of South America. Several sections were cut out from the tank in order to undergo HVI simulations using a two-stage light gas gun. In addition, a Ti-6Al-4V alloy was studied for further comparison. The crater morphologies produced were successfully characterised using microscope-based white light interferometry (Zygo ® Corp, USA), while projectile remnants were identified via secondary ion mass spectrometry (SIMS). Microstructural alterations were investigated using focused ion beam (FIB) milling and depth profiling, as well as transmission electron microscopy (TEM). There was evidence of a very high density of dislocations in the vicinity of the crater. The extent of the deformation was localised in a region of about one to two radii of the impact craters. No notable differences were observed between the titanium alloys used during the hypervelocity impact tests.

  12. An Exponential Luminous Efficiency Model for Hypervelocity Impact into Regolith

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Moser, D.E.; Suggs, Robb M.; Cooke, W.J.

    2010-01-01

    The flash of thermal radiation produced as part of the impact-crater forming process can be used to determine the energy of the impact if the luminous efficiency is known. From this energy the mass and, ultimately, the mass flux of similar impactors can be deduced. The luminous efficiency, Eta is a unique function of velocity with an extremely large variation in the laboratory range of under 8 km/s but a necessarily small variation with velocity in the meteoric range of 20 to 70 km/s. Impacts into granular or powdery regolith, such as that on the moon, differ from impacts into solid materials in that the energy is deposited via a serial impact process which affects the rate of deposition of internal (thermal) energy. An exponential model of the process is developed which differs from the usual polynomial models of crater formation. The model is valid for the early time portion of the process and focuses on the deposition of internal energy into the regolith. The model is successfully compared with experimental luminous efficiency data from laboratory impacts and from astronomical determinations and scaling factors are estimated. Further work is proposed to clarify the effects of mass and density upon the luminous efficiency scaling factors

  13. Asteroid deflection using a kinetic impactor: Insights from hypervelocity impact experiments

    NASA Astrophysics Data System (ADS)

    Hoerth, Tobias; Schäfer, Frank

    2016-04-01

    Within the framework of the planned AIDA mission [1], an impactor spacecraft (DART) hits the second component of the asteroid Didymos at hypervelocity. The impact crater will be observed from the AIM spacecraft and an observation of the ejecta plume is possible [1]. This allows conclusions to be drawn about the physical properties of the target material, and the momentum transfer will be studied [1]. In preparation for this mission, hypervelocity impact experiments can provide valuable information about the outcome of an impact event as a function of impactor and target material properties and, thus, support the interpretation of the data from the DART impact. In addition, these impact experiments provide an important means to validate numerical impact simulations required to simulate large-scale impacts that cannot be studied in laboratory experiments. Impact experiments have shown that crater morphology and size, crater growth and ejecta dynamics strongly depend on the physical properties of the target material [2]. For example, porous materials like sandstone lead to a shallower and slower ejection than low-porous materials like quartzite, and the cratering efficiency is reduced in porous targets leading to a smaller amount of ejected mass [3]. These phenomena result in a reduced momentum multiplication factor (often called "beta-value"), i.e. the ratio of the change in target momentum after the impact and the momentum of the projectile is smaller for porous materials. Hypervelocity impact experiments into target materials with different porosities and densities such as quartzite (2.9 %, 2.6 g/cm3), sandstone (25.3 %, 2 g/cm3), limestone (31 %, 1.8 g/cm3), and highly porous aerated concrete (87.5 %, 0.4 g/cm3) were conducted. Projectile velocities were varied between about 3 km/s and almost 7 km/s. A ballistic pendulum was used to measure the momentum transfer. The material strength required for scaling laws was determined for all target materials. The highest

  14. Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    2000-01-01

    An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.

  15. Macroscopic electric charge separation during hypervelocity impacts: Potential implications for planetary paleomagnetism

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1993-01-01

    The production of transient magnetic fields by hypervelocity meteoroid impact has been proposed to possibly explain the presence of paleomagnetic fields in certain lunar samples as well as across broader areas of the lunar surface. In an effort to understand the lunar magnetic record, continued experiments at the NASA Ames Vertical Gun Range allow characterizing magnetic fields produced by the 5 km/s impacts of 0.32-0.64 cm projectiles over a broad range of impact angles and projectile/target compositions. From such studies, another phenomenon has emerged, macroscopic electric charge separation, that may have importance for the magnetic state of solid-body surfaces. This phenomenon was observed during explosive cratering experiments, but the magnetic consequences of macroscopic electric charge separation (as opposed to plasma production) during explosion and impact cratering have not, to our knowledge, been explored before now. It is straightforward to show that magnetic field production due to this process may scale as a weakly increasing function of impactor kinetic energy, although more work is needed to precisely assess the scaling dependence. The original intent of our experiments was to assess the character of purely electrostatic signals for comparison with inferred electrostatic noise signals acquired by shielded magnetic sensors buried within particulate dolomite targets. The results demonstrated that electrostatic noise does affect the magnetic sensors but only at relatively short distances (less than 4 cm) from the impact point (our magnetic studies are generally performed at distances greater than approximately 5.5 cm). However, to assess models for magnetic field generation during impact, measurements are needed of the magnetic field as close to the impact point as possible; hence, work with an improved magnetic sensor design is in progress. In this paper, we focus on electric charge separation during hypervelocity impacts as a potential transient

  16. Hypervelocity impacts and the evolution of planetary surfaces and interiors

    NASA Astrophysics Data System (ADS)

    Watters, Wesley Andres

    2009-06-01

    The thesis consists of five studies relating impact processes to the evolution of planetary interiors as well as impact structures on planetary surfaces. Chapter 2 is concerned with developing methods for estimating the amount of heat deposited deep in terrestrial mantles by large impacts. Chapter 3 makes use of these results to compute the consequences of impact-related thermal buoyancy perturbations in numerical models of subsolidus convection. Among the important results of this work is a relation for the time-scale on which a buoyancy anomaly flattens and spreads before it is halted by convective downflows, as well as a condition that indicates for what perturbation magnitudes and Rayleigh numbers the flow is significantly slowed at a global scale. Chapter 4 describes a structural model of Endurance Crater in Meridiani Planum on Mars, which is constrained by observations gathered by the MER- B Opportunity rover. These results reveal new insights about the planform shape of the crater excavation flow, as well as the connection between crater shape and pre-existing structures in target materials. The study presented in chapter 5 relates the planimetric shape of simple impact craters on Mars ( D < 5 km) to the geological targets in which they form, as well as rim diameter. Planform crater shape is characterized by a suite of morphometric parameters, including Fourier harmonic amplitudes and phase angles, as well as measures of deviation from radial symmetry and convexity. In addition to finding the morphometric dependence on target properties, this work has illuminated prominent transitions between different cratering regimes, and contains a measure of the global distribution of planform elongation azimuths -- which may relate to impact azimuth and provide an estimate of Mars' past obliquity variations. Finally, Chapter 6 describes a stochastic-kinematic model of the interaction between the excavation front and fractures in the target, which replicates many of the

  17. Elemental analyses of hypervelocity micro-particle impact sites on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, Jim J.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity micro-particles that struck the active sensors with enough energy to breakdown the 0.4 to 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. These discharge features, which include 50 micron diameter areas where the aluminum top layer has been vaporized, facilitate the location of the impacts. The high purity Al-SiO2-Si substrates allow detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) is used to create two-dimensional elemental ion intensity maps of micro-particle impact sites on the IDE sensors. The element intensities in the central craters of the impacts are corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results are used to classify the particles' origins as 'manmade', 'natural' or 'indeterminate'. The last classification results from the presence of too little impactor residue (a frequent occurrence on leading edge impacts), analytical interference from high background contamination, the lack of information on silicon residue, the limited usefulness of data on aluminum in the central craters, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. A

  18. Microanalysis of Hypervelocity Impact Residues of Possible Interstellar Origin

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda M.; Achilles, Cheri; Allen, Carlton; Anasari, Asna; Bajt, Sasa; Bassim, Nabil; Bastien, Ron S.; Bechtel, H. A.; Borg, Janet; Brenker, Frank E.; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Burghammer, Manfred; Butterworth, Anna L.; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Flynn, George; Fougeray, Patrick; Frank, David; Sandford, Scott A.; Zolensky, Michael E.

    2012-01-01

    The NASA Stardust spacecraft deployed two collector trays, one dedicated to the collection of dust from Comet Wild 2, and the other for the capture of interstellar dust (ISD). The samples were returned successfully to Earth in 2006, and now provide an unprecedented opportunity for laboratory-based microanalysis of materials from the outer solar system and beyond. Results from the cometary sample studies have demonstrated that Wild 2 contains much more refractory condensate material and much less pristine extra-solar material than expected, which further indicates that there was significant transport of inner solar system materials to the Kuiper Belt in the early solar system [1]. The analysis of the interstellar samples is still in the preliminary examination (PE) phase, due to the level of difficulty in the definitive identification of the ISD features, the overall low abundance, and its irreplaceable nature, which necessitates minimally invasive measurements [2]. We present here coordinated microanalysis of the impact features on the Al foils, which have led to the identification of four impacts that are possibly attributable to interstellar dust. Results from the study of four ISD candidates captured in aerogel are presented elsewhere [2].

  19. Impact features tracing hypervelocity airbursts on earth from the atmosphere to the ground

    NASA Astrophysics Data System (ADS)

    Courty, M. M.

    2012-12-01

    In the absence of deep craters, impact features have been debated to possibly tracing proximal ejecta from yet undetected structure or airburst debris from a meteorite collision with the terrestrial atmosphere or lithosphere. We examine the possibility for impact features to have originated from the shock layer formed ahead of a hypervelocity collider in the earth atmosphere. This hypothesis is approached by comparing impact features from controlled materials to puzzling geological ones: (1) debris collected at the ground from a high altitude meteor airburst recorded on 2011 August 2nd in Southern France; (2) laboratory experiments performed for defense purposes at the CEA Gramat Center (France) with the Persephone hypervelocity light gas gun; (3) the Zhamanshin impact breccia, the Lybian glass, the Egyptian Dakhleh glass, the Tasmanian Darwin glass, the Australasian tektite strewnfield and the Australian Henbury crater field. The Persephone experiments include collisions from 4.1 to 7.9 km/s by a steel projectile embedded into a polycarbonate holder with a polystyrene separator on to a 40 mm thick aluminum target. The impact features been characterized by coupling Environmental SEM with EDS, Raman micro-spectrometry, XRD, TEM, Tof-SIMS, ICP-MS and isotope analyses. Similar carbonaceous polymorphs that are closely imbricated at meso to nano-scales to the crystallized components (including the metal blebs) and to the glass phases (spherules or matrix) are present in all the impact features studied. They dominantly consist of aliphatic polymers, rare aromatic compounds, with graphite-lonsdaleite inclusions. The Persephone experiments help relating the graphite-lonsdaleite couple to transformed organic residues by the transient high pressure shock (a few tens MPa) and the transient heating (ca 100°C) and the aliphatic polymers to new hydrocarbons that formed from the pulverized polycarbonate and polystyrene. The Persephone experiments provide the controlled situation

  20. Hypervelocity impact tests on Space Shuttle Orbiter RCC thermal protection material. [Reinforced Carbon-Carbon laminate

    NASA Technical Reports Server (NTRS)

    Humes, D. H.

    1978-01-01

    It is noted that the Shuttle Orbiter will be more subject to meteoroid impact than previous spacecraft, due to its greater surface area and longer cumulative time in space. The Orbiter structural material, RCC, a reinforced carbon-carbon laminate with a diffused silicon carbide coating, is evaluated in terms of its resistance to hypervelocity impact. It was found that the specimens (disks with a mass of 34 g and a thickness of 5.0 mm) were cratered only on the front surface when the impact energy was 3 J or less. At 3 J, a trace of the black carbon interior was exposed. The specimens were completely penetrated when the energy was 34 J or greater.

  1. Momentum distribution in debris cloud during hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Lemaster, P.; Mount, A.; Zee, R. H.

    1992-01-01

    The long term operation of the Space Station Freedom requires a scheme to protect it from high velocity impacts by both man-made particles and micrometeor fragments. One such scheme is the use of metal plates to serve as shields against such orbital debris. These 'bumper' plates, as they are referred to, serve to break up any incident particle and redistribute its momentum over a larger area. It is therefore necessary to determine the momentum distribution within the debris cloud produced by such collisions in order to evaluate a materials effectiveness at accomplishing this task. This paper details the design and development of an innovative device which has made this possible. Momentum profiles were obtained for a series of test conditions. Total momentum values in the debris cloud were then calculated from these profiles. These results indicated that a momentum amplification exists with a multiplication factor of between 2 and 3. Thus the role of the bumper to serve as a means for momentum redistribution and not reduction was verified.

  2. Threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact

    SciTech Connect

    Ju, Yuanyuan; Zhang, Qingming

    2015-12-15

    Molecular dynamics method is used to study the threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact. Two effective simulation methods, piston-driven method and multi-scale shock technique, are used to simulate the shock wave. The simulation results from the two methods agree well with the experimental data, indicating that the shock wave velocity is linearly dependent on the particle velocity. The atom is considered to be ionized if the increase of its internal energy is larger than the first ionization energy. The critical impact velocity for plasma phase transition is about 13.0 km/s, corresponding to the threshold of pressure and temperature which is about 220 GPa and 11.0 × 10{sup 3 }K on the shock Hugoniot, respectively.

  3. Hypervelocity dust impacts on the Wind spacecraft: Correlations between Ulysses and Wind interstellar dust detections

    NASA Astrophysics Data System (ADS)

    Wood, S. R.; Malaspina, David M.; Andersson, Laila; Horanyi, Mihaly

    2015-09-01

    The Wind spacecraft is positioned just sunward of Earth at the first Lagrange point, while the Ulysses spacecraft orbits above and below the ecliptic plane crossing the ecliptic as far from the Sun as the orbit of Jupiter (˜5 AU). While Wind does not carry a dedicated dust detector, we demonstrate the ability of Wind electric field measurements to detect hypervelocity dust impacts through their impact plasma signatures. Interstellar dust (ISD) and interplanetary dust particles are differentiated based on a yearly modulation of the ISD flux. Measurements of ISD flux variation by Wind are found to be in good agreement with ISD flux variation measured by Ulysses. While measurements of the ISD flow direction through the Solar System determined by Wind could not be directly compared to those from Ulysses, strong variation in ISD flow direction was observed during similar time periods by both spacecraft.

  4. Magnetic field amplification and generation in hypervelocity meteoroid impacts with application to lunar paleomagnetism

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Vickery, A.

    1984-01-01

    A one-dimensional numerical model for the expansion of impact-produced vapor clouds is used to investigate magnetic field generation mechanisms in events such as meteor collisions with the moon. The resulting cloud properties, such as ionization fraction, electrical conductivity, radial expansion velocity, mass density, and energy density are estimated. The model is initiated with the peak shock states and pressure thresholds for incipient and complete vaporization of anorthosite lunar surface materials by iron and GA composition meteorites. The expansion of the spherical gas cloud into a vacuum was traced with a one-dimensional explicit lagrangian hydrodynamic code. The hypervelocity impact plasmas produced are found to be significant in the amplitudes and orientations of the magnetic fields generated. An ambient magnetic field could have been provided by the core dynamo, which would have interacted with the expanding plasmas and formed induced paleomagnetic fields. Several other field-contribution mechanisms are discussed and discarded as potential remanent magnetism contributors.

  5. Modelling hypervelocity impact fracture of ceramic panels using a mesh-free method

    NASA Astrophysics Data System (ADS)

    Das, R.; Mikhail, J.; Cleary, P. W.

    2010-06-01

    This paper studies the application of Smoothed Particle Hydrodynamics (SPH) for modelling hyper-velocity impact fracture and fragmentation in ceramic panels. Numerical modelling of complex fracture processes is important to understand the fundamental failure mechanisms in a variety of systems. Finite Element Method (FEM) is the mesh-based method conventionally applied to numerical simulation of fracture and fragmentation. However, the mesh generation and manipulation do not often provide the desired accuracy of the solutions, especially in problems with extreme deformations and discontinuities. To overcome this, here we use a mesh-free method called Smoothed Particle Hydrodynamic (SPH) to investigate the three-dimensional fracture of ceramic panels. The effect of impact speed on the fracture pattern and energy transfer is analysed. The SPH simulations are found to be robust in understanding the fracture mechanisms and in providing crucial design parameters.

  6. Magnetic field amplification and generation in hypervelocity meteoroid impacts with application to lunar paleomagnetism

    SciTech Connect

    Hood, L.L.; Vickery, A.

    1984-11-15

    A one-dimensional numerical model for the expansion of impact-produced vapor clouds is used to investigate magnetic field generation mechanisms in events such as meteor collisions with the moon. The resulting cloud properties, such as ionization fraction, electrical conductivity, radial expansion velocity, mass density, and energy density are estimated. The model is initiated with the peak shock states and pressure thresholds for incipient and complete vaporization of anorthosite lunar surface materials by iron and GA composition meteorites. The expansion of the spherical gas cloud into a vacuum was traced with a one-dimensional explicit lagrangian hydrodynamic code. The hypervelocity impact plasmas produced are found to be significant in the amplitudes and orientations of the magnetic fields generated. An ambient magnetic field could have been provided by the core dynamo, which would have interacted with the expanding plasmas and formed induced paleomagnetic fields. Several other field-contribution mechanisms are discussed and discarded as potential remanent magnetism contributors.

  7. Engineering Polymer Blends for Impact Damage Mitigation

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Smith, Russell W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Structures containing polymers such as DuPont's Surlyn® 8940, demonstrate puncture healing when impacted by a 9 millimeter projectile traveling from speeds near 300 meters per second (1,100 feet per second) to hypervelocity impacts in the micrometeoroid velocity range of 5 kilometers per second (16,000 feet per second). Surlyn® 8940 puncture heals over a temperature range of minus 30 degrees Centigrade to plus 70 degrees Centigrade and shows potential for use in pressurized vessels subject to impact damage. However, such polymers are difficult to process and limited in applicability due to their low thermal stability, poor chemical resistance and overall poor mechanical properties. In this work, several puncture healing engineered melt formulations were developed. Moldings of melt blend formulations were impacted with a 5.56 millimeter projectile with a nominal velocity of 945 meters per second (3,100 feet per second) at about 25 degrees Centigrade, 50 degrees Centigrade and 100 degrees Centigrade, depending upon the specific blend being investigated. Self-healing tendencies were determined using surface vacuum pressure tests and tensile tests after penetration using tensile dog-bone specimens (ASTM D 638-10). For the characterization of tensile properties both pristine and impacted specimens were tested to obtain tensile modulus, yield stress and tensile strength, where possible. Experimental results demonstrate a range of new puncture healing blends which mitigate damage in the ballistic velocity regime.

  8. Hypervelocity Impact Experiments on Epoxy/Ultra-High Molecular Weight Polyethylene Composite Panels Reinforced with Nanotubes

    NASA Technical Reports Server (NTRS)

    Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.

    2012-01-01

    Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University

  9. Micrometeoroid Impact Damage on Thin Ceramic Component for Interplanetary Probe

    NASA Astrophysics Data System (ADS)

    Motoyashiki, Yasuko; Shindo, Daisuke; Okudaira, Kyoko; Hasegawa, Sunao; Sato, Eiichi

    A new ceramic thruster for an interplanetary probe is currently under development. Monolithic silicon nitride (Si3N4) , which has good heat resistance and high fracture toughness among conventional structural ceramics, is a promising material for a high performance thruster. However ceramics are brittle compared to metallic materials. In order to evaluate reliability of the ceramic thruster as a space-use component, fracture behavior against micrometeoroid impacts was investigated. First the risk probability of the meteoroid impacts which may occur during a mission was estimated based on impact energy which may cause failure of the material. Second, damage of the silicon nitride ceramics by a possible micrometeoroid impact was investigated experimentally. Hypervelocity impact tests were carried out on the silicon nitride ceramic samples with a two-stage light-gas gun. Impacts at various velocities ranging from 1.0 km/s up to 4.5 km/s brought about three types of failure. However no shattering occurred by the hypervelocity impact with a possible energy. The experimental results together with the risk evaluation considering the flight mission conditions show that the Si3N4 ceramic thruster for the interplanetary probe would have no serious problems caused by a meteoroid impact during the flight mission even with local damage.

  10. Recording and investigation of the seismic signal generated by hypervelocity impact experiments and numerical models

    NASA Astrophysics Data System (ADS)

    Güldemeister, N.; Moser, D.; Wünnemann, K.; Hoerth, T.; Schäfer, F.

    2013-09-01

    Meteorite impacts can cause environmental consequences, one of which is the generation of ground motions that may exceed the magnitude of the largest earthquakes [1]. Impacts generate shock waves that attenuate with distance until they even tually turn into seismic waves. Thus, meteorite impact may be considered as a source for seismic shaking similar to earthquakes. Seismic signals have been recorded in explosion experiments [2] and in hydrocode models of large impact events such as the Chicxulub crater [3]. To determine how much of the kinetic energy Ekin of the impactoris turned into seismic energy Eseis can be investigated experimentally (by recording the acoustic emission) or by numerical models. The ratio of Eseis/Ekin is the so called seismic efficiency k. The seismic efficiency depends on material properties (porosity) and is usually estimated to range between 10-2 and 10-6 [2,4]. In the framework of the "MEMIN" (multidisciplinary experimental and modeling impact crater research network) project a suite of hypervelocity impact experiments on a decimeter scale have been carried out [5]. We use acoustic emission (AE) technique and pressure gauges in high spatiotemporal Meteorite impacts can cause environmental consequences, one of which is the generation of ground motions that may exceed the magnitude of the largest earthquakes [1]. Impacts generate shock waves that attenuate with distance until they even tually turn into seismic waves. Thus, meteorite impact may be considered as a source for seismic shaking similar to earthquakes. Seismic signals have been recorded in explosion experiments [2] and in hydrocode models of large impact events such as the Chicxulub crater [3]. To determine how much of the kinetic energy Ekin of the impactoris turned into seismic energy Eseis can be investigated experimentally (by recording the acoustic emission) or by numerical models. The ratio of Eseis/Ekin is the so called seismic efficiency k. The seismic efficiency depends

  11. Hypervelocity nanoparticle impacts on free-standing graphene: A sui generis mode of sputtering

    SciTech Connect

    Eller, Michael J.; Della-Negra, Serge; Kim, Hansoo; Young, Amanda E.

    2015-01-28

    The study of the interaction of hypervelocity nano-particles with a 2D material and ultra-thin targets (single layer graphene, multi-layer graphene, and amorphous carbon foils) has been performed using mass selected gold nano-particles produced from a liquid metal ion source. During these impacts, a large number of atoms are ejected from the graphene, corresponding to a hole of ∼60 nm{sup 2}. Additionally, for the first time, secondary ions have been observed simultaneously in both the transmission and reflection direction (with respect to the path of the projectile) from a 2D target. The ejected area is much larger than that predicted by molecular dynamic simulations and a large ionization rate is observed. The mass distribution and characteristics of the emitted secondary ions are presented and offer an insight into the process to produce the large hole observed in the graphene.

  12. Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon

    NASA Astrophysics Data System (ADS)

    Hermalyn, B.; Schultz, P. H.

    2011-12-01

    Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging

  13. Extension and Validation of a Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 2

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Shivarama, Ravishankar

    2004-01-01

    The hybrid particle-finite element method of Fahrenthold and Horban, developed for the simulation of hypervelocity impact problems, has been extended to include new formulations of the particle-element kinematics, additional constitutive models, and an improved numerical implementation. The extended formulation has been validated in three dimensional simulations of published impact experiments. The test cases demonstrate good agreement with experiment, good parallel speedup, and numerical convergence of the simulation results.

  14. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile.

    PubMed

    Xia, Kang; Zhan, Haifei; Hu, De'an; Gu, Yuantong

    2016-01-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft. PMID:27618989

  15. Panspermia Survival Scenarios for Organisms that Survive Typical Hypervelocity Solar System Impact Events.

    NASA Astrophysics Data System (ADS)

    Pasini, D.

    2014-04-01

    Previous experimental studies have demonstrated the survivability of living cells during hypervelocity impact events, testing the panspermia and litho-panspermia hypotheses [1]. It has been demonstrated by the authors that Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [2]), survive impacts up to 6.93 km s-1 (approx. shock pressure 40 GPa) [3, 4]. Also shown to survive impacts up to 5.49 km s-1 is the tardigrade species Hypsibius dujardini (a complex micro-animal consisting of 40,000 cells) [5, 6]. It has also been shown that they can survive sustained pressures up to 600 MPa using a water filled pressure capsule [7]. Additionally bacteria can survive impacts up to 5.4 km s-1 (~30 GPa) - albeit with a low probability of survival [1], and the survivability of yeast spores in impacts up to 7.4 km s-1 (~30 GPa) has also recently been demonstrated [8]. Other groups have also reported that the lichen Xanthoria elegans is able to survive shocks in similar pressure ranges (~40 GPa) [9]. Here we present various simulated impact regimes to show which scenarios are condusive to the panspermia hypothesis of the natural transfer of life (via an icy body) through space to an extraterrestrial environment.

  16. Hypervelocity Impact Testing of International Space Station Meteoroid/Orbital Debris Shielding Using an Inhibited Shaped Charge Launcher

    NASA Technical Reports Server (NTRS)

    Kerr, Justin H.; Grosch, Donald

    2001-01-01

    Engineers at the NASA Johnson Space Center have conducted hypervelocity impact (HVI) performance evaluations of spacecraft meteoroid and orbital debris (M/OD) shields at velocities in excess of 7 km/s. The inhibited shaped charge launcher (ISCL), developed by the Southwest Research Institute, launches hollow, circular, cylindrical jet tips to approximately 11 km/s. Since traditional M/OD shield ballistic limit performance is defined as the diameter of sphere required to just perforate or spall a spacecraft pressure wall, engineers must decide how to compare ISCL derived data with those of the spherical impactor data set. Knowing the mass of the ISCL impactor, an equivalent sphere diameter may be calculated. This approach is conservative since ISCL jet tips are more damaging than equal mass spheres. A total of 12 tests were recently conducted at the Southwest Research Institute (SWRI) on International Space Station M/OD shields. Results of these tests are presented and compared to existing ballistic limit equations. Modification of these equations is suggested based on the results.

  17. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3

  18. Detection and location of debris cloud impact damage

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Pang, Baojun; Liu, Zhidong; Chi, Runqiang

    2009-12-01

    A variety of anomalies and system failure can be caused by micrometeoroid and space debris impact on spacecraft. A system based on acoustic emission technique is considered for monitoring the impact events. Most of recent works focused on point-like source localization. However, the spacecraft may use a single thin plate named "bumper" placed at a short distance ahead of a primary structural system. The impact source would be in the form of debris cloud. In this study, normal hypervelocity impact experiments were used to study the characteristics of signals caused by debris cloud impact. Four ultrasonic transducers were mounted on the target plate for collecting the debris cloud impact signals. In the Fourier transform of the signals, the distinctions caused by different form of debris cloud impact could be seen. The mathematical model to determine the impact location was provided. It was found that the position predicted was near the center of the damaged region caused by debris cloud impact.

  19. Detection and location of debris cloud impact damage

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Pang, Baojun; Liu, ZhiDong; Chi, Runqiang

    2010-03-01

    A variety of anomalies and system failure can be caused by micrometeoroid and space debris impact on spacecraft. A system based on acoustic emission technique is considered for monitoring the impact events. Most of recent works focused on point-like source localization. However, the spacecraft may use a single thin plate named "bumper" placed at a short distance ahead of a primary structural system. The impact source would be in the form of debris cloud. In this study, normal hypervelocity impact experiments were used to study the characteristics of signals caused by debris cloud impact. Four ultrasonic transducers were mounted on the target plate for collecting the debris cloud impact signals. In the Fourier transform of the signals, the distinctions caused by different form of debris cloud impact could be seen. The mathematical model to determine the impact location was provided. It was found that the position predicted was near the center of the damaged region caused by debris cloud impact.

  20. Elemental Analyses of Hypervelocity Microparticle Impact Sites on Interplanetary Dust Experiment Sensor Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, J. J.; Brownlee, D. E.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to breakdown the 0.4 or 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results classification resulted from the particles' origins as 'manmade', 'natural', or 'indeterminate'. The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. Thus far, a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF were analyzed: 36 from tray C-9 (Leading (ram), or east, side), 18 from tray C-3 (Trailing

  1. Extending the Applicable Range of the SRL Ballistic Limit Equation to Oblique Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Rudolph, Martin; Welty, Nathan; Putzar, Robin; Schafer, Frank; Koebel, David; Scheper, Marc; Janovsky, Rolf; Apeldoorn, Jeffrey; Lambert, Michel

    2012-07-01

    A standard method to assess the risk posed upon space assets from the micrometeoroid and space debris (MM/SD) environment is to evaluate the probability of no penetration (PNP) of the spacecraft outer hull. It implies catastrophic spacecraft failure upon a single particle penetration through the spacecraft structure wall. The method is justified by its conservative approach, however may result in overly protected structure walls. A more accurate approach is possible with the Schäfer-Ryan-Lambert (SRL) ballistic limit equation (BLE). It takes into consideration the components’ individual capability to defeat particles without functional effect. The initial equation [1] is calibrated with some 90 hypervelocity impact tests on fuel and heat pipes, pressure vessels, electronic boxes, harness and batteries. The paper at hand publishes results obtained from another 40 impact tests on three vulnerable components, namely the harness, electronics boxes and fuel pipes, with focus on oblique impacts at 45° and 60°. The obtained data complements the initial data base and a recalibration and validation of the SRL equation for oblique impacts is achieved. Applications for the SRL equation in the domain of spacecraft MM/SD risk assessment as well as in the domain of survivability enhancement are discussed.

  2. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric; Lear, Dana

    2009-01-01

    Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in

  3. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  4. Electrical signatures of hypervelocity impact plasma with applications in in-situ particle detection

    NASA Astrophysics Data System (ADS)

    Rudolph, M.; Schimmerohn, M.; Osterholz, J.; Schäfer, F.

    2014-08-01

    Hypervelocity impacts of micrometeoroid and space debris particles can produce a highly transient plasma cloud that shows a spectrum of distinct electrical phenomena ranging from charge production to electrostatic field and electromagnetic wave generation. The coupling of these effects to electrical probes can be used as a means of in-situ debris detection to monitor the polluted orbits around the Earth. In the past, some detectors were built mainly for the detection of natural dust populations in space, such as a long heritage of charge collection detectors. In addition, several radio astronomy and ambient plasma instruments that were not specifically dedicated to particle detection revealed impact-induced anomalies during interplanetary missions. Most of them were explained by the interaction of electrically sensitive probes with free charges produced upon impact. For the application in low Earth orbits, one needs to take into account, that the man-made debris population differs from natural populations in many regards, as does the plasma environment between interplanetary space and in orbits close to Earth. The paper at hand gives a summary of detectors with flight heritage and devises a first concept for in situ space debris detectors in low Earth orbit by exploiting past experience with dust detectors in deep space.

  5. Processing and Synthesis of Pre-Biotic Chemicals in Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Brickerhoff, W. B.; Managadze, G. G.; Chumikov, A. E.; Managadze, N. G.

    2005-01-01

    Hypervelocity impacts (HVIs) may have played a significant role in establishing the initial organic inventory for pre-biotic chemistry on the Earth and other planetary bodies. In addition to the delivery of organic compounds intact to planetary surfaces, generally at velocities below approx.20 km/s, HVIs also enable synthesis of new molecules. The cooling post-impact plasma plumes of HVIs in the interstellar medium (ISM), the protosolar nebula (PSN), and the early solar system comprise pervasive conditions for organic synthesis. Such plasma synthesis (PS) can operate over many length scales (from nm-scale dust to planets) and energy scales (from molecular rearrangement to atomization and recondensation). HVI experiments with the flexibility to probe the highest velocities and distinguish synthetic routes are a high priority to understand the relevance of PS to exobiology. We describe here recent studies of PS at small spatial scales and extremely high velocities with pulsed laser ablation (PLA). PLA can simulate the extreme plasma conditions generated in impacts of dust particles at speeds of up to 100 km/s or more. When applied to carbonaceous solids, new and pre-biotically relevant molecular species are formed with high efficiency [1,2].

  6. Secondary ion mass spectrometry (SIMS) analysis of hypervelocity microparticle impact sites on LDEF surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Buonaquisti, A. J.; Batchelor, D. A.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, J. J.; Brownlee, D. E.; Best, S. R.

    1995-01-01

    Two dimensional elemental ion maps have been recorded for hundreds of microparticle impact sites and contamination features on LDEF surfaces. Since the majority of the analyzed surfaces were metal-oxide-silicon (MOS) impact detectors from the Interplanetary Dust Experiment, a series of 'standard' and 'blank' analyses of these surfaces are included. Hypervelocity impacts of forsterite olivine microparticles on activated flight sensors served as standards while stylus and pulsed laser simulated 'impacts' served as analytical blanks. Results showed that despite serious contamination issues, impactor residues can be identified in greater than 1/3 of the impact sites. While aluminum oxide particles could not be detected on aluminum surfaces, they were detected on germanium surfaces from row 12. Remnants of manmade debris impactors consisting of paint chips and bits of metal were identified on surfaces from LDEF Rows 3 (west or trailing side), 6 (south), 9 (ram or leading side), 12 (north) and the space end. Higher than expected ratios of manmade microparticle impacts to total microparticle impacts were found on the space end and the trailing side. These results were consistent with time-tagged and time-segregated microparticle impact data from the IDE and other LDEF experiments. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences include pre-, post and inflight deposited surface contaminants as well as indigenous heterogeneous material contaminants. Non-flight contaminations traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF, even on a micro scale. In-flight deposited (low velocity) contaminants include urine droplets and bits of metal film from eroded thermal

  7. MEMIN: Chemical Modification of Projectile Spheres, Target Melts and Shocked Quartz in Hypervelocity Impact Experiments

    NASA Astrophysics Data System (ADS)

    Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.

    2011-03-01

    We present results of hypervelocity cratering experiments using iron meteorite as projectile and a sandstone target. The ejecta show shock features (melting, PDFs, lechatelierite) and physical as well as chemical mixing between projectile and target.

  8. Hypervelocity impact testing of the Space Station utility distribution system carrier

    NASA Technical Reports Server (NTRS)

    Lazaroff, Scott

    1993-01-01

    A two-phase, joint JSC and McDonnell Douglas Aerospace-Huntington Beach hypervelocity impact (HVI) test program was initiated to develop an improved understanding of how meteoroid and orbital debris (M/OD) impacts affect the Space Station Freedom (SSF) avionic and fluid lines routed in the Utility Distribution System (UDS) carrier. This report documents the first phase of the test program which covers nonpowered avionic line segment and pressurized fluid line segment HVI testing. From these tests, a better estimation of avionic line failures is approximately 15 failures per year and could very well drop to around 1 or 2 avionic line failures per year (depending upon the results of the second phase testing of the powered avionic line at White Sands). For the fluid lines, the initial McDonnell Douglas analysis calculated 1 to 2 line failures over a 30 year period. The data obtained from these tests indicate the number of predicted fluid line failures increased slightly to as many as 3 in the first 10 years and up to 15 for the entire 30 year life of SSF.

  9. Orbital Debris Impact Damage to Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Jennifer H.

    1998-01-01

    In an effort by the National Aeronautics and Space Administration (NASA), hypervelocity impact tests were performed on thermal protection systems (TPS) applied on the external surfaces of reusable launch vehicles (RLV) to determine the potential damage from orbital debris impacts. Three TPS types were tested, bonded to composite structures representing RLV fuel tank walls. The three heat shield materials tested were Alumina-Enhanced Thermal Barrier-12 (AETB-12), Flexible Reusable Surface Insulation (FRSI), and Advanced Flexible Reusable Surface Insulation (AFRSI). Using this test data, predictor equations were developed for the entry hole diameters in the three TPS materials, with correlation coefficients ranging from 0.69 to 0.86. Possible methods are proposed for approximating damage occurring at expected orbital impact velocities higher than tested, with references to other published work.

  10. Hypervelocity Impact Test Fragment Modeling: Modifications to the Fragment Rotation Analysis and Lightcurve Code

    NASA Technical Reports Server (NTRS)

    Gouge, Michael F.

    2011-01-01

    Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.

  11. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  12. Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments

    NASA Astrophysics Data System (ADS)

    Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas; Wirth, Richard; Berndt, Jasper

    2014-05-01

    The possibility of fractionation processes between projectile and target matter is critical with regard to the classification of the impactor type from geochemical analysis of impactites from natural craters. Here we present results of five hypervelocity MEMIN impact experiments (Poelchau et al., 2013) using the Cr-V-Co-Mo-W-rich steel D290-1 as projectile and two different silica-rich lithologies (Seeberger sandstone and Taunus quartzite) as target materials. Our study is focused on geochemical target-projectile interaction occurring in highly shocked and projectile-rich ejecta fragments. In all of the investigated impact experiments, whether sandstone or quartzite targets, the ejecta fragments show (i) shock-metamorphic features e.g., planar-deformation features (PDF) and the formation of silica glasses, (ii) partially melting of projectile and target, and (iii) significant mechanical and chemical mixing of the target rock with projectile material. The silica-rich target melts are strongly enriched in the "projectile tracer elements" Cr, V, and Fe, but have just minor enrichments of Co, W, and Mo. Inter-element ratios of these tracer elements within the contaminated target melts differ strongly from the original ratios in the steel. The fractionation results from differences in the reactivity of the respective elements with oxygen during interaction of the metal melt with silicate melt. Our results indicate that the principles of projectile-target interaction and associated fractionation do not depend on impact energies (at least for the selected experimental conditions) and water-saturation of the target. Partitioning of projectile tracer elements into the silicate target melt is much more enhanced in experiments with a non-porous quartzite target compared with the porous sandstone target. This is mainly the result of higher impact pressures, consequently higher temperatures and longer reaction times at high temperatures in the experiments with quartzite as

  13. A comparative study between experimental results and numerical predictions of multi-wall structural response to hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Peck, Jeffrey A.

    1992-01-01

    Over the last three decades, multiwall structures have been analyzed extensively, primarily through experiment, as a means of increasing the protection afforded to spacecraft structure. However, as structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under impact loading conditions. This paper presents the results of a preliminary numerical/experimental investigation of the hypervelocity impact response of multiwall structures. The results of experimental high-speed impact tests are compared against the predictions of the HULL hydrodynamic computer code. It is shown that the hypervelocity impact response characteristics of a specific system cannot be accurately predicted from a limited number of HULL code impact simulations. However, if a wide range of impact loadings conditions are considered, then the ballistic limit curve of the system based on the entire series of numerical simulations can be used as a relatively accurate indication of actual system response.

  14. Impulse gain and damage from very high dynamic loading using flyer impact

    SciTech Connect

    Osher, J.; Chau, H.; Gerassimenko, M.; Lee, R.; Pomykal, G.; Terhune, R.; Weingart, R.

    1991-07-01

    The Lawrence Livermore National Laboratory (LLNL) 1 MJ and 87 kJ electric guns are in use for a variety of shock-wave applications using the hypervelocity impact of dielectric (or dielectric and metal composite) flyer plates on material samples. The 1 MJ electric gun is a newly completed facility and will be described. The specific applications discussed here include a study of momentum gain and spat damage produced by Kapton flyer impact on aluminium 6061-T6. The experimental impact measurements are used to calibrate code calculations that can be applied under more general hypervelocity impact conditions to typical relative orbital velocities near 10 km/s. The analytical results of code calculations supporting these study areas are also reported.

  15. Tektite origin by hypervelocity asteroidal or cometary impact: The quest for the source craters

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian

    Tektites are natural glasses that are chemically homogeneous, often spherically symmetrical objects several centimeters in size, and occur in four known strewn fields on the surface of the Earth: the North American, moldavite (or Central European), Ivory Coast, and Australasian strewn fields. Tektites found within such strewn fields are related to each other with respect to their petrological, physical, and chemical properties as well as their age. A theory of tektite origin needs to explain the similarity of tektites in respect to age and certain aspects of isotopic and chemical composition within one strewn field, as well as the variety of tektite materials present in each strewn field. In addition to tektites on land, microtektites (which are generally less than 1 mm in diameter) have been found in deep-sea cores. Tektites are classified into three groups: (1) normal or splash-form tektites, (2) aerodynamically shaped tektites, and (3) Muong Nong-type tektites (sometimes also called layered tektites). The aerodynamic ablation results from partial remelting of glass during atmospheric passage after it was ejected outside the terrestrial atmosphere and quenched from a hot liquid. Aerodynamically shaped tektites are known mainly from the Australasian strewn field where they occur as flanged-button australites. The shapes of splash-form tektites (spheres, droplets, teardrops, dumbbells, etc., or fragments thereof) are the result of the solidification of rotating liquids in the air or vacuum. Mainly due to chemical studies, it is now commonly accepted that tektites are the product of melting and quenching of terrestrial rocks during hypervelocity impact on the Earth. The chemistry of tektites is in many respects identical to the composition of upper crustal material.

  16. Tektite origin by hypervelocity asteroidal or cometary impact: The quest for the source craters

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1992-01-01

    Tektites are natural glasses that are chemically homogeneous, often spherically symmetrical objects several centimeters in size, and occur in four known strewn fields on the surface of the Earth: the North American, moldavite (or Central European), Ivory Coast, and Australasian strewn fields. Tektites found within such strewn fields are related to each other with respect to their petrological, physical, and chemical properties as well as their age. A theory of tektite origin needs to explain the similarity of tektites in respect to age and certain aspects of isotopic and chemical composition within one strewn field, as well as the variety of tektite materials present in each strewn field. In addition to tektites on land, microtektites (which are generally less than 1 mm in diameter) have been found in deep-sea cores. Tektites are classified into three groups: (1) normal or splash-form tektites, (2) aerodynamically shaped tektites, and (3) Muong Nong-type tektites (sometimes also called layered tektites). The aerodynamic ablation results from partial remelting of glass during atmospheric passage after it was ejected outside the terrestrial atmosphere and quenched from a hot liquid. Aerodynamically shaped tektites are known mainly from the Australasian strewn field where they occur as flanged-button australites. The shapes of splash-form tektites (spheres, droplets, teardrops, dumbbells, etc., or fragments thereof) are the result of the solidification of rotating liquids in the air or vacuum. Mainly due to chemical studies, it is now commonly accepted that tektites are the product of melting and quenching of terrestrial rocks during hypervelocity impact on the Earth. The chemistry of tektites is in many respects identical to the composition of upper crustal material.

  17. [Structural mechanisms and mathematical modeling of the bone tissue damage caused by hyper-speed impact].

    PubMed

    Ishchenko, A N; Belov, N N; Gaĭdash, A A; Iugov, N T; Bashirov, R S; Afanas'eva, S A; Sinitsa, L N

    2011-03-01

    Method of computer modeling of behavior of cylindrical and lamellar bones under the hypervelocity impact is suggested. This method allows in the frame of mechanics of continuous medium to calculate the stress strain behavior and damage in bone tissues under the shock wave impact. The processes of shock correlation of steel fragments of different shape with diaphysis of cylindrical bones and flat bone of calvaria under the impact 500 m/s are studied. The given method can be used for the evaluation of damage area of bone tissue of shock wave osteoporosis under the gunshot wound. PMID:21770310

  18. New Evidence from Silica Debris Exo-Systems for Planet Building Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Lisse, Carey

    2010-05-01

    There is abundant inferential evidence for massive collisions in the early solar system [1]: Mercury's high density; Venus' retrograde spin; Earth's Moon; Mars' North/South hemispherical cratering anisotropy; Vesta's igneous origin [2]; brecciation in meteorites [3]; and Uranus' spin axis located near the plane of the ecliptic. Recent work [4] analyzing Spitzer mid-IR spectra has demonstrated the presence of large amounts of amorphous silica and SiO gas produced by a recent (within 103 - 104 yrs) large (MExcess > MPluto) hypervelocity impact collision around the young (~12 Myr old) nearby star HD172555, at the right age to form rocky planets. Many questions still remain concerning the location, lifetime, and source of the detected silica/SiO gas, which should not be stable in orbit at the estimated 5.8 AU from the HD172555 A5V primary for more than a few decades, yet it is also highly unlikely that we are fortuitously observing these systems immediately after silica formation A tabulation of the amount counts in the fine silica dust is decidedly Fe and Mg-atom poor compared to solar [4]. Three possible origins for the observed silica/SiO gas seem currently plausible : (1) A single hyperevelocity impact (>10km/s in order to produce silica and vaporize SiO at impact) creating an optically thick circumplanetary debris ring which is overflowing or releasing silica-rich material from its Hill sphere. Like terrestrial tektites, the Fe/Mg poor amorphous silica rubble is formed from quick-quenched molten/vaporized rock created during the impact. The amount of dust detected in the HD172555 system is easily enough to fill and overflow the Hill sphere radius of 0.03 AU for a Pluto-sized body at 5.8 AU from an A5 star, unless it is optically thick (> 1 cm in physical depth). Such a disk would provide a substantial fraction of the observed IR flux, and will be dense enough to self-shield its SiO gas, greatly extending its photolytic lifetime. The lifetime for such a system

  19. Laboratory Study of Titan's Surface Chemistry Induced by Meteoritic Impact Processing: Laser-Simulated Hypervelocity Impact on Ices

    NASA Astrophysics Data System (ADS)

    Nna-Mvondo, D.; Khare, B. N.; McKay, C. P.

    2008-12-01

    Titan's dense atmosphere, mostly composed of nitrogen and some methane, allows easy formation of long chains of organic molecules and high-molecular-weight organic solids, known as tholins. Over geologic time, both tholins and condensates of the organic gases accumulate in substantial amounts on the surface as liquid and solid. Titan's surface is then a repository of interesting organic molecules generated in the almost complete absence of water but sitting on top of ice. Until recently, researchers have been very careful in their speculations about what might be happening after these molecules get to the surface of Titan. What kind of organic chemistry occurs on the surface? Titan's thick atmosphere protects the surface and organics from harmful cosmic rays and ultraviolet radiation. It has been suggested that these organics could have been subjected to impact processing on Titan's and participate in the formation of products relevant to life such as amino acids, carboxylic acids, purines and pyrimidines. Subsequent impacts would probably have recycled some of the organic material back into the atmosphere. Furthermore the presence of condensable agents (C2N2, HCN, etc.) along with a natural concentrating mechanism makes polymerization of amino acids or others species likely. Laboratory simulations of meteoritic impact shocks onto Titan's icy surface have not yet been carried out, but preliminary experiments have been performed for planetary icy satellites. In these previous experiments, the possible chemical production induced by micrometeorite impact shocks on ices has been studied using a high-energy pulsed Nd-YAG laser to reproduce the shock phenomena during hypervelocity micrometeorite impacts into the icy material. The results show the production of various organics and inorganics. Here we have decided to extend those experiments to a simulated Titan's environment in order to study the effect of meteoritic impacts on the organic chemistry occurring on Titan

  20. Identification of minerals and meteoritic materials via Raman techniques after capture in hypervelocity impacts on aerogel

    SciTech Connect

    Burchell, M J; Mann, J; Creighton, J A; Kearsley, A; Graham, G A; Esposito, A P; Franchi, I A; Westphal, A J; Snead, C

    2004-10-04

    For this study, an extensive suite of mineral particles analogous to components of cosmic dust were tested to determine if their Raman signatures can be recognized after hypervelocity capture in aerogel. The mineral particles were mainly of greater than 20 micrometers in size and were accelerated onto the silica aerogel by light gas gun shots. It was found that all the individual minerals captured in aerogel could be subsequently identified using Raman (or fluorescent) spectra. The beam spot size used for the laser illumination was of the order of 5 micrometers, and in some cases the captured particles were of a similar small size. In some samples fired into aerogel there was observed a shift in the wavenumbers of some of the Raman bands, a result of the trapped particles being at quite high temperatures due to heating by the laser. Temperatures of samples under laser illumination were estimated from the relative intensities of Stokes and anti-Stokes Raman bands, or, in the case of ruby particles, from the wavenumber of fluorescence bands excited by the laser. It was found that the temperature of particles in aerogel varied greatly, dependent upon laser power and the nature of the particle. In the worst case, some particles were shown to have temperatures in the 500-700 C range at a laser power of about 3 mW at the sample. However most of the mineral particles examined at this laser power had temperatures below 200 C. This is sufficiently low a temperature not to damage most materials expected to be found captured in aerogel in space. In addition, selected meteorite samples were examined to obtain Raman signatures of their constituent minerals and were then shot into aerogel. It was possible to find several Raman signatures after capture in aerogel and obtain a Raman map of a whole grain in situ in the aerogel. Finally, a Raman analysis was carried out of a particle captured in aerogel in space and carbonaceous material identified. In general therefore it is

  1. Radio-wave emission due to hypervelocity impacts and its correlation with optical observations

    NASA Astrophysics Data System (ADS)

    Takano, T.; Maki, K.; Yamori, A.

    This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency

  2. Intact capture of hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    1986-01-01

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  3. Intact capture of hypervelocity particles

    NASA Astrophysics Data System (ADS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  4. Hyper-velocity impact test and simulation of a double-wall shield concept for the Wide Field Monitor aboard LOFT

    NASA Astrophysics Data System (ADS)

    Perinati, E.; Rott, M.; Santangelo, A.; Suchy, S.; Tenzer, C.; Del Monte, E.; den Herder, J.-W.; Diebold, S.; Feroci, M.; Rachevski, A.; Vacchi, A.; Zampa, G.; Zampa, N.

    2014-07-01

    The space mission LOFT (Large Observatory For X-ray Timing) was selected in 2011 by ESA as one of the candidates for the M3 launch opportunity. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM), based on Silicon Drift Detectors (SDDs). In orbit, they would be exposed to hyper-velocity impacts by environmental dust particles, which might alter the surface properties of the SDDs. In order to assess the risk posed by these events, we performed simulations in ESABASE2 and laboratory tests. Tests on SDD prototypes aimed at verifying to what extent the structural damages produced by impacts affect the SDD functionality have been performed at the Van de Graaff dust accelerator at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg. For the WFM, where we expect a rate of risky impacts notably higher than for the LAD, we designed, simulated and successfully tested at the plasma accelerator at the Technical University in Munich (TUM) a double-wall shielding configuration based on thin foils of Kapton and Polypropylene. In this paper we summarize all the assessment, focussing on the experimental test campaign at TUM.

  5. Subsurface damage from oblique impacts into low-impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2012-07-01

    Layered planetary surfaces occur ubiquitously in the solar system, where sedimentary sequences or icy layers overlay crystalline bedrock. Previous experimental studies investigated how the presence of weak layer overlying a strong basement affects crater morphology, subsurface damage and soft-sediment compression. Numerical studies generally focus on the final morphology as a function of thicknesses and burial depths of weak layers. In field studies of impact craters, the shock state of minerals is a key metric. Here, we evaluate the effect of a surficial low-impedance layer on peak pressure magnitudes and consequent damage extent in the competent substrate. Laboratory experiments coupled with 3D CTH models of oblique (30° from horizontal) hypervelocity impacts at laboratory and planetary scales show that surface layers with a thickness on the order of the projectile diameter shield the underlying surface and absorb/scatter ˜70% of the impact energy. Numerical simulations reveal that surficial layers reduce peak pressure magnitudes within the subsurface by ˜60-70%, while damage in the substrate is due to shear failure. Sedimentary layers are more efficient shields than icy layers, but both reduce the extent of subsurface damage and the resulting shock levels recorded by minerals. These results indicate that a thin surficial low impedance layer mitigates the expression of shocked minerals in the substrate even when a structural response is still observed.

  6. Simulating hypervelocity impact effects on structures using the smoothed particle hydrodynamics code MAGI

    NASA Technical Reports Server (NTRS)

    Libersky, Larry; Allahdadi, Firooz A.; Carney, Theodore C.

    1992-01-01

    Analysis of interaction occurring between space debris and orbiting structures is of great interest to the planning and survivability of space assets. Computer simulation of the impact events using hydrodynamic codes can provide some understanding of the processes but the problems involved with this fundamental approach are formidable. First, any realistic simulation is necessarily three-dimensional, e.g., the impact and breakup of a satellite. Second, the thickness of important components such as satellite skins or bumper shields are small with respect to the dimension of the structure as a whole, presenting severe zoning problems for codes. Thirdly, the debris cloud produced by the primary impact will yield many secondary impacts which will contribute to the damage and possible breakup of the structure. The problem was approached by choosing a relatively new computational technique that has virtues peculiar to space impacts. The method is called Smoothed Particle Hydrodynamics.

  7. Characteristics of hypervelocity impact craters on LDEF experiment S1003 and implications of small particle impacts on reflective surfaces

    NASA Technical Reports Server (NTRS)

    Mirtich, Michael J.; Rutledge, Sharon K.; Banks, Bruce A.; Devries, Christopher; Merrow, James E.

    1993-01-01

    The Ion Beam textured and coated surfaces EXperiment (IBEX), designated S1003, was flown on LDEF at a location 98 deg in a north facing direction relative to the ram direction. Thirty-six diverse materials were exposed to the micrometeoroid (and some debris) environment for 5.8 years. Optical property measurements indicated no changes for almost all of the materials except S-13G, Kapton, and Kapton-coated surfaces, and these changes can be explained by other environmental effects. From the predicted micrometeoroid flux of NASA SP-8013, no significant changes in optical properties of the surfaces due to micrometeoroids were expected. There were hypervelocity impacts on the various diverse materials flown on IBEX, and the characteristics of these craters were documented using scanning electron microscopy (SEM). The S1003 alumigold-coated aluminum cover tray was sectioned into 2 cm x 2 cm pieces for crater documentation. The flux curve generated from this crater data fits well between the 1969 micrometeoroid model and the Kessler debris model for particles less than 10(exp -9) gm which were corrected for the S1003 positions (98 deg to ram). As the particle mass increases, the S1003 impact data is greater than that predicted by even the debris model. This, however, is consistent with data taken on intercostal F07 by the Micrometeoroid/Debris Special Investigating Group (M/D SIG). The mirrored surface micrometeoroid detector flown on IBEX showed no change in solar reflectance and corroborated the S1003 flux curve, as well as results of this surface flown on SERT 2 and OSO 3 for as long as 21 years.

  8. Characteristics of hypervelocity impact craters on LDEF experiment S1003 and implications of small particle impacts on reflective surfaces

    NASA Astrophysics Data System (ADS)

    Mirtich, Michael J.; Rutledge, Sharon K.; Banks, Bruce A.; Devries, Christopher; Merrow, James E.

    1993-04-01

    The Ion Beam textured and coated surfaces EXperiment (IBEX), designated S1003, was flown on LDEF at a location 98 deg in a north facing direction relative to the ram direction. Thirty-six diverse materials were exposed to the micrometeoroid (and some debris) environment for 5.8 years. Optical property measurements indicated no changes for almost all of the materials except S-13G, Kapton, and Kapton-coated surfaces, and these changes can be explained by other environmental effects. From the predicted micrometeoroid flux of NASA SP-8013, no significant changes in optical properties of the surfaces due to micrometeoroids were expected. There were hypervelocity impacts on the various diverse materials flown on IBEX, and the characteristics of these craters were documented using scanning electron microscopy (SEM). The S1003 alumigold-coated aluminum cover tray was sectioned into 2 cm x 2 cm pieces for crater documentation. The flux curve generated from this crater data fits well between the 1969 micrometeoroid model and the Kessler debris model for particles less than 10(exp -9) gm which were corrected for the S1003 positions (98 deg to ram). As the particle mass increases, the S1003 impact data is greater than that predicted by even the debris model. This, however, is consistent with data taken on intercostal F07 by the Micrometeoroid/Debris Special Investigating Group (M/D SIG). The mirrored surface micrometeoroid detector flown on IBEX showed no change in solar reflectance and corroborated the S1003 flux curve, as well as results of this surface flown on SERT 2 and OSO 3 for as long as 21 years.

  9. Acoustic Emission Detection of Impact Damage on Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.

    2004-01-01

    The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.

  10. Hypervelocity microparticle characterization

    SciTech Connect

    Idzorek, G.C.

    1996-11-01

    To protect spacecraft from orbital debris requires a basic understanding of the processes involved in hypervelocity impacts and characterization of detectors to measure the space environment. Both require a source of well characterized hypervelocity particles. Electrostatic acceleration of charged microspheres provides such a source. Techniques refined at the Los Alamos National Laboratory provided information on hypervelocity impacts of particles of known mass and velocity ranging from 20-1000 nm diameter and 1-100 km/s. A Van De Graaff generator operating at 6 million volts was used to accelerate individual carbonyl iron microspheres produced by a specially designed particle source. Standard electrostatic lenses and steering were used to control the particles flight path. Charge sensitive pickoff tubes measured the particle charge and velocity in- flight without disturbing the particle. This information coupled with the measured Van De Graaff terminal voltage allowed calculation of the particle energy, mass, momenta and (using an assumed density) the size. Particles with the desired parameters were then electrostatically directed to a target chamber. Targets used in our experiments included cratering and foil puncture targets, microphone momentum enhancement detectors, triboluminescent detectors, and ``splash`` charge detectors. In addition the system has been used to rapidly characterize size distributions of conductive plastic particles and potentially provide a method of easily sorting microscopic particles by size.

  11. Impact cratering and catastrophic disruption of porous targets through hypervelocity impact experiments

    NASA Astrophysics Data System (ADS)

    Ferri, F.; Giacomuzzo, C.; Pavarin, D.; Francesconi, A.; Bettella, A.; Flamini, E.; Angrilli, F.

    We present an experimental study of impact cratering and fragmentation processes onto low density materials by means of high velocity impact experiments using a two-stage light-gas gun, the impact facility of CISAS "G. Colombo" of the University of Padova (http://cisas.unipd.it/lgg/lgg.html). The goal of our experiments is to obtain a better comprehension of the impact processes on different materials in order to analyze the evolution of the surface of the solid bodies and the collisional evolution of the minor bodies of the Solar System. The results of this research are also aimed to contribute to the data interpretation of the ground- and space-based observations, in particular in view of space missions such as Smart1, MarsExpress, VenusExpress, BepiColombo, Cassini-Huygens, Rosetta, Dawn. Porosity is an important physical characteristic of the minor bodies, affecting their behaviour during cratering and greatly lengthening the collisional lifetimes of porous asteroids. Porous targets are likely to have average sound velocity lower than those of nonporous targets composed of same material; compaction of initially porous materials can produce rapid attenuation of the shock, thus affecting energy propagation during collisions. Therefore we focus on the study of impact processes on porous targets both by experimental and theoretical approach in order to complement and extend the available data to ranges of velocity and physical conditions not yet explored. In order to simulate porous asteroids, comets, icy satellites, we have manufactured and used targets of different material, e.g. glass ceramic foam, natural pumices, water ice, and different porosity (with density ranging from 0.35 to 1.07 g/cm3 ). Impact test campaign have been performed on the different samples varying the impact kinetic energy (by changing projectile mass and velocity) in order to study the craterization up to catastrophic disruption. The impact and shattering events are observed by high speed

  12. A new technique for ground simulation of hypervelocity debris

    NASA Technical Reports Server (NTRS)

    Roybal, R.; Shively, J.; Stein, C.; Miglionico, C.; Robertson, R.

    1995-01-01

    A series of hypervelocity damage experiments were preformed on spacecraft materials. These experiments employed a technique which accelerates micro flyer plates simulating space debris traveling at 3 to 8 km/sec. The apparatus used to propel the micro flyer plates was compact and fit well into a space environmental chamber equipped with instrumentation capable of analyzing the vapor ejected from the sample. Mechanical damage to the sample was also characterized using optical and scanning electron microscpopy. Data for this work was obtained from hypervelocity impacts on a polysulfone resin and a graphite polysulfone composite. Polysulfone was selected because it was flown on the Long Duration Exposure Facility (LDEF) which spent several years in low earth orbit (LEO). Chemistry of the vapor produced by the impact was analyzed with a time of flight mass spectrometer, (TOFMS). This represents the first time that ejected vapors from hypervelocity collisions were trapped and analyzed with a mass spectrometer. With this approach we are able to study changes in the vapor chemistry as a function of time after impact, obtain a velocity measurement of the vapor, and estimate a temperature of the surface at time of impact using dynamic gas equations. Samples of the vapor plume may be captured and examined by transmission electron microscopy. Studies were also conducted to determine mechanical damage to a graphite polysulfone composite and a polysulfone resin. Impact craters were examined under optical and scanning electron microscopes. The collision craters in the matrix were typical of those shown in conventional shock experiments. However, the hypervelocity collisions with the graphite polysulfone composite were remarkably different than those with the resin.

  13. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.

    1992-01-01

    The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed

  14. Hypervelocity High Speed Projectile Imagery and Video

    NASA Technical Reports Server (NTRS)

    Henderson, Donald J.

    2009-01-01

    This DVD contains video showing the results of hypervelocity impact. One is showing a projectile impact on a Kevlar wrapped Aluminum bottle containing 3000 psi gaseous oxygen. One video show animations of a two stage light gas gun.

  15. A system to damp the free piston oscillations in a two-stage light-gas gun used for hypervelocity impact experiments

    NASA Astrophysics Data System (ADS)

    Pavarin, D.; Francesconi, A.; Angrilli, F.

    2004-01-01

    Hypervelocity impact experiments that reproduce on-orbit collisions between micrometeoroids or orbital debris and space structures are commonly performed by means of propellant-driven two-stage light-gas guns. Such devices accelerate projectiles using the thrust of a light propellant gas that is compressed to high pressure and temperature by a piston running in a pump tube. Though these guns have the unique capability of accelerating particles up to 9 km/s, many components of the gun must be checked and/or substituted after each shot making test sessions long and expensive. In order to have a lot of and many different types of hypervelocity impact data, the Center of Studies and activities for Space CISAS "G. Colombo" of Padua University developed a high-shot-frequency two-stage light-gas gun that can increase the shot repetition rate of standard facilities by a factor of 5 or more and at the same time reduce the shot cost by a factor of 2 or more. This is made possible through the use of special mechanical and diagnostic solutions that were designed to operate the gun for more than 50 shots in sequence without having to carry out maintenance operations. This article presents the design and operation of the CISAS two-stage light-gas gun damping system, which is one of the subsystems that makes it possible to achieve high-shot frequency. The damping system is in charge of controlling the piston oscillations in the pump tube, making it possible for the piston to withstand more than 100 shots without any damage. In particular, the damping system avoids piston strikes onto the gun head at the end of each compression stroke and allows the piston to be positioned at the base of the pump tube after each shot. The sensitivity of the piston oscillations to the damping operations and main subsystem design parameters were identified using numerical simulations, carried out according to a model that describes every working phase of the gun. Moreover, in this paper, the

  16. Impact damage in composite laminates

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    1988-01-01

    Damage tolerance requirements have become an important consideration in the design and fabrication of composite structural components for modern aircraft. The ability of a component to contain a flaw of a given size without serious loss of its structural integrity is of prime concern. Composite laminates are particularly susceptible to damage caused by transverse impact loading. The ongoing program described is aimed at developing experimental and analytical methods that can be used to assess damage tolerance capabilities in composite structures subjected to impulsive loading. Some significant results of this work and the methodology used to obtain them are outlined.

  17. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.

    1993-01-01

    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.

  18. A fresh look at crater scaling laws for normal and oblique hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Watts, A. J.; Atkinson, D. R.; Rieco, S. R.; Brandvold, J. B.; Lapin, S. L.; Coombs, C. R.

    1993-01-01

    With the concomitant increase in the amount of man-made debris and an ever increasing use of space satellites, the issue of accidental collisions with particles becomes more severe. While the natural micrometeoroid population is unavoidable and assumed constant, continued launches increase the debris population at a steady rate. Debris currently includes items ranging in size from microns to meters which originated from spent satellites and rocket cases. To understand and model these environments, impact damage in the form of craters and perforations must be analyzed. Returned spacecraft materials such as those from LDEF and Solar Max have provided such a testbed. From these space-aged samples various impact parameters (i.e., particle size, particle and target material, particle shape, relative impact speed, etc.) may be determined. These types of analyses require the use of generic analytic scaling laws which can adequately describe the impact effects. Currently, most existing analytic scaling laws are little more than curve-fits to limited data and are not based on physics, and thus are not generically applicable over a wide range of impact parameters. During this study, a series of physics-based scaling laws for normal and oblique crater and perforation formation has been generated into two types of materials: aluminum and Teflon.

  19. Hypervelocity impact tests and simulations of single Whipple bumper shield concepts at 10 km/s

    SciTech Connect

    Chhabildas, L.C.; Hertel, E.S. ); Hill, S.A. )

    1992-01-01

    A series of experiments has been performed to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities of [approximately] 10 km/s. Upon impact by a 19 mm (0.87 nun thick, L/D [approximately]0.5) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of [approximately]14 km/s and expands radially at a velocity of [approximately]7 km/s. Subsequent loading by the debris on a 3.2 mm thick aluminum substructure placed 114 mm from the bumper penetrates the substructure completely. However, when the diameter of the flier plate is reduced to 12.7 mm, the substructure, although damaged, is not perforated over the duration of the experiment. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete perforation of the substructure by the subsequent debris cloud for the larger flier plate. The numerical simulation for a 12.7 mm flier plate, however, shows a strong dependence on assumed impact geometry, i.e., a spherical projectile impact geometry does not result in perforation of the substructure by the subsequent debris cloud, while the flat plate impact geometry results in perforation.

  20. Hypervelocity impact tests and simulations of single Whipple bumper shield concepts at 10 km/s

    SciTech Connect

    Chhabildas, L.C.; Hertel, E.S.; Hill, S.A.

    1992-12-01

    A series of experiments has been performed to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities of {approximately} 10 km/s. Upon impact by a 19 mm (0.87 nun thick, L/D {approximately}0.5) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of {approximately}14 km/s and expands radially at a velocity of {approximately}7 km/s. Subsequent loading by the debris on a 3.2 mm thick aluminum substructure placed 114 mm from the bumper penetrates the substructure completely. However, when the diameter of the flier plate is reduced to 12.7 mm, the substructure, although damaged, is not perforated over the duration of the experiment. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete perforation of the substructure by the subsequent debris cloud for the larger flier plate. The numerical simulation for a 12.7 mm flier plate, however, shows a strong dependence on assumed impact geometry, i.e., a spherical projectile impact geometry does not result in perforation of the substructure by the subsequent debris cloud, while the flat plate impact geometry results in perforation.

  1. Survival of Nannochloropsis Phytoplankton in Hypervelocity Impact Events up to Velocities of 6.07 km/s

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypothesis [1], [2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1] whilst larger more complex objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. We demonstrate here the survivability of Nannochloropsis Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone'(sunlit surface layers of oceans) [4] at impact velocities up to 6.07 km s-1. Phytoplankton from a culture sample was frozen and then fired into water (to simulate oceanic impacts, as described in [5]) using a light gas gun (LGG) [6]. The water was then retrieved and placed into a sealed culture vessel and left under a constant light source to check the viability of any remnant organisms.

  2. Results of Two-Stage Light-Gas Gun Development Efforts and Hypervelocity Impact Tests of Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Cornelison, C. J.; Watts, Eric T.

    1998-01-01

    Gun development efforts to increase the launching capabilities of the NASA Ames 0.5-inch two-stage light-gas gun have been investigated. A gun performance simulation code was used to guide initial parametric variations and hardware modifications, in order to increase the projectile impact velocity capability to 8 km/s, while maintaining acceptable levels of gun barrel erosion and gun component stresses. Concurrent with this facility development effort, a hypervelocity impact testing series in support of the X-33/RLV program was performed in collaboration with Rockwell International. Specifically, advanced thermal protection system materials were impacted with aluminum spheres to simulate impacts with on-orbit space debris. Materials tested included AETB-8, AETB-12, AETB-20, and SIRCA-25 tiles, tailorable advanced blanket insulation (TABI), and high temperature AFRSI (HTA). The ballistic limit for several Thermal Protection System (TPS) configurations was investigated to determine particle sizes which cause threshold TPS/structure penetration. Crater depth in tiles was measured as a function of impact particle size. The relationship between coating type and crater morphology was also explored. Data obtained during this test series was used to perform a preliminary analysis of the risks to a typical orbital vehicle from the meteoroid and space debris environment.

  3. Numerical Simulation of Impact Damage Induced by Orbital Debris on Shielded Wall of Composite Overwrapped Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Cherniaev, Aleksandr; Telichev, Igor

    2014-12-01

    This paper presents a methodology for numerical simulation of the formation of the front wall damage in composite overwrapped pressure vessels under hypervelocity impact. Both SPH particles and Lagrangian finite elements were employed in combination for numerical simulations. Detailed numerical models implementing two filament winding patterns with different degree of interweaving were developed and used to simulate 2.5 km/s and 5.0 km/s impacts of 5 mm-diameter spherical aluminum-alloy projectile. Obtained results indicate that winding pattern may have a pronounced effect on vessel damage in case of orbital debris impact, influencing propagation of the stress waves in composite material.

  4. Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.

    2015-08-01

    Hypervelocity stars (HVSs) travel with such extreme velocities that dynamical ejection via gravitational interaction with a massive black hole (MBH) is their most likely origin. Observers have discovered dozens of unbound main-sequence stars since the first in 2005, and the velocities, stellar nature, spatial distribution, and overall numbers of unbound B stars in the Milky Way halo all fit an MBH origin. Theorists have proposed various mechanisms for ejecting unbound stars, and these mechanisms can be tested with larger and more complete samples. HVSs' properties are linked to the nature and environment of the Milky Way's MBH, and, with future proper motion measurements, their trajectories may provide unique probes of the dark matter halo that surrounds the Milky Way.

  5. Survival of yeast spores in hypervelocity impact events up to velocities of 7.4 km s-1

    NASA Astrophysics Data System (ADS)

    Price, M. C.; Solscheid, C.; Burchell, M. J.; Josse, L.; Adamek, N.; Cole, M. J.

    2013-01-01

    We report on the survivability in hypervelocity impacts of yeast in spore form, and as mature cultures, at impact velocities from 1 to 7.4 km s-1, corresponding to an estimated peak shock pressure of ˜43 GPa. Spores from a yeast strain (BY4743), deficient in an enzyme required for uracil production, were fired into water (to simulate oceanic impact from space) using a light gas gun. The water was then retrieved and filtered and the resulting retentate and filtrate cultured to determine viability and survival rates of remnant spores. Yeast growth (confirmed as coming from the original sample as it had the same enzyme deficiency) was found in recovered samples at all impact speeds, albeit in smaller quantities at the higher speeds. The survival probabilities were measured as ˜50% at 1 km s-1, falling to ˜10-3% at 7.4 km s-1. This follows the pattern observed in previous work on survival of microbial life and spores exposed to extreme shock loading, where there is reasonable survival at low peak shock pressures with more severe lethality above a critical shock pressure at the GPa scale (here between 2 and 10 GPa). These results are explained in the context of a general model for survival against extreme shock and are relevant to the hypotheses of panspermia and litho-panspermia, showing that extreme shocks during transfer across space are not necessarily sterilising.

  6. Determining orbital particle parameters of impacts into germanium using morphology analysis and calibration data from hypervelocity impact experiments in the laboratory

    NASA Technical Reports Server (NTRS)

    Paul, Klaus G.

    1995-01-01

    This paper describes the work that is done at the Lehrstuhl fur Raumfahrttechnik (lrt) at the Technische Universitat Munchen to examine particle impacts into germanium surfaces which were flown on board the LDEF satellite. Besides the description of the processing of the samples, a brief overview of the particle launchers at our institute is given together with descriptions of impact morphology of high- and hypervelocity particles into germanium. Since germanium is a brittle, almost glass-like material, the impact morphology may also be interesting for anyone dealing with materials such as optics and solar cells. The main focus of our investigations is to learn about the impacting particle's properties, for example mass, velocity and direction. This is done by examining the morphology, various geometry parameters, crater obliqueness and crater volume.

  7. Peculiarities in the formation of complex organic compounds in a nitrogen-methane atmosphere during hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Zaitsev, M. A.; Gerasimov, M. V.; Safonova, E. N.; Vasiljeva, A. S.

    2016-03-01

    Results of the experiments on model impact vaporization of peridotite, a mineral analogue of stony asteroids, in a nitrogen-methane atmosphere are presented. Nd-glass laser (γ = 1.06 µm) was used for simulation. Pulse energy was ~600-700 J, pulse duration ~10-3 s, vaporization tempereature ~4000-5000 K. The gaseous medium (96% vol. of N2 and 4% vol. of CH4, P = 1 atm) was a possible analogue of early atmospheres of terrestrial planets and corresponded to the present-day atmosphere composition of Titan, a satellite of Saturn. By means of pyrolytic gas chromatography/mass spectrometry, it is shown that solid condensates obtained in laser experiments contain relatively complex lowand high-molecular weight (kerogen-like) organic compounds. The main products of condensate pyrolysis were benzene and alkyl benzenes (including long-chain ones), unbranched aliphatic hydrocarbons, and various nitrogen-containing compounds (aliphatic and aromatic nitriles and pyrrol). It is shown that the nitrogen-methane atmosphere favors the formation of complex organic compounds upon hypervelocity impacts with the participation of stony bodies even with a small methane content in it. In this process, falling bodies may not contain carbon, hydrogen, and other chemical elements necessary for the formation of the organic matter. In such conditions, a noticeable contribution to the impact-induced synthesis of complex organic substances is probably made by heterogeneous catalytic reactions, in particular, Fischer-Tropsch type reactions.

  8. Aerogel Keystones: Extraction Of Complete Hypervelocity Impact Events From Aerogel Collectors

    SciTech Connect

    Westphal, A J; Snead, C; Butterworth, A; Graham, G A; Bradley, J; Bajt, S; Grant, P G; Bench, G; Brennan, S; Piannetta, P

    2003-11-07

    In January 2006, the Stardust mission will return the first samples from a solid solar-system body since Apollo, and the first samples of contemporary interstellar dust ever collected. Although sophisticated laboratory instruments exist for the analysis of Stardust samples, techniques for the recovery of particles and particle residues from aerogel collectors remain primitive. Here we describe our recent progress in developing techniques for extracting small volumes of aerogel, which we have called ''keystones,'' which completely contain particle impacts but minimize the damage to the surrounding aerogel collector. These keystones can be fixed to custom-designed micromachined silicon fixtures (so-called ''microforklifts''). In this configuration the samples are self-supporting, which can be advantageous in situations in which interference from a supporting substrate is undesirable. The keystones may also be extracted and placed onto a substrate without a fixture. We have also demonstrated the capability of homologously crushing these unmounted keystones for analysis techniques which demand flat samples.

  9. Measuring the internal energies of species emitted from hypervelocity nanoprojectile impacts on surfaces using recalibrated benzylpyridinium probe ions

    NASA Astrophysics Data System (ADS)

    DeBord, J. Daniel; Verkhoturov, Stanislav V.; Perez, Lisa M.; North, Simon W.; Hall, Michael B.; Schweikert, Emile A.

    2013-06-01

    We present herein a framework for measuring the internal energy distributions of vibrationally excited molecular ions emitted from hypervelocity nanoprojectile impacts on organic surfaces. The experimental portion of this framework is based on the measurement of lifetime distributions of "thermometer" benzylpyridinium ions dissociated within a time of flight mass spectrometer. The theoretical component comprises re-evaluation of the fragmentation energetics of benzylpyridinium ions at the coupled-cluster singles and doubles with perturbative triples level. Vibrational frequencies for the ground and transition states of select molecules are reported, allowing for a full description of vibrational excitations of these molecules via Rice-Ramsperger-Kassel-Marcus unimolecular fragmentation theory. Ultimately, this approach is used to evaluate the internal energy distributions from the measured lifetime distributions. The average internal energies of benzylpyridinium ions measured from 440 keV Au400+4 impacts are found to be relatively low (˜0.24 eV/atom) when compared with keV atomic bombardment of surfaces (1-2 eV/atom).

  10. Deformation of dry and wet sandstone targets during hypervelocity impact experiments, as revealed from the MEMIN Program

    NASA Astrophysics Data System (ADS)

    Buhl, Elmar; Poelchau, Michael H.; Dresen, Georg; Kenkmann, Thomas

    2013-01-01

    Hypervelocity impact experiments on dry and water-saturated targets of fine-grained quartz sandstone, performed within the MEMIN project, have been investigated to determine the effects of porosity and pore space saturation on deformation mechanisms in the crater's subsurface. A dry sandstone cube and a 90% water-saturated sandstone cube (Seeberger Sandstein, 20 cm side length, about 23% porosity) were impacted at the Fraunhofer EMI acceleration facilities by 2.5 mm diameter steel spheres at 4.8 and 5.3 km s-1, respectively. Microstructural postimpact analyses of the bisected craters revealed differences in the subsurface deformation for the dry and the wet target experiments. Enhanced grain comminution and compaction in the dry experiment and a wider extent of localized deformation in the saturated experiment suggest a direct influence of pore water on deformation mechanisms. We suggest that the pore water reduces the shock impedance mismatch between grains and pore space, and thus reduces the peak stresses at grain-grain contacts. This effect inhibits profound grain comminution and effective compaction, but allows for reduced shock wave attenuation and a more effective transport of energy into the target. The reduced shock wave attenuation is supposed to be responsible for the enhanced crater growth and the development of "near surface" fractures in the wet target.

  11. Hypervelocity impact effects on solar cells. Final technical report, 30 March-29 September 1992

    SciTech Connect

    Rose, M.F.

    1992-09-01

    One of the space hazards of concern is the problem of natural matter and space debris impacting spacecraft. In addition to mechanical damage, impact velocities greater than 5 km/sec can produce shock induced ionization effects with resultant surface charging and complex chemical interactions. The upper limit of the velocity distribution for these particles is on the order of 70 km/sec. The second source of particulate matter is due to the presence of man and the machinery needed to place satellites in orbit. This 'man made' component of the space debris consists of waste, rocket exhaust, and debris caused by satellite break-up. Most of the particles are small. However as the size increases, debris purposefully thrown overboard such as garbage and human waste, combined with paint chips, plastic, wire fragments, bolts, etc., become formidable hazards which completely dominate the distribution function for some orbits. These larger fragments can produce penetration and spalling of the thick metallic structures associated with spacecraft. The particles most often encountered are aluminum oxide, associated with fuel residue, and paint chips. These debris types can have a wide range of particle sizes. It has been stated that the design of spacecraft will have to take the debris evolution into account and provide additional suitable armor for key components in the near future. The purpose of this work was to subject samples from solar power arrays, one of the key components of any spacecraft, to a debris flux typical of what might be found in space, and measure the degradation of the power panels after impact.

  12. Survival of the Tardigrade Hypsibius Dujardini during Hypervelocity Impact Events up to 5.49 km s-1

    NASA Astrophysics Data System (ADS)

    Pasini, D.

    2014-04-01

    Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypotheses [1, 2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1], whilst larger, more complex, objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. Previous work by the authors demonstrated the survivability of Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [4]), at impact velocities up to 6.07 km s-1 [5]. Other groups have also reported that lichens are able to survive shocks in similar pressure ranges [6]. However, whilst many simple single celled organisms have now been shown to survive such impacts (and the associated pressures) as those encountered during the migration of material from one planet to another [1, 3, 5], complex multicellular organisms have either largely not been tested or, those that have been, have not survived the process [2]. Hypsibius dujardini, like most species of tardigrade, are complex organisms composed of approximately 40,000 cells [7]. When humidity decreases they enter a highly dehydrated state known as a 'tun' and can survive extreme temperatures (as low as - 253°C or as high as 151°C), as well as exposure to Xrays and the vacuum of space [7]. Here we test the shock survivability of Hypsibius dujardini by firing a nylon projectile onto a frozen sample of water containing frozen tardigrades using a light gas gun (LGG) [8]. The recovered ice and water were then analysed under an optical microscope to check the viability of any remnant organisms that may have survived impact, and the pressures generated.

  13. First Principles Based Reactive Atomistic Simulations to Understand the Effects of Molecular Hypervelocity Impact on Cassini's Ion and Neutral Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Jaramillo-Botero, A.; Cheng, M-J; Cvicek, V.; Beegle, Luther W.; Hodyss, R.; Goddard, W. A., III

    2011-01-01

    We report here on the predicted impact of species such as ice-water, CO2, CH4, and NH3, on oxidized titanium, as well as HC species on diamond surfaces. These simulations provide the dynamics of product distributions during and after a hypervelocity impact event, ionization fractions, and dissociation probabilities for the various species of interest as a function of impact velocity (energy). We are using these results to determine the relevance of the fragmentation process to Cassini INMS results, and to quantify its effects on the observed spectra.

  14. Hypervelocity sub 10-micron impacts into aluminium foil: new experimental data and implications for comet 81P/Wild-2's dust fluence

    NASA Astrophysics Data System (ADS)

    Price, Mark C.; Kearsley, Anton T.; Burchell, Mark J.; Horz, Friedrich; Cole, Mike J.

    2009-06-01

    Recent experimental work (Price, M. C. et. al., LPSC XXXX, #1564, 2009) has shown that the lip-to-lip diameter of hypervelocity impact craters at micron-scales (Dp< 10 microns) is a non-linear function of the impactor's diameter (Dp). We present data for monodisperse silica projectiles impacting aluminium-1100 and elemental aluminium at 6.1 kmsec and discuss the implications of this effect for the Stardust fluence calibration for micron-scale particles (which make up the majority of the impactor flux). Hydrocodes have been used to investigate the potential causes of the phenomena and the results are presented.

  15. Looking Beneath an Impakt Crater — Non-Destructive Testing for Hypervelocity Impact Experiments

    NASA Astrophysics Data System (ADS)

    Moser, D.; Grosse, C.; Güldemeister, N.; Buhl, E.; Wünnemann, K.; Kenkmann, T.

    2012-03-01

    In the framework of the "MEMIN" project, ultrasound tomography gives an overview about the inner damage zone. The comparison to numerical simulations and optical evaluation will give an association about terrestrial craters.

  16. Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Tandy, J. D.; Mihaly, J. M.; Adams, M. A.; Rosakis, A. J.

    2014-07-01

    The temporal evolution of a previously observed hypervelocity impact-induced vapor cloud [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013)] was measured by simultaneously recording several full-field, near-IR images of the resulting emission using an OMA-V high-speed camera. A two-stage light-gas gun was used to accelerate 5 mg Nylon 6/6 right-cylinders to speeds between 5 km/s and 7 km/s to impact 1.5 mm thick 6061-T6 aluminum target plates. Complementary laser-side-lighting [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013); Proc. Eng. 58, 363 (2013)] and front-of-target (without laser illumination) images were also captured using a Cordin ultra-high-speed camera. The rapid expansion of the vapor cloud was observed to contain a bright, emitting exterior, and a darker, optically thick interior. The shape of this phenomenon was also observed to vary considerably between experiments due to extremely high-rate (>250 000 rpm) of tumbling of the cylindrical projectiles. Additionally, UV-vis emission spectra were simultaneously recorded to investigate the temporal evolution of the atomic and molecular composition of the up-range, impact-induced vapor plume. A PI-MAX3 high-speed camera coupled to an Acton spectrograph was utilized to capture the UV-vis spectra, which shows an overall peak in emission intensity between approximately 6-10 μs after impact trigger, corresponding to an increased quantity of emitting vapor/plasma passing through the spectrometer slit during this time period. The relative intensity of the numerous spectral bands was also observed to vary according to the exposure delay of the camera, indicating that the different atomic/molecular species exhibit a varied temporal evolution during the vapor cloud expansion. Higher resolution spectra yielded additional emission lines/bands that provide further evidence of interaction between fragmented projectile material and the 1 mmHg atmosphere inside the target chamber. A comparison of the data to down

  17. Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy

    SciTech Connect

    Tandy, J. D.; Mihaly, J. M.; Adams, M. A.; Rosakis, A. J.

    2014-07-21

    The temporal evolution of a previously observed hypervelocity impact-induced vapor cloud [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013)] was measured by simultaneously recording several full-field, near-IR images of the resulting emission using an OMA-V high-speed camera. A two-stage light-gas gun was used to accelerate 5 mg Nylon 6/6 right-cylinders to speeds between 5 km/s and 7 km/s to impact 1.5 mm thick 6061-T6 aluminum target plates. Complementary laser-side-lighting [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013); Proc. Eng. 58, 363 (2013)] and front-of-target (without laser illumination) images were also captured using a Cordin ultra-high-speed camera. The rapid expansion of the vapor cloud was observed to contain a bright, emitting exterior, and a darker, optically thick interior. The shape of this phenomenon was also observed to vary considerably between experiments due to extremely high-rate (>250 000 rpm) of tumbling of the cylindrical projectiles. Additionally, UV-vis emission spectra were simultaneously recorded to investigate the temporal evolution of the atomic and molecular composition of the up-range, impact-induced vapor plume. A PI-MAX3 high-speed camera coupled to an Acton spectrograph was utilized to capture the UV-vis spectra, which shows an overall peak in emission intensity between approximately 6–10 μs after impact trigger, corresponding to an increased quantity of emitting vapor/plasma passing through the spectrometer slit during this time period. The relative intensity of the numerous spectral bands was also observed to vary according to the exposure delay of the camera, indicating that the different atomic/molecular species exhibit a varied temporal evolution during the vapor cloud expansion. Higher resolution spectra yielded additional emission lines/bands that provide further evidence of interaction between fragmented projectile material and the 1 mmHg atmosphere inside the target chamber. A comparison of the

  18. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    SciTech Connect

    Johnson, B. C.; Melosh, H. J.; Lisse, C. M.; Chen, C. H.; Wyatt, M. C.; Thebault, P.; Henning, W. G.; Gaidos, E.; Elkins-Tanton, L. T.; Bridges, J. C.; Morlok, A.

    2012-12-10

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10{sup 19} kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at {approx}6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that {approx}10{sup 47} molecules of SiO vapor are needed to explain an emission feature at {approx}8 {mu}m in the Spitzer IRS spectrum of HD 172555. We find that unless there are {approx}10{sup 48} atoms or 0.05 M{sub Circled-Plus} of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the {approx}8 {mu}m feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  19. A Self-consistent Model of the Circumstellar Debris Created by a Giant Hypervelocity Impact in the HD 172555 System

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Lisse, C. M.; Chen, C. H.; Melosh, H. J.; Wyatt, M. C.; Thebault, P.; Henning, W. G.; Gaidos, E.; Elkins-Tanton, L. T.; Bridges, J. C.; Morlok, A.

    2012-12-01

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 1019 kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at ~6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that ~1047 molecules of SiO vapor are needed to explain an emission feature at ~8 μm in the Spitzer IRS spectrum of HD 172555. We find that unless there are ~1048 atoms or 0.05 M ⊕ of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the ~8 μm feature can be emission from solid SiO, which naturally occurs in submicron silicate "smokes" created by quickly condensing vaporized silicate.

  20. Techniques for in situ collection and measurement of volatiles released during hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Heppner, R. A.; Niu, William; Maag, Carl R.

    1994-01-01

    The capability of the gas capture cell to collect particles and semivolatile species which were released during impact is examined. The proposed Comet Coma Sample Return (CCSR) payload contains a variety of instrumentation for characterizing and collecting cometary dust. In this suite of instruments the Gas Capture Cell (GCC) is unique in that it not only collects the vaporization products resulting from the dust particle impacts, but also provides chemical characterization information prior to return of the dust particles for analysis on Earth. The GCC provides near real-time characterization of the volatile species, such as low- and medium-molecular-weight organic compounds that evolve from dust particles on impact with metal targets. Instrument sensitivity is sufficient for analyzing the volatile impact products resulting from single, individual dust particles. This capability will enable characterization of near-pristine dust particles, including the CHON particles, to be performed at a level not previously possible. Its design concept, operation and performance are detailed.

  1. Propulsive effect of spacecraft propellant tank rupture following hypervelocity impact by a micrometeoroid

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Aaron, Kim M.

    1990-01-01

    The impulse due to propellant tank micrometeroid damage is estimated for the Galileo spacecraft. The modes of tank failure considered are tank burst, or rupture, and puncture, which results in a hole through which propellant escapes. Other factors relevant to this calculation include spacecraft geometry, propellant volume and properties, and available heat sources. Tank burst was found to result in a spacecraft Delta V of less than 5 m/s, while the net impulse due to puncture is less than 10,000 Newton-seconds.

  2. The shapes of fragments in hypervelocity impact experiments ranging from cratering to catastrophic disruption

    NASA Astrophysics Data System (ADS)

    Michikami, T.; Hagermann, A.; Kadokawa, T.; Yoshida, A.; Shimada, A.; Hasegawa, S.; Tsuchiyama, A.

    2015-12-01

    Laboratory impact experiments have found that the shapes of impact fragments as defined by axes a, b and c, these being the maximum dimensions of the fragment in three mutually orthogonal planes (a ≥ b ≥ c) are distributed around mean values of the axial ratios b/a ~0.7 and c/a ~0.5, i.e., corresponding to a : b: c in the simple proportion 2: √2: 1. The shape distributions of some boulders on asteroid Eros, the small- and fast-rotating asteroids (diameter < 200 m and rotation period < 1 h), and asteroids in young families, are similar to those of laboratory fragments in catastrophic disruption. However, the shapes of laboratory fragments were obtained from the experiments that resulted in catastrophic disruption, a process that is different from impact cratering. In order to systematically investigate the shapes of fragments in the range from impact cratering to catastrophic disruption, impact experiments for basalt targets 5 to 15 cm in size were performed. A total of 28 impact experiments were carried out by a spherical nylon projectile (diameter 7.14 mm) perpendicularly into the target surface at velocities of 1.6 to 7.0 km/s. More than 13,000 fragments with b ≥ 4 mm generated in the impact experiments were measured. In the experiments, the mean value of c/a in each impact decreases with decreasing impact energy per unit target mass. For instance, the mean value of c/a in an impact cratering event is nearly 0.2, which is less than that c/a in a catastrophic disruption (~0.5). To apply the experimental results to real collisions on asteroids, we investigated the shapes of 21 arbitrarily selected boulders (> 8 m) on asteroid Itokawa. The mean value of c/a of these boulders is 0.46, which is similar to the value for catastrophic disruption. This implies that the parent body of Itokawa could have experienced a catastrophic disruption.

  3. Damage areas due to impact craters on LDEF aluminum panels

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra R.; Atkinson, Dale R.; Allbrooks, Martha; Wagner, J. D.

    1992-01-01

    Because of its exposure time and total exposed surface area, the LDEF provides a unique opportunity to analyze the effects of the natural and man-made particle populations in low earth orbit (LEO). This study concentrated on collecting and analyzing measurements of impact craters from seven painted aluminum surfaces at different locations on the satellite. These data are being used to: (1) update the current theoretical micrometeoroid and debris models for LEO; (2) characterize the effects of the LEO micrometeoroid and debris environment of satellite components and designs; (3) help assess the probability of collision between spacecraft in LEO and already resident debris and the survivability of those spacecraft that must travel through, or reside in, LEO; and (4) help define and evaluate future debris mitigation and disposal methods. Measurements were collected from one aluminum experiment tray cover (Bay C-12), two aluminum grapple plates (Bays C-01, C-10), and four aluminum experiment sun-shields (Bay E-09), all of which were coated with thermal paint. These measurements were taken at the Facility for Optical Interpretation of Large Surfaces (FOILS) Lab at JSC. Virtually all features greater than 0.2 mm in diameter possessed a spall zone in which all of the paint was removed from the aluminum surface, and which varied in size from 2-5 crater diameters. The actual craters vary from central pits without raised rims to morphologies more typical of craters formed in aluminum under hypervelocity impact conditions for larger features. Most craters exhibit a shock zone that varies in size from approximately 1-20 crater diameters. In general, only the outermost layer of paint was affected by this impact-related phenomenon, with several impacts possessing ridge-like structures encircling the area in which this outer-most paint layer was removed. Overall, there were no noticeable penetrations or bulges on the underside of the trays. One tray from the E-09 bay exhibited a

  4. Modeling the fragmentation of hypervelocity impacts on a two wall shield

    NASA Astrophysics Data System (ADS)

    Miller, Joshua; Christiansen, Eric

    2013-06-01

    Two wall spacecraft shields are a mass efficient method for countering the risk of solid particle environments for systems operating in space. In this approach the threat encounters the first of two walls and shock wave compresses upon impact. The compression heats the materials so that upon subsequent release the materials spread out over a much larger region than the initial threat making it much more likely that a subsequent wall can arrest the impact energy. It is of great importance in system survivability assessments to accurately model this process and to develop models that reasonably describe a broad range of materials and impact conditions. To this end an experimental effort with spherical projectiles of a range of materials has been conducted to greater than 10 km/s and augmented to a much broader range of impact conditions by impact simulations. From this effort a modeling approach has been developed that captures this process for use in survivability assessments. The model and its anchoring data are discussed here.

  5. Shock wave properties of anorthosite and gabbro. [to model hypervelocity impact cratering on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.

    1985-01-01

    Huyoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from partial velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.

  6. Hypervelocity impact studies using a rotating mirror framing laser shadowgraph camera

    NASA Technical Reports Server (NTRS)

    Parker, Vance C.; Crews, Jeanne Lee

    1988-01-01

    The need to study the effects of the impact of micrometeorites and orbital debris on various space-based systems has brought together the technologies of several companies and individuals in order to provide a successful instrumentation package. A light gas gun was employed to accelerate small projectiles to speeds in excess of 7 km/sec. Their impact on various targets is being studied with the help of a specially designed continuous-access rotating-mirror framing camera. The camera provides 80 frames of data at up to 1 x 10 to the 6th frames/sec with exposure times of 20 nsec.

  7. Prediction of STS-107 Hypervelocity Flow Fields about the Shuttle Orbiter with Various Wing Leading Edge Damage

    NASA Technical Reports Server (NTRS)

    Pulsonetti, Maria V.; Thompson, Richard A.; Alter, Stephen J.

    2004-01-01

    Computations were performed for damaged configurations of the Shuttle Orbiter in support of the STS-107 Columbia accident investigation. Two configurations with missing wing leading-edge reinforced carbon-carbon (RCC) panels were evaluated at conditions just prior to the peak heating trajectory point. The initial configuration modeled the Orbiter with an approximate missing RCC panel 6 to determine whether this damage could result in anomalous temperatures measured during the STS-107 reentry. This missing RCC panel 6 computation was found to produce heating augmentation factors of 5 times the nominal heating rates on the side fuselage with lesser heat increases on the front of the OMS pod. This is consistent with the thermocouple and resistance temperature detector sensors from the STS-107 re-entry which observed off nominal high early in the re-entry trajectory. A second damaged configuration modeled the Orbiter with missing RCC panel 9 and included ingestion of the flow into the outboard RCC channel. This computation lowered the level (only 2 times nominal) and moved the location of the heating augmentation on the leeside fuselage relative to the missing RCC panel 6 configuration. The lesser heating augmentation for missing RCC panel 9 was confined near the wing fuselage juncture. Near nominal heating was predicted on the remainder of the side fuselage with some lower than nominal heating on the front surface of the OMS pod. These results for missing RCC panel 9 are consistent with data from the STS-107 re-entry where the heating augmentation was observed to move off the side fuselage and OMS pod sensors at later times in the trajectory. As this solution requires supersonic mass ingestion into the RCC channel, it is probably not an appropriate model prior to penetration of the flow through the spar into the wing structure. It may, however, be representative of the conditions at later times and could account for the movement of the heating signature on the side

  8. Hypervelocity impact flash for missile-defense kill assessment and engagement analysis : experiments on Z.

    SciTech Connect

    Thornhill, Tom Finley, III; Reinhart, William Dodd; Lawrence, Raymond Jeffery Jr.; Chhabildas, Lalit Chandra; Kelly, Daniel P.

    2005-07-01

    Kill assessment continues to be a major problem for the nation's missile defense program. A potential approach for addressing this issue involves spectral and temporal analysis of the short-time impact flash that occurs when a kill vehicle intercepts and engages a target missile. This can provide identification of the materials involved in the impact event, which will, in turn, yield the data necessary for target identification, engagement analysis, and kill assessment. This report describes the first phases of a project under which we are providing laboratory demonstrations of the feasibility and effectiveness of this approach. We are using two major Sandia facilities, the Z-Pinch accelerator, and the two- and three-stage gas guns at the Shock Thermodynamics and Applied Research (STAR) facility. We have looked at the spectral content of impact flash at velocities up to 25 km/s on the Z-Pinch machine to establish the capability for spectroscopy for these types of events, and are looking at similar experiments at velocities from 6 to 11 km/s on the gas guns to demonstrate a similar capability for a variety of research-oriented and applied materials. The present report describes only the work performed on the Z machine.

  9. Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.

    1975-01-01

    Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.

  10. Analysis of Regolith Simulant Ejecta Distributions from Normal Incident Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Suggs, Rob; Moser, Danielle E.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has established the Constellation Program. The Constellation Program has defined one of its many goals as long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013 'Meteoroid Environment Model Near Earth to Lunar Surface', was developed for the Apollo program in 1969 and contains the latest definition of the lunar ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powdered pumice and unconsolidated JSC-1A Lunar Mare Regolith simulant targets. Projectiles were accelerated to velocities between 2.45 and 5.18 km/s at normal incidence using the Ames Vertical Gun Range (AVGR). The ejected particles were detected by thin aluminum foil targets strategically placed around the impact site and angular ejecta distributions were determined. Assumptions were made to support the analysis which include; assuming ejecta spherical symmetry resulting from normal impact and all ejecta particles were of mean target particle size. This analysis produces a hemispherical flux density distribution of ejecta with sufficient velocity to penetrate the aluminum foil detectors.

  11. Comparison of Ejecta Distributions from Normal Incident Hypervelocity Impact on Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Scruggs, Rob; Moser, Danielle E.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) is progressing toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013, was developed for the Apollo program and is the latest definition of the ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powered pumice and unconsolidated JSC-1A Lunar Mare Regolith stimulant (JSC-1A) targets. The Ames Vertical Gun Range (AVGR) was used to accelerate projectiles to velocities in excess of 5 km/s and impact the targets at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the impact site and angular distributions were determined for ejecta. Comparison of ejecta angular distribution with previous works will be presented. A simplistic technique to characterize the ejected particles was formulated and improvements to this technique will be discussed for implementation in future tests.

  12. Influence of plasticity models upon the outcome of simulated hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Thomas, John N.

    1994-07-01

    This paper describes the results of numerical simulations of aluminum upon aluminum impacts which were performed with the CTH hydrocode to determine the effect plasticity formulations upon the final perforation size in the targets. The targets were 1 mm and 5 mm thick plates and the projectiles were 10 mm by 10 mm right circular cylinders. Both targets and projectiles were represented as 2024 aluminium alloy. The hydrocode simulations were run in a two-dimensional cylindrical geometry. Normal impacts at velocites between 5 and 15 km/s were simulated. Three isotropic yield stress models were explored in the simulations: an elastic-perfectly plastic model and the Johnson-Cook and Steinberg-Guinan-Lund viscoplastic models. The fracture behavior was modeled by a simple tensile pressure criterion. The simulations show that using the three strength models resulted in only minor differences in the final perforation diameter. The simulation results were used to construct an equation to predict the final hole size resulting from impacts on thin targets.

  13. Particle Size Distrbution in an Experimental Hypervelocity Impact on Dry Sandstone.

    NASA Astrophysics Data System (ADS)

    Buhl, Elmar; Poelchau, Michael H.; Deutsch, Alex; Kenkmann, Thomas; Dresen, Georg

    2013-04-01

    The particle size distribution (PSD) is a frequently used parameter to describe the deformation-induced fragmentation of fault rocks. It has been shown that resulting particle sizes may be described by a power law (fractal) size distribution: N(d) ~ dD where N(d) is the number of particles larger than diameter d, and D is the D-value. PSDs reported for impact deformation are still very few. D-values for natural and experimental impacts have been reported to range between 1.2-1.8 and 1.4-1.7, respectively. Here we show the systematic distribution of the PSD in the subsurface of an experimental impact crater. The investigated experiment was performed in the framework of the MEMIN project [1]. A 20 cm cube of quartz-rich sandstone (Seeberger Sandstein) was impacted by a 2.5 mm steel sphere at 4.8 km/s, producing a crater of 5.76 cm diameter and 11.0 mm depth [2]. For sample preparation the crater was impregnated with epoxy and the block was bisected. Thin sections were prepared from the crater sub-surface. Backscattered electron (BSE) micro-analysis was conducted by means of a Zeiss Leo 1525 Scanning Electron Microscope. A succession of 20 images (400x magnification) with increasing distance from the crater floor was analyzed. The image analysis software JMicrovision was used for automated object extraction. Area and perimeter of all detected particles were exported and used for PSD analysis. The obtained PSD were fit with a linear function in a log-log plot over at least one order of magnitude in diameter indicating that the PSD follows a power law relationship N(d) ~ dD. The distinct modes of deformation in the crater sub-surface [3] are closely linked to the fracture pattern and thus with the D-value. As expected, comminution was most effective closest to the crater floor. The highest D-value of 1.74 was found at a depth of 0.26-1.07 mm beneath the crater floor. Thus the largest fraction of fine material is situated in there. With growing distance the D-values drop

  14. Impact of Flight Enthalpy, Fuel Simulant, and Chemical Reactions on the Mixing Characteristics of Several Injectors at Hypervelocity Flow Conditions

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Baurle, Robert A.; Drummond, J. Philip

    2016-01-01

    conditions. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared to the values obtained from RAS under the true enthalpy conditions and using helium and hydrogen. Finally, the impact of combustion on mixing, often deemed small enough to neglect at hypervelocity conditions, is assessed by comparing the results obtained from the hydrogen-fueled reacting and non-reacting RAS. For reacting flows, in addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also considered. In all of the simulations, the incoming air Mach number and the fuel-to-air ratio are the same, while the total pressure, total enthalpy, and the fuel simulant vary depending on the case considered. It is found that under some conditions the "cold" flow experiments are a good approximation of the flight.

  15. A hypervelocity launcher for simulated large fragment space debris impacts at 10 km/s

    NASA Technical Reports Server (NTRS)

    Tullos, R. J.; Gray, W. M.; Mullin, S. A.; Cour-Palais, B. G.

    1989-01-01

    The background, design, and testing of two explosive launchers for simulating large fragment space debris impacts are presented. The objective was to develop a launcher capable of launching one gram aluminum fragments at velocities of 10 km/s. The two launchers developed are based on modified versions of an explosive shaped charge, common in many military weapons. One launcher design has yielded a stable fragment launch of approximately one gram of aluminum at 8.93 km/s velocity. The other design yielded velocities in excess of 10 km/s, but failed to produce a cohesive fragment launch. This work is ongoing, and future plans are given.

  16. Hypervelocity Impact Flash at 6, 11, and 25 KM/S

    NASA Astrophysics Data System (ADS)

    Lawrence, R. J.

    2005-07-01

    Impact-flash phenomenology has been known for many years, and is now being considered for missile-defense applications, in particular, remote diagnostics for kill assessment and target typing. To technically establish this capability, we have conducted a series of experiments at impact velocities of ˜6, ˜11, and ˜25 km/s. Two- and three-stage light-gas guns were used for the lower two velocities, and magnetically-driven flyers on the Sandia Z machine achieved the higher velocity. Spectrally- and time-resolved flash output addressed data reproducibility, material identification, and target configuration analysis. Usable data were obtained in the visible and infrared regions of the spectrum. Data from the Z shots extended for nearly 0.5 μs, and from the gas-guns usable reading times lasted for ˜100 μs. Standard atomic spectral databases were used to identify strong lines from all the principle materials used in the study. The data were unique to the individual materials over the wide range of velocities and conditions examined. The time-varying nature of the signals enabled correlation of differing spectra with multi-layer targets containing different materials in the separate layers. Integrating the records over wavelength helped to clarify those time variations. (*)Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Hypervelocity Impact Flash at 6, 11, and 25 KM/S

    NASA Astrophysics Data System (ADS)

    Lawrence, R. J.; Reinhart, W. D.; Chhabildas, L. C.; Thornhill, T. F.

    2006-07-01

    Impact-flash phenomenology has been known for decades, and is now being considered for missile-defense applications, in particular for remote engagement diagnostics. To technically establish this capability, we have conducted a series of experiments at impact velocities of ˜6, ˜11, and ˜25 km/s. Two- and three-stage light-gas guns were used for the lower two velocities, and magnetically-driven flyers on the Sandia Z machine achieved the higher velocity. Spectrally- and temporally-resolved flash output addressed data reproducibility, material identification, and target configuration analysis. Usable data were obtained at visible and infrared wavelengths. Standard atomic spectral databases were used to identify strong lines from all principal materials used in the study. The data were unique to the individual materials over the wide range of velocities and conditions examined. The time-varying nature of the signals offered the potential for correlation of the measurements with various aspects of the target configuration. Integrating the records over wavelength helped to clarify those time variations.

  18. Hypervelocity impact flash at 6, 11, and 25 km/s.

    SciTech Connect

    Reinhart, William Dodd; Thornhill, Tom Finley, III; Lawrence, Jeffrey; Chhabildas, Lalit Chandra

    2005-08-01

    Impact-flash phenomenology has been known for decades, and is now being considered for missile-defense applications, in particular for remote engagement diagnostics. To technically establish this capability, we have conducted a series of experiments at impact velocities of {approx}6, {approx}11, and {approx}25 km/s. Two- and three-stage light-gas guns were used for the lower two velocities, and magnetically-driven flyers on the Sandia Z machine achieved the higher velocity. Spectrally- and temporally-resolved flash output addressed data reproducibility, material identification, and target configuration analysis. Usable data were obtained at visible and infrared wavelengths. Standard atomic spectral databases were used to identify strong lines from all principal materials used in the study. The data were unique to the individual materials over the wide range of velocities and conditions examined. The time-varying nature of the signals offered the potential for correlation of the measurements with various aspects of the target configuration. Integrating the records over wavelength helped to clarify those time variations.

  19. Measurement of Primary Ejecta From Normal Incident Hypervelocity Impact on Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Moser, Danielle; Swift, Wesley

    2007-01-01

    The National Aeronautics and Space Administration (NASA) continues to make progress toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment. A subject for further definition is the lunar primary ejecta environment. The document NASA SP-8013 was developed for the Apollo program and is the latest definition of the primary ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar primary ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface primary ejecta environment. This paper reports the results of experiments on projectile impact into pumice targets, simulating lunar regolith. The Ames Vertical Gun Range (AVGR) was used to accelerate spherical Pyrex projectiles of 0.29g to velocities ranging between 2.5 km/s and 5.18 km/s. Impact on the pumice target occurred at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the pumice target in a 0.5 Torr vacuum. A simplistic technique to characterize the ejected particles was formulated. Improvements to this technique will be discussed for implementation in future tests.

  20. Modeling of measured target pressure profiles in three hypervelocity impact experiments

    SciTech Connect

    Gerassimenko, M

    2000-10-11

    A 24 g aluminum sphere was shot at a sparse array of cylinders with nominal initial projectile velocity of 4 and 5 km/s. Pressure profiles were measured with cased carbon resistor gages at two locations in a projectile impacted water filled cylinder and two of its neighbors on three shots. The pressure maxima were in the 1-13 kbars range. The experiments are modeled with the ALE3D code and several techniques are used to concentrate zoning at places of interest. There is excellent agreement between the measured and calculated pressure profiles for two shots and good agreement for the third. Comparison of the calculated pressure profiles with those from more refined calculations for two shots suggest that we are near convergence with respect to zone size.

  1. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures

    NASA Astrophysics Data System (ADS)

    Ryan, S.; Schaefer, F.; Destefanis, R.; Lambert, M.

    During a recent experimental test campaign performed in the framework of ESA Contract 16721, the ballistic performance of multiple satellite-representative Carbon Fibre Reinforced Plastic (CFRP)/Aluminium honeycomb sandwich panel structural configurations (GOCE, Radarsat-2, Herschel/Planck, BeppoSax) was investigated using the two-stage light-gas guns at EMI. The experimental results were used to develop and validate a new empirical Ballistic Limit Equation (BLE), which was derived from an existing Whipple-shield BLE. This new BLE provided a good level of accuracy in predicting the ballistic performance of stand-alone sandwich panel structures. Additionally, the equation is capable of predicting the ballistic limit of a thin Al plate located at a standoff behind the sandwich panel structure. This thin plate is the representative of internal satellite systems, e.g. an Al electronic box cover, a wall of a metallic vessel, etc. Good agreement was achieved with both the experimental test campaign results and additional test data from the literature for the vast majority of set-ups investigated. For some experiments, the ballistic limit was conservatively predicted, a result attributed to shortcomings in correctly accounting for the presence of high surface density multi-layer insulation on the outer facesheet. Four existing BLEs commonly applied for application with stand-alone sandwich panels were reviewed using the new impact test data. It was found that a number of these common approaches provided non-conservative predictions for sandwich panels with CFRP facesheets.

  2. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils.

    SciTech Connect

    Graham, G A; Teslich, N; Dai, Z R; Bradley, J P; Kearsley, A T; Horz, F

    2005-11-04

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 {micro}m thick) that are wrapped around the sample tray assembly. Soda lime spheres ({approx}49 {micro}m in diameter) have been accelerated with a Light Gas Gun into flight-grade Al foils at 6.35 km s{sup -1} to simulate the capture of cometary debris. The experimental craters have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover ''pure'' melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  3. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Teslich, N.; Dai, Z. R.; Bradley, J. P.; Kearsley, A. T.; Horz, F.

    2006-01-01

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 micrometers thick) that are wrapped around the sample tray assembly. Soda lime spheres (approximately 49 m in diameter) have been accelerated with a light-gas-gun into flight-grade Al foils at 6.35 km s(sup -1) to simulate the potential capture of cometary debris. The preserved crater penetrations have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact penetration. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover pure melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  4. Impact damage characterization of composite materials

    NASA Astrophysics Data System (ADS)

    Korkmaz, Yesim

    2002-04-01

    Impact damage in structural composites depends on their material properties, component geometry and a variety of impact parameters and experimental determination of their detailed characteristics requires prohibitively large test matrices. The effects of some of these parameters can be understood through simulation models that complement experimental results. In this dissertation a series of finite element models are developed using MSC/NASTRAN for calculating contact laws and progressive damage (e.g., matrix cracking, delamination and fiber break) in graphite/epoxy laminates subject to low and intermediate velocity impact. The validity of the computational models is supported by theoretical calculations involving idealized cases. The effects of laminate geometry as well as the impact parameters on the nature and degree of damage are studied. The global force-time and displacement-time responses of the laminate during impact are also studied. The results of this research can be used for damage growth prediction in composite structural components subject to impact loads.

  5. Table-top Generation and Spectroscopic Study of ~10 TPa High-Energy Density Materials with C60 Hypervelocity (v ~ 100 km/s) Impact

    NASA Astrophysics Data System (ADS)

    Bae, Young

    2013-06-01

    Intense bursts of soft x-rays were discovered by Bae et al. in hypervelocity (v ~ 100 km/s) impact of bio and water nanoparticles at the Brookhaven National Lab (BNL) in 1994. In the experiment, the nanoparticles were directly impacted on and detected by Si particle detectors that also detected the soft x-rays. Energy deposition measurements through thin films revealed that the impact generated pressures were ~10 TPa, and the photon energies in the range of 75-100 eV for Si targets. The conversion efficiency from the kinetic energy to the radiation energy was unexpectedly high, ~38%, which was attributed to Dicke Superradiance of collective quantum states in High-Energy Density Materials (HEDM), Metastable Innershell Molecular States (MIMS). This talk presents recent experimental results obtained in a table-top apparatus completely different from and orders of magnitude smaller than that at BNL. In the new setup, hypervelocity (v 100 km/s) C60+ ions impacted on Al targets, and the impact generated soft x-rays were detected off-axis and analyzed using three Si photodiode detectors with selective energy response curves. The photon energy was determined to be ~70 eV with the kinetic-energy to photon-energy conversion efficiency of ~35% in confirmation of the results by Bae et al. at BNL. The present results demonstrate a new way of generation and spectroscopic study of HEDM with pressures exceeding 10 TPa, and show the pathway to scaling up the soft x-ray generation method for a wide range of applications from lithography to inertial fusion. This work was supported by DTRA under the contract HDTRA1-12-C-0094.

  6. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris

    SciTech Connect

    Kawai, Nobuaki; Tsurui, Kenji; Hasegawa, Sunao; Sato, Eiichi

    2010-11-15

    A single microparticle launching method is described to simulate the hypervelocity impacts of micrometeoroids and microdebris on space structures at the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency. A microparticle placed in a sabot with slits is accelerated using a rifled two-stage light-gas gun. The centrifugal force provided by the rifling in the launch tube separates the sabot. The sabot-separation distance and the impact-point deviation are strongly affected by the combination of the sabot diameter and the bore diameter, and by the projectile diameter. Using this method, spherical projectiles of 1.0-0.1 mm diameter were launched at up to 7 km/s.

  7. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris.

    PubMed

    Kawai, Nobuaki; Tsurui, Kenji; Hasegawa, Sunao; Sato, Eiichi

    2010-11-01

    A single microparticle launching method is described to simulate the hypervelocity impacts of micrometeoroids and microdebris on space structures at the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency. A microparticle placed in a sabot with slits is accelerated using a rifled two-stage light-gas gun. The centrifugal force provided by the rifling in the launch tube separates the sabot. The sabot-separation distance and the impact-point deviation are strongly affected by the combination of the sabot diameter and the bore diameter, and by the projectile diameter. Using this method, spherical projectiles of 1.0-0.1 mm diameter were launched at up to 7 km/s. PMID:21133499

  8. Structural Damage Prediction and Analysis for Hypervelocity Impact. BUMPERII Suggestion and Problem Reports

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the course of preparing the SD_SURF space debris analysis code, several problems and possibilities for improvement of the BUMPERII code were documented and sent to MSFC. These suggestions and problem reports are included here as a part of the contract final report. This includes reducing BUMPERII memory requirements, compiling problems with BUMPERII, FORTRAN-lint analysis of BUMPERII, and error in function PRV in BUMPERII.

  9. Structural Damage Prediction and Analysis for Hypervelocity Impact. UDRI Light Gas Gun Test Data Summaries

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The HEX bumper was originally developed for use with the Defensive Shields Demonstration (DSD) Program. The University of Dayton Research Institute was a subcontractor to the Martin Marietta Astronautics Group in Denver Colorado at the time the HEX bumper was designed for use on the DSD Program. The design originated at the University and was essentially made available to interested parties. All HEX bumpers used in the DSD Program were fabricated at the University by rolling sheet stock through a special set of rollers. Two pieces of 3003-H14 aluminum sheet were rolled to produce the bumpers evaluated in Shots 4-1302 and 4-1304. A brief summary of the results of these tests is given in below. Contact prints of the multiple-exposure, orthogonal view radiographs of the debris clouds produced by the tests are attached. A sketch of the HEX bumper design is also attached.

  10. NASA workshop on impact damage to composites

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1991-01-01

    A compilation of slides presented at the NASA Workshop on Impact Damage to Composites held on March 19 and 20, 1991, at the Langley Research Center, Hampton, Virginia is given. The objective of the workshop was to review technology for evaluating impact damage tolerance of composite structures and identify deficiencies. Research, development, design methods, and design criteria were addressed. Actions to eliminate technology deficiencies were developed. A list of those actions and a list of attendees are also included.

  11. Explosively driven hypervelocity launcher: Second-stage augmentation techniques

    NASA Technical Reports Server (NTRS)

    Baum, D. W.

    1973-01-01

    The results are described of a continuing study aimed at developing a two-stage explosively driven hypervelocity launcher capable of achieving projectile velocities between 15 and 20 km/sec. The testing and evaluation of a new cylindrical impact technique for collapsing the barrel of two-stage launcher are reported. Previous two-stage launchers have been limited in ultimate performance by incomplete barrel collapse behind the projectile. The cylindrical impact technique explosively collapses a steel tube concentric with and surrounding the barrel of the launcher. The impact of the tube on the barrel produces extremely high stresses which cause the barrel to collapse. The collapse rate can be adjusted by appropriate variation of the explosive charge and tubing parameters. Launcher experiments demonstrated that the technique did achieve complete barrel collapse and form a second-stage piston. However, jetting occurred in the barrel collapse process and was responsible for severe projectile damage.

  12. Impact damage of composite plates

    NASA Technical Reports Server (NTRS)

    Lal, K. M.; Goglia, G. L.

    1983-01-01

    A simple model to study low velocity transverse impact of thin plates made of fiber-reinforced composite material, in particular T300/5208 graphite-epoxy was discussed. This model predicts the coefficient of restitution, which is a measure of the energy absorbed by the target during an impact event. The model is constructed on the assumption that the plate is inextensible in the fiber direction and that the material is incompressible in the z-direction. Such a plate essentially deforms by shear, hence this model neglects bending deformations of the plate. The coefficient of restitution is predicted to increase with large interlaminar shear strength and low transverse shear modulus of the laminate. Predictions are compared with the test results of impacted circular and rectangular clamped plates. Experimentally measured values of the coefficient of restitution are found to agree with the predicted values within a reasonable error.

  13. Impact damage in filament wound composite bottles

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.

    1993-01-01

    Increasingly, composite materials are being used in advanced structural applications because of the significant weight savings they offer when compared to more traditional engineering materials. The higher cost of composites must be offset by the increased performance that results from reduced structural weight if these new materials are to be used effectively. At present, there is considerable interest in fabricating solid rocket motor cases out of composite materials, and capitalizing on the reduced structural weight to increase rocket performance. However, one of the difficulties that arises when composite materials are used is that composites can develop significant amounts of internal damage during low velocity impacts. Such low velocity impacts may be encountered in routine handling of a structural component like a rocket motor case. The ability to assess the reduction in structural integrity of composite motor cases that experience accidental impacts is essential if composite rocket motor cases are to be certified for manned flight. While experimental studies of the post-impact performance of filament wound composite motor cases haven been proven performed (2,3), scaling impact data from small specimens to full scale structures has proven difficult. If such a scaling methodology is to be achieved, an increased understanding of the damage processes which influence residual strength is required. The study described herein was part of an ongoing investigation of damage development and reduction of tensile strength in filament wound composites subjected to low velocity impacts. The present study, which focused on documenting the damage that develops in filament wound composites as a result of such impacts, included two distinct tasks. The first task was to experimentally assess impact damage in small, filament wound pressure bottles using x-ray radiography. The second task was to study the feasibility of using digital image processing techniques to assist in

  14. A modular high precision digital system for hypervelocity projectile performance measurements

    NASA Astrophysics Data System (ADS)

    Nagarkar, Vivek V.; Singh, Bipin; Miller, Stuart; Campbell, Larry; Bishel, Ron; Rushing, Rick

    2008-04-01

    The performance measurement of hypervelocity projectiles in flight is critical in ensuring proper projectile operation, for designing new long-range missile systems with improved accuracy, and for assessing damage to the target upon impact to determine the projectile's lethality. We are developing a modular, low cost, digital X-ray imaging system to measure hypervelocity projectile parameters with high precision and to almost instantaneously map its trajectory in 3D space to compute its pitch, yaw, displacement from its path, and velocity. The preliminary data suggest that this system can render an accuracy of 0.25° in measuring pitch and yaw, an accuracy of 0.03" in estimating displacement from the centerline, and a precision of +/-0.0001% in measuring velocity, which is well beyond the capability of any existing system.

  15. Impact damage in aircraft composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Mordasky, Matthew D.

    An experimental study was conducted to develop an improved understanding of the damage caused by runway debris and environmental threats on aircraft structures. The velocities of impacts for stationary aircraft and aircraft under landing and takeoff speeds was investigated. The impact damage by concrete, asphalt, aluminum, hail and rubber sphere projectiles was explored in detail. Additionally, a kinetic energy and momentum experimental study was performed to look at the nature of the impacts in more detail. A method for recording the contact force history of the impact by an instrumented projectile was developed and tested. The sandwich composite investigated was an IM7-8552 unidirectional prepreg adhered to a NOMEXRTM core with an FM300K film adhesive. Impact experiments were conducted with a gas gun built in-house specifically for delivering projectiles to a sandwich composite target in this specic velocity regime (10--140 m/s). The effect on the impact damage by the projectile was investigated by ultrasonic C-scan, high speed camera and scanning electron and optical microscopy. Ultrasonic C-scans revealed the full extent of damage caused by each projectile, while the high speed camera enabled precise projectile velocity measurements that were used for striking velocity, kinetic energy and momentum analyses. Scanning electron and optical images revealed specific features of the panel failure and manufacturing artifacts within the lamina and honeycomb core. The damage of the panels by different projectiles was found to have a similar damage area for equivalent energy levels, except for rubber which had a damage area that increased greatly with striking velocity. Further investigation was taken by kinetic energy and momentum based comparisons of 19 mm diameter stainless steel sphere projectiles in order to examine the dominating damage mechanisms. The sandwich targets were struck by acrylic, aluminum, alumina, stainless steel and tungsten carbide spheres of the

  16. Sharp Hypervelocity Aerodynamic Research Probe

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Kolodziej, Paul; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    The objective of this flight demonstration is to deploy a slender-body hypervelocity aerodynamic research probe (SHARP) from an orbiting platform using a tether, deorbit and fly it along its aerothermal performance constraint, and recover it intact in mid-air. To accomplish this objective, two flight demonstrations are proposed. The first flight uses a blunt-body, tethered reentry experiment vehicle (TREV) to prove out tethered deployment technology for accurate entries, a complete SHARP electronics suite, and a new soft mid-air helicopter recovery technique. The second flight takes advantage of this launch and recovery capability to demonstrate revolutionary sharp body concepts for hypervelocity vehicles, enabled by new Ultra-High Temperature Ceramics (UHTCs) recently developed by Ames Research Center. Successful demonstration of sharp body hypersonic vehicle technologies could have radical impact on space flight capabilities, including: enabling global reentry cross range capability from Station, eliminating reentry communications blackout, and allowing new highly efficient launch systems incorporating air breathing propulsion and zeroth staging.

  17. Impact damage of a graphite/PEEK

    SciTech Connect

    Demuts, E.

    1994-12-31

    Low-velocity non-penetrating impact has been applied to graphite polyetheretherketone (AS4/APC-2) laminates in accordance with the USAF guidelines for designing damage tolerant primary structures. The extent of delaminations and dent depths for two lay ups and five thicknesses at room temperature and ambient moisture conditions have been determined. Based on these findings as well as those presented elsewhere it may be concluded that the ``softer`` lay up (40/50/10), up to about 75-ply thickness, is more damage tolerant than the ``harder`` lay up (60/30/10) because within this thickness range the ``softer`` lay up displays smaller dent depths, smaller delaminated areas and higher post-impost compressive strength (PICS). For laminates thicker than 75 plies, the relative situation in delamination extent and PICS is reversed, i.e. the ``harder`` lay up is more damage tolerant than the ``softer`` one. The test data obtained in this experimental investigation provide the amount of initial damage to be assumed for a damage tolerant design of USAF primary structures made out of AS4/APC-2 graphite/PEEK. In addition, 9 these data may serve to validate the predictive capability of appropriate analytic models.

  18. Cosmology with hypervelocity stars

    SciTech Connect

    Loeb, Abraham

    2011-04-01

    In the standard cosmological model, the merger remnant of the Milky Way and Andromeda (Milkomeda) will be the only galaxy remaining within our event horizon once the Universe has aged by another factor of ten, ∼ 10{sup 11} years after the Big Bang. After that time, the only extragalactic sources of light in the observable cosmic volume will be hypervelocity stars being ejected continuously from Milkomeda. Spectroscopic detection of the velocity-distance relation or the evolution in the Doppler shifts of these stars will allow a precise measurement of the vacuum mass density as well as the local matter distribution. Already in the near future, the next generation of large telescopes will allow photometric detection of individual stars out to the edge of the Local Group, and may target the ∼ 10{sup 5±1} hypervelocity stars that originated in it as cosmological tracers.

  19. Damage modeling for Taylor impact simulations

    NASA Astrophysics Data System (ADS)

    Anderson, C. E., Jr.; Chocron, I. S.; Nicholls, A. E.

    2006-08-01

    G. I. Taylor showed that dynamic material properties could be deduced from the impact of a projectile against a rigid boundary. The Taylor anvil test became very useful with the advent of numerical simulations and has been used to infer and/or to validate material constitutive constants. A new experimental facility has been developed to conduct Taylor anvil impacts to support validation of constitutive constants used in simulations. Typically, numerical simulations are conducted assuming 2-D cylindrical symmetry, but such computations cannot hope to capture the damage observed in higher velocity experiments. A computational study was initiated to examine the ability to simulate damage and subsequent deformation of the Taylor specimens. Three-dimensional simulations, using the Johnson-Cook damage model, were conducted with the nonlinear Eulerian wavecode CTH. The results of the simulations are compared to experimental deformations of 6061-T6 aluminum specimens as a function of impact velocity, and conclusions regarding the ability to simulate fracture and reproduce the observed deformations are summarized.

  20. Application of nondestructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments

    NASA Astrophysics Data System (ADS)

    Moser, Dorothee; Poelchau, Michael H.; Stark, Florian; Grosse, Christian

    2013-01-01

    Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) research group, the damage zones underneath two experimentally produced impact craters in sandstone targets were investigated using several nondestructive testing (NDT) methods. The 20 × 20 × 20 cm sandstones were impacted by steel projectiles with a radius of 1.25 mm at approximately 5 km s-1, resulting in craters with approximately 6 cm diameter and approximately 1 cm depth. Ultrasound (US) tomography and vibrational analysis were applied before and after the impact experiments to characterize the damage zone, and micro-computer tomography (μ-CT) measurements were performed to visualize subsurface fractures. The newly obtained experimental data can help to quantify the extent of the damage zone, which extends to about 8 cm depth in the target. The impacted sandstone shows a local p-wave reduction of 18% below the crater floor, and a general reduction in elastic moduli by between approximately 9 and approximately 18%, depending on the type of elastic modulus. The results contribute to a better empirical and theoretical understanding of hypervelocity events and simulations of cratering processes.

  1. Investigation of Orbital Debris Impacts on Shuttle Radiator Panels

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Kerr, Justin H.; Lyons, Frankel; Herrin, Jason H.; Ryan, Shannon J.

    2009-01-01

    This paper documents the data collected from two hypervelocity micro-meteoroid orbital debris (MMOD) impact events where the shuttle payload bay door radiator sandwich panel was completely perforated. Scanning Electron Microscope/Energy-Dispersive x-ray Spectroscopy (SEM/EDS) analysis of impact residue provided evidence to identify the source of each impact. Impact site features that indicate projectile directionality are discussed, along with hypervelocity impact testing on representative samples conducted to simulate the impact event. The paper provides results of a study of impact risks for the size of particles that caused the MMOD damage and the regions of the orbiter vehicle that would be vulnerable to an equivalent projectile

  2. Damage from the impacts of small asteroids

    SciTech Connect

    Hills, J.G.; Goda, M.P.

    1996-08-15

    The fragmentation of a small asteroid in the atmosphere greatly increases its aerodynamic drag and rate of energy dissipation. The differential atmospheric pressure across it disperses its fragments at a velocity that increases with atmospheric density and impact velocity and decreases with asteroid density. Extending our previous work, we use a spherical atmosphere and a fitted curve to its density profile to find the damage done by an asteroid entering the atmosphere at various zenith angles. In previous work we estimated the blast damage by scaling from data on nuclear explosions in the atmosphere during the 1940s, 1950s and early 1960s. This underestimated the blast from asteroid impacts because nuclear fireballs radiate away a larger fraction of their energy than do meteors, so less of their energy goes into the blast wave. We have redone the calculations to allow for this effect. We have found the area of destruction around the impact point in which the over pressure in the blast wave exceeds 4 pounds/inch{sup 2} = 2.8 X 10{sup 5} dynes/cm{sup 3}, which is enough to knock over trees and destroy buildings. About every 100 years an impactor should blast an area of 300 km{sup 2} or more somewhere on the land area of Earth. The optical flux from asteroids 60 meters or more in diameter is enough to ignite pine forests. However, the blast from an impacting asteroid goes beyond the radius within which the fire starts. It tends to blow out the fire, so it is likely that the impact will char the forest (as at Tunguska), but it will not produce a sustained fire. Because of the atmosphere, asteroids less than about 200 m in diameter are not effective in producing craters and earthquakes. They are also not effective in producing water waves and tsunami in ocean impacts. Tsunami is probably the most devastating type of damage for asteroids that are between 200 meters and 1 km in diameter.

  3. Survival of organic materials in hypervelocity impacts of ice on sand, ice, and water in the laboratory.

    PubMed

    Burchell, Mark J; Bowden, Stephen A; Cole, Michael; Price, Mark C; Parnell, John

    2014-06-01

    The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ~2 and ~4 km s(-1) at targets that included water ice, water, and sand. This involved shock pressures in the range of 2-12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s(-1) and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies. PMID:24901745

  4. Survival of Organic Materials in Hypervelocity Impacts of Ice on Sand, Ice, and Water in the Laboratory

    PubMed Central

    Bowden, Stephen A.; Cole, Michael; Parnell, John

    2014-01-01

    Abstract The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ∼2 and ∼4 km s−1 at targets that included water ice, water, and sand. This involved shock pressures in the range of 2–12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s−1 and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies. Key Words: Organic—Hypervelocity—Shock—Biomarkers. Astrobiology 14, 473–485. PMID:24901745

  5. Experimental hypervelocity impacts: Implication for the analysis of material retrieved after exposure to space environment. Part I. Impacts on aluminium targets

    NASA Astrophysics Data System (ADS)

    Mandeville, Jean-Claude; Perrin, Jean-Marie; Vidal, Loïc

    2012-12-01

    During the last three decades a wide variety of surfaces have been brought back to Earth after being exposed to space environment. The impact features found on these surfaces are used to evaluate the damages caused to spacecraft and can give clues to the characteristics of the orbital debris and meteoroids that created them. In order to derive more precisely the particle parameters and to improve the analysis of projectile remnants, we have performed an extensive analysis of craters caused by the impact of high velocity particles on thick ductile targets, using a micro-particle accelerator. We show that from the geometry of the craters and from the analysis of the remnants it is possible to derive the main characteristics of the projectiles. In particular, using up-to-date instrumentation, scanning electron microscope (SEM) and Energy Dispersive X-ray (EDX) spectrometer, we found that even small residues inside craters can be identified. However, this study shows that a velocity resolution better than 1 km/s would be appropriate to obtain a fair calibration of the impact processes on a ductile target. This would allow to decipher with precision impact features on ductile surfaces exposed to space environment.

  6. A Hypervelocity Experimental Research Database (HERD): Support for the Wright Laboratory Armament Directorate Code Validation Program (COVAL)

    SciTech Connect

    Mullin, S.A.; Anderson, C.E. Jr.; Hertel, E.S. Jr.; Hunt, R.D.

    1994-10-01

    The Hypervelocity Experimental Research Database (HERD) described in this paper was developed to aid researchers with code validation for impacts that occur at velocities faster than the testable regime. Codes of concern include both hydrocodes and fast-running analytical or semi-empirical models used to predict the impact phenomenology and damage that results to projectiles and targets. There are several well documented experimental programs that can serve as benchmarks for code validation; these are identified and described. Recommendations for further experimentation (a canonical problem) to provide validation data are also discussed.

  7. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2006 Geminids, 2007 Lyrids, and 2008 Taurids

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; McNamara, H.

    2010-01-01

    Since early 2006 the Meteoroid Environment Office at NASA's Marshall Space Flight Center has been consistently monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 11 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-900 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated.

  8. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2006 Geminids, 2007 Lyrids, and 2008 Taurids

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; Koehler, H. M.

    2010-01-01

    Since early 2006 the Meteoroid Environment Office (MEO) at NASA s Marshall Space Flight Center has been consistently monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated.

  9. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2006 Geminids, 2007 Lyrids, and 2008 Taurids

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; Koehler, H. M.

    2011-01-01

    Since early 2006, NASA s Marshall Space Flight Center has been routinely monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000a, b) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated from the observed flash intensity.

  10. Experimental investigations into composite fuselage impact damage resistance and post-impact compression behavior

    NASA Technical Reports Server (NTRS)

    Dost, E. F.; Finn, S. R.; Stevens, J. J.; Lin, K. Y.; Fitch, C. E.

    1992-01-01

    Impact damage resistance and residual strength of laminated composite transport aircraft fuselage structure was studied experimentally. Techniques to quantify impact damage discretely and non-discretely are described. Experimental techniques to three-dimensionally map matrix damage and determine the sublaminate structure are illustrated. Impact damage was also quantified non-discretely, using characteristics of flexural wave propagation. Strain distributions in compressively loaded impact damaged laminates were experimentally measured.

  11. Micromechanical Modeling of Impact Damage Mechanisms in Unidirectional Composite Laminates

    NASA Astrophysics Data System (ADS)

    Meng, Qinghua; Wang, Zhenqing

    2016-05-01

    Composite laminates are susceptible to the transverse impact loads resulting in significant damage such as matrix cracking, fiber breakage and delamination. In this paper, a micromechanical model is developed to predict the impact damage of composite laminates based on microstructure and various failure models of laminates. The fiber and matrix are represented by the isotropic and elastic-plastic solid, and their impact failure behaviors are modeled based on shear damage model. The delaminaton failure is modeling by the interface element controlled by cohesive damage model. Impact damage mechanisms of laminate are analyzed by using the micromechanical model proposed. In addition, the effects of impact energy and laminated type on impact damage behavior of laminates are investigated. Due to the damage of the surrounding matrix near the impact point caused by the fiber deformation, the surface damage area of laminate is larger than the area of ​​impact projectile. The shape of the damage area is roughly rectangle or elliptical with the major axis extending parallel to the fiber direction in the surface layer of laminate. The alternating laminated type with two fiber directions is more propitious to improve the impact resistance of laminates.

  12. Large meteoroid's impact damage: review of available impact hazard simulators

    NASA Astrophysics Data System (ADS)

    Moreno-Ibáñez, M.; Gritsevich, M.; Trigo-Rodríguez, J. M.

    2016-01-01

    The damage caused by meter-sized meteoroids encountering the Earth is expected to be severe. Meteor-sized objects in heliocentric orbits can release energies higher than 108 J either in the upper atmosphere through an energetic airblast or, if reaching the surface, their impact may create a crater, provoke an earthquake or start up a tsunami. A limited variety of cases has been observed in the recent past (e.g. Tunguska, Carancas or Chelyabinsk). Hence, our knowledge has to be constrained with the help of theoretical studies and numerical simulations. There are several simulation programs which aim to forecast the impact consequences of such events. We have tested them using the recent case of the Chelyabinsk superbolide. Particularly, Chelyabinsk belongs to the ten to hundred meter-sized objects which constitute the main source of risk to Earth given the current difficulty in detecting them in advance. Furthermore, it was a detailed documented case, thus allowing us to properly check the accuracy of the studied simulators. As we present, these open simulators provide a first approximation of the impact consequences. However, all of them fail to accurately determine the caused damage. We explain the observed discrepancies between the observed and simulated consequences with the following consideration. The large amount of unknown properties of the potential impacting meteoroid, the atmospheric conditions, the flight dynamics and the uncertainty in the impact point itself hinder any modelling task. This difficulty can be partially overcome by reducing the number of unknowns using dimensional analysis and scaling laws. Despite the description of physical processes associated with atmospheric entry could be still further improved, we conclude that such approach would significantly improve the efficiency of the simulators.

  13. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested.

    PubMed

    Horneck, Gerda; Stöffler, Dieter; Ott, Sieglinde; Hornemann, Ulrich; Cockell, Charles S; Moeller, Ralf; Meyer, Cornelia; de Vera, Jean-Pierre; Fritz, Jörg; Schade, Sara; Artemieva, Natalia A

    2008-02-01

    The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5-50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5-10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms. PMID:18237257

  14. Space Weathering of airless bodies in the Solar System - Combining hypervelocity dust impacts with energetic irradiation experiments

    NASA Astrophysics Data System (ADS)

    Fiege, K.; Bennett, C.; Guglielmino, M.; Orlando, T. M.; Trieloff, M.; Srama, R.

    2015-12-01

    The chemical and mineralogical characterization of meteorites and their parent asteroids provides us with information about the processes and conditions during the formation of the inner Solar System. However, linking meteorites to their parent bodies is problematic. Astronomical observations aim to reconstruct the surface properties of these bodies primarily by visible and infrared spectra, but space weathering severely modifies the optical, compositional and physical properties of thin surface layers and thus precludes proper identification of chemistry and mineralogy. The effects of space weathering have been experimentally studied mainly with respect to ion bombardment and sputtering. Other studies aimed to simulate the influence of micrometeoroid bombardment by using laser ablation techniques. However, there is sufficient evidence that laser ablation does not realistically lead to the same effects as produced during real micrometeorite impacts. We performed micrometeorite bombardment using a 2MV dust accelerator at the Institute for Space Systems at University of Stuttgart, Germany, capable of generating impact speeds up to 100 km s-1. These results are combined with energetic irradiation experiments at the Electron and Photon Induced Chemistry on Surfaces (EPICS) laboratory at Georgia Institute of Technology, USA. By simulating highly realistic irradiation conditions, we are able to investigate the processes of particle and solar wind irradiation on solid planetary surfaces and study the formation of e.g., nanophase iron in minerals, the effects on hydrous minerals regarding their volatile budgets, or possible OH-formation in nominally anhydrous minerals and relate these to their optical properties. Using a variety of minerals, this work aims to contribute to a better understanding of the general alteration mechanisms in space environments in dependence of weathering agent and available material. We here present the results of initial comparison analysis and

  15. Characterization of damage modes in impacted thermoset and thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Srinivasan, K.; Jackson, W. C.; Smith, B. T.; Hinkley, J. A.

    1992-01-01

    Composite materials remain extremely vulnerable to out-of-plane impact loads, which may lead to severe losses in strength and stiffness. Impact induced damage is often a complex mixture of transverse cracks, delaminations and fiber failures. An experimental investigation was undertaken to quantify damage tolerance and resistance in composite materials impacted using the drop-weight method. Tests were conducted on laminates of several different carbon-fiber composite systems such as epoxies, modified epoxies, and amorphous and semicrystalline thermoplastics. In this paper, impacted composite specimens have been examined using destructive and nondestructive techniques to establish the characteristic damage states. Specifically, optical microscopy, ultrasonic and scanning electron microscopy techniques have been used to identify impact induced damage mechanisms. Damage propagation during post impact compression was also studied.

  16. Prediction of residual strength of impact damaged aerospace composite structures

    SciTech Connect

    Garg, A.C.

    1993-12-31

    The importance of composites for aerospace structures is well known and therefore its increased use is being made for such structural components. However, these structures may be damaged as a result of various causes. One of the important causes is the impact damage either during manufacture or service. The amount of damage by impact created in the structure depends on several parameters such as impactor mass and velocity (impact energy), the structure material and support conditions. Since the magnitude of damage depends on impact energy, the residual strength may be expressed as a function of impact energy. Using a three parametric approach, a model is proposed to predict the residual strength behavior of impact damaged structure. The predicted behavior is shown to compare favorably with the available test data.

  17. The intact capture of hypervelocity dust particles using underdense foams

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Borg, J.; Tanner, William G.; Stevenson, T. J.; Bibring, J.-P.

    1994-01-01

    The impact of a hypervelocity projectile (greater than 3 km/s) is a process that subjects both the impactor and the impacted material to a large transient pressure distribution. The resultant stresses cause a large degree of fragmentation, melting, vaporization, and ionization (for normal densities). The pressure regime magnitude, however, is directly related to the density relationship between the projectile and target materials. As a consequence, a high-density impactor on a low-density target will experience the lowest level of damage. Historically, there have been three different approaches toward achieving the lowest possible target density. The first employs a projectile impinging on a foil or film of moderate density, but whose thickness is much less than the particle diameter. This results in the particle experiencing a pressure transient with both a short duration and a greatly reduced destructive effect. A succession of these films, spaced to allow nondestructive energy dissipation between impacts, will reduce the impactor's kinetic energy without allowing its internal energy to rise to the point where destruction of the projectile mass will occur. An added advantage to this method is that it yields the possibility of regions within the captured particle where a minimum of thermal modification has taken place. Polymer foams have been employed as the primary method of capturing particles with minimum degradation. The manufacture of extremely low bulk density materials is usually achieved by the introduction of voids into the material base. It must be noted, however, that a foam structure only has a true bulk density of the mixture at sizes much larger than the cell size, since for impact processes this is of paramount importance. The scale at which the bulk density must still be close to that of the mixture is approximately equal to the impactor. When this density criterion is met, shock pressures during impact are minimized, which in turn maximizes the

  18. On the enhancement of impact damage tolerance of composite laminates

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Lance, D. G.

    1993-01-01

    This paper examines the use of a thin layer of Ultra High Molecular Weight Polyethylene (UHMWPE) on the outer surface of carbon/epoxy composite materials as a method of improving impact resistance and damage tolerance through hybridization. Flat 16-ply laminates as well as honeycomb sandwich structures with eight-ply facesheets were tested in this study. Instrumented drop-weight impact testing was used to inflict damage upon the specimens. Evaluation of damage resistance included instrumented impact data, visual examination, C-scanning and compression after impact (CAI) testing. The results show that only one lamina of UHMWPE did not improve the damage tolerance (strength retention) of the 16-ply flat laminate specimens or the honeycomb sandwich beams, however, a modest gain in impact resistance (detectable damage) was found for the honeycomb sandwich specimens that contained an outer layer of UHMWPE.

  19. Visualization of impact damaging of carbon/epoxy panels

    NASA Astrophysics Data System (ADS)

    Boccardi, Simone; Boffa, Natalino Daniele; Carlomagno, Giovanni Maria; Meola, Carosena; Ricci, Fabrizio

    2016-05-01

    This work is concerned with impact damaging of carbon/epoxy materials. Specimens of different thickness are herein considered, which involve several fibers orientations and stacking sequences. Impact tests are carried out at different energies with a modified Charpy pendulum. The specimen surface opposite to that struck by the impactor is viewed by an infrared imaging device. Then, a sequence of thermal images is acquired during each impact test. Through the temperature variations experienced by the specimen surface, post-processing of such images supplies the likely occurred damage. In addition, specimens are non-destructively evaluated with lock-in thermography to visualize any manufacturing defects, as well as impact damage.

  20. Computational design of hypervelocity launchers

    SciTech Connect

    Trucano, T.; Chhabildas, L.

    1993-12-31

    The Sandia Hypervelocity Launcher (HVL) uses impact techniques on a two-stage light-gas gun to launch flier plates to velocities in excess of 10 km/s. An important problem in designing successful third stage techniques for impact launching fliers to such velocities is detailed understanding of the interior ballistic performance of the third stage. This is crucial for preventing melt and fracture of the flier plates during the extraordinary accelerations that they undergo (accelerations on the order of 10{sup 9} g are typical on the HVL). We seek to optimize HVL launch conditions in order to achieve two major goals: first, to maximize the potential launch velocity for a given flier, and second, to allow different flier configurations. One tool that we can apply in studying HVL performance is the use of multi-dimensional wave propagation codes. We have used such codes, particularly the Sandia Eulerian code CTH, to study a variety of interior ballistics issues related to gun performance and launcher development for almost ten years. Recently this work has culminated in a major contribution to HVL design, namely the capability to launch ``chunk`` fliers. `Me initial phases of design development were solely devoted to CTH computations that studied potential designs, identified problems, and posed possible solutions for launching chunk fliers on the HVL. Our computations sufficiently narrowed the design space to the point that systematic experimental progress was possible. Our first experiment resulted in the successful launch of an intact 0.33 gram titanium alloy chunk flier to a velocity of 10.2 km/s. The thickness to diameter ratio of this flier was approximately 0.5.

  1. Size Effects in Impact Damage of Composite Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Dobyns, Alan; Jackson, Wade

    2003-01-01

    Panel size has a large effect on the impact response and resultant damage level of honeycomb sandwich panels. It has been observed during impact testing that panels of the same design but different panel sizes will show large differences in damage when impacted with the same impact energy. To study this effect, a test program was conducted with instrumented impact testing of three different sizes of sandwich panels to obtain data on panel response and residual damage. In concert with the test program. a closed form analysis method was developed that incorporates the effects of damage on the impact response. This analysis method will predict both the impact response and the residual damage of a simply-supported sandwich panel impacted at any position on the panel. The damage is incorporated by the use of an experimental load-indentation curve obtained for the face-sheet/honeycomb and indentor combination under study. This curve inherently includes the damage response and can be obtained quasi-statically from a rigidly-backed specimen or a specimen with any support conditions. Good correlation has been obtained between the test data and the analysis results for the maximum force and residual indentation. The predictions can be improved by using a dynamic indentation curve. Analyses have also been done using the MSC/DYTRAN finite element code.

  2. Hypervelocity impact testing of cables

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Adkinson, A. B.; English, J. E.; Linebaugh, C. E.

    1973-01-01

    The physics and electrical results obtained from simulated micrometeoroid testing of certain Skylab cables are presented. The test procedure, electrical circuits, test equipment, and cable types utilized are also explained.

  3. Rapid detection and quantification of impact damage in composite structures

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.

    1992-01-01

    It is shown that a multidisciplinary nondestructive evaluation approach for impact damage detection in composite structures can be used to produce a more efficient inspection. The multidisciplinary NDE approach relies on fast large area thermographic inspections along with detailed ultrasonic volumetric imaging. The thermal inspection technique rapidly identifies the impact damage. The ultrasonic volumetric imaging quantifies the impact generated delaminations through the volume of the structure.

  4. Rapid detection and quantification of impact damage in composite structures

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Farley, Gary; Smith, Barry T.

    1991-01-01

    NDE results from thermographic and volumetric ultrasonic techniques are presented to illustrate the multidisciplinary NDE approach to impact-damage detection in such composite structures as are increasingly prevalent in helicopters. Attention is given to both flat-panel and 'y-stiffened' panel specimens; these were fabricated either with kevlar or carbon fiber through-the-thickness reinforcements. While thermal inspection identifies impact damage, volumetric imaging quantifies the impact-generated delaminations through the volume of the structure.

  5. A hypervelocity debris simulating technique with laser driven flyer

    NASA Astrophysics Data System (ADS)

    Tong, J.; Dong, H.; Wang, J.

    Theoretical models suggest that most of the space debris in LEO consist of particles are smaller than 0.5mm. LDEF exposed a total surface area of about 130m 2 for 69 months in the LEO environment. It provided a huge collection of impact data that covers a wide size range of impact crater. Total of 34336 impacts were found on the LDEF surface, of which 27385 impact craters were less than 0.5mm in diameter. The small space debris can cause a gradual degradation of a satellite surfaces, including mechanical damage and contamination generated by impacts. Moreover the small debris may cause greater synergistic effects with AO. AO undercutting of impact damage can further expand the damage areas. This paper describes a new method to simulate small space debris by the laser driven flyer technique. A neodymium-glass pulsed laser was used in this work, capable of up 20 joules in 20 nanoseconds. Tow bonding methods to adhere the aluminum foil to the glass substrate were used. One was a field assisted thermal diffusion bond. The other used silicon oil as the adhesive. In the diffusion bond, the laser is used to vaporize the interface of a aluminum foil diffusively bonded to a glass substrate. The vapor reaches high pressures and then cuts out and accelerates a aluminum disk in the diameter of the periphery of the laser beam. In the second flyer configuration, the silicon oil was vaporized by the laser beam and the expanding gas drove the aluminum disc to the hypervelocity. In our tests, both of methods were successful. In the method of silicon oil adhesion, a 2mm diameter, 60micron thick aluminum disc was accelerated to 3.2km/s. But the velocity data of diffusion bond could not be obtained because the meas uring appliance was improper. The method to measure velocity was very simple and cheap. First, the flight time of a particle was measured with a piezoelectric transducer and a digital oscilloscope. Then attaining the flight time and distance of the particle, its velocity

  6. Impact damage resistance of composite fuselage structure, part 2

    NASA Technical Reports Server (NTRS)

    Dost, Ernest F.; Finn, Scott R.; Murphy, Daniel P.; Huisken, Amy B.

    1993-01-01

    The strength of laminated composite materials may be significantly reduced by foreign object impact induced damage. An understanding of the damage state is required in order to predict the behavior of structure under operational loads or to optimize the structural configuration. Types of damage typically induced in laminated materials during an impact event include transverse matrix cracking, delamination, and/or fiber breakage. The details of the damage state and its influence on structural behavior depend on the location of the impact. Damage in the skin may act as a soft inclusion or affect panel stability, while damage occurring over a stiffener may include debonding of the stiffener flange from the skin. An experiment to characterize impact damage resistance of fuselage structure as a function of structural configuration and impact threat was performed. A wide range of variables associated with aircraft fuselage structure such as material type and stiffener geometry (termed, intrinsic variables) and variables related to the operating environment such as impactor mass and diameter (termed, extrinsic variables) were studied using a statistically based design-of-experiments technique. The experimental design resulted in thirty-two different 3-stiffener panels. These configured panels were impacted in various locations with a number of impactor configurations, weights, and energies. The results obtained from an examination of impacts in the skin midbay and hail simulation impacts are documented. The current discussion is a continuation of that work with a focus on nondiscrete characterization of the midbay hail simulation impacts and discrete characterization of impact damage for impacts over the stiffener.

  7. Experimental study of impact-cratering damage on brittle cylindrical column model as a fundamental component of space architecture

    NASA Astrophysics Data System (ADS)

    Fujiwara, Akira; Onose, Naomi; Setoh, Masato; Nakamura, Akiko M.; Hiraoka, Kensuke; Hasegawa, Sunao; Okudaira, Kyoko

    2014-10-01

    The cylindrical column of brittle material processed from soil and rock is a fundamental component of architectures on the surface of solid bodies in the solar system. One of the most hazardous events for the structure is damaging by hypervelocity impacts by meteoroids and debris. In such a background, cylindrical columns made of plaster of Paris and glass-bead-sintered ceramic were impacted by spherical projectiles of nylon, glass, and steel at velocity of about 1-4.5 km/s. Measured crater radii, depth, and excavated mass expressed by a function of the cylinder radius are similar irrespective of the target material, if those parameters are normalized by appropriate parameters of the crater produced on the flat-surface target. The empirical scaling relations of the normalized crater radii and depth are provided. Using them, crater dimensions and excavated mass of crater on cylindrical surface of any radius can be predicted from the existing knowledge of those for flat surface. Recommendation for the minimum diameter of a cylinder so as to resist against a given impact is provided.

  8. Ultrasonic impact damage assessment in 3D woven composite materials

    NASA Astrophysics Data System (ADS)

    Mannai, E.; Lamboul, B.; Roche, J. M.

    2015-03-01

    An ultrasonic nondestructive methodology is proposed for the assessment of low velocity impact damage in a 3D woven composite material. The output data is intended for material scientists and numerical scientists to validate the damage tolerance performance of the manufactured materials and the reliability of damage modeling predictions. A depth-dependent threshold based on the reflectivity of flat bottom holes is applied to the ultrasonic data to remove the structural noise and isolate echoes of interest. The methodology was applied to a 3 mm thick 3D woven composite plate impacted with different energies. An artificial 3D representation of the detected echoes is proposed to enhance the spatial perception of the generated damage by the end user. The paper finally highlights some statistics made on the detected echoes to quantitatively assess the impact damage resistance of the tested specimens.

  9. Numerical analysis of impact-damaged sandwich composites

    NASA Astrophysics Data System (ADS)

    Hwang, Youngkeun

    Sandwich structures are used in a wide variety of structural applications due to their relative advantages over other conventional structural materials in terms of improved stability, weight savings, and ease of manufacture and repair. Foreign object impact damage in sandwich composites can result in localized damage to the facings, core, and core-facing interface. Such damage may result in drastic reductions in composite strength, elastic moduli, and durability and damage tolerance characteristics. In this study, physically-motivated numerical models have been developed for predicting the residual strength of impact-damaged sandwich composites comprised of woven-fabric graphite-epoxy facesheets and Nomex honeycomb cores subjected to compression-after-impact loading. Results from non-destructive inspection and destructive sectioning of damaged sandwich panels were used to establish initial conditions for damage (residual facesheet indentation, core crush dimension, etc.) in the numerical analysis. Honeycomb core crush test results were used to establish the nonlinear constitutive behavior for the Nomex core. The influence of initial facesheet property degradation and progressive loss of facesheet structural integrity on the residual strength of impact-damaged sandwich panels was examined. The influence of damage of various types and sizes, specimen geometry, support boundary conditions, and variable material properties on the estimated residual strength is discussed. Facesheet strains from material and geometric nonlinear finite element analyses correlated relatively well with experimentally determined values. Moreover, numerical predictions of residual strength are consistent with experimental observations. Using a methodology similar to that presented in this work, it may be possible to develop robust residual strength estimates for complex sandwich composite structural components with varying levels of in-service damage. Such studies may facilitate sandwich

  10. Effects of parametric variations of complex targets on damage from projectile impact

    SciTech Connect

    Meier, R.W.

    1989-01-01

    The effects of a hypervelocity projectile striking complex targets have been investigated. The targets consisted of metallic and low-density shock attenuating layers and void regions. The major features of the targets were systematically varied to correlate changes in the targets with the projectile's effectiveness in damaging the targets. Two-dimensional numerical simulations were done with the Eulerian computational fluid dynamics program PINON. Projectile effectiveness against the various targets was measured by determining the maximum pressure, pressure integral, P{sup 2}{tau} value, and hole size at several locations in the targets. 9 refs., 13 figs., 6 tabs.

  11. Developments in impact damage modeling for laminated composite structures

    NASA Technical Reports Server (NTRS)

    Dost, Ernest F.; Avery, William B.; Swanson, Gary D.; Lin, Kuen Y.

    1991-01-01

    Damage tolerance is the most critical technical issue for composite fuselage structures studied in the Advanced Technology Composite Aircraft Structures (ATCAS) program. The objective here is to understand both the impact damage resistance and residual strength of the laminated composite fuselage structure. An understanding of the different damage mechanisms which occur during an impact event will support the selection of materials and structural configurations used in different fuselage quadrants and guide the development of analysis tools for predicting the residual strength of impacted laminates. Prediction of the damage state along with the knowledge of post-impact response to applied loads will allow for engineered stacking sequencies and structural configurations; intelligent decisions on repair requirements will also result.

  12. Impact damage and fatigue behavior of gamma TiAl

    SciTech Connect

    Harding, T.S.; Jones, J.W.; Pollock, T.M.; Steif, P.S.; Rubal, M.P.

    1997-12-31

    The relationship between impact damage and the fatigue behavior of gamma titanium aluminide has been examined. Axial fatigue specimens fabricated from cast Ti-47.9Al-2Cr-2Nb alloy and Ti-47.3Al-2.2Nb-0.5Mn-0.4W-0.4Mo-0.23Si alloy were impacted under controlled conditions with various indentor shapes to simulate manufacturing related damage in low pressure turbine blades. Damage was quantified and related to impact parameters. A measure of the ambient temperature fatigue strength in the damaged specimens was obtained by standard fatigue testing employing a step-loading approach. Fractographic studies were performed to differentiate impact damage from subsequent fatigue crack growth and to elucidate the mechanisms responsible for the dependence of fatigue strength on the severity of impact damage. A threshold-based fracture mechanics analysis of crack advance from damage zones, and its use in fatigue failure strength prediction, has been developed.

  13. Hypervelocity capture of particles in aerogel: Dependence on aerogel properties

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Fairey, S. A. J.; Foster, N. J.; Cole, M. J.

    2009-01-01

    Capture of high-speed (hypervelocity) particles in aerogel at ambient temperatures of 175-763 K is reported. This extends previous work which has mostly focussed on conducting experiments at ambient laboratory temperatures, even though aerogels are intended for use in cosmic dust capture cells in space environments which may experience a range of temperatures (e.g., the NASA Stardust mission which collected dust at 1.81 AU and putative Mars atmospheric sampling missions). No significant change in track length (normalised to impactor size) was found over the range 175-600 K, although at 763 K a significant reduction (30%) was found. By contrast, entrance hole diameter remained constant only up to 400 K, above this sudden changes of up to 50% were observed. Experiments were also carried out at normal laboratory temperature using a wide range of aerogel densities and particle sizes. It was found that track length normalised to particle size varies inversely with aerogel density. This is a power law dependence and not linear as previously reported, with longer tracks at lower densities. Glass projectiles (up to 100 μm size) were found to undergo a variety of degrees of damage during capture. In addition to the well known acquisition of a coating (partial or complete) of molten aerogel the mechanical damage includes pitting and meridian fractures. Larger (500 μm diameter) stainless steel spheres also showed damage during capture. In this case melting and ablation occurs, suggesting surficial temperatures during impact in excess of 1400 °C. The response of the aerogel itself to passage of particles through it is reported. The presence of fan-like fractures around the tracks is attributed to cone cracking similar to that in glasses of normal density, with the difference that here it is a repetitive process as the particles pass through the aerogel.

  14. Structural Health Monitoring for Impact Damage in Composite Structures.

    SciTech Connect

    Roach, Dennis P.; Raymond Bond; Doug Adams

    2014-08-01

    Composite structures are increasing in prevalence throughout the aerospace, wind, defense, and transportation industries, but the many advantages of these materials come with unique challenges, particularly in inspecting and repairing these structures. Because composites of- ten undergo sub-surface damage mechanisms which compromise the structure without a clear visual indication, inspection of these components is critical to safely deploying composite re- placements to traditionally metallic structures. Impact damage to composites presents one of the most signi fi cant challenges because the area which is vulnerable to impact damage is generally large and sometimes very dif fi cult to access. This work seeks to further evolve iden- ti fi cation technology by developing a system which can detect the impact load location and magnitude in real time, while giving an assessment of the con fi dence in that estimate. Fur- thermore, we identify ways by which impact damage could be more effectively identi fi ed by leveraging impact load identi fi cation information to better characterize damage. The impact load identi fi cation algorithm was applied to a commercial scale wind turbine blade, and results show the capability to detect impact magnitude and location using a single accelerometer, re- gardless of sensor location. A technique for better evaluating the uncertainty of the impact estimates was developed by quantifying how well the impact force estimate meets the assump- tions underlying the force estimation technique. This uncertainty quanti fi cation technique was found to reduce the 95% con fi dence interval by more than a factor of two for impact force estimates showing the least uncertainty, and widening the 95% con fi dence interval by a fac- tor of two for the most uncertain force estimates, avoiding the possibility of understating the uncertainty associated with these estimates. Linear vibration based damage detection tech- niques were investigated in the

  15. Delaminations of barely visible impact damage in CFRP laminates

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Rai, Badri

    CFRP laminates were impacted by projectiles of low masses, accelerated in an air gun, to have barely visible impact damage (BVID) to simulate damage to aircraft by runway debris. The delamination damage on individual interfaces was revealed by the destructive method of thin strips. In sub-BVID and BVID specimens, the damage was confined mostly to the front 30 percent of the laminate thickness. Delamination areas in the BVID specimens were found to be considerable - the largest dimension exceeding 12 mm on several interfaces. Nucleation of delamination damage was observed in interfaces adjacent to the mid plane in BVID specimens. At higher impact energies, about 110 to 150 percent more, the delamination damage was observed on almost all the interfaces with no sign of spalling at the rear surfaces. In comparison with a lightweight projectile of aluminum (4.4 g), a higher density steel projectile ( 11.8 g) caused more delamination damage for the same impact energy and an identical geometry of projectiles.

  16. Impact damage resistance of thin stitched carbon/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Francesconi, L.; Aymerich, F.

    2015-07-01

    The study examines the influence of through-thickness stitching on the damage response of thin cross-ply carbon/epoxy laminates subjected to low-velocity impacts. Instrumented impact tests were carried out on unstitched and polyethylene stitched laminates and the resulting damage was assessed in detail by X-radiography analyses. The results of the observations carried out during the experimental analyses are illustrated and discussed to identify the mechanical role played by through-thickness reinforcement and to highlight the influence of the laminate layup on the impact resistance of stitched laminates.

  17. The magnitude of impact damage on LDEF materials

    NASA Technical Reports Server (NTRS)

    Allbrooks, Martha; Atkinson, Dale

    1992-01-01

    The purpose of this report is to document the magnitude and types of impact damage to materials and systems on the LDEF. This report will provide insights which permit NASA and industry space-systems designers to more rapidly identify potential problems and hazards in placing a spacecraft in low-Earth orbit (LEO). This report is structured to provide (1) a background on LDEF, (2) an introduction to the LEO meteoroid and debris environments, and (3) descriptions of the types of damage caused by impacts into structural materials, and contamination caused by spallation and ejecta from impact events.

  18. Vibration testing of impact-damaged composite laminates

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Meyn, Erwin H.

    1989-01-01

    A new test is described that can be used to measure changes in the vibration properties of impact damaged composite materials. Impact-induced delamination was observed to significantly affect natural frequencies of vibration and damping properties in cross-ply graphite/epoxy laminates. Natural frequencies are shown to drop by as much as half of their original value, and modal damping ratios can increase by a factor of up to eight when large amounts of damage are present. A simple finite element model of the damaged impact specimens was used to predict the effect of delamination on certain vibration properties. A comparison of the finite element calculations with the experimental measurements suggests that delamination was the dominant mechanism of flexural stiffness loss resulting from the transverse impact.

  19. Damage in woven CFRP laminates subjected to low velocity impacts

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Abdel-Wahab, A. A.; Harland, A. R.; Silberschmidt, V. V.

    2012-08-01

    Carbon fabric-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in these materials affects both their in-service properties and performance that can deteriorate with time. These processes need adequate means of analysis and investigation, the major approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in woven composite laminates due to low-velocity dynamic out-of-plane bending. Experimental tests are carried out to characterise the behaviour of such laminates under large-deflection dynamic bending in un-notched specimens in Izod tests using a Resil Impactor. A series of low-velocity impact tests is carried out at various levels of impact energy to assess the energy absorbed and force-time response of CFRP laminates. X-ray micro computed tomography (micro-CT) is used to investigate material damage modes in the impacted specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply delamination and intra-ply delamination, such as tow debonding and fabric fracture, were the prominent damage modes.

  20. Impact Damage of 3D Orthogonal Woven Composite Circular Plates

    NASA Astrophysics Data System (ADS)

    Ji, Changgan; Sun, Baozhong; Qiu, Yiping; Gu, Bohong

    2007-11-01

    The damages of 3D orthogonal woven composite circular plate under quasi-static indentation and transverse impact were tested with Materials Test System (MTS) and modified split Hopkinson bar (SHPB) apparatus. The load vs. displacement curves during quasi-static penetration and impact were obtained to study the energy absorption of the composite plate. The fluctuation of the impact stress waves has been unveiled. Differences of the load-displacement curves between the quasi-static and impact loading are discussed. This work also aims at establishing a unit-cell model to analyze the damage of composites. A user material subroutine which named VUMAT for characterizing the constitutive relationship of the 3-D orthogonal woven composite and the damage evolution is incorporated with a finite element code ABAQUS/Explicit to simulate the impact damage process of the composite plates. From the comparison of the load-displacement curves and energy absorption curves of the composite plate between experimental and FEM simulation, it is shown that the unit-cell model of the 3D woven composite and the VUMAT combined with the ABAQUS/Explicit can calculate the impact responses of the circular plate precisely. Furthermore, the model can also be extended to simulate the impact behavior of the 3D woven composite structures.

  1. Drought impact functions as intermediate step towards drought damage assessment

    NASA Astrophysics Data System (ADS)

    Bachmair, Sophie; Svensson, Cecilia; Prosdocimi, Ilaria; Hannaford, Jamie; Helm Smith, Kelly; Svoboda, Mark; Stahl, Kerstin

    2016-04-01

    While damage or vulnerability functions for floods and seismic hazards have gained considerable attention, there is comparably little knowledge on drought damage or loss. On the one hand this is due to the complexity of the drought hazard affecting different domains of the hydrological cycle and different sectors of human activity. Hence, a single hazard indicator is likely not able to fully capture this multifaceted hazard. On the other hand, drought impacts are often non-structural and hard to quantify or monetize. Examples are impaired navigability of streams, restrictions on domestic water use, reduced hydropower production, reduced tree growth, and irreversible deterioration/loss of wetlands. Apart from reduced crop yield, data about drought damage or loss with adequate spatial and temporal resolution is scarce, making the development of drought damage functions difficult. As an intermediate step towards drought damage functions we exploit text-based reports on drought impacts from the European Drought Impact report Inventory and the US Drought Impact Reporter to derive surrogate information for drought damage or loss. First, text-based information on drought impacts is converted into timeseries of absence versus presence of impacts, or number of impact occurrences. Second, meaningful hydro-meteorological indicators characterizing drought intensity are identified. Third, different statistical models are tested as link functions relating drought hazard indicators with drought impacts: 1) logistic regression for drought impacts coded as binary response variable; and 2) mixture/hurdle models (zero-inflated/zero-altered negative binomial regression) and an ensemble regression tree approach for modeling the number of drought impact occurrences. Testing the predictability of (number of) drought impact occurrences based on cross-validation revealed a good agreement between observed and modeled (number of) impacts for regions at the scale of federal states or

  2. Monitoring impact damaging of thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Boccardi, S.; Carlomagno, G. M.; Meola, C.; Russo, P.; Simeoli, G.

    2015-11-01

    Thermoplastic composites are becoming ever more attractive also to the aeronautical sector. The main advantage lies in the possibility to modify the interface strength of polypropylene based laminates by adjusting the composition of the matrix. Understanding these aspects is of great importance to establish a possible link between the material toughness and the matrix ingredients. The aim of the present work is to ascertain the ability of an infrared imaging device to visualize any change, in the material behaviour to low energy impact, induced by changes in the matrix composition. Attention is given to image processing algorithms; in particular, an original procedure to measure the extension of the impact-affected area is proposed.

  3. Deformation and damage of composite plates under impact loading

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Wooh, S. C.

    1986-01-01

    Transient deformation and damage were studied in impacted graphite/epoxy plates. The plates were 8-ply and 16-ply quasi-isotropic laminates clamped around a 12.7 cm diameter circumference. They were instrumented with surface and embedded strain gages and loaded by a 202 gr mass dropped from a height of 1.8 m. The load history and imparted energy were obtained by means of an accelerometer attached to the impactor. Transient strains at various locations through the thickness and at various distances from the loading point were obtained. The characteristic features of the strain records are associated with specific failure modes in the laminate. The deformation history was also correlated with the induced damage as detected by X-radiography and ultrasonics. Impact damage is more extensive in the thicker laminate. Damage takes the form of delaminated strips parallel to the fiber direction in each ply and increasing in length from top to bottom.

  4. Effect of low-speed impact damage and damage location on behavior of composite panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1992-01-01

    The effect of low speed impact damage on the compression and tension strength of thin and moderately thick composite specimens was investigated. Impact speed ranged from 50 to 550 ft./sec., with corresponding impact energies from 0.25 to 30.7 ft. x lb. Impact locations were near the center of the specimen or near a lateral unloaded edge. In this study, thin specimens with only 90 degree and + or - 45 degree plies that were impacted away from the unloaded edge suffered less reduction in load carrying capability because of impact damage than of the same specimens impacted near the unloaded edge. Failure loads of thicker compression loaded specimens with a similar stacking sequence were independent of impact location. Failure loads of thin tension loaded specimens with 0 degree plies was independent of impact location, whereas failure loads of thicker compression loaded specimens with 0 degree plies were dependent upon impact location. A finite element analysis indicated that high axial strains occurred near the unloaded edges of the postbuckled panels. Thus, impacts near the unloaded edge would significantly affect the behavior of the postbuckled panel.

  5. An empirical modified fatigue damage model for impacted GFRP laminates

    NASA Astrophysics Data System (ADS)

    Naderi, S.; Hassan, M. A.; Bushroa, A. R.

    2014-10-01

    The aim of the present paper is to evaluate the residual strength of GFRP laminates following a low-velocity impact event under cyclic loading. The residual strength is calculated using a linear fatigue damage model. According to an investigation into the effect of low-velocity impact on the fatigue behavior of laminates, it seems laminate fatigue life decreases after impact. By normalizing the fatigue stress against undamaged static strength, the Fatigue Damage parameter “FD” is presented with a linear relationship as its slope which is a linear function of the initial impact energy; meanwhile, the constants were attained from experimental data. FD is implemented into a plane-stress continuum damage mechanics based model for GFRP composite laminates, in order to predict damage threshold in composite structures. An S-N curve is implemented to indicate the fatigue behavior for 2 mm thickness encompassing both undamaged and impacted samples. A decline in lifespan is evident when the impact energy level increases. Finally, the FD is intended to capture the unique GFRP composite characteristics.

  6. Characterization of Debris from the DebriSat Hypervelocity Test

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2015-01-01

    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  7. Leo micrometeorite/debris impact damage

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.

    1991-01-01

    The school bus sized Long Duration Exposure Facility (LDEF) was retrieved in 1990, after nearly six years of 250 nautical mile altitude low earth orbit environmental exposure. The recovery of LDEF experiments has provided extensive information on space interactions, including micrometeorite, debris, atomic oxygen, ultraviolet, and particulate radiation. The Jet Propulsion Laboratory provided a test plate as part of Solar-Array-Materials Passive LDEF (SAMPLE) Experiment. The test plate contained thirty thin silicon solar cell/cover assemblies. The cover samples included a variety of materials such as Teflon and RTV silicones, in addition to conventional microsheet. The nature of the approximately 150 micrometeorite/debris impacts on the cell/cover samples, cell interconnects, and aluminum test plate is discussed.

  8. Damage assessment in CFRP laminates exposed to impact fatigue loading

    NASA Astrophysics Data System (ADS)

    Tsigkourakos, George; Silberschmidt, Vadim V.; Ashcroft, I. A.

    2011-07-01

    Demand for advanced engineering composites in the aerospace industry is increasing continuously. Lately, carbon fibre reinforced polymers (CFRPs) became one of the most important structural materials in the industry due to a combination of characteristics such as: excellent stiffness, high strength-to-weight ratio, and ease of manufacture according to application. In service, aerospace composite components and structures are exposed to various transient loads, some of which can propagate in them as cyclic impacts. A typical example is an effect of the wind gusts during flight. This type of loading is known as impact fatigue (IF); it is a repetition of low-energy impacts. Such loads can cause various types of damage in composites: fibre breaking, transverse matrix cracking, de-bonding between fibres and matrix and delamination resulting in reduction of residual stiffness and loss of functionality. Furthermore, this damage is often sub-surface, which reinforces the need for more regular inspection. The effects of IF are of major importance due its detrimental effect on the structural integrity of components that can be generated after relatively few impacts at low force levels compared to those in a standard fatigue regime. This study utilises an innovative testing system with the capability of subjecting specimens to a series of repetitive impacts. The primary subject of this paper is to assess the damaging effect of IF on the behaviour of drilled CFRP specimens, exposed to such loading. A detailed damage analysis is implemented utilising an X-ray micro computed tomography system. The main findings suggested that at early stages of life damage is governed by o degree splits along the length of the specimens resulting in a 20% reduction of stiffness. The final failure damage scenario indicated that transverse crasks in the 90 degree plies are the main reason for complete delamination which can be translated to a 50% stiffness reduction.

  9. Impact damage analysis of balsawood sandwich composite materials

    NASA Astrophysics Data System (ADS)

    Abdalslam, Suof Omran

    In this study, a new composite sandwich structure with a balsa wood core (end grain and regular balsa) in conjunction with E-glass/epoxy face sheets was proposed, fabricated, impact tested, and modeled. The behavior of the sandwich structure under low velocity impact and compression after impact was investigated. Low velocity impact tests were carried out by drop-weight impact tower at different energy levels (8J-35J) to evaluate the impact response of the sandwich structure. Visual inspection, destructive and non destructive evaluation methods have been conducted. For the sandwich plate with end grain core, the damage was very clear and can be visually detected. However, the damage in regular balsa core was not clearly visible and destructive evaluation method was used. Compression testing was done after subjecting the specimens to impact testing. Impact test results; load-time, load-deflection history and energy absorption for sandwich composites with two different cores, end grain and regular balsa were compared and they were investigated at three different impact energies. The results show that the sandwich structures with end grain core are able to withstand impact loading better than the regular balsa core because the higher stiffness of end grain core informs of sustaining higher load and higher overall energy. The results obtained from compression after impact testing show that the strengths of sandwich composites with end grain and regular balsa cores were reduced about 40% and 52%, respectively, after impact. These results were presented in terms of stress-strain curves for both damaged and undamaged specimens. Finite element analysis was conducted on the sandwich composite structure using LS-DYNA code to simulate impact test. A 3- D finite element model was developed and appropriate material properties were given to each component. The computational model was developed to predict the response of sandwich composite under dynamic loading. The experimental

  10. Damage in woven CFRP laminates under impact loading

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Harland, A. R.; Silberschmidt, V. V.

    2012-08-01

    Carbon fibre-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution affects both in-service properties and performance of CFRP that can deteriorate with time. These failure modes need adequate means of analysis and investigation, the major approaches being experimental characterisation and numerical simulations. This research deals with a deformation behaviour and damage in composite laminates due to dynamic bending. Experimental tests are carried out to characterise the behaviour of a woven CFRP material under large-deflection dynamic bending in impact tests carried out to obtain the force-time and absorbed energy profiles for CFRP laminates. Damage in the impacted laminates is analysed using optical microscopy. Numerical simulations are performed to study the deformation behaviour and damage in CFRP for cases of large-deflection bending based on three-dimensional finite-element models implemented in the commercial code Abaqus/Explicit. Multiple layers of bilinear cohesive-zone elements are employed to model the initiation and progression of inter-ply delamination observed in the microscopy studies. The obtained results of simulations show good agreement with experimental data.

  11. Assessment of impact damage of composite rocket motor cases

    NASA Technical Reports Server (NTRS)

    Paris, Henry G.

    1994-01-01

    This contract reviewed the available literature on mechanisms of low velocity impact damage in filament wound rocket motor cases, MDE methods to quantify damage, critical coupon level test methods, manufacturing and material process variables and empirical and analytical modeling off impact damage. The critical design properties for rocket motor cases are biaxial hoop and axial tensile strength. Low velocity impact damage is insidious because it can create serious nonvisible damage at very low impact velocities. In thick rocket motor cases the prevalent low velocity impact damage is fiber fracture and matrix cracking adjacent to the front face. In contrast, low velocity loading of thin wall cylinders induces flexure, depending on span length and the flexure induces delamination and tensile cracking on the back face wall opposed to impact occurs due to flexural stresses imposed by impact loading. Important NDE methods for rocket motor cases are non-contacting methods that allow inspection from one side. Among these are vibrothermography, and pulse-echo methods based on acoustic-ultrasonic methods. High resolution techniques such as x-ray computed tomography appear to have merit for accurate geometrical characterization of local damage to support development of analytical models of micromechanics. The challenge of coupon level testing is to reproduce the biaxial stress state that the full scale article experiences, and to determine how to scale the composite structure to model full sized behavior. Biaxial tensile testing has been performed by uniaxially tensile loading internally pressurized cylinders. This is experimentally difficult due to gripping problems and pressure containment. Much prior work focused on uniaxial tensile testing of model filament wound cylinders. Interpretation of the results of some studies is complicated by the fact that the fabrication process did not duplicate full scale manufacturing. It is difficult to scale results from testing subscale

  12. Chunk projectile launch using the Sandia Hypervelocity Launcher Facility

    SciTech Connect

    Chhabildas, L.C.; Trucano, T.G.; Reinhart, W.D.; Hall, C.A.

    1994-07-01

    An experimental technique is described to launch an intact ``chunk,`` i.e. a 0.3 cm thick by 0.6 cm diameter cylindrical titanium alloy (Ti-6Al-4V) flyer, to 10.2 km/s. The ability to launch fragments having such an aspect ratio is important for hypervelocity impact phenomenology studies. The experimental techniques used to accomplish this launch were similar but not identical to techniques developed for the Sandia HyperVelocity Launcher (HVL). A confined barrel impact is crucial in preventing the two-dimensional effects from dominating the loading response of the projectile chunk. The length to diameter ratio of the metallic chunk that is launched to 10.2 km/s is 0.5 and is an order of magnitude larger than those accomplished using the conventional hypervelocity launcher. The multi-dimensional, finite-difference (finite-volume), hydrodynamic code CTH was used to evaluate and assess the acceleration characteristics i.e., the in-bore ballistics of the chunky projectile launch. A critical analysis of the CTH calculational results led to the final design and the experimental conditions that were used in this study. However, the predicted velocity of the projectile chunk based on CTH calculations was {approximately} 6% lower than the measured velocity of {approximately}10.2 km/S.

  13. Impact damage resistance of composite fuselage structure, part 1

    NASA Technical Reports Server (NTRS)

    Dost, E. F.; Avery, W. B.; Ilcewicz, L. B.; Grande, D. H.; Coxon, B. R.

    1992-01-01

    The impact damage resistance of laminated composite transport aircraft fuselage structures was studied experimentally. A statistically based designed experiment was used to examine numerous material, laminate, structural, and extrinsic (e.g., impactor type) variables. The relative importance and quantitative measure of the effect of each variable and variable interactions on responses including impactor dynamic response, visibility, and internal damage state were determined. The study utilized 32 three-stiffener panels, each with a unique combination of material type, material forms, and structural geometry. Two manufacturing techniques, tow placement and tape lamination, were used to build panels representative of potential fuselage crown, keel, and lower side-panel designs. Various combinations of impactor variables representing various foreign-object-impact threats to the aircraft were examined. Impacts performed at different structural locations within each panel (e.g., skin midbay, stiffener attaching flange, etc.) were considered separate parallel experiments. The relationship between input variables, measured damage states, and structural response to this damage are presented including recommendations for materials and impact test methods for fuselage structure.

  14. Hypervelocity cutting machine and method

    DOEpatents

    Powell, J.R.; Reich, M.

    1996-11-12

    A method and machine are provided for cutting a workpiece such as concrete. A gun barrel is provided for repetitively loading projectiles therein and is supplied with a pressurized propellant from a storage tank. A thermal storage tank is disposed between the propellant storage tank and the gun barrel for repetitively receiving and heating propellant charges which are released in the gun barrel for repetitively firing projectiles therefrom toward the workpiece. In a preferred embodiment, hypervelocity of the projectiles is obtained for cutting the concrete workpiece by fracturing thereof. 10 figs.

  15. Hypervelocity cutting machine and method

    DOEpatents

    Powell, James R.; Reich, Morris

    1996-11-12

    A method and machine 14 are provided for cutting a workpiece 12 such as concrete. A gun barrel 16 is provided for repetitively loading projectiles 22 therein and is supplied with a pressurized propellant from a storage tank 28. A thermal storage tank 32,32A is disposed between the propellant storage tank 28 and the gun barrel 16 for repetitively receiving and heating propellant charges which are released in the gun barrel 16 for repetitively firing projectiles 22 therefrom toward the workpiece 12. In a preferred embodiment, hypervelocity of the projectiles 22 is obtained for cutting the concrete workpiece 12 by fracturing thereof.

  16. Ultrasonic nondestructive evaluation of impact-damaged graphite fiber composite

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lampert, N. R.

    1980-01-01

    Unidirectional Hercules AS/3501-6 graphite fiber epoxy composites were subjected to repeated controlled low-velocity drop weight impacts in the laminate direction. The degradation was ultrasonically monitored using through-thickness attenuation and a modified stress wave factor (SWF). There appears to be strong correlations between the number of drop-weight impacts, the residual tensile strength, the through-thickness attenuation, and the SWF. The results are very encouraging with respect to the NDE potential of both of these ultrasonic parameters to provide strength characterizations in virgin as well as impact-damaged fiber composite structures.

  17. Theoretical model of impact damage in structural ceramics

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. G.

    1984-01-01

    This paper presents a mechanistically consistent model of impact damage based on elastic failures due to tensile and shear overloading. An elastic axisymmetric finite element model is used to determine the dynamic stresses generated by a single particle impact. Local failures in a finite element are assumed to occur when the primary/secondary principal stresses or the maximum shear stress reach critical tensile or shear stresses, respectively. The succession of failed elements thus models macrocrack growth. Sliding motions of cracks, which closed during unloading, are resisted by friction and the unrecovered deformation represents the 'plastic deformation' reported in the literature. The predicted ring cracks on the contact surface, as well as the cone cracks, median cracks, radial cracks, lateral cracks, and damage-induced porous zones in the interior of hot-pressed silicon nitride plates, matched those observed experimentally. The finite element model also predicted the uplifting of the free surface surrounding the impact site.

  18. Avoided Impacts in Ensembles of Tropical Cyclone Damage Potential

    NASA Astrophysics Data System (ADS)

    Done, J.; Paimazumder, D.; Holland, G. J.; Towler, E.

    2014-12-01

    Anthropogenic climate change has the potential to alter current levels of Tropical Cyclone (TC) damage, yet the degree of change and its importance relative to changes in exposure and vulnerability are debated. This study isolates the climate drivers of TC damage and develops an approach to translate climate model data directly to a measure of Cyclone Damage Potential (CDP). The actual damage then depends on a given user's impacted exposure and vulnerability. Our approach is motivated by recent work that highlighted the importance of accounting for TC size and TC translation speed in addition to maximum wind speed in driving TC damage. Since coarse resolution climate models are not able to adequately capture many TC characteristics, these key damaging parameters are modeled in terms of large-scale climate variables, to sidestep the need for information on individual TCs and to enable assessments of CDP directly from large-scale climate model data. The CDP is applied to ensembles of future climates generated under a range of anthropogenic forcing scenarios to assess the degree of avoided CDP under lower emission pathways. Users may then translate avoided CDP to avoided losses using relationships between CDP and their specific exposure and vulnerability characteristics.

  19. Ablative shielding for hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor)

    1993-01-01

    A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.

  20. TSS tether cable meteoroid/orbital debris damage analysis

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.

    1993-01-01

    This report summarizes the damage analyses performed on the tether cable used for the tethered satellite system (TSS), for the damage that could be caused by meteoroid or orbital debris impacts. The TSS consists of a tethered satellite deployer and a tethered satellite. The analytical studies were performed at Marshall Space Flight Center (MSFC) with the results from the following tests: (1) hypervelocity impact tests to determine the 'critical' meteoroid particle diameter, i.e., the maximum size of a meteoroid particle which can impact the tether cable without causing 'failure'; (2) electrical resistance tests on the damaged and undamaged tether cable to determine if degradation of current flow occurred through the damaged tether cables; and (3) tensile load tests to verify the load carrying capability of the damaged tether cables. Finally, the HULL hydrodynamic computer code was used to simulate the hypervelocity impact of the tether cable by particles at velocities higher than can be tested, to determine the extent of the expected tether damage.

  1. Influence of Impact Damage on Carbon-Epoxy Stiffener Crippling

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2010-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression subjected to impact damage and loaded in fatigue and to failure. A comparison with analytical predictions for pristine and damaged specimens is included.

  2. The NASA Ames Hypervelocity Free Flight Aerodynamic Facility: Experimental Simulation of the Atmospheric Break-Up of Meteors

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.; Bogdanoff, D. W.

    2015-01-01

    The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).

  3. Impact response and simulation of damaged ulna with internal fixation.

    PubMed

    Coates, Cameron; Goeser, Priya; Coates-Clark, Camille; Jenkins, Mark

    2012-07-01

    The objectives of this work were to explore a methodology that combines static and dynamic finite element (FE) analysis, linear elastic fracture mechanics (LEFM) and experimental methods to investigate a worst-case scenario in which a previously damaged bone plate system is subjected to an impact load. Cadaver ulnas with and without midshaft dynamic compression plates are subjected to a static three-point bend test and loaded such that subcritical crack growth occurs as predicted by a hybrid method that couples LEFM and static FE. The plated and unplated bones are then unloaded and subsequently subjected to a midshaft transverse impact test. A dynamic strain-based FE model is also developed to model the midshaft transverse impact test. The average value of the impact energy required for failure was observed to be 10.53% greater for the plated set. There appears to be a trade-off between impact damage and impact resistance when ulnas are supported by fixation devices. Predictions from the dynamic FE model are shown to corroborate inferences from the experimental approach. PMID:22084055

  4. Multi-shock assembly for protecting a spacecraft surface from hypervelocity impactors

    NASA Technical Reports Server (NTRS)

    Dvorak, Bruce D. (Inventor)

    2001-01-01

    A hypervelocity impact shield assembly for protecting a spacecraft surface from hypervelocity impactors. The shield assembly includes at least one sacrificial impactor disrupting/shocking layer of hypervelocity impactor disrupting/shocking material. A primary spacing element, including space-rated open cell foam material, is positioned between the at least one sacrificial impactor disrupting/shocking layer and a spacecraft surface. A cover member is arranged and disposed relative to the sacrificial impactor disrupting/shocking layer and the primary spacing element to maintain the integrity of the hypervelocity impact shield assembly. In the event of exposure to a hypervelocity impactor, the sacrificial impactor disrupting/shocking layer is perforated while shocking the impactor breaking it into fragments, and/or melting it, and/or vaporizing it, thus providing a dispersion in the form of an expanding debris cloud/plume which spreads the impact energy of the impactor over a volume formed by the primary spacing element between the sacrificial impactor disrupting/shocking layer and the spacecraft surface. This significantly reduces impact lethality at the spacecraft surface. The space-rated open cell foam material provides an extremely lightweight, low-cost, efficient means of spacing and supporting the at least one sacrificial impactor disrupting/shocking layer before, during, and after launch. In a preferred embodiment, the invention is in the form of a multi-shock assembly including a plurality of sacrificial impactor disrupting/shocking layers. In such instance, the hypervelocity impact shield assembly includes a plurality of secondary spacing elements. Each secondary spacing element is positioned adjacent an associated sacrificial impactor disrupting/shocking layer to form a multi-shock subassembly. Thus, a plurality of multi-shock subassemblies are provided which include alternating layers of sacrificial impactor disrupting/shocking layers and secondary spacing

  5. Cumulative Impact Damage Evaluation of Automotive Aluminum Bumper Beam

    NASA Astrophysics Data System (ADS)

    Kim, Heon Young; Choi, Jong Gil; Kim, Min Gun; Lee, Kang Wook; Ha, Dae Yul; Yeo, Tae Jung

    We performed numerical analyses using an explicit code to evaluate the cumulative impact damage of an automotive aluminum front-end bumper back beam during low-speed crash events, as described by CMVSS215. we used a coupled numerical analysis scheme and considered the several fracture criterion such as EWK rupture model and plastic strain limit in the PAM-CRASH code to improve our damage and fracture estimates. Tensile test experiments for the notched and un-notched specimens were conducted to tune the performance of the EWK rupture model; The resulting material properties and fracture criterion were incorporated into the numerical analyses of the low-speed crash events. The simulation results were compared with the impact test.

  6. Fragmentation of hypervelocity aluminum projectiles on fabrics

    NASA Astrophysics Data System (ADS)

    Rudolph, Martin; Schäfer, Frank; Destefanis, Roberto; Faraud, Moreno; Lambert, Michel

    2012-07-01

    This paper presents work performed for a study investigating the ability of different flexible materials to induce fragmentation of a hypervelocity projectile. Samples were chosen to represent a wide range of industrially available types of flexible materials like ceramic, aramid and carbon fabrics as well as a thin metallic mesh. Impact conditions and areal density were kept constant for all targets. Betacloth and multi-layer insulation (B-MLI) are mounted onto the targets to account for thermal system engineering requirements. All tests were performed using the Space light-gas gun facility (SLGG) of the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI. Projectiles were aluminum spheres with 5 mm diameter impacting at approximately 6.3 km/s. Fragmentation was evaluated using a witness plate behind the target. An aramid and a ceramic fabric lead the ranking of fabrics with the best projectile fragmentation and debris cloud dispersion performance. A comparison with an equal-density rigid aluminum plate is presented. The work presented can be applied to optimize the micrometeoroid and space debris (MM/SD) shielding structure of inflatable modules.

  7. Subsurface deformation in hypervelocity cratering experiments into high-porosity tuffs

    NASA Astrophysics Data System (ADS)

    Winkler, Rebecca; Poelchau, Michael H.; Moser, Stefan; Kenkmann, Thomas

    2016-08-01

    Hypervelocity impact experiments on porous tuff targets were carried out to determine the effect of porosity on deformation mechanisms in the crater's subsurface. Blocks of Weibern Tuff with about 43% porosity were impacted by 2.5 mm and 12.0 mm diameter steel spheres with velocities between 4.8 km s-1 and 5.6 km s-1. The postimpact subsurface damage was quantified with computer tomography as well as with meso- and microscale analyses of the bisected crater subsurface. The intensity and style of deformation in mineral clasts and the tuff matrix were mapped and their decay with subsurface depth was determined. Subsurface deformation styles include pore space compaction, clast rotation, as well as microfracture formation. Evaluation of the deformation indicates near-surface energy coupling at a calculated depth of burial of ~2 projectile diameters (dp), which is in conflict with the crater shape, which displays a deep, central penetration tube. Subsurface damage extends to ~2 dp beneath the crater floor in the experiments with 2.5 mm projectiles and increases to ~3 dp for 12 mm projectiles. Based on overprinting relationships and the geometrical orientation of deformation features, a sequence of subsurface deformation events was derived (1) matrix compaction, (2) intragranular crack formation in clasts, (3) deformation band formation in the compacted matrix, (4) tensile fracturing.

  8. Identifying Severe Weather Impacts and Damage with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Burks, J. E.; Bell, J. R.

    2015-12-01

    Hazards associated with severe convective storms can lead to rapid changes in land surface vegetation. Depending upon the type of vegetation that has been impacted, their impacts can be relatively short lived, such as damage to seasonal crops that are eventually removed by harvest, or longer-lived, such as damage to a stand of trees or expanse of forest that require several years to recover. Since many remote sensing imagers provide their highest spatial resolution bands in the red and near-infrared to support monitoring of vegetation, these impacts can be readily identified as short-term and marked decreases in common vegetation indices such as NDVI, along with increases in land surface temperature that are observed at a reduced spatial resolution. The ability to identify an area of vegetation change is improved by understanding the conditions that are normal for a given time of year and location, along with a typical range of variability in a given parameter. This analysis requires a period of record well beyond the availability of near real-time data. These activities would typically require an analyst to download large volumes of data from sensors such as NASA's MODIS (aboard Terra and Aqua) or higher resolution imagers from the Landsat series of satellites. Google's Earth Engine offers a "big data" solution to these challenges, by providing a streamlined API and option to process the period of record of NASA MODIS and Landsat products through relatively simple Javascript coding. This presentation will highlight efforts to date in using Earth Engine holdings to produce vegetation and land surface temperature anomalies that are associated with damage to agricultural and other vegetation caused by severe thunderstorms across the Central and Southeastern United States. Earth Engine applications will show how large data holdings can be used to map severe weather damage, ascertain longer-term impacts, and share best practices learned and challenges with applying

  9. Advanced Hypervelocity Aerophysics Facility Workshop

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)

    1989-01-01

    The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.

  10. Intact capture of hypervelocity projectiles.

    PubMed

    Tsou, P

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media. PMID:11538362

  11. The 3MV Hypervelocity Dust Accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Shu, A.; Collette, A.; Drake, K.; Horanyi, M.; Kempf, S.; Munsat, T.; Northway, P.; Robertson, S.; Sternovsky, Z.; Thomas, E.; Gruen, E.; Srama, R.

    2011-11-01

    Micrometeorite impacts and dusty plasma phenomena can be found in a wide variety of subjects. In many extraplanetary systems, such as in deep space and on airless bodies such as asteroids or the moon, dusty plasmas play a large role in the basic scientific evolution of the environment. Dust can also be captured and studied in dust astronomy in order to better understand the evolution of our universe, similarly to how photons are used in traditional astronomy. At the Colorado Center for Lunar Dust and Atmospheric Studies, we have developed a 3MV hypervelocity dust accelerator in order to study these and other applications of dust and dusty plasmas. This facility is capable of accelerating micron sized dust particles up to 10's of km/s. In addition to this we have several vacuum chambers used for dusty plasma experiments. The large Lunar Environment Impact Laboratory (LEIL) test chamber will be used to study dust levitation, space weathering, and lunar exosphere evolution. A smaller ultrahigh vacuum chamber will be used to detect neutral species in micrometeorite impact ejecta and detect and analyze impact flashes. In addition to this work, graphite tokamak wall tile material will be placed into the beam path to determine damage characteristics from dust in fusion systems.

  12. Estimation of potential impacts and natural resource damages of oil.

    PubMed

    McCay, Deborah French; Rowe, Jill Jennings; Whittier, Nicole; Sankaranarayanan, Sankar; Etkin, Dagmar Schmidt

    2004-02-27

    Methods were developed to estimate the potential impacts and natural resource damages resulting from oil spills using probabilistic modeling techniques. The oil fates model uses wind data, current data, and transport and weathering algorithms to calculate mass balance of fuel components in various environmental compartments (water surface, shoreline, water column, atmosphere, sediments, etc.), oil pathway over time (trajectory), surface distribution, shoreline oiling, and concentrations of the fuel components in water and sediments. Exposure of aquatic habitats and organisms to whole oil and toxic components is estimated in the biological model, followed by estimation of resulting acute mortality and ecological losses. Natural resource damages are based on estimated costs to restore equivalent resources and/or ecological services, using Habitat Equivalency Analysis (HEA) and Resource Equivalency Analysis (REA) methods. Oil spill modeling was performed for two spill sites in central San Francisco Bay, three spill sizes (20th, 50th, and 95th percentile volumes from tankers and larger freight vessels, based on an analysis of likely spill volumes given a spill has occurred) and four oil types (gasoline, diesel, heavy fuel oil, and crude oil). The scenarios were run in stochastic mode to determine the frequency distribution, mean and standard deviation of fates, impacts, and damages. This work is significant as it demonstrates a statistically quantifiable method for estimating potential impacts and financial consequences that may be used in ecological risk assessment and cost-benefit analyses. The statistically-defined spill volumes and consequences provide an objective measure of the magnitude, range and variability of impacts to wildlife, aquatic organisms and shorelines for potential spills of four oil/fuel types, each having distinct environmental fates and effects. PMID:15036639

  13. On the Nature of Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Ginsburg, Idan

    2013-12-01

    Hypervelocity stars are stars ejected from the center of the Milky Way, never to return. Since first discovered in 2005, hypervelocity stars have greatly increased our understanding of the kinematics and dynamics at the Galactic Center. In this dissertation we show via gravitational N-body simulations that an encounter between a binary star and the massive black hole at the Galactic Center, Sgr A*, can produce a hypervelocity star for one component of the binary, while the companion star remains in a tight orbit around the black hole. Such an encounter can also result in the coalescence of both stars in a highly-eccentric orbit around the black hole. These mechanisms may explain the surprising appearance of massive stars within 1OEOE of Sgr A*. We further find that the disruption of a triple star system by the massive black hole can produce hypervelocity binaries, which may ultimately coalesce and evolve into unbound blue stragglers. The black hole may also capture a binary star system, or possibly all three stars when a triple system is disrupted. Such captures may lead to collisions between two or all three of the stars and the coalescence may result in the formation of rejuvenated stars. Oursimulations also predict that planets around stars can be ejected from the Galactic Center via the same mechanism that produces hypervelocity stars. However, typical velocities for such runaway planets are higher than their stellar counterparts, with velocities approaching 5% the speed of light in extreme cases. Planets may also collide with their host star and result in an enriched stellar atmosphere. Furthermore, hypervelocity stars may host planets that should have a detectable transit. The discovery of such a transit would have consequences for understanding planetary formation and evolution at the Galactic Center. It is difficult to positively identify hypervelocity stars since at the observed effective temperatures both main-sequence and blue horizontal branch stars

  14. Advances in X-ray Computed Tomography Diagnostics of Ballistic Impact Damage

    NASA Astrophysics Data System (ADS)

    Wells, Joseph M.; Brannon, Rebecca M.

    2007-12-01

    With the relatively recent introduction of quantitative and volumetric X-ray computed tomography (XCT) applied to ballistic impact damage diagnostics, significant inroads have been made in expanding our knowledge base of the morphological variants of physical impact damage. Yet, the current state of the art in computational and simulation modeling of terminal ballistic performance remains predominantly focused on the penetration phenomenon, without detailed consideration of the physical characteristics of actual impact damage. Similarly, armor ceramic material improvements appear more focused on penetration resistance than on improved intrinsic damage tolerance and damage resistance. Basically, these approaches minimize our understanding of the potential influence that impact damage may play in the mitigation or prevention of ballistic penetration. Examples of current capabilities of XCT characterization, quantification, and visualization of complex impact damage variants are demonstrated and discussed for impacted ceramic and metallic terminal ballistic target materials. Potential benefits of incorporating such impact damage diagnostics in future ballistic computational modeling are also briefly discussed.

  15. Simple light gas guns for hypervelocity studies

    SciTech Connect

    Combs, S.K.; Haselton, H.H.; Milora, S.L.

    1990-01-01

    Two-stage light guns are used extensively in hypervelocity research. The applications of this technology include impact studies and special materials development. Oak Ridge National Laboratory (ORNL) has developed two-stage guns that accelerate small projectiles (4-mm nominal diameter) to velocities of up to {approx}5 km/s. These guns are relatively small and simple (thus, easy to operate), allowing a significant number of test shots to be carried out and data accumulated in a short time. Materials that have been used for projectiles include plastics, frozen isotopes of hydrogen, and lithium hydride. One gun has been used to demonstrate repetitive operation at a rate of 0.7 Hz; and, with a few design improvements, it appears capable of performing at firing frequencies of 1--2 Hz. A schematic of ORNL two-stage device is shown below. Unlike most such devices, no rupture disks are used. Instead, a fast valve (high-flow type) initiates the acceleration process in the first stage. Projectiles can be loaded into the gun breech via the slide mechanism; this action has been automated which allows repetitive firing. Alternatively, the device is equipped with pipe gun'' apparatus in which gas can be frozen in situ in the gun barrel to form the projectile. This equipment operates with high reliability and is well suited for small-scale testing at high velocity. 17 refs., 6 figs., 2 tabs.

  16. Calculations supporting HyperVelocity Launcher development

    SciTech Connect

    Trucano, T.G.; Chhabildas, L.C.

    1993-08-01

    Sandia National Laboratories has developed a HyperVelocity Launcher (also referred to as HVL) in which a thin flier plate (nominally 1 mm thick) is launched to velocities in excess of 12 km/s. The length to diameter ratio of these launched flier plates varies from 0.02 to 0.06. The launch technique is based upon using structured, time-dependant, high-pressure, high-acceleration pulses to drive the flier plates. Such pulses are achieved by using a graded-density material to impact a stationary flier. A computational and experimental program at Sandia seeks to extend this technique to allow launching thick plates whose length-to-diameter ratio is 10 to 20 times larger than thin plates. Hydrodynamic codes are used to design modifications to the basic technique. The authors have controlled and used these effects to successfully launch a chunk-flier, consisting of 0.33 gm of titanium alloy, 0.3 cm thick by 0.6 cm in diameter, to a velocity of 10.2 km/s. This is the largest chunky size ever launched at this velocity from a gas gun configuration.

  17. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1992-01-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  18. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    1992-11-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  19. A study of the observed shift in the peak position of olivine Raman spectra as a result of shock induced by hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, M. J.

    2016-05-01

    Kuebler et al. () identified variations in olivine Raman spectra based on the composition of individual olivine grains, leading to identification of olivine composition from Raman spectra alone. However, shock on a crystal lattice has since been shown to result in a structural change to the original material, which produces a shift in the Raman spectra of olivine grains compared with the original unshocked olivine (Foster et al. ). This suggests that the use of the compositional calculations from the Raman spectra, reported in Kuebler et al. (), may provide an incorrect compositional value for material that has experienced shock. Here, we have investigated the effect of impact speed (and hence peak shock pressure) on the shift in the Raman spectra for San Carlos olivine (Fo91) impacting Al foil. Powdered San Carlos olivine (grain size 1-10 μm) was fired at a range of impact speeds from 0.6 to 6.1 km s-1 (peak shock pressures 5-86 GPa) at Al foil to simulate capture over a wide range of peak shock pressures. A permanent change in the Raman spectra was found to be observed only for impact speeds greater than ~5 km s-1. The process that causes the shift is most likely linked to an increase in the peak pressure produced by the impact, but only after a minimum shock pressure associated with the speed at which the effect is first observed (here 65-86 GPa). At speeds around 6 km s-1 (peak shock pressures ~86 GPa), the shift in Raman peak positions is in a similar direction (red shift) to that observed by Foster et al. () but of twice the magnitude.

  20. A study of the observed shift in the peak position of olivine Raman spectra as a result of shock induced by hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, M. J.

    2016-07-01

    Kuebler et al. (2006) identified variations in olivine Raman spectra based on the composition of individual olivine grains, leading to identification of olivine composition from Raman spectra alone. However, shock on a crystal lattice has since been shown to result in a structural change to the original material, which produces a shift in the Raman spectra of olivine grains compared with the original unshocked olivine (Foster et al. 2013). This suggests that the use of the compositional calculations from the Raman spectra, reported in Kuebler et al. (2006), may provide an incorrect compositional value for material that has experienced shock. Here, we have investigated the effect of impact speed (and hence peak shock pressure) on the shift in the Raman spectra for San Carlos olivine (Fo91) impacting Al foil. Powdered San Carlos olivine (grain size 1-10 μm) was fired at a range of impact speeds from 0.6 to 6.1 km s-1 (peak shock pressures 5-86 GPa) at Al foil to simulate capture over a wide range of peak shock pressures. A permanent change in the Raman spectra was found to be observed only for impact speeds greater than ~5 km s-1. The process that causes the shift is most likely linked to an increase in the peak pressure produced by the impact, but only after a minimum shock pressure associated with the speed at which the effect is first observed (here 65-86 GPa). At speeds around 6 km s-1 (peak shock pressures ~86 GPa), the shift in Raman peak positions is in a similar direction (red shift) to that observed by Foster et al. (2013) but of twice the magnitude.

  1. Discrete Element Modeling of Impact Damage on Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Minor, Peter Michel

    Natural gas turbines have become an increasingly important part of the energy landscape in the United States, currently accounting for 19% of all electricity production. Efforts to increase thermal efficiency in gas turbines has led to the adoption of highly porous ceramic thermal barrier coatings (TBCs), which are susceptible to erosion and foreign object impact damage. Despite significant investment to improve the design of TBCs, few numerical tools exist which are capable of both accurately capturing the specific failure mechanisms inherent to TBCs and iterating design parameters without the requirement for coupled experimental data. To overcome these limitations, a discrete element model (DEM) was created to simulate the microstructure of a TBC using a large-scale assembly of bonded particles. Acting as Lagrangian nodes, the particles can be combined to create accurate representations of TBC geometry and porosity. The inclusion of collision-driven particle dynamics and bonds derived from displacement-dependent force functions endow the microstructure model with the ability to deform and reproduce damage in a highly physical manner. Typical TBC damage mechanisms such as compaction, fracture and spallation occur automatically, without having to tune the model based on experimental observation. Therefore, the first order performance of novel TBC designs and materials can be determined numerically, greatly decreasing the cost of development. To verify the utility and effectiveness of the proposed damage model framework, a nanoindentation materials test simulation was developed to serve as a test case. By varying model parameters, such as the porosity of the TBC and maximum applied indenter force, nanoindentation data from more than one hundred distinct permutations was gathered and analyzed. This data was used to calculate the elastic modulus (E) and hardness (H) of the simulated microstructure, which could then be compared to known experimental material property

  2. Numerical Simulation of Interaction of Hypervelocity Particle Stream with a Target

    SciTech Connect

    Lomov, I; Liu, B; Georgevich, V; Antoun, T

    2007-07-31

    We present results of direct numerical simulations of impact of hypervelocity particle stream with a target. The stream of interest consists of submillimeter (30-300 micron) brittle ceramic particles. Current supercomputer capabilities make it possible to simulate a realistic size of streams (up to 20 mm in diameter and 500 mm in length) while resolving each particle individually. Such simulations make possible to study the damage of the target from synergistic effects of individual impacts. In our research we fixed the velocity distribution along the axis of the stream (1-4 km/s) and volume fraction of the solid material (1-10%) and study effects of particle size variation, particle and target material properties and surrounding air properties. We ran 3D calibration simulations with up to 10 million individual particles and conducted sensitivity studies with 2D cylindrically symmetric simulations. We used an Eulerian Godunov hydrocode with adaptive mesh refinement. The particles, target material and air are represented with volume-of-fluid approach. Brittle particle and target material has been simulated with pressure-dependent yield strength and Steinberg model has been used for metal targets. Simulations demonstrated penetration depth and a hole diameter similar to experimental observations and can explain the influence of parameters of the stream on the character of the penetration.

  3. Numerical Simulation of Interaction of Hypervelocity Particle Stream with a Target

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Liu, Benjamin; Georgevich, Vlad; Antoun, Tarabay

    2007-12-01

    We present results of direct numerical simulations of impact of hypervelocity particle stream with a target. The stream of interest consists of submillimeter (30-300 micron) brittle ceramic particles. Current supercomputer capabilities make it possible to simulate a realistic size of streams (up to 20 mm in diameter and 500 mm in length) while resolving each particle individually. Such simulations make possible to study the damage of the target from synergistic effects of individual impacts. In our research we fixed the velocity distribution along the axis of the stream (1-4 km/s) and volume fraction of the solid material (1-10%) and study effects of particle size variation, particle and target material properties and surrounding air properties. We ran 3D calibration simulations with up to 10 million individual particles and conducted sensitivity studies with 2D cylindrically symmetric simulations. We used an Eulerian Godunov hydrocode with adaptive mesh refinement. The particles, target material and air are represented with volume-of-fluid approach. Brittle particle and target material has been simulated with pressure-dependent yield strength and Steinberg model has been used for metal targets. Simulations demonstrated penetration depth and a hole diameter similar to experimental observations and can explain the influence of parameters of the stream on the character of the penetration.

  4. Numerical simulation of interaction of hypervelocity particle stream with a target

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Liu, Benjamin; Georgevich, Vlad; Antoun, Tarabay

    2007-06-01

    We present results of direct numerical simulations of impact of hypervelocity particle stream with a target. The stream of interest consists of submillimeter (30-300 micron) brittle ceramic particles. Current supercomputer capabilities make it possible to simulate a realistic size of streams (up to 20 mm in diameter and 500 mm in length) while resolving each particle individually. Such simulations make possible to study the damage of the target from synergistic effects of individual impacts. In our research we fixed the velocity distribution along the axis of the stream (1-4 km/s) and volume fraction of the solid material (1-10%) and study effects of particle size variation, particle and target material properties and surrounding air properties. We ran 3D calibration simulations with up to 10 million individual particles and conducted sensitivity studies with 2D cylindrically symmetric simulations. We used an Eulerian Godunov hydrocode with adaptive mesh refinement. The particles, target material and air are represented with volume-of-fluid approach. Brittle particle and target material has been simulated with pressure-dependent yield strength and Steinberg model has been used for metal targets. Simulations demonstrated penetration depth and a hole diameter similar to experimental observations and can explain the influence of parameters of the stream on the character of the penetration.

  5. Calculated concrete target damage by multiple rod impact and penetration

    SciTech Connect

    Pincosy, P A; Murphy, M J

    2006-12-29

    The effect of enhanced crater formation has been demonstrated experimentally when multiple and delayed shaped charge jets impact and penetrate concrete. The concept for enhancement utilizes a single follow-on jet at the centerline of holes produced by multiple precursor jets penetrating the surrounding the region. Calculations of the 3D crater enhancement phenomena have been conducted with multiple rods to simulate the steady state portion of the multiple jet penetration process. It is expected that this analysis methodology will be beneficial for optimization of the multiple jet crater enhancement application. We present calculated results using ALE3D where the model uses the standard Gruneisen equation of state combined with a rate dependent strength model including material damage parameters. This study focuses on the concrete material damage model as a representation of the portion of the target that would eventually be ejected creating a large bore-hole. The calculations are compared with the experimental evidence and limitations of the modeling approach are discussed.

  6. Review: Wind impacts on plant growth, mechanics and damage.

    PubMed

    Gardiner, Barry; Berry, Peter; Moulia, Bruno

    2016-04-01

    Land plants have adapted to survive under a range of wind climates and this involve changes in chemical composition, physical structure and morphology at all scales from the cell to the whole plant. Under strong winds plants can re-orientate themselves, reconfigure their canopies, or shed needles, leaves and branches in order to reduce the drag. If the wind is too strong the plants oscillate until the roots or stem fail. The mechanisms of root and stem failure are very similar in different plants although the exact details of the failure may be different. Cereals and other herbaceous crops can often recover after wind damage and even woody plants can partially recovery if there is sufficient access to water and nutrients. Wind damage can have major economic impacts on crops, forests and urban trees. This can be reduced by management that is sensitive to the local site and climatic conditions and accounts for the ability of plants to acclimate to their local wind climate. Wind is also a major disturbance in many plant ecosystems and can play a crucial role in plant regeneration and the change of successional stage. PMID:26940495

  7. Optical transmission scanning for damage quantification in impacted GFRP composites

    NASA Astrophysics Data System (ADS)

    Khomenko, Anton; Karpenko, Oleksii; Koricho, Ermias G.; Haq, Mahmoodul; Cloud, Gary L.; Udpa, Lalita

    2016-04-01

    Glass fiber reinforced polymer (GFRP) composites constitute nearly 90% of the global composites market and are extensively used in aerospace, marine, automotive and construction industries. While their advantages of lightweight and superior mechanical properties are well explored, non-destructive evaluation (NDE) techniques that allow for damage/defect detection and assessment of its extent and severity are not fully developed. Some of the conventional NDE techniques for GFRPs include ultrasonics, X-ray, IR thermography, and a variety of optical techniques. Optical methods, specifically measuring the transmission properties (e.g. ballistic optical imaging) of specimens, provide noninvasive, safe, inexpensive, and compact solutions and are commonly used in biomedical applications. In this work, this technique is adapted for rapid NDE of GFRP composites. In its basic form, the system for optical transmission scanning (OTS) consists of a light source (laser diode), a photo detector and a 2D translation stage. The proposed technique provides high-resolution, rapid and non-contact OT (optical transmittance)-scans, and does not require any coupling. The OTS system was used for inspection of pristine and low-velocity impacted (damaged) GFRP samples. The OT-scans were compared with conventional ultrasonic C-scans and showed excellent agreement but with better resolution. Overall, the work presented lays the groundwork for cost-effective, non-contact, and rapid NDE of GFRP composite structures.

  8. Development of resistant materials to beam impact and radiation damage

    NASA Astrophysics Data System (ADS)

    Kawai, Masayoshi; Kokawa, Hiroyuki; Okamura, Hiroshi; Kawasaki, Akira; Yamamura, Tsutomu; Hara, Nobuyoshi; Akao, Noboru; Futakawa, Masatoshi; Kikuchi, Kenji

    2006-09-01

    Materials that have strong resistance to both beam impact (or shock-wave) and radiation damage are required for the beam target of an intense accelerator and space applications. Recently, Futakawa et al. found in their experiments that Kolsterising specimens have a stronger resistance to pitting than SS316 CW. A similar effect can be expected for other hardening treatments, and new material development is hopeful. Accordingly, we have started the development of high-performance materials by organizing the project team from KEK, JAEA and universities. In this paper, the scope of the project is introduced. Recent topics involve the development of intergranular crack (IGC)-resistant austenitic stainless-steel, AlN-TiN ceramics and cladding techniques of thin tantalum or CrN film on a tungsten target by means of a molten-salt method and ion-beam-enhanced deposition. New observations on corrosion resistance are presented.

  9. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOEpatents

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2005-12-13

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  10. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOEpatents

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2009-04-14

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  11. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOEpatents

    Rigali, Mark J.; Sutaria, Manish P.; Mulligan, Anthony C.; Popovich, Dragan

    2004-03-23

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  12. Damage of cells and battery packs due to ground impact

    NASA Astrophysics Data System (ADS)

    Xia, Yong; Wierzbicki, Tomasz; Sahraei, Elham; Zhang, Xiaowei

    2014-12-01

    The present paper documents a comprehensive study on the ground impact of lithium-ion battery packs in electric vehicles. With the purpose of developing generic methodology, a hypothetic global finite element model is adopted. The force-displacement response of indentation process simulated by the global FE model is cross-validated with the earlier analytical solutions. The punching process after the armor plate perforation, the ensuing crack propagation of the armor plate as well as the local deformation modes of individual battery cells are clearly predicted by the global modeling. A parametric study is carried out, and a few underlying rules are revealed, providing important clues on the design of protective structure of battery packs against ground impact. In the next step, detailed FE models at the level of a single battery cell and shell casing are developed and simulations are performed using boundaries and loading conditions taken from the global solution. In the detailed modeling the failure of individual components is taken into account, which is an important indicator of electric short circuit of a battery cell and possible thermal runaway. The damage modes and the deformation tolerances of components in the battery cell under various loading conditions are observed and compared.

  13. Modeling and Failure Control of Spacecraft Pressurized Structures Subject to Orbital Debris Impact

    NASA Astrophysics Data System (ADS)

    Cook, Frederick; Telichev, Igor

    2013-08-01

    Motivated by the dramatic worsening and uncertainty of orbital debris situation, the present paper is focused on the structural integrity of the spacecraft pressurized modules/pressure vessels. The objective is to develop a methodology of numerical simulation of the spacecraft pressurized structure behaviour under hypervelocity impact, including simulation of the following processes: a) formation of the impact damage of the pressure wall; b) loading and failure of structure. The analysis was performed by the method of singular integral equations.

  14. Improved Sizing of Impact Damage in Composites Based on Thermographic Response

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell Patricia A.; Leckey, Cara A.; Rogge, Matthew D.

    2013-01-01

    Impact damage in thin carbon fiber reinforced polymer composites often results in a relatively small region of damage at the front surface, with increasing damage near the back surface. Conventional methods for reducing the pulsed thermographic responses of the composite tend to underestimate the size of the back surface damage, since the smaller near surface damage gives the largest thermographic indication. A method is presented for reducing the thermographic data to produce an estimated size for the impact damage that is much closer to the size of the damage estimated from other NDE techniques such as microfocus x-ray computed tomography and pulse echo ultrasonics. Examples of the application of the technique to experimental data acquired on specimens with impact damage are presented. The method is also applied to the results of thermographic simulations to investigate the limitations of the technique.

  15. An examination of impact damage in glass-phenolic and aluminum honeycomb core composite panels

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Lance, D. G.; Hodge, A. J.

    1990-01-01

    An examination of low velocity impact damage to glass-phenolic and aluminum core honeycomb sandwich panels with carbon-epoxy facesheets is presented. An instrumented drop weight impact test apparatus was utilized to inflict damage at energy ranges between 0.7 and 4.2 joules. Specimens were checked for extent of damage by cross sectional examination. The effect of core damage was assessed by subjecting impact-damaged beams to four-point bend tests. Skin-only specimens (facings not bonded to honeycomb) were also tested for comparison purposes. Results show that core buckling is the first damage mode, followed by delaminations in the facings, matrix cracking, and finally fiber breakage. The aluminum honeycomb panels exhibited a larger core damage zone and more facing delaminations than the glass-phenolic core, but could withstand more shear stress when damaged than the glass-phenolic core specimens.

  16. The effect of resin on the impact damage tolerance of graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Rhodes, M. D.

    1981-01-01

    The effect of the matrix resin on the impact damage tolerance of graphite-epoxy composite laminates was investigated. The materials were evaluated on the basis of the damage incurred due to local impact and on their ability to retain compression strength in the presence of impact damage. Twenty-four different resin systems were evaluated. Five of the systems demonstrated substantial improvements compared to the baseline system including retention of compression strength in the presence of impact damage. Examination of the neat resin mechanical properties indicates the resin tensile properties influence significantly the laminate damage tolerance and that improvements in laminate damage tolerance are not necessarily made at the expense of room temperature mechanical properties. Preliminary results indicate a resin volume fraction on the order of 40 percent or greater may be required to permit the plastic flow between fibers necessary for improved damage tolerance.

  17. Study of the Transformation of Meteoritic Organics during Hypervelocity Impacts in Support of Characterisation of Exogenous Organic Matter on the Surface of Icy Satellites

    NASA Astrophysics Data System (ADS)

    Zaitsev, Maxim; Gerasimov, Mikhail; Ivanova, Marina; Lorenz, Cyril; Aseev, Sergey; Korochantsev, Alexander

    The main goal of the planned missions to Jupiter's Galilean satellites Ganymede or Europa is the search for extraterrestrial life which can be reviled by characterization of surface organics at the landing site. Planets and satellites are exposed for steady meteoritic and cometary bombardment which delivers exogenous organic species. The exogenous organic matter on the satellites surfaces can be represented by both unaltered organic matter of meteorites and comets, and by organic matter which is synthesized from organic and/or mineral components of falling bodies during the impacts. Adequate interpretation of volatile organic compounds (VOCs) on the surface of Ganymede or Europa must take into account the presence of exogenous organic matter described above. The quantitative composition of exogenous organics is difficult to predict because it depends on the frequency of meteoritic/cometary bombardment, conditions and efficiency of organic synthesis in water mantle below the ice crust, speed of the ice crust renovation, and other factors. However, the qualitative composition of exogenous organics can be described through the study of organic matter in different classes of meteorites and products of their shock-evaporative transformation. We have carried out comparative studies of VOCs - products of pyrolysis of carbonaceous chondrites and condensed products of their high-temperature transformation in simulated shock-induced evaporation by pulse laser. We have investigated VOCs in samples of carbonaceous CM2 and CO3 chondrites (Murchison and Kainsaz respectively) and in condensed products of their high-temperature evaporation in neutral (helium) atmosphere using pyrolytic gas chromatography coupled with mass spectrometry (Pyr-GC/MS) [1, 2]. Condensates contained the same hydrocarbons that we extracted at 460(°) C from the bulk samples of meteorites (aliphatic, alicyclic and aromatic hydrocarbons) but sufficiently larger amount of nitrogen-containing compounds

  18. Surface crack analysis applied to impact damage in a thick graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.; Harris, Charles E.; Morris, Don H.

    1990-01-01

    The residual tensile strength of a thick graphite/epoxy composite with impact damage was predicted using surface crack analysis. The damage was localized to a region directly beneath the impact site and extended only part way through the laminate. The damaged region contained broken fibers, and the locus of breaks in each layer resembled a crack perpendicular to the direction of the fibers. In some cases, the impacts broke fibers without making a visible crater. The impact damage was represented as a semi-elliptical surface crack with length and depth equal to that of the impact damage. The maximum length and depth of the damage were predicted with a stress analysis and a maximum shear stress criterion. The predictions and measurements of strength were in good agreement.

  19. Post-Impact Fatigue Damage Monitoring Using Fiber Bragg Grating Sensors

    PubMed Central

    Shin, Chow-Shing; Liaw, Shien-Kuei; Yang, Shi-Wei

    2014-01-01

    It has been shown that impact damage to composite materials can be revealed by embedded Fiber Bragg Gratings (FBG) as a broadening and splitting of the latter's characteristic narrow peak reflected spectrum. The current work further subjected the impact damaged composite to cyclic loading and found that the FBG spectrum gradually submerged into a rise of background intensity as internal damages progressed. By skipping the impact, directing the impact to positions away from the FBG and examining the extracted fibers, we concluded that the above change is not a result of deterioration/damage of the sensor. It is caused solely by the damages initiated in the composite by the impact and aggravated by fatigue loading. Evolution of the grating spectrum may therefore be used to monitor qualitatively the development of the incurred damages. PMID:24594609

  20. Surface crack analysis applied to impact damage in a thick graphite-epoxy composite

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Harris, C. E.; Morris, D. H.

    1988-01-01

    The residual tensile strength of a thick graphite/epoxy composite with impact damage was predicted using surface crack analysis. The damage was localized to a region directly beneath the impact site and extended only part way through the laminate. The damaged region contained broken fibers, and the locus of breaks in each layer resembled a crack perpendicular to the direction of the fibers. In some cases, the impacts broke fibers without making a visible crater. The impact damage was represented as a semi-elliptical surface crack with length and depth equal to that of the impact damage. The maximum length and depth of the damage were predicted with a stress analysis and a maximum shear stress criterion. The predictions and measurements of strength were in good agreement.

  1. Impact Damage and Strain Rate Effects for Toughened Epoxy Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    Structural integrity of composite systems under dynamic impact loading is investigated herein. The GENOA virtual testing software environment is used to implement the effects of dynamic loading on fracture progression and damage tolerance. Combinations of graphite and glass fibers with a toughened epoxy matrix are investigated. The effect of a ceramic coating for the absorption of impact energy is also included. Impact and post impact simulations include verification and prediction of (1) Load and Impact Energy, (2) Impact Damage Size, (3) Maximum Impact Peak Load, (4) Residual Strength, (5) Maximum Displacement, (6) Contribution of Failure Modes to Failure Mechanisms, (7) Prediction of Impact Load Versus Time, and (8) Damage, and Fracture Pattern. A computer model is utilized for the assessment of structural response, progressive fracture, and defect/damage tolerance characteristics. Results show the damage progression sequence and the changes in the structural response characteristics due to dynamic impact. The fundamental premise of computational simulation is that the complete evaluation of composite fracture requires an assessment of ply and subply level damage/fracture processes as the structure is subjected to loads. Simulation results for the graphite/epoxy composite were compared with the impact and tension failure test data, correlation and verification was obtained that included: (1) impact energy, (2) damage size, (3) maximum impact peak load, (4) residual strength, (5) maximum displacement, and (6) failure mechanisms of the composite structure.

  2. Conceptual Design of a Flight Validation Mission for a Hypervelocity Asteroid Intercept Vehicle

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    Near-Earth Objects (NEOs) are asteroids and comets whose orbits approach or cross Earth s orbit. NEOs have collided with our planet in the past, sometimes to devastating effect, and continue to do so today. Collisions with NEOs large enough to do significant damage to the ground are fortunately infrequent, but such events can occur at any time and we therefore need to develop and validate the techniques and technologies necessary to prevent the Earth impact of an incoming NEO. In this paper we provide background on the hazard posed to Earth by NEOs and present the results of a recent study performed by the NASA/Goddard Space Flight Center s Mission Design Lab (MDL) in collaboration with Iowa State University s Asteroid Deflection Research Center (ADRC) to design a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle (HAIV) as part of a Phase 2 NASA Innovative Advanced Concepts (NIAC) research project. The HAIV is a two-body vehicle consisting of a leading kinetic impactor and trailing follower carrying a Nuclear Explosive Device (NED) payload. The HAIV detonates the NED inside the crater in the NEO s surface created by the lead kinetic impactor portion of the vehicle, effecting a powerful subsurface detonation to disrupt the NEO. For the flight validation mission, only a simple mass proxy for the NED is carried in the HAIV. Ongoing and future research topics are discussed following the presentation of the detailed flight validation mission design results produced in the MDL.

  3. Conceptual design of a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle

    NASA Astrophysics Data System (ADS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2015-01-01

    Near-Earth Objects (NEOs) are asteroids and comets whose orbits approach or cross Earth's orbit. NEOs have collided with our planet in the past, sometimes to devastating effect, and continue to do so today. Collisions with NEOs large enough to do significant damage to the ground are fortunately infrequent, but such events can occur at any time and we therefore need to develop and validate the techniques and technologies necessary to prevent the Earth impact of an incoming NEO. In this paper we provide background on the hazard posed to Earth by NEOs and present the results of a recent study performed by the NASA/Goddard Space Flight Center's Mission Design Lab (MDL) in collaboration with Iowa State University's Asteroid Deflection Research Center (ADRC) to design a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle (HAIV) as part of a Phase 2 NASA Innovative Advanced Concepts (NIAC) research project. The HAIV is a two-body vehicle consisting of a leading kinetic impactor and trailing follower carrying a Nuclear Explosive Device (NED) payload. The HAIV detonates the NED inside the crater in the NEO's surface created by the lead kinetic impactor portion of the vehicle, effecting a powerful subsurface detonation to disrupt the NEO. For the flight validation mission, only a simple mass proxy for the NED is carried in the HAIV. Ongoing and future research topics are discussed following the presentation of the detailed flight validation mission design results produced in the MDL.

  4. Hypervelocity cratering and disruption of porous pumice targets: Implications for crater production, catastrophic disruption, and momentum transfer on porous asteroids

    NASA Astrophysics Data System (ADS)

    Flynn, George J.; Durda, Daniel D.; Patmore, Emma B.; Clayton, Angela N.; Jack, Sarah J.; Lipman, Miriam D.; Strait, Melissa M.

    2015-03-01

    Most asteroids for which porosities have been inferred have porosities from 20% to>50%. To investigate the effects of target porosity on cratering, impact disruption, and momentum transfer we performed a series of 17 hypervelocity impact experiments on high-porosity (60% to 85% porous), terrestrial, pumice targets impacted at speeds ranging from 3.5 to 5.2 km/s at the NASA Ames Vertical Gun Range. Eleven disruptions demonstrated that pumice targets are significantly stronger, i.e., they require more impactor kinetic energy per unit target mass to produce an equivalent disruption, than non-porous targets. The threshold collisional specific energy, Q D * , for this pumice is ~2380 J/kg, more than 60% greater than the value previously determined for ordinary chondrite meteorites having ~10% porosity, and more than three times the literature value for non-porous terrestrial basalt. As a result, in the same impactor environment non-porous asteroids, with properties similar to terrestrial basalt, and highly porous asteroids with the properties of this pumice are equally likely to be disrupted, possibly explaining the survival of asteroids with moderate or high porosity. The six cratering events produced steep-walled, roughly cylindrical craters, with depth/diameter ratios of ~1 to ~2.7, rather than the bowl-shaped craters with depth/diameter ~0.5 produced in non-porous targets. Computed microtomography shows little or no damage to the pumice outside the excavated crater volume even for impactor energies of approximately one-half Q D * , an energy shown to produce global damage in non-porous targets. Two large, overlapping craters were produced by successive hypervelocity impacts into one pumice target, a result consistent with the interpretation of the large, overlapping craters on the asteroid 253 Mathilde being a result of its high (>50%) porosity. We measured the post-impact momentum of a pumice target, showing that the recoil from the

  5. A research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators

    NASA Technical Reports Server (NTRS)

    Spight, C.

    1976-01-01

    A broadly-gauged research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators is presented. A complete hypervelocity coaxial plasma generator facility was assembled and tested. Significant progress was made in the direction of understanding the important processes in the interaction of hypervelocity MGD flow with transverse applied fields. It is now proposed to utilize the accumulated experimental capability and theoretical analysis in application to the analysis and design parameterization of pulsed magnetogasdynamic direct energy convertor configurations.

  6. Simulation of Hypervelocity Penetration in Limestone

    SciTech Connect

    Antoun, T; Glenn, L; Walton, O; Goldstein, P; Lomov, I; Liu, B

    2005-05-31

    A parameter study was performed to examine the (shock) damage obtained with long-rod and spherical mono-material penetrators impacting two varieties of limestone. In all cases, the impacts were assumed to be normal to the plane of the rock and at zero angle of attack (in the case of the rods). Impact velocities ranged to 15 km/s but most calculations were performed at 4 and 6 km/s and the penetrator mass was fixed at 1000 kg. For unlined underground structures, incipient damage was defined to occur when the peak stress, {sigma}{sub pk}, exceeds 1 kb (100 MPa) and the applied impulse per unit area, I{sub pk}, exceeds 1 ktap (1 kb-{micro}s). Severe damage was assumed to occur when {sigma}{sub pk} exceeds 1 kb and I{sub pk} exceeds 1000 ktaps. Using the latter definition it was found that severe damage in hard, non-porous limestone with spherical impactors extended to a depth of 9 m on-axis for an impact velocity of 4 km/s and 12 m at 6 km/s. Cylinders with length-to-diameter (L/D) ratio of 8.75 achieved depth to severe damage of 23 m and 40 m, respectively under the same conditions. For a limestone medium with 2% initial gas porosity, the latter numbers were reduced to 12 m and 18 m.

  7. Bacterial Spores in Granite Survive Hypervelocity Launch by Spallation: Implications for Lithopanspermia

    NASA Astrophysics Data System (ADS)

    Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H. Jay; Nicholson, Wayne L.

    2009-09-01

    Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i. e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 Pa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10-5, which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.

  8. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia.

    PubMed

    Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H Jay; Nicholson, Wayne L

    2009-09-01

    Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory. PMID:19778276

  9. Probability of Detection Study on Impact Damage to Honeycomb Composite Structure using Thermographic Inspection

    NASA Technical Reports Server (NTRS)

    Hodge, Andrew J.; Walker, James L., II

    2008-01-01

    A probability of detection study was performed for the detection of impact damage using flash heating infrared thermography on a full scale honeycomb composite structure. The honeycomb structure was an intertank structure from a previous NASA technology demonstration program. The intertank was fabricated from IM7/8552 carbon fiber/epoxy facesheets and aluminum honeycomb core. The intertank was impacted in multiple locations with a range of impact energies utilizing a spherical indenter. In a single blind study, the intertank was inspected with thermography before and after impact damage was incurred. Following thermographic inspection several impact sites were sectioned from the intertank and cross-sectioned for microscopic comparisons of NDE detection and actual damage incurred. The study concluded that thermographic inspection was a good method of detecting delamination damage incurred by impact. The 90/95 confidence level on the probability of detection was close to the impact energy that delaminations were first observed through cross-sectional analysis.

  10. Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography

    NASA Astrophysics Data System (ADS)

    Li, Yin; Zhang, Wei; Yang, Zheng-wei; Zhang, Jin-yu; Tao, Sheng-jie

    2016-05-01

    Carbon fiber reinforced polymer (CFRP) after low-velocity impact is detected using infrared thermography, and different damages in the impacted composites are analyzed in the thermal maps. The thermal conductivity under pulse stimulation, frictional heating and thermal conductivity under ultrasonic stimulation of CFRP containing low-velocity impact damage are simulated using numerical simulation method. Then, the specimens successively exposed to the low-velocity impact are respectively detected using the pulse infrared thermography and ultrasonic infrared thermography. Through the numerical simulation and experimental investigation, the results obtained show that the combination of the above two detection methods can greatly improve the capability for detecting and evaluating the impact damage in CFRP. Different damages correspond to different infrared thermal images. The delamination damage, matrix cracking and fiber breakage are characterized as the block-shape hot spot, line-shape hot spot,

  11. Final Results of Shuttle MMOD Impact Database

    NASA Technical Reports Server (NTRS)

    Hyde, J. L.; Christiansen, E. L.; Lear, D. M.

    2015-01-01

    The Shuttle Hypervelocity Impact Database documents damage features on each Orbiter thought to be from micrometeoroids (MM) or orbital debris (OD). Data is divided into tables for crew module windows, payload bay door radiators and thermal protection systems along with other miscellaneous regions. The combined number of records in the database is nearly 3000. Each database record provides impact feature dimensions, location on the vehicle and relevant mission information. Additional detail on the type and size of particle that produced the damage site is provided when sampling data and definitive spectroscopic analysis results are available. Guidelines are described which were used in determining whether impact damage is from micrometeoroid or orbital debris impact based on the findings from scanning electron microscopy chemical analysis. Relationships assumed when converting from observed feature sizes in different shuttle materials to particle sizes will be presented. A small number of significant impacts on the windows, radiators and wing leading edge will be highlighted and discussed in detail, including the hypervelocity impact testing performed to estimate particle sizes that produced the damage.

  12. Flash x-ray radiography using imaging plates for the observation of hypervelocity objects

    SciTech Connect

    Mizusako, F.; Ogasawara, K.; Kondo, K.; Saito, F.; Tamura, H.

    2005-02-01

    Flash x-ray radiography was conducted using imaging plates (IP) to observe high-speed thermal spray jets and debris clouds produced from hypervelocity impact. The radiographs of the spray jets or debris cloud shadows on the IPs were analyzed to estimate the distribution of mass per unit area, i.e., Areal mass density, due to the distribution of the intensities of stimulated emissions from the IPs. The wide dynamic range of the IPs led to the detection of an Areal mass density one hundred times as large as the minimum Areal mass density and the very detailed densities. The availability of the IPs for the flash x-ray radiography of a high-speed thermal spray jet and a hypervelocity-impact-produced debris cloud was demonstrated.

  13. Role of impactor properties on the computational simulation of particle impact damage in transparent ceramic windows

    NASA Astrophysics Data System (ADS)

    Schultz, Robert; Guven, Ibrahim; Zelinski, Brian J.

    2014-05-01

    The ability to deploy advanced sensor and seeker systems in harsh environments is often restricted by the mechanical durability of the external electromagnetic window or dome. Mission environments may range from long flights at high speeds through rain, ice, or sand to exposure at slower speeds to debris on runways or from helicopter downwash. While significant progress has been made to characterize, understand, and model rain damage, less is known about modeling damage in windows and domes caused by impacts from solid particles such as stones, pebbles, and sand. This paper highlights recent progress made to simulate particle impact damage in zinc sulfide (ZnS) using peridynamics (PD). Early versions of the PD model of sand impact damage simulated the sand particle as a rigid disk. Results from these early models indicated that the extent of damage in relation to the size of the impacting particle was significantly larger than the actual damage observed by experimentation. In order to identify possible explanations for this discrepancy, the shape, impact orientation and mechanical properties of the impacting particle were modified to more closely resemble actual sand particle impacts, that is, the particle was made friable (deformable and breakable). The impacting geometries considered include sphere, flat face of a cylinder, cube-face, cube-edge, and cube-corner. Results confirm that modification of the impacting particle's mechanical properties, shape and impact orientation lead to better agreement between experimental observations and simulation results.

  14. Compression of thick laminated composite beams with initial impact-like damage

    NASA Technical Reports Server (NTRS)

    Breivik, N. L.; Guerdal, Z.; Griffin, O. H., Jr.

    1992-01-01

    While the study of compression after impact of laminated composites has been under consideration for many years, the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating, low velocity impact by large diameter objects can be simulated using quasi-static three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type, extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delamination, damage near the surface, and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results.

  15. Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Liaw, Benjamin; Villars, Esther; Delmont, Frantz; Bowles, Kenneth J. (Technical Monitor)

    2001-01-01

    The main objective of this NASA FAR project is to conduct ultrasonic assessment of impact-induced damage and microcracking in polymer matrix composites at various temperatures. It is believed that the proposed study of impact damage assessment on polymer matrix composites will benefit several NASA missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Impact-induced damage mechanisms in GLARE and ARALL fiber-metal laminates subject to instrumented drop-weight impacts at various temperatures were studied. GLARE and ARALL are hybrid composites made of alternating layers of aluminum and glass (for GLARE) and aramid- (for ARALL) fiber-reinforced epoxy. Damage in pure aluminum panels impacted by foreign objects was mainly characterized by large plastic deformation surrounding a deep penetration dent. On the other hand, plastic deformation in fiber-metal laminates was often not as severe although the penetration dent was still produced. The more stiff fiber-reinforced epoxy layers provided better bending rigidity; thus, enhancing impact damage tolerance. Severe cracking, however, occurred due to the use of these more brittle fiber-reinforced epoxy layers. Fracture patterns, e.g., crack length and delamination size, were greatly affected by the lay-up configuration rather than by the number of layers, which implies that thickness effect was not significant for the panels tested in this study. Immersion ultrasound techniques were then used to assess damages generated by instrumented drop-weight impacts onto these fiber-metal laminate panels as well as 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy. Depending on several parameters, such as impact velocity, mass, temperature, laminate configuration, sandwich construction, etc., various types of impact damage were observed, including plastic deformation, radiating cracks emanating from the impact site

  16. Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Gyekanyesi, John (Technical Monitor); Liaw, Benjamin; Villars, Esther; Delmont, Frantz

    2003-01-01

    The main objective of this NASA Faculty Awards for Research (FAR) project is to conduct ultrasonic assessment of impact-induced damage and microcracking in fiber-metal laminated (FML) composites at various temperatures. It is believed that the proposed study of impact damage assessment on FML composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Impact-induced damage mechanisms in GLARE and ARALL fiber-metal laminates subject to instrumented drop-weight impacts at various temperatures were studied. GLARE and ARALL are hybrid composites made of alternating layers of aluminum and glass- (for GLARE) and aramid- (for ARALL) fiber reinforced epoxy. Damage in pure aluminum panels impacted by foreign objects was mainly characterized by large plastic deformation surrounding a deep penetration dent. On the other hand, plastic deformation in fiber-metal laminates was often not as severe although the penetration dent was still produced. The more stiff fiber-reinforced epoxy layers provided better bending rigidity; thus, enhancing impact damage tolerance. Severe cracking, however, occurred due to the use of these more brittle fiber-reinforced epoxy layers. Fracture patterns, e.g., crack length and delamination size, were greatly affected by the lay-up configuration rather than by the number of layers, which implies that thickness effect was not significant for the panels tested in this study. Immersion ultrasound techniques were then used to assess damages generated by instrumented drop-weight impacts onto these fiber-metal laminate panels as well as 2024-T3 aluminum/cast acrylic sandwich plates adhered by epoxy. Depending on several parameters, such as impact velocity, mass, temperature, laminate configuration, sandwich construction, etc., various types of impact damage were observed, including plastic deformation, radiating

  17. The effect of simulated hypervelocity space debris on polymers

    SciTech Connect

    Verker, R. . E-mail: rverker@soreq.gov.il; Eliaz, N.; Gouzman, I.; Eliezer, S.; Fraenkel, M.; Maman, S.; Beckmann, F.; Pranzas, K.; Grossman, E.

    2004-11-08

    Space debris population in low Earth orbit has been increasing constantly with the increase in spacecraft missions. Hypervelocity space debris impacts limit the functionality of polymeric outer surfaces and, in extreme cases, might cause a total loss of a spacecraft. In this work, the fracture of Kapton films by ultrahigh velocity impacts was studied. A laser-driven flyer ground simulation system was used to accelerate aluminum flyers to impact velocities as high as 2.9 km/s against polymer films with different thicknesses. Scanning electron microscopy was used to characterize the fracture morphology. Impact effects on the internal structure of the polymer were studied by means of X-ray microtomography. It was found that with an increase in debris velocity, a ductile-to-brittle transition occurred. However, fractures created by impacts at velocities above 1.7 km/s showed central impacts regions, which experienced the highest strain rate and were of ductile-type fracture, while the outer regions, which experienced a lower strain rate, failed through brittle cracking. A model explaining this phenomenon, based on the temperature gradient developed within the impacted region during collision, is presented.

  18. Impact damage detection in composite chiral sandwich panels using nonlinear vibro-acoustic modulations

    NASA Astrophysics Data System (ADS)

    Klepka, Andrzej; Staszewski, Wieslaw J.; di Maio, Dario; Scarpa, Fabrizio

    2013-08-01

    This paper reports an application of nonlinear acoustics to impact damage detection in a composite chiral sandwich panel. The panel is built from a chiral honeycomb and two composite skins. High-frequency ultrasonic excitation and low-frequency modal excitation were used to observe nonlinear modulations in ultrasonic waves due to structural damage. Low-profile, surface-bonded piezoceramic transducers were used for ultrasonic excitation. Non-contact laser vibrometry was applied for ultrasonic sensing. The work presented focuses on the analysis of the modulation intensities and damage-related nonlinearities. The paper demonstrates that the method can be used for impact damage detection in composite chiral sandwich panels.

  19. Development of an engineering analysis of progressive damage in composites during low velocity impact

    NASA Technical Reports Server (NTRS)

    Humphreys, E. A.

    1981-01-01

    A computerized, analytical methodology was developed to study damage accumulation during low velocity lateral impact of layered composite plates. The impact event was modeled as perfectly plastic with complete momentum transfer to the plate structure. A transient dynamic finite element approach was selected to predict the displacement time response of the plate structure. Composite ply and interlaminar stresses were computed at selected time intervals and subsequently evaluated to predict layer and interlaminar damage. The effects of damage on elemental stiffness were then incorporated back into the analysis for subsequent time steps. Damage predicted included fiber failure, matrix ply failure and interlaminar delamination.

  20. Mechanisms and impact of damage resulting from hydraulic fracturing. Topical report, May 1995-July 1996

    SciTech Connect

    Penny, G.S.; Conway, M.W.; Almond, S.W.; Himes, R.; Nick, K.E.

    1996-08-01

    This topical report documents the mechanisms of formation damage following hydraulic fracturing and their impact upon gas well productivity. The categories of damage reviewed include absolute or matrix permeability damage, relative permeability alterations, the damage of natural fracture permeability mechanisms and proppant conductivity impairment. Case studies are reviewed in which attempts are made to mitigate each of the damage types. Industry surveys have been conducted to determine the perceptions of the industry on the topic of formation damage following hydraulic fracturing and to identify key formations in which formation damage is a problem. From this information, technical hurdles and new technology needs are identified and estimates are made of the benefits of developing and applying minimum formation damage technology.

  1. The DNA damage response: the omics era and its impact

    PubMed Central

    Derks, Kasper W.J.; Hoeijmakers, Jan H.J.; Pothof, Joris

    2014-01-01

    The emergence of high density technologies monitoring the genome, transcriptome and proteome in relation to genotoxic stress have tremendously enhanced our knowledge on global responses and dynamics in the DNA damage response, including its relation with cancer and aging. Moreover, ‘-omics’ technologies identified many novel factors, their post-translational modifications, pathways and global responses in the cellular response to DNA damage. Based on omics, it is currently estimated that thousands of gene(product)s participate in the DNA damage response, recognizing complex networks that determine cell fate after damage to the most precious cellular molecule, DNA. The development of next generation sequencing technology and associated specialized protocols can quantitatively monitor RNA and DNA at unprecedented single nucleotide resolution. In this review we will discuss the contribution of omics technologies and in particular next generation sequencing to our understanding of the DNA damage response and the future prospective of next generation sequencing, its single cell application and omics dataset integration in unraveling intricate DNA damage signaling networks. PMID:24794401

  2. Evaluation of progressive damage of nano-modified composite laminates under repeated impacts

    NASA Astrophysics Data System (ADS)

    Koricho, Ermias G.; Karpenko, Oleksii; Khomenko, Anton; Haq, Mahmoodul; Cloud, Gary L.; Udpa, Lalita

    2016-04-01

    However, studies on the effect of nano-reinforcements in repeated impact scenarios are relatively limited. This work investigates the effect of resin nanoclay modification on the impact resistance of glass-fiber reinforced polymer (GFRP) composites subjected to repeated impacts. Three impact energy levels were used in experiments with a minimum of four specimens per case for statistical significance. Each sample was subjected to 40 repeated impacts or was tested up to perforation, whichever happened first. The impact response was evaluated in terms of evolution of the peak force, bending stiffness, visual damage inspection and optical transmission scanning (OTS) at critical stages as a function of number of impacts. Also, the damage degree (DD) was calculated to monitor the evolution of damage in the laminates. As expected, the impact response of the GFRP composites varied based on the presence of nano-clay and the applied impact energy. The modification of the resin with nano-clay introduced novel phenomena that changed the damage progression mechanism under repetitive impacts, which was verified by visual observation and optical transmission scanning. A better understanding of these phenomena (e.g. crack-bridging, tortuosity) and their contributions to enhancements in the impact behavior and modifications of the types of damage propagation can lead to better design of novel structural composites.

  3. Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik

    2014-02-01

    An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.

  4. Low-speed impact damage in filament-wound CFRP composite pressure vessels

    SciTech Connect

    Matemilola, S.A.; Stronge, W.J.

    1997-11-01

    Quasi-static and impact tests were conducted on filament-wound carbon fiber composite pressure vessels to study factors that affect burst pressure. Observed damage included fiber microbuckling, matrix cracking, and delamination. Fiber microbuckling of the outer surface layer near the impact point was the main factor that reduced the burst pressure of the vessels. This type of damage was visually detectable on the surface. For similar levels of missile kinetic energy, the impact damage to filament-wound composite pressure vessels depends on size and shape of the colliding body in the contact area. Burst pressure for a damaged vessel decreases with the ratio of axial length of damaged fibers 1, to vessel wall thickness h, up to a ratio l/h = 3; beyond this length of damaged section the burst pressure was independent of length of damage. Strain measurements near the region of loading showed that damage related to fiber microbuckling is sensitive to strain rate. At locations where impact damage was predominantly due to fiber microbuckling, the failure strain was about six times the strain for microbuckling during quasi-static loading.

  5. Damage evolution in GLARE fibre-metal laminate under repeated low-velocity impact tests

    NASA Astrophysics Data System (ADS)

    Morinière, Freddy; Alderliesten, René; Tooski, Mehdi; Benedictus, Rinze

    2012-12-01

    An experimental study was performed on the repeated low-velocity impact behaviour of GLARE. Damage evolution in the material constituents was characterised with successive number of impacts. Records were correlated with visual inspection, ultrasound C-scan and chemical etching. The stiffness of the plate varied when cumulating the number of impacts. Damage accumulation was limited thanks to the synthesis of unidirectional composite and metal. The glass/epoxy plies with high elastic tensile strength could withstand several impacts before perforation despite delamination growth in the vicinity of the impacted area. The damage tolerant aluminium layers prevented the penetration of the projectile and avoided the expansion of delamination. This efficient mechanism preserved the structural integrity of GLARE until first aluminium cracking at the non-impacted side. Among the different failure modes, plate deformation absorbed most of the impact energy. The findings will support the development of a generic quasi-static analytical model and numerical methods.

  6. Evaluation of residual strength in the basalt fiber reinforced composites under impact damage

    NASA Astrophysics Data System (ADS)

    Kim, Yun-Hae; Lee, Jin-Woo; Moon, Kyung-Man; Yoon, Sung-Won; Baek, Tae-Sil; Hwang, Kwang-Il

    2015-03-01

    Composites are vulnerable to the impact damage by the collision as to the thickness direction, because composites are being manufactured by laminating the fiber. The understanding about the retained strength after the impact damage of the material is essential in order to secure the reliability of the structure design using the composites. In this paper, we have tried to evaluate the motion of the material according to the kinetic energy and potential energy and the retained strength after impact damage by testing the free fall test of the basalt fiber reinforced composite in the limelight as the environment friendly characteristic.

  7. Acoustic emission monitoring of low velocity impact damage in graphite/epoxy laminates during tensile loading

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    1992-01-01

    An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.

  8. Acoustic Emission Signals in Thin Plates Produced by Impact Damage

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Humes, Donald H.

    1999-01-01

    Acoustic emission (AE) signals created by impact sources in thin aluminum and graphite/epoxy composite plates were analyzed. Two different impact velocity regimes were studied. Low-velocity (less than 0.21 km/s) impacts were created with an airgun firing spherical steel projectiles (4.5 mm diameter). High-velocity (1.8 to 7 km/s) impacts were generated with a two-stage light-gas gun firing small cylindrical nylon projectiles (1.5 mm diameter). Both the impact velocity and impact angle were varied. The impacts did not penetrate the aluminum plates at either low or high velocities. For high-velocity impacts in composites, there were both impacts that fully penetrated the plate as well as impacts that did not. All impacts generated very large amplitude AE signals (1-5 V at the sensor), which propagated as plate (extensional and/or flexural) modes. In the low-velocity impact studies, the signal was dominated by a large flexural mode with only a small extensional mode component detected. As the impact velocity was increased within the low velocity regime, the overall amplitudes of both the extensional and flexural modes increased. In addition, a relative increase in the amplitude of high-frequency components of the flexural mode was also observed. Signals caused by high-velocity impacts that did not penetrate the plate contained both a large extensional and flexural mode component of comparable amplitudes. The signals also contained components of much higher frequency and were easily differentiated from those caused by low-velocity impacts. An interesting phenomenon was observed in that the large flexural mode component, seen in every other case, was absent from the signal when the impact particle fully penetrated through the composite plates.

  9. Measure of mechanical impacts in commercial blueberry packing lines and potential damage to blueberry fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern blueberry packing lines create impact damage to blueberries which will result in fruit bruising. In this study, impacts created by commercial blueberry packing lines were measured quantitatively using a miniature instrumented sphere. Impacts were recorded at transfer points. Average peakG ...

  10. Single-drop impact damage prediction for low density, coated ceramic materials. [rain erosion

    NASA Technical Reports Server (NTRS)

    Mustelier, D.

    1984-01-01

    A technique utilizing finite element analysis, liquid impact kinematics, and momentum theory is described and compared to single-drop impact test data performed on various configurations of coated ceramic material. The method correlates well with test data and is useful in predicting the single-drop impact damage velocity threshold for low-density, coated ceramic materials.

  11. Evaluation of a threshold-based model of fatigue in gamma titanium aluminide following impact damage

    NASA Astrophysics Data System (ADS)

    Harding, Trevor Scott

    2000-10-01

    Recent interest in gamma titanium aluminide (gamma-TiAl) for use in gas turbine engine applications has centered on the low density and good elevated temperature strength retention of gamma-TiAl compared to current materials. However, the relatively low ductility and fracture toughness of gamma-TiAl leads to serious concerns regarding its ability to resist impact damage. Furthermore, the limited fatigue crack growth resistance of gamma-TiAl means that the potential for fatigue failures resulting from impact damage is real if a damage tolerant design approach is used. A threshold-based design approach may be required if fatigue crack growth from potential impact sites is to be avoided. The objective of the present research is to examine the feasibility of a threshold-based approach for the design of a gamma-TiAl low-pressure turbine blade subjected to both assembly-related impact damage and foreign object damage. Specimens of three different gamma-TiAl alloys were damaged in such a way as to simulate anticipated impact damage for a turbine blade. Step-loading fatigue tests were conducted at both room temperature and 600°C. In terms of the assembly-related impact damage, the results indicate that there is reasonably good agreement between the threshold-based predictions of the fatigue strength of damaged specimens and the measured data. However, some discrepancies do exist. In the case of very lightly damaged specimens, prediction of the resulting fatigue strength requires that a very conservative small-crack fatigue threshold be used. Consequently, the allowable design conditions are significantly reduced. For severely damaged specimens, an analytical approach found that the potential effects of residual stresses may be related to the discrepancies observed between the threshold-based model and measured fatigue strength data. In the case of foreign object damage, a good correlation was observed between impacts resulting in large cracks and a long-crack threshold

  12. Response surface characterization of impact damage and residual strength degradation in composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Samarah, Issam Khder

    2003-06-01

    The influence of material configuration and impact parameters on the damage tolerance characteristics of sandwich composites comprised of carbon-epoxy woven fabric facesheets and Nomex honeycomb cores was investigated using empirically based response surfaces. A series of carefully selected tests were used to isolate the coupled influence of various combinations of the number of facesheet plies, core density, core thickness, impact energy, impactor diameter, and impact velocity on the damage formation and residual strength degradation due to normal impact. The ranges of selected material parameters were typical of those found in common aircraft applications. The diameter of the planar damage area associated with Through Transmission Ultrasonic C-scan measurements and the peak residual facesheet indentation depth were used to describe the extent of internal and detectable surface damage, respectively. Standard analysis of variance techniques were used to assess the significance of the regression models, individual model terms, and model lack-of-fit. In addition, the inherent variability associated with given types of experimental measurements was evaluated. Response surface estimates of the size of the planar damage region and compressive residual strength as a continuous function of material system and impact parameters correlated reasonably well with experimentally determined values. For a fixed set of impact parameters, regression results suggest that impact damage development and residual strength degradation is highly material and lay-up configuration dependent. Increasing the number of facesheet plies and the thickness of the core material generally resulted in the greatest improvement in the damage tolerance characteristics. An increase in the impact energy can result in a significant decrease in the estimated residual strength, particularly for those sandwich panels with thicker facesheets. The effects of variable impact velocity on damage formation and loss

  13. Automatic detection of impact damage in carbon fiber composites using active thermography

    NASA Astrophysics Data System (ADS)

    Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; López, I.

    2013-05-01

    Accidental impacts can severely reduce the structural strength and stability of composite materials, which can lead to severe consequences due to the degradation of the mechanical properties of components designed to perform for decades. Because accidental impacts are difficult to avoid, robust and reliable inspection methods to detect impact damage are required. Many methods have been proposed recently. However, most of them require an experienced technician to analyze the data, which leads to a significant decrease in manufacturing productivity. This work proposes a method to automatically detect impact damage in carbon fiber composites using active thermography. The proposed system detects defects caused by impact damage in the infrared images without human intervention. Impact damage detection is performed using a robust method based on an active thermographic inspection. Thermographic data is preprocessed to improve signal-to-noise ratio and to remove non-uniform background caused by non-uniform heating. Then, peaks and edges are identified and clustered, and regions corresponding to impact damage are detected. The proposed procedure has been applied to three specimens that contain 6 and 12 plies, different types of cores, and damage caused by energies from 6 J to 50 J. All defects are detected correctly.

  14. Evaluation by holographic interferometry of impact damage in composite aeronautical structures

    NASA Astrophysics Data System (ADS)

    Ferraro, Pietro

    1992-01-01

    The results of an experimental study of holographic interferometry for impact damage detection and evaluation, in composite aeronautical sandwich structures is presented. The results show that holographic interferometry using thermal loading can accurately estimate delaminated areas on test samples in respect to ultrasonic inspection. The capability of holographic interferometry for detection of such damages in large composite components is shown also.

  15. Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2)

    NASA Technical Reports Server (NTRS)

    Clark, Robert; Cottter, Paul; Michalopoulos, Constantine

    2013-01-01

    This rapid response computer program predicts Orbiter Wing Leading Edge (WLE) damage caused by ice or foam impact during a Space Shuttle launch (Program "IMPACT2"). The program was developed after the Columbia accident in order to assess quickly WLE damage due to ice, foam, or metal impact (if any) during a Shuttle launch. IMPACT2 simulates an impact event in a few minutes for foam impactors, and in seconds for ice and metal impactors. The damage criterion is derived from results obtained from one sophisticated commercial program, which requires hours to carry out simulations of the same impact events. The program was designed to run much faster than the commercial program with prediction of projectile threshold velocities within 10 to 15% of commercial-program values. The mathematical model involves coupling of Orbiter wing normal modes of vibration to nonlinear or linear springmass models. IMPACT2 solves nonlinear or linear impact problems using classical normal modes of vibration of a target, and nonlinear/ linear time-domain equations for the projectile. Impact loads and stresses developed in the target are computed as functions of time. This model is novel because of its speed of execution. A typical model of foam, or other projectile characterized by material nonlinearities, impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known.

  16. Effect of Impact Damage on the Fatigue Response of TiAl Alloy-ABB-2

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Nazmy, M. Y.; Staubli, M.; Clemens, D. R.

    2001-01-01

    The ability of gamma-TiAl to withstand potential foreign or domestic object damage is a technical risk to the implementation of gamma-TiAl in low pressure turbine (LPT) blade applications. In the present study, the impact resistance of TiAl alloy ABB-2 was determined and compared to the impact resistance of Ti(48)Al(2)Nb(2)Cr. Specimens were impacted with four different impact conditions with impact energies ranging from 0.22 to 6.09 J. After impacting, the impact damage was characterized by crack lengths on both the front and backside of the impact. Due to the flat nature of gamma-TiAl's S-N (stress vs. cycles to failure) curve, step fatigue tests were used to determine the fatigue strength after impacting. Impact damage increased with increasing impact energy and led to a reduction in the fatigue strength of the alloy. For similar crack lengths, the fatigue strength of impacted ABB-2 was similar to the fatigue strength of impacted Ti(48)Al(2)Nb(2)Cr, even though the tensile properties of the two alloys are significantly different. Similar to Ti(48)Al(2)Nb(2)Cr, ABB-2 showed a classical mean stress dependence on fatigue strength. The fatigue strength of impacted ABB-2 could be accurately predicted using a threshold analysis.

  17. Railgun rail gouging by hypervelocity sliding contact

    SciTech Connect

    Barker, L.M.; Trucano, T.G. ); Susoeff, A.R. )

    1989-01-01

    A description is given of a recently resolved mechanisms of gouging which occurs during hypervelocity sliding contact between two materials. A parameter study based on computer modeling of the gouging mechanism is presented in which gouging velocity thresholds are determined for several combinations of sliding materials. Materials which can gouge each other are found to do so only within a certain range of velocities. Related calculations of gaseous material ahead of railgun projectiles are also presented. Gun bore gouging experience with the Lawrence Livermore National Laboratory railgun project is reviewed.

  18. Railgun rail gouging by hypervelocity sliding contact

    SciTech Connect

    Barker, L.M.; Trucano, T.G.; Susoeff, A.R.

    1988-01-01

    A description is given of a recently resolved mechanism of gouging which occurs during hypervelocity sliding contact between two materials. A parameter study based on computer modelling of the gouging mechanism is presented in which gouging velocity thresholds are determined for several combinations of sliding materials. Materials which can gouge each other are found to do so only within a certain range of velocities. Related calculations of gaseous material ahead of railgun projectiles are also presented. Gun bore gouging experience with the Lawrence Livermore National Laboratory railgun project is reviewed.

  19. Damage by indentation and single impact of hard particles on a high chromium white cast iron

    SciTech Connect

    Adler, T.A.; Dogan, O.N.

    1997-03-01

    High chromium white cast irons are used extensively in environments where small particle impact causes considerable damage. In this study, a white cast iron containing 26 wt% Cr, and with a carbide volume fraction of 0.28, is impacted with projectiles at normal incidence using a gas gun. Both crater diameter and the size of the damage zone are measured as a function of projectile velocity, and an analytical model is developed which relates the size of the impact crater to the energy absorbed by plastic and elastic deformation of the white cast iron. Peak impact loads and strain hardening rates during impact are calculated by comparing the impact craters with craters made by quasi-static indentation. It is found that considerable strain hardening occurs in austenitic white cast irons during impact and indentation. Strain localization and dynamic softening are also observed in these materials at higher impact velocities.

  20. SEDS Tether M/OD Damage Analyses

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.; Hill, S. A.

    1997-01-01

    The Small Expendable Deployer System (SEDS) was designed to deploy an endmass at the end of a 20-km-long tether which acts as an upper stage rocket, and the threats from the meteoroid and orbital debris (M/OD) particle environments on SEDS components are important issues for the safety and success of any SEDS mission. However, the possibility of severing the tether due to M/OD particle impacts is an even more serious concern, since the SEDS tether has a relatively large exposed area to the M/OD environments although its diameter is quite small. The threats from the M/OD environments became a very important issue for the third SEDS mission, since the project office proposed using the shuttle orbiter as a launch platform instead of the second stage of a Delta II expendable rocket, which was used for the first two SEDS missions. A series of hyper-velocity impact tests were performed at the Johnson Space Center and Arnold Engineering Development Center to help determine the critical particle sizes required to sever the tether. The computer hydrodynamic code or hydrocode called CTH, developed by the Sandia National Laboratories, was also used to simulate the damage on the SEDS tether caused by both the orbital debris and test particle impacts. The CTH hydrocode simulation results provided the much needed information to help determine the critical particle sizes required to sever the tether. The M/OD particle sizes required to sever the tether were estimated to be less than 0.1 cm in diameter from these studies, and these size particles are more abundant in low-Earth orbit than larger size particles. Finally, the authors performed the M/OD damage analyses for the three SEDS missions; i.e., SEDS-1, -2, and -3 missions, by using the information obtained from the hypervelocity impact test and hydrocode simulations results.

  1. Visualization of impact damage of composite plates by means of the Moire technique

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.; Babcock, C. D.; Chai, H.

    1980-01-01

    The phenomenological aspects of propagation damage due to low velocity impact on heavily loaded graphite-epoxy composite laminates were investigated using high speed photography coupled with the moire fringe technique. High speed moire motion records of the impacted specimens are presented. The results provide information on the time scale and sequence of the failure process. While the generation of the initial damage cannot always be separated temporally from the spreading of the damage, the latter takes place on the average with a speed on the order of 200 m/sec.

  2. Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Kwon, Young S.; Sankar, Bhavani V.

    1992-01-01

    Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.

  3. Damage Simulation in Non-Crimp Fabric Composite Plates Subjected to Impact Loads

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid

    2014-01-01

    Progressive failure analysis (PFA) of non-crimp fabric (NCF) composite laminates subjected to low velocity impact loads was performed using the COmplete STress Reduction (COSTR) damage model implemented through VUMAT and UMAT41 user subroutines in the frame works of the commercial finite element programs ABAQUS/Explicit and LS-DYNA, respectively. To validate the model, low velocity experiments were conducted and detailed correlations between the predictions and measurements for both intra-laminar and inter-laminar failures were made. The developed material and damage model predicts the peak impact load and duration very close with the experimental results. Also, the simulation results of delamination damage between the ply interfaces, in-plane matrix damages and fiber damages were all in good agreement with the measurements from the non-destructive evaluation data.

  4. Foreign body impact event damage formation in composite structures

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1994-01-01

    This report discusses a methodology that can be used to assess the effect of foreign body impacts on composite structural integrity. The described effort focuses on modeling the effect of a central impact on a 5 3/4 inch filament wound test article. The discussion will commence with details of the material modeling that was used to establish the input properties for the analytical model. This discussion is followed by an overview of the impact assessment methodology. The progress on this effort to date is reviewed along with a discussion of tasks that have yet to be completed.

  5. Damage criticality and inspection concerns of composite-metallic aircraft structures under blunt impact

    NASA Astrophysics Data System (ADS)

    Zou, D.; Haack, C.; Bishop, P.; Bezabeh, A.

    2015-04-01

    Composite aircraft structures such as fuselage and wings are subject to impact from many sources. Ground service equipment (GSE) vehicles are regarded as realistic sources of blunt impact damage, where the protective soft rubber is used. With the use of composite materials, blunt impact damage is of special interest, since potential significant structural damage may be barely visible or invisible on the structure's outer surface. Such impact can result in local or non-local damage, in terms of internal delamination in skin, interfacial delamination between stiffeners and skin, and fracture of internal reinforced component such as stringers and frames. The consequences of these events result in aircraft damage, delays, and financial cost to the industry. Therefore, it is necessary to understand the criticality of damage under this impact and provide reliable recommendations for safety and inspection technologies. This investigation concerns a composite-metallic 4-hat-stiffened and 5-frame panel, designed to represent a fuselage structure panel generic to the new generation of composite aircraft. The test fixtures were developed based on the correlation between finite element analyses of the panel model and the barrel model. Three static tests at certain amount of impact energy were performed, in order to improve the understanding of the influence of the variation in shear ties, and the added rotational stiffness. The results of this research demonstrated low velocity high mass impacts on composite aircraft fuselages beyond 82.1 kN of impact load, which may cause extensive internal structural damage without clear visual detectability on the external skin surface.

  6. Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates

    NASA Technical Reports Server (NTRS)

    Hiel, Clement; Brinson, H. F.

    1993-01-01

    Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.

  7. A fracture mechanics analysis of impact damage in a thick composite laminate

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1985-01-01

    Graphite/epoxy filament-wound cases (FWC) for the solid rocket motors of the space shuttle are being made by NASA. The FWC cases are wound with AS4W graphite fiber impregnated with an epoxy resin and are about 1.4 inches or more thick. Graphite-epoxy composite laminates, unlike metals, can be damaged easily by low velocity impacts of objects like dropped tools. The residual tension strength of the FWC laminate, after impact, is being studied at Langley Research Center. The conditions that give minimum visual evidence of damage are being emphasized. A fracture mechanics analysis was developed to predict the residual strength, after impact, using radiographs to measure the size of the damage and an equivalent surface crack to represent the damage.

  8. Relevance of impacter shape to nonvisible damage and residual tensile strength of a thick graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1991-01-01

    A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm and 25.4 mm diameter hemispheres, a sharp corner, and a 6.3 mm diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm and 25.4 mm diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.

  9. Hypervelocity Dust Injection for Plasma Diagnostic Applications

    NASA Astrophysics Data System (ADS)

    Ticos, Catalin

    2005-10-01

    Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.

  10. SmartComposite system for impact damage detection on composite structures

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Beard, Shawn J.; Pinsonnault, Jerome; Banerjee, Sourav

    2009-03-01

    Composites are increasingly used in numerous structural applications because of their low weight-to-strength and weight-to-stiffness ratios. However, the performance and behavior characteristics of nearly all in-service composite structures can be affected by degradation resulting from sustained use as well as from exposure to severe environmental conditions or damage resulting from external conditions such as impact, loading abrasion, operator abuse. These factors can have serious consequences on the structures relative to safety, cost, and operational capability. In this paper, a SmartComposite system is introduced for monitoring the integrity of large composite structures. Key features of the system include miniaturized lightweight hardware, self-diagnostics and an adaptive algorithm to automatically compensate for damaged sensors, reliable damage detection under different environmental conditions, and generation of POD curves. Tests were conducted on composite test article with sensor network embedded inside the composite skin or surface mounted to demonstrate the impact damage detection capability of the SmartComposite System. It is clear from the test results that the SmartComposite system can successfully detect impact damages, including both damage location and probability of damage size.

  11. Penetration and induced damage evolution of concrete and granite when subjected to multiple projectile impacts

    NASA Astrophysics Data System (ADS)

    Gomez, Jason Thomas

    An experimental study was conducted to investigate the penetration process of multiple impacts into concrete targets. The concrete targets were subjected to repeated constant velocity impacts with an ogive nose projectile. The penetration and crater formation data were consistent with single impact penetration data from previous studies conducted at Sandia National Laboratories. In order to predict the depth of the multiple impact penetration, a single impact penetration model, developed by M. Forrestal at Sandia National Laboratories, was extended to account for the degradation of the target strength with each subsequent impact. The degradation of the target was determined empirically and included in the model as a strength-modifying factor. To further understand the multiple impact penetration process, a study was conducted to look at both the static and dynamic properties of concrete and granite as a function of induced damage. Both static and dynamic compression experiments were performed on concrete and granite specimens with various levels of induced damage. The static compressive strength of both materials decreased with increasing levels of damage due to the induced damage causing the activation and propagation of failure cracks in the specimens. In contrast, the dynamic compressive strength remained unchanged with increasing damage due to the inability of the fracture process zone to develop and relieve the strain energy before complete specimen failure. A series of dynamic and static tensile-splitting experiments were performed on concrete and granite specimens to investigate the effect of induced damage on their tensile strength. The experiments showed that the static splitting strength was highly dependent on the orientation of the induced damage with regard to the applied loading, however the dynamic tensile strength decreased with increasing damage with no apparent dependency on the random damage orientation. Photoelastic experiments have shown that

  12. Regional flood impact assessment based on local land use patterns and sample damage records

    NASA Astrophysics Data System (ADS)

    Aubrecht, Christoph; Steinnocher, Klaus; Köstl, Mario

    2011-10-01

    Increasing land consumption and land demand particularly in mountainous regions entail further expansion of settlements to known hazard-prone areas. Potential impacts as well as regionally defined levels of 'acceptable risk' are often not transparently communicated and residual risks are not perceived by the public. Analysing past events and assessing regional damage potentials can help planners on all levels to improve comprehensive and sustainable risk management. In this letter, a geospatial and statistical approach to regional damage cost assessment is presented, integrating information on actual conditions in terms of land use disparities and recorded damage data from a documented severe flooding event. In a first step building objects are categorized according to their function and use. Tabular company information is linked to the building model via geocoded postal address data, enabling classification of building types in terms of predominant uses. For the disaster impact assessment the flood plain is delineated based on post-disaster aerial imagery and a digital terrain model distinguishing areas of long and short term flooding. Finally, four regional damage cost assessment scenarios on different levels of detail are calculated. The damage cost projection relies on available sample building-level damage records, allowing rough damage averaging for distinct building uses. Results confirm that consideration of local land use patterns is essential for optimizing regional damage cost projections.

  13. Compression-after-Impact Strength of Sandwich Panels with Core Crushing Damage

    NASA Astrophysics Data System (ADS)

    Shipsha, Andrey; Zenkert, Dan

    2005-05-01

    Compression-after-impact (CAI) strength of foam-cored sandwich panels with composite face sheets is investigated experimentally. The low-velocity impact by a semi-spherical (blunt) projectile is considered, producing a damage mainly in a form of core crushing accompanied by a permanent indentation (residual dent) in the face sheet. Instrumentation of the panels by strain gauges and digital speckle photography analysis are used to study the effect of damage on failure mechanisms in the panel. Residual dent growth inwards toward the mid-plane of a sandwich panel followed by a complete separation of the face sheet is identified as the failure mode. CAI strength of sandwich panels is shown to decrease with increasing impact damage size. Destructive sectioning of sandwich panels is used to characterise damage parameters and morphology for implementation in a finite element model. The finite element model that accounts for relevant details of impact damage morphology is developed and proposed for failure analysis and CAI strength predictions of damaged panels demonstrating a good correlation with experimental results.

  14. Effects of stacking sequence on impact damage resistance and residual strength for quasi-isotropic laminates

    NASA Technical Reports Server (NTRS)

    Dost, Ernest F.; Ilcewicz, Larry B.; Avery, William B.; Coxon, Brian R.

    1991-01-01

    Residual strength of an impacted composite laminate is dependent on details of the damage state. Stacking sequence was varied to judge its effect on damage caused by low-velocity impact. This was done for quasi-isotropic layups of a toughened composite material. Experimental observations on changes in the impact damage state and postimpact compressive performance were presented for seven different laminate stacking sequences. The applicability and limitations of analysis compared to experimental results were also discussed. Postimpact compressive behavior was found to be a strong function of the laminate stacking sequence. This relationship was found to depend on thickness, stacking sequence, size, and location of sublaminates that comprise the impact damage state. The postimpact strength for specimens with a relatively symmetric distribution of damage through the laminate thickness was accurately predicted by models that accounted for sublaminate stability and in-plane stress redistribution. An asymmetric distribution of damage in some laminate stacking sequences tended to alter specimen stability. Geometrically nonlinear finite element analysis was used to predict this behavior.

  15. Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    The main objective of this NASA FAR project is to conduct ultrasonic assessment of impact-induced damage and microcracking in polymer matrix composites at various temperatures. It is believed that the proposed study of impact damage assessment on polymer matrix composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Currently, impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  16. Plant-Damage Assessment Technique for Evaluating Military Vehicular Impacts to Vegetation in the Mojave Desert

    SciTech Connect

    D. J. Hansen; W. K. Ostler

    2001-09-01

    A new plant damage assessment technique was developed by plant ecologists from Bechtel Nevada at the U.S. Department of Energy's National Security Administration Nevada Operations Office and funded by the Strategic Environmental Research and Development Program Project CS-1131 in cooperation with the U.S. Army's National Training Center (NTC) at Fort Irwin, California. The technique establishes linear transects the width of vehicle tracts from evidence of vehicle tracks in the soil (usually during a prior training rotation period of 30 days or since the last rain or wind storm), and measures vegetation within the tracks to determine the area of plant parts being run over, the percent of the impacted parts damaged, and the percent of impacted parts expected to recover. It documents prior-damage classes based on estimated of damage that plants have apparently experienced previously (as assessed from field indicators of damage such as plant shape and height). The technique was used to evaluate different vehicle types (rubber-tire wheels vs. tracks) in six area at the NTC with different soils and training intensity levels. The technique provides tabular data that can be sorted and queried to show a variety of trends related to military vehicular impacts. The technique also appears suitable for assessing other non-military off-road traffic impacts. Findings report: (1) differences in plant sensitivity of different vehicular impacts, (2) plant cover and density by species and training area, (3) the degree to which wheels have less impact than tracks, and (4) the mean percent survival is inversely proportional to the degree of prior damage received by the vegetation (i.e., plants previously impacted have lower survival than plants not previously impacted).

  17. Measurement of incident position of hypervelocity particles on piezoelectric lead zirconate titanate detector

    SciTech Connect

    Takechi, Seiji; Onishi, Toshiyuki; Minami, Shigeyuki; Miyachi, Takashi; Fujii, Masayuki; Hasebe, Nobuyuki; Nogami, Ken-ichi; Ohashi, Hideo; Sasaki, Sho; Shibata, Hiromi; Iwai, Takeo; Gruen, Eberhard; Srama, Ralf; Okada, Nagaya

    2008-04-15

    A cosmic dust detector for use onboard a satellite is currently being developed by using piezoelectric lead zirconate titanate (PZT). The characteristics of the PZT detector have been studied by bombarding it with hypervelocity iron (Fe) particles supplied by a Van de Graaff accelerator. One central electrode and four peripheral electrodes were placed on the front surface of the PZT detector to measure the impact positions of the incident Fe particles. It was demonstrated that the point of impact on the PZT detector could be identified by using information on the time at which the first peak of the output signal obtained from each electrode appeared.

  18. NASA White Sands Test Facility Remote Hypervelocity Test Laboratory

    NASA Video Gallery

    Tour the NASA White Sands Test Facility's Remote Hypervelocity Test Laboratory in Las Cruces, New Mexico. To learn more about White Sands Test Facility, go to http://www.nasa.gov/centers/wstf/home/...

  19. Structural Health Monitoring and Impact Detection Using Neural Networks for Damage Characterization

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.

    2006-01-01

    Detection of damage due to foreign object impact is an important factor in the development of new aerospace vehicles. Acoustic waves generated on impact can be detected using a set of piezoelectric transducers, and the location of impact can be determined by triangulation based on the differences in the arrival time of the waves at each of the sensors. These sensors generate electrical signals in response to mechanical motion resulting from the impact as well as from natural vibrations. Due to electrical noise and mechanical vibration, accurately determining these time differentials can be challenging, and even small measurement inaccuracies can lead to significant errors in the computed damage location. Wavelet transforms are used to analyze the signals at multiple levels of detail, allowing the signals resulting from the impact to be isolated from ambient electromechanical noise. Data extracted from these transformed signals are input to an artificial neural network to aid in identifying the moment of impact from the transformed signals. By distinguishing which of the signal components are resultant from the impact and which are characteristic of noise and normal aerodynamic loads, the time differentials as well as the location of damage can be accurately assessed. The combination of wavelet transformations and neural network processing results in an efficient and accurate approach for passive in-flight detection of foreign object damage.

  20. Feasibility of PZT ceramics for impact damage detection in composite structures

    NASA Astrophysics Data System (ADS)

    Dib, Gerges; Koricho, Ermias; Karpenko, Oleksii; Haq, Mahmood; Udpa, Lalita; Udpa, Satish S.

    2015-03-01

    Fiber reinforced plastic composites are becoming widely used in vehicles and airframe structures due to their high strength to weight ratio. However unlike metals, the multilayered composite structures are more susceptible to damage mechanisms such as disbonds and delaminations due to impacts. It is often difficult to visually detect the damage. Lead-Zirconate-Titanate (PZT) thin films are becoming popular for in-situ structural health monitoring due to their small size, high piezoelectric coupling coefficient, and ease of surface-mounting and/or embedding in composite structures. A network of such transducers could be utilized for damage detection using guided wave techniques, impedance techniques, or passive impact detection techniques. However, the PZT films are subject to the same impact probabilities that the structure encounters. If the transducers fail due to the subjected impacts, they can result in false readings and ultimately failing to correctly detect damage in the structure. This paper presents a feasibility study using the guided wave S0 mode for detecting impact damage. The health of the structure is quantified using guided wave measurements, and the PZT health is monitored using impedance methods.

  1. Impact damage on shielded gas-filled vessels

    NASA Astrophysics Data System (ADS)

    Schäfer, F.; Schneider, E.; Lambert, M.

    2001-10-01

    This paper gives a summary of the findings from impacts on shielded gas-filled cylindrical aluminium alloy (A12219 T851) and titanium alloy (Ti6A14V) pressure vessels that were performed at the Ernst-Mach-Institute in the frame of an ESA contract. The effect of impacts on shielded vessels with projectiles that have a kinetic energy close to the ballistic limit of the combined system of shield and vessel's front wall was investigated. The shields were single Al-bumper plates, unreinforced MLI and MLI reinforced with 2 layers of Betacloth. The threshold diameters that cause leakage from the vessel's front wall were determined experimentally as a function of shield material and shield spacing. For Al-shielded Al- and Ti-vessels, a safety design factor to avoid leakage is presented based on existing Whipple shield equations.

  2. Radiation damage from single heavy ion impacts on metal surfaces

    SciTech Connect

    Donnelly, S.E.; Birtcher, R.C.

    1998-06-01

    The effects of single ion impacts on the surfaces of films of Au, Ag, In and Pb have been studied using in-situ transmission electron microscopy. On all of these materials, individual ion impacts produce surface craters, in some cases, with associated expelled material. The cratering efficiency scales with the density of the irradiated metal. For very thin Au foils ({approx} 20--50 nm), in some cases individual ions are seen to punch small holes completely through the foil. Continued irradiation results in a thickening of the foil. The process giving rise to crater and hole formation and other changes observed in the thin foils has been found to be due to pulsed localized flow--i.e. melting and flow due to the thermal spikes arising from individual ion impacts. Experiments carried out on thin films of silver sandwiched between SiO{sub 2} layers have indicated that pulsed localized flow also occurs in this system and contributes to the formation of Ag nanoclusters in SiO{sub 2}--a system of interest for its non-linear optical properties. Calculation indicates that, when ion-induced, collision cascades occur near surfaces (within {approx} 5 nm) with energy densities sufficient to cause melting, craters are formed. Crater formation occurs as a result of the explosive outflow of material from the hot molten core of the cascade. Processes occurring in the sandwiched layer are less well understood.

  3. Force Criterion Prediction of Damage for Carbon/Epoxy Composite Panels Impacted by High Velocity Ice

    NASA Astrophysics Data System (ADS)

    Rhymer, Jennifer D.

    The use of advanced fiber-reinforced polymer matrix composites in load-bearing aircraft structures is increasing, as evident by the various composites-intensive transport aircraft presently under development. A major impact source of concern for these structures is hail ice, which affects design and skin-sizing (skin thickness determination) at various locations of the aircraft. Impacts onto composite structures often cause internal damage that is not visually detectable due to the high strength and resiliency of the composite material (unlike impacts onto metallic structures). This internal damage and its effect on the performance of the structure are of great concern to the aircraft industry. The prediction of damage in composite structures due to SHI impact has been accomplished via experimental work, explicit dynamic nonlinear finite element analysis (FEA) and the definition of design oriented relationships. Experiments established the critical threshold and corresponding analysis provided contact force results not readily measurable in high velocity SHI impact experiments. The design oriented relationships summarize the FEA results and experimental database into contact force estimation curves that can be easily applied for damage prediction. Failure thresholds were established for the experimental conditions (panel thickness ranging from 1.56 to 4.66 mm and ice diameters from 38.1 to 61.0 mm). Additionally, the observations made by high-speed video during the impact event, and ultrasonic C-scan post-impact, showed how the ice failed during impact and the overall shape and location of the panel damage. Through analysis, the critical force, the force level where damage occurs above but not below, of a SHI impact onto the panel was found to be dependent only on the target structure. However, the peak force generated during impact was dependent on both the projectile and target. Design-oriented curves were generated allowing the prediction of the allowable

  4. Response of Hypervelocity Boundary Layers to Global and Local Distortion

    NASA Astrophysics Data System (ADS)

    Flaherty, William; Austin, Joanna

    2013-11-01

    Concave surface curvature can impose significant distortion to compressible boundary layer flows due to multiple, potentially coupled, effects including an adverse pressure gradient, bulk flow compression, and possible centrifugal instabilities. Approximate methods provide insight into dominant mechanisms, however few strategies are capable of treating heat transfer effects and predictions diverge significantly from the available experimental data at larger pressure gradient. In this work, we examine the response of boundary layers to global and local distortions in hypervelocity flows where thermochemical energy exchange has significant impact on boundary layer structure and stability. Experiments are carried out in a novel expansion tube facility built at Illinois. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle, even at the conditions of greatest distortion. As a model problem to study the evolution of large-scale structures under strained conditions, streamwise vortices are imposed into the boundary layer. The impact of the additional local distortion is investigated. The heat transfer scaling is found to be robust even in the presence of the imposed structures.

  5. Gray matter damage in multiple sclerosis: Impact on clinical symptoms.

    PubMed

    van Munster, Caspar E P; Jonkman, Laura E; Weinstein, Henry C; Uitdehaag, Bernard M J; Geurts, Jeroen J G

    2015-09-10

    Traditionally, multiple sclerosis (MS) is considered to be a disease primarily affecting the white matter (WM). However, the development of some clinical symptoms such as cognitive impairment cannot be fully explained by the severity of WM pathology alone. During the past decades it became clear that gray matter (GM) damage of the brain is also of major importance in patients with MS. Thanks to improved magnetic resonance imaging techniques, the in vivo detection of GM pathology became possible, enabling a better understanding of the manifestation of various clinical symptoms, such as cognitive impairment. Using higher field strengths and specific sequences, detection of cortical lesions was increased. However, despite these improvements, visualization of cortical MS lesions remains difficult (only about 30-50% of histopathologically confirmed lesions can be detected at 7 Tesla magnetic resonance imaging (MRI)). Furthermore, more research is needed to understand the exact interplay of cortical lesions, GM atrophy and WM pathology in the development of clinical symptoms. In this review, we summarize the historical background that preceded current research and provide an overview of the current knowledge on clinical consequences of GM pathology in MS in terms of disability, cognitive impairment and other clinically important signs such as epileptic seizures. PMID:26164500

  6. Impact of Propionic Acid on Liver Damage in Rats

    PubMed Central

    Al- Daihan, Sooad; Shafi Bhat, Ramesa

    2015-01-01

    Propionic acid (PA) is a short chain fatty acid, a common food preservative and metabolic end product of enteric bacteria in the gut. The present study was undertaken to investigate the effect of PA on liver injury in male rats. Male western albino rats were divided into two groups. The first group served as normal control, the second was treated with PA. The activities of serum hepatospecific markers such as aspartate transaminase, alanine transaminase, and alkaline phosphatase were estimated. Antioxidant status in liver tissues was estimated by determining the level of lipid peroxidation and activities of enzymatic and non-enzymatic antioxidants. Sodium and potassium levels were also measured in liver tissue. PA treatment caused significant changes in all hepatospecific markers. Biochemical analysis of liver homogenates from PA-treated rats showed an increase in oxidative stress markers like lipid peroxidation and lactate dehydrogenase, coupled with a decrease in glutathione, vitamin C and glutathione S- transferase. However, PA exposure caused no change in sodium and potassium levels in liver tissue. Our study demonstrated that PA persuade hepatic damage in rats. PMID:26629488

  7. Automated laser-based barely visible impact damage detection in honeycomb sandwich composite structures

    NASA Astrophysics Data System (ADS)

    Girolamo, D.; Girolamo, L.; Yuan, F. G.

    2015-03-01

    Nondestructive evaluation (NDE) for detection and quantification of damage in composite materials is fundamental in the assessment of the overall structural integrity of modern aerospace systems. Conventional NDE systems have been extensively used to detect the location and size of damages by propagating ultrasonic waves normal to the surface. However they usually require physical contact with the structure and are time consuming and labor intensive. An automated, contactless laser ultrasonic imaging system for barely visible impact damage (BVID) detection in advanced composite structures has been developed to overcome these limitations. Lamb waves are generated by a Q-switched Nd:YAG laser, raster scanned by a set of galvano-mirrors over the damaged area. The out-of-plane vibrations are measured through a laser Doppler Vibrometer (LDV) that is stationary at a point on the corner of the grid. The ultrasonic wave field of the scanned area is reconstructed in polar coordinates and analyzed for high resolution characterization of impact damage in the composite honeycomb panel. Two methodologies are used for ultrasonic wave-field analysis: scattered wave field analysis (SWA) and standing wave energy analysis (SWEA) in the frequency domain. The SWA is employed for processing the wave field and estimate spatially dependent wavenumber values, related to discontinuities in the structural domain. The SWEA algorithm extracts standing waves trapped within damaged areas and, by studying the spectrum of the standing wave field, returns high fidelity damage imaging. While the SWA can be used to locate the impact damage in the honeycomb panel, the SWEA produces damage images in good agreement with X-ray computed tomographic (X-ray CT) scans. The results obtained prove that the laser-based nondestructive system is an effective alternative to overcome limitations of conventional NDI technologies.

  8. Automated laser-based barely visible impact damage detection in honeycomb sandwich composite structures

    SciTech Connect

    Girolamo, D. Yuan, F. G.; Girolamo, L.

    2015-03-31

    Nondestructive evaluation (NDE) for detection and quantification of damage in composite materials is fundamental in the assessment of the overall structural integrity of modern aerospace systems. Conventional NDE systems have been extensively used to detect the location and size of damages by propagating ultrasonic waves normal to the surface. However they usually require physical contact with the structure and are time consuming and labor intensive. An automated, contactless laser ultrasonic imaging system for barely visible impact damage (BVID) detection in advanced composite structures has been developed to overcome these limitations. Lamb waves are generated by a Q-switched Nd:YAG laser, raster scanned by a set of galvano-mirrors over the damaged area. The out-of-plane vibrations are measured through a laser Doppler Vibrometer (LDV) that is stationary at a point on the corner of the grid. The ultrasonic wave field of the scanned area is reconstructed in polar coordinates and analyzed for high resolution characterization of impact damage in the composite honeycomb panel. Two methodologies are used for ultrasonic wave-field analysis: scattered wave field analysis (SWA) and standing wave energy analysis (SWEA) in the frequency domain. The SWA is employed for processing the wave field and estimate spatially dependent wavenumber values, related to discontinuities in the structural domain. The SWEA algorithm extracts standing waves trapped within damaged areas and, by studying the spectrum of the standing wave field, returns high fidelity damage imaging. While the SWA can be used to locate the impact damage in the honeycomb panel, the SWEA produces damage images in good agreement with X-ray computed tomographic (X-ray CT) scans. The results obtained prove that the laser-based nondestructive system is an effective alternative to overcome limitations of conventional NDI technologies.

  9. Three-phase hypervelocity projectile launcher

    DOEpatents

    Fugelso, L. Erik; Langner, Gerald C.; Burns, Kerry L.; Albright, James N.

    1994-01-01

    A hypervelocity projectile launcher for use in perforating borehole casings provides improved penetration into the surrounding rock structure. The launcher includes a first cylinder of explosive material that defines an axial air-filled cavity, a second cylinder of explosive material defining an axial frustum-shaped cavity abutting and axially aligned with the first cylinder. A pliant washer is located between and axially aligned with the first and second cylinders. The frustum shaped cavity is lined with a metal liner effective to form a projectile when the first and second cylinders are detonated. The washer forms a unique intermediate projectile in advance of the liner projectile and enables the liner projectile to further penetrate into and fracture the adjacent rock structure.

  10. Inspection of Impact Damage in Honeycomb Composite by Espi, Thermography and Ultrasonic Testing

    NASA Astrophysics Data System (ADS)

    Choi, Manyong; Park, Jeonghak; Kim, Wontae; Kang, Kisoo

    Honeycomb composites are now fairly widely used in civilian and military aircraft structures. Common defects found in these materials are delaminations by impact damage and their presence will lead to structural weaknesses which could lead failure of the airframe structures. It is important to develop effective non-destructive testing procedures to identify these defects and increase the safety of aircraft travel. This paper describes the detection technique of impact damage defect using thermography and ESPI. The results obtained with the two techniques are compared with ultrasonic C-scan testing. The investigation shows that both imaging NDT methods are able to identify the presence of artificial defect and impact damage. The adoption of the thermography allowed significant advantages in inspection condition, and gives smaller error in quantitative estimation of defects.

  11. Impact of fluoxetine on liver damage in rats.

    PubMed

    Inkielewicz-Stępniak, Iwona

    2011-01-01

    Fluoxetine (Flux) is a fluorine-containing drug that selectively inhibits serotonin reuptake. It is widely prescribed as a treatment for depression disorders. Hepatic side effects have been reported during Flux therapy. These reports led us to investigate the involvement of oxidative stress mechanisms in liver injury caused by Flux. It has been shown that exposure to fluoride (F(-)) induces excessive production of free radicals and affects the antioxidant defense system. Based on this knowledge, we examined the F(-) concentration in serum and urine during administration of Flux. In our study, the effects of one month of Flux treatment on lipid and protein peroxidation, the concentration of uric acid in the liver and the activity of transaminases and transferases in the serum were investigated in rats. Eighteen adult male Wistar rats were divided into three equal groups of six animals each: (I) controls who drank tap water and received 1 ml of tap water intragastrically; (II) animals that received 8 mg Flux/kg bw/day intragastrically; and (III) animals that received 24 mg Flux/kg bw/day intragastrically. Flux treatment increased of the levels of carbonyl groups, thiobarbituric acid reactive species (TBARS) and the uric acid content in the liver. The activities of alanine transaminase (ALT), aspartate transaminase (AST) and glutathione-S transferase (GST) increased in the serum of the treated groups. The Flux levels in the plasma of the treated rats increased significantly in a dose-dependent manner. We observed no changes in the concentration of fluoride in either the serum or the urine of treated rats compared to the control group. In conclusion, our study indicates that Flux induces liver damage and mediates free radical reactions. Our data also indicate that Flux does not release F(-) during metabolism and does not affect physiological levels of F(-) in the serum or urine. PMID:21602599

  12. Theory and Observations of Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Ginsburg, Idan; Loeb, A.; Wegner, G. A.; Brown, W. R.; Perets, H.

    2013-01-01

    Since first discovered in 2005, stars ejected from the Milky Way, so-called hypervelocity stars (HVSs), have greatly increased our understanding of the kinematics and dynamics at the Galactic Center (GC). Using N-body simulations we show that an encounter between a binary star-system and the massive black hole (MBH) at the GC can result in the production of a HVS for one component of the binary, while the companion star remains in a tight orbit around the MBH. Such an encounter can also result in the coalescence of both stars in a highly-eccentric orbit around the MBH. These mechanisms may explain the suprising appearance of massive stars within 1'' of the GC. Continuing with our simulations, we find that the disruption of a triple system by the MBH can produce hypervelocity binaries. Such binaries may evolve into massive blue stragglers, while binaries captured by the MBH may be rejuvenated stars. Our simulations also predict that planets can be ejected from the GC at velocities approaching 5 percent the speed of light. Furthermore, HVSs can house planets that should be detectable as transits. The discovery of such a transit has important consequences for understanding planetary formation and evolution at the GC. We will also present photometry from 11 HVSs, taken February and May 2012, at the WIYN 3.5-meter and Hiltner 2.4-meter telescopes. Our photometry shows that many of the observed HVSs are likely slowly pulsating B stars, which constrains their nature and distance. Ongoing surveys for HVSs, including collaboration with the Australian Sky Mapper survey, as well as Hubble Space Telescope proper motion measurements promise to continue expanding our understanding of HVSs and consequently the dynamics within our galaxy.

  13. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1990-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  14. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1989-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  15. Relevance of impacter shape to nonvisible damage and residual tensile strength of a thick graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1990-01-01

    A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm (1.4 in.) thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, a sharp corner, and a 6.3 mm (0.25 in.) diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The damage on the surface consisted of a crater shaped like the impacter, and the damage below the surface consisted of broken fibers. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.

  16. The influence of lay-up and thickness on composite impact damage and compression strength

    NASA Technical Reports Server (NTRS)

    Guynn, E. G.; Obrien, T. K.

    1985-01-01

    The effects of composite stacking sequence, thickness, and percentage of zero-degree plies on the size, shape, and distribution of delamination through the laminate thickness and on residual compression strength following impact were studied. Graphite/epoxy laminates were impacted with an 0.5 inch diameter aluminum sphere at a specific low or high velocity. Impact damage was measured nondestructively by ultrasonic C-scans and X-radiography and destructively by the deply technique, and compression strength tests were performed. It was found that differences in compression failure strain due to stacking sequence were small, while laminates with very low percentages of zero-degree plies had similar failure loads but higher failure strains than laminates with higher percentages of zero-degree plies. Failure strain did not correlate with planar impact damage area, and delaminations in impact regions were associated with matrix cracking.

  17. Development of an analytic procedure to calculate damage accumulation in composites during low velocity impact

    NASA Technical Reports Server (NTRS)

    Humphreys, E. A.; Goering, J.

    1983-01-01

    A computerized procedure was developed to model the response of a laminated composite plate subjected to low velocity impact. The methodology incorporated transient dynamics finite element analysis coupled with composite layer and interlaminar stress predictions. Damage was predicted using a stress based failure criteria and incorporated into the solution as stiffness modifications. The force-displacement relation between the impactor and plate was modelled with a nonlinear contact spring similar to Hertzian contact. Analyses performed predicted ply damage early in the impact event when the displacement fields were characteristic of high frequency flexurable response.

  18. Impact damage detection in sandwich composite structures using Lamb waves and laser vibrometry

    NASA Astrophysics Data System (ADS)

    Lamboul, B.; Passilly, B.; Roche, J.-M.; Osmont, D.

    2013-01-01

    This experimental study explores the feasibility of impact damage detection in composite sandwich structures using Lamb wave excitation and signals acquired with a laser Doppler vibrometer. Energy maps are computed from the transient velocity wave fields and used to highlight defect areas in impacted coupons of foam core and honeycomb core sandwich materials. The technique performs well for the detection of barely visible damage in this type of material, and is shown to be robust in the presence of wave reverberation. Defect extent information is not always readily retrieved from the obtained defect signatures, which depend on the wave - defect interaction mechanisms.

  19. Impacts of Landscape Context on Patterns of Wind Downfall Damage in a Fragmented Amazonian Landscape

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Uriarte, M.; DeFries, R. S.; Gutierrez-Velez, V. H.; Fernandes, K.; Pinedo-Vasquez, M.

    2015-12-01

    Wind is a major disturbance in the Amazon and has both short-term impacts and lasting legacies in tropical forests. Observed patterns of damage across landscapes result from differences in wind exposure and stand characteristics, such as tree stature, species traits, successional age, and fragmentation. Wind disturbance has important consequences for biomass dynamics in Amazonian forests, and understanding the spatial distribution and size of impacts is necessary to quantify the effects on carbon dynamics. In November 2013, a mesoscale convective system was observed over the study area in Ucayali, Peru, a highly human modified and fragmented forest landscape. We mapped downfall damage associated with the storm in order to ask: how does the severity of damage vary within forest patches, and across forest patches of different sizes and successional ages? We applied spectral mixture analysis to Landsat images from 2013 and 2014 to calculate the change in non-photosynthetic vegetation fraction after the storm, and combined it with C-band SAR data from the Sentinel-1 satellite to predict downfall damage measured in 30 field plots using random forest regression. We then applied this model to map damage in forests across the study area. Using a land cover classification developed in a previous study,