Sample records for hypoxia responsive elements

  1. Assessment of hypoxia and TNF-alpha response by a vector with HRE and NF-kappaB response elements.

    PubMed

    Chen, Zhilin; Eadie, Ashley L; Hall, Sean R; Ballantyne, Laurel; Ademidun, David; Tse, M Yat; Pang, Stephen C; Melo, Luis G; Ward, Christopher A; Brunt, Keith R

    2017-01-01

    Hypoxia and inflammatory cytokine activation (H&I) are common processes in many acute and chronic diseases. Thus, a single vector that responds to both hypoxia and inflammatory cytokines, such as TNF-alpha, is useful for assesing the severity of such diseases. Adaptation to hypoxia is regulated primarily by hypoxia inducible transcription factor (HIF alpha) nuclear proteins that engage genes containing a hypoxia response element (HRE). Inflammation activates a multitude of cytokines, including TNF-alpha, that invariably modulate activation of the nuclear factor kappa B (NF-kB) transcription factor. We constructed a vector that encompassed both a hypoxia response element (HRE), and a NF-kappaB responsive element. We show that this vector was functionally responsive to both hypoxia and TNF-alpha, in vitro and in vivo . Thus, this vector might be suitable for the detection and assessment of hypoxia or TNF-alpha.

  2. The yeast genome may harbor hypoxia response elements (HRE).

    PubMed

    Ferreira, Túlio César; Hertzberg, Libi; Gassmann, Max; Campos, Elida Geralda

    2007-01-01

    The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.

  3. Hypoxia-induced endothelial NO synthase gene transcriptional activation is mediated through the tax-responsive element in endothelial cells.

    PubMed

    Min, Jiho; Jin, Yoon-Mi; Moon, Je-Sung; Sung, Min-Sun; Jo, Sangmee Ahn; Jo, Inho

    2006-06-01

    Although hypoxia is known to induce upregulation of endothelial NO synthase (eNOS) gene expression, the underlying mechanism is largely unclear. In this study, we show that hypoxia increases eNOS gene expression through the binding of phosphorylated cAMP-responsive element binding (CREB) protein (pCREB) to the eNOS gene promoter. Hypoxia (1% O2) increased both eNOS expression and NO production, peaking at 24 hours, in bovine aortic endothelial cells, and these increases were accompanied by increases in pCREB. Treatment with the protein kinase A inhibitor H-89 or transfection with dominant-negative inhibitor of CREB reversed the hypoxia-induced increases in eNOS expression and NO production, with concomitant inhibition of the phosphorylation of CREB induced by hypoxia, suggesting an involvement of protein kinase A/pCREB-mediated pathway. To map the regulatory elements of the eNOS gene responsible for pCREB binding under hypoxia, we constructed an eNOS gene promoter (-1600 to +22 nucleotides) fused with a luciferase reporter gene [pGL2-eNOS(-1600)]. Hypoxia (for 24-hour incubation) increased the promoter activity by 2.36+/-0.18-fold in the bovine aortic endothelial cells transfected with pGL2-eNOS(-1600). However, progressive 5'-deletion from -1600 to -873 completely attenuated the hypoxia-induced increase in promoter activity. Electrophoretic mobility shift, anti-pCREB antibody supershift, and site-specific mutation analyses showed that pCREB is bound to the Tax-responsive element (TRE) site, a cAMP-responsive element-like site, located at -924 to -921 of the eNOS promoter. Our data demonstrate that the interaction between pCREB and the Tax-responsive element site within the eNOS promoter may represent a novel mechanism for the mediation of hypoxia-stimulated eNOS gene expression.

  4. Characterization of a hypoxia-response element in the Epo locus of the pufferfish, Takifugu rubripes.

    PubMed

    Kulkarni, Rashmi P; Tohari, Sumanty; Ho, Adrian; Brenner, Sydney; Venkatesh, Byrappa

    2010-06-01

    Animals respond to hypoxia by increasing synthesis of the glycoprotein hormone erythropoietin (Epo) which in turn stimulates the production of red blood cells. The gene encoding Epo has been recently cloned in teleost fishes such as the pufferfish Takifugu rubripes (fugu) and zebrafish (Danio rerio). It has been shown that the transcription levels of Epo in teleost fishes increase in response to anemia or hypoxia in a manner similar to its human ortholog. However, the cis-regulatory element(s) mediating the hypoxia response of Epo gene in fishes has not been identified. In the present study, using the human hepatoma cell line (Hep3B), we have identified and characterized a hypoxia response element (HRE) in the fugu Epo locus. The sequence of the fugu HRE (ACGTGCTG) is identical to that of the HRE in the human EPO locus. However, unlike the HRE in the mammalian Epo locus, which is located in the 3' region of the gene, the fugu HRE is located in the 5' flanking region and on the opposite strand of DNA. This HRE is conserved in other teleosts such as Tetraodon and zebrafish in a similar location. A 365-bp fragment containing the fugu HRE was able to drive GFP expression in the liver of transgenic zebrafish. However, we could not ascertain if the expression of transgene is induced by hypoxia in vivo due to the low and variable levels of GFP expression in transgenic zebrafish. Our investigations also revealed that the Epo locus has experienced extensive rearrangements during vertebrate evolution. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Hypoxia-induced oxidative base modifications in the VEGF hypoxia-response element are associated with transcriptionally active nucleosomes.

    PubMed

    Ruchko, Mykhaylo V; Gorodnya, Olena M; Pastukh, Viktor M; Swiger, Brad M; Middleton, Natavia S; Wilson, Glenn L; Gillespie, Mark N

    2009-02-01

    Reactive oxygen species (ROS) generated in hypoxic pulmonary artery endothelial cells cause transient oxidative base modifications in the hypoxia-response element (HRE) of the VEGF gene that bear a conspicuous relationship to induction of VEGF mRNA expression (K.A. Ziel et al., FASEB J. 19, 387-394, 2005). If such base modifications are indeed linked to transcriptional regulation, then they should be detected in HRE sequences associated with transcriptionally active nucleosomes. Southern blot analysis of the VEGF HRE associated with nucleosome fractions prepared by micrococcal nuclease digestion indicated that hypoxia redistributed some HRE sequences from multinucleosomes to transcriptionally active mono- and dinucleosome fractions. A simple PCR method revealed that VEGF HRE sequences harboring oxidative base modifications were found exclusively in mononucleosomes. Inhibition of hypoxia-induced ROS generation with myxathiozol prevented formation of oxidative base modifications but not the redistribution of HRE sequences into mono- and dinucleosome fractions. The histone deacetylase inhibitor trichostatin A caused retention of HRE sequences in compacted nucleosome fractions and prevented formation of oxidative base modifications. These findings suggest that the hypoxia-induced oxidant stress directed at the VEGF HRE requires the sequence to be repositioned into mononucleosomes and support the prospect that oxidative modifications in this sequence are an important step in transcriptional activation.

  6. Gene expression promoted by the SV40 DNA targeting sequence and the hypoxia-responsive element under normoxia and hypoxia.

    PubMed

    Sacramento, C B; Moraes, J Z; Denapolis, P M A; Han, S W

    2010-08-01

    The main objective of the present study was to find suitable DNA-targeting sequences (DTS) for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS) and hypoxia-responsive element (HRE) sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF). The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2) and hypoxia (less than 5% O2) were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line) in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.

  7. Hypoxia inducible factor-1 mediates the expression of the immune checkpoint HLA-G in glioma cells through hypoxia response element located in exon 2.

    PubMed

    Yaghi, Layale; Poras, Isabelle; Simoes, Renata T; Donadi, Eduardo A; Tost, Jörg; Daunay, Antoine; de Almeida, Bibiana Sgorla; Carosella, Edgardo D; Moreau, Philippe

    2016-09-27

    HLA-G is an immune checkpoint molecule with specific relevance in cancer immunotherapy. It was first identified in cytotrophoblasts, protecting the fetus from maternal rejection. HLA-G tissue expression is very restricted but induced in numerous malignant tumors such as glioblastoma, contributing to their immune escape. Hypoxia occurs during placenta and tumor development and was shown to activate HLA-G. We aimed to elucidate the mechanisms of HLA-G activation under conditions combining hypoxia-mimicking treatment and 5-aza-2'deoxycytidine, a DNA demethylating agent used in anti-cancer therapy which also induces HLA-G. Both treatments enhanced the amount of HLA-G mRNA and protein in HLA-G negative U251MG glioma cells. Electrophoretic Mobility Shift Assays and luciferase reporter gene assays revealed that HLA-G upregulation depends on Hypoxia Inducible Factor-1 (HIF-1) and a hypoxia responsive element (HRE) located in exon 2. A polymorphic HRE at -966 bp in the 5'UT region may modulate the magnitude of the response mediated by the exon 2 HRE. We suggest that therapeutic strategies should take into account that HLA-G expression in response to hypoxic tumor environment is dependent on HLA-G gene polymorphism and DNA methylation state at the HLA-G locus.

  8. Hypoxia inducible factor-1 mediates the expression of the immune checkpoint HLA-G in glioma cells through hypoxia response element located in exon 2

    PubMed Central

    Yaghi, Layale; Poras, Isabelle; Simoes, Renata T.; Donadi, Eduardo A.; Tost, Jörg; Daunay, Antoine; de Almeida, Bibiana Sgorla; Carosella, Edgardo D.; Moreau, Philippe

    2016-01-01

    HLA-G is an immune checkpoint molecule with specific relevance in cancer immunotherapy. It was first identified in cytotrophoblasts, protecting the fetus from maternal rejection. HLA-G tissue expression is very restricted but induced in numerous malignant tumors such as glioblastoma, contributing to their immune escape. Hypoxia occurs during placenta and tumor development and was shown to activate HLA-G. We aimed to elucidate the mechanisms of HLA-G activation under conditions combining hypoxia-mimicking treatment and 5-aza-2′deoxycytidine, a DNA demethylating agent used in anti-cancer therapy which also induces HLA-G. Both treatments enhanced the amount of HLA-G mRNA and protein in HLA-G negative U251MG glioma cells. Electrophoretic Mobility Shift Assays and luciferase reporter gene assays revealed that HLA-G upregulation depends on Hypoxia Inducible Factor-1 (HIF-1) and a hypoxia responsive element (HRE) located in exon 2. A polymorphic HRE at −966 bp in the 5′UT region may modulate the magnitude of the response mediated by the exon 2 HRE. We suggest that therapeutic strategies should take into account that HLA-G expression in response to hypoxic tumor environment is dependent on HLA-G gene polymorphism and DNA methylation state at the HLA-G locus. PMID:27577073

  9. HRGFish: A database of hypoxia responsive genes in fishes

    NASA Astrophysics Data System (ADS)

    Rashid, Iliyas; Nagpure, Naresh Sahebrao; Srivastava, Prachi; Kumar, Ravindra; Pathak, Ajey Kumar; Singh, Mahender; Kushwaha, Basdeo

    2017-02-01

    Several studies have highlighted the changes in the gene expression due to the hypoxia response in fishes, but the systematic organization of the information and the analytical platform for such genes are lacking. In the present study, an attempt was made to develop a database of hypoxia responsive genes in fishes (HRGFish), integrated with analytical tools, using LAMPP technology. Genes reported in hypoxia response for fishes were compiled through literature survey and the database presently covers 818 gene sequences and 35 gene types from 38 fishes. The upstream fragments (3,000 bp), covered in this database, enables to compute CG dinucleotides frequencies, motif finding of the hypoxia response element, identification of CpG island and mapping with the reference promoter of zebrafish. The database also includes functional annotation of genes and provides tools for analyzing sequences and designing primers for selected gene fragments. This may be the first database on the hypoxia response genes in fishes that provides a workbench to the scientific community involved in studying the evolution and ecological adaptation of the fish species in relation to hypoxia.

  10. Detailed assessment of gene activation levels by multiple hypoxia-responsive elements under various hypoxic conditions.

    PubMed

    Takeuchi, Yasuto; Inubushi, Masayuki; Jin, Yong-Nan; Murai, Chika; Tsuji, Atsushi B; Hata, Hironobu; Kitagawa, Yoshimasa; Saga, Tsuneo

    2014-12-01

    HIF-1/HRE pathway is a promising target for the imaging and the treatment of intractable malignancy (HIF-1; hypoxia-inducible factor 1, HRE; hypoxia-responsive element). The purposes of our study are: (1) to assess the gene activation levels resulting from various numbers of HREs under various hypoxic conditions, (2) to evaluate the bidirectional activity of multiple HREs, and (3) to confirm whether multiple HREs can induce gene expression in vivo. Human colon carcinoma HCT116 cells were transiently transfected by the constructs containing a firefly luciferase reporter gene and various numbers (2, 4, 6, 8, 10, and 12) of HREs (nHRE+, nHRE-). The relative luciferase activities were measured under various durations of hypoxia (6, 12, 18, and 24 h), O2 concentrations (1, 2, 4, 8, and 16 %), and various concentrations of deferoxamine mesylate (20, 40, 80, 160, and 320 µg/mL growth medium). The bidirectional gene activation levels by HREs were examined in the constructs (dual-luc-nHREs) containing firefly and Renilla luciferase reporter genes at each side of nHREs. Finally, to test whether the construct containing 12HRE and the NIS reporter gene (12HRE-NIS) can induce gene expression in vivo, SPECT imaging was performed in a mouse xenograft model. (1) gene activation levels by HREs tended to increase with increasing HRE copy number, but a saturation effect was observed in constructs with more than 6 or 8 copies of an HRE, (2) gene activation levels by HREs increased remarkably during 6-12 h of hypoxia, but not beyond 12 h, (3) gene activation levels by HREs decreased with increasing O2 concentrations, but could be detected even under mild hypoxia at 16 % O2, (4) the bidirectionally proportional activity of the HRE was confirmed regardless of the hypoxic severity, and (5) NIS expression driven by 12 tandem copies of an HRE in response to hypoxia could be visualized on in vivo SPECT imaging. The results of this study will help in the understanding and assessment of

  11. Ageing and cardiorespiratory response to hypoxia.

    PubMed

    Lhuissier, François J; Canouï-Poitrine, Florence; Richalet, Jean-Paul

    2012-11-01

    The risk of severe altitude-induced diseases is related to ventilatory and cardiac responses to hypoxia and is dependent on sex, age and exercise training status. However, it remains unclear how ageing modifies these physiological adaptations to hypoxia. We assessed the physiological responses to hypoxia with ageing through a cross-sectional 20 year study including 4675 subjects (2789 men, 1886 women; 14-85 years old) and a longitudinal study including 30 subjects explored at a mean 10.4 year interval. The influence of sex, training status and menopause was evaluated. The hypoxia-induced desaturation and the ventilatory and cardiac responses to hypoxia at rest and exercise were measured. In men, ventilatory response to hypoxia increased (P < 0.002), while desaturation was less pronounced (P < 0.001) with ageing. Cardiac response to hypoxia was blunted with ageing in both sexes (P < 0.001). Similar results were found in the longitudinal study, with a decrease in cardiac and an increase in ventilatory response to hypoxia with ageing. These adaptive responses were less pronounced or absent in post-menopausal women (P < 0.01). At exercise, desaturation was greater in trained subjects but cardiac and ventilatory responses to hypoxia were preserved by training, especially in elderly people. In conclusion, respiratory response to hypoxia and blood oxygenation improve with ageing in men while cardiac response is blunted with ageing in both sexes. Training aggravates desaturation at exercise in hypoxia, improves the ventilatory response and limits the ageing-induced blunting of cardiac response to hypoxia. Training limits the negative effects of menopause in cardiorespiratory adaptations to hypoxia.

  12. Hypoxia-response element (HRE)-directed transcriptional regulation of the rat lysyl oxidase gene in response to cobalt and cadmium.

    PubMed

    Gao, Song; Zhou, Jing; Zhao, Yinzhi; Toselli, Paul; Li, Wande

    2013-04-01

    Lysyl oxidase (LO) catalyzes crosslink of collagen, elastin, and histone H1, stabilizing the extracellular matrix and cell nucleus. This enzyme displays dual functions for tumorigenesis, i.e., as a tumor suppressor inactivating the ras oncogene and as a tumor promoter enhancing malignant cell metastasis. To elucidate LO transcriptional regulation, we have cloned the 804 base pair region upstream of the translation start site (ATG) of the rat LO gene with the maximal promoter activity. Computer analysis indicated that at least four hypoxia-response element (HRE) consensuses (5'-ACGTG-3') exist in the cloned LO promoter. Treatment of rat lung fibroblasts (RFL6) with CoCl2 (Co, 10-100 μM), a chemical hypoxia reagent, enhanced LO mRNA expression and promoter activities. Overexpression of LO was associated with upregulation of hypoxia-inducible factor (HIF)-1α at mRNA levels in cobalt (Co)-treated cells. Thus, LO is a hypoxia-responsive gene. Dominant negative-HIF-1α inhibited LO promoter activities stimulated by Co. Electrophoretic mobility shift, oligonucleotide competition, and in vitro translated HIF-1α binding assays indicated that only one HRE mapped at -387/-383 relative to ATG was functionally active among four consensuses. Site-directed mutation of this HRE significantly diminished the Co-induced and LO promoter-directed expression of the reporter gene. Cadmium (Cd), an inducer of reactive oxygen species, inhibited HIF-1α mRNA expression and HIF-1α binding to the LO gene in Co-treated cells as revealed by RT-PCR and ChIP assays, respectively. Thus, modulation of the HRE activity by Co and Cd plays a critical role in LO gene transactivation.

  13. Response of skeletal muscle mitochondria to hypoxia.

    PubMed

    Hoppeler, Hans; Vogt, Michael; Weibel, Ewald R; Flück, Martin

    2003-01-01

    This review explores the current concepts relating the structural and functional modifications of skeletal muscle mitochondria to the molecular mechanisms activated when organisms are exposed to a hypoxic environment. In contrast to earlier assumptions it is now established that permanent or long-term exposure to severe environmental hypoxia decreases the mitochondrial content of muscle fibres. Oxidative muscle metabolism is shifted towards a higher reliance on carbohydrates as a fuel, and intramyocellular lipid substrate stores are reduced. Moreover, in muscle cells of mountaineers returning from the Himalayas, we find accumulations of lipofuscin, believed to be a mitochondrial degradation product. Low mitochondrial contents are also observed in high-altitude natives such as Sherpas. In these subjects high-altitude performance seems to be improved by better coupling between ATP demand and supply pathways as well as better metabolite homeostasis. The hypoxia-inducible factor 1 (HIF-1) has been identified as a master regulator for the expression of genes involved in the hypoxia response, such as genes coding for glucose transporters, glycolytic enzymes and vascular endothelial growth factor (VEGF). HIF-1 achieves this by binding to hypoxia response elements in the promoter regions of these genes, whereby the increase of HIF-1 in hypoxia is the consequence of a reduced degradation of its dominant subunit HIF-1a. A further mechanism that seems implicated in the hypoxia response of muscle mitochondria is related to the formation of reactive oxygen species (ROS) in mitochondria during oxidative phosphorylation. How exactly ROS interfere with HIF-1a as well as MAP kinase and other signalling pathways is debated. The current evidence suggests that mitochondria themselves could be important players in oxygen sensing.

  14. Cognitive responses to hypobaric hypoxia: implications for aviation training

    PubMed Central

    Neuhaus, Christopher; Hinkelbein, Jochen

    2014-01-01

    The aim of this narrative review is to provide an overview on cognitive responses to hypobaric hypoxia and to show relevant implications for aviation training. A principal element of hypoxia-awareness training is the intentional evocation of hypoxia symptoms during specific training sessions within a safe and controlled environment. Repetitive training should enable pilots to learn and recognize their personal hypoxia symptoms. A time span of 3–6 years is generally considered suitable to refresh knowledge of the more subtle and early symptoms especially. Currently, there are two different technical approaches available to induce hypoxia during training: hypobaric chamber training and reduced-oxygen breathing devices. Hypoxia training for aircrew is extremely important and effective, and the hypoxia symptoms should be emphasized clearly to aircrews. The use of tight-fitting masks, leak checks, and equipment checks should be taught to all aircrew and reinforced regularly. It is noteworthy that there are major differences in the required quality and quantity of hypoxia training for both military and civilian pilots. PMID:25419162

  15. Hypoxia-Response Element (HRE)–Directed Transcriptional Regulation of the Rat Lysyl Oxidase Gene in Response to Cobalt and Cadmium

    PubMed Central

    Li, Wande

    2013-01-01

    Lysyl oxidase (LO) catalyzes crosslink of collagen, elastin, and histone H1, stabilizing the extracellular matrix and cell nucleus. This enzyme displays dual functions for tumorigenesis, i.e., as a tumor suppressor inactivating the ras oncogene and as a tumor promoter enhancing malignant cell metastasis. To elucidate LO transcriptional regulation, we have cloned the 804 base pair region upstream of the translation start site (ATG) of the rat LO gene with the maximal promoter activity. Computer analysis indicated that at least four hypoxia-response element (HRE) consensuses (5′-ACGTG-3′) exist in the cloned LO promoter. Treatment of rat lung fibroblasts (RFL6) with CoCl2 (Co, 10–100 μM), a chemical hypoxia reagent, enhanced LO mRNA expression and promoter activities. Overexpression of LO was associated with upregulation of hypoxia-inducible factor (HIF)-1α at mRNA levels in cobalt (Co)–treated cells. Thus, LO is a hypoxia-responsive gene. Dominant negative-HIF-1α inhibited LO promoter activities stimulated by Co. Electrophoretic mobility shift, oligonucleotide competition, and in vitro translated HIF-1α binding assays indicated that only one HRE mapped at −387/−383 relative to ATG was functionally active among four consensuses. Site-directed mutation of this HRE significantly diminished the Co-induced and LO promoter-directed expression of the reporter gene. Cadmium (Cd), an inducer of reactive oxygen species, inhibited HIF-1α mRNA expression and HIF-1α binding to the LO gene in Co-treated cells as revealed by RT-PCR and ChIP assays, respectively. Thus, modulation of the HRE activity by Co and Cd plays a critical role in LO gene transactivation. PMID:23161664

  16. Expression of MUC17 Is Regulated by HIF1α-Mediated Hypoxic Responses and Requires a Methylation-Free Hypoxia Responsible Element in Pancreatic Cancer

    PubMed Central

    Kitamoto, Sho; Yokoyama, Seiya; Higashi, Michiyo; Yamada, Norishige; Matsubara, Shyuichiro; Takao, Sonshin; Batra, Surinder K.; Yonezawa, Suguru

    2012-01-01

    MUC17 is a type 1 membrane-bound glycoprotein that is mainly expressed in the digestive tract. Recent studies have demonstrated that the aberrant overexpression of MUC17 is correlated with the malignant potential of pancreatic ductal adenocarcinomas (PDACs); however, the exact regulatory mechanism of MUC17 expression has yet to be identified. Here, we provide the first report of the MUC17 regulatory mechanism under hypoxia, an essential feature of the tumor microenvironment and a driving force of cancer progression. Our data revealed that MUC17 was significantly induced by hypoxic stimulation through a hypoxia-inducible factor 1α (HIF1α)-dependent pathway in some pancreatic cancer cells (e.g., AsPC1), whereas other pancreatic cancer cells (e.g., BxPC3) exhibited little response to hypoxia. Interestingly, these low-responsive cells have highly methylated CpG motifs within the hypoxia responsive element (HRE, 5′-RCGTG-3′), a binding site for HIF1α. Thus, we investigated the demethylation effects of CpG at HRE on the hypoxic induction of MUC17. Treatment of low-responsive cells with 5-aza-2′-deoxycytidine followed by additional hypoxic incubation resulted in the restoration of hypoxic MUC17 induction. Furthermore, DNA methylation of HRE in pancreatic tissues from patients with PDACs showed higher hypomethylation status as compared to those from non-cancerous tissues, and hypomethylation was also correlated with MUC17 mRNA expression. Taken together, these findings suggested that the HIF1α-mediated hypoxic signal pathway contributes to MUC17 expression, and DNA methylation of HRE could be a determinant of the hypoxic inducibility of MUC17 in pancreatic cancer cells. PMID:22970168

  17. [Molecular mechanisms of protein biosynthesis initiation--biochemical and biomedical implications of a new model of translation enhanced by the RNA hypoxia response element (rHRE)].

    PubMed

    Master, Adam; Nauman, Alicja

    2014-01-01

    Translation initiation is a key rate-limiting step in cellular protein synthesis. A cap-dependent initiation is the most effective mechanism of the translation. However, some physiological (mitosis) and pathological (oxidative stress) processes may switch the classic mechanism to an alternative one that is regulated by an mRNA element such as IRES, uORF, IRE, CPE, DICE, AURE or CITE. A recently discovered mechanism of RNA hypoxia response element (rHRE)-dependent translation initiation, may change the view of oxygen-regulated translation and give a new insight into unexplained biochemical processes. Hypoxia is one of the better-known factors that may trigger an alternative mechanism of the translation initiation. Temporal events of oxygen deficiency within tissues and organs may activate processes such as angiogenesis, myogenesis, regeneration, wound healing, and may promote an adaptive response in cardiovascular and neurodegenerative diseases. On the other hand, growth of solid tumors may be accompanied by cyclic hypoxia, allowing for synthesis of proteins required for further progression of cancer cells. This paper provides a review of current knowledge on translational control in the context of alternative models of translation initiation.

  18. Coastal hypoxia responses to remediation

    NASA Astrophysics Data System (ADS)

    Kemp, W. M.; Testa, J. M.; Conley, D. J.; Gilbert, D.; Hagy, J. D.

    2009-07-01

    The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Because of the negative effects hypoxia has on many organisms, extensive efforts have been made to reduce the size and duration of hypoxia in many coastal waters. Although it has been broadly assumed that reductions in nutrient loading rates would reverse eutrophication and consequently, hypoxia, recent analyses of historical data from European and North American coastal systems suggest little evidence for simple linear response trajectories. We review existing data, analyses, and models that relate variations in the extent and intensity of hypoxia to changes in loading rates for inorganic nutrients and labile organic matter. We also assess existing knowledge of physical and ecological factors regulating oxygen in coastal marine waters and examine a broad range of examples where hypoxia responses to reductions in nutrient (or organic matter) inputs have been documented. Of the 22 systems identified where concurrent time series of loading and O2 were available, half displayed relatively clear and direct recoveries following remediation. We explored in detail 5 well-studied systems that have exhibited complex, non-linear responses to loading, including apparent "regime shifts." A summary of these analyses suggests that O2 conditions improved rapidly and linearly in systems where remediation focused on organic inputs from sewage plants, which were the primary drivers of hypoxia. In larger more open systems where diffuse nutrient loads are more important in fueling O2 depletion and where climatic influences are pronounced, responses to remediation tend to follow non-linear trends that may include hysteresis and time-lags. Improved understanding of hypoxia remediation requires that future studies use comparative approaches and consider multiple regulating factors including: (1) the dominant temporal scales

  19. Hypoxia Responsive Drug Delivery Systems in Tumor Therapy.

    PubMed

    Alimoradi, Houman; Matikonda, Siddharth S; Gamble, Allan B; Giles, Gregory I; Greish, Khaled

    2016-01-01

    Hypoxia is a common characteristic of solid tumors. It is mainly determined by low levels of oxygen resulting from imperfect vascular networks supplying most tumors. In an attempt to improve the present chemotherapeutic treatment and reduce associated side effects, several prodrug strategies have been introduced to achieve hypoxia-specific delivery of cytotoxic anticancer agents. With the advances in nanotechnology, novel delivery systems activated by the consequent outcomes of hypoxia have been developed. However, developing hypoxia responsive drug delivery systems (which only depend on low oxygen levels) is currently naïve. This review discusses four main hypoxia responsive delivery systems: polymeric based drug delivery systems, oxygen delivery systems combined with radiotherapy and chemotherapy, anaerobic bacteria which are used for delivery of genes to express anticancer proteins such as tumor necrosis alpha (TNF-α) and hypoxia-inducible transcription factors 1 alpha (HIF1α) responsive gene delivery systems.

  20. Destruction of a distal hypoxia response element abolishes trans-activation of the PAG1 gene mediated by HIF-independent chromatin looping

    PubMed Central

    Schörg, Alexandra; Santambrogio, Sara; Platt, James L.; Schödel, Johannes; Lindenmeyer, Maja T.; Cohen, Clemens D.; Schrödter, Katrin; Mole, David R.; Wenger, Roland H.; Hoogewijs, David

    2015-01-01

    A crucial step in the cellular adaptation to oxygen deficiency is the binding of hypoxia-inducible factors (HIFs) to hypoxia response elements (HREs) of oxygen-regulated genes. Genome-wide HIF-1α/2α/β DNA-binding studies revealed that the majority of HREs reside distant to the promoter regions, but the function of these distal HREs has only been marginally studied in the genomic context. We used chromatin immunoprecipitation (ChIP), gene editing (TALEN) and chromosome conformation capture (3C) to localize and functionally characterize a 82 kb upstream HRE that solely drives oxygen-regulated expression of the newly identified HIF target gene PAG1. PAG1, a transmembrane adaptor protein involved in Src signalling, was hypoxically induced in various cell lines and mouse tissues. ChIP and reporter gene assays demonstrated that the −82 kb HRE regulates PAG1, but not an equally distant gene further upstream, by direct interaction with HIF. Ablation of the consensus HRE motif abolished the hypoxic induction of PAG1 but not general oxygen signalling. 3C assays revealed that the −82 kb HRE physically associates with the PAG1 promoter region, independent of HIF-DNA interaction. These results demonstrate a constitutive interaction between the −82 kb HRE and the PAG1 promoter, suggesting a physiologically important rapid response to hypoxia. PMID:26007655

  1. Cold stimulates the behavioral response to hypoxia in newborn mice.

    PubMed

    Bollen, Bieke; Bouslama, Myriam; Matrot, Boris; Rotrou, Yann; Vardon, Guy; Lofaso, Frédéric; Van den Bergh, Omer; D'Hooge, Rudi; Gallego, Jorge

    2009-05-01

    In newborns, hypoxia elicits increased ventilation, arousal followed by defensive movements, and cries. Cold is known to affect the ventilatory response to hypoxia, but whether it affects the arousal response remains unknown. The aim of the present study was to assess the effects of cold on the ventilatory and arousal responses to hypoxia in newborn mice. We designed an original platform measuring noninvasively and simultaneously the breathing pattern by whole body plethysmography, body temperature by infrared thermography, as well as motor and ultrasonic vocal (USV) responses. Six-day-old mice were exposed twice to 10% O(2) for 3 min at either cold temperature (26 degrees C) or thermoneutrality (33 degrees C). At 33 degrees C, hypoxia elicited a marked increase in ventilation followed by a small ventilatory decline, small motor response, and almost no USVs. Body temperature was not influenced by hypoxia, and oxygen consumption (Vo(2)) displayed minimal changes. At 26 degrees C, hypoxia elicited a slight increase in ventilation with a large ventilatory decline and a large drop of Vo(2). This response was accompanied by marked USV and motor responses. Hypoxia elicited a small decrease in temperature after the return to normoxia, thus precluding any causal influence on the motor and USV responses to hypoxia. In conclusion, cold stimulated arousal and stress responses to hypoxia, while depressing hypoxic hyperpnea. Arousal is an important defense mechanism against sleep-disordered breathing. The dissociation between ventilatory and behavioral responses to hypoxia suggests that deficits in the arousal response associated with sleep breathing disorders cannot be attributed to a depressed hypoxic response.

  2. Cardiac responses to hypoxia and reoxygenation in Drosophila.

    PubMed

    Zarndt, Rachel; Piloto, Sarah; Powell, Frank L; Haddad, Gabriel G; Bodmer, Rolf; Ocorr, Karen

    2015-12-01

    An adequate supply of oxygen is important for the survival of all tissues, but it is especially critical for tissues with high-energy demands, such as the heart. Insufficient tissue oxygenation occurs under a variety of conditions, including high altitude, embryonic and fetal development, inflammation, and thrombotic diseases, often affecting multiple organ systems. Responses and adaptations of the heart to hypoxia are of particular relevance in human cardiovascular and pulmonary diseases, in which the effects of hypoxic exposure can range in severity from transient to long-lasting. This study uses the genetic model system Drosophila to investigate cardiac responses to acute (30 min), sustained (18 h), and chronic (3 wk) hypoxia with reoxygenation. Whereas hearts from wild-type flies recovered quickly after acute hypoxia, exposure to sustained or chronic hypoxia significantly compromised heart function upon reoxygenation. Hearts from flies with mutations in sima, the Drosophila homolog of the hypoxia-inducible factor alpha subunit (HIF-α), exhibited exaggerated reductions in cardiac output in response to hypoxia. Heart function in hypoxia-selected flies, selected over many generations for survival in a low-oxygen environment, revealed reduced cardiac output in terms of decreased heart rate and fractional shortening compared with their normoxia controls. Hypoxia-selected flies also had smaller hearts, myofibrillar disorganization, and increased extracellular collagen deposition, consistent with the observed reductions in contractility. This study indicates that longer-duration hypoxic insults exert deleterious effects on heart function that are mediated, in part, by sima and advances Drosophila models for the genetic analysis of cardiac-specific responses to hypoxia and reoxygenation. Copyright © 2015 the American Physiological Society.

  3. [Hypoxia responsive element regulated herpes simplex virus-thymidine kinase system enhances killing effect of gancyclovir on Ewing's sarcoma cell line under hypoxic condition].

    PubMed

    Si, Ying-jian; Guang, Li-xia; Yuan, Fa-huan; Zhang, Ke-bin

    2006-08-01

    To find out a possible approach to improve the effectiveness of radiotherapy and chemotherapy for Ewing's sarcoma by constructing a eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia and to evaluate the effects of this HRE regulated HSV-TK system on killing effect of gancyclovir (GCV) on Ewing's sarcoma cell line SK-ES under hypoxic condition. The HRE was synthesized according to the literature and cloned into the enhancer site of pIRES(2)-EGFP vector to obtain the pHRE recombinant plasmid. The HSV-TK was amplified by PCR and cloned into the multiple clone site of pIRES(2)-EGFP and pHRE to obtain pTK and pHRE-TK recombinant plasmid. The human Ewing's sarcoma cell line SK-ES was transfected by pTK or pHRE-TK recombinant plasmid with liposome and then was exposed to normoxic (21% oxygen) or hypoxic (3% oxygen) condition. The expression of enhanced green fluorescent protein (EGFP) was monitored by fluorescent microscopy. The sensitivity of human Ewing's sarcoma cell line SK-ES transfected with pTK or pHRE-TK recombinant plasmid to the anti-tumour drug GCV was determined with the method of tetrazolium (MTT) after treating with GCV for five days. (1) The result of sequencing showed that the recombinant plasmid pHRE contained HRE, and that the recombinant plasmid pTK and pHRE-TK contained HSV-TK gene in the sense direction. (2) Comparison of fluorescent optical density (FOD) showed that (1) the EGFP FOD value of pHRE and pHRE-TK group cells exposed to hypoxia was significantly higher than those exposed to normoxia (P < 0.01); (2) when the cells were exposed to hypoxia, the EGFP FOD value of pHRE and pHRE-TK group cells was significantly higher than that of pTK and empty vector group (P < 0.01); (3) there was no significant difference among the four groups of cells when they were exposed to normoxia (P > 0.05). (3) Comparison of the sensitivity of four groups of cells to GCV

  4. Destruction of a distal hypoxia response element abolishes trans-activation of the PAG1 gene mediated by HIF-independent chromatin looping.

    PubMed

    Schörg, Alexandra; Santambrogio, Sara; Platt, James L; Schödel, Johannes; Lindenmeyer, Maja T; Cohen, Clemens D; Schrödter, Katrin; Mole, David R; Wenger, Roland H; Hoogewijs, David

    2015-07-13

    A crucial step in the cellular adaptation to oxygen deficiency is the binding of hypoxia-inducible factors (HIFs) to hypoxia response elements (HREs) of oxygen-regulated genes. Genome-wide HIF-1α/2α/β DNA-binding studies revealed that the majority of HREs reside distant to the promoter regions, but the function of these distal HREs has only been marginally studied in the genomic context. We used chromatin immunoprecipitation (ChIP), gene editing (TALEN) and chromosome conformation capture (3C) to localize and functionally characterize a 82 kb upstream HRE that solely drives oxygen-regulated expression of the newly identified HIF target gene PAG1. PAG1, a transmembrane adaptor protein involved in Src signalling, was hypoxically induced in various cell lines and mouse tissues. ChIP and reporter gene assays demonstrated that the -82 kb HRE regulates PAG1, but not an equally distant gene further upstream, by direct interaction with HIF. Ablation of the consensus HRE motif abolished the hypoxic induction of PAG1 but not general oxygen signalling. 3C assays revealed that the -82 kb HRE physically associates with the PAG1 promoter region, independent of HIF-DNA interaction. These results demonstrate a constitutive interaction between the -82 kb HRE and the PAG1 promoter, suggesting a physiologically important rapid response to hypoxia. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Prolonged lobar hypoxia in vivo enhances the responsivity of isolated pulmonary veins to hypoxia

    NASA Technical Reports Server (NTRS)

    Sheehan, D. W.; Farhi, L. E.; Russell, J. A.

    1992-01-01

    The hypoxic response of pulmonary vessels isolated from eight sheep whose right apical lobes (RAL) had inspired 100% N2 for 20 h was studied. The RAL of these conscious sheep inspired hypoxic gas and the remainder of the lung inspired air. During hypoxia, RAL perfusion was 33 +/- 3% of its air value, carotid arterial PO2 averaged 86 +/- 3 mm Hg and pulmonary perfusion pressure was not significantly different from the initial control period when the RAL inspired air. At the end of the hypoxic exposure, the sheep were killed, and pulmonary artery and vein rings (0.5 to 2 mm inner diameter) were isolated from both the RAL and the right cardiac lobe, which served as the control lobe (CL). Arteries from the RAL and CL did not contract in response to 6% O2/6% CO2/88% N2 (hypoxia). In contrast, RAL veins did contract vigorously in response to hypoxia, whereas CL veins did not contract or contracted only minimally. Rubbing of the endothelium or prior incubation of RAL veins with catalase (1,200 units/ml), indomethacin (10(-5) M), or the thromboxane A2/prostaglandin H2 (TxA2/PGH2) receptor antagonist, SQ 29,548 (3 X 10(-6) M) each significantly reduced the response to hypoxia. RAL veins were also found to be more reactive than CL veins to the prostaglandin endoperoxide analogue U46619. We conclude that prolonged lobar hypoxia in vivo increases the responsivity of isolated pulmonary veins to hypoxia. These contractions may result from an increase in reactive O2 species, which in turn modify production of, metabolism of, and/or tissue responsivity to TxA2/PGH2.

  6. Macrophage-mediated response to hypoxia in disease.

    PubMed

    Tazzyman, Simon; Murdoch, Craig; Yeomans, James; Harrison, Jack; Muthana, Munitta

    2014-01-01

    Hypoxia plays a critical role in the pathobiology of various inflamed, diseased tissues, including malignant tumors, atherosclerotic plaques, myocardial infarcts, the synovia of rheumatoid arthritic joints, healing wounds, and sites of bacterial infection. These areas of hypoxia form when the blood supply is occluded and/or the oxygen supply is unable to keep pace with cell growth and/or infiltration of inflammatory cells. Macrophages are ubiquitous in all tissues of the body and exhibit great plasticity, allowing them to perform divergent functions, including, among others, patrolling tissue, combating invading pathogens and tumor cells, orchestrating wound healing, and restoring homeostasis after an inflammatory response. The number of tissue macrophages increases markedly with the onset and progression of many pathological states, with many macrophages accumulating in avascular and necrotic areas, where they are exposed to hypoxia. Recent studies show that these highly versatile cells then respond rapidly to the hypoxia present by altering their expression of a wide array of genes. Here we review the evidence for hypoxia-driven macrophage inflammatory responses in various disease states, and how this influences disease progression and treatment.

  7. The metallothionein gene from the white shrimp Litopenaeus vannamei: characterization and expression in response to hypoxia.

    PubMed

    Felix-Portillo, Monserrath; Martinez-Quintana, José A; Peregrino-Uriarte, Alma B; Yepiz-Plascencia, Gloria

    2014-10-01

    Aquatic animals encounter variation in oxygen tension that leads to the accumulation of reactive oxygen species (ROS) that can harm the organisms. Under these circumstances some organisms have evolved to tolerate hypoxia. In mammals, metallothioneins (MTs) protect against hypoxia-generated ROS. Here we report the MT gene from the shrimp Litopenaeus vannamei (LvMT). LvMT is differentially expressed in hemocytes, intestine, gills, pleopods, heart, hepatopancreas and muscle, with the highest levels in hepatopancreas and heart. LvMT mRNA increases during hypoxia in hepatopancreas and gills after 3 h at 1.5 mg L(-1) dissolved oxygen (DO). This gene structure resembles the homologs from invertebrates and vertebrates possessing three exons, two introns and response elements for metal response transcription factor 1 (MTF-1), hypoxia-inducible factor 1 (HIF-1) and p53 in the promoter region. During hypoxia, HIF-1/MTF-1 might participate inducing MT to contribute towards the tolerance to ROS toxicity. MT importance in aquatic organisms may include also ROS-detoxifying processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hypoxia-responsive ERFs involved in postdeastringency softening of persimmon fruit.

    PubMed

    Wang, Miao-Miao; Zhu, Qing-Gang; Deng, Chu-Li; Luo, Zheng-Rong; Sun, Ning-Jing; Grierson, Donald; Yin, Xue-Ren; Chen, Kun-Song

    2017-11-01

    Removal of astringency by endogenously formed acetaldehyde, achieved by postharvest anaerobic treatment, is of critical importance for many types of persimmon fruit. Although an anaerobic environment accelerates de-astringency, it also has the deleterious effect of promoting excessive softening, reducing shelf life and marketability. Some hypoxia-responsive ethylene response factors (ERFs) participate in anaerobic de-astringency, but their role in accelerated softening was unclear. Undesirable rapid softening induced by high CO 2 (95%) was ameliorated by adding the ethylene inhibitor 1-MCP (1 μL/L), resulting in reduced astringency while maintaining firmness, suggesting that CO 2 -induced softening involves ethylene signalling. Among the hypoxia-responsive genes, expression of eight involved in fruit cell wall metabolism (Dkβ-gal1/4, DkEGase1, DkPE1/2, DkPG1, DkXTH9/10) and three ethylene response factor genes (DkERF8/16/19) showed significant correlations with postdeastringency fruit softening. Dual-luciferase assay indicated that DkERF8/16/19 could trans-activate the DkXTH9 promoter and this interaction was abolished by a mutation introduced into the C-repeat/dehydration-responsive element of the DkXTH9 promoter, supporting the conclusion that these DkERFs bind directly to the DkXTH9 promoter and regulate this gene, which encodes an important cell wall metabolism enzyme. Some hypoxia-responsive ERF genes are involved in deastringency and softening, and this linkage was uncoupled by 1-MCP. Fruit of the Japanese cultivar 'Tonewase' provide a model for altered anaerobic response, as they lost astringency yet maintained firmness after CO 2 treatment without 1-MCP and changes in cell wall enzymes and ERFs did not occur. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia.

    PubMed

    Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2010-11-01

    Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells. © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  10. Hypoxia-response plasmid vector producing bcl-2 shRNA enhances the apoptotic cell death of mouse rectum carcinoma.

    PubMed

    Fujioka, Takashi; Matsunaga, Naoya; Okazaki, Hiroyuki; Koyanagi, Satoru; Ohdo, Shigehiro

    2010-01-01

    Hypoxia-induced gene expression frequently occurs in malignant solid tumors because they often have hypoxic areas in which circulation is compromised due to structurally disorganized blood vessels. Hypoxia-response elements (HREs) are responsible for activating gene transcription in response to hypoxia. In this study, we constructed a hypoxia-response plasmid vector producing short hairpin RNA (shRNA) against B-cell leukemia/lymphoma-2 (bcl-2), an anti-apoptotic factor. The hypoxia-response promoter was made by inserting tandem repeats of HREs upstream of cytomegalovirus (CMV) promoter (HRE-CMV). HRE-CMV shbcl-2 vector consisted of bcl-2 shRNA under the control of HRE-CMV promoter. In hypoxic mouse rectum carcinoma cells (colon-26), the production of bcl-2 shRNA driven by HRE-CMV promoter was approximately 2-fold greater than that driven by CMV promoter. A single intratumoral (i.t.) injection of 40 microg HRE-CMV shbcl-2 to colon-26 tumor-bearing mice caused apoptotic cell death, and repetitive treatment with HRE-CMV shbcl-2 (40 microg/mouse, i.t.) also significantly suppressed the growth of colon-26 tumor cells implanted in mice. Apoptotic and anti-tumor effects were not observed in tumor-bearing mice treated with CMV shbcl-2. These results reveal the ability of HRE-CMV shbcl-2 vector to suppress the expression of bcl-2 in hypoxic tumor cells and suggest the usefulness of our constructed hypoxia-response plasmid vector to treat malignant tumors. [Supplementary Figures: available only at http://dx.doi.org/10.1254/jphs.10054FP].

  11. The response of human skeletal muscle tissue to hypoxia.

    PubMed

    Lundby, Carsten; Calbet, Jose A L; Robach, Paul

    2009-11-01

    Hypoxia refers to environmental or clinical settings that potentially threaten tissue oxygen homeostasis. One unique aspect of skeletal muscle is that, in addition to hypoxia, oxygen balance in this tissue may be further compromised when exercise is superimposed on hypoxia. This review focuses on the cellular and molecular responses of human skeletal muscle to acute and chronic hypoxia, with emphasis on physical exercise and training. Based on published work, it is suggested that hypoxia does not appear to promote angiogenesis or to greatly alter oxidative enzymes in skeletal muscle at rest. Although the HIF-1 pathway in skeletal muscle is still poorly documented, emerging evidence suggests that muscle HIF-1 signaling is only activated to a minor degree by hypoxia. On the other hand, combining hypoxia with exercise appears to improve some aspects of muscle O(2) transport and/or metabolism.

  12. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauen, Thomas; Frye, Bjoern C.; Pneumology, University Medical Center, University of Freiburg, Freiburg

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3′ enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3′ adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPOmore » production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. - Highlights: • Hypoxia drives nuclear translocation of cold shock protein YB-1. • YB-1 physically interacts with hypoxia-inducible factor (HIF)-1α. • YB-1 binds to the hypoxia-responsive element (HRE) within the erythropoietin (EPO) 3′ enhancer. • YB-1 trans-regulates transcription of hypoxia-dependent genes such as EPO and VEGF.« less

  13. Hypoxia, hypoxia-inducible factors and fibrogenesis in chronic liver diseases.

    PubMed

    Cannito, Stefania; Paternostro, Claudia; Busletta, Chiara; Bocca, Claudia; Colombatto, Sebastiano; Miglietta, Antonella; Novo, Erica; Parola, Maurizio

    2014-01-01

    Fibrogenic progression of chronic liver diseases (CLDs) towards the end-point of cirrhosis is currently regarded, whatever the aetiology, as a dynamic and highly integrated cellular response to chronic liver injury. Liver fibrogenesis (i.e., the process) is sustained by hepatic populations of highly proliferative, pro-fibrogenic and contractile myofibroblast-like cells (MFs) that mainly originate from hepatic stellate cells (HSC) or, to a less extent, from portal fibroblasts or bone marrow-derived cells. As is well known, liver fibrosis (i.e., the result) is accompanied by perpetuation of liver injury, chronic hepatitis and persisting activation of tissue repair mechanisms, leading eventually to excess deposition of extracellular matrix (ECM) components. In this scenario, hypoxic areas represent a very common and major feature of fibrotic and cirrhotic liver during the progression of CLDs. Cells exposed to hypoxia respond by means of heterodimeric hypoxia-inducible factors (HIFs) that translocate into the nucleus and binds to a specific core sequence defined hypoxia-responsive element (HRE), present in the promoter on several genes which are considered as hypoxia-regulated target genes. HIFs transcription factors can activate a complex genetic program designed to sustain several changes necessary to efficiently counteract the decrease in oxygen tension. Accordingly, hypoxia, through up-regulation of angiogenesis, is currently believed to significantly contribute to fibrogenic progression of CLDs, mostly by affecting the pro-fibrogenic and pro-angiogenic behaviour of hepatic MFs. In addition, experimental and clinical evidence generated in the last decade also indicates that angiogenesis and fibrogenesis in CLDs may also be sustained by HIF-dependent but hypoxia-independent mediators.

  14. MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3*S⃞

    PubMed Central

    Fasanaro, Pasquale; D'Alessandra, Yuri; Di Stefano, Valeria; Melchionna, Roberta; Romani, Sveva; Pompilio, Giulio; Capogrossi, Maurizio C.; Martelli, Fabio

    2008-01-01

    MicroRNAs (miRNAs) are small non-protein-coding RNAs that function as negative gene expression regulators. In the present study, we investigated miRNAs role in endothelial cell response to hypoxia. We found that the expression of miR-210 progressively increased upon exposure to hypoxia. miR-210 overexpression in normoxic endothelial cells stimulated the formation of capillary-like structures on Matrigel and vascular endothelial growth factor-driven cell migration. Conversely, miR-210 blockade via anti-miRNA transfection inhibited the formation of capillary-like structures stimulated by hypoxia and decreased cell migration in response to vascular endothelial growth factor. miR-210 overexpression did not affect endothelial cell growth in both normoxia and hypoxia. However, anti-miR-210 transfection inhibited cell growth and induced apoptosis, in both normoxia and hypoxia. We determined that one relevant target of miR-210 in hypoxia was Ephrin-A3 since miR-210 was necessary and sufficient to down-modulate its expression. Moreover, luciferase reporter assays showed that Ephrin-A3 was a direct target of miR-210. Ephrin-A3 modulation by miR-210 had significant functional consequences; indeed, the expression of an Ephrin-A3 allele that is not targeted by miR-210 prevented miR-210-mediated stimulation of both tubulogenesis and chemotaxis. We conclude that miR-210 up-regulation is a crucial element of endothelial cell response to hypoxia, affecting cell survival, migration, and differentiation. PMID:18417479

  15. Heat shock response and mammal adaptation to high elevation (hypoxia).

    PubMed

    Wang, Xiaolin; Xu, Cunshuan; Wang, Xiujie; Wang, Dongjie; Wang, Qingshang; Zhang, Baochen

    2006-10-01

    The mammal's high elevation (hypoxia) adaptation was studied by using the immunological and the molecular biological methods to understand the significance of Hsp (hypoxia) adaptation in the organic high elevation, through the mammal heat shock response. (1) From high elevation to low elevation (natural hypoxia): Western blot and conventional RT-PCR and real-time fluorescence quota PCR were adopted. Expression difference of heat shock protein of 70 (Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals (yak). (2) From low elevation to high elevation (hypoxia induction): The mammals (domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300, 3300 and 5000 m above sea level to be raised for a period of 3 weeks before being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was determined with RT-PCR. The result indicated that all of the mammals at different elevations possessed their heat shock response gene. Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation (hypoxia). The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells' normal physiological functions under stress. The Hsp70 has its threshold value. The altitude of 5000 m above sea level is the best condition for the heat shock response, and it starts to reduce when the altitude is over 6000 m above sea level. The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.

  16. Structural integration in hypoxia-inducible factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dalei; Potluri, Nalini; Lu, Jingping

    The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinctmore » pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.« less

  17. Transcriptomics Modeling of the Late-Gestation Fetal Pituitary Response to Transient Hypoxia

    PubMed Central

    Wood, Charles E.; Chang, Eileen I.; Richards, Elaine M.; Rabaglino, Maria Belen; Keller-Wood, Maureen

    2016-01-01

    Background The late-gestation fetal sheep responds to hypoxia with physiological, neuroendocrine, and cellular responses that aid in fetal survival. The response of the fetus to hypoxia represents a coordinated effort to maximize oxygen transfer from the mother and minimize wasteful oxygen consumption by the fetus. While there have been many studies aimed at investigating the coordinated physiological and endocrine responses to hypoxia, and while immunohistochemical or in situ hybridization studies have revealed pathways supporting the endocrine function of the pituitary, there is little known about the coordinated cellular response of the pituitary to the hypoxia. Results Thirty min hypoxia (from 17.0±1.7 to 8.0±0.8 mm Hg, followed by 30 min normoxia) upregulated 595 and downregulated 790 genes in fetal pituitary (123–132 days’ gestation; term = 147 days). Network inference of up- and down- regulated genes revealed a high degree of functional relatedness amongst the gene sets. Gene ontology analysis revealed upregulation of cellular metabolic processes (e.g., RNA synthesis, response to estrogens) and downregulation of protein phosphorylation, protein metabolism, and mitosis. Genes found to be at the center of the network of upregulated genes included genes important for purine binding and signaling. At the center of the downregulated network were genes involved in mRNA processing, DNA repair, sumoylation, and vesicular trafficking. Transcription factor analysis revealed that both up- and down-regulated gene sets are enriched for control by several transcription factors (e.g., SP1, MAZ, LEF1, NRF1, ELK1, NFAT, E12, PAX4) but not for HIF-1, which is known to be an important controller of genomic responses to hypoxia. Conclusions The multiple analytical approaches used in this study suggests that the acute response to 30 min of transient hypoxia in the late-gestation fetus results in reduced cellular metabolism and a pattern of gene expression that is

  18. c-MYC inhibition impairs hypoxia response in glioblastoma multiforme

    PubMed Central

    Falchetti, Maria Laura; Illi, Barbara; Bozzo, Francesca; Valle, Cristiana; Helmer-Citterich, Manuela; Ferrè, Fabrizio; Nasi, Sergio; Levi, Andrea

    2016-01-01

    The c-MYC oncoprotein is a DNA binding transcription factor that enhances the expression of many active genes. c-MYC transcriptional signatures vary according to the transcriptional program defined in each cell type during differentiation. Little is known on the involvement of c-MYC in regulation of gene expression programs that are induced by extracellular cues such as a changing microenvironment. Here we demonstrate that inhibition of c-MYC in glioblastoma multiforme cells blunts hypoxia-dependent glycolytic reprogramming and mitochondria fragmentation in hypoxia. This happens because c-MYC inhibition alters the cell transcriptional response to hypoxia and finely tunes the expression of a subset of Hypoxia Inducible Factor 1-regulated genes. We also show that genes whose expression in hypoxia is affected by c-MYC inhibition are able to distinguish the Proneural subtype of glioblastoma multiforme, thus potentially providing a molecular signature for this class of tumors that are the least tractable among glioblastomas. PMID:27119353

  19. Temporal responses of coastal hypoxia to nutrient loading and physical controls

    NASA Astrophysics Data System (ADS)

    Kemp, W. M.; Testa, J. M.; Conley, D. J.; Gilbert, D.; Hagy, J. D.

    2009-12-01

    The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Worldwide, there is strong interest in reducing the size and duration of hypoxia in coastal waters, because hypoxia causes negative effects for many organisms and ecosystem processes. Although strategies to reduce hypoxia by decreasing nutrient loading are predicated on the assumption that this action would reverse eutrophication, recent analyses of historical data from European and North American coastal systems suggest little evidence for simple linear response trajectories. We review published parallel time-series data on hypoxia and loading rates for inorganic nutrients and labile organic matter to analyze trajectories of oxygen (O2) response to nutrient loading. We also assess existing knowledge of physical and ecological factors regulating O2 in coastal marine waters to facilitate analysis of hypoxia responses to reductions in nutrient (and/or organic matter) inputs. Of the 24 systems identified where concurrent time series of loading and O2 were available, half displayed relatively clear and direct recoveries following remediation. We explored in detail 5 well-studied systems that have exhibited complex, non-linear responses to variations in loading, including apparent "regime shifts". A summary of these analyses suggests that O2 conditions improved rapidly and linearly in systems where remediation focused on organic inputs from sewage treatment plants, which were the primary drivers of hypoxia. In larger more open systems where diffuse nutrient loads are more important in fueling O2 depletion and where climatic influences are pronounced, responses to remediation tended to follow non-linear trends that may include hysteresis and time-lags. Improved understanding of hypoxia remediation requires that future studies use comparative approaches and consider multiple regulating factors. These analyses

  20. Network-based association of hypoxia-responsive genes with cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Sheng; Oldham, William M.; Loscalzo, Joseph

    2014-10-01

    Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology.

  1. Mitochondria control acute and chronic responses to hypoxia.

    PubMed

    McElroy, G S; Chandel, N S

    2017-07-15

    There are numerous mechanisms by which mammals respond to hypoxia. These include acute changes in pulmonary arterial tone due to smooth muscle cell contraction, acute increases in respiration triggered by the carotid body chemosensory cells, and chronic changes such as induction of red blood cell proliferation and angiogenesis by hypoxia inducible factor targets erythropoietin and vascular endothelial growth factor, respectively. Mitochondria account for the majority of oxygen consumption in the cell and have recently been appreciated to serve as signaling organelles required for the initiation or propagation of numerous homeostatic mechanisms. Mitochondria can influence cell signaling by production of reactive oxygen species and metabolites. Here we review recent evidence that mitochondrial signals can imitate acute and chronic hypoxia responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Clinical iron deficiency disturbs normal human responses to hypoxia

    PubMed Central

    Frise, Matthew C.; Cheng, Hung-Yuan; Nickol, Annabel H.; Curtis, M. Kate; Pollard, Karen A.; Roberts, David J.; Ratcliffe, Peter J.; Dorrington, Keith L.; Robbins, Peter A.

    2016-01-01

    BACKGROUND. Iron bioavailability has been identified as a factor that influences cellular hypoxia sensing, putatively via an action on the hypoxia-inducible factor (HIF) pathway. We therefore hypothesized that clinical iron deficiency would disturb integrated human responses to hypoxia. METHODS. We performed a prospective, controlled, observational study of the effects of iron status on hypoxic pulmonary hypertension. Individuals with absolute iron deficiency (ID) and an iron-replete (IR) control group were exposed to two 6-hour periods of isocapnic hypoxia. The second hypoxic exposure was preceded by i.v. infusion of iron. Pulmonary artery systolic pressure (PASP) was serially assessed with Doppler echocardiography. RESULTS. Thirteen ID individuals completed the study and were age- and sex-matched with controls. PASP did not differ by group or study day before each hypoxic exposure. During the first 6-hour hypoxic exposure, the rise in PASP was 6.2 mmHg greater in the ID group (absolute rises 16.1 and 10.7 mmHg, respectively; 95% CI for difference, 2.7–9.7 mmHg, P = 0.001). Intravenous iron attenuated the PASP rise in both groups; however, the effect was greater in ID participants than in controls (absolute reductions 11.1 and 6.8 mmHg, respectively; 95% CI for difference in change, –8.3 to –0.3 mmHg, P = 0.035). Serum erythropoietin responses to hypoxia also differed between groups. CONCLUSION. Clinical iron deficiency disturbs normal responses to hypoxia, as evidenced by exaggerated hypoxic pulmonary hypertension that is reversed by subsequent iron administration. Disturbed hypoxia sensing and signaling provides a mechanism through which iron deficiency may be detrimental to human health. TRIAL REGISTRATION. ClinicalTrials.gov (NCT01847352). FUNDING. M.C. Frise is the recipient of a British Heart Foundation Clinical Research Training Fellowship (FS/14/48/30828). K.L. Dorrington is supported by the Dunhill Medical Trust (R178/1110). D.J. Roberts was

  3. Hypoxia Worsens Affective Responses and Feeling of Fatigue During Prolonged Bed Rest

    PubMed Central

    Stavrou, Nektarios A. M.; Debevec, Tadej; Eiken, Ola; Mekjavic, Igor B.

    2018-01-01

    Previous research, although limited, suggests that both hypoxia and bed rest influence psychological responses by exaggerating negative psychological responses and attenuating positive emotions. The present study investigated the effect of a 21-day prolonged exposure to normobaric hypoxia and bed rest on affective responses and fatigue. Eleven healthy participants underwent three 21-day interventions using a cross-over design: (1) normobaric hypoxic ambulatory confinement (HAMB), (2) normobaric hypoxic bed rest (HBR) and (3) normoxic bed rest (NBR). Affective and fatigue responses were investigated using the Activation Deactivation Adjective Check List, and the Multidimensional Fatigue Inventory, which were completed before (Pre), during (Day 7, Day 14, and Day 21) and after (Post) the interventions. The most negative psychological profile appeared during the HBR intervention. Specifically, tiredness, tension, general and physical fatigue significantly increased on days 7, 14, and 21, as well as at Post. After the HBR intervention, general and physical fatigue remained higher compared to Pre values. Additionally, a deterioration of psychological responses was also noted following HAMB and NBR. In particular, both hypoxia and BR per se induced subjective fatigue and negative affective responses. BR seems to exert a moderate negative effect on the sensation of fatigue, whereas exercise attenuates the negative effects of hypoxia as noted during the HAMB condition. In conclusion, our data suggest that the addition of hypoxia to bed rest-induced inactivity significantly worsens affective responses and feeling of fatigue. PMID:29628903

  4. Historical perspectives of cellular oxygen sensing and responses to hypoxia.

    PubMed

    Lahiri, S

    2000-04-01

    The responses to acute and chronic hypoxia begin with oxygen sensing, and this historical perspective is written in line with this concept. The earliest pertinent work started with studies on fermentation in yeast in the 17th century, before the discovery of oxygen. It required 200 yr to localize the oxygen sensing within the cells and another 100 yr to discover the cellular oxidation reactions. Today, the consensus is that the mitochondrial respiratory chain is in part the site of oxygen sensing. In addition, membrane-bound NAD(P)H oxidase possibly takes part in oxygen sensing. Oxygen-sensing mechanisms occur in a tissue-specific fashion. For example, the carotid body responds to hypoxia promptly by eliciting a ventilatory response, whereas erythropoietin production in response to hypoxia requires more time, involving new expression of genes. The mechanism has therefore moved from the cells to genes.

  5. Hypoxia, gas narcosis, and metabolic response to argon and nitrous oxide

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the mechanism of inert gas influence on metabolism are reported. The studies reported include: metabolic response of hamsters to argon and nitrous oxide, membrane fatty acids and susceptability to narcotic gas influence, narcosis-induced histotoxic hypoxia, biochemical study of inert gas narcosis, hypoxia-induced protection against cardiovascular deterioration in the weightless state, and acute metabolic and physiologic response of goats to narcosis.

  6. Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature.

    PubMed

    Slemc, Lucija; Kunej, Tanja

    2016-11-01

    Hypoxia-inducible factor-1α (HIF-1α) has crucial role in adapting cells to hypoxia through expression regulation of many genes. Identification of HIF-1α target genes (HIF-1α-TGs) is important for understanding the adapting mechanism. The aim of the present study was to collect known HIF-1α-TGs and identify their associated pathways. Targets and associated genomics data were retrieved using PubMed, WoS ( http://apps.webofknowledge.com/ ), HGNC ( http://www.genenames.org/ ), NCBI ( http://www.ncbi.nlm.nih.gov/ ), Ensemblv.84 ( http://www.ensembl.org/index.html ), DAVID Bioinformatics Resources ( https://david.ncifcrf.gov /), and Disease Ontology database ( http://disease-ontology.org/ ). From 51 papers, we collected 98 HIF-1α TGs found to be associated with 20 pathways, including metabolism of carbohydrates and pathways in cancer. Reanalysis of genomic coordinates of published HREs (hypoxia response elements) revealed six polymorphisms within HRE sites (HRE-SNPs): ABCG2, ACE, CA9, and CP. Due to large heterogeneity of results presentation in scientific literature, we also propose a first step towards reporting standardization of HIF-1α-target interactions consisting of ten relevant data types. Suggested minimal checklist for reporting will enable faster development of a complete catalog of HIF-1α-TGs, data sharing, bioinformatics analyses, and setting novel more targeted hypotheses. The proposed format for data standardization is not yet complete but presents a baseline for further optimization of the protocol with additional details, for example, regarding the experimental validation.

  7. [Reactive changes of the rat brain cellular elements under different conditions of circulatory hypoxia].

    PubMed

    Droblenkov, A V; Naumov, N V; Monid, M V; Valkovich, E I; Shabanov, P D

    2013-01-01

    The aim of this study was to detect structural, spatial and quantitative changes of cellular elements of midbrain paranigral nucleus (PNN) and telencephalic anterior cingulate area (ACA) under different conditions of circulatory hypoxia. PNN anteriormedial part and ACA layers V-VI were examined in adult rats 7 days (n=4) after an occlusion of both common carotid arteries as well as in intact (1st control, n=4) and sham-operated animals (2nd control, n=4). In histological the sections, stained with Nissl cresyl violet, and using the methods of glial fibrillary acidic protein and an Ibal-protein detection, the proportions of unmodified, hypochromic, pyknomorphic neurons and ghost cells were determined as well as the numbers of astrocytes, oligodendrocytes, microgliocytes and endotheliocytes. Cell body area of neurons and gliocytes, and the distance between cell bodies and capillaries were measured, a gliocyte-neuronal index was calculated. It was found that brain cellular elements that survive different conditions of a circulatory hypoxia underwent a range of pathological changes. Neurons were in process of nuclear pyknosis, lysis and transformation into the ghost cells. The cells within the hypoxia nuclear zone were prone to death or pyknosis. The neurons located outside the area of hypoxia which were affected only by a humoral impact of reactions of the glutamate-calcium cascade, frequently underwent acute swelling. Microgliocyte reaction in the form of poorly expressed increase in their number and structural signs of activation was an early diffuse manifestation of a prosencephalic focal hypoxia. Endotheliocyte proliferation 7 days after of ischemic challenge was not associated with a chain of cascade reactions and was observed only in the hypoxia focus. Concentration of viable neurons and astrocytes near blood capillaries, as well as an increase in the number of satellite form gliocytes is an adaptation mechanism and a condition for the survival of cells during

  8. Characterization of the Paracoccidioides Hypoxia Response Reveals New Insights into Pathogenesis Mechanisms of This Important Human Pathogenic Fungus.

    PubMed

    Lima, Patrícia de Sousa; Chung, Dawoon; Bailão, Alexandre Melo; Cramer, Robert A; Soares, Célia Maria de Almeida

    2015-12-01

    Hypoxic microenvironments are generated during fungal infection. It has been described that to survive in the human host, fungi must also tolerate and overcome in vivo microenvironmental stress conditions including low oxygen tension; however nothing is known how Paracoccidioides species respond to hypoxia. The genus Paracoccidioides comprises human thermal dimorphic fungi and are causative agents of paracoccidioidomycosis (PCM), an important mycosis in Latin America. In this work, a detailed hypoxia characterization was performed in Paracoccidioides. Using NanoUPLC-MSE proteomic approach, we obtained a total of 288 proteins differentially regulated in 12 and 24 h of hypoxia, providing a global view of metabolic changes during this stress. In addition, a functional characterization of the homologue to the most important molecule involved in hypoxia responses in other fungi, the SREBP (sterol regulatory element binding protein) was performed. We observed that Paracoccidioides species have a functional homologue of SREBP, named here as SrbA, detected by using a heterologous genetic approach in the srbA null mutant in Aspergillus fumigatus. Paracoccidioides srbA (PbsrbA), in addition to involvement in hypoxia, is probable involved in iron adaptation and azole drug resistance responses. In this study, the hypoxia was characterized in Paracoccidioides. The first results can be important for a better understanding of the fungal adaptation to the host and improve the arsenal of molecules for the development of alternative treatment options in future, since molecules related to fungal adaptation to low oxygen levels are important to virulence and pathogenesis in human pathogenic fungi.

  9. Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter

    PubMed Central

    2012-01-01

    Background Aspergillus fumigatus is a mold responsible for the majority of cases of aspergillosis in humans. To survive in the human body, A. fumigatus must adapt to microenvironments that are often characterized by low nutrient and oxygen availability. Recent research suggests that the ability of A. fumigatus and other pathogenic fungi to adapt to hypoxia contributes to their virulence. However, molecular mechanisms of A. fumigatus hypoxia adaptation are poorly understood. Thus, to better understand how A. fumigatus adapts to hypoxic microenvironments found in vivo during human fungal pathogenesis, the dynamic changes of the fungal transcriptome and proteome in hypoxia were investigated over a period of 24 hours utilizing an oxygen-controlled fermenter system. Results Significant increases in transcripts associated with iron and sterol metabolism, the cell wall, the GABA shunt, and transcriptional regulators were observed in response to hypoxia. A concomitant reduction in transcripts was observed with ribosome and terpenoid backbone biosynthesis, TCA cycle, amino acid metabolism and RNA degradation. Analysis of changes in transcription factor mRNA abundance shows that hypoxia induces significant positive and negative changes that may be important for regulating the hypoxia response in this pathogenic mold. Growth in hypoxia resulted in changes in the protein levels of several glycolytic enzymes, but these changes were not always reflected by the corresponding transcriptional profiling data. However, a good correlation overall (R2 = 0.2, p < 0.05) existed between the transcriptomic and proteomics datasets for all time points. The lack of correlation between some transcript levels and their subsequent protein levels suggests another regulatory layer of the hypoxia response in A. fumigatus. Conclusions Taken together, our data suggest a robust cellular response that is likely regulated both at the transcriptional and post-transcriptional level in response to hypoxia

  10. Functional interaction between responses to lactic acidosis and hypoxia regulates genomic transcriptional outputs

    PubMed Central

    Tang, Xiaohu; Lucas, Joseph E.; Chen, Julia Ling-Yu; LaMonte, Gregory; Wu, Jianli; Wang, Michael Changsheng; Koumenis, Constantinos; Chi, Jen-Tsan

    2011-01-01

    Within solid tumor microenvironments, lactic acidosis and hypoxia each have powerful effects on cancer pathophysiology. However, the influence that these processes exert on each other is unknown. Here we report that a significant portion of the transcriptional response to hypoxia elicited in cancer cells is abolished by simultaneous exposure to lactic acidosis. In particular, lactic acidosis abolished stabilization of HIF-1α protein which occurs normally under hypoxic conditions. In contrast, lactic acidosis strongly synergized with hypoxia to activate the unfolded protein response (UPR) and an inflammatory response, displaying a strong similarity to ATF4-driven amino acid deprivation responses (AAR). In certain breast tumors and breast tumor cells examined, an integrative analysis of gene expression and array CGH data revealed DNA copy number alterations at the ATF4 locus, an important activator of the UPR/AAR pathway. In this setting, varying ATF4 levels influenced the survival of cells after exposure to hypoxia and lactic acidosis. Our findings reveal that the condition of lactic acidosis present in solid tumors inhibits canonical hypoxia responses and activates UPR and inflammation responses. Further, they suggest that ATF4 status may be a critical determinant of the ability of cancer cells to adapt to oxygen and acidity fluctuations in the tumor microenvironment, perhaps linking short-term transcriptional responses to long-term selection for copy number alterations in cancer cells. PMID:22135092

  11. Development of the ACTH and corticosterone response to acute hypoxia in the neonatal rat

    PubMed Central

    Bruder, Eric D.; Taylor, Jennifer K.; Kamer, Kimberli J.; Raff, Hershel

    2008-01-01

    Acute episodes of severe hypoxia are among the most common stressors in neonates. An understanding of the development of the physiological response to acute hypoxia will help improve clinical interventions. The present study measured ACTH and corticosterone responses to acute, severe hypoxia (8% inspired O2 for 4 h) in neonatal rats at postnatal days (PD) 2, 5, and 8. Expression of specific hypothalamic, anterior pituitary, and adrenocortical mRNAs was assessed by real-time PCR, and expression of specific proteins in isolated adrenal mitochondria from adrenal zona fascisulata/reticularis was assessed by immunoblot analyses. Oxygen saturation, heart rate, and body temperature were also measured. Exposure to 8% O2 for as little as 1 h elicited an increase in plasma corticosterone in all age groups studied, with PD2 pups showing the greatest response (∼3 times greater than PD8 pups). Interestingly, the ACTH response to hypoxia was absent in PD2 pups, while plasma ACTH nearly tripled in PD8 pups. Analysis of adrenal mRNA expression revealed a hypoxia-induced increase in Ldlr mRNA at PD2, while both Ldlr and Star mRNA were increased at PD8. Acute hypoxia decreased arterial O2 saturation (SPo2) to ∼80% and also decreased body temperature by 5–6°C. The hypoxic thermal response may contribute to the ACTH and corticosterone response to decreases in oxygen. The present data describe a developmentally regulated, differential corticosterone response to acute hypoxia, shifting from ACTH independence in early life (PD2) to ACTH dependence less than 1 wk later (PD8). PMID:18703410

  12. The cross-tissue metabolic response of abalone (Haliotis midae) to functional hypoxia.

    PubMed

    Venter, Leonie; Loots, Du Toit; Mienie, Lodewyk J; Jansen van Rensburg, Peet J; Mason, Shayne; Vosloo, Andre; Lindeque, Jeremie Z

    2018-03-23

    Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone ( Haliotis midae) subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids) for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  13. The cross-tissue metabolic response of abalone (Haliotis midae) to functional hypoxia

    PubMed Central

    Venter, Leonie; Loots, Du Toit; Mienie, Lodewyk J.; Jansen van Rensburg, Peet J.; Mason, Shayne; Vosloo, Andre

    2018-01-01

    ABSTRACT Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone (Haliotis midae) subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids) for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia. This article has an associated First Person interview with the first author of the paper. PMID:29572259

  14. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription.

    PubMed

    Rauen, Thomas; Frye, Bjoern C; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R

    2016-09-16

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3' enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3' adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Inadequate erythroid response to hypoxia in cystic fibrosis.

    PubMed

    Vichinsky, E P; Pennathur-Das, R; Nickerson, B; Minor, M; Kleman, K; Higashino, S; Lubin, B

    1984-07-01

    An increase in hemoglobin concentration characterizes the normal compensatory response to chronic tissue hypoxia. We observed no such increase in 42 chronically hypoxic patients with cystic fibrosis, in whom the mean concentration was 12.6 gm/dl; one third of the patients were anemic. Compared with patients with cyanotic heart disease, patients with cystic fibrosis did not have a compensatory increase in P50 or 2,3-diphosphoglycerate. Despite anemia, erythropoietin levels in patients with cystic fibrosis were not significantly different from normal control values. The growth of colony-forming units-erythroid in patients with cystic fibrosis was similar to that in control subjects, and there was no inhibition of growth with the addition of autologous serum. Erythropoietin sensitivity, determined by measuring the CFUe dose response curve, was normal in both patients and controls. Results of iron studies were consistent with iron deficiency in the majority of patients. Impaired absorption of iron was observed in six of 13 iron-deficient patients with cystic fibrosis. An inverse correlation between erythrocyte sedimentation rate and peak serum iron was obtained during the iron absorption study. Eight patients who underwent a therapeutic trial of iron demonstrated a 1.8 gm/dl rise in hemoglobin concentration. Two patients with previously documented iron malabsorption responded to parenteral iron therapy after failure to respond to oral supplementation. These studies demonstrate that patients with cystic fibrosis not only have an impaired erythroid response to hypoxia, but are frequently anemic. Their inadequate erythroid response to hypoxia results in part from disturbances in erythropoietin regulation and iron availability.

  16. Hypoxia affects cellular responses to plant extracts.

    PubMed

    Liew, Sien-Yei; Stanbridge, Eric J; Yusoff, Khatijah; Shafee, Norazizah

    2012-11-21

    Microenvironmental conditions contribute towards varying cellular responses to plant extract treatments. Hypoxic cancer cells are known to be resistant to radio- and chemo-therapy. New therapeutic strategies specifically targeting these cells are needed. Plant extracts used in Traditional Chinese Medicine (TCM) can offer promising candidates. Despite their widespread usage, information on their effects in hypoxic conditions is still lacking. In this study, we examined the cytotoxicity of a series of known TCM plant extracts under normoxic versus hypoxic conditions. Pereskia grandifolia, Orthosiphon aristatus, Melastoma malabathricum, Carica papaya, Strobilanthes crispus, Gynura procumbens, Hydrocotyle sibthorpioides, Pereskia bleo and Clinacanthus nutans leaves were dried, blended into powder form, extracted in methanol and evaporated to produce crude extracts. Human Saos-2 osteosarcoma cells were treated with various concentrations of the plant extracts under normoxia or hypoxia (0.5% oxygen). 24h after treatment, an MTT assay was performed and the IC(50) values were calculated. Effect of the extracts on hypoxia inducible factor (HIF) activity was evaluated using a hypoxia-driven firefly luciferase reporter assay. The relative cytotoxicity of each plant extract on Saos-2 cells was different in hypoxic versus normoxic conditions. Hypoxia increased the IC(50) values for Pereskia grandifola and Orthosiphon aristatus extracts, but decreased the IC(50) values for Melastoma malabathricum and Carica papaya extracts. Extracts of Strobilanthes crispus, Gynura procumbens, Hydrocotyle sibthorpioides had equivalent cytotoxic effects under both conditions. Pereskia bleo and Clinacanthus nutans extracts were not toxic to cells within the concentration ranges tested. The most interesting result was noted for the Carica papaya extract, where its IC(50) in hypoxia was reduced by 3-fold when compared to the normoxic condition. This reduction was found to be associated with HIF

  17. Respiratory responses to intermittent hypoxia in unsedated piglets: relation to substance P binding in brainstem.

    PubMed

    Laferrière, André; Moss, Immanuela Ravé

    2004-10-12

    Respiratory responses to single intermittent hypoxia (5 min 21% O(2), 5 min 8% O(2) X6) in 5-6, 10-11, 21-22 and 26-27 day-old piglets, and to recurrent six daily intermittent hypoxia in 10-11 and 26-27 day-old piglets were assessed. Substance P binding in the piglets' brainstem immediately after the last hypoxic episode was measured. All piglets hyperventilated during hypoxia. Weight adjusted inspired ventilation, tidal volume and instantaneous flow decreased with age. The oldest piglets uniquely displayed attenuated ventilation and tidal volume during the sixth versus first hypoxic episode with single intermittent hypoxia, and reduced inspired ventilation and tidal volume during the first hypoxic episode on the sixth daily hypoxia compared to single hypoxia. By contrast, substance P binding was greatly reduced in the solitary, hypoglossal, paraambigual and lateral reticular brainstem nuclei of both younger and older piglets following either single or recurrent intermittent hypoxia. Thus, the reduction in membrane-bound neurokinin receptors by intermittent hypoxia, presumably consequent to endogenously released substance P, does not exclusively determine whether the ventilatory response to that hypoxia will be attenuated or not.

  18. Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia

    PubMed Central

    Petousi, Nayia; Croft, Quentin P. P.; Cavalleri, Gianpiero L.; Cheng, Hung-Yuan; Formenti, Federico; Ishida, Koji; Lunn, Daniel; McCormack, Mark; Shianna, Kevin V.; Talbot, Nick P.; Ratcliffe, Peter J.

    2013-01-01

    Tibetan natives have lived on the Tibetan plateau (altitude ∼4,000 m) for at least 25,000 years, and as such they are adapted to life and reproduction in a hypoxic environment. Recent studies have identified two genetic loci, EGLN1 and EPAS1, that have undergone natural selection in Tibetans, and further demonstrated an association of EGLN1/EPAS1 genotype with hemoglobin concentration. Both genes encode major components of the hypoxia-inducible factor (HIF) transcriptional pathway, which coordinates an organism's response to hypoxia. Patients living at sea level with genetic disease of the HIF pathway have characteristic phenotypes at both the integrative-physiology and cellular level. We sought to test the hypothesis that natural selection to hypoxia within Tibetans results in related phenotypic differences. We compared Tibetans living at sea level with Han Chinese, who are Tibetans' most closely related major ethnic group. We found that Tibetans had a lower hemoglobin concentration, a higher pulmonary ventilation relative to metabolism, and blunted pulmonary vascular responses to both acute (minutes) and sustained (8 h) hypoxia. At the cellular level, the relative expression and hypoxic induction of HIF-regulated genes were significantly lower in peripheral blood lymphocytes from Tibetans compared with Han Chinese. Within the Tibetans, we found a significant correlation between both EPAS1 and EGLN1 genotype and the induction of erythropoietin by hypoxia. In conclusion, this study provides further evidence that Tibetans respond less vigorously to hypoxic challenge. This is evident at sea level and, at least in part, appears to arise from a hyporesponsive HIF transcriptional system. PMID:24030663

  19. Responsiveness of Coronary Arteries to Nitroglycerin under Hypoxia: The Importance of the Endothelium.

    PubMed

    Tawa, Masashi; Shimosato, Takashi; Sakonjo, Hiroshi; Okamura, Tomio

    2017-01-01

    Nitroglycerin is widely used as a coronary vasodilator in the treatment of ischemic heart diseases. This study investigated the influence of hypoxia on nitroglycerin-induced relaxation in endothelium-intact and -denuded rabbit, monkey, and porcine coronary arteries. Helically cut strips of coronary arteries were suspended in organ chambers, and isometric tension was recorded. Nitroglycerin concentration dependently relaxed endothelium-intact rabbit coronary arteries, which were not different under normoxic and hypoxic conditions. On the other hand, nitroglycerin-induced relaxation of endothelium-denuded arteries was significantly attenuated by hypoxia. Similarly, the relaxant response of endothelium-intact monkey coronary arteries to nitroglycerin was not affected by hypoxia, whereas that of endothelium-denuded arteries was impaired. As is the case with rabbit and monkey coronary arteries, exposure to hypoxia resulted in impaired relaxation by nitroglycerin in endothelium-denuded but not endothelium-intact porcine coronary arteries. These findings suggest that coronary endothelium plays a pivotal role in preventing the hypoxia-induced impairment of nitroglycerin responsiveness, regardless of the animal species. © 2017 S. Karger AG, Basel.

  20. Antenatal smoking and substance-misuse, infant and newborn response to hypoxia.

    PubMed

    Ali, Kamal; Rosser, Thomas; Bhat, Ravindra; Wolff, Kim; Hannam, Simon; Rafferty, Gerrard F; Greenough, Anne

    2017-05-01

    To determine at the peak age for sudden infant death syndrome (SIDS) the ventilatory response to hypoxia of infants whose mothers substance misused in pregnancy (SM infants), or smoked during pregnancy (S mothers) and controls whose mothers neither substance misused or smoked. In addition, we compared the ventilatory response to hypoxia during the neonatal period and peak age of SIDS. Infants of S or SM mothers compared to control infants would have a poorer ventilatory response to hypoxia at the peak age of SIDS. Prospective, observational study. Twelve S; 12 SM and 11 control infants were assessed at 6-12 weeks of age and in the neonatal period. Changes in minute volume, oxygen saturation, heart rate, and end tidal carbon dioxide levels on switching from breathing room air to 15% oxygen were assessed. Maternal and infant urine samples were tested for cotinine, cannabinoids, opiates, amphetamines, methadone, cocaine, and benzodiazepines. The S and SM infants had a greater decline in minute volume (P = 0.037, P = 0.016, respectively) and oxygen saturation (P = 0.031) compared to controls. In all groups, the magnitude of decline in minute volume in response to hypoxia was higher in the neonatal period compared to at 6-12 weeks (P < 0.001). Both maternal substance misuse and smoking were associated with an impaired response to a hypoxic challenge at the peak age for SIDS. The hypoxic ventilatory decline was more marked in the neonatal period compared to the peak age for SIDS indicating a maturational effect. Pediatr Pulmonol. 2017;52:650-655. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. What can an ecophysiological approach tell us about the physiological responses of marine invertebrates to hypoxia?

    PubMed

    Spicer, John I

    2014-01-01

    Hypoxia (low O2) is a common and natural feature of many marine environments. However, human-induced hypoxia has been on the rise over the past half century and is now recognised as a major problem in the world's seas and oceans. Whilst we have information on how marine invertebrates respond physiologically to hypoxia in the laboratory, we still lack understanding of how they respond to such stress in the wild (now and in the future). Consequently, here the question 'what can an ecophysiological approach tell us about physiological responses of marine invertebrates to hypoxia' is addressed. How marine invertebrates work in the wild when challenged with hypoxia is explored using four case studies centred on different hypoxic environments. The recent integration of the various -omics into ecophysiology is discussed, and a number of advantages of, and challenges to, successful integration are suggested. The case studies and -omic/physiology integration data are used to inform the concluding part of the review, where it is suggested that physiological responses to hypoxia in the wild are not always the same as those predicted from laboratory experiments. This is due to behaviour in the wild modifying responses, and therefore more than one type of 'experimental' approach is essential to reliably determine the actual response. It is also suggested that assuming it is known what a measured response is 'for' can be misleading and that taking parodies of ecophysiology seriously may impede research progress. This review finishes with the suggestion that an -omics approach is, and is becoming, a powerful method of understanding the response of marine invertebrates to environmental hypoxia and may be an ideal way of studying hypoxic responses in the wild. Despite centring on physiological responses to hypoxia, the review hopefully serves as a contribution to the discussion of what (animal) ecophysiology looks like (or should look like) in the 21st century.

  2. Protective role of somatostatin receptor 2 against retinal degeneration in response to hypoxia.

    PubMed

    Dal Monte, Massimo; Latina, Valentina; Cupisti, Elena; Bagnoli, Paola

    2012-05-01

    In mouse retinal explants, octreotide, a somatostatin [somatotropin release-inhibiting factor (SRIF)] receptor 2 (sst(2)) agonist, prevents the hypoxia-induced vascular endothelial growth factor upregulation. In mice with oxygen-induced retinopathy (OIR), a model of retinopathy of prematurity, either sst(2) overexpression or octreotide have been found to limit hypoxia-induced angiogenic processes. Here, we investigated whether sst(2) influences retinal degeneration in response to hypoxia in wild-type (WT), sst(1)- and sst(2)-knockout (KO) mice. In retinal explants, we determined the role of sst(2) on apoptotic signals. In control condition, caspase-3 activity and the Bax/Bcl-2 ratio were lower in sst(1)-KO than in WT, but higher in sst(2)-KO than in WT retinas. In all strains, a comparable increase in caspase-3 activity and the Bax/Bcl-2 ratio was observed after hypoxia. The hypoxia-induced increase in apoptotic signals was recovered by octreotide in both WT and sst(1)-KO retinas. To investigate the role of sst(2) on retinal function, we recorded electroretinogram (ERG) in response to light flashes in OIR mice. ERG responses did not differ between WT and KO mice with the exception of oscillatory potentials (OPs) which, in sst(1)-KO mice, displayed much larger amplitude. In all strains, hypoxia drastically reduced a-, b-waves and OPs. In both WT and sst(1)-KO mice, octreotide recovered a- and b-waves, but did not recover OPs in sst(1)-KO mice. Neither apoptotic signals nor ERG was affected by octreotide in sst(2)-KO mice. These results show that sst(2) may protect retinal cells from hypoxia, thus implementing the background to establish potential pharmacological targets based on sst(2) pharmacology.

  3. Real-time photoacoustic imaging of rat deep brain: hemodynamic responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Iwazaki, Hideaki; Ida, Taiichiro; Hosaka, Tomoya; Kawaguchi, Yasushi; Nawashiro, Hiroshi; Sato, Shunichi

    2013-03-01

    Hemodynamic responses of the brain to hypoxia or ischemia are one of the major interests in neurosurgery and neuroscience. In this study, we performed real-time transcutaneous PA imaging of the rat brain that was exposed to a hypoxic stress and investigated depth-resolved responses of the brain, including the hippocampus. A linear-array 8ch 10-MHz ultrasonic sensor (measurement length, 10 mm) was placed on the shaved scalp. Nanosecond, 570-nm and 595- nm light pulses were used to excite PA signals indicating cerebral blood volume (CBV) and blood deoxygenation, respectively. Under spontaneous respiration, inhalation gas was switched from air to nitrogen, and then reswitched to oxygen, during which real-time PA imaging was performed continuously. High-contrast PA signals were observed from the depth regions corresponding to the scalp, skull, cortex and hippocampus. After starting hypoxia, PA signals at 595 nm increased immediately in both the cortex and hippocampus for about 1.5 min, showing hemoglobin deoxygenation. On the other hand, PA signals at 570 nm coming from these regions did not increase in the early phase but started to increase at about 1.5 min after starting hypoxia, indicating reactive hyperemia to hypoxia. During hypoxia, PA signals coming from the scalp decreased transiently, which is presumably due to compensatory response in the peripheral tissue to preserve blood perfusion in the brain. The reoxygenation caused a gradual recovery of these PA signals. These findings demonstrate the usefulness of PA imaging for real-time, depth-resolved observation of cerebral hemodynamics.

  4. Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis

    PubMed Central

    Chen, Zhen; Lai, Tsung-Ching; Jan, Yi-Hua; Lin, Feng-Mao; Wang, Wei-Chi; Xiao, Han; Wang, Yun-Ting; Sun, Wei; Cui, Xiaopei; Li, Ying-Shiuan; Fang, Tzan; Zhao, Hongwei; Padmanabhan, Chellappan; Sun, Ruobai; Wang, Danny Ling; Jin, Hailing; Chau, Gar-Yang; Huang, Hsien-Da; Hsiao, Michael; Shyy, John Y-J.

    2013-01-01

    Despite a general repression of translation under hypoxia, cells selectively upregulate a set of hypoxia-inducible genes. Results from deep sequencing revealed that Let-7 and miR-103/107 are hypoxia-responsive microRNAs (HRMs) that are strongly induced in vascular endothelial cells. In silico bioinformatics and in vitro validation showed that these HRMs are induced by HIF1α and target argonaute 1 (AGO1), which anchors the microRNA-induced silencing complex (miRISC). HRM targeting of AGO1 resulted in the translational desuppression of VEGF mRNA. Inhibition of HRM or overexpression of AGO1 without the 3′ untranslated region decreased hypoxia-induced angiogenesis. Conversely, AGO1 knockdown increased angiogenesis under normoxia in vivo. In addition, data from tumor xenografts and human cancer specimens indicate that AGO1-mediated translational desuppression of VEGF may be associated with tumor angiogenesis and poor prognosis. These findings provide evidence for an angiogenic pathway involving HRMs that target AGO1 and suggest that this pathway may be a suitable target for anti- or proangiogenesis strategies. PMID:23426184

  5. Ventilatory responses to hypercapnia and hypoxia after 6 h passive hyperventilation in humans

    PubMed Central

    Ren, Xiaohui; Robbins, Peter A

    1999-01-01

    Acute exposure to hypoxia stimulates ventilation and induces hypocapnia. Long-term exposure to hypoxia generates changes in respiratory control known as ventilatory acclimatization to hypoxia. The object of this study was to investigate the degree to which the hyperventilation and hypocapnia can induce the changes known as ventilatory acclimatization to hypoxia, in the absence of the primary hypoxic stimulus itself.Three 6 h protocols were each performed on twelve healthy volunteers: (1) passive hypocapnic hyperventilation, with end-tidal CO2 pressure (PET,CO2) held 10 Torr below the eupnoeic value; (2) passive eucapnic hyperventilation, with PET,CO2 maintained eucapnic; (3) control.Ventilatory responses to acute hypercapnia and hypoxia were assessed before and half an hour after each protocol.The presence of prior hypocapnia, but not prior hyperventilation, caused a reduction in air-breathing PET,CO2 (P < 0·05, ANOVA), and a leftwards shift of the ventilatory response to hypercapnia (P < 0·05). The presence of prior hyperventilation, but not prior hypocapnia, caused an increase in the ventilatory sensitivity to CO2 (P < 0·05). No significant effects of any protocol were detected on the ventilatory sensitivity to hypoxia.We conclude that following 6 h of passive hyperventilation: (i) the left shift of the VE-PET,CO2 relationship is due to alkalosis and not to hyperventilation; (ii) the increase in slope of the VE-PET,CO2 relationship is due to the hyperventilation and not the alkalosis; and (iii) ventilatory sensitivity to hypoxia is unaltered. PMID:9882758

  6. Hypoxia-Responsive Polymersomes for Drug Delivery to Hypoxic Pancreatic Cancer Cells.

    PubMed

    Kulkarni, Prajakta; Haldar, Manas K; You, Seungyong; Choi, Yongki; Mallik, Sanku

    2016-08-08

    Hypoxia in tumors contributes to overall tumor progression by assisting in epithelial-to-mesenchymal transition, angiogenesis, and metastasis of cancer. In this study, we have synthesized a hypoxia-responsive, diblock copolymer poly(lactic acid)-azobenzene-poly(ethylene glycol), which self-assembles to form polymersomes in an aqueous medium. The polymersomes did not release any encapsulated contents for 50 min under normoxic conditions. However, under hypoxia, 90% of the encapsulated dye was released in 50 min. The polymersomes encapsulated the combination of anticancer drugs gemcitabine and erlotinib with entrapment efficiency of 40% and 28%, respectively. We used three-dimensional spheroid cultures of pancreatic cancer cells BxPC-3 to demonstrate hypoxia-mediated release of the drugs from the polymersomes. The vesicles were nontoxic. However, a significant decrease in cell viability was observed in hypoxic spheroidal cultures of BxPC-3 cells in the presence of drug encapsulated polymersomes. These polymersomes have potential for future applications in imaging and treatment of hypoxic tumors.

  7. The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes

    PubMed Central

    Schaffner, Carlos A; Mwinyi, Jessica; Gai, Zhibo; Thasler, Wolfgang E; Eloranta, Jyrki J; Kullak-Ublick, Gerd A

    2015-01-01

    Background & Aims The organic solute transporters alpha and beta (OSTα-OSTβ) form a heterodimeric transporter located at the basolateral membrane of intestinal epithelial cells and hepatocytes. Liver injury caused by ischaemia-reperfusion, cancer, inflammation or cholestasis can induce a state of hypoxia in hepatocytes. Here, we studied the effect of hypoxia on the expression of OSTα-OSTβ. Methods OSTα-OSTβ expression was measured in Huh7 cells and primary human hepatocytes (PHH) exposed to chenodeoxycholic acid (CDCA), hypoxia or both. OSTα-OSTβ promoter activity was analysed in luciferase reporter gene assays. Binding of hypoxia-inducible factor-1 alpha (HIF-1α) to the OSTα-OSTβ gene promoters was studied in electrophoretic mobility shift assays (EMSA). Results Expression of OSTα and OSTβ increased in PHH under conditions of hypoxia. Exposure of Huh7 cells or PHH to CDCA (50 μM) enhanced the effect of hypoxia on OSTα mRNA levels. In luciferase assays and EMSA, the inducing effect of low oxygen could be assigned to HIF-1α, which binds to hypoxia responsive elements (HRE) in the OSTα and OSTβ gene promoters. Site-directed mutagenesis of either the predicted HRE or the bile acid responsive FXR binding site abolished inducibility of the OSTα promoter, indicating that both elements need to be intact for induction by hypoxia and CDCA. In a rat model of chronic renal failure, the known increase in hepatic OSTα expression was associated with an increase in HIF-1α protein levels. Conclusion OSTα-OSTβ expression is induced by hypoxia. FXR and HIF-1α bind in close proximity to the OSTα gene promoter and produce synergistic effects on OSTα expression. PMID:24703425

  8. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    PubMed Central

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  9. Impaired response of mature adipocytes of diabetic mice to hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seok Jong, E-mail: seok-hong@northwestern.edu; Jin, Da P.; Buck, Donald W.

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role inmore » injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.« less

  10. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia

    PubMed Central

    Xu, Yang; Zhang, Ming; Savoldo, Barbara; Metelitsa, Leonid S.; Rodgers, John; Yustein, Jason T.; Neilson, Joel R.

    2016-01-01

    Hypoxia occurs in many pathological conditions, including chronic inflammation and tumors, and is considered to be an inhibitor of T cell function. However, robust T cell responses occur at many hypoxic inflammatory sites, suggesting that functions of some subsets are stimulated under low oxygen conditions. Here, we investigated how hypoxic conditions influence human T cell functions and found that, in contrast to naive and central memory T cells (TN and TCM), hypoxia enhances the proliferation, viability, and cytotoxic action of effector memory T cells (TEM). Enhanced TEM expansion in hypoxia corresponded to high hypoxia-inducible factor 1α (HIF1α) expression and glycolytic activity compared with that observed in TN and TCM. We determined that the glycolytic enzyme GAPDH negatively regulates HIF1A expression by binding to adenylate-uridylate–rich elements in the 3′-UTR region of HIF1A mRNA in glycolytically inactive TN and TCM. Conversely, active glycolysis with decreased GAPDH availability in TEM resulted in elevated HIF1α expression. Furthermore, GAPDH overexpression reduced HIF1α expression and impaired proliferation and survival of T cells in hypoxia, indicating that high glycolytic metabolism drives increases in HIF1α to enhance TEM function during hypoxia. This work demonstrates that glycolytic metabolism regulates the translation of HIF1A to determine T cell responses to hypoxia and implicates GAPDH as a potential mechanism for controlling T cell function in peripheral tissue. PMID:27294526

  11. HypoxiaDB: a database of hypoxia-regulated proteins

    PubMed Central

    Khurana, Pankaj; Sugadev, Ragumani; Jain, Jaspreet; Singh, Shashi Bala

    2013-01-01

    There has been intense interest in the cellular response to hypoxia, and a large number of differentially expressed proteins have been identified through various high-throughput experiments. These valuable data are scattered, and there have been no systematic attempts to document the various proteins regulated by hypoxia. Compilation, curation and annotation of these data are important in deciphering their role in hypoxia and hypoxia-related disorders. Therefore, we have compiled HypoxiaDB, a database of hypoxia-regulated proteins. It is a comprehensive, manually-curated, non-redundant catalog of proteins whose expressions are shown experimentally to be altered at different levels and durations of hypoxia. The database currently contains 72 000 manually curated entries taken on 3500 proteins extracted from 73 peer-reviewed publications selected from PubMed. HypoxiaDB is distinctive from other generalized databases: (i) it compiles tissue-specific protein expression changes under different levels and duration of hypoxia. Also, it provides manually curated literature references to support the inclusion of the protein in the database and establish its association with hypoxia. (ii) For each protein, HypoxiaDB integrates data on gene ontology, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway, protein–protein interactions, protein family (Pfam), OMIM (Online Mendelian Inheritance in Man), PDB (Protein Data Bank) structures and homology to other sequenced genomes. (iii) It also provides pre-compiled information on hypoxia-proteins, which otherwise requires tedious computational analysis. This includes information like chromosomal location, identifiers like Entrez, HGNC, Unigene, Uniprot, Ensembl, Vega, GI numbers and Genbank accession numbers associated with the protein. These are further cross-linked to respective public databases augmenting HypoxiaDB to the external repositories. (iv) In addition, HypoxiaDB provides an online sequence-similarity search tool for

  12. Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression.

    PubMed

    Hung, Shun-Pei; Yang, Muh-Hwa; Tseng, Kuo-Fung; Lee, Oscar K

    2013-01-01

    In solid tumors, a decreased oxygen and nutrient supply creates a hypoxic microenvironment in the central region. This hypoxic condition induces molecular responses of normal and cancer cells in the local area, including angiogenesis, metabolic changes, and metastasis. In addition, other cells including mesenchymal stem cells (MSCs) have been reported to be recruited into the hypoxic area of solid tumors. In our previous study, we found that hypoxic condition induces the secretion of growth factors and cytokines in MSCs, and here we demonstrate that elevated secretion of transforming growth factor-β1 (TGF-β1) by MSCs under hypoxia promotes the growth, motility, and invasive ability of breast cancer cells. It was found that TGF-β1 promoter activity was regulated by hypoxia, and the major hypoxia-regulated element was located between bp -1030 to -666 in front of the TGF-β1 promoter region. In ChIP assay, the results revealed that HIF-1 was bound to the hypoxia response element (HRE) of TGF-β1 promoter. Collectively, the results indicate that hypoxia microenvironment can enhance cancer cell growth through the paracrine effects of the MSCs by driving their TGF-β1 gene expression and secretion. Therefore, extra caution has to be exercised when considering hypoxia pretreatment of MSCs before cell transplantation into patients for therapeutic purposes, particularly in patients susceptible to tumor growth.

  13. The role of nitric oxide in the cardiopulmonary response to hypoxia in highland and lowland newborn llamas.

    PubMed

    Reyes, Roberto V; Díaz, Marcela; Ebensperger, Germán; Herrera, Emilio A; Quezada, Sebastián A; Hernandez, Ismael; Sanhueza, Emilia M; Parer, Julian T; Giussani, Dino A; Llanos, Aníbal J

    2018-01-25

    Perinatal hypoxia causes pulmonary hypertension in neonates, including humans. However, in species adapted to hypoxia, such as the llama, there is protection against pulmonary hypertension. Nitric oxide (NO) is a vasodilatator with an established role in the cardiopulmonary system of many species, but its function in the hypoxic pulmonary vasoconstrictor response in the newborn llama is unknown. Therefore, we studied the role of NO in the cardiopulmonary responses to acute hypoxia in high- and lowland newborn llamas. We show that high- compared to lowland newborn llamas have a reduced pulmonary vasoconstrictor response to acute hypoxia. Protection against excessive pulmonary vasoconstriction in the highland llama is mediated via enhancement of NO pathways, including increased MYPT1 and reduced ROCK expression as well as Ca 2+ desensitization. Blunting of pulmonary hypertensive responses to hypoxia through enhanced NO pathways may be an adaptive mechanism to withstand life at high altitude in the newborn llama. Llamas are born in the Alto Andino with protection against pulmonary hypertension. The physiology underlying protection against pulmonary vasoconstrictor responses to acute hypoxia in highland species is unknown. We determined the role of nitric oxide (NO) in the cardiopulmonary responses to acute hypoxia in high- and lowland newborn llamas. The cardiopulmonary function of newborn llamas born at low (580 m) or high altitude (3600 m) was studied under acute hypoxia, with and without NO blockade. In pulmonary arteries, we measured the reactivity to potassium and sodium nitroprusside (SNP), and in lung we determined the content of cGMP and the expression of the NO-related proteins: BKCa, PDE5, PSer92-PDE5, PKG-1, ROCK1 and 2, MYPT1, PSer695-MYPT1, PThr696-MYPT1, MLC20 and PSer19-MLC20. Pulmonary vascular remodelling was evaluated by morphometry and based on α-actin expression. High- compared to lowland newborn llamas showed lower in vivo pulmonary arterial

  14. Copper alters hypoxia sensitivity and the behavioural emersion response in the amphibious fish Kryptolebias marmoratus.

    PubMed

    Blewett, Tamzin A; Simon, Robyn A; Turko, Andy J; Wright, Patricia A

    2017-08-01

    Elevated levels of metals have been reported in mangrove ecosystems worldwide. Mangrove fishes also routinely experience severe environmental stressors, such as hypoxia. In the amphibious fish Kryptolebias marmoratus (mangrove rivulus), a key behavioural response to avoid aquatic stress is to leave water (emersion). We hypothesized that copper (Cu) exposure would increase the sensitivity of this behavioural hypoxia avoidance response due to histopathological effects of Cu on gill structure and function. K. marmoratus were exposed to either control (no added Cu) or Cu (300μg/L) for 96h. Following this period, fish were exposed to an acute hypoxic challenge (decline in dissolved oxygen to ∼0% over 15min), and the emersion response was recorded. Gills were examined for histological changes. Fish exposed to Cu emersed at a higher dissolved oxygen level (7.5±0.6%), relative to the control treatment group (5.8±0.4%). Histological analysis showed that the gill surface area increased and the interlamellar cell mass (ILCM) was reduced following Cu exposure, contrary to our prediction. Overall, these data indicate that Cu induces hypoxia-like changes to gill morphology and increases the sensitivity of the hypoxia emersion response. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Impact of hypoxia stress on the physiological responses of sea cucumber Apostichopus japonicus: respiration, digestion, immunity and oxidative damage

    PubMed Central

    Huo, Da; Ru, Xiaoshang; Zhang, Libin; Lin, Chenggang; Xin, Xiaoke

    2018-01-01

    Hypoxia is one of the most frequently occurring stressors confronted by industrial cultures of sea cucumber and can cause large economic losses and resource degradation. However, its responsive mechanisms are still lacking. In this paper, the physiological responses of Apostichopus japonicus to oxygen deficiency was illustrated, including induced oxidative response and immune defense and changed digestive enzymes activities. Significantly increased activities of alpha-amylase (AMS), acid phosphatase (ACP), lactate dehydrogenase, catalase, peroxidase, succinate dehydrogenase and higher content of malondialdehyde, and decreased activities of lipase and trypsin (TRY) were observed after hypoxia exposure (dissolved oxygen [DO] 2 mg/L). Expressions of key genes showed that AMS, peptidase, ACP, alkaline phosphatase, lysozyme, heat shock protein 70 and glutathione peroxidase were increased and TRY was decreased under hypoxia. With the decline of the DO level, the decreased tendency of oxygen consumption rates was different in varied weight groups. Moreover, respiratory trees were observed degraded under long-term hypoxia stress, thus leading a negative effect of respiration. These results could help to develop a better understanding of the responsive mechanism of sea cucumber under hypoxia stress and provide a theoretical basis for the prevention of hypoxia risk. PMID:29719735

  16. Hypoxia-inducible factor 1–mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions

    PubMed Central

    Zhang, Feng-Lin; Shen, Guo-Min; Liu, Xiao-Ling; Wang, Fang; Zhao, Ying-Ze; Zhang, Jun-Wu

    2012-01-01

    Abstract Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type–specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34+ haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl2 induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions. PMID:22050843

  17. Interactive effects of maternal cigarette smoke, heat stress, hypoxia, and lipopolysaccharide on neonatal cardiorespiratory and cytokine responses

    PubMed Central

    McDonald, Fiona B.; Chandrasekharan, Kumaran; Wilson, Richard J. A.

    2016-01-01

    Maternal cigarette smoke (CS) exposure exhibits a strong epidemiological association with Sudden Infant Death Syndrome, but other environmental stressors, including infection, hyperthermia, and hypoxia, have also been postulated as important risk factors. This study examines whether maternal CS exposure causes maladaptations within homeostatic control networks by influencing the response to lipopolysaccharide, heat stress, and/or hypoxia in neonatal rats. Pregnant dams were exposed to CS or parallel sham treatments daily for the length of gestation. Offspring were studied at postnatal days 6–8 at ambient temperatures (Ta) of 33°C or 38°C. Within each group, rats were allocated to control, saline, or LPS (200 µg/kg) treatments. Cardiorespiratory patterns were examined using head-out plethysmography and ECG surface electrodes during normoxia and hypoxia (10% O2). Serum cytokine concentrations were quantified from samples taken at the end of each experiment. Our results suggest maternal CS exposure does not alter minute ventilation (V̇e) or heart rate (HR) response to infection or high temperature, but independently increases apnea frequency. CS also primes the inflammatory system to elicit a stronger cytokine response to bacterial insult. High Ta independently depresses V̇e but augments the hypoxia-induced increase in V̇e. Moreover, higher Ta increases HR during normoxia and hypoxia, and in the presence of an immune challenge, increases HR during normoxia, and reduces the increase normally associated with hypoxia. Thus, while most environmental risk factors increase the burden on the cardiorespiratory system in early life, hyperthermia and infection blunt the normal HR response to hypoxia, and gestational CS independently destabilizes breathing by increasing apneas. PMID:27733384

  18. Macrobenthos and megabenthos responses to long-term, large-scale hypoxia on the Louisiana continental shelf.

    PubMed

    Briggs, Kevin B; Craig, J Kevin; Shivarudrappa, S; Richards, T M

    2017-02-01

    The macrobenthos and megabenthos responses to long-term, recurring hypoxia on the Louisiana continental shelf were compared at four locations with different historical (2000-2010) episodes of annual exposure to bottom-water hypoxia. Measurements of abundance, biomass, species diversity, and community composition of the two size classes of benthos suggested that the macrobenthic response is driven chiefly by tolerance to hypoxia, whereas the megabenthic response was affected by the ability to migrate and the availability/unavailability of macrobenthos prey at the sediment surface. The site exposed to the historically lowest average bottom-water dissolved oxygen (BWDO) concentration exhibited the lowest species diversity for macrobenthos and the highest species diversity for megabenthos, exemplifying the differential effects of hypoxia on different size classes. The high diversity and smaller average size of the megabenthos at the lowest DO site was due to high abundance of invertebrates and a preponderance of small, less vagile fishes that appeared to remain in the area after larger dominant sciaenids had presumably emigrated. The average size and the depth of habitation in the sediment of macrobenthos prey may have also influenced the abundance and biomass of megabenthos foragers. Published by Elsevier Ltd.

  19. [Construction of a general AAV vector regulated by minimal and artificial hypoxic-responsive element].

    PubMed

    Nie, Xiao-wei; Sun, Li-jun; Hao, Yue-wen; Yang, Guang-xiao; Wang, Quan-ying

    2011-03-01

    To synthesize the minimal and artificial HRE, and to insert it into the anterior extremity of CMV promoter of a AAV plasmid, and then to construct the AAV regulated by hypoxic-responsive element which was introduced into 293 cell by method of Ca3(PO4)2 using three plasmids. Thus obtaining the adenoassociated virus vector regulated by hypoxic-responsive element was possibly used for gene therapy in ischemia angiocardiopathy and cerebrovascular disease. Artificially synthesize the 36 bp nucleotide sequences of four connection in series HIF-binding sites A/GCGTG(4×HBS)and a 35 bp nucleotide sequences spacing inserted into anterior extremity of CMV promoter TATA Box, then amplified by PCR. The cDNA fragment was confirmed to be right by DNA sequencing. Molecular biology routine method was used to construct a AAV vector regulated by minimal hypoxic-responsive element after the normal CMV promoter in AAV vector was replaced by the CMV promoter included minimal hypoxic-responsive element. Then, NT4-6His-PR39 fusogenic peptide was inserted into MCS of the plasmid, the recombinant AAV vector was obtained by three plasmid co-transfection in 293 cells, in which we can also investigate the expression of 6×His using immunochemistry in hypoxia environment. Artificial HRE was inserted into anterior extremity of CMV promoter and there was a correct spacing between the HRE and the TATA-box. The DNA sequencing and restriction enzyme digestion results indicated that the AAV regulated by hypoxic-responsive element was successfully constructed. Compared to the control group, the expressions of 6×His was significantly increased in the experimental groups in hypoxia environment, which confirmed that the AAV effectually regulated by the minimal HRE was inserted into anterior extremity of CMV promoter. The HRE is inserted into anterior extremity of CMV promoter to lack incision enzyme recognition site by PCR. And eukaryotic expression vector regulated by hypoxic-responsive is constructed

  20. Hypoxia Increases Sirtuin 1 Expression in a Hypoxia-inducible Factor-dependent Manner*

    PubMed Central

    Chen, Rui; Dioum, Elhadji M.; Hogg, Richard T.; Gerard, Robert D.; Garcia, Joseph A.

    2011-01-01

    Hypoxia-inducible factors (HIFs) are stress-responsive transcriptional regulators of cellular and physiological processes involved in oxygen metabolism. Although much is understood about the molecular machinery that confers HIF responsiveness to oxygen, far less is known about HIF isoform-specific mechanisms of regulation, despite the fact that HIF-1 and HIF-2 exhibit distinct biological roles. We recently determined that the stress-responsive genetic regulator sirtuin 1 (Sirt1) selectively augments HIF-2 signaling during hypoxia. However, the mechanism by which Sirt1 maintains activity during hypoxia is unknown. In this report, we demonstrate that Sirt1 gene expression increases in a HIF-dependent manner during hypoxia in Hep3B and in HT1080 cells. Impairment of HIF signaling affects Sirt1 deacetylase activity as decreased HIF-1 signaling results in the appearance of acetylated HIF-2α, which is detected without pharmacological inhibition of Sirt1. We also find that Sirt1 augments HIF-2 mediated, but not HIF-1 mediated, transcriptional activation of the isolated Sirt1 promoter. These data in summary reveal a bidirectional link of HIF and Sirt1 signaling during hypoxia. PMID:21345792

  1. Involvement of substance P in neutral endopeptidase modulation of carotid body sensory responses to hypoxia.

    PubMed

    Kumar, G K; Kou, Y R; Overholt, J L; Prabhakar, N R

    2000-01-01

    Previously, we showed that carotid bodies express neutral endopeptidase (NEP)-like enzyme activity and that phosphoramidon, a potent inhibitor of NEP, potentiates the chemosensory response of the carotid body to hypoxia in vivo. NEP has been shown to hydrolyze methionine enkephalin (Met-Enk) and substance P (SP) in neuronal tissues. The purpose of the present study is to determine whether NEP hydrolyzes Met-Enk and SP in the carotid body and if so whether these peptides contribute to phosphoramidon-induced potentiation of the sensory response to hypoxia. Experiments were performed on carotid bodies excised from anesthetized adult cats (n = 72 carotid bodies). The hydrolysis of Met-Enk and SP was analyzed by HPLC. The results showed that both SP and Met-Enk were hydrolyzed by the carotid body, but the rate of Met-Enk hydrolysis was approximately fourfold higher than that of SP. Phosphoramidon (400 microM) markedly inhibited SP hydrolysis ( approximately 90%) but had only a marginal effect on Met-Enk hydrolysis ( approximately 15% inhibition). Hypoxia (PO(2), 68 +/- 6 Torr) as well as exogenous administration of SP (10 and 20 nmol) increased the sensory discharge of the carotid body in vitro. Sensory responses to hypoxia and SP (10 nmol) were potentiated by approximately 80 and approximately 275%, respectively (P < 0.01), in the presence of phosphoramidon. SP-receptor antagonists Spantide (peptidyl) and CP-96345 (nonpeptidyl) either abolished or markedly attenuated the phosphoramidon-induced potentiation of the sensory response of the carotid body to hypoxia as well as to SP. These results demonstrate that SP is a preferred substrate for NEP in the carotid body and that SP is involved in the potentiation of the hypoxic response of the carotid body by phosphoramidon.

  2. Impact of Hypoxia on Startle Response (C-start) of Fish in a Tropical Urban Estuary

    NASA Astrophysics Data System (ADS)

    Sánchez-García, M.; Zottoli, S. J.; Roberson, L.

    2016-02-01

    Hypoxic zones have become more prevalent in marine ecosystems as a result of physical changes to the coastal zone, pollution and eutrophication, and are expected to increase in prevalence with climate change. While some studies have examined the behavioral effects of hypoxia on coastal fishes in temperate and sub-tropical zones, none have focused on tropical coastal zones. Behavioral changes may affect fish survival, predator-prey interactions and ultimately ecosystem structure. Through behavioral endpoints we evaluated the effects of non-lethal levels of hypoxia on estuarine fish collected from the tropical Condado Lagoon, San Juan P.R, in a laboratory setting. Two groups of 10 fishes were placed individually in a sound test chamber and oxygen concentrations were modulated from a pre-treatment at 100% oxygen to increasing levels of hypoxia (80, 70, & 60%), followed by a reversal treatment (100%) to test for recovery of pretreatment behavior. An abrupt sound stimulus was used to elicit a startle response, a quantifiable biological endpoint, while recording with a high speed camera. This approach can lend valuable insight into changes in the central nervous system and effects of anthropogenic inputs on tropical ecosystems at the individual- and population-level. We found that hypoxic conditions significantly decrease fish responsiveness; fish startled only half the time at 80% O2 and dropped as much as 61% at 60% O2. Additionally, responsiveness in reversal tests were significantly lower than under pre-treatment conditions. These results indicate that hypoxia may have long-term or possibly permanent effects, even under relatively mild hypoxia conditions common to tropical estuaries. Future work will aim to understand if the startle response can be regained after a hypoxic event.

  3. Impaired acclimatization to chronic hypoxia in adult male and female rats following neonatal hypoxia.

    PubMed

    Lumbroso, Delphine; Joseph, Vincent

    2009-08-01

    We tested the hypothesis that neonatal exposure to hypoxia alters acclimatization to chronic hypoxia later in life. Rat pups were exposed to normobaric hypoxia (12% O(2); nHx group) in a sealed chamber, or to normoxia (21% O(2); nNx group) from the day before birth to postnatal day 10. The animals were then raised in normal conditions until reaching 12 wk of age. At this age, we assessed ventilatory and hematological acclimatization to chronic hypoxia by exposing male and female nHx and nNx rats for 2 wk to 10% O(2). Minute ventilation, metabolic rate, hypoxic ventilatory response, hematocrit, and hemoglobin levels were measured both before and after acclimatization. We also quantified right ventricular hypertrophy as an index of pulmonary hypertension both before and after acclimatization. There was a significant effect of neonatal hypoxia that decreases ventilatory response (relative to metabolic rate, VE/VCO(2)) to acute hypoxia before acclimatization in males but not in females. nHx rats had an impaired acclimatization to chronic hypoxia characterized by altered respiratory pattern and elevated hematocrit and hemoglobin levels after acclimatization, in both males and females. Right ventricular hypertrophy was present before and after acclimatization in nHx rats, indicating that neonatal hypoxia results in pulmonary hypertension in adults. We conclude that neonatal hypoxia impairs acclimatization to chronic hypoxia in adults and may be a factor contributing to the establishment of chronic mountain sickness in humans living at high altitude.

  4. Hypoxia Response Element-Regulated MMP-9 Promotes Neurological Recovery via Glial Scar Degradation and Angiogenesis in Delayed Stroke.

    PubMed

    Cai, Hongxia; Ma, Yuanyuan; Jiang, Lu; Mu, Zhihao; Jiang, Zhen; Chen, Xiaoyan; Wang, Yongting; Yang, Guo-Yuan; Zhang, Zhijun

    2017-06-07

    Matrix metalloproteinase 9 (MMP-9) plays a beneficial role in the delayed phase of middle cerebral artery occlusion (MCAO). However, the mechanism is obscure. Here, we constructed hypoxia response element (HRE)-regulated MMP-9 to explore its effect on glial scars and neurogenesis in delayed ischemic stroke. Adult male Institute of Cancer Research (ICR) mice underwent MCAO and received a stereotactic injection of lentivirus carrying HRE-MMP-9 or normal saline (NS)/lentivirus-GFP 7 days after ischemia. We found that HRE-MMP-9 improved neurological outcomes, reduced ischemia-induced brain atrophy, and degraded glial scars (p < 0.05). Furthermore, HRE-MMP-9 increased the number of microvessels in the peri-infarct area (p < 0.001), which may have been due to the accumulation of endogenous endothelial progenitor cells (EPCs) in the peri-infarct area after glial scar degradation. Finally, HRE-MMP-9 increased the number of bromodeoxyuridine-positive (BrdU + )/NeuN + cells and the expression of PSD-95 in the peri-infarct area (p < 0.01). These changes could be blocked by vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor SU5416 and MMP-9 inhibitor 2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane (SB-3CT). Our results provided a novel mechanism by which glial scar degradation and vascular endothelial growth factor (VEGF)/VEGFR2-dependent angiogenesis may be key procedures for neurological recovery in delayed ischemic stroke after HRE-MMP-9 treatment. Therefore, HRE-MMP-9 overexpression in the delayed ischemic brain is a promising approach for neurological recovery. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  5. Fetal cerebrovascular acclimatization responses to high-altitude, long-term hypoxia: a model for prenatal programming of adult disease?

    PubMed

    Longo, Lawrence D; Pearce, William J

    2005-01-01

    During the past several decades, many risk factors for cerebrovascular and cardiovascular disease have been identified. More recently, it has been appreciated that inadequate nutrition and/or other intrauterine factors during fetal development may play an important role in the genesis of these conditions. An additional stress factor that may "program" the fetus for disease later in life is chronic hypoxia. In studies originally designed to examine the function of developing cerebral arterial function in response to long-term hypoxia (LTH), it has become clear that many cellular and subcellular changes may have important implications for later life. Here we review some of the significant alterations in fetal cerebral artery structure and function induced by high-altitude (3,820 m, 12,470 ft) LTH ( approximately 110 days). LTH is associated with augmentation or upregulation of presynaptic functions, including responses to perivascular (i.e., sympathetic) nerve stimulation, and structural maturational changes. In contrast, many postsynaptic functions related to the Ca(2+)-dependent contractile pathway tend to be downregulated, whereas elements of the Ca(2+)-independent contraction pathway are upregulated. The results emphasize the role of high-altitude LTH in modulating many aspects of electromechanical and pharmacomechanical coupling in the developing cerebral vasculature. A complicating factor is that the regulation of cerebrovascular tone by Ca(2+)-dependent and Ca(2+)-independent pathways changes significantly as a function of maturational age. In addition to highlighting independent regulation of various elements of the signal transduction cascade, the studies demonstrate the potential for LTH to program the fetus for cerebrovascular and other disease as an adult.

  6. Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans.

    PubMed

    Somers, V K; Mark, A L; Zavala, D C; Abboud, F M

    1989-11-01

    The sympathetic response to hypoxia depends on the interaction between chemoreceptor stimulation (CRS) and the associated hyperventilation. We studied this interaction by measuring sympathetic nerve activity (SNA) to muscle in 13 normal subjects, while breathing room air, 14% O2, 10% O2, and 10% O2 with added CO2 to maintain isocapnia. Minute ventilation (VE) and blood pressure (BP) increased significantly more during isocapnic hypoxia (IHO) than hypocapnic hypoxia (HHO). In contrast, SNA increased more during HHO [40 +/- 10% (SE)] than during IHO (25 +/- 19%, P less than 0.05). To determine the reason for the lesser increase in SNA with IHO, 11 subjects underwent voluntary apnea during HHO and IHO. Apnea potentiated the SNA responses to IHO more than to HHO. SNA responses to IHO were 17 +/- 7% during breathing and 173 +/- 47% during apnea whereas SNA responses to HHO were 35 +/- 8% during breathing and 126 +/- 28% during apnea. During ventilation, the sympathoexcitation of IHO (compared with HHO) is suppressed, possibly for two reasons: 1) because of the inhibitory influence of activation of pulmonary afferents as a result of a greater increase in VE, and 2) because of the inhibitory influence of baroreceptor activation due to a greater rise in BP. Thus in humans, the ventilatory response to chemoreceptor stimulation predominates and restrains the sympathetic response. The SNA response to chemoreceptor stimulation represents the net effect of the excitatory influence of the chemoreflex and the inhibitory influence of pulmonary afferents and baroreceptor afferents.

  7. Effects of Hypobaric Hypoxia on Rat Retina and Protective Response of Resveratrol to the Stress

    PubMed Central

    Xin, Xiaorong; Dang, Hong; Zhao, Xiaojing; Wang, Haohao

    2017-01-01

    High-altitude retinopathy represents retinal functional changes associated with environmental challenges imposed by hypobaric hypoxia, but the detailed cellular and molecular mechanism underlying this process remains unclear. Our current investigation was to explore the effect of hypobaric hypoxia on the rat retina and determine whether resveratrol has a protective efficacy on the hypoxic damage to the retina. Experiment rats were randomly grouped as the control group, hypoxia group and resveratrol intervention group. The hypoxia group and the resveratrol intervention group were maintained in a low-pressure oxygen cabin, and the resveratrol intervention group was given daily intraperitoneal injections with resveratrol. We found that hypobaric hypoxia increased thioredoxin 1 (Trx1) and thioredoxin 2 (Trx2) expression in retinas, and resveratrol treatment significantly reversed these changes (P < 0.05, P < 0.05 respectively). In comparison with controls, hypoxia upregulated the mRNA expression levels of caspase3 (P < 0.001), caspase9 (P < 0.01), heat shock protein 70 (Hsp70) (P < 0.05), heat shock protein 90 (Hsp90) (P < 0.001) and hypoxia-inducible factor-1 (HIF-1) (P < 0.05). Resveratrol administration caused a significant decrease in the gene expression of caspase3 (P< 0.001), HSP90 (P < 0.05) and HIF-1 mRNA (P < 0.01) as well as an increase in HSP70 mRNA when compared with the hypoxia group. These findings indicated that resveratrol exerted an anti-oxidative role by modulating hypoxia stress- associated genes and an anti-apoptosis role by regulating apoptosis-related cytokines. In conclusion, hypobaric hypoxia may have a pathological impact on rat retinas. The intervention of resveratrol reverses the effect induced by hypobaric hypoxia and elicits a protective response to the stress. PMID:28924365

  8. Effects of Hypobaric Hypoxia on Rat Retina and Protective Response of Resveratrol to the Stress.

    PubMed

    Xin, Xiaorong; Dang, Hong; Zhao, Xiaojing; Wang, Haohao

    2017-01-01

    High-altitude retinopathy represents retinal functional changes associated with environmental challenges imposed by hypobaric hypoxia, but the detailed cellular and molecular mechanism underlying this process remains unclear. Our current investigation was to explore the effect of hypobaric hypoxia on the rat retina and determine whether resveratrol has a protective efficacy on the hypoxic damage to the retina. Experiment rats were randomly grouped as the control group, hypoxia group and resveratrol intervention group. The hypoxia group and the resveratrol intervention group were maintained in a low-pressure oxygen cabin, and the resveratrol intervention group was given daily intraperitoneal injections with resveratrol. We found that hypobaric hypoxia increased thioredoxin 1 (Trx1) and thioredoxin 2 (Trx2) expression in retinas, and resveratrol treatment significantly reversed these changes ( P < 0.05, P < 0.05 respectively). In comparison with controls, hypoxia upregulated the mRNA expression levels of caspase3 ( P < 0.001), caspase9 ( P < 0.01), heat shock protein 70 (Hsp70) ( P < 0.05), heat shock protein 90 (Hsp90) ( P < 0.001) and hypoxia-inducible factor-1 (HIF-1) ( P < 0.05). Resveratrol administration caused a significant decrease in the gene expression of caspase3 ( P < 0.001), HSP90 ( P < 0.05) and HIF-1 mRNA ( P < 0.01) as well as an increase in HSP70 mRNA when compared with the hypoxia group. These findings indicated that resveratrol exerted an anti-oxidative role by modulating hypoxia stress- associated genes and an anti-apoptosis role by regulating apoptosis-related cytokines. In conclusion, hypobaric hypoxia may have a pathological impact on rat retinas. The intervention of resveratrol reverses the effect induced by hypobaric hypoxia and elicits a protective response to the stress.

  9. Comparative iTRAQ-Based Quantitative Proteomic Analysis of Pelteobagrus vachelli Liver under Acute Hypoxia: Implications in Metabolic Responses.

    PubMed

    Zhang, Guosong; Zhang, Jiajia; Wen, Xin; Zhao, Cheng; Zhang, Hongye; Li, Xinru; Yin, Shaowu

    2017-09-01

    More and more frequently these days, aquatic ecosystems are being stressed by nutrient enrichment, pollutants, and global warming, leading to a serious depletion in oxygen concentrations. Although a sudden, significant lack of oxygen will result in mortality, fishes can have an acute behavior (e.g., an increase in breathing rate, reduction in swimming frequency) and physiology responses (e.g., increase in oxygen delivery, and reduction in oxygen consumption) to hypoxia, which allows them to maintain normal physical activity. Therefore, in order to shed further light on the molecular mechanisms of hypoxia adaptation in fishes, the authors conduct comparative quantitative proteomics on Pelteobagrus vachelli livers using iTRAQ. The research identifies 511 acute hypoxia-responsive proteins in P. vachelli. Furthermore, comparison of several of the diverse key pathways studied (e.g., peroxisome pathway, PPAR signaling pathway, lipid metabolism, glycolysis/gluco-neogenesis, and amino acid metabolism) help to articulate the different mechanisms involved in the hypoxia response of P. vachelli. Data from proteome analysis shows that P. vachelli can have an acute reaction to hypoxia, including detoxification of metabolic by-products and oxidative stress in light of continued metabolic activity (e.g., peroxisomes), an activation in the capacity of catabolism to get more energy (e.g., lipolysis and amino acid catabolism), a depression in the capacity of biosynthesis to reduce energy consumption (e.g., biosynthesis of amino acids and lipids), and a shift in the aerobic and anaerobic contributions to total metabolism. The observed hypoxia-related changes in the liver proteome of the fish can help to understand or can be related to the hypoxia-related response that takes place in similar conditions in the liver or other proteomes of mammals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Role of redox signaling in the autonomous proliferative response of endothelial cells to hypoxia.

    PubMed

    Schäfer, M; Schäfer, C; Ewald, N; Piper, H M; Noll, Th

    2003-05-16

    Endothelial cells exhibit an autonomous proliferative response to hypoxia, independent of paracrine effectors. In cultured endothelial cells of porcine aorta, we analyzed the signaling of this response, with a focus on the roles of redox signaling and the MEK/ERK pathway. Transient hypoxia (1 hour) stimulated proliferation by 61+/-4% (n=16; P<0.05 versus control), quantified after 24 hours normoxic postincubation. Hypoxia induced an activation of ERK2 and of NAD(P)H oxidase and a burst of reactive oxygen species (ROS), determined by DCF fluorescence. To inhibit the MEK/ERK pathway, we used PD 98059 (PD, 20 micromol/L); to downregulate NAD(P)H oxidase, we applied p22phox antisense oligonucleotides; and to inhibit mitochondrial ROS generation, we used the ubiquinone derivate mitoQ (MQ, 10 micromol/L). All three inhibitions suppressed the proliferative response: PD inhibited NAD(P)H oxidase activation; p22phox antisense transfection did not inhibit ERK2 activation, but suppressed ROS production; and MQ inhibited ERK2 activation and ROS production. The autonomous proliferative response depends on the MEK/ERK pathway and redox signaling steps upstream and downstream of ERK. Located upstream is ROS generation by mitochondria, downstream is NAD(P)H oxidase.

  11. Combining Optical Reporter Proteins with Different Half-lives to Detect Temporal Evolution of Hypoxia and Reoxygenation in Tumors

    PubMed Central

    Danhier, Pierre; Krishnamachary, Balaji; Bharti, Santosh; Kakkad, Samata; Mironchik, Yelena; Bhujwalla, Zaver M.

    2015-01-01

    Here we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF) activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc) and a variant of the enhanced green fluorescent protein (EGFP). Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE). The cells constitutively expressed tdTomato red fluorescent protein. For validating the imaging strategy, cells were incubated under hypoxia (1% O2) for 48 hours and then reoxygenated. The luciferase activity of PC3-HRE-EGFP/HRE-ODD-luc/tdtomato cells detected by bioluminescent imaging rapidly decreased after reoxygenation, whereas EGFP levels in these cells remained stable for several hours. After in vitro validation, PC3-HRE-EGFP/HRE-ODD-luc/tdtomato tumors were implanted subcutaneously and orthotopically in nude male mice and imaged in vivo and ex vivo using optical imaging in proof-of-principle studies to demonstrate differences in optical patterns between EGFP expression and bioluminescence. This novel "timer" imaging strategy of combining the short-lived ODD-luciferase and the long-lived EGFP can provide a time frame of HRE activation in PC3 prostate cancer cells and will be useful to understand the temporal changes in hypoxia and HIF activity during cancer progression and following treatments including HIF targeting strategies. PMID:26696369

  12. Variable responses of small and large human hepatocytes to hypoxia and hypoxia/reoxygenation (H-R).

    PubMed

    Bhogal, Ricky H; Weston, Christopher J; Curbishley, Stuart M; Bhatt, Anand N; Adams, David H; Afford, Simon C

    2011-03-23

    Hypoxia and hypoxia-reoxygenation (H-R) regulate human hepatocyte cell death by mediating the accumulation of reactive oxygen species (ROS). Hepatocytes within the liver are organised into peri-portal (PP) and peri-venous (PV) subpopulations. PP and PV hepatocytes differ in size and function. We investigated whether PP and PV human hepatocytes exhibit differential susceptibility to hypoxic stress. Isolated hepatocytes were used in an in vitro model of hypoxia and H-R. ROS production and cell death were assessed using flow cytometry. PV, and not PP hepatocytes, accumulate intracellular ROS in a mitochondrial dependent manner during hypoxia and H-R. This increased ROS regulates hepatocyte apoptosis and necrosis via a mitochondrial pathway. These findings have implications on the understanding of liver injury and application of potential therapeutic strategies. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Transcriptional regulation of α1H T-type calcium channel under hypoxia

    PubMed Central

    Sellak, Hassan; Zhou, Chun; Liu, Bainan; Chen, Hairu; Lincoln, Thomas M.

    2014-01-01

    The low-voltage-activated T-type Ca2+ channels play an important role in mediating the cellular responses to altered oxygen tension. Among three T-type channel isoforms, α1G, α1H, and α1I, only α1H was found to be upregulated under hypoxia. However, mechanisms underlying such hypoxia-dependent isoform-specific gene regulation remain incompletely understood. We, therefore, studied the hypoxia-dependent transcriptional regulation of α1G and α1H gene promoters with the aim to identify the functional hypoxia-response elements (HREs). In rat pulmonary artery smooth muscle cells (PASMCs) and pheochromocytoma (PC12) cells after hypoxia (3% O2) exposure, we observed a prominent increase in α1H mRNA at 12 h along with a significant rise in α1H-mediated T-type current at 24 and 48 h. We then cloned two promoter fragments from the 5′-flanking regions of rat α1G and α1H gene, 2,000 and 3,076 bp, respectively, and inserted these fragments into a luciferase reporter vector. Transient transfection of PASMCs and PC12 cells with these recombinant constructs and subsequent luciferase assay revealed a significant increase in luciferase activity from the reporter containing the α1H, but not α1G, promoter fragment under hypoxia. Using serial deletion and point mutation analysis strategies, we identified a functional HRE at site −1,173cacgc−1,169 within the α1H promoter region. Furthermore, an electrophoretic mobility shift assay using this site as a DNA probe demonstrated an increased binding activity to nuclear protein extracts from the cells after hypoxia exposure. Taken together, these findings indicate that hypoxia-induced α1H upregulation involves binding of hypoxia-inducible factor to an HRE within the α1H promoter region. PMID:25099734

  14. Recombinant adeno-associated virus-delivered hypoxia-inducible stanniocalcin-1 expression effectively inhibits hypoxia-induced cell apoptosis in cardiomyocytes.

    PubMed

    Shi, Xin; Wang, Jianzhong; Qin, Yan

    2014-12-01

    Ischemia/hypoxia-induced oxidative stress is detrimental for the survival of cardiomyocytes and cardiac function. Stanniocalcin-1 (STC-1), a glycoprotein, has been found to play an inhibitory role in the production of reactive oxygen species (ROS). Here, we speculated that the overexpression of STC-1 might alleviate oxidative damage in cardiomyocytes under conditions of hypoxia. To control the expression of STC-1 in hypoxia, we constructed a recombinant adeno-associated virus (AAV) carrying the hypoxia-responsive element (HRE) to mediate hypoxia induction. Cardiomyocytes were infected with AAV-HRE-STC-1 and cultured in normoxic or hypoxic conditions, and STC-1 overexpression was only detected in hypoxic cultured cardiomyocytes by using quantitative real-time polymerase chain reaction and Western blot analysis. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, AAV-HRE-STC-1 infection was shown to significantly enhance cell survival under hypoxia. Hypoxia-induced cell apoptosis was inhibited by AAV-HRE-STC-1 infection by using the Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide apoptosis assay. Moreover, the proapoptotic protein Caspase-3 and anti-apoptotic protein Bcl-2, which were dysregulated by hypoxia, were reversed by AAV-HRE-STC-1 infection. AAV-HRE-STC-1-mediated STC-1 overexpression markedly inhibited ROS production in cardiomyocytes cultured under hypoxic conditions. AAV-HRE-STC-1 infection significantly upregulated uncoupled protein 3 (UCP3), whereas silencing of UCP3 blocked the inhibitory effect of AAV-HRE-STC-1 on ROS production. In contrast, AAV-HRE-STC-1 infection had no effect on UCP2, and knockdown of UCP2 did not block the inhibitory effect of AAV-HRE-STC-1 on ROS production in the cardiomyocytes cultured under hypoxic conditions. Taken together, STC1 activates antioxidant pathway in cardiomyocytes through the induction of UCP3, implying that AAV-HRE-STC-1 has potential in the treatment of ischemic

  15. Neuron-derived orphan receptor 1 transduces survival signals in neuronal cells in response to hypoxia-induced apoptotic insults.

    PubMed

    Chio, Chung-Ching; Wei, Li; Chen, Tyng Guey; Lin, Chien-Min; Shieh, Ja-Ping; Yeh, Poh-Shiow; Chen, Ruei-Ming

    2016-06-01

    OBJECT Hypoxia can induce cell death or trigger adaptive mechanisms to guarantee cell survival. Neuron-derived orphan receptor 1 (NOR-1) works as an early-response protein in response to a variety of environmental stresses. In this study, the authors evaluated the roles of NOR-1 in hypoxia-induced neuronal insults. METHODS Neuro-2a cells were exposed to oxygen/glucose deprivation (OGD). Cell viability, cell morphology, cas-pase-3 activity, DNA fragmentation, and cell apoptosis were assayed to determine the mechanisms of OGD-induced neuronal insults. RNA and protein analyses were carried out to evaluate the effects of OGD on expressions of NOR-1, cAMP response element-binding (CREB), and cellular inhibitor of apoptosis protein 2 (cIAP2) genes. Translations of these gene expressions were knocked down using RNA interference. Mice subjected to traumatic brain injury (TBI) and NOR-1 was immunodetected. RESULTS Exposure of neuro-2a cells to OGD decreased cell viability in a time-dependent manner. Additionally, OGD led to cell shrinkage, DNA fragmentation, and cell apoptosis. In parallel, treatment of neuro-2a cells with OGD time dependently increased cellular NOR-1 mRNA and protein expressions. Interestingly, administration of TBI also augmented NOR-1 levels in the impacted regions of mice. As to the mechanism, exposure to OGD increased nuclear levels of the transcription factor CREB protein. Downregulating CREB expression using RNA interference simultaneously inhibited OGD-induced NOR-1 mRNA expression. Also, levels of cIAP2 mRNA and protein in neuro-2a cells were augmented by OGD. After reducing cIAP2 translation, OGD-induced cell death was reduced. Sequentially, application of NOR-1 small interfering RNA to neuro-2a cells significantly inhibited OGD-induced cIAP2 mRNA expression and concurrently alleviated hypoxia-induced alterations in cell viability, caspase-3 activation, DNA damage, and cell apoptosis. CONCLUSIONS This study shows that NOR-1 can transduce survival

  16. SREBP Coordinates Iron and Ergosterol Homeostasis to Mediate Triazole Drug and Hypoxia Responses in the Human Fungal Pathogen Aspergillus fumigatus

    PubMed Central

    Willger, Sven D.; Beckmann, Nicola; Blosser, Sara J.; Cornish, Elizabeth J.; Mazurie, Aurelien; Grahl, Nora; Haas, Hubertus; Cramer, Robert A.

    2011-01-01

    Sterol regulatory element binding proteins (SREBPs) are a class of basic helix-loop-helix transcription factors that regulate diverse cellular responses in eukaryotes. Adding to the recognized importance of SREBPs in human health, SREBPs in the human fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus are required for fungal virulence and susceptibility to triazole antifungal drugs. To date, the exact mechanism(s) behind the role of SREBP in these observed phenotypes is not clear. Here, we report that A. fumigatus SREBP, SrbA, mediates regulation of iron acquisition in response to hypoxia and low iron conditions. To further define SrbA's role in iron acquisition in relation to previously studied fungal regulators of iron metabolism, SreA and HapX, a series of mutants were generated in the ΔsrbA background. These data suggest that SrbA is activated independently of SreA and HapX in response to iron limitation, but that HapX mRNA induction is partially dependent on SrbA. Intriguingly, exogenous addition of high iron or genetic deletion of sreA in the ΔsrbA background was able to partially rescue the hypoxia growth, triazole drug susceptibility, and decrease in ergosterol content phenotypes of ΔsrbA. Thus, we conclude that the fungal SREBP, SrbA, is critical for coordinating genes involved in iron acquisition and ergosterol biosynthesis under hypoxia and low iron conditions found at sites of human fungal infections. These results support a role for SREBP–mediated iron regulation in fungal virulence, and they lay a foundation for further exploration of SREBP's role in iron homeostasis in other eukaryotes. PMID:22144905

  17. Neuroepithelial cells and the hypoxia emersion response in the amphibious fish Kryptolebias marmoratus.

    PubMed

    Regan, Kelly S; Jonz, Michael G; Wright, Patricia A

    2011-08-01

    Teleost fish have oxygen-sensitive neuroepithelial cells (NECs) in the gills that appear to mediate physiological responses to hypoxia, but little is known about oxygen sensing in amphibious fish. The mangrove rivulus, Kryptolebias marmoratus, is an amphibious fish that respires via the gills and/or the skin. First, we hypothesized that both the skin and gills are sites of oxygen sensing in K. marmoratus. Serotonin-positive NECs were abundant in both gills and skin, as determined by immunohistochemical labelling and fluorescence microscopy. NECs retained synaptic vesicles and were found near nerve fibres labelled with the neuronal marker zn-12. Skin NECs were 42% larger than those of the gill, as estimated by measurement of projection area, and 45% greater in number. Moreover, for both skin and gill NECs, NEC area increased significantly (30-60%) following 7 days of exposure to hypoxia (1.5 mg l(-1) dissolved oxygen). Another population of cells containing vesicular acetylcholine transporter (VAChT) proteins were also observed in the skin and gills. The second hypothesis we tested was that K. marmoratus emerse in order to breathe air cutaneously when challenged with severe aquatic hypoxia, and this response will be modulated by neurochemicals associated chemoreceptor activity. Acute exposure to hypoxia induced fish to emerse at 0.2 mg l(-1). When K. marmoratus were pre-exposed to serotonin or acetylcholine, they emersed at a significantly higher concentration of oxygen than untreated fish. Pre-exposure to receptor antagonists (ketanserin and hexamethonium) predictably resulted in fish emersing at a lower concentration of oxygen. Taken together, these results suggest that oxygen sensing occurs at the branchial and/or cutaneous surfaces in K. marmoratus and that serotonin and acetylcholine mediate, in part, the emersion response.

  18. Cerebrovascular and ventilatory responses to acute normobaric hypoxia in girls and women.

    PubMed

    Morris, Laura E; Flück, Daniela; Ainslie, Philip N; McManus, Ali M

    2017-08-01

    Physiological responses to hypoxia in children are incompletely understood. We aimed to characterize cerebrovascular and ventilatory responses to normobaric hypoxia in girls and women. Ten healthy girls (9.9 ± 1.7 years; mean ± SD; Tanner stage 1 and 2) and their mothers (43.9 ± 3.5 years) participated. Internal carotid (ICA) and vertebral artery (VA) velocity, diameter and flow (Duplex ultrasound) was recorded pre- and post-1 h of hypoxic exposure (FIO 2  = 0.126;~4000 m) in a normobaric chamber. Ventilation (V˙E) and respiratory drive ( V T / T I ) expressed as delta change from baseline (∆%), and end-tidal carbon-dioxide (P ET CO 2 ) were collected at baseline (BL) and 5, 30 and 60 min of hypoxia (5/30/60 HYP). Heart rate (HR) and oxygen saturation (SpO 2 ) were also collected at these time-points. SpO 2 declined similarly in girls (BL-97%; 60HYP-80%, P  <   0.05) and women (BL-97%; 60HYP-83%, P  <   0.05). Global cerebral blood flow (gCBF) increased in both girls (BL-687; 60HYP-912 mL·min -1 , P  <   0.05) and women (BL-472; 60HYP-651 mL·min -1 , P  <   0.01), though the ratio of ICA:VA (%) contribution to gCBF differed significantly (girls, 75:25%; women, 61:39%). The relative increase in V˙E peaked at 30HYP in both girls (27%, P  <   0.05) and women (19%, P  <   0.05), as did ∆% V T / T I (girls, 41%; women, 27%, P 's < 0.05). Tidal volume ( V T ) increased in both girls and women at 5HYP, remaining elevated above baseline in girls at 30 and 60 HYP, but declined back toward baseline in women. Girls elicit similar increases in gCBF and ventilatory parameters in response to acute hypoxia as women, though the pattern and contributions mediating these responses appear developmentally divergent. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERαmore » protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.« less

  20. Defense Responses to Short-term Hypoxia and Seawater Acidification in the Thick Shell Mussel Mytilus coruscus

    PubMed Central

    Sui, Yanming; Liu, Yimeng; Zhao, Xin; Dupont, Sam; Hu, Menghong; Wu, Fangli; Huang, Xizhi; Li, Jiale; Lu, Weiqun; Wang, Youji

    2017-01-01

    The rising anthropogenic atmospheric CO2 results in the reduction of seawater pH, namely ocean acidification (OA). In East China Sea, the largest coastal hypoxic zone was observed in the world. This region is also strongly impacted by ocean acidification as receiving much nutrient from Changjiang and Qiantangjiang, and organisms can experience great short-term natural variability of DO and pH in this area. In order to evaluate the defense responses of marine mussels under this scenario, the thick shell mussel Mytilus coruscus were exposed to three pH/pCO2 levels (7.3/2800 μatm, 7.7/1020 μatm, 8.1/376 μatm) at two dissolved oxygen concentrations (DO, 2.0, 6.0 mg L−1) for 72 h. Results showed that byssus thread parameters, such as the number, diameter, attachment strength and plaque area were reduced by low DO, and shell-closing strength was significantly weaker under both hypoxia and low pH conditions. Expression patterns of genes related to mussel byssus protein (MBP) were affected by hypoxia. Generally, hypoxia reduced MBP1 and MBP7 expressions, but increased MBP13 expression. In conclusion, both hypoxia and low pH induced negative effects on mussel defense responses, with hypoxia being the main driver of change. In addition, significant interactive effects between pH and DO were observed on shell-closing strength. Therefore, the adverse effects induced by hypoxia on the defense of mussels may be aggravated by low pH in the natural environments. PMID:28337153

  1. Altered respiratory responses to hypoxia in mutant mice deficient in neuronal nitric oxide synthase

    PubMed Central

    Kline, David D; Yang, Tianen; Huang, Paul L; Prabhakar, Nanduri R

    1998-01-01

    The role of endogenous nitric oxide (NO) generated by neuronal nitric oxide synthase (NOS-1) in the control of respiration during hypoxia and hypercapnia was assessed using mutant mice deficient in NOS-1. Experiments were performed on awake and anaesthetized mutant and wild-type control mice. Respiratory responses to varying levels of inspired oxygen (100, 21 and 12 % O2) and carbon dioxide (3 and 5 % CO2 balanced oxygen) were analysed. In awake animals, respiration was monitored by body plethysmograph along with oxygen consumption (V̇O2), CO2 production (V̇CO2) and body temperature. In anaesthetized, spontaneously breathing mice, integrated efferent phrenic nerve activity was monitored as an index of neural respiration along with arterial blood pressure and blood gases. Cyclic 3′,5′-guanosine monophosphate (cGMP) levels in the brainstem were analysed by radioimmunoassay as an index of nitric oxide generation. Unanaesthetized mutant mice exhibited greater respiratory responses during 21 and 12 % O2 than the wild-type controls. Respiratory responses were associated with significant decreases in oxygen consumption in both groups of mice, and the magnitude of change was greater in mutant than wild-type mice. Changes in CO2 production and body temperature, however, were comparable between both groups of mice. Similar augmentation of respiratory responses during hypoxia was also observed in anaesthetized mutant mice. In addition, five of the fourteen mutant mice displayed periodic oscillations in respiration (brief episodes of increases in respiratory rate and tidal phrenic nerve activity) while breathing 21 and 12 % O2, but not during 100 % O2. The time interval between the episodes decreased by reducing inspired oxygen from 21 to 12 % O2. Changes in arterial blood pressure and arterial blood gases were comparable at any given level of inspired oxygen between both groups of mice, indicating that changes in these variables do not account for the differences in the

  2. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia

    PubMed Central

    Mudie, Sharon; Bandarra, Daniel; Batie, Michael; Biddlestone, John; Moniz, Sonia; Ortmann, Brian; Shmakova, Alena; Rocha, Sonia

    2014-01-01

    Hypoxia is an important developmental cue for multicellular organisms but it is also a contributing factor for several human pathologies, such as stroke, cardiovascular diseases and cancer. In cells, hypoxia activates a major transcriptional program coordinated by the Hypoxia Inducible Factor (HIF) family. HIF can activate more than one hundred targets but not all of them are activated at the same time, and there is considerable cell type variability. In this report we identified the paired-like homeodomain pituitary transcription factor (PITX1), as a transcription factor that helps promote specificity in HIF-1α dependent target gene activation. Mechanistically, PITX1 associates with HIF-1β and it is important for the induction of certain HIF-1 dependent genes but not all. In particular, PITX1 controls the HIF-1α-dependent expression of the histone demethylases; JMJD2B, JMJD2A, JMJD2C and JMJD1B. Functionally, PITX1 is required for the survival and proliferation responses in hypoxia, as PITX1 depleted cells have higher levels of apoptotic markers and reduced proliferation. Overall, our study identified PITX1 as a key specificity factor in HIF-1α dependent responses, suggesting PITX1 as a protein to target in hypoxic cancers. PMID:25558831

  3. The expanding universe of hypoxia.

    PubMed

    Zhang, Huafeng; Semenza, Gregg L

    2008-07-01

    Reduced oxygen availability (hypoxia) is sensed and transduced into changes in the activity or expression of cellular macromolecules. These responses impact on virtually all areas of biology and medicine. In this meeting report, we summarize major developments in the field that were presented at the 2008 Keystone Symposium on Cellular, Physiological, and Pathogenic Responses to Hypoxia.

  4. Psychophysiological Responses to Repeated-Sprint Training in Normobaric Hypoxia and Normoxia.

    PubMed

    Brocherie, Franck; Millet, Grégoire P; Girard, Olivier

    2017-01-01

    To compare psychophysiological responses to 6 repeated-sprint sessions in normobaric hypoxia (RSH) and normoxia (RSN) in team-sport athletes during a 2-wk "live high-train low" training camp. While residing under normobaric hypoxia (≥14 h/d, FiO 2 14.5-14.2%), 23 lowland elite field hockey players performed, in addition to their usual training, 6 sessions (4 × 5 × 5-s maximal sprints, 25-s passive recovery, 5 min rest) under either RSH (FiO 2 ~14.5%) or RSN (FiO 2 21%). Sprint 1 and 5 times, physiological strain (heart rate [HR], arterial oxyhemoglobin saturation [SpO 2 ]), and perceptual responses (overall peripheral discomfort, difficulty breathing, and lower-limb discomfort) were monitored. During the 1st session, HR increased across sets (P < .001) independently of the conditions, while SpO 2 was globally lower (P < .001) for RSH (averaged value: 91.9% ± 1.2%) vs RSN (96.9% ± 0.6%). Thereafter, SpO 2 and HR remained similar across sessions for each condition. While 1st-sprint time remained similar, last-sprint time and fatigue index significantly decreased across sets (P < .01) and sessions (P < .05) but not between conditions. Ratings of overall perceived discomfort, difficulty breathing, and lower-limb discomfort were higher (P < .05) in RSH vs RSN at the 1st session. During subsequent sessions, values for overall perceived discomfort (time [P < .001] and condition [P < .05] effects), difficulty breathing (time effect; P < .001), and lower-limb discomfort (condition [P < .001] and interaction [P < .05] effects) decreased to a larger extent in RSH vs RSN. Despite higher hypoxia-induced physiological and perceptual strain during the 1st session, perceptual responses improved thereafter in RSH so as not to differ from RSN. This indicates an effective acclimation and tolerance to this innovative training.

  5. Combining Optical Reporter Proteins with Different Half-lives to Detect Temporal Evolution of Hypoxia and Reoxygenation in Tumors.

    PubMed

    Danhier, Pierre; Krishnamachary, Balaji; Bharti, Santosh; Kakkad, Samata; Mironchik, Yelena; Bhujwalla, Zaver M

    2015-12-01

    Here we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF) activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc) and a variant of the enhanced green fluorescent protein (EGFP). Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE). The cells constitutively expressed tdTomato red fluorescent protein. For validating the imaging strategy, cells were incubated under hypoxia (1% O2) for 48 hours and then reoxygenated. The luciferase activity of PC3-HRE-EGFP/HRE-ODD-luc/tdtomato cells detected by bioluminescent imaging rapidly decreased after reoxygenation, whereas EGFP levels in these cells remained stable for several hours. After in vitro validation, PC3-HRE-EGFP/HRE-ODD-luc/tdtomato tumors were implanted subcutaneously and orthotopically in nude male mice and imaged in vivo and ex vivo using optical imaging in proof-of-principle studies to demonstrate differences in optical patterns between EGFP expression and bioluminescence. This novel "timer" imaging strategy of combining the short-lived ODD-luciferase and the long-lived EGFP can provide a time frame of HRE activation in PC3 prostate cancer cells and will be useful to understand the temporal changes in hypoxia and HIF activity during cancer progression and following treatments including HIF targeting strategies. Copyright © 2015 Nencki Institute of Experimental Biology, Polish Academy of Sciences,. Published by Elsevier Inc. All rights reserved.

  6. Eliminating medullary 5-HT neurons delays arousal and decreases the respiratory response to repeated episodes of hypoxia in neonatal rat pups

    PubMed Central

    Schneider, Robert W.; Tobia, Christine M.; Commons, Kathryn G.

    2015-01-01

    Arousal from sleep is a critical defense mechanism when infants are exposed to hypoxia, and an arousal deficit has been postulated as contributing to the etiology of the sudden infant death syndrome (SIDS). The brainstems of SIDS infants are deficient in serotonin (5-HT) and tryptophan hydroxylase (TPH) and have decreased binding to 5-HT receptors. This study explores a possible connection between medullary 5-HT neuronal activity and arousal from sleep in response to hypoxia. Medullary raphe 5-HT neurons were eliminated from neonatal rat pups with intracisterna magna (CM) injections of 5,7-dihydroxytryptamine (DHT) at P2-P3. Each pup was then exposed to four episodes of hypoxia during sleep at three developmental ages (P5, P15, and P25) to produce an arousal response. Arousal, heart rate, and respiratory rate responses of DHT-injected pups were compared with pups that received CM artificial cerebrospinal fluid (aCSF) and those that received DHT but did not have a significant reduction in medullary 5-HT neurons. During each hypoxia exposure, the time to arousal from the onset of hypoxia (latency) was measured together with continuous measurements of heart and respiratory rates, oxyhemoglobin saturation, and chamber oxygen concentration. DHT-injected pups with significant losses of medullary 5-HT neurons exhibited significantly longer arousal latencies and decreased respiratory rate responses to hypoxia compared with controls. These results support the hypothesis that in newborn and young rat pups, 5-HT neurons located in the medullary raphe contribute to the arousal response to hypoxia. Thus alterations medullary 5-HT mechanisms might contribute to an arousal deficit and contribute to death in SIDS infants. PMID:26702023

  7. Developmental control of hypoxia during bud burst in grapevine.

    PubMed

    Meitha, Karlia; Agudelo-Romero, Patricia; Signorelli, Santiago; Gibbs, Daniel J; Considine, John A; Foyer, Christine H; Considine, Michael J

    2018-05-01

    Dormant or quiescent buds of woody perennials are often dense and in the case of grapevine (Vitis vinifera L.) have a low tissue oxygen status. The precise timing of the decision to resume growth is difficult to predict, but once committed, the increase in tissue oxygen status is rapid and developmentally regulated. Here, we show that more than a third of the grapevine homologues of widely conserved hypoxia-responsive genes and nearly a fifth of all grapevine genes possessing a plant hypoxia-responsive promoter element were differentially regulated during bud burst, in apparent harmony with resumption of meristem identity and cell-cycle gene regulation. We then investigated the molecular and biochemical properties of the grapevine ERF-VII homologues, which in other species are oxygen labile and function in transcriptional regulation of hypoxia-responsive genes. Each of the 3 VvERF-VIIs were substrates for oxygen-dependent proteolysis in vitro, as a function of the N-terminal cysteine. Collectively, these data support an important developmental function of oxygen-dependent signalling in determining the timing and effective coordination bud burst in grapevine. In addition, novel regulators, including GASA-, TCP-, MYB3R-, PLT-, and WUS-like transcription factors, were identified as hallmarks of the orderly and functional resumption of growth following quiescence in buds. © 2018 John Wiley & Sons Ltd.

  8. Body temperature depression and peripheral heat loss accompany the metabolic and ventilatory responses to hypoxia in low and high altitude birds.

    PubMed

    Scott, Graham R; Cadena, Viviana; Tattersall, Glenn J; Milsom, William K

    2008-04-01

    The objectives of this study were to compare the thermoregulatory, metabolic and ventilatory responses to hypoxia of the high altitude bar-headed goose with low altitude waterfowl. All birds were found to reduce body temperature (T(b)) during hypoxia, by up to 1-1.5 degrees C in severe hypoxia. During prolonged hypoxia, T(b) stabilized at a new lower temperature. A regulated increase in heat loss contributed to T(b) depression as reflected by increases in bill surface temperatures (up to 5 degrees C) during hypoxia. Bill warming required peripheral chemoreceptor inputs, since vagotomy abolished this response to hypoxia. T(b) depression could still occur without bill warming, however, because vagotomized birds reduced T(b) as much as intact birds. Compared to both greylag geese and pekin ducks, bar-headed geese required more severe hypoxia to initiate T(b) depression and heat loss from the bill. However, when T(b) depression or bill warming were expressed relative to arterial O(2) concentration (rather than inspired O(2)) all species were similar; this suggests that enhanced O(2) loading, rather than differences in thermoregulatory control centres, reduces T(b) depression during hypoxia in bar-headed geese. Correspondingly, bar-headed geese maintained higher rates of metabolism during severe hypoxia (7% inspired O(2)), but this was only partly due to differences in T(b). Time domains of the hypoxic ventilatory response also appeared to differ between bar-headed geese and low altitude species. Overall, our results suggest that birds can adjust peripheral heat dissipation to facilitate T(b) depression during hypoxia, and that bar-headed geese minimize T(b) and metabolic depression as a result of evolutionary adaptations that enhance O(2) transport.

  9. Peripheral Vasoconstriction and Abnormal Parasympathetic Response to Sighs and Transient Hypoxia in Sickle Cell Disease

    PubMed Central

    Sangkatumvong, Suvimol; Khoo, Michael C. K.; Kato, Roberta; Detterich, Jon A.; Bush, Adam; Keens, Thomas G.; Meiselman, Herbert J.; Wood, John C.

    2011-01-01

    Rationale: Sickle cell disease is an inherited blood disorder characterized by vasoocclusive crises. Although hypoxia and pulmonary disease are known risk factors for these crises, the mechanisms that initiate vasoocclusive events are not well known. Objectives: To study the relationship between transient hypoxia, respiration, and microvascular blood flow in patients with sickle cell. Methods: We established a protocol that mimics nighttime hypoxic episodes and measured microvascular blood flow to determine if transient hypoxia causes a decrease in microvascular blood flow. Significant desaturations were induced safely by five breaths of 100% nitrogen. Measurements and Main Results: Desaturation did not induce change in microvascular perfusion; however, it induced substantial transient parasympathetic activity withdrawal in patients with sickle cell disease, but not controls subjects. Marked periodic drops in peripheral microvascular perfusion, unrelated to hypoxia, were triggered by sighs in 11 of 11 patients with sickle cell and 8 of 11 control subjects. Although the sigh frequency was the same in both groups, the probability of a sigh inducing a perfusion drop was 78% in patients with sickle cell and 17% in control subjects (P < 0.001). Evidence for sigh-induced sympathetic nervous system dominance was seen in patients with sickle cell (P < 0.05), but was not significant in control subjects. Conclusions: These data demonstrate significant disruption of autonomic nervous system balance, with marked parasympathetic withdrawal in response to transient hypoxia. They draw attention to an enhanced autonomic nervous system–mediated sigh–vasoconstrictor response in patients with sickle cell that could increase red cell retention in the microvasculature, promoting vasoocclusion. PMID:21616995

  10. Effects of Hypoxia on the Vasopressin Response to Hemorrhage and its Role in Maintenance of Blood Pressure.

    DTIC Science & Technology

    1992-08-30

    AD-A25 8 992 UIiII|UH1iU MIPR NO: 91MM1536 TITLE: EFFECTS OF HYPOXIA ON THE VASOPRESSIN RESPONSE TO HEMORRHAGE AND ITS ROLE IN MAINTENANCE OF BLOOD...TYPE AND DATES COVERMf 130 August 1992 Final Report (3/1/91 - 9/30/92) 𔃾. TITLE AND SUBTITLE TS FUNDING N L 4, I Effects of Hypoxia on the Vasopressin...Telephone No. (808) 433-5219 6. Agency Tripler Army Medical Center, Dept. of Clin. Invest. 7. Project Title: Effects of hypoxia on the vasopressin

  11. Hypoxia and alkalinization inhibit endothelium-derived nitric oxide but not endothelium-derived hyperpolarizing factor responses in porcine coronary artery.

    PubMed

    Shimizu, S; Paul, R J

    1999-10-01

    We investigated the mechanisms by which hypoxia and alkalinization inhibit the endothelium-dependent relaxation to Substance P (SP) in porcine coronary artery. In a KCl contracture, the major component of the SP response is endothelium-derived nitric oxide (EDNO), whereas with receptor-mediated 9,11-dideoxy-llalpha, 9alpha-epoxymethanoprostaglandin F(2alpha) (U46619) stimulation, the SP response is dependent on both EDNO and endothelium-derived hyperpolarization factor. Intracellular alkalinization by NH(4)Cl reduced the peak of SP responses when arteries were contracted with KCl, whereas with U46619 stimulation, the peak was little effected but the duration was shortened. In endothelial cell-denuded arteries, alkalinization with NH(4)Cl shifted the sodium nitroprusside concentration-relaxation relations rightward. The effects of NH(4)Cl in SP- and sodium nitroprusside-induced relaxations were attenuated by decreasing extracellular pH (pH(o)) from 7.4 to 7.2, which normalized intracellular pH (pH(i)) to control levels. In contrast, in U46619 contractures, the SP response in the presence of a NO synthase inhibitor was unaffected by NH(4)Cl. Moreover, hypoxia blunted but did not abolish the responses to SP for U46619 contractures; addition of KCl, however, abolished the SP response under hypoxia. Endothelial [Ca(2+)](i) was measured with fura-2 differentially loaded only into endothelial cells on intact arteries. Despite the attenuation of the SP response in KCl contractures by NH(4)Cl or hypoxia, endothelial [Ca(2+)](i) responses were unchanged. Our results suggest that hypoxia and alkalinization inhibit EDNO but not endothelium-derived hyperpolarization factor relaxations through a mechanism(s) not involving endothelial cell [Ca(2+)](i). Inhibition of EDNO relaxation by alkalinization with NH(4)Cl is likely to occur at the level of activation of guanylate cyclase and/or at a step downstream in smooth muscle.

  12. Effects of prolonged head-down bed rest on physiological responses to moderate hypoxia

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Roach, R. C.; Selland, M. A.; Scotto, P.; Greene, E. R.; Luft, U. C.

    1993-01-01

    To determine the effects of hypoxia on physiological responses to simulated zero-gravity cardiopulmonary and fluid balance measurements were made in 6 subjects before and during 5-degree head-down bed rest (HDBR) over 8 d at 10,678 ft and a second time at this altitude as controls (CON). The V-dot(O2)(max) increased by 9 percent after CON, but fell 3 percent after HDBR. This reduction in work capacity during HDBR could be accounted for by inactivity. The heart rate response to a head-up tilt was greatly enhanced following HDBR, while mean blood pressure was lower. No significant negative impact of HDBR was noted on the ability to acclimatize to hypoxia in terms of pulmonary mechanics, gas exchange, circulatory or mental function measurements. No evidence of pulmonary interstitial edema or congestion was noted during HDBR at the lower PIO2 and blood rheology properties were not negatively altered. Symptoms of altitude illness were more prevalent, but not marked, during HDBR and arterial blood gases and oxygenation were not seriously effected by simulated microgravity. Declines in base excess with altitude were similar in both conditions. The study demonstrated a minimal effect of HDBR on the ability to adjust to this level of hypoxia.

  13. Hypoxia attenuates the respiratory response to injection of substance P into the nucleus of the solitary tract of the rat.

    PubMed

    Mazzone, S B; Hinrichsen, C F; Geraghty, D P

    1998-10-30

    Prolonged or repetitive bouts of hypoxia may desensitize the brain stem respiratory centres leading to reduced stimulation of ventilation. We investigated the possible involvement of changes in the sensitivity of the commissural nucleus of the solitary tract (cNTS) to the tachykinin peptide, substance P (SP). Urethane-anaesthetised rats were allowed to breath room air (normoxic) or subjected to four, 30 s bouts of hypoxia (10% O2/90% N2) prior to the injection of SP (750 pmol) into the cNTS. In normoxic rats (n = 5), SP produced a fall in frequency (f, 88+/-4% control) after 4 min and a maximum rise in tidal volume (VT) after 6 min (138+/-10% control) leading to an overall increase in minute ventilation (VE, maximum, 127+/-12% control after 2 min). In rats (n = 5) exposed to four bouts of hypoxia and allowed to recover for 10 min, injection of SP produced a similar fall in f but a delayed and significantly (P < 0.001) reduced VT (maximum after 10 min, 110+/-1% control) and hence, VE response (104+/-3% control). Sixty min after hypoxia, the f, VT and VE responses to SP were identical to those of normoxic rats. These data suggest that hypoxia desensitizes SP receptors in the cNTS and this may partly explain why the respiratory response to hypoxia declines over time.

  14. Variable responses of small and large human hepatocytes to hypoxia and hypoxia/reoxygenation (H–R)

    PubMed Central

    Bhogal, Ricky H.; Weston, Christopher J.; Curbishley, Stuart M.; Bhatt, Anand N.; Adams, David H.; Afford, Simon C.

    2011-01-01

    Hypoxia and hypoxia–reoxygenation (H–R) regulate human hepatocyte cell death by mediating the accumulation of reactive oxygen species (ROS). Hepatocytes within the liver are organised into peri-portal (PP) and peri-venous (PV) subpopulations. PP and PV hepatocytes differ in size and function. We investigated whether PP and PV human hepatocytes exhibit differential susceptibility to hypoxic stress. Isolated hepatocytes were used in an in vitro model of hypoxia and H–R. ROS production and cell death were assessed using flow cytometry. PV, and not PP hepatocytes, accumulate intracellular ROS in a mitochondrial dependent manner during hypoxia and H–R. This increased ROS regulates hepatocyte apoptosis and necrosis via a mitochondrial pathway. These findings have implications on the understanding of liver injury and application of potential therapeutic strategies. PMID:21356211

  15. IGFBP-3, hypoxia and TNF-{alpha} inhibit adiponectin transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappala, Giovanna, E-mail: zappalag@mail.nih.gov; Rechler, Matthew M.; Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD

    2009-05-15

    The thiazolidinedione rosiglitazone, an agonist ligand for the nuclear receptor PPAR-{gamma}, improves insulin sensitivity in part by stimulating transcription of the insulin-sensitizing adipokine adiponectin. It activates PPAR-{gamma}-RXR-{alpha} heterodimers bound to PPAR-{gamma} response elements in the adiponectin promoter. Rosiglitazone-stimulated adiponectin protein synthesis in 3T3-L1 mouse adipocytes has been shown to be inhibited by IGFBP-3, which can be induced by hypoxia and the proinflammatory cytokine, TNF-{alpha}, two inhibitors of adiponectin transcription. The present study demonstrates that IGFBP-3, the hypoxia-mimetic agent cobalt chloride, and TNF-{alpha} inhibit rosiglitazone-induced adiponectin transcription in mouse embryo fibroblasts that stably express PPAR-{gamma}2. Native IGFBP-3 can bind RXR-{alpha} andmore » inhibited rosiglitazone stimulated promoter activity, whereas an IGFBP-3 mutant that does not bind RXR-{alpha} did not. These results suggest that IGFBP-3 may mediate the inhibition of adiponectin transcription by hypoxia and TNF-{alpha}, and that IGFBP-3 binding to RXR-{alpha} may be required for the observed inhibition.« less

  16. The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha.

    PubMed

    Gort, E H; van Haaften, G; Verlaan, I; Groot, A J; Plasterk, R H A; Shvarts, A; Suijkerbuijk, K P M; van Laar, T; van der Wall, E; Raman, V; van Diest, P J; Tijsterman, M; Vooijs, M

    2008-03-06

    Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that play a crucial role in oxygen homeostasis. Intratumoral hypoxia and genetic alterations lead to HIF activity, which is a hallmark of solid cancer and is associated with poor clinical outcome. HIF activity is regulated by an evolutionary conserved mechanism involving oxygen-dependent HIFalpha protein degradation. To identify novel components of the HIF pathway, we performed a genome-wide RNA interference screen in Caenorhabditis elegans, to suppress HIF-dependent phenotypes, like egg-laying defects and hypoxia survival. In addition to hif-1 (HIFalpha) and aha-1 (HIFbeta), we identified hlh-8, gska-3 and spe-8. The hlh-8 gene is homologous to the human oncogene TWIST1. We show that TWIST1 expression in human cancer cells is enhanced by hypoxia in a HIF-2alpha-dependent manner. Furthermore, intronic hypoxia response elements of TWIST1 are regulated by HIF-2alpha, but not HIF-1alpha. These results identify TWIST1 as a direct target gene of HIF-2alpha, which may provide insight into the acquired metastatic capacity of hypoxic tumors.

  17. Role of Kv7 channels in responses of the pulmonary circulation to hypoxia.

    PubMed

    Sedivy, Vojtech; Joshi, Shreena; Ghaly, Youssef; Mizera, Roman; Zaloudikova, Marie; Brennan, Sean; Novotna, Jana; Herget, Jan; Gurney, Alison M

    2015-01-01

    Hypoxic pulmonary vasoconstriction (HPV) is a beneficial mechanism that diverts blood from hypoxic alveoli to better ventilated areas of the lung, but breathing hypoxic air causes the pulmonary circulation to become hypertensive. Responses to airway hypoxia are associated with depolarization of smooth muscle cells in the pulmonary arteries and reduced activity of K(+) channels. As Kv7 channels have been proposed to play a key role in regulating the smooth muscle membrane potential, we investigated their involvement in the development of HPV and hypoxia-induced pulmonary hypertension. Vascular effects of the selective Kv7 blocker, linopirdine, and Kv7 activator, flupirtine, were investigated in isolated, saline-perfused lungs from rats maintained for 3-5 days in an isobaric hypoxic chamber (FiO2 = 0.1) or room air. Linopirdine increased vascular resistance in lungs from normoxic, but not hypoxic rats. This effect was associated with reduced mRNA expression of the Kv7.4 channel α-subunit in hypoxic arteries, whereas Kv7.1 and Kv7.5 were unaffected. Flupirtine had no effect in normoxic lungs but reduced vascular resistance in hypoxic lungs. Moreover, oral dosing with flupirtine (30 mg/kg/day) prevented short-term in vivo hypoxia from increasing pulmonary vascular resistance and sensitizing the arteries to acute hypoxia. These findings suggest a protective role for Kv7.4 channels in the pulmonary circulation, limiting its reactivity to pressor agents and preventing hypoxia-induced pulmonary hypertension. They also provide further support for the therapeutic potential of Kv7 activators in pulmonary vascular disease. Copyright © 2015 the American Physiological Society.

  18. Ontogenetic Responses of Calanus chilensis to Hypoxia from Northern Chile (23ºS), Humboldt Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Ruz, P. M.; Hidalgo, P.; Escribano, R.; Franco-Cisterna, B.; Yebra, L.; Keister, J. E.

    2016-02-01

    Eastern Boundary Upwelling Systems are being subjected to expansion, intensification and shoaling of Oxygen Minimum Zones (OMZ's), as a result of ongoing climate change. To understand how dominant epipelagic copepods may respond to stressful conditions induced by low oxygen, we experimentally studied the effect of hypoxia over the stage-specific physiology of Calanus chilensis from the Mejillones Bay (23°S — 70°W), northern Chile, during the winters of 2013 and 2014. Females, eggs and nauplii (NI to NIV) of C. chilensis were incubated under hypoxia ( 0.7 mg O2 L-1) and normoxia ( 8.3 mg O2 L-1) conditions at a constant temperature of 14ºC as to estimate egg production rate (EPR), hatching success (HS) and naupliar growth and development time. Additionally, we estimated survivorship by using Neutral Red technique, and also examined female metabolism by measuring specific activity of the enzymes Aminoacyl-tRNA synthetases (spAARS) (growth index) and the electron transport system (spETS) (potential respiration). Survival of females and EPR were not significantly affected by dissolved oxygen (DO) conditions, coinciding with no significant changes in their metabolism. By contrast, HS was reduced from normoxia (70%) to hypoxia (30%), whereas naupliar growth (NI to NIII) was lower under hypoxia (0.155 ± 0.007 d-1) than normoxia (0.237 ± 0.006 d-1), resulting also in a longer development time, 6.490 ± 0.353 d and 4.238 ± 0.149 d, respectively. Most eggs and nauplii collected at the end of the experiments were alive, although a higher proportion of organisms were recovered in normoxia than hypoxia. Our results revealed stage-specific responses to hypoxia in C. chilensis and the importance of ontogenetic responses to variable levels of oxygenation in the upwelling zone.

  19. Differential HIF and NOS responses to acute anemia: defining organ-specific hemoglobin thresholds for tissue hypoxia.

    PubMed

    Tsui, Albert K Y; Marsden, Philip A; Mazer, C David; Sled, John G; Lee, Keith M; Henkelman, R Mark; Cahill, Lindsay S; Zhou, Yu-Qing; Chan, Neville; Liu, Elaine; Hare, Gregory M T

    2014-07-01

    Tissue hypoxia likely contributes to anemia-induced organ injury and mortality. Severe anemia activates hypoxia-inducible factor (HIF) signaling by hypoxic- and neuronal nitric oxide (NO) synthase- (nNOS) dependent mechanisms. However, organ-specific hemoglobin (Hb) thresholds for increased HIF expression have not been defined. To assess organ-specific Hb thresholds for tissue hypoxia, HIF-α (oxygen-dependent degradation domain, ODD) luciferase mice were hemodiluted to mild, moderate, or severe anemia corresponding to Hb levels of 90, 70, and 50 g/l, respectively. HIF luciferase reporter activity, HIF protein, and HIF-dependent RNA levels were assessed. In the brain, HIF-1α was paradoxically decreased at mild anemia, returned to baseline at moderate anemia, and then increased at severe anemia. Brain HIF-2α remained unchanged at all Hb levels. Both kidney HIF-1α and HIF-2α increased earlier (Hb ∼70-90 g/l) in response to anemia. Liver also exhibited an early HIF-α response. Carotid blood flow was increased early (Hb ∼70, g/l), but renal blood flow remained relatively constant, only increased at Hb of 50 g/l. Anemia increased nNOS (brain and kidney) and endothelia NOS (eNOS) (kidney) levels. Whereas anemia-induced increases in brain HIFα were nNOS-dependent, our current data demonstrate that increased renal HIFα was nNOS independent. HIF-dependent RNA levels increased linearly (∼10-fold) in the brain. However, renal HIF-RNA responses (MCT4, EPO) increased exponentially (∼100-fold). Plasma EPO levels increased near Hb threshold of 90 g/l, suggesting that the EPO response is sensitive. Collectively, these observations suggest that each organ expresses a different threshold for cellular HIF/NOS hypoxia responses. This knowledge may help define the mechanism(s) by which the brain and kidney maintain oxygen homeostasis during anemia. Copyright © 2014 the American Physiological Society.

  20. Cell cycle regulation and apoptosis mediated by p53 in response to hypoxia in hepatopancreas of the white shrimp Litopenaeus vannamei.

    PubMed

    Nuñez-Hernandez, Dahlia M; Felix-Portillo, Monserrath; Peregrino-Uriarte, Alma B; Yepiz-Plascencia, Gloria

    2018-01-01

    Although hypoxic aquatic environments cause negative effects on shrimp, these animals can withstand somewhat hypoxia, but the cellular mechanisms underlying this capacity are still poorly understood. In humans, mild hypoxia causes the induction of many proteins to allow cell survival. In contrast, apoptosis is induced during severe hypoxia leading to cell death. p53 is a key transcription factor that determines cells fate towards cell cycle arrest or induction of apoptosis in humans. The aim of this work was to study the role of p53 in cell cycle regulation and apoptosis in response to hypoxia in hepatopancreas of the white shrimp Litopenaeus vannamei. p53 was silenced by RNAi and afterwards the shrimp were exposed to hypoxia. Cdk-2 was used as indicator of cell cycle progression while caspase-3 expression and caspase activity were analyzed as indicators of apoptosis. p53 levels in hepatopancreas were significantly higher at 48 h after hypoxic treatment. Increased expression levels of Cdk-2 were found in p53-silenced shrimp after 24 and 48 h in the normoxic treatments as well as 48 h after hypoxia, indicating a possible role of p53 in cell cycle regulation. In response to hypoxia, unsilenced shrimp showed an increase in caspase-3 expression levels, however an increase was also observed in caspase activity at 24 h of normoxic conditions in p53-silenced shrimps. Taken together these results indicate the involvement of p53 in regulation of cell cycle and apoptosis in the white shrimp in response to hypoxia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Long-term effects of prenatal hypoxia on endothelium-dependent relaxation responses in pulmonary arteries of adult sheep.

    PubMed

    Liu, Jie; Gao, Yuansheng; Negash, Sewite; Longo, Lawrence D; Raj, J Usha

    2009-03-01

    Chronic hypoxia during the course of pregnancy is a common insult to the fetus. However, its long-term effect on the pulmonary vasculature in adulthood has not been described. In this study, the vasorelaxation responses of conduit pulmonary arteries in adult female sheep that were chronically hypoxic as fetuses and raised postnatally at sea level were investigated. Vessel tension studies revealed that endothelium-dependent relaxation responses were attenuated in pulmonary arteries from adult sheep that experienced prenatal hypoxia. Endothelial nitric oxide synthase (eNOS) protein expression was unchanged, but eNOS activity was significantly decreased in pulmonary arteries from prenatally hypoxic sheep. Protein expression of eNOS partners, caveolin-1, calmodulin, and heat shock protein 90 (Hsp90) did not change following prenatal hypoxia. However, the association between eNOS and caveolin-1, its inhibitory binding partner, was significantly increased, whereas association between eNOS and its stimulatory partners calmodulin and Hsp90 was greatly decreased. Furthermore, phosphorylation of Ser(1177) in eNOS decreased, whereas phosphorylation of Thr(495) increased, in the prenatally hypoxic pulmonary arteries, events that are related to eNOS activity. These data demonstrate that prenatal hypoxia results in persistent abnormalities in endothelium-dependent relaxation responses of pulmonary arteries in adult sheep due to decreased eNOS activity resulting from altered posttranslational regulation.

  2. Long-term effects of prenatal hypoxia on endothelium-dependent relaxation responses in pulmonary arteries of adult sheep

    PubMed Central

    Liu, Jie; Gao, Yuansheng; Negash, Sewite; Longo, Lawrence D.; Raj, J. Usha

    2009-01-01

    Chronic hypoxia during the course of pregnancy is a common insult to the fetus. However, its long-term effect on the pulmonary vasculature in adulthood has not been described. In this study, the vasorelaxation responses of conduit pulmonary arteries in adult female sheep that were chronically hypoxic as fetuses and raised postnatally at sea level were investigated. Vessel tension studies revealed that endothelium-dependent relaxation responses were attenuated in pulmonary arteries from adult sheep that experienced prenatal hypoxia. Endothelial nitric oxide synthase (eNOS) protein expression was unchanged, but eNOS activity was significantly decreased in pulmonary arteries from prenatally hypoxic sheep. Protein expression of eNOS partners, caveolin-1, calmodulin, and heat shock protein 90 (Hsp90) did not change following prenatal hypoxia. However, the association between eNOS and caveolin-1, its inhibitory binding partner, was significantly increased, whereas association between eNOS and its stimulatory partners calmodulin and Hsp90 was greatly decreased. Furthermore, phosphorylation of Ser1177 in eNOS decreased, whereas phosphorylation of Thr495 increased, in the prenatally hypoxic pulmonary arteries, events that are related to eNOS activity. These data demonstrate that prenatal hypoxia results in persistent abnormalities in endothelium-dependent relaxation responses of pulmonary arteries in adult sheep due to decreased eNOS activity resulting from altered posttranslational regulation. PMID:19136582

  3. Ventilatory acclimatization to hypoxia in mice: Methodological considerations.

    PubMed

    Ivy, Catherine M; Scott, Graham R

    2017-01-01

    We examined ventilatory acclimatization to hypoxia (VAH) in CD1 mice, and contrasted results obtained using the barometric method on unrestrained mice with pneumotachography and pulse oximetry on restrained mice. Responses to progressive step reductions in O 2 fraction (21%-8%) were assessed in mice acclimated to normoxia and hypobaric hypoxia (barometric pressure of 60kPa for 6-8 weeks). Hypoxia acclimation increased the hypoxic ventilatory response (primarily by increasing breathing frequency rather than tidal volume), arterial O 2 saturation (Sa O2 ) and heart rate in deep hypoxia, hypoxic chemosensitivity (ventilatory O 2 /CO 2 equivalents versus Sa O2 ), and respiratory water loss, and it blunted the hypoxic depression of metabolism and body temperature. Although some effects of hypoxia acclimation were qualitatively similar between methods, the effects were often greater in magnitude when assessed using pneumotachography. Furthermore, whereas hypoxia acclimation reduced ventilatory O 2 equivalent and increased pulmonary O 2 extraction in barometric experiments, it had the opposite effects in pneumotachography experiments. Our findings highlight the importance of considering the impact of how breathing is measured on the apparent responses to hypoxia. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The role of the hypoxia response in shaping retinal vascular development in the absence of Norrin/Frizzled4 signaling.

    PubMed

    Rattner, Amir; Wang, Yanshu; Zhou, Yulian; Williams, John; Nathans, Jeremy

    2014-11-20

    To define the role of hypoxia and vascular endothelial growth factor (VEGF) in modifying the pattern, density, and permeability of the retinal vasculature in mouse models in which Norrin/Frizzled4 signaling is impaired. Retinal vascular structure was analyzed in mice with mutation of Ndp (the gene coding for Norrin) or Frizzle4 (Fz4) with or without three additional perturbations: (1) retinal hyperoxia and reduction of VEGF, (2) reduced induction of VEGF in response to hypoxia, or (3) reduced responsiveness of vascular endothelial cells (ECs) to VEGF. These perturbations were produced, respectively, by (1) genetic ablation of rod photoreceptors in the retinal degeneration 1 (rd1) mutant background, (2) conditional deletion of the gene coding for hypoxia-inducible factor (HIF)-2alpha either in all neural retina cells or specifically in Müller glia, and (3) conditional deletion of the VEGF coreceptor neuropilin1 (NRP1) in ECs. All three conditions reduced vascular proliferation. Eliminating HIF2-alpha in Müller glia blocked VEGF induction in the inner nuclear layer, identifying HIF2-alpha as the transcription factor responsible for the hypoxia response in these cells. When Norrin/Frizzled4 signaling was eliminated, a secondary elevation in VEGF levels was required to compromise the barrier to transendothelial movement of high molecular weight compounds. In the absence of Norrin or Frizzled4, the vascular phenotype is determined by the primary defect in Norrin/Frizzled4 signaling (i.e., canonical Wnt signaling) and compensatory responses resulting from hypoxia. This work may be useful in guiding therapeutic strategies for the treatment of familial exudative vitreoretinopathy (FEVR). Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  5. [Effects of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation in rats].

    PubMed

    Li, Ting; Wang, Wei; Kong, De-lei; Su, Jiao; Kang, Jian

    2012-04-01

    To explore the influence of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation. Male Sprague-Dawley rats were randomly divided into a control group and a chronic intermittent hypoxia group. Transcranial magnetic stimulation was applied in genioglossus motor cortex of the 2 groups. The responses of transcranial magnetic stimulation were recorded and analyzed by single factor analysis of variance. The anterolateral area provided an optimal motor evoked potential response to transcranial magnetic stimulation in the genioglossus motor cortex of the rats. Genioglossus motor evoked potential latency and amplitude were significantly modified by intermittent hypoxic exposure, with a significant decrease in latency (F = 3.294, P < 0.01) at the 1st day [(4.90 ± 0.54) ms] and the 14th day [(4.64 ± 1.71) ms], and an increase in amplitude (F = 1.905, P < 0.05) at the 1st day [(2.28 ± 0.57) mV] and the 7th day [(1.89 ± 0.20) mV]. Intermittent hypoxia could increase the transcranial magnetic stimulation response of genioglossus motor cortex in rats.

  6. Facultative cardiac responses to regional hypoxia in lizard embryos.

    PubMed

    Du, Wei-Guo; Thompson, Michael B; Shine, Richard

    2010-08-01

    In natural nests, the eggs of squamate reptiles (lizards and snakes) sometimes experience unpredictable shifts in oxygen availability as a function of nest flooding, or the details of egg location within a nest. We experimentally investigated whether embryos can facultatively adjust cardiac function to cope with such challenges by imposing regional hypoxia on developing eggs of the scincid lizard Bassiana duperreyi. To do so, we sealed half of the eggshell surface with tissue adhesive. The embryos rapidly responded by increasing heart rates, which they maintained for long periods. The elevated heart rates enabled the embryos not only to survive, but to maintain "normal" metabolic rates, and to hatch at the usual time with unmodified phenotypic traits (e.g., hatchling size, relative heart mass, locomotor speed, post-hatchling survival and growth rates). Turtles and birds with rigid (highly calcified) eggshells show more dramatic ill-effects from hypoxic incubation, suggesting that the thin (and thus, highly gas-permeable) parchment-shelled eggs of most squamates allow more effective embryonic adjustment of oxygen exchange rates in response to externally-imposed hypoxia. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Stress response of lead-exposed rainbow trout (Oncorhynchus mykiss) during swimming performance and hypoxia challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, K.A.; Caldwell, C.A.; Sandheinrich, M.B.

    1995-12-31

    Contaminants often invoke a stress response in aquatic organisms, and may compromise their capacity to respond to secondary stressors. This may reduce growth, reproduction and survival. The authors objectives were to assess the effects of lead and secondary stressors on hematology and blood chemistry of rainbow trout. After a 7 to 8-week aqueous exposure to Pb(100{micro}g/L), rainbow trout were challenged with forced swimming or hypoxia. Lead significantly reduced concentrations of 5-aminolevulinic acid dehydratase (ALAD), but not other constituents in the blood. Lead did not affect the swimming endurance of the fish. Hematocrit, mean cell hemoglobin content, and mean cell volumemore » were significantly lower in Pb-exposed trout following the swimming challenge. Although hypoxia resulted in increased hematocrit and plasma glucose concentrations, there were no significant differences between the Pb and control groups. Hypoxia did not affect plasma chloride concentrations, although concentrations increased in Pb-exposed trout. There was no difference in lactic acid concentrations between Pb-exposed and control fish after forced swimming or hypoxia.« less

  8. Rapid mitochondrial adjustments in response to short-term hypoxia and re-oxygenation in the Pacific oyster, Crassostrea gigas.

    PubMed

    Sussarellu, Rossana; Dudognon, Tony; Fabioux, Caroline; Soudant, Philippe; Moraga, Dario; Kraffe, Edouard

    2013-05-01

    As oxygen concentrations in marine coastal habitats can fluctuate rapidly and drastically, sessile marine organisms such as the oyster Crassostrea gigas can experience marked and rapid oxygen variations. In this study, we investigated the responses of oyster gill mitochondria to short-term hypoxia (3 and 12 h, at 1.7 mg O2 l(-1)) and subsequent re-oxygenation. Mitochondrial respiratory rates (states 3 and 4 stimulated by glutamate) and phosphorylation efficiency [respiratory control ratio (RCR) and the relationship between ADP and oxygen consumption (ADP/O)] were measured. Cytochrome c oxidase (CCO) activity and cytochrome concentrations (a, b, c1 and c) were measured to investigate the rearrangements of respiratory chain subunits. The potential implication of an alternative oxidase (AOX) was investigated using an inhibitor of the respiratory chain (antimycin A) and through gene expression analysis in gills and digestive gland. Results indicate a downregulation of mitochondrial capacity, with 60% inhibition of respiratory rates after 12 h of hypoxia. RCR remained stable, while ADP/O increased after 12 h of hypoxia and 1 h of re-oxygenation, suggesting increased phosphorylation efficiency. CCO showed a fast and remarkable increase of its catalytic activity only after 3 h of hypoxia. AOX mRNA levels showed similar patterns in gills and digestive gland, and were upregulated after 12 and 24 h of hypoxia and during re-oxygenation. Results suggest a set of controls regulating mitochondrial functions in response to oxygen fluctuations, and demonstrate the fast and extreme plasticity of oyster mitochondria in response to oxygen variations.

  9. Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Transcription

    NASA Astrophysics Data System (ADS)

    Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T.

    1998-09-01

    Transcriptional activation of erythropoietin, glycolytic enzymes, and vascular endothelial growth factor occurs during hypoxia or in response to cobalt chloride (CoCl2) in Hep3B cells. However, neither the mechanism of cellular O2 sensing nor that of cobalt is fully understood. We tested whether mitochondria act as O2 sensors during hypoxia and whether hypoxia and cobalt activate transcription by increasing generation of reactive oxygen species (ROS). Results show (i) wild-type Hep3B cells increase ROS generation during hypoxia (1.5% O2) or CoCl2 incubation, (ii) Hep3B cells depleted of mitochondrial DNA (ρ 0 cells) fail to respire, fail to activate mRNA for erythropoietin, glycolytic enzymes, or vascular endothelial growth factor during hypoxia, and fail to increase ROS generation during hypoxia; (iii) ρ 0 cells increase ROS generation in response to CoCl2 and retain the ability to induce expression of these genes; and (iv) the antioxidants pyrrolidine dithiocarbamate and ebselen abolish transcriptional activation of these genes during hypoxia or CoCl2 in wild-type cells, and abolish the response to CoCl2 in ρ 0 cells. Thus, hypoxia activates transcription via a mitochondria-dependent signaling process involving increased ROS, whereas CoCl2 activates transcription by stimulating ROS generation via a mitochondria-independent mechanism.

  10. Hypoxia and training-induced adaptation of hormonal responses to exercise in humans.

    PubMed

    Engfred, K; Kjaer, M; Secher, N H; Friedman, D B; Hanel, B; Nielsen, O J; Bach, F W; Galbo, H; Levine, B D

    1994-01-01

    To establish whether or not hypoxia influences the training-induced adaptation of hormonal responses to exercise, 21 healthy, untrained subjects (2) years, mean (SE)] were studied in three groups before and after 5 weeks' training (cycle ergometer, 45 min.day-1, 5 days.week-1). Group 1 trained at sea level at 70% maximal oxygen uptake (VO2max), group 2 in a hypobaric chamber at a simulated altitude of 2500 m at 70% of altitude VO2max, and group 3 at a simulated altitude of 2500 m at the same absolute work rate as group 1. Arterial blood was sampled before, during and at the end of exhaustive cycling at sea level (85% of pretraining VO2max). VO2max increased by 12 (2)% with no significant difference between groups, whereas endurance improved most in group 1 (P < 0.05). Training-induced changes in response to exercise of noradrenaline, adrenaline, growth hormone, beta-endorphin, glucagon, and insulin were similar in the three groups. Concentrations of erythropoietin and 2,3-diphosphoglycerate at rest did not change over the training period. In conclusion, within 5 weeks of training, no further adaptation of hormonal exercise responses takes place if intensity is increased above 70% VO2max. Furthermore, hypoxia per se does not add to the training-induced hormonal responses to exercise.

  11. Effects of hypoxia on sympathetic neural control in humans

    NASA Technical Reports Server (NTRS)

    Smith, M. L.; Muenter, N. K.

    2000-01-01

    This special issue is principally focused on the time domain of the adaptive mechanisms of ventilatory responses to short-term, long-term and intermittent hypoxia. The purpose of this review is to summarize the limited literature on the sympathetic neural responses to sustained or intermittent hypoxia in humans and attempt to discern the time domain of these responses and potential adaptive processes that are evoked during short and long-term exposures to hypoxia.

  12. Comparison of the metabolic and ventilatory response to hypoxia and H2S in unsedated mice and rats.

    PubMed

    Haouzi, Philippe; Bell, Harold J; Notet, Veronique; Bihain, Bernard

    2009-07-31

    Hypoxia alters the control of breathing and metabolism by increasing ventilation through the arterial chemoreflex, an effect which, in small-sized animals, is offset by a centrally mediated reduction in metabolism and respiration. We tested the hypothesis that hydrogen sulfide (H(2)S) is involved in transducing these effects in mammals. The rationale for this hypothesis is twofold. Firstly, inhalation of a 20-80 ppm H(2)S reduces metabolism in small mammals and this effect is analogous to that of hypoxia. Secondly, endogenous H(2)S appears to mediate some of the cardio-vascular effects of hypoxia in non-mammalian species. We, therefore, compared the ventilatory and metabolic effects of exposure to 60 ppm H(2)S and to 10% O(2) in small and large rodents (20g mice and 700g rats) wherein the metabolic response to hypoxia has been shown to differ according to body mass. H(2)S and hypoxia produced profound depression in metabolic rate in the mice, but not in the large rats. The depression was much faster with H(2)S than with hypoxia. The relative hyperventilation produced by hypoxia in the mice was replaced by a depression with H(2)S, which paralleled the drop in metabolic rate. In the larger rats, ventilation was stimulated in hypoxia, with no change in metabolism, while H(2)S affected neither breathing nor metabolism. When mice were simultaneously exposed to H(2)S and hypoxia, the stimulatory effects of hypoxia on breathing were abolished, and a much larger respiratory and metabolic depression was observed than with H(2)S alone. H(2)S had, therefore, no stimulatory effect on the arterial chemoreflex. The ventilatory depression during hypoxia and H(2)S in small mammals appears to be dependent upon the ability to decrease metabolism.

  13. Hypoxia increases the heterogeneity of melanoma cell populations and affects the response to vemurafenib.

    PubMed

    Pucciarelli, Daniela; Lengger, Nina; Takáčová, Martina; Csaderova, Lucia; Bartosova, Maria; Breiteneder, Heimo; Pastorekova, Silvia; Hafner, Christine

    2016-04-01

    A hypoxic microenvironment is one of the predominant reasons for incomplete response to melanoma treatment. Vemurafenib, which targets the mutated BRAF-V600 kinase, improves melanoma patient survival, however, resistance invariably develops. The present study evaluated the effect of hypoxia on three BRAF-V600E mutant melanoma cell lines, M14, A375 and 518A2, treated with vemurafenib. Compared with the other two cell lines, hypoxic vemurafenib-treated A375 cells exhibited an enhanced cell proliferation rate and migratory capacity compared with normoxic vemurafenib-treated A375 cells. Immunoblotting analyses revealed that the expression levels of hypoxia inducible factor (HIF)1α and carbonic anhydrase IX were reduced in vemurafenib‑treated M14 and 518A2 cells, however, not in A375 cells. The expression levels of the mitogen‑activated protein kinase, Janus kinase-signal transducer and activator of transcription, and phosphatidylinositol-4,5-bisphosphate 3‑kinase signaling pathway proteins revealed a cell‑type specific response to vemurafenib and hypoxia. Knockdown experiments of HIF1α performed in hypoxic A375 cells decreased the expression of phosphorylated (p‑)protein kinase B, which was restored following vemurafenib treatment, and increased the expression of p‑extracellular‑signal‑regulated kinases. Therefore, three melanoma cell lines responded to vemurafenib under hypoxia in a cell type‑specific manner, suggesting that a subset of cells provides a treatment-resistant pool, from which disease relapse may originate. These data confirmed that vemurafenib may be successful in treating the proliferating cells, whereas the non‑proliferating subpopulation must be addressed by a combination of vemurafenib with other treatment strategies.

  14. Gill and lung ventilation responses to steady-state aquatic hypoxia and hyperoxia in the bullfrog tadpole.

    PubMed

    West, N H; Burggren, W W

    1982-02-01

    Gill ventilation frequency (fG), the pressure amplitude (PBC) and stroke volume (VS) of buccal ventilation cycles, the frequency of air breaths (fL), water flow over the gills (VW), gill oxygen uptake (MGO2), oxygen utilization (U), and heart frequency (fH) have been measured in unanaesthetized, air breathing Rana catesbeiana tadpoles (stage XVI-XIX). The animals were unrestrained except for ECG leads or cannulae, and were able to surface voluntarily for air breathing. They were subjected to aquatic normoxia, hyperoxia and three levels of aquatic hypoxia, and their respiratory responses recorded in the steady state. The experiments were performed at 20 +/- 0.5 degrees C. In hyperoxia there was an absence of air breathing, and fG, PBC and VW fell from the normoxic values, while U increased, resulting in no significant change in MGO2. Animals in normoxia showed a very low fL which increased in progressively more hypoxic states. VW increased from the normoxic value in mild hypoxia (PO2 = 96 +/- 2 mm Hg), but fell, associated with a reduction in PBC, in moderate (PO2 = 41 +/- 1 mm Hg) and severe (PO2 = 21 +/- 3 mm Hg) hypoxia in the presence of lung ventilation. Gill MGO2 was not significantly different from the normoxic value in mild hypoxia but fell in moderate hypoxia, while in severe hypoxia oxygen was lost to the ventilating water from the blood perfusing the gills. There was no significant change in fH from the normoxic value in either hypoxia or hyperoxia. These data indicate, that in the bimodally breathing bullfrog tadpole, aquatic PO2 exerts a strong control over both gill and lung ventilation. Furthermore, there is an interaction between gill and lung ventilation such that the onset of a high frequency of lung ventilation in moderate and severe hypoxia promotes a suppression of gill ventilation cycles.

  15. Pulmonary artery smooth muscle cell [Ca2+]i and contraction: responses to diphenyleneiodonium and hypoxia.

    PubMed

    Zhang, F; Carson, R C; Zhang, H; Gibson, G; Thomas, H M

    1997-09-01

    To investigate mechanisms of inhibition of hypoxic pulmonary vasoconstriction (HPV), we studied pulmonary artery smooth muscle cell (PASMC) responses to hypoxia, utilizing diphenyleneiodonium (DPI), which blocks HPV. We measured cell contraction in primary cultures of rat PASMC grown on collagen gels and cytosolic free Ca2+ concentration ([Ca2+]i) in PASMC grown on glass. DPI (5 and 20 microM) caused contraction of PASMC and increased [Ca2+]i. Omission of extracellular Ca2+ diminished the DPI-induced PASMC contraction and greatly reduced the increase in [Ca2+]i. DPI substantially inhibited KCl-induced PASMC contraction (1 microM DPI) and the increase in [Ca2+]i (5 microM DPI). Severe hypoxia contracted PASMC and quadrupled [Ca2+]i. DPI, 1 microM, substantially inhibited hypoxic contraction, but neither 1 nor 5 microM DPI diminished the hypoxia-induced increase in [Ca2+]i, which was greatly attenuated by 20 microM DPI. These data show 1) that DPI increases [Ca2+]i, accounting for DPI-induced PASMC contraction and 2) that 1 and 5 microM DPI inhibit the hypoxia-induced contraction but not the hypoxia-induced increase in [Ca2+]i, suggesting that DPI inhibits hypoxic PASMC contraction downstream of the Ca2+ signal by desensitizing the contractile apparatus and indicating a potential control point for modulation of HPV.

  16. The Acetylase/Deacetylase Couple CREB-binding Protein/Sirtuin 1 Controls Hypoxia-inducible Factor 2 Signaling*

    PubMed Central

    Chen, Rui; Xu, Min; Hogg, Richard T.; Li, Jiwen; Little, Bertis; Gerard, Robert D.; Garcia, Joseph A.

    2012-01-01

    Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors. HIF-1α plays a prominent role in hypoxic gene induction. HIF-2α target genes are more restricted but include erythropoietin (Epo), one of the most highly hypoxia-inducible genes in mammals. We previously reported that HIF-2α is acetylated during hypoxia but is rapidly deacetylated by the stress-responsive deacetylase Sirtuin 1. We now demonstrate that the lysine acetyltransferases cAMP-response element-binding protein-binding protein (CBP) and p300 are required for efficient Epo induction during hypoxia. However, despite close structural similarity, the roles of CBP and p300 differ in HIF signaling. CBP acetylates HIF-2α, is a major coactivator for HIF-2-mediated Epo induction, and is required for Sirt1 augmentation of HIF-2 signaling during hypoxia in Hep3B cells. In comparison, p300 is a major contributor for HIF-1 signaling as indicated by induction of Pgk1. Whereas CBP can bind with HIF-2α independent of the HIF-2α C-terminal activation domain via enzyme/substrate interactions, p300 only complexes with HIF-2α through the C-terminal activation domain. Maximal CBP/HIF-2 signaling requires intact CBP acetyltransferase activity in both Hep3B cells as well as in mice. PMID:22807441

  17. Cerebral blood flow and oxygenation in ovine fetus: responses to superimposed hypoxia at both low and high altitude

    PubMed Central

    Peňa, Jorge Pereyra; Tomimatsu, Takuji; Hatran, Douglas P; McGill, Lisa L; Longo, Lawrence D

    2007-01-01

    For the fetus, although the roles of arterial blood gases are recognized to be critical in the regulation of cerebral blood flow (CBF) and cerebral oxygenation, the relation of CBF, cortical tissue PO2 (t PO2), sagittal sinus PO2, and related indices of cerebral oxygenation to arterial blood gases are not well defined. This is particularly true for that fetus subjected to long-term hypoxia (LTH). In an effort to elucidate these interrelations, we tested the hypothesis that in the fetus acclimatized to high altitude, cerebral oxygenation is not compromised relative to that at low altitude. By use of a laser Doppler flowmeter with a fluorescent O2 probe, in near-term fetal sheep at low altitude (n = 8) and those acclimatized to high altitude hypoxia (3801 m for 90 ± 5 days; n = 6), we measured laser Doppler CBF (LD-CBF), t PO2, and related variables in response to 40 min superimposed hypoxia. At both altitudes, fetal LD-CBF, cerebral O2 delivery, t PO2, and several other variables including sagittal sinus PO2, correlated highly with arterial PO2 (Pa,O2). In response to superimposed hypoxia (Pa,O2 = 11 ± 1 Torr), LD-CBF was significantly blunted at high altitude, as compared with that at low altitude. In the two altitude groups fetal cerebral oxygenation was similar under both control conditions and with superimposed hypoxia, cortical t PO2 decreasing from 8 ± 1 and 6 ± 1 Torr, respectively, to 2 ± 1 Torr. Also, for these conditions sagittal sinus PO2 and [HbO2] values were similar. In response to superimposed hypoxia, cerebral metabolic rate for O2 decreased ∼50% in each group (P < 0.05). For both the fetus at low altitude and that acclimatized to high altitude LTH, we present the first dose–response data on the relation of LD-CBF, cortical t PO2, and sagittal sinus blood gas values to Pa,O2. In addition, despite differences in several variables, the fetus at high altitude showed evidence of successful acclimatization, supporting the hypothesis that such

  18. OASIS modulates hypoxia pathway activity to regulate bone angiogenesis

    PubMed Central

    Cui, Min; Kanemoto, Soshi; Cui, Xiang; Kaneko, Masayuki; Asada, Rie; Matsuhisa, Koji; Tanimoto, Keiji; Yoshimoto, Yuki; Shukunami, Chisa; Imaizumi, Kazunori

    2015-01-01

    OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis−/−) mouse embryonic fibroblasts. In coimmunoprecipitation experiments, the N-terminal fragment of OASIS (OASIS-N; activated form of OASIS) bound to HIF-1α through the bZIP domain. Luciferase assays showed that OASIS-N promoted the transcription activities of a reporter gene via a hypoxia-response element (HRE). Furthermore, the expression levels of an angiogenic factor Vegfa was decreased in Oasis−/− osteoblasts. Immunostaining and metatarsal angiogenesis assay showed retarded vascularization in bone tissue of Oasis−/− mice. These results suggest that OASIS affects the expression of HIF-1α target genes through the protein interaction with HIF-1α, and that OASIS-HIF-1α complexes may play essential roles in angiogenesis during bone development. PMID:26558437

  19. Seasonal changes in the cardiovascular, respiratory and metabolic responses to temperature and hypoxia in the bullfrog Rana catesbeiana.

    PubMed

    Rocha, P L; Branco, L G

    1998-03-01

    We assessed seasonal variations in the effects of temperature on hypoxia-induced alterations in the bullfrog Rana catesbeiana by measuring the heart rate, arterial blood pressure, breathing frequency, metabolic rate, blood gas levels, acid-base status and plasma glucose concentration. Regardless of the season, decreased body temperature was accompanied by a reduction in heart and breathing frequencies. Lower temperatures caused a significant decrease in arterial blood pressure during all four seasons. Hypoxia-induced changes in breathing frequency were proportional to body temperature and were more pronounced during winter, less so during spring and autumn and even smaller during summer. Season had no effect on the relationship between hypoxia and heart rate. At any temperature tested, the rate of oxygen consumption had a tendency to be highest during summer and lowest during winter, but the difference was significant only at 35 degrees C. The PaO2 and pH values showed no significant change during the year, but PaCO2 was almost twice as high during winter than in summer and spring, indicating increased plasma bicarbonate levels. Lower temperatures were accompanied by decreased plasma glucose levels, and this effect was greater during summer and smaller during autumn. Hypoxia-induced hyperglycaemia was influenced by temperature and season. During autumn and winter, plasma glucose level remained elevated regardless of temperature, probably to avoid dehydration and/or freezing. In winter, the bullfrog may be exposed not only to low temperatures but also to hypoxia. These animals show temperature-dependent responses that may be beneficial since at low body temperatures the set-points of most physiological responses to hypoxia are reduced, regardless of the season.

  20. Increased oxidative stress and anaerobic energy release, but blunted Thr172-AMPKα phosphorylation, in response to sprint exercise in severe acute hypoxia in humans.

    PubMed

    Morales-Alamo, David; Ponce-González, Jesús Gustavo; Guadalupe-Grau, Amelia; Rodríguez-García, Lorena; Santana, Alfredo; Cusso, Maria Roser; Guerrero, Mario; Guerra, Borja; Dorado, Cecilia; Calbet, José A L

    2012-09-01

    AMP-activated protein kinase (AMPK) is a major mediator of the exercise response and a molecular target to improve insulin sensitivity. To determine if the anaerobic component of the exercise response, which is exaggerated when sprint is performed in severe acute hypoxia, influences sprint exercise-elicited Thr(172)-AMPKα phosphorylation, 10 volunteers performed a single 30-s sprint (Wingate test) in normoxia and in severe acute hypoxia (inspired Po(2): 75 mmHg). Vastus lateralis muscle biopsies were obtained before and immediately after 30 and 120 min postsprint. Mean power output and O(2) consumption were 6% and 37%, respectively, lower in hypoxia than in normoxia. O(2) deficit and muscle lactate accumulation were greater in hypoxia than in normoxia. Carbonylated skeletal muscle and plasma proteins were increased after the sprint in hypoxia. Thr(172)-AMPKα phosphorylation was increased by 3.1-fold 30 min after the sprint in normoxia. This effect was prevented by hypoxia. The NAD(+)-to-NADH.H(+) ratio was reduced (by 24-fold) after the sprints, with a greater reduction in hypoxia than in normoxia (P < 0.05), concomitant with 53% lower sirtuin 1 (SIRT1) protein levels after the sprint in hypoxia (P < 0.05). This could have led to lower liver kinase B1 (LKB1) activation by SIRT1 and, hence, blunted Thr(172)-AMPKα phosphorylation. Ser(485)-AMPKα(1)/Ser(491)-AMPKα(2) phosphorylation, a known negative regulating mechanism of Thr(172)-AMPKα phosphorylation, was increased by 60% immediately after the sprint in hypoxia, coincident with increased Thr(308)-Akt phosphorylation. Collectively, our results indicate that the signaling response to sprint exercise in human skeletal muscle is altered in severe acute hypoxia, which abrogated Thr(172)-AMPKα phosphorylation, likely due to lower LKB1 activation by SIRT1.

  1. Hypoxia and H2O2 Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery.

    PubMed

    Yu, Jicheng; Qian, Chenggen; Zhang, Yuqi; Cui, Zheng; Zhu, Yong; Shen, Qundong; Ligler, Frances S; Buse, John B; Gu, Zhen

    2017-02-08

    A glucose-responsive closed-loop insulin delivery system mimicking pancreas activity without long-term side effect has the potential to improve diabetic patients' health and quality of life. Here, we developed a novel glucose-responsive insulin delivery device using a painless microneedle-array patch containing insulin-loaded vesicles. Formed by self-assembly of hypoxia and H 2 O 2 dual-sensitive diblock copolymer, the glucose-responsive polymersome-based vesicles (d-GRPs) can disassociate and subsequently release insulin triggered by H 2 O 2 and hypoxia generated during glucose oxidation catalyzed by glucose specific enzyme. Moreover, the d-GRPs were able to eliminate the excess H 2 O 2 , which may lead to free radical-induced damage to skin tissue during the long-term usage and reduce the activity of GOx. In vivo experiments indicated that this smart insulin patch could efficiently regulate the blood glucose in the chemically induced type 1 diabetic mice for 10 h.

  2. Short-term exposure to hypoxia for work and leisure activities in health and disease: which level of hypoxia is safe?

    PubMed

    Burtscher, Martin; Mairer, Klemens; Wille, Maria; Gatterer, Hannes; Ruedl, Gerhard; Faulhaber, Martin; Sumann, Günther

    2012-06-01

    Exposures to natural and simulated altitudes entail reduced oxygen availability and thus hypoxia. Depending on the level of hypoxia, the duration of exposure, the individual susceptibility, and preexisting diseases, health problems of variable severity may arise. Although millions of people are regularly or occasionally performing mountain sport activities, are transported by airplanes, and are more and more frequently exposed to short-term hypoxia in athletic training facilities or at their workplace, e.g., with fire control systems, there is no clear consensus on the level of hypoxia which is generally well tolerated by human beings when acutely exposed for short durations (hours to several days). Available data from peer-reviewed literature report adaptive responses even to altitudes below 2,000 m or corresponding normobaric hypoxia (F(i)O(2) > 16.4%), but they also suggest that most of exposed subjects without severe preexisting diseases can tolerate altitudes up to 3,000 m (F(i)O(2) > 14.5%) well. However, physical activity and unusual environmental conditions may increase the risk to get sick. Large interindividual variations of responses to hypoxia have to be expected, especially in persons with preexisting diseases. Thus, the assessment of those responses by hypoxic challenge testing may be helpful whenever possible.

  3. Cancer cell-associated cytoplasmic B7–H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, You-Kyoung; Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735; Park, Sae-Gwang

    2015-04-03

    Aberrant B7–H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7–H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7–H4 transcription in primary CD138{sup +} multiple myeloma cells and cancer cell lines. In support of this finding, analysis of the Multiple Myeloma Genomics Portal (MMGP) data set revealed a positive correlation between the mRNA expression levels of B7–H4 and the endogenous hypoxia marker carbonic anhydrogenase 9. Hypoxia-induced B7–H4 expression was detected in the cytoplasm, but not in cancer cell membranes. Chromatinmore » immunoprecipitation analysis demonstrated binding of hypoxia-inducible factor-1α (HIF-1α) to proximal hypoxia-response element (HRE) sites within the B7–H4 promoter. Knockdown of HIF-1α and pharmacological inhibition of HIF-1α diminished B7–H4 expression. Furthermore, knockdown of cytoplasmic B7–H4 in MCF-7 decreased the S-phase cell population under hypoxia. Finally, MMGP analysis revealed a positive correlation between the transcript levels of B7–H4 and proliferation-related genes including MKI67, CCNA1, and Myc in several patients with multiple myeloma. Our results provide insight into the mechanisms underlying B7–H4 upregulation and its role in cancer cell proliferation in a hypoxic tumor microenvironment. - Highlights: • Hypoxia upregulates B7–H4 transcription and protein expression. • Hypoxia-induced B7–H4 is detected in the cytoplasm, but not on membrane. • ChIP assay reveals a binding of HIF-1α to B7–H4 promoter at HRE site. • Knockdown and pharmacological inhibition of HIF-1α reduce B7–H4 expression. • B7–H4 knockdown decrease the number of cells in S-phase of cell cycle.« less

  4. Exercise training normalizes renal blood flow responses to acute hypoxia in experimental heart failure: role of the α1-adrenergic receptor.

    PubMed

    Pügge, Carolin; Mediratta, Jai; Marcus, Noah J; Schultz, Harold D; Schiller, Alicia M; Zucker, Irving H

    2016-02-01

    Recent data suggest that exercise training (ExT) is beneficial in chronic heart failure (CHF) because it improves autonomic and peripheral vascular function. In this study, we hypothesized that ExT in the CHF state ameliorates the renal vasoconstrictor responses to hypoxia and that this beneficial effect is mediated by changes in α1-adrenergic receptor activation. CHF was induced in rabbits. Renal blood flow (RBF) and renal vascular conductance (RVC) responses to 6 min of 5% isocapnic hypoxia were assessed in the conscious state in sedentary (SED) and ExT rabbits with CHF with and without α1-adrenergic blockade. α1-adrenergic receptor expression in the kidney cortex was also evaluated. A significant decline in baseline RBF and RVC and an exaggerated renal vasoconstriction during acute hypoxia occurred in CHF-SED rabbits compared with the prepaced state (P < 0.05). ExT diminished the decline in baseline RBF and RVC and restored changes during hypoxia to those of the prepaced state. α1-adrenergic blockade partially prevented the decline in RBF and RVC in CHF-SED rabbits and eliminated the differences in hypoxia responses between SED and ExT animals. Unilateral renal denervation (DnX) blocked the hypoxia-induced renal vasoconstriction in CHF-SED rabbits. α1-adrenergic protein in the renal cortex of animals with CHF was increased in SED animals and normalized after ExT. These data provide evidence that the acute decline in RBF during hypoxia is caused entirely by the renal nerves but is only partially mediated by α1-adrenergic receptors. Nonetheless, α1-adrenergic receptors play an important role in the beneficial effects of ExT in the kidney. Copyright © 2016 the American Physiological Society.

  5. Molecular and biochemical responses of hypoxia exposure in Atlantic croaker collected from hypoxic regions in the northern Gulf of Mexico.

    PubMed

    Rahman, Md Saydur; Thomas, Peter

    2017-01-01

    A major impact of global climate change has been the marked increase worldwide in the incidence of coastal hypoxia (dissolved oxygen, DO<2.0 mg l-1). However, the extent of hypoxia exposure to motile animals such as fish collected from hypoxic waters as well as their molecular and physiological responses to environmental hypoxia exposure are largely unknown. A suite of potential hypoxia exposure biomarkers was evaluated in Atlantic croaker collected from hypoxic and normoxic regions in the northern Gulf of Mexico (nGOM), and in croaker after laboratory exposure to hypoxia (DO: 1.7 mg l-1). Expression of hypoxia-inducible factor-α, hif-α; neuronal nitric oxide synthase, nNOS; and insulin-like growth factor binding protein, igfbp mRNAs and protein carbonyl (PC, an oxidative stress indicator) content were elevated several-fold in brain and liver tissues of croaker collected from nGOM hypoxic sites. All of these molecular and biochemical biomarkers were also upregulated ~3-10-fold in croaker brain and liver tissues within 1-2 days of hypoxia exposure in controlled laboratory experiments. These results suggest that hif-αs, nNOS and igfbp-1 transcripts and PC contents are useful biomarkers of environmental hypoxia exposure and some of its physiological effects, making them important components for improved assessments of long-term impacts of environmental hypoxia on fish populations.

  6. Hypoxia in the changing marine environment

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Cowie, G.; Naqvi, S. W. A.

    2013-03-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926-9, Stramma et al 2008 Science 320 655-8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1-24).

  7. Tribute to R. G. Boutilier: the role for skeletal muscle in the hypoxia-induced hypometabolic responses of submerged frogs.

    PubMed

    West, T G; Donohoe, P H; Staples, J F; Askew, G N

    2006-04-01

    Much of Bob Boutilier's research characterised the subcellular, organ-level and in vivo behavioural responses of frogs to environmental hypoxia. His entirely integrative approach helped to reveal the diversity of tissue-level responses to O(2) lack and to advance our understanding of the ecological relevance of hypoxia tolerance in frogs. Work from Bob's lab mainly focused on the role for skeletal muscle in the hypoxic energetics of overwintering frogs. Muscle energy demand affects whole-body metabolism, not only because of its capacity for rapid increases in ATP usage, but also because hypometabolism of the large skeletal muscle mass in inactive animals impacts so greatly on in vivo energetics. The oxyconformance and typical hypoxia-tolerance characteristics (e.g. suppressed heat flux and preserved membrane ion gradients during O(2) lack) of skeletal muscle in vitro suggest that muscle hypoperfusion in vivo is possibly a key mechanism for (i) downregulating muscle and whole-body metabolic rates and (ii) redistributing O(2) supply to hypoxia-sensitive tissues. The gradual onset of a low-level aerobic metabolic state in the muscle of hypoxic, cold-submerged frogs is indeed important for slowing depletion of on-board fuels and extending overwintering survival time. However, it has long been known that overwintering frogs cannot survive anoxia or even severe hypoxia. Recent work shows that they remain sensitive to ambient O(2) and that they emerge rapidly from quiescence in order to actively avoid environmental hypoxia. Hence, overwintering frogs experience periods of hypometabolic quiescence interspersed with episodes of costly hypoxia avoidance behaviour and exercise recovery. In keeping with this flexible physiology and behaviour, muscle mechanical properties in frogs do not deteriorate during periods of overwintering quiescence. On-going studies inspired by Bob Boutilier's integrative mindset continue to illuminate the cost-benefit(s) of intermittent locomotion in

  8. Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus.

    PubMed

    Belão, T C; Zeraik, V M; Florindo, L H; Kalinin, A L; Leite, C A C; Rantin, F T

    2015-09-01

    We evaluated the role of the first pair of gill arches in the control of cardiorespiratory responses to normoxia and hypoxia in the air-breathing catfish, Clarias gariepinus. An intact group (IG) and an experimental group (EG, bilateral excision of first gill arch) were submitted to graded hypoxia, with and without access to air. The first pair of gill arches ablations reduced respiratory surface area and removed innervation by cranial nerve IX. In graded hypoxia without access to air, both groups displayed bradycardia and increased ventilatory stroke volume (VT), and the IG showed a significant increase in breathing frequency (fR). The EG exhibited very high fR in normoxia that did not increase further in hypoxia, this was linked to reduced O2 extraction from the ventilatory current (EO2) and a significantly higher critical O2 tension (PcO2) than the IG. In hypoxia with access to air, only the IG showed increased air-breathing, indicating that the first pair of gill arches excision severely attenuated air-breathing responses. Both groups exhibited bradycardia before and tachycardia after air-breaths. The fH and gill ventilation amplitude (VAMP) in the EG were overall higher than the IG. External and internal NaCN injections revealed that O2 chemoreceptors mediating ventilatory hypoxic responses (fR and VT) are internally oriented. The NaCN injections indicated that fR responses were mediated by receptors predominantly in the first pair of gill arches but VT responses by receptors on all gill arches. Receptors eliciting cardiac responses were both internally and externally oriented and distributed on all gill arches or extra-branchially. Air-breathing responses were predominantly mediated by receptors in the first pair of gill arches. In conclusion, the role of the first pair of gill arches is related to: (a) an elevated EO2 providing an adequate O2 uptake to maintain the aerobic metabolism during normoxia; (b) a significant bradycardia and increased fAB elicited

  9. Ventilatory responses to acute and chronic hypoxia are altered in female but not male Paskin-deficient mice.

    PubMed

    Soliz, Jorge; Soulage, Christophe; Borter, Emanuela; van Patot, Martha Tissot; Gassmann, Max

    2008-08-01

    Proteins harboring a Per-Arnt-Sim (PAS) domain are versatile and allow archaea, bacteria, and plants to sense oxygen partial pressure, as well as light intensity and redox potential. A PAS domain associated with a histidine kinase domain is found in FixL, the oxygen sensor molecule of Rhizobium species. PASKIN is the mammalian homolog of FixL, but its function is far from being understood. Using whole body plethysmography, we evaluated the ventilatory response to acute and chronic hypoxia of homozygous deficient male and female PASKIN mice (Paskin-/-). Although only slight ventilatory differences were found in males, female Paskin-/- mice increased ventilatory response to acute hypoxia. Unexpectedly, females had an impaired ability to reach ventilatory acclimatization in response to chronic hypoxia. Central control of ventilation occurs in the brain stem respiratory centers and is modulated by catecholamines via tyrosine hydroxylase (TH) activity. We observed that TH activity was altered in male and female Paskin-/- mice. Peripheral chemoreceptor effects on ventilation were evaluated by exposing animals to hyperoxia (Dejours test) and domperidone, a peripheral ventilatory stimulant drug directly affecting the carotid sinus nerve discharge. Male and female Paskin-/- had normal peripheral chemosensory (carotid bodies) responses. In summary, our observations suggest that PASKIN is involved in the central control of hypoxic ventilation, modulating ventilation in a gender-dependent manner.

  10. Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia.

    PubMed

    Sethy, Niroj Kumar; Singh, Manjulata; Kumar, Rajesh; Ilavazhagan, Govindasamy; Bhargava, Kalpana

    2011-03-01

    Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p < 0.05, <1.5-fold) after 0.5, 1, 3, 6, and 12 h of hypoxia, respectively. Biological processes like regulation, metabolic, and transport pathways are temporally activated along with anti- and proinflammatory signaling networks like PI3K/AKT, NF-κB, ERK/MAPK, IL-6 and IL-8 signaling. Irrespective of exposure durations, nuclear factor (erythroid-derived 2)-like 2 (NRF2)-mediated oxidative stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.

  11. Vascular Induction of a Disintegrin and Metalloprotease 17 by Angiotensin II Through Hypoxia Inducible Factor 1α

    PubMed Central

    Obama, Takashi; Takayanagi, Takehiko; Kobayashi, Tomonori; Bourne, Allison M.; Elliott, Katherine J.; Charbonneau, Martine; Dubois, Claire M.

    2015-01-01

    BACKGROUND A disintegrin and metalloprotease 17 (ADAM17) is a membrane-spanning metalloprotease overexpressed in various cardiovascular diseases such as hypertension and atherosclerosis. However, little is known regarding the regulation of ADAM17 expression in the cardiovascular system. Here, we test our hypothesis that angiotensin II induces ADAM17 expression in the vasculature. METHODS Cultured vascular smooth muscle cells were stimulated with 100nM angiotensin II. Mice were infused with 1 μg/kg/minute angiotensin II for 2 weeks. ADAM17 expression was evaluated by a promoter–reporter construct, quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. RESULTS In vascular smooth muscle cells, angiotensin II increased ADAM17 protein expression, mRNA, and promoter activity. We determined that the angiotensin II response involves hypoxia inducible factor 1α and a hypoxia responsive element. In angiotensin II–infused mice, marked induction of ADAM17 and hypoxia inducible factor 1α was seen in vasculatures in heart and kidney, as well as in aortae, by immunohistochemistry. CONCLUSIONS Angiotensin II induces ADAM17 expression in the vasculatures through a hypoxia inducible factor 1α–dependent transcriptional upregulation, potentially contributing to end-organ damage in the cardiovascular system. PMID:24871629

  12. Cycling hypoxia: A key feature of the tumor microenvironment.

    PubMed

    Michiels, Carine; Tellier, Céline; Feron, Olivier

    2016-08-01

    A compelling body of evidence indicates that most human solid tumors contain hypoxic areas. Hypoxia is the consequence not only of the chaotic proliferation of cancer cells that places them at distance from the nearest capillary but also of the abnormal structure of the new vasculature network resulting in transient blood flow. Hence two types of hypoxia are observed in tumors: chronic and cycling (intermittent) hypoxia. Most of the current work aims at understanding the role of chronic hypoxia in tumor growth, response to treatment and metastasis. Only recently, cycling hypoxia, with spatial and temporal fluctuations in oxygen levels, has emerged as another key feature of the tumor environment that triggers different responses in comparison to chronic hypoxia. Either type of hypoxia is associated with distinct effects not only in cancer cells but also in stromal cells. In particular, cycling hypoxia has been demonstrated to favor, to a higher extent than chronic hypoxia, angiogenesis, resistance to anti-cancer treatments, intratumoral inflammation and tumor metastasis. These review details these effects as well as the signaling pathway it triggers to switch on specific transcriptomic programs. Understanding the signaling pathways through which cycling hypoxia induces these processes that support the development of an aggressive cancer could convey to the emergence of promising new cancer treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Modulation of Muscle Fiber Compositions in Response to Hypoxia via Pyruvate Dehydrogenase Kinase-1

    PubMed Central

    Nguyen, Daniel D.; Kim, Gyuyoup; Pae, Eung-Kwon

    2016-01-01

    Muscle fiber-type changes in hypoxic conditions in accordance with pyruvate dehydrogenase kinase (Pdk)-1 and hypoxia inducible factor (Hif)-1α were investigated in rats. Hif-1α and its down-stream molecule Pdk-1 are well known for readily response to hypoxia. We questioned their roles in relation to changes in myosin heavy chain (MyHC) composition in skeletal muscles. We hypothesize that the level of Pdk-1 with respect to the level of Hif-1α determines MyHC composition of the muscle in rats in hypoxia. Young male rats were housed in a chamber maintained at 11.5% (for sustained hypoxia) or fluctuating between 11.5 and 20.8% (for intermittent hypoxia or IH) oxygen levels. Then, muscle tissues from the geniohyoid (GH), soleus, and anterior tibialis (TA) were obtained at the end of hypoxic conditionings. After both hypoxic conditionings, protein levels of Pdk-1 and Hif-1 increased in GH muscles. GH muscles in acute sustained hypoxia favor an anaerobic glycolytic pathway, resulting in an increase in glycolytic MyHC IIb protein-rich fibers while maintain original fatigue-resistant MyHC IIa protein in the fibers; thus, the numbers of IIa- and IIb MyHC co-expressing fibers increased. Exogenous Pdk-1 over-expression using plasmid vectors elevated not only the glycolytic MyHC IIb, but also IIx as well as IIa expressions in C2C12 myotubes in ambient air significantly. The increase of dual expression of IIa- and IIb MyHC proteins in fibers harvested from the geniohyoid muscle has a potential to improve endurance as shown in our fatigability tests. By increasing the Pdk-1/Hif-1 ratio, a mixed-type muscle could alter endurance within the innate characteristics of the muscle toward more fatigue resistant. We conclude that an increased Pdk-1 level in skeletal muscle helps maintain MyHC compositions to be a fatigue resistant mixed-type muscle. PMID:28018235

  14. The G protein-coupled receptor 30 is up-regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) in breast cancer cells and cardiomyocytes.

    PubMed

    Recchia, Anna Grazia; De Francesco, Ernestina Marianna; Vivacqua, Adele; Sisci, Diego; Panno, Maria Luisa; Andò, Sebastiano; Maggiolini, Marcello

    2011-03-25

    GPR30, also known as GPER, has been suggested to mediate rapid effects induced by estrogens in diverse normal and cancer tissues. Hypoxia is a common feature of solid tumors involved in apoptosis, cell survival, and proliferation. The response to low oxygen environment is mainly mediated by the hypoxia-inducible factor named HIF-1α, which activates signaling pathways leading to adaptive mechanisms in tumor cells. Here, we demonstrate that the hypoxia induces HIF-1α expression, which in turn mediates the up-regulation of GPER and its downstream target CTGF in estrogen receptor-negative SkBr3 breast cancer cells and in HL-1 cardiomyocytes. Moreover, we show that HIF-1α-responsive elements located within the promoter region of GPER are involved in hypoxia-dependent transcription of GPER, which requires the ROS-induced activation of EGFR/ERK signaling in both SkBr3 and HL-1 and cells. Interestingly, the apoptotic response to hypoxia was prevented by estrogens through GPER in SkBr3 cells. Taken together, our data suggest that the hypoxia-induced expression of GPER may be included among the mechanisms involved in the anti-apoptotic effects elicited by estrogens, particularly in a low oxygen microenvironment.

  15. NEU3 sialidase role in activating HIF-1α in response to chronic hypoxia in cyanotic congenital heart patients.

    PubMed

    Piccoli, Marco; Conforti, Erika; Varrica, Alessandro; Ghiroldi, Andrea; Cirillo, Federica; Resmini, Giulia; Pluchinotta, Francesca; Tettamanti, Guido; Giamberti, Alessandro; Frigiola, Alessandro; Anastasia, Luigi

    2017-03-01

    Hypoxia is a common feature of many congenital heart defects (CHDs) and significantly contributes to their pathophysiology. Thus, understanding the mechanism underlying cell response to hypoxia is vital for the development of novel therapeutic strategies. Certainly, the hypoxia inducible factor (HIF) has been extensively investigated and it is now recognized as the master regulator of cell defense machinery counteracting hypoxic stress. Along this line, we recently discovered and reported a novel mechanism of HIF activation, which is mediated by sialidase NEU3. Thus, aim of this study was to test whether NEU3 played any role in the cardiac cell response to chronic hypoxia in congenital cyanotic patients. Right atrial appendage biopsies were obtained from pediatric patients with cyanotic/non-cyanotic CHDs and processed to obtain mRNA and proteins. Real-Time PCR and Western Blot were performed to analyze HIF-1α and its downstream targets expression, NEU3 expression, and the NEU3 mediated effects on the EGFR signaling cascade. Cyanotic patients showed increased levels of HIF-1α, NEU3, EGFR and their downstream targets, as compared to acyanotic controls. The same patients were also characterized by increased phosphorylation of the EGFR signaling cascade proteins. Moreover, we found that HIF-1α expression levels positively correlated with those recorded for NEU3 in both cyanotic and control patients. Sialidase NEU3 plays a central role in activating cell response to chronic hypoxia inducing the up-regulation of HIF-1α, and this represent a possible novel tool to treat several CHD pathologies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Cerebrovascular response to acute hypocapnic and eucapnic hypoxia in normal man

    PubMed Central

    Shapiro, William; Wasserman, Albert J.; Baker, James P.; Patterson, John L.

    1970-01-01

    Alterations in human cerebral blood flow and related blood constituents were studied during exposure to acute hypoxia. Observations were made during serial inhalation of decreasing O2 concentrations with and without maintenance of normocarbia, during 8 min inhalation of 10% O2, and after hyperventilation at an arterial PO2 of about 40 mm Hg. In the range of hypoxemia studied, from normal down to arterial PO2 of about 40 mm Hg, the magnitude of the cerebral vasodilator response to hypoxia appeared to be largely dependent upon the coexisting arterial CO2 tension. The mean slope of the increase in cerebral blood flow with decreasing arterial O2 tension rose more quickly (P < 0.05) when eucapnia was maintained when compared with the slope derived under similar hypoxic conditions without maintenance of eucapnia. When 12 subjects inhaled 10% oxygen, cerebral blood flow rose to more than 135% of control in four whose mean decrease in arterial CO2 tension was - 2.0 mm Hg. The remaining eight had flows ranging from 97 to 120% of control, and their mean decrease in CO2 tension was - 5.1 mm Hg. When mean arterial PO2 was 37 mm Hg, hyperventilation was carried out in 10 subjects. Arterial PO2 increased insignificantly, arterial PCO2 declined from 34 to 27 mm Hg (P < 0.05), and cerebral blood flow which had been 143% of control decreased to 109%, a figure not significantly different from control. These data demonstrate the powerful counterbalancing constrictor effects of modest reductions in CO2 tension on the vasodilator influence of hypoxia represented by arterial PO2 reductions to about 40 mm Hg. Indeed, mild hyperventilation completely overcame the vasodilator effect provided by an arterial O2 tension as low as 40 mm Hg. The effects of hypoxia on the control of the cerebral circulation must be analyzed in terms of the effects of any associated changes in CO2 tension. PMID:5480859

  17. Cardiorespiratory responses of the facultative air-breathing fish jeju, Hoplerythrinus unitaeniatus (Teleostei, Erythrinidae), exposed to graded ambient hypoxia.

    PubMed

    Oliveira, R D; Lopes, J M; Sanches, J R; Kalinin, A L; Glass, M L; Rantin, F T

    2004-12-01

    The jeju, Hoplerythrinus unitaeniatus, is equipped with a modified part of the swim bladder that allows aerial respiration. On this background, we have evaluated its respiratory and cardiovascular responses to aquatic hypoxia. Its aquatic O2 uptake (V(O2)) was maintained constant down to a critical P(O2) (P(cO2)) of 40 mm Hg, below which V(O2) declined linearly with further reductions of P(iO2). Just below P(cO2), the ventilatory tidal volume (V(T)) increased significantly along with gill ventilation (V(G)), while respiratory frequency changed little. Consequently, water convection requirement (V(G)/V(O2)) increased steeply. The same threshold applied to cardiovascular responses that included reflex bradycardia and elevated arterial blood pressure (P(a)). Aerial respiration was initiated at water P(O2) of 44 mm Hg and breathing episodes and time at the surface increased linearly with more severe hypoxia. At the lowest water P(O2) (20 mm Hg), the time spent at the surface accounted for 50% of total time. This response has a character of a temporary emergency behavior that may allow the animal to escape hypoxia.

  18. Dark Adaptation at High Altitude: An Unexpected Pupillary Response to Chronic Hypoxia in Andean Highlanders.

    PubMed

    Healy, Katherine; Labrique, Alain B; Miranda, J Jaime; Gilman, Robert H; Danz, David; Davila-Roman, Victor G; Huicho, Luis; León-Velarde, Fabiola; Checkley, William

    2016-09-01

    Healy, Katherine, Alain B. Labrique, J. Jaime Miranda, Robert H. Gilman, David Danz, Victor G. Davila-Roman, Luis Huicho, Fabiola León-Velarde, and William Checkley. Dark adaptation at high altitude: an unexpected pupillary response to chronic hypoxia in Andean highlanders. High Alt Med Biol. 17:208-213, 2016.-Chronic mountain sickness is a maladaptive response to high altitude (>2500 m above sea level) and is characterized by excessive erythrocytosis and hypoxemia resulting from long-term hypobaric hypoxia. There is no known early predictor of chronic mountain sickness and the diagnosis is based on the presence of excessive erythrocytosis and clinical features. Impaired dark adaptation, or an inability to visually adjust from high- to low-light settings, occurs in response to mild hypoxia and may serve as an early predictor of hypoxemia and chronic mountain sickness. We aimed to evaluate the association between pupillary response assessed by dark adaptometry and daytime hypoxemia in resident Andean highlanders aged ≥35 years living in Puno, Peru. Oxyhemoglobin saturation (SpO 2 ) was recorded using a handheld pulse oximeter. Dark adaptation was quantitatively assessed as the magnitude of pupillary contraction to light stimuli of varying intensities (-2.9 to 0.1 log-cd/m 2 ) using a portable dark adaptometer. Individual- and stimulus-specific multilevel analyses were conducted using mixed-effect models to elicit the relationship between SpO 2 and pupillary responsiveness. Among 93 participants, mean age was 54.9 ± 11.0 years, 48% were male, 44% were night blind, and mean SpO 2 was 89.3% ± 3.4%. The magnitude of pupillary contraction was greater with lower SpO 2 (p < 0.01), and this dose relationship remained significant in multiple variable analyses (p = 0.047). Pupillary responsiveness to light stimuli under dark-adapted conditions was exaggerated with hypoxemia and may serve as an early predictor of chronic mountain sickness. This

  19. Locomotory, ventilatory and metabolic responses of the subterranean Stenasellus virei (Crustacea, Isopoda) to severe hypoxia and subsequent recovery.

    PubMed

    Hervant, F; Mathieu, J; Messana, G

    1997-02-01

    The locomotory and ventilatory activities and the intermediary and energy metabolism modifications of the hypogean aquatic isopod crustacean Stenasellus virei were investigated in severe hypoxia (PO2 < 0.03 kPa) and subsequent recovery. The aims of this study were i) to determine why the subterranean species displayed a greater tolerance of hypoxia than numerous other epigean crustaceans, ii) to confirm previous results obtained with four hypogean and epigean crustaceans, iii) to compare the responses to severe hypoxia in hypogean amphipods and isopods, and iv) to better understand the ecological problems of the hypogean organisms survival in subterranean habitats. S. virei responded to experimental long-term, severe hypoxia with classical anaerobic metabolism mainly characterized by a decrease in adenosine triphosphate (ATP) and phosphagen, utilization of glycogen and glutamate, and accumulation of lactate and alanine. Lactate was also largely excreted by this organism, which is unusual for crustaceans in general. Compared to most other epigean crustaceans, the isopod S. virei showed high amounts of stored glycogen and arginine phosphate. These differences in glycogen and phosphagen stores, and the ability to reduce energetic expenditures linked to locomotion and ventilation, extended the survival of S. virei under experimental anaerobiosis. During recovery, the isopod S. virei showed a higher capacity for glyconeogenesis from lactate and a faster and total replenishment of ATP and arginine phosphate levels than epigean crustaceans. Data concerning responses to hypoxia and subsequent recovery in S. virei are similar to those previously obtained with two other hypogean amphipods, except that this isopod did not synthesize succinate in anaerobiosis.

  20. The combined effect of hypoxia and nutritional status on metabolic and ionoregulatory responses of common carp (Cyprinus carpio).

    PubMed

    Moyson, Sofie; Liew, Hon Jung; Diricx, Marjan; Sinha, Amit Kumar; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    In the present study, the combined effects of hypoxia and nutritional status were examined in common carp (Cyprinus carpio), a relatively hypoxia tolerant cyprinid. Fish were either fed or fasted and were exposed to hypoxia (1.5-1.8mg O2L(-1)) at or slightly above their critical oxygen concentration during 1, 3 or 7days followed by a 7day recovery period. Ventilation initially increased during hypoxia, but fasted fish had lower ventilation frequencies than fed fish. In fed fish, ventilation returned to control levels during hypoxia, while in fasted fish recovery only occurred after reoxygenation. Due to this, C. carpio managed, at least in part, to maintain aerobic metabolism during hypoxia: muscle and plasma lactate levels remained relatively stable although they tended to be higher in fed fish (despite higher ventilation rates). However, during recovery, compensatory responses differed greatly between both feeding regimes: plasma lactate in fed fish increased with a simultaneous breakdown of liver glycogen indicating increased energy use, while fasted fish seemed to economize energy and recycle decreasing plasma lactate levels into increasing liver glycogen levels. Protein was used under both feeding regimes during hypoxia and subsequent recovery: protein levels reduced mainly in liver for fed fish and in muscle for fasted fish. Overall, nutritional status had a greater impact on energy reserves than the lack of oxygen with a lower hepatosomatic index and lower glycogen stores in fasted fish. Fasted fish transiently increased Na(+)/K(+)-ATPase activity under hypoxia, but in general ionoregulatory balance proved to be only slightly disturbed, showing that sufficient energy was left for ion regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. HIF-1α activates hypoxia-induced BCL-9 expression in human colorectal cancer cells

    PubMed Central

    Chen, Tian-Rui; Wei, Hai-feng; Song, Dian-Wen; Liu, Tie-Long; Yang, Xing-Hai; Fu, Chuan-Gang; Hu, Zhi-qian; Zhou, Wang; Yan, Wang-Jun; Xiao, Jian-Ru

    2017-01-01

    B-cell CLL/lymphoma 9 protein (BCL-9), a multi-functional co-factor in Wnt signaling, induced carcinogenesis as well as promoting tumor progression, metastasis and chemo-resistance in colorectal cancer (CRC). However, the mechanisms for increased BCL-9 expression in CRC were not well understood. Here, we report that hypoxia, a hallmark of solid tumors, induced BCL-9 mRNA expression in human CRC cells. Analysis of BCL-9 promoter revealed two functional hypoxia-responsive elements (HRE-B and HRE-C) that can be specifically bound with and be transactivated by hypoxia inducible factors (HIF) -1α but not HIF-2α. Consistently, ectopic expression of HIF-1α but not HIF-2α transcriptionally induced BCL-9 expression levels in cells. Knockdown of endogenous HIF-1α but not HIF-2α by siRNA largely abolished the induction of HIF by hypoxia. Furthermore, there was a strong association of HIF-1α expression with BCL-9 expression in human CRC specimens. In summary, results from this study demonstrated that hypoxia induced BCL-9 expression in human CRC cells mainly through HIF-1α, which could be an important underlying mechanism for increased BCL-9 expression in CRC. PMID:27121066

  2. Hypoxia-inducible miR-152 suppresses the expression of WNT1 and ERBB3, and inhibits the proliferation of cervical cancer cells.

    PubMed

    Tang, Xue-Lei; Lin, Li; Song, Li-Na; Tang, Xue-Hong

    2016-07-01

    Hypoxia has been a research focus in cancer because of its important role in maintaining tumor microenvironments. Previous studies have demonstrated that the expression of several miRNAs was altered under hypoxic conditions, suggesting their crucial roles in the development of cancer. In the present study, the expression of 22 miRNAs reported to be significantly upregulated in cervical cancer tissues was examined. We found that four of these miRNAs were upregulated in response to hypoxia in HeLa cervical cancer cells. MiR-152 was upregulated to the greatest extent and was also found to be upregulated by hypoxia in C33A cells and tumor, but not in non-tumor cervical tissues. Moreover, we found that hypoxia-inducible factor-1α regulated the expression of miR-152 in HeLa cells through a hypoxia-responsive element. A bioinformatic tool predicted that WNT1 and ERBB3 were target genes of miR-152. This was confirmed by dual luciferase assays and Western blots. Overexpression of miR-152 repressed WNT1 and ERBB3 expression and decreased proliferation of HeLa cells. Collectively, these data indicate an important role for miR-152 in regulating the hypoxic response of tumor cells. © 2015 by the Society for Experimental Biology and Medicine.

  3. Seasonal changes in the preferred body temperature, cardiovascular, and respiratory responses to hypoxia in the toad, Bufo paracnemis.

    PubMed

    Bícego-Nahas, K C; Gargaglioni, L H; Branco, L G

    2001-05-01

    Estivation is accompanied by a reduction of oxygen consumption in amphibians during drought. We tested the hypothesis that, during the dry season, the toad Bufo paracnemis selects a lower preferred body temperature (T(b)), and would be less sensitive to hypoxia, than during its active period. Therefore, during winter (dry season in São Paulo state, Brazil) and summer, we measured the effects of hypoxia (7% inspired O(2)) on preferred T(b). Additionally, pulmonary ventilation, heart rate, blood pressure, and oxygen consumption were also measured in toads at 15 and 25 degrees C. Blood gases were measured at 25 degrees C. Oxygen consumption was significantly higher during summer in toads at 25 degrees C. Under normoxia, preferred T(b) was higher during summer than during winter, and hypoxia caused a drop in preferred T(b) during both seasons. In both seasons, toads at 15 degrees C showed reduced pulmonary ventilation, heart rate, and blood pressure, and hypoxia had no effect. At 25 degrees C during summer only, hypoxia caused an increase in ventilation. Season had no effect on blood gases. We conclude that B. paracnemis displays an endogenous seasonal pattern of thermoregulation and control of ventilation. The decreased preferred T(b) and the physiological responses to hypoxia may be beneficial to toads encountering drought and when food is not available.

  4. Hypoxia Responsive, Tumor Penetrating Lipid Nanoparticles for Delivery of Chemotherapeutics to Pancreatic Cancer Cell Spheroids.

    PubMed

    Kulkarni, Prajakta; Haldar, Manas K; Katti, Preeya; Dawes, Courtney; You, Seungyong; Choi, Yongki; Mallik, Sanku

    2016-08-17

    Solid tumors are often poorly irrigated due to structurally compromised microcirculation. Uncontrolled multiplication of cancer cells, insufficient blood flow, and the lack of enough oxygen and nutrients lead to the development of hypoxic regions in the tumor tissues. As the partial pressure of oxygen drops below the necessary level (10 psi), the cancer cells modulate their genetic makeup to survive. Hypoxia triggers tumor progression by enhancing angiogenesis, cancer stem cell production, remodeling of the extracellular matrix, and epigenetic changes in the cancer cells. However, the hypoxic regions are usually located deep in the tumors and are usually inaccessible to the intravenously injected drug carrier or the drug. Considering the designs of the reported nanoparticles, it is likely that the drug is delivered to the peripheral tumor tissues, close to the blood vessels. In this study, we prepared lipid nanoparticles (LNs) comprising the synthesized hypoxia-responsive lipid and a peptide-lipid conjugate. We observed that the resultant LNs penetrated to the hypoxic regions of the tumors. Under low oxygen partial pressure, the hypoxia-responsive lipid undergoes reduction, destabilizing the lipid membrane, and releasing encapsulated drugs from the nanoparticles. We demonstrated the results employing spheroidal cultures of the pancreatic cancer cells BxPC-3. We observed that the peptide-decorated, drug encapsulated LNs reduced the viability of pancreatic cancer cells of the spheroids to 35% under hypoxic conditions.

  5. Serotonergic and cholinergic elements of the hypoxic ventilatory response in developing zebrafish.

    PubMed

    Shakarchi, Kamila; Zachar, Peter C; Jonz, Michael G

    2013-03-01

    The chemosensory roles of gill neuroepithelial cells (NECs) in mediating the hyperventilatory response to hypoxia are not clearly defined in fish. While serotonin (5-HT) is the predominant neurotransmitter in O(2)-sensitive gill NECs, acetylcholine (ACh) plays a more prominent role in O(2) sensing in terrestrial vertebrates. The present study characterized the developmental chronology of potential serotonergic and cholinergic chemosensory pathways of the gill in the model vertebrate, the zebrafish (Danio rerio). In immunolabelled whole gills from larvae, serotonergic NECs were observed in epithelia of the gill filaments and gill arches, while non-serotonergic NECs were found primarily in the gill arches. Acclimation of developing zebrafish to hypoxia (P(O2)=75 mmHg) reduced the number of serotonergic NECs observed at 7 days post-fertilization (d.p.f.), and this effect was absent at 10 d.p.f. In vivo administration of 5-HT mimicked hypoxia by increasing ventilation frequency (f(V)) in early stage (7-10 d.p.f.) and late stage larvae (14-21 d.p.f.), while ACh increased f(V) only in late stage larvae. In time course experiments, application of ketanserin inhibited the hyperventilatory response to acute hypoxia (P(O2)=25 mmHg) at 10 d.p.f., while hexamethonium did not have this effect until 12 d.p.f. Cells immunoreactive for the vesicular acetylcholine transporter (VAChT) began to appear in the gill filaments by 14 d.p.f. Characterization in adult gills revealed that VAChT-positive cells were a separate population of neurosecretory cells of the gill filaments. These studies suggest that serotonergic and cholinergic pathways in the zebrafish gill develop at different times and contribute to the hyperventilatory response to hypoxia.

  6. The effect of sustained hypoxia on the cardio-respiratory response of bowfin Amia calva: implications for changes in the oxygen transport system.

    PubMed

    Porteus, C S; Wright, P A; Milsom, W K

    2014-03-01

    This study examined mechanisms underlying cardio-respiratory acclimation to moderate sustained hypoxia (6.0 kPa for 7 days at 22° C) in the bowfin Amia calva, a facultative air-breathing fish. This level of hypoxia is slightly below the critical oxygen tension (pcrit ) of A. calva denied access to air (mean ± s.e. = 9.3 ± 1.0 kPa). Before exposure to sustained hypoxia, A. calva with access to air increased air-breathing frequency on exposure to acute progressive hypoxia while A. calva without access to air increased gill-breathing frequency. Exposure to sustained hypoxia increased the gill ventilation response to acute progressive hypoxia in A. calva without access to air, regardless of whether they had access to air or not during the sustained hypoxia. Additionally, there was a decrease in Hb-O2 binding affinity in these fish. This suggests that, in A. calva, acclimation to hypoxia elicits changes that increase oxygen delivery to the gas exchange surface for oxygen uptake and reduce haemoglobin affinity to enhance oxygen delivery to the tissues. © 2013 The Fisheries Society of the British Isles.

  7. Effect of hypoxia on tissue factor pathway inhibitor expression in breast cancer.

    PubMed

    Cui, X Y; Tinholt, M; Stavik, B; Dahm, A E A; Kanse, S; Jin, Y; Seidl, S; Sahlberg, K K; Iversen, N; Skretting, G; Sandset, P M

    2016-02-01

    ESSENTIALS: A hypoxic microenvironment is a common feature of tumors that may influence activation of coagulation. MCF-7 and SK-BR-3 breast cancer cells and breast cancer tissue samples were used. The results showed transcriptional repression of tissue factor pathway inhibitor expression in hypoxia. Hypoxia-inducible factor 1α may be a target for the therapy of cancer-related coagulation and thrombosis. Activation of coagulation is a common finding in patients with cancer, and is associated with an increased risk of venous thrombosis. As a hypoxic microenvironment is a common feature of solid tumors, we investigated the role of hypoxia in the regulation of tissue factor (TF) pathway inhibitor (TFPI) expression in breast cancer. To explore the transcriptional regulation of TFPI by hypoxia-inducible factor (HIF)-1α in breast cancer cells and their correlation in breast cancer tissues. MCF-7 and SK-BR-3 breast cancer cells were cultured in 1% oxygen or treated with cobalt chloride (CoCl2 ) to mimic hypoxia. Time-dependent and dose-dependent downregulation of TFPI mRNA (quantitative RT-PCR) and of free TFPI protein (ELISA) were observed in hypoxia. Western blotting showed parallel increases in the levels of HIF-1α protein and TF. HIF-1α inhibitor abolished or attenuated the hypoxia-induced downregulation of TFPI. Luciferase reporter assay showed that both hypoxia and HIF-1α overexpression caused strong repression of TFPI promoter activity. Subsequent chromatin immunoprecipitation and mutagenesis analysis demonstrated a functional hypoxia response element within the TFPI promoter, located at -1065 to -1060 relative to the transcriptional start point. In breast cancer tissue samples, gene expression analyses showed a positive correlation between the mRNA expression of TFPI and that of HIF-1α. This study demonstrates that HIF-1α is involved in the transcriptional regulation of the TFPI gene, and suggests that a hypoxic microenvironment inside a breast tumor may

  8. Exhaled volatile organic compounds in individuals with a history of high altitude pulmonary edema and varying hypoxia-induced responses.

    PubMed

    Figueroa, Jennifer A; Mansoor, Jim K; Allen, Roblee P; Davis, Cristina E; Walby, William F; Aksenov, Alexander A; Zhao, Weixiang; Lewis, William R; Schelegle, Edward S

    2015-04-20

    With ascent to altitude, certain individuals are susceptible to high altitude pulmonary edema (HAPE), which in turn can cause disability and even death. The ability to identify individuals at risk of HAPE prior to ascent is poor. The present study examined the profile of volatile organic compounds (VOC) in exhaled breath condensate (EBC) and pulmonary artery systolic pressures (PASP) before and after exposure to normobaric hypoxia (12% O2) in healthy males with and without a history of HAPE (Hx HAPE, n = 5; Control, n = 11). In addition, hypoxic ventilatory response (HVR), and PASP response to normoxic exercise were also measured. Auto-regression/partial least square regression of whole gas chromatography/mass spectrometry (GC/MS) data and binary logistic regression (BLR) of individual GC peaks and physiologic parameters resulted in models that separate individual subjects into their groups with variable success. The result of BLR analysis highlights HVR, PASP response to hypoxia and the amount of benzyl alcohol and dimethylbenzaldehyde dimethyl in expired breath as markers of HAPE history. These findings indicate the utility of EBC VOC analysis to discriminate between individuals with and without a history of HAPE and identified potential novel biomarkers that correlated with physiological responses to hypoxia.

  9. Hypoxic alligator embryos: chronic hypoxia, catecholamine levels and autonomic responses of in ovo alligators.

    PubMed

    Eme, John; Altimiras, Jordi; Hicks, James W; Crossley, Dane A

    2011-11-01

    Hypoxia is a naturally occurring environmental challenge for embryonic reptiles, and this is the first study to investigate the impact of chronic hypoxia on the in ovo development of autonomic cardiovascular regulation and circulating catecholamine levels in a reptile. We measured heart rate (f(H)) and chorioallantoic arterial blood pressure (MAP) in normoxic ('N21') and hypoxic-incubated ('H10'; 10% O(2)) American alligator embryos (Alligator mississippiensis) at 70, 80 and 90% of development. Embryonic alligator responses to adrenergic blockade with propranolol and phentolamine were very similar to previously reported responses of embryonic chicken, and demonstrated that embryonic alligator has α and β-adrenergic tone over the final third of development. However, adrenergic tone originates entirely from circulating catecholamines and is not altered by chronic hypoxic incubation, as neither cholinergic blockade with atropine nor ganglionic blockade with hexamethonium altered baseline cardiovascular variables in N21 or H10 embryos. In addition, both atropine and hexamethonium injection did not alter the generally depressive effects of acute hypoxia - bradycardia and hypotension. However, H10 embryos showed significantly higher levels of noradrenaline and adrenaline at 70% of development, as well as higher noradrenaline at 80% of development, suggesting that circulating catecholamines reach maximal levels earlier in incubation for H10 embryos, compared to N21 embryos. Chronically elevated levels of catecholamines may alter the normal balance between α and β-adrenoreceptors in H10 alligator embryos, causing chronic bradycardia and hypotension of H10 embryos measured in normoxia. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Inflammation and hypoxia in the kidney: friends or foes?

    PubMed

    Haase, Volker H

    2015-08-01

    Hypoxic injury is commonly associated with inflammatory-cell infiltration, and inflammation frequently leads to the activation of cellular hypoxia response pathways. The molecular mechanisms underlying this cross-talk during kidney injury are incompletely understood. Yamaguchi and colleagues identify CCAAT/enhancer-binding protein δ as a cytokine- and hypoxia-regulated transcription factor that fine-tunes hypoxia-inducible factor-1 signaling in renal epithelial cells and thus provide a novel molecular link between hypoxia and inflammation in kidney injury.

  11. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B.

    PubMed

    Malik, Mohammad T; Peng, Ying-Jie; Kline, David D; Adhikary, Gautam; Prabhakar, Nanduri R

    2005-01-15

    Earlier studies on cell culture models suggested that immediate early genes (IEGs) play an important role in cellular adaptations to hypoxia. Whether IEGs are also necessary for hypoxic adaptations in intact animals is not known. In the present study we examined the potential importance of fos B, an IEG in ventilatory acclimatization to hypoxia. Experiments were performed on wild type and mutant mice lacking the fos B gene. Ventilation was monitored by whole body plethysmography in awake animals. Baseline ventilation under normoxia, and ventilatory response to acute hypoxia and hypercapnia were comparable between wild type and mutant mice. Hypobaric hypoxia (0.4 atm; 3 days) resulted in a significant elevation of baseline ventilation in wild type but not in mutant mice. Wild type mice exposed to hypobaric hypoxia manifested an enhanced hypoxic ventilatory response compared to pre-hypobaric hypoxia. In contrast, hypobaric hypoxia had no effect on the hypoxic ventilatory response in mutant mice. Hypercapnic ventilatory responses, however, were unaffected by hypobaric hypoxia in both groups of mice. These results suggest that the fos B, an immediate early gene, plays an important role in ventilatory acclimatization to hypoxia in mice.

  12. Ibuprofen does not reverse ventilatory acclimatization to chronic hypoxia.

    PubMed

    De La Zerda, D J; Stokes, J A; Do, J; Go, A; Fu, Z; Powell, F L

    2017-07-27

    Ventilatory acclimatization to hypoxia involves an increase in the acute hypoxic ventilatory response that is blocked by non-steroidal anti-inflammatory drugs administered during sustained hypoxia. We tested the hypothesis that inflammatory signals are necessary to sustain ventilatory acclimatization to hypoxia once it is established. Adult, rats were acclimatized to normoxia or chronic hypoxia (CH, [Formula: see text] =70Torr) for 11-12days and treated with ibuprofen or saline for the last 2days of hypoxia. Ventilation, metabolic rate, and arterial blood gas responses to O 2 and CO 2 were not affected by ibuprofen after acclimatization had been established. Immunohistochemistry and image analysis showed acute (1h) hypoxia activated microglia in a medullary respiratory center (nucleus tractus solitarius, NTS) and this was blocked by ibuprofen administered from the beginning of hypoxic exposure. Microglia returned to the control state after 7days of CH and were not affected by ibuprofen administered for 2 more days of CH. In contrast, NTS astrocytes were activated by CH but not acute hypoxia and activation was not reversed by administering ibuprofen for the last 2days of CH. Hence, ibuprofen cannot reverse ventilatory acclimatization or astrocyte activation after they have been established by sustained hypoxia. The results are consistent with a model for microglia activation or other ibuprofen-sensitive processes being necessary for the induction but not maintenance of ventilatory acclimatization to hypoxia. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Potential role of hypoxia imaging using (18)F-FAZA PET to guide hypoxia-driven interventions (carbogen breathing or dose escalation) in radiation therapy.

    PubMed

    Tran, Ly-Binh-An; Bol, Anne; Labar, Daniel; Karroum, Oussama; Bol, Vanesa; Jordan, Bénédicte; Grégoire, Vincent; Gallez, Bernard

    2014-11-01

    Hypoxia-driven intervention (oxygen manipulation or dose escalation) could overcome radiation resistance linked to tumor hypoxia. Here, we evaluated the value of hypoxia imaging using (18)F-FAZA PET to predict the outcome and guide hypoxia-driven interventions. Two hypoxic rat tumor models were used: rhabdomyosarcoma and 9L-glioma. For the irradiated groups, the animals were divided into two subgroups: breathing either room air or carbogen. (18)F-FAZA PET images were obtained just before the irradiation to monitor the hypoxic level of each tumor. Absolute pO2 were also measured using EPR oximetry. Dose escalation was used in Rhabdomyosarcomas. For 9L-gliomas, a significant correlation between (18)F-FAZA T/B ratio and tumor growth delay was found; additionally, carbogen breathing dramatically improved the tumor response to irradiation. On the contrary, Rhabdomyosarcomas were less responsive to hyperoxic challenge. For that model, an increase in growth delay was observed using dose escalation, but not when combining irradiation with carbogen. (18)F-FAZA uptake may be prognostic of outcome following radiotherapy and could assess the response of tumor to carbogen breathing. (18)F-FAZA PET may help to guide the hypoxia-driven intervention with irradiation: carbogen breathing in responsive tumors or dose escalation in tumors non-responsive to carbogen. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. [Individual-typological evaluation of cardiorespiratory responses to hypoxia and hypercapnia in young healthy men].

    PubMed

    Divert, V E; Krivoshchekov, S G; Vodyanitsky, S N

    2015-01-01

    The aim of the study was the approaches development to a substantiation of recommendations on the persons selection for different types of physical exercise on the basis of individual chemoreflex reactivity of cardiorespiratory system. That's for the ventilatory and cardial responses in tests with increasing inhalation hypoxia and hypercapnia on the group of young healthy man was performed. It was shown that hypoxia induce predominantly cardial response, but hypercapnia--ventilatory response. On that predominantly chemoreflex reactions (respiration system to hypercarbia and cardiac--to hypoxaemia) four types of in parts were defined: small reactions in both parts (type 1), small reaction of cardiac system and strong of respiratory system (type 2), strong for heart response and small for respiration (type 3), and strong for both parts (type 4). Statistical analysis has shown that each type of reactions is specific to certain kind of sports training: 1 type for swimmers, 2 and 3 types for skiers, 4 type for boxers, weight lifters and wrestlers. For skiers group the inverse regression dependence between the growth of heart reactivity to hypoxaemia and depression of the pulmonary ventilation reactivity to hypercarbia is revealed at joint rising of the oxygen consumption per unit body weight. High quality skiers are distinguished by relative balance of chemoreflex responses of respiration and heart. It was found that physically untrained persons have pronounced individual variability of cardiorespiratory system chemoreflex reactions, what can be used for personal recommendations for choosing the kind of sports to employment.

  15. Recent seasonal hypoxia on the Western Black Sea shelf recorded in adjacent slope sediments

    NASA Astrophysics Data System (ADS)

    Roepert, Anne; Jilbert, Tom S.; Slomp, Caroline P.

    2015-04-01

    Bottom water hypoxia is a major environmental problem afflicting estuarine and marine environments across the globe (Diaz and Rosenberg, 2008). Hypoxia is often attributed to human-induced increased nutrient discharge from rivers and related eutrophication. The Western Black Sea shelf is a typical example of a system where such anthropogenic impacts are thought to have contributed to the development of seasonal hypoxia in the late 20th century. However, due to the lack of spatially and temporally consistent monitoring in the region, questions remain about the evolution, causes and consequences of the seasonal hypoxia on the Western Black Sea shelf and whether or not the ecological state has recently improved (Capet et al., 2013). In this study a resin-embedded sediment core from a location below the chemocline on the Western Black Sea slope (water depth 377 m) was analyzed for its elemental composition by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), recovering a continuous geochemical record at a sub-annual resolution for the last 100 years. Relative enrichments in organic carbon, Pb, Fe, S, and Mo were observed in the depth interval corresponding to the 1970s until the 1990s, suggesting an increased carbon flux to the sediments as well as an anthropogenic pollution signal. We propose that the expansion of eutrophication on the Western Black Sea shelf was responsible for the enhanced carbon flux to our study site, while the associated hypoxia enhanced the shuttling of redox-sensitive elements to locations below the chemocline. The subsequent decrease in organic carbon and metal enrichments at the core top suggests a recent rise in oxygen concentrations and improvement of the ecological state of the Western Black Sea shelf. References: Capet, A., Beckers, J.-M., Grégoire, M. (2013). "Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf-is there any recovery after eutrophication

  16. Investigating the Regulation and Potential Role of Nonhypoxic Hypoxia-Inducible Factor 1 (HIF-1) in Aromatase Inhibitor Resistant Breast Cancer

    DTIC Science & Technology

    2013-10-01

    hypoxia responsive element ( HRE ) to which HIF-1 binds in order to regulate vimentin gene expresson has not been identified. We have currently, analyzed...the vimentin promoter and have identified 2 potential HRE sites, based on sequence (Figure 5). Primers have been designed and ordered, and

  17. Differential Responses of Hippocampal Neurons and Astrocytes to Nicotine and Hypoxia in the Fetal Guinea Pig

    PubMed Central

    Blutstein, Tamara; Castello, Michael A.; Viechweg, Shaun S.; Hadjimarkou, Maria M.; McQuail, Joseph A.; Holder, Mary; Thompson, Loren P.; Mong, Jessica A.

    2012-01-01

    In utero exposure to cigarette smoke has severe consequences for the developing fetus, including increased risk of birth complications and behavioral and learning disabilities later in life. Evidence from animal models suggests that the cognitive deficits may be a consequence of in utero nicotine exposure in the brain during critical developmental periods. However, maternal smoking exposes the fetus to not only nicotine but also a hypoxic intrauterine environment. Thus, both nicotine and hypoxia are capable of initiating cellular cascades, leading to long-term changes in synaptic patterning that have the potential to affect cognitive functions. The present study investigates the combined effect of in utero exposure to nicotine and hypoxia on neuronal and glial elements in the hippocampal CA1 field. Fetal guinea pigs were exposed in utero to normoxic or hypoxic conditions in the presence or absence of nicotine. Hypoxia increased the protein levels of matrix metalloproteinase-9 (MMP-9) and synaptophysin and decreased the neural density as measured by NeuN immunoreactivity (ir). Nicotine exposure had no effect on these neuronal parameters but dramatically increased the density of astrocytes immunopositive for glial fibrillary acidic protein (GFAP). Further investigation into the effects of in utero nicotine exposure revealed that both GFAP-ir and NeuN-ir in the CA1 field were significantly reduced in adulthood. Taken together, our data suggest that prenatal exposure to nicotine and hypoxia not only alters synaptic patterning acutely during fetal development, but that nicotine also has long-term consequences that are observed well into adulthood. Moreover, these effects most likely take place through distinct mechanisms. PMID:23192463

  18. Thirty Minutes of Hypobaric Hypoxia Provokes Alterations of Immune Response, Haemostasis, and Metabolism Proteins in Human Serum

    PubMed Central

    Hinkelbein, Jochen; Jansen, Stefanie; Iovino, Ivan; Kruse, Sylvia; Meyer, Moritz; Cirillo, Fabrizio; Drinhaus, Hendrik; Hohn, Andreas; Klein, Corinna; Robertis, Edoardo De; Beutner, Dirk

    2017-01-01

    Hypobaric hypoxia (HH) during airline travel induces several (patho-) physiological reactions in the human body. Whereas severe hypoxia is investigated thoroughly, very little is known about effects of moderate or short-term hypoxia, e.g. during airline flights. The aim of the present study was to analyse changes in serum protein expression and activation of signalling cascades in human volunteers staying for 30 min in a simulated altitude equivalent to airline travel. After approval of the local ethics committee, 10 participants were exposed to moderate hypoxia (simulation of 2400 m or 8000 ft for 30 min) in a hypobaric pressure chamber. Before and after hypobaric hypoxia, serum was drawn, centrifuged, and analysed by two-dimensional gel electrophoresis (2-DIGE) and matrix-assisted laser desorption/ionization followed by time-of-flight mass spectrometry (MALDI-TOF). Biological functions of regulated proteins were identified using functional network analysis (GeneMania®, STRING®, and Perseus® software). In participants, oxygen saturation decreased from 98.1 ± 1.3% to 89.2 ± 1.8% during HH. Expression of 14 spots (i.e., 10 proteins: ALB, PGK1, APOE, GAPDH, C1QA, C1QB, CAT, CA1, F2, and CLU) was significantly altered. Bioinformatic analysis revealed an association of the altered proteins with the signalling cascades “regulation of haemostasis” (four proteins), “metabolism” (five proteins), and “leukocyte mediated immune response” (five proteins). Even though hypobaric hypoxia was short and moderate (comparable to an airliner flight), analysis of protein expression in human subjects revealed an association to immune response, protein metabolism, and haemostasis PMID:28858246

  19. A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response.

    PubMed

    Oguro, Ami; Koyama, Chika; Xu, Jing; Imaoka, Susumu

    2014-02-28

    NADPH-P450 reductase (NPR) was previously found to contribute to the hypoxic response of cells, but the mechanism was not clarified. In this study, we identified a cellular stress response (CSR) as a new factor interacting with NPR by a yeast two-hybrid system. Overexpression of CSR enhanced the induction of erythropoietin and hypoxia response element (HRE) activity under hypoxia in human hepatocarcinoma cell lines (Hep3B), while knockdown of CSR suppressed them. This new finding regarding the interaction of NPR with CSR provides insight into the function of NPR in hypoxic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Regulation of intracellular pH in cancer cell lines under normoxia and hypoxia.

    PubMed

    Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel

    2013-04-01

    Acid-extrusion by active transport is important in metabolically active cancer cells, where it removes excess intracellular acid and sets the intracellular resting pH. Hypoxia is a major trigger of adaptive responses in cancer, but its effect on acid-extrusion remains unclear. We studied pH-regulation under normoxia and hypoxia in eight cancer cell-lines (HCT116, RT112, MDA-MB-468, MCF10A, HT29, HT1080, MiaPaca2, HeLa) using the pH-sensitive fluorophore, cSNARF-1. Hypoxia responses were triggered by pre-incubation in low O(2) or with the 2-oxoglutarate-dependent dioxygenase inhibitor dimethyloxalylglycine (DMOG). By selective pharmacological inhibition or transport-substrate removal, acid-extrusion flux was dissected into components due to Na(+)/H(+) exchange (NHE) and Na(+)-dependent HCO(3)(-) transport. In half of the cell-lines (HCT116, RT112, MDA-MB-468, MCF10A), acid-extrusion on NHE was the dominant flux during an acid load, and in all of these, bar one (MDA-MB-468), NHE-flux was reduced following hypoxic incubation. Further studies in HCT116 cells showed that <4-h hypoxic incubation reduced NHE-flux reversibly with a time-constant of 1-2 h. This was not associated with a change in expression of NHE1, the principal NHE isoform. Following 48-h hypoxia, inhibition of NHE-flux persisted but became only slowly reversible and associated with reduced expression of the glycosylated form of NHE1. Acid-extrusion by Na(+)-dependent HCO(3)(-) transport was hypoxia-insensitive and comparable in all cell lines. This constitutive and stable element of pH-regulation was found to be important for setting and stabilizing resting pH at a mildly alkaline level (conducive for growth), irrespective of oxygenation status. In contrast, the more variable flux on NHE underlies cell-specific differences in their dynamic response to larger acid loads. Copyright © 2012 Wiley Periodicals, Inc.

  1. Nutritional status in chronic obstructive pulmonary disease: role of hypoxia.

    PubMed

    Raguso, Comasia A; Luthy, Christophe

    2011-02-01

    In patients with chronic obstructive pulmonary disease (COPD), malnutrition and limited physical activity are very common and contribute to disease prognosis, whereas a balance between caloric intake and exercise allows body weight stability and muscle mass preservation. The goal of this review is to analyze the implications of chronic hypoxia on three key elements involved in energy homeostasis and its role in COPD cachexia. The first one is energy intake. Body weight loss, often observed in patients with COPD, is related to lack of appetite. Inflammatory cytokines are known to be involved in anorexia and to be correlated to arterial partial pressure of oxygen. Recent studies in animals have investigated the role of hypoxia in peptides involved in food consumption such as leptin, ghrelin, and adenosine monophosphate activated protein kinase. The second element is muscle function, which is strongly related to energy use. In COPD, muscle atrophy and muscle fiber shift to the glycolytic type might be an adaptation to chronic hypoxia to preserve the muscle from oxidative stress. Muscle atrophy could be the result of a marked activation of the ubiquitin-proteasome pathway as found in muscle of patients with COPD. Hypoxia, via hypoxia inducible factor-1, is implicated in mitochondrial biogenesis and autophagy. Third, hormonal control of energy balance seems to be affected in patients with COPD. Insulin resistance has been described in this group of patients as well as a sort of "growth hormone resistance." Hypoxia, by hypoxia inducible factor-1, accelerates the degradation of tri-iodothyronine and thyroxine, decreasing cellular oxygen consumption, suggesting an adaptive mechanism rather than a primary cause of COPD cachexia. COPD rehabilitation aimed at maintaining function and quality of life needs to address body weight stabilization and, in particular, muscle mass preservation. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Choa; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, wemore » attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.« less

  3. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.

    PubMed

    Storz, Jay F; Scott, Graham R; Cheviron, Zachary A

    2010-12-15

    High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change.

  4. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates

    PubMed Central

    Storz, Jay F.; Scott, Graham R.; Cheviron, Zachary A.

    2010-01-01

    High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change. PMID:21112992

  5. Persisting mild hypothermia suppresses hypoxia-inducible factor-1alpha protein synthesis and hypoxia-inducible factor-1-mediated gene expression.

    PubMed

    Tanaka, Tomoharu; Wakamatsu, Takuhiko; Daijo, Hiroki; Oda, Seiko; Kai, Shinichi; Adachi, Takehiko; Kizaka-Kondoh, Shinae; Fukuda, Kazuhiko; Hirota, Kiichi

    2010-03-01

    The transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in regulating gene expression in response to hypoxia-ischemia. Ischemia causes the tissue not only to be hypoxic but also to be hypothermic because of the hypoperfusion under certain circumstances. On the other hand, the induced hypothermia is one of the most common therapeutic modalities to extend tolerance to hypoxia. Although hypoxia elicits a variety of cellular and systemic responses at different organizational levels in the body, little is known about how hypoxia-induced responses are affected by low temperature. We examined the influence of mild hypothermic conditions (28-32 degrees C) on HIF-1 in both in vitro and in vivo settings. In vitro experiments adopting cultured cells elucidated that hypoxia-induced HIF-1 activation was resistant to 4-h exposure to the low temperature. In contrast, exposure to the low temperature as long as 24 h suppressed HIF-1 activation and the subsequent upregulation of HIF-1 target genes such as VEGF or GLUT-1. HIF-1alpha protein stability in the cell was not affected by hypothermic treatment. Furthermore, intracellular ATP content was reduced under 1% O(2) conditions but was not largely affected by hypothermic treatment. The evidence indicates that reduction of oxygen consumption is not largely involved in suppression of HIF-1. In addition, we demonstrated that HIF-1 DNA-binding activity and HIF-1-dependent gene expressions induced under 10% O(2) atmosphere in mouse brain were not influenced by treatment under 3-h hypothermic temperature but were inhibited under 5-h treatment. On the other hand, we indicated that warming ischemic legs of mice for 24 h preserved HIF-1 activity. In this report we describe for the first time that persisting low temperature significantly reduced HIF-1alpha neosynthesis under hypoxic conditions, leading to a decrease in gene expression for adaptation to hypoxia in both in vitro and in vivo settings.

  6. β-1,3/1,6-Glucan-supplemented diets antagonize immune inhibitory effects of hypoxia and enhance the immune response to a model vaccine.

    PubMed

    Rodríguez, Felipe E; Valenzuela, Beatriz; Farías, Ana; Sandino, Ana María; Imarai, Mónica

    2016-12-01

    The diets of farmed salmon are usually supplemented with immunostimulants to improve health status. Because β-glucan is one of the most common immunostimulants used in diets, here we examined the effect of two β-1,3/1,6-glucan-supplemented diets on the expression of immune response genes of Atlantic salmon. The relative abundances of IFN-α1, Mx, IFN-γ, IL-12, TGF-β1, IL-10, and CD4 transcripts were evaluated in head kidney by qRT-PCR. We assessed the effects of the diets under normoxia and acute hypoxia, as salmon are especially sensitive to changes in the concentration of dissolved oxygen, which can also affect immunity. These effects were also tested on vaccinated fish, as we expected that β-1,3/1,6-glucan-supplemented diets would enhance the adaptive immune response to the vaccine. We found that administration of the Bg diet (containing β-1,3/1,6-glucan) under normoxia had no effects on the expression of the analyzed genes in the kidney of the diet-fed fish, but under hypoxia/re-oxygenation (90 min of acute hypoxia), the βg diet affected the expression of the antiviral genes, IFN-α1 and Mx, preventing their decrease caused by hypoxia. The Bax diet, which in addition to β-1,3/1,6-glucan, contained astaxanthin, increased IL-12 and IFN-γ in kidneys. With fish exposed to hypoxia/reoxygenation, the diet prevented the decrease of IFN-α1 and Mx levels observed after hypoxia. When fish were vaccinated, only the levels of IL-12 and CD4 transcripts increased, but interestingly if fish were also fed the Bax diet, the vaccination induced a significant increase in all the analyzed transcripts. Finally, when vaccinated fish were exposed to hypoxia, the effect of the Bax diet was greatly reduced for all genes tested and moreover, inducible effects completely disappeared for IL-12, IFN-α, and Mx. Altogether, these results showed that the tested β-1,3/1,6-glucan diets increased the levels of transcripts of key genes involved in innate and adaptive immune response

  7. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT.

    PubMed

    Leszczynska, Katarzyna B; Foskolou, Iosifina P; Abraham, Aswin G; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N; O'Neill, Eric E; Buffa, Francesca M; Hammond, Ester M

    2015-06-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage-induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain-containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors.

  8. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    PubMed Central

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  9. Down-regulation of MutS homolog 3 by hypoxia in human colorectal cancer

    PubMed Central

    Li, Jie; Koike, Junichi; Kugoh, Hiroyuki; Arita, Michitsune; Ohhira, Takahito; Kikuchi, Yoshinori; Funahashi, Kimihiko; Takamatsu, Ken; Boland, C. Richard; Koi, Minoru; Hemmi, Hiromichi

    2013-01-01

    Down-regulation of hMSH3 is associated with elevated microsatellite alterations at selected tetranucleotide repeats and low levels of microsatellite instability in colorectal cancer (CRC). However, the mechanism that down-regulates hMSH3 in CRC is not known. In this study, a significant association between over-expression of glucose transporter 1, a marker for hypoxia, and down-regulation of hMSH3 in CRC tissues was observed. Therefore, we examined the effect of hypoxia on the expression of hMSH3 in human cell lines. When cells with wild type p53 (wt-p53) were exposed to hypoxia, rapid down-regulation of both hMSH2 and hMSH3 occurred. In contrast, when null or mutated p53 (null/mut-p53) cells were exposed to hypoxia, only hMSH3 was down-regulated, and at slower rate than wt-p53 cells. Using a reporter assay, we found that disruption of the two putative hypoxia response elements (HREs) located within the promoter region of the hMSH3 abrogated the suppressive effect of hypoxia on reporter activity regardless of p53 status. In an EMSA, two different forms of HIF-1α complexes that specifically bind to these HREs were detected. A larger complex containing HIF-1α predominantly bound to the HREs in hypoxic null/mut-p53 cells whereas a smaller complex predominated in wt-p53 cells. Finally, HIF-1α knockdown by siRNA significantly inhibited down-regulation of hMSH3 by hypoxia in both wt-p53 and mut-p53 cells. Taken together, our results suggest that the binding of HIF-1α complexes to HRE sites is necessary for down-regulation of hMSH3 in both wt-p53 and mut-p53 cells. PMID:22343000

  10. Respiratory responses of the air-breathing fish Hoplosternum littorale to hypoxia and hydrogen sulfide.

    PubMed

    Affonso, E G; Rantin, F T

    2005-07-01

    The present study analyzes the respiratory responses of the neotropical air-breathing fish Hoplosternum littorale to graded hypoxia and increased sulfide concentrations. The oxygen uptake (VO2), critical O2 tension (PcO2), respiratory (fR) and air-breathing (fRA) frequencies in response to graded hypoxia were determined for fish acclimated to 28 degrees C. H. littorale was able to maintain a constant VO2 down to a PcO2 of 50 mm Hg, below which fish became dependent on the environmental O2 even with significant increases in fR. The fRA was kept constant around 1 breath h(-1) above 50 mm Hg and increased significantly below 40 mm Hg, reaching maximum values (about 4.5 breaths h(-1)) at 10 mm Hg. The lethality to sulfide concentrations under normoxic and hypoxic conditions were also determined along with the fRA. For the normoxic fish the sulfide lethal limit was about 70 microM, while in the hypoxic ones this limit increased to 87 muM. The high sulfide tolerance of H. littorale may be attributed to the air-breathing capability, which is stimulated by this compound.

  11. Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia.

    PubMed

    Nikinmaa, M

    2001-11-15

    The evolution of erythrocytic hypoxia responses is reviewed by comparing the cellular control of haemoglobin-oxygen affinity in agnathans, teleost fish and terrestrial vertebrates. The most ancient response to hypoxic conditions appears to be an increase in cell volume, which increases the haemoglobin-oxygen affinity in lampreys. In teleost fish, an increase of cell volume in hypoxic conditions is also evident. The volume increase is coupled to an increase in erythrocyte pH. These changes are caused by an adrenergic activation of sodium/proton exchange across the erythrocyte membrane. The mechanism is important in acute hypoxia and is followed by a decrease in cellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations in continued hypoxia. In hypoxic bird embryos, the ATP levels are also reduced. The mechanisms by which hypoxia decreases cellular ATP and GTP concentrations remains unknown, although at least in bird embryos cAMP-dependent mechanisms have been implicated. In mammals, hypoxia responses appear to occur mainly via modulation of cellular organic phosphate concentrations. In moderate hypoxia, 2,3-diphosphoglycerate levels are increased as a result of alkalosis caused by increased ventilation.

  12. Hypoxia-Inducible Factors Link Iron Homeostasis and Erythropoiesis

    PubMed Central

    Shah, Yatrik M.; Xie, Liwei

    2014-01-01

    Iron is required for efficient oxygen transport, and hypoxia signaling links erythropoiesis with iron homeostasis. Hypoxia induces a highly conserved signaling pathway in cells under conditions of low O2. One component of this pathway, hypoxia-inducible factor (HIF), is a transcription factor that is highly active in hypoxic cells. The first HIF target gene characterized was EPO, which encodes erythropoietin—a glycoprotein hormone that controls erythropoiesis. The past decade has led to fundamental advances in our understanding of how hypoxia regulates iron levels to support erythropoiesis and maintain systemic iron homeostasis. We review the cell-type specific effects of hypoxia and HIFs in adaptive response to changes in oxygen and iron availability, as well as potential uses of HIF modulators for patients with iron-related disorders. PMID:24389303

  13. Transcriptome Analysis Identifies Key Metabolic Changes in the Hooded Seal (Cystophora cristata) Brain in Response to Hypoxia and Reoxygenation

    PubMed Central

    Czech-Damal, Nicole U.; Folkow, Lars P.

    2017-01-01

    The brain of diving mammals tolerates low oxygen conditions better than the brain of most terrestrial mammals. Previously, it has been demonstrated that the neurons in brain slices of the hooded seal (Cystophora cristata) withstand hypoxia longer than those of mouse, and also tolerate reduced glucose supply and high lactate concentrations. This tolerance appears to be accompanied by a shift in the oxidative energy metabolism to the astrocytes in the seal while in terrestrial mammals the aerobic energy production mainly takes place in neurons. Here, we used RNA-Seq to compare the effect of hypoxia and reoxygenation in vitro on brain slices from the visual cortex of hooded seals. We saw no general reduction of gene expression, suggesting that the response to hypoxia and reoxygenation is an actively regulated process. The treatments caused the preferential upregulation of genes related to inflammation, as found before e.g. in stroke studies using mammalian models. Gene ontology and KEGG pathway analyses showed a downregulation of genes involved in ion transport and other neuronal processes, indicative for a neuronal shutdown in response to a shortage of O2 supply. These differences may be interpreted in terms of an energy saving strategy in the seal's brain. We specifically analyzed the regulation of genes involved in energy metabolism. Hypoxia and reoxygenation caused a similar response, with upregulation of genes involved in glucose metabolism and downregulation of the components of the pyruvate dehydrogenase complex. We also observed upregulation of the monocarboxylate transporter Mct4, suggesting increased lactate efflux. Together, these data indicate that the seal brain responds to the hypoxic challenge by a relative increase in the anaerobic energy metabolism. PMID:28046118

  14. Menadione and ethacrynic acid inhibit the hypoxia-inducible factor (HIF) pathway by disrupting HIF-1α interaction with p300.

    PubMed

    Na, Yu-Ran; Han, Ki-Cheol; Park, Hyunsung; Yang, Eun Gyeong

    2013-05-17

    Hypoxia is a general characteristic of most solid malignancies and intimately related to neoplastic diseases and cancer progression. Homeostatic response to hypoxia is primarily mediated by hypoxia inducible factor (HIF)-1α that elicits transcriptional activity through recruitment of the CREB binding protein (CBP)/p300 coactivator. Targeted blockade of HIF-1α binding to CBP/p300 would thus constitute a novel approach for cancer treatment by suppressing tumor angiogenesis and metastasis. Here, we identified inhibitors against the interaction between HIF-1α and p300 by a fluorescence polarization-based assay employing a fluorescently-labeled peptide containing the C-terminal activation domain of HIF-1α. Two small molecule inhibitors, menadione (MD) and ethacrynic acid (EA), were found to decrease expression of luciferase under the control of hypoxia-responsive elements in hypoxic cells as well as to efficiently block the interaction between the full-length HIF-1α and p300. While these compounds did not alter the expression level of HIF-1α, they down-regulated expression of a HIF-1α target vascular endothelial growth factor (VEGF) gene. Considering hypoxia-induced VEGF expression leading to highly aggressive tumor growth, MD and EA may provide new scaffolds for development of tumor therapeutic reagents as well as tools for a better understanding of HIF-1α-mediated hypoxic regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Hypoxia enhances the protective effects of placenta-derived mesenchymal stem cells against scar formation through hypoxia-inducible factor-1α.

    PubMed

    Du, Lili; Lv, Runxiao; Yang, Xiaoyi; Cheng, Shaohang; Xu, Jing; Ma, Tingxian

    2016-06-01

    To explore the effect of placenta-derived mesenchymal stem cells on scar formation as well as the underlying mechanism. The isolated placenta-derived mesenchymal stem cells from mice were distributed in the wounded areas of scalded mouse models, attenuated inflammatory responses and decreased the deposition of collagens, thus performing a beneficial effect against scar formation. Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells and hypoxia-inducible factor-1α was involved in the protective effect of placenta-derived mesenchymal stem cells in hypoxic condition. Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells through hypoxia-inducible factor-1α and PMSCs may have a potential application in the treatment of wound.

  16. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia.

    PubMed

    Richards, Jeffrey G

    2011-01-15

    Hypoxia survival in fish requires a well-coordinated response to either secure more O(2) from the hypoxic environment or to limit the metabolic consequences of an O(2) restriction at the mitochondria. Although there is a considerable amount of information available on the physiological, behavioral, biochemical and molecular responses of fish to hypoxia, very little research has attempted to determine the adaptive value of these responses. This article will review current attempts to use the phylogenetically corrected comparative method to define physiological and behavioral adaptations to hypoxia in intertidal fish and further identify putatively adaptive biochemical traits that should be investigated in the future. In a group of marine fishes known as sculpins, from the family Cottidae, variation in hypoxia tolerance, measured as a critical O(2) tension (P(crit)), is primarily explained by variation in mass-specific gill surface area, red blood cell hemoglobin-O(2) binding affinity, and to a lesser extent variation in routine O(2) consumption rate (M(O(2))). The most hypoxia-tolerant sculpins consistently show aquatic surface respiration (ASR) and aerial emergence behavior during hypoxia exposure, but no phylogenetically independent relationship has been found between the thresholds for initiating these behaviors and P(crit). At O(2) levels below P(crit), hypoxia survival requires a rapid reorganization of cellular metabolism to suppress ATP consumption to match the limited capacity for O(2)-independent ATP production. Thus, it is reasonable to speculate that the degree of metabolic rate suppression and the quantity of stored fermentable fuel is strongly selected for in hypoxia-tolerant fishes; however, these assertions have not been tested in a phylogenetic comparative model.

  17. Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes.

    PubMed

    Nilsson, Göran E; Ostlund-Nilsson, Sara

    2004-02-07

    Using respirometry, we examined the hypoxia tolerance of 31 teleost fish species (seven families) inhabiting coral reefs at a 2-5 m depth in the lagoon at Lizard Island (Great Barrier Reef, Australia). All fishes studied maintained their rate of oxygen consumption down to relatively severe hypoxia (20-30% air saturation). Indeed, most fishes appeared unaffected by hypoxia until the oxygen level fell below 10% of air saturation. This, hitherto unrecognized, hypoxia tolerance among coral reef fishes could reflect adaptations to nocturnal hypoxia in tide pools. It may also be needed to enable fishes to reside deep within branching coral at night to avoid predation. Widespread hypoxia tolerance in a habitat with such an extreme biodiversity as coral reefs indicate that there is a wealth of hypoxia related adaptations to be discovered in reef fishes.

  18. Effects of fenoterol on ventilatory responses to hypoxia and hypercapnia in normal subjects.

    PubMed Central

    Yoshiike, Y.; Suzuki, S.; Watanuki, Y.; Okubo, T.

    1995-01-01

    BACKGROUND--The effects of beta 2 adrenergic agonists on chemoreceptors remain controversial. This study was designed to examine whether fenoterol, a beta 2 adrenergic agonist, increases the ventilatory responses to hypercapnia (HCVR) and hypoxia (HVR) in normal subjects. METHODS--HCVR was tested with a rebreathing method and HVR was examined with a progressive isocapnic hypoxic method in 11 normal subjects. Both HCVR and HVR were assessed by the slope of occlusion pressure (P0.1) or ventilation (VE) plotted against end tidal carbon dioxide pressure and arterial oxygen saturation, respectively. Respiratory muscle strength, spirometric values and lung volume were measured. After a single oral administration of 5 mg fenoterol or placebo HCVR and HVR were evaluated. RESULTS--Fenoterol treatment did not change the specific airway conductance or forced expiratory volume in one second. Respiratory muscle strength did not change. Fenoterol increased the slope of the HCVR of both P0.1 (from 0.251 (0.116) to 0.386 (0.206) kPa/kPa, average increase 71%) and VE (from 10.7 (3.4) to 15.1 (4.2) l/min/kPa, average increase 52%), and shifted the response curves to higher values. For the HVR fenoterol increased the slopes of both P0.1 and VE (from -4.06 (2.00) x 10(-3) to -7.99 (4.29) x 10(-3) kPa/%, an average increase of 83%, and from -0.221 (0.070) to -0.313 (0.112) l/min/%, a 44.5% increase, respectively), and shifted the response curves to higher values. CONCLUSION--Acute administration of fenoterol increases the ventilatory responses to both hypercapnia and hypoxia in normal subjects. PMID:7701451

  19. Mitochondrial Respiratory Function Induces Endogenous Hypoxia

    PubMed Central

    Prior, Sara; Kim, Ara; Yoshihara, Toshitada; Tobita, Seiji; Takeuchi, Toshiyuki; Higuchi, Masahiro

    2014-01-01

    Hypoxia influences many key biological functions. In cancer, it is generally believed that hypoxic condition is generated deep inside the tumor because of the lack of oxygen supply. However, consumption of oxygen by cancer should be one of the key means of regulating oxygen concentration to induce hypoxia but has not been well studied. Here, we provide direct evidence of the mitochondrial role in the induction of intracellular hypoxia. We used Acetylacetonatobis [2-(2′-benzothienyl) pyridinato-kN, kC3’] iridium (III) (BTP), a novel oxygen sensor, to detect intracellular hypoxia in living cells via microscopy. The well-differentiated cancer cell lines, LNCaP and MCF-7, showed intracellular hypoxia without exogenous hypoxia in an open environment. This may be caused by high oxygen consumption, low oxygen diffusion in water, and low oxygen incorporation to the cells. In contrast, the poorly-differentiated cancer cell lines: PC-3 and MDAMB231 exhibited intracellular normoxia by low oxygen consumption. The specific complex I inhibitor, rotenone, and the reduction of mitochondrial DNA (mtDNA) content reduced intracellular hypoxia, indicating that intracellular oxygen concentration is regulated by the consumption of oxygen by mitochondria. HIF-1α was activated in endogenously hypoxic LNCaP and the activation was dependent on mitochondrial respiratory function. Intracellular hypoxic status is regulated by glucose by parabolic dose response. The low concentration of glucose (0.045 mg/ml) induced strongest intracellular hypoxia possibly because of the Crabtree effect. Addition of FCS to the media induced intracellular hypoxia in LNCaP, and this effect was partially mimicked by an androgen analog, R1881, and inhibited by the anti-androgen, flutamide. These results indicate that mitochondrial respiratory function determines intracellular hypoxic status and may regulate oxygen-dependent biological functions. PMID:24586439

  20. Lateral parabrachial nucleus mediates shortening of expiration during hypoxia.

    PubMed

    Song, Gang; Poon, Chi-Sang

    2009-01-01

    Acute hypoxia elicits complex time-dependent responses including rapid augmentation of inspiratory drive, shortening of inspiratory and expiratory durations (T(I), T(E)), and short-term potentiation and depression. The central pathways mediating these varied effects are largely unknown. Here, we show that the lateral parabrachial nucleus (LPBN) of the dorsolateral pons specifically mediates T(E)-shortening during hypoxia and not other hypoxic response components. Twelve urethane-anesthetized and vagotomized adult Sprague-Dawley rats were exposed to 1-min poikilocapnic hypoxia before and after unilateral kainic acid or bilateral electrolytic lesioning of the LPBN. Bilateral lesions resulted in a significant increase in baseline T(E) under hyperoxia. After unilateral or bilateral lesions, the decrease in T(E) during hypoxia was markedly attenuated without appreciable changes in all other hypoxic response components. These findings add to the mounting evidence that the central processing of peripheral chemoafferent inputs is segregated into parallel integrator and differentiator (low-pass and high-pass filter) pathways that separately modulate inspiratory drive, T(I), T(E) and resultant short-term potentiation and depression.

  1. Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes.

    PubMed Central

    Nilsson, Göran E; Ostlund-Nilsson, Sara

    2004-01-01

    Using respirometry, we examined the hypoxia tolerance of 31 teleost fish species (seven families) inhabiting coral reefs at a 2-5 m depth in the lagoon at Lizard Island (Great Barrier Reef, Australia). All fishes studied maintained their rate of oxygen consumption down to relatively severe hypoxia (20-30% air saturation). Indeed, most fishes appeared unaffected by hypoxia until the oxygen level fell below 10% of air saturation. This, hitherto unrecognized, hypoxia tolerance among coral reef fishes could reflect adaptations to nocturnal hypoxia in tide pools. It may also be needed to enable fishes to reside deep within branching coral at night to avoid predation. Widespread hypoxia tolerance in a habitat with such an extreme biodiversity as coral reefs indicate that there is a wealth of hypoxia related adaptations to be discovered in reef fishes. PMID:15101411

  2. Oxygen-Glucose Deprivation (OGD) Modulates the Unfolded Protein Response (UPR) and Inflicts Autophagy in a PC12 Hypoxia Cell Line Model.

    PubMed

    Vavilis, Theofanis; Delivanoglou, Nikoleta; Aggelidou, Eleni; Stamoula, Eleni; Mellidis, Kyriakos; Kaidoglou, Aikaterini; Cheva, Angeliki; Pourzitaki, Chryssa; Chatzimeletiou, Katerina; Lazou, Antigone; Albani, Maria; Kritis, Aristeidis

    2016-07-01

    Hypoxia is the lack of sufficient oxygenation of tissue, imposing severe stress upon cells. It is a major feature of many pathological conditions such as stroke, traumatic brain injury, cerebral hemorrhage, perinatal asphyxia and can lead to cell death due to energy depletion and increased free radical generation. The present study investigates the effect of hypoxia on the unfolded protein response of the cell (UPR), utilizing a 16-h oxygen-glucose deprivation protocol (OGD) in a PC12 cell line model. Expression of glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94), key players of the UPR, was studied along with the expression of glucose-regulated protein 75 (GRP75), heat shock cognate 70 (HSC70), and glyceraldehyde 3-phosphate dehydrogenase, all with respect to the cell death mechanism(s). Cells subjected to OGD displayed upregulation of GRP78 and GRP94 and concurrent downregulation of GRP75. These findings were accompanied with minimal apoptotic cell death and induction of autophagy. The above observation warrants further investigation to elucidate whether autophagy acts as a pro-survival mechanism that upon severe and prolonged hypoxia acts as a concerted cell response leading to cell death. In our OGD model, hypoxia modulates UPR and induces autophagy.

  3. Sensing hypoxia: physiology, genetics and epigenetics

    PubMed Central

    Prabhakar, Nanduri R

    2013-01-01

    The carotid body is a sensory organ for detecting arterial blood O2 levels and reflexly mediates systemic cardiac, vascular and respiratory responses to hypoxia. This article presents a brief review of the roles of gaseous messengers in the sensory transduction at the carotid body, genetic and epigenetic influences on hypoxic sensing and the role of the carotid body chemoreflex in cardiorespiratory diseases. Type I (also called glomus) cells, the site of O2 sensing in the carotid body, express haem oxygenase-2 and cystathionine-γ-lyase, the enzymes which catalyse the generation of CO and H2S, respectively. Physiological studies have shown that CO is an inhibitory gas messenger, which contributes to the low sensory activity during normoxia, whereas H2S is excitatory and mediates sensory stimulation by hypoxia. Hypoxia-evoked H2S generation in the carotid body requires the interaction of cystathionine-γ-lyase with haem oxygenase-2, which generates CO. Hypoxia-inducible factors 1 and 2 constitute important components of the genetic make-up in the carotid body, which influence hypoxic sensing by regulating the intracellular redox state via transcriptional regulation of pro- and antioxidant enzymes. Recent studies suggest that developmental programming of the carotid body response to hypoxia involves epigenetic changes, e.g. DNA methylation of genes encoding redox-regulating enzymes. Emerging evidence implicates heightened carotid body chemoreflex in the progression of autonomic morbidities associated with cardiorespiratory diseases, such as sleep-disordered breathing with apnoea, congestive heart failure and essential hypertension. PMID:23459758

  4. Shared Physiological and Molecular Responses in Marine Fish and Invertebrates to Environmental Hypoxia: Potential Biomarkers of Adverse Impacts on Marine Communities

    NASA Astrophysics Data System (ADS)

    Thomas, P.; Rahman, S.

    2016-02-01

    Knowledge of the effects of environmental exposure to hypoxia (dissolved oxygen: <2 mg/L) on critical physiological functions such as reproduction, growth and metabolism in both fish and invertebrates is essential for accurate predictions of its chronic impacts on marine communities. Marked disruption of reproduction and its endocrine control was observed in Atlantic croaker collected from the hypoxic region in the northern Gulf of Mexico. Recent research has shown that growth and its physiological upregulation is also impaired in hypoxia-exposed marine fish. Expression of insulin-like growth factor (IGF) binding protein (IGFBP), which inhibits growth, was increased in croaker livers, whereas plasma levels of IGF, the primary regulator of growth, were decreased in snapper after hypoxia exposure. In addition, hypoxia inducible factor-1 (HIF-1), which regulates changes in metabolism during adaptation to hypoxia, was upregulated in croaker collected from hypoxic environments. Interestingly, similar changes in the expression of IGFBP and HIF-1 have been found in marine crustaceans after hypoxia exposure, suggesting these responses to hypoxia are common to marine fish and invertebrates. Preliminary field studies indicate that hypoxia exposure also causes epigenetic modifications, including increases in global DNA methylation, and that these epigenetic changes can influence reproduction and growth in croaker. Epigenetic modifications can be passed to offspring and persist in future generations no longer exposed to an environmental stressor further aggravating its long-term adverse impacts on population abundance and delaying recovery. The growing availability of complete invertebrate genomes and high-throughput DNA sequencing indicates similar epigenetic studies can now be conducted with marine invertebrates. Collectively, the results indicate that environmental hypoxia exposure disrupts major physiological functions in fish and invertebrates critical for maintenance of

  5. HIF-2α mediates hypoxia-induced LIF expression in human colorectal cancer cells

    PubMed Central

    Zhao, Yuhan; Zhang, Cen; Wang, Jiabei; Yue, Xuetian; Yang, Qifeng; Hu, Wenwei

    2015-01-01

    Leukemia inhibitory factor (LIF), a multi-functional cytokine, has a complex role in cancer. While LIF induces the differentiation of several myeloid leukemia cells and inhibits their growth, it also promotes tumor progression, metastasis and chemoresistance in many solid tumors. LIF is frequently overexpressed in a variety of human tumors and its overexpression is often associated with poor prognosis of patients. Currently, the mechanism for LIF overexpression in tumor cells is not well-understood. Here, we report that hypoxia, a hallmark of solid tumors, induced LIF mRNA expression in human colorectal cancer cells. Analysis of LIF promoter revealed several hypoxia-responsive elements (HREs) that can specifically interact with and be transactivated by HIF-2α but not HIF-1α. Consistently, ectopic expression of HIF-2α but not HIF-1α transcriptionally induced LIF expression levels in cells. Knockdown of endogenous HIF-2α but not HIF-1α by siRNA largely abolished the induction of LIF by hypoxia in cells. Furthermore, there is a strong association of HIF-2α overexpression with LIF overexpression in human colorectal cancer specimens. In summary, results from this study demonstrate that hypoxia induces LIF expression in human cancer cells mainly through HIF-2α, which could be an important underlying mechanism for LIF overexpression in human cancers. PMID:25726527

  6. Cutaneous vascular and core temperature responses to sustained cold exposure in hypoxia.

    PubMed

    Simmons, Grant H; Barrett-O'Keefe, Zachary; Minson, Christopher T; Halliwill, John R

    2011-10-01

    We tested the effect of hypoxia on cutaneous vascular regulation and defense of core temperature during cold exposure. Twelve subjects had two microdialysis fibres placed in the ventral forearm and were immersed to the sternum in a bathtub on parallel study days (normoxia and poikilocapnic hypoxia with an arterial O(2) saturation of 80%). One fibre served as the control (1 mM propranolol) and the other received 5 mM yohimbine (plus 1 mM propranolol) to block adrenergic receptors. Skin blood flow was assessed at each site (laser Doppler flowmetry), divided by mean arterial pressure to calculate cutaneous vascular conductance (CVC), and scaled to baseline. Cold exposure was first induced by a progressive reduction in water temperature from 36 to 23°C over 30 min to assess cutaneous vascular regulation, then by clamping the water temperature at 10°C for 45 min to test defense of core temperature. During normoxia, cold stress reduced CVC in control (-44 ± 4%) and yohimbine sites (-13 ± 7%; both P < 0.05 versus precooling). Hypoxia caused vasodilatation prior to cooling but resulted in greater reductions in CVC in control (-67 ± 7%) and yohimbine sites (-35 ± 11%) during cooling (both P < 0.05 versus precooling; both P < 0.05 versus normoxia). Core cooling rate during the second phase of cold exposure was unaffected by hypoxia (-1.81 ± 0.23°C h(-1) in normoxia versus -1.97 ± 0.33°C h(-1) in hypoxia; P > 0.05). We conclude that hypoxia increases cutaneous (non-noradrenergic) vasoconstriction during prolonged cold exposure, while core cooling rate is not consistently affected.

  7. Comparison of gene expression responses to hypoxia in viviparous (Xiphophorus) and oviparous (Oryzias) fishes using a medaka microarray.

    PubMed

    Boswell, Mikki G; Wells, Melissa C; Kirk, Lyndsey M; Ju, Zhenlin; Zhang, Ziping; Booth, Rachell E; Walter, Ronald B

    2009-03-01

    Gene expression profiling using DNA microarray technology is a useful tool for assessing gene transcript level responses after an organism is exposed to environmental stress. Herein, we detail results from studies using an 8 k medaka (Oryzias latipes) microarray to assess modulated gene expression patterns upon hypoxia exposure of the live-bearing aquaria fish, Xiphophorus maculatus. To assess the reproducibility and reliability of using the medaka array in cross-genus hybridization, a two-factor ANOVA analysis of gene expression was employed. The data show the tissue source of the RNA used for array hybridization contributed more to the observed response of modulated gene targets than did the species source of the RNA. In addition, hierarchical clustering via heat map analyses of groupings of tissues and species (Xiphophorus and medaka) suggests that hypoxia induced similar responses in the same tissues from these two diverse aquatic model organisms. Our Xiphophorus results indicate 206 brain, 37 liver, and 925 gill gene targets exhibit hypoxia induced expression changes. Analysis of the Xiphophorus data to determine those features exhibiting a significant (p<0.05)+/-3 fold change produced only two gene targets within brain tissue and 80 features within gill tissue. Of these 82 characterized features, 39 were identified via homology searching (cut-off E-value of 1 x 10(-5)) and placed into one or more biological process gene ontology groups. Among these 39 genes, metabolic energy changes and manipulation was the most affected biological pathway (13 genes).

  8. A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet

    PubMed Central

    Matabos, Marjolaine; Tunnicliffe, Verena; Juniper, S. Kim; Dean, Courtney

    2012-01-01

    Changes in ocean ventilation driven by climate change result in loss of oxygen in the open ocean that, in turn, affects coastal areas in upwelling zones such as the northeast Pacific. Saanich Inlet, on the west coast of Canada, is a natural seasonally hypoxic fjord where certain continental shelf species occur in extreme hypoxia. One study site on the VENUS cabled subsea network is located in the hypoxic zone at 104 m depth. Photographs of the same 5 m2 area were taken with a remotely-controlled still camera every 2/3 days between October 6th 2009 and October 18th 2010 and examined for community composition, species behaviour and microbial mat features. Instruments located on a near-by platform provided high-resolution measurements of environmental variables. We applied multivariate ordination methods and a principal coordinate analysis of neighbour matrices to determine temporal structures in our dataset. Responses to seasonal hypoxia (0.1–1.27 ml/l) and its high variability on short time-scale (hours) varied among species, and their life stages. During extreme hypoxia, microbial mats developed then disappeared as a hippolytid shrimp, Spirontocaris sica, appeared in high densities (200 m−2) despite oxygen below 0.2 ml/l. The slender sole Lyopsetta exilis was abundant in severe hypoxia and diminished as oxygen increased in the summer. This planktivore may be responding to changes in the depth of the diurnal migration of zooplankton. While the squat lobster Munida quadrispina was common at all times, juveniles disappeared in fluctuating conditions. Despite low oxygen conditions, animal densities were high indicating that the risk from hypoxia is balanced by factors such as food availability and escape from less tolerant predators. As hypoxia increases on the continental shelf, we expect benthic communities to become dominated by low diversity, hypoxia-tolerant species of low commercial significance. PMID:23029145

  9. [The effect of hypoxia preconditioning no binding activity of HIF-1 on the HRE with EPO in the hippocampus of mice].

    PubMed

    Shao, Guo; Zhou, Wei-Hua; Gao, Cui-Ying; Zhang, Ran; Lu, Guo-Wei

    2007-02-01

    To observe change of binding activity of HIF-1 with erythropoietin (EPO) hypoxia response element (HRE) in the hippocampus of mice preconditioned to hypoxia and explore relationship between the changes and the preconditioning. The hippocampus was removed from mice exposed to hypoxia for 0 run (control group), 1 run (H1 group) and 4 runs(H4 group). Electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation (ChIP)and real time PCR were used to detect the change of activity of HIF-1 on HRE of EPO. Both in vitro and in vivo binding tests showed that the HIF-1 DNA-binding activities were increased in group H1 and markedly increased in group H4. The increase of HIF-1 and HRE of EPO binding activities is thought be involved in hypoxic preconditioning.

  10. The effects of exercise under hypoxia on cognitive function.

    PubMed

    Ando, Soichi; Hatamoto, Yoichi; Sudo, Mizuki; Kiyonaga, Akira; Tanaka, Hiroaki; Higaki, Yasuki

    2013-01-01

    Increasing evidence suggests that cognitive function improves during a single bout of moderate exercise. In contrast, exercise under hypoxia may compromise the availability of oxygen. Given that brain function and tissue integrity are dependent on a continuous and sufficient oxygen supply, exercise under hypoxia may impair cognitive function. However, it remains unclear how exercise under hypoxia affects cognitive function. The purpose of this study was to examine the effects of exercise under different levels of hypoxia on cognitive function. Twelve participants performed a cognitive task at rest and during exercise at various fractions of inspired oxygen (FIO2: 0.209, 0.18, and 0.15). Exercise intensity corresponded to 60% of peak oxygen uptake under normoxia. The participants performed a Go/No-Go task requiring executive control. Cognitive function was evaluated using the speed of response (reaction time) and response accuracy. We monitored pulse oximetric saturation (SpO2) and cerebral oxygenation to assess oxygen availability. SpO2 and cerebral oxygenation progressively decreased during exercise as the FIO2 level decreased. Nevertheless, the reaction time in the Go-trial significantly decreased during moderate exercise. Hypoxia did not affect reaction time. Neither exercise nor difference in FIO2 level affected response accuracy. An additional experiment indicated that cognitive function was not altered without exercise. These results suggest that the improvement in cognitive function is attributable to exercise, and that hypoxia has no effects on cognitive function at least under the present experimental condition. Exercise-cognition interaction should be further investigated under various environmental and exercise conditions.

  11. Hypoxia: From Placental Development to Fetal Programming.

    PubMed

    Fajersztajn, Lais; Veras, Mariana Matera

    2017-10-16

    Hypoxia may influence normal and different pathological processes. Low oxygenation activates a variety of responses, many of them regulated by hypoxia-inducible factor 1 complex, which is mostly involved in cellular control of O 2 consumption and delivery, inhibition of growth and development, and promotion of anaerobic metabolism. Hypoxia plays a significant physiological role in fetal development; it is involved in different embryonic processes, for example, placentation, angiogenesis, and hematopoiesis. More recently, fetal hypoxia has been associated directly or indirectly with fetal programming of heart, brain, and kidney function and metabolism in adulthood. In this review, the role of hypoxia in fetal development, placentation, and fetal programming is summarized. Hypoxia is a basic mechanism involved in different pregnancy disorders and fetal health developmental complications. Although there are scientific data showing that hypoxia mediates changes in the growth trajectory of the fetus, modulates gene expression by epigenetic mechanisms, and determines the health status later in adulthood, more mechanistic studies are needed. Furthermore, if we consider that intrauterine hypoxia is not a rare event, and can be a consequence of unavoidable exposures to air pollution, nutritional deficiencies, obesity, and other very common conditions (drug addiction and stress), the health of future generations may be damaged and the incidence of some diseases will markedly increase as a consequence of disturbed fetal programming. Birth Defects Research 109:1377-1385, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans

    PubMed Central

    Fatemian, Marzieh; Herigstad, Mari; Croft, Quentin P. P.; Formenti, Federico; Cardenas, Rosa; Wheeler, Carly; Smith, Thomas G.; Friedmannova, Maria; Dorrington, Keith L.

    2015-01-01

    Key points Lung ventilation and pulmonary artery pressure rise progressively in response to 8 h of hypoxia, changes described as ‘acclimatization to hypoxia’. Acclimatization responses differ markedly between humans for unknown reasons.We explored whether the magnitudes of the ventilatory and vascular responses were related, and whether the degree of acclimatization could be predicted by acute measurements of ventilatory and vascular sensitivities.In 80 healthy human volunteers measurements of acclimatization were made before, during, and after a sustained exposure to 8 h of isocapnic hypoxia.No correlation was found between measures of ventilatory and pulmonary vascular acclimatization.The ventilatory chemoreflex sensitivities to acute hypoxia and hypercapnia all increased in proportion to their pre‐acclimatization values following 8 h of hypoxia. The peripheral (rapid) chemoreflex sensitivity to CO2, measured before sustained hypoxia against a background of hyperoxia, was a modest predictor of ventilatory acclimatization to hypoxia. This finding has relevance to predicting human acclimatization to the hypoxia of altitude. Abstract Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8‐h isocapnic exposure to hypoxia (end‐tidal P O2=55 Torr) in a purpose‐built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (GpO2) and

  13. Uncovering drug-responsive regulatory elements

    PubMed Central

    Luizon, Marcelo R; Ahituv, Nadav

    2015-01-01

    Nucleotide changes in gene regulatory elements can have a major effect on interindividual differences in drug response. For example, by reviewing all published pharmacogenomic genome-wide association studies, we show here that 96.4% of the associated single nucleotide polymorphisms reside in noncoding regions. We discuss how sequencing technologies are improving our ability to identify drug response-associated regulatory elements genome-wide and to annotate nucleotide variants within them. We highlight specific examples of how nucleotide changes in these elements can affect drug response and illustrate the techniques used to find them and functionally characterize them. Finally, we also discuss challenges in the field of drug-responsive regulatory elements that need to be considered in order to translate these findings into the clinic. PMID:26555224

  14. Effects of hypoxia and hypercapnia on geniohyoid contractility and endurance.

    PubMed

    Salmone, R J; Van Lunteren, E

    1991-08-01

    Sleep apnea and other respiratory diseases produce hypoxemia and hypercapnia, factors that adversely affect skeletal muscle performance. To examine the effects of these chemical alterations on force production by an upper airway dilator muscle, the contractile and endurance characteristics of the geniohyoid muscle were examined in situ during severe hypoxia (arterial PO2 less than 40 Torr), mild hypoxia (PO2 45-65 Torr), and hypercapnia (PCO2 55-80 Torr) and compared with hyperoxic-normocapnic conditions in anesthetized cats. Muscles were studied at optimal length, and contractile force was assessed in response to supramaximal electrical stimulation of the hypoglossal nerve (n = 7 cats) or geniohyoid muscle (n = 2 cats). There were no significant changes in the twitch kinetics or force-frequency curve of the geniohyoid muscle during hypoxia or hypercapnia. However, the endurance of the geniohyoid, as reflected in the fatigue index (ratio of force at 2 min to initial force in response to 40-Hz stimulation at a duty cycle 0.33), was significantly reduced by severe hypoxia but not by hypercapnia or mild hypoxia. In addition, the downward shift in the force-frequency curve after the repetitive stimulation protocol was greater during hypoxia than hyperoxia, especially at higher frequencies. In conclusion, the ability of the geniohyoid muscle to maintain force output during high levels of activation is adversely affected by severe hypoxia but not mild hypoxia or hypercapnia. However, none of these chemical perturbations affected muscle contractility acutely.

  15. Responses of glomus cells to hypoxia and acidosis are uncoupled, reciprocal and linked to ASIC3 expression: selectivity of chemosensory transduction

    PubMed Central

    Lu, Yongjun; Whiteis, Carol A; Sluka, Kathleen A; Chapleau, Mark W; Abboud, François M

    2013-01-01

    Carotid body glomus cells are the primary sites of chemotransduction of hypoxaemia and acidosis in peripheral arterial chemoreceptors. They exhibit pronounced morphological heterogeneity. A quantitative assessment of their functional capacity to differentiate between these two major chemical signals has remained undefined. We tested the hypothesis that there is a differential sensory transduction of hypoxia and acidosis at the level of glomus cells. We measured cytoplasmic Ca2+ concentration in individual glomus cells, isolated in clusters from rat carotid bodies, in response to hypoxia ( mmHg) and to acidosis at pH 6.8. More than two-thirds (68%) were sensitive to both hypoxia and acidosis, 19% were exclusively sensitive to hypoxia and 13% exclusively sensitive to acidosis. Those sensitive to both revealed significant preferential sensitivity to either hypoxia or to acidosis. This uncoupling and reciprocity was recapitulated in a mouse model by altering the expression of the acid-sensing ion channel 3 (ASIC3) which we had identified earlier in glomus cells. Increased expression of ASIC3 in transgenic mice increased pH sensitivity while reducing cyanide sensitivity. Conversely, deletion of ASIC3 in the knockout mouse reduced pH sensitivity while the relative sensitivity to cyanide or to hypoxia was increased. In this work, we quantify functional differences among glomus cells and show reciprocal sensitivity to acidosis and hypoxia in most glomus cells. We speculate that this selective chemotransduction of glomus cells by either stimulus may result in the activation of different afferents that are preferentially more sensitive to either hypoxia or acidosis, and thus may evoke different and more specific autonomic adjustments to either stimulus. PMID:23165770

  16. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragnum, Harald Bull; Røe, Kathrine; Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog

    2013-11-15

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvantmore » ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may

  17. Hypoxia as a therapy for mitochondrial disease.

    PubMed

    Jain, Isha H; Zazzeron, Luca; Goli, Rahul; Alexa, Kristen; Schatzman-Bone, Stephanie; Dhillon, Harveen; Goldberger, Olga; Peng, Jun; Shalem, Ophir; Sanjana, Neville E; Zhang, Feng; Goessling, Wolfram; Zapol, Warren M; Mootha, Vamsi K

    2016-04-01

    Defects in the mitochondrial respiratory chain (RC) underlie a spectrum of human conditions, ranging from devastating inborn errors of metabolism to aging. We performed a genome-wide Cas9-mediated screen to identify factors that are protective during RC inhibition. Our results highlight the hypoxia response, an endogenous program evolved to adapt to limited oxygen availability. Genetic or small-molecule activation of the hypoxia response is protective against mitochondrial toxicity in cultured cells and zebrafish models. Chronic hypoxia leads to a marked improvement in survival, body weight, body temperature, behavior, neuropathology, and disease biomarkers in a genetic mouse model of Leigh syndrome, the most common pediatric manifestation of mitochondrial disease. Further preclinical studies are required to assess whether hypoxic exposure can be developed into a safe and effective treatment for human diseases associated with mitochondrial dysfunction. Copyright © 2016, American Association for the Advancement of Science.

  18. Landscape-level variation in disease susceptibility related to shallow-water hypoxia.

    PubMed

    Breitburg, Denise L; Hondorp, Darryl; Audemard, Corinne; Carnegie, Ryan B; Burrell, Rebecca B; Trice, Mark; Clark, Virginia

    2015-01-01

    Diel-cycling hypoxia is widespread in shallow portions of estuaries and lagoons, especially in systems with high nutrient loads resulting from human activities. Far less is known about the effects of this form of hypoxia than deeper-water seasonal or persistent low dissolved oxygen. We examined field patterns of diel-cycling hypoxia and used field and laboratory experiments to test its effects on acquisition and progression of Perkinsus marinus infections in the eastern oyster, Crassostrea virginica, as well as on oyster growth and filtration. P. marinus infections cause the disease known as Dermo, have been responsible for declines in oyster populations, and have limited success of oyster restoration efforts. The severity of diel-cycling hypoxia varied among shallow monitored sites in Chesapeake Bay, and average daily minimum dissolved oxygen was positively correlated with average daily minimum pH. In both field and laboratory experiments, diel-cycling hypoxia increased acquisition and progression of infections, with stronger results found for younger (1-year-old) than older (2-3-year-old) oysters, and more pronounced effects on both infections and growth found in the field than in the laboratory. Filtration by oysters was reduced during brief periods of exposure to severe hypoxia. This should have reduced exposure to waterborne P. marinus, and contributed to the negative relationship found between hypoxia frequency and oyster growth. Negative effects of hypoxia on the host immune response is, therefore, the likely mechanism leading to elevated infections in oysters exposed to hypoxia relative to control treatments. Because there is considerable spatial variation in the frequency and severity of hypoxia, diel-cycling hypoxia may contribute to landscape-level spatial variation in disease dynamics within and among estuarine systems.

  19. MALDI-Mass Spectrometric Imaging Revealing Hypoxia-Driven Lipids and Proteins in a Breast Tumor Model

    DOE PAGES

    Jiang, Lu; Chughtai, Kamila; Purvine, Samuel O.; ...

    2015-05-20

    Hypoxic areas are a common feature of rapidly growing malignant tumors and their metastases, and are typically spatially heterogeneous. Hypoxia has a strong impact on tumor cell biology and contributes to tumor progression in multiple ways. To date, only a few molecular key players in tumor hypoxia, such as for example hypoxia-inducible factor-1 (HIF-1), have been discovered. The distribution of biomolecules is frequently heterogeneous in the tumor volume, and may be driven by hypoxia and HIF-1α. Understanding the spatially heterogeneous hypoxic response of tumors is critical. Mass spectrometric imaging (MSI) provides a unique way of imaging biomolecular distributions in tissuemore » sections with high spectral and spatial resolution. In this paper, breast tumor xenografts grown from MDA-MB-231-HRE-tdTomato cells, with a red fluorescent tdTomato protein construct under the control of a hypoxia response element (HRE)-containing promoter driven by HIF-1α, were used to detect the spatial distribution of hypoxic regions. We elucidated the 3D spatial relationship between hypoxic regions and the localization of small molecules, metabolites, lipids, and proteins by using principal component analysis – linear discriminant analysis (PCA-LDA) on 3D rendered MSI volume data from MDA-MB-231-HRE-tdTomato breast tumor xenografts. In this study we identified hypoxia-regulated proteins active in several distinct pathways such as glucose metabolism, regulation of actin cytoskeleton, protein folding, translation/ribosome, splicesome, the PI3K-Akt signaling pathway, hemoglobin chaperone, protein processing in endoplasmic reticulum, detoxification of reactive oxygen species, aurora B signaling/apoptotic execution phase, the RAS signaling pathway, the FAS signaling pathway/caspase cascade in apoptosis and telomere stress induced senescence. In parallel we also identified co-localization of hypoxic regions and various lipid species such as PC(16:0/18:1), PC(16:0/18:2), PC(18

  20. MALDI-Mass Spectrometric Imaging Revealing Hypoxia-Driven Lipids and Proteins in a Breast Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lu; Chughtai, Kamila; Purvine, Samuel O.

    Hypoxic areas are a common feature of rapidly growing malignant tumors and their metastases, and are typically spatially heterogeneous. Hypoxia has a strong impact on tumor cell biology and contributes to tumor progression in multiple ways. To date, only a few molecular key players in tumor hypoxia, such as for example hypoxia-inducible factor-1 (HIF-1), have been discovered. The distribution of biomolecules is frequently heterogeneous in the tumor volume, and may be driven by hypoxia and HIF-1α. Understanding the spatially heterogeneous hypoxic response of tumors is critical. Mass spectrometric imaging (MSI) provides a unique way of imaging biomolecular distributions in tissuemore » sections with high spectral and spatial resolution. In this paper, breast tumor xenografts grown from MDA-MB-231-HRE-tdTomato cells, with a red fluorescent tdTomato protein construct under the control of a hypoxia response element (HRE)-containing promoter driven by HIF-1α, were used to detect the spatial distribution of hypoxic regions. We elucidated the 3D spatial relationship between hypoxic regions and the localization of small molecules, metabolites, lipids, and proteins by using principal component analysis – linear discriminant analysis (PCA-LDA) on 3D rendered MSI volume data from MDA-MB-231-HRE-tdTomato breast tumor xenografts. In this study we identified hypoxia-regulated proteins active in several distinct pathways such as glucose metabolism, regulation of actin cytoskeleton, protein folding, translation/ribosome, splicesome, the PI3K-Akt signaling pathway, hemoglobin chaperone, protein processing in endoplasmic reticulum, detoxification of reactive oxygen species, aurora B signaling/apoptotic execution phase, the RAS signaling pathway, the FAS signaling pathway/caspase cascade in apoptosis and telomere stress induced senescence. In parallel we also identified co-localization of hypoxic regions and various lipid species such as PC(16:0/18:1), PC(16:0/18:2), PC(18

  1. Phrenic and hypoglossal nerve activity during respiratory response to hypoxia in 6-OHDA unilateral model of Parkinson's disease.

    PubMed

    Andrzejewski, Kryspin; Budzińska, Krystyna; Kaczyńska, Katarzyna

    2017-07-01

    Parkinson's disease (PD) patients apart from motor dysfunctions exhibit respiratory disturbances. Their mechanism is still unknown and requires investigation. Our research was designed to examine the activity of phrenic (PHR) and hypoglossal (HG) nerves activity during a hypoxic respiratory response in the 6-hydroxydopamine (6-OHDA) model of PD. Male adult Wistar rats were injected unilaterally with 6-OHDA (20μg) or the vehicle into the right medial forebrain bundle (MFB). Two weeks after the surgery the activity of the phrenic and hypoglossal nerve was registered in anesthetized, vagotomized, paralyzed, and mechanically ventilated rats under normoxic and hypoxic conditions. Lesion effectiveness was confirmed by the cylinder test, performed before the MFB injection and 14days after, before the respiratory experiment. 6-OHDA lesioned animals showed a significant increase in normoxic inspiratory time. Expiratory time and total time of the respiratory cycle were prolonged in PD rats after hypoxia. The amplitude of the PHR activity and its minute activity were increased in comparison to the sham group at recovery time and during 30s of hypoxia. The amplitude of the HG activity was increased in response to hypoxia in 6-OHDA lesioned animals. The degeneration of dopaminergic neurons decreased the pre-inspiratory/inspiratory ratio of the hypoglossal burst amplitude during and after hypoxia. Unilateral MFB lesion changed the activity of the phrenic and hypoglossal nerves. The altered pre-inspiratory hypoglossal nerve activity indicates modifications to the central mechanisms controlling the activity of the HG nerve and may explain respiratory disorders seen in PD, i.e. apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury.

    PubMed

    Hummitzsch, Lars; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin

    2014-03-10

    Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (P<0.05) in CM. In CaCo-2 cultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (P<0.001) and elevated levels of hydrogen peroxide (P<0.01). Incubation of CaCo-2 cells with CM reduced the hypoxia-induced signs of cell damage and LDH release (P<0.01) and abrogated the hypoxia-induced increase of hydrogen peroxide. These events were associated with an enhanced phosphorylation status of the prosurvival kinase Erk1/2 (P<0.05) but not Akt and STAT-5. Taken together, CM of hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury. The established culture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Chronic hypoxia and low salinity impair anti-predatory responses of the green-lipped mussel Perna viridis.

    PubMed

    Wang, Youji; Hu, Menghong; Cheung, S G; Shin, P K S; Lu, Weiqun; Li, Jiale

    2012-06-01

    The effects of chronic hypoxia and low salinity on anti-predatory responses of the green-lipped mussel Perna viridis were investigated. Dissolved oxygen concentrations ranged from hypoxic to normoxic (1.5 ± 0.3 mg l(-1), 3.0 ± 0.3 mg l(-1) and 6.0 ± 0.3 mg l(-1)), and salinities were selected within the variation during the wet season in Hong Kong coastal waters (15‰, 20‰, 25‰ and 30‰). The dissolved oxygen and salinity significantly affected some anti-predatory responses of mussel, including byssus production, shell thickness and shell weight, and the adductor diameter was only significantly affected by salinity. Besides, interactive effects of dissolved oxygen and salinity on the byssus production and shell thickness were also observed. In hypoxic and low salinity conditions, P. viridis produced fewer byssal threads, thinner shell and adductor muscle, indicating that hypoxia and low salinity are severe environmental stressors for self-defence of mussel, and their interactive effects further increase the predation risk. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. Autonomic control of cardiac function and myocardial oxygen consumption during hypoxic hypoxia.

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Stone, H. L.

    1972-01-01

    Investigation in 19 conscious dogs of the importance of the sympathetic nervous system in the coronary and cardiac response to altitude (hypoxic) hypoxia. Beta-adrenergic blockade was used to minimize the cardiac effect associated with sympathetic receptors. It is shown that the autonomic nervous system, and particularly the sympathetic nervous system, is responsible for the increase in ventricular function and myocardial oxygen consumption that occurs during hypoxia. Minimizing this response through appropriate conditioning and training may improve the operating efficiency of the heart and reduce the hazard of hypoxia and other environmental stresses, such as acceleration, which are encountered in advanced aircraft systems.

  5. Hypoxia delays hematopoiesis: retention of embryonic hemoglobin and erythrocytes in larval rainbow trout, Oncorhynchus mykiss, during chronic hypoxia exposure.

    PubMed

    Bianchini, Kristin; Wright, Patricia A

    2013-12-01

    In rainbow trout development, a switch occurs from high-affinity embryonic hemoglobin (Hb) and round, embryonic erythrocytes to lower-affinity adult Hb and oval, adult erythrocytes. Our study investigated the early ontogeny of rainbow trout blood properties and the hypoxia response. We hypothesized that hypoxia exposure would delay the ontogenetic turnover of Hb and erythrocytes because retention of high-affinity embryonic Hb would facilitate oxygen loading. To test this hypothesis we developed a method of efficiently extracting blood from individual embryos and larvae and optimized several techniques for measuring hematological parameters on microliter (0.5-2.0 μl) blood samples. In chronic hypoxia (30% of oxygen saturation), stage-matched embryos and larvae possessed half the Hb concentration, erythrocyte counts and hematocrit observed in normoxia. Hypoxia-reared larvae also had threefold to sixfold higher mRNA expression of the embryonic Hb α-1, β-1 and β-2 subunits relative to stage-matched normoxia-reared larvae. Furthermore, in hypoxia, the round embryonic erythrocytic shape persisted into later developmental stages. Despite these differences, Hb-oxygen affinity (P50), cooperativity and the Root effect were unaltered in hypoxia-reared O. mykiss. The data support our hypothesis that chronic hypoxia delays the ontogenetic turnover of Hb and erythrocytes, but without the predicted functional consequences (i.e. higher than expected P50). These results also suggest that the Hb-oxygen affinity is protected during development in chronic hypoxia to favor oxygen unloading at the tissues. We conclude that in early trout development, the blood-oxygen transport system responds very differently to chronic hypoxia relative to adults, possibly because respiration depends relatively more on oxygen diffusion than convection.

  6. Cardiorespiratory control and cytokine profile in response to heat stress, hypoxia, and lipopolysaccharide (LPS) exposure during early neonatal period.

    PubMed

    McDonald, Fiona B; Chandrasekharan, Kumaran; Wilson, Richard J A; Hasan, Shabih U

    2016-02-01

    Sudden infant death syndrome (SIDS) is one of the most common causes of postneonatal infant mortality in the developed world. An insufficient cardiorespiratory response to multiple environmental stressors (such as prone sleeping positioning, overwrapping, and infection), during a critical period of development in a vulnerable infant, may result in SIDS. However, the effect of multiple risk factors on cardiorespiratory responses has rarely been tested experimentally. Therefore, this study aimed to quantify the independent and possible interactive effects of infection, hyperthermia, and hypoxia on cardiorespiratory control in rats during the neonatal period. We hypothesized that lipopolysaccharide (LPS) administration will negatively impact cardiorespiratory responses to increased ambient temperature and hypoxia in neonatal rats. Sprague-Dawley neonatal rat pups were studied at postnatal day 6-8. Rats were examined at an ambient temperature of 33°C or 38°C. Within each group, rats were allocated to control, saline, or LPS (200 μg/kg) treatments. Cardiorespiratory and thermal responses were recorded and analyzed before, during, and after a hypoxic exposure (10% O2). Serum samples were taken at the end of each experiment to measure cytokine concentrations. LPS significantly increased cytokine concentrations (such as TNFα, IL-1β, MCP-1, and IL-10) compared to control. Our results do not support a three-way interaction between experimental factors on cardiorespiratory control. However, independently, heat stress decreased minute ventilation during normoxia and increased the hypoxic ventilatory response. Furthermore, LPS decreased hypoxia-induced tachycardia. Herein, we provide an extensive serum cytokine profile under various experimental conditions and new evidence that neonatal cardiorespiratory responses are adversely affected by dual interactions of environmental stress factors. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on

  7. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway.

    PubMed

    Yu, Jiangkun; Lu, Yanyu; Li, Yapeng; Xiao, Lili; Xing, Yu; Li, Yanshen; Wu, Leiming

    2015-09-01

    S100A1 plays a crucial role in hypoxia-induced inflammatory response in cardiomyocytes. However, the role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes is still unknown. enzyme-linked immunosorbent assay (ELISA) was performed for the determination of inflammatory cytokines. Immunocytochemistry and immunofluorescence, Western blot analysis and Real-time polymerase chain reaction (RT-PCR) were conducted to assess protein or mRNA expressions. Fluorogenic probe dihydroethidium (DHE) was used to evaluate the generation of reactive oxygen species (ROS) while Hoechst 33342 staining for apoptosis. Small interfering RNA (siRNA) for S100A1 was used to evaluate the role of S100A1. The levels of ROS and inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 in H9c2 cells were increased remarkably by hypoxia. However, IL-37 protein or mRNA levels were decreased significantly. Both Toll-like receptor 4 (TLR4) inhibitor Ethyl (6R)-6-[N-(2-Chloro-4fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) treatment or siRNA S100A1 downregulated TLR4 expression and inflammatory cytokine level and mRNA in H9c2 cells, as well as weakening ROS and phospho-p65 Nuclear factor (NF)-κB levels. Further, S100A1 treatment significantly reduced TNF-α protein or mRNA level whereas enhanced IL-37 protein or mRNA level, and could attenuate ROS and phospho-p65 NF-κB levels. Our results demonstrate that S100A1 can regulate the inflammatory response and oxidative stress in H9C2 cells via TLR4/ROS/NF-κB pathway. These findings provide an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response. © 2015 Royal Pharmaceutical Society.

  8. Thermoregulatory responses to exercise at a fixed rate of heat production are not altered by acute hypoxia

    PubMed Central

    Coombs, Geoff B.; Ravanelli, Nicholas; Imbeault, Pascal

    2017-01-01

    This study sought to assess the within-subject influence of acute hypoxia on exercise-induced changes in core temperature and sweating. Eight participants [1.75 (0.06) m, 70.2 (6.8) kg, 25 (4) yr, 54 (8) ml·kg−1·min−1] completed 45 min of cycling, once in normoxia (NORM; FIO2 = 0.21) and twice in hypoxia (HYP1/HYP2; FIO2= 0.13) at 34.4(0.2)°C, 46(3)% RH. These trials were designed to elicit 1) two distinctly different %V̇o2peak [NORM: 45 (8)% and HYP1: 62 (7)%] at the same heat production (Hprod) [NORM: 6.7 (0.6) W/kg and HYP1: 7.0 (0.5) W/kg]; and 2) the same %V̇o2peak [NORM: 45 (8)% and HYP2: 48 (5)%] with different Hprod [NORM: 6.7 (0.6) W/kg and HYP2: 5.5 (0.6) W/kg]. At a fixed %V̇o2peak, changes in rectal temperature (ΔTre) and changes in esophageal temperature (ΔTes) were greater at end-exercise in NORM [ΔTre: 0.76 (0.19)°C; ΔTes: 0.64 (0.22)°C] compared with HYP2 [ΔTre: 0.56 (0.22)°C, P < 0.01; ΔTes: 0.42 (0.21)°C, P < 0.01]. As a result of a greater Hprod (P < 0.01) in normoxia, and therefore evaporative heat balance requirements, to maintain a similar %V̇o2peak compared with hypoxia, mean local sweat rates (LSR) from the forearm, upper back, and forehead were greater (all P < 0.01) in NORM [1.10 (0.20) mg·cm−2·min−1] compared with HYP2 [0.71 (0.19) mg·cm−2·min−1]. However, at a fixed Hprod, ΔTre [0.75 (0.24)°C; P = 0.77] and ΔTes [0.63 (0.29)°C; P = 0.69] were not different in HYP1, compared with NORM. Likewise, mean LSR [1.11 (0.20) mg·cm−2·min−1] was not different (P = 0.84) in HYP1 compared with NORM. These data demonstrate, using a within-subjects design, that hypoxia does not independently influence thermoregulatory responses. Additionally, further evidence is provided to support that metabolic heat production, irrespective of %V̇o2peak, determines changes in core temperature and sweating during exercise. NEW & NOTEWORTHY Using a within-subject design, hypoxia does not independently alter core temperature

  9. Abnormal cardiac autonomic control in sickle cell disease following transient hypoxia.

    PubMed

    Sangkatumvong, Suvimol; Khoo, Michael C K; Coates, Thomas D

    2008-01-01

    Abnormalities in autonomic control in sickle cell anemia (SCA) patients have been reported by multiple researchers. However their potential causal association with sickle cell crisis remains unknown. We employed hypoxia, a known trigger to sickle cell crisis, to perturb the autonomic systems of the subjects. Cardiac autonomic control was non-invasively assessed by tracking the changes in heart rate variability (HRV) that occur following brief exposure to a hypoxia stimulus. Time varying spectral analysis of HRV was applied to estimate the cardiac autonomic response to the transient episode of hypoxia. The results demonstrate that cardiovascular autonomic response to hypoxia is substantially more sensitive in SCA than in normal controls. We also developed a model to compensate for the confounding effects of respiration on the HRV spectral indices by using the corresponding respiration signal to compensate for the respiratory correlated part of the HRV. This technique improved the resolution with which the effect of hypoxia on changes in HRV could be measured.

  10. Failure of systemic hypoxia to blunt α-adrenergic vasoconstriction in the human forearm

    PubMed Central

    Dinenno, Frank A; Joyner, Michael J; Halliwill, John R

    2003-01-01

    Systemic hypoxia in humans evokes forearm vasodilatation despite significant reflex increases in sympathetic vasoconstrictor nerve activity and noradrenaline spillover. We sought to determine whether post-junctional α-adrenergic vasoconstrictor responsiveness to endogenous noradrenaline release is blunted during systemic hypoxia. To do so, we conducted a two-part study in healthy young adults. In protocol 1, we measured forearm blood flow (FBF; venous occlusion plethysmography) and calculated the vascular conductance (FVC) responses to brachial artery infusions of two doses of tyramine (evokes endogenous noradrenaline release) in 10 adults during normoxia and mild systemic hypoxia (85 % O2 saturation; pulse oximetry of the earlobe). Systemic hypoxia evoked significant forearm vasodilatation as indicated by the increases in FBF and FVC (∼20–23 %; P < 0.05). The low and high doses of tyramine evoked significant reductions in FVC (vasoconstriction) that were similar in magnitude during normoxia (−29 ± 3 and −53 ± 4 %) and mild hypoxia (−35 ± 4 and −58 ± 3 %; P = 0.33). In protocol 2, forearm vasoconstrictor responses to the high dose of tyramine were determined in eight young adults during normoxia and during graded levels of systemic hypoxia (85, 80 and 75 % O2 saturation). The reductions in FVC were similar during normoxia (−59 ± 2 %) and the three levels of hypoxia (85 % O2 saturation, −64 ± 3 %; 80 % O2 saturation, −62 ± 1 %; 75 % O2 saturation, −61 ± 3 %; P = 0.37). In both protocols, the tyramine-induced increases in deep venous noradrenaline concentrations were similar during normoxia and all levels of hypoxia. Our results demonstrate that post-junctional α-adrenergic receptor vasoconstrictor responsiveness to endogenous noradrenaline release is not blunted during mild-to-moderate systemic hypoxia in healthy humans. PMID:12730336

  11. Long non-coding RNA GAS5 aggravates hypoxia injury in PC-12 cells via down-regulating miR-124.

    PubMed

    Hu, Xiaoli; Liu, Juan; Zhao, Gang; Zheng, Jiaping; Qin, Xia

    2018-05-08

    One important feature of cerebral ischemia is hypoxia injury in nerve cells. Growth arrest-specific transcript 5 (GAS5) is widely reported as a tumor suppressor gene; however, the investigations about its role in cerebrovascular disease are relatively rare. This study was aimed to explore the impact of GAS5 on hypoxia response in nervous cells. PC-12 cells were incubated under anoxic condition to induce hypoxia injury. Regulatory effects of GAS5 on miR-124 and miR-124 on ICAM-1 expression were assessed by qRT-PCR and/or Western blot. Targeting effect of miR-124 on ICAM-1 3'-untranslated regions (UTR) was evaluated through dual luciferase activity assay. The potential regulatory mechanism on hypoxia injury in PC-12 cells was assessed by detecting key elements of NF-κB and Notch signaling pathways using Western blot. GAS5 ectopic expression accentuated hypoxia injury in PC-12 cells. miR-124 expression was negatively regulated by GAS5 expression. Cells with overexpressions of GAS5 and miR-124 alleviated hypoxia injury as in compassion with cells only with GAS5 overexpression. ICAM-1 expression was negatively regulated by miR-124 expression. ICAM-1 was a functional target of miR-124. ICAM-1 overexpression aggravated hypoxia injury, but inversely, ICAM-1 silence diminished hypoxia damage. Besides, ICAM-1 expression was negatively related with activation of NF-κB and Notch pathways. GAS5-miR-124-ICAM-1 axis could regulate hypoxia injury in PC-12 cells. GAS5 might aggravate hypoxia injury via down-regulating miR-124, then up-regulating ICAM-1, and further enhancing activations of NF-κB and Notch pathways. © 2018 Wiley Periodicals, Inc.

  12. An oxidative DNA “damage” and repair mechanism localized in the VEGF promoter is important for hypoxia-induced VEGF mRNA expression

    PubMed Central

    Pastukh, Viktor; Roberts, Justin T.; Clark, David W.; Bardwell, Gina C.; Patel, Mita; Al-Mehdi, Abu-Bakr; Borchert, Glen M.

    2015-01-01

    In hypoxia, mitochondria-generated reactive oxygen species not only stimulate accumulation of the transcriptional regulator of hypoxic gene expression, hypoxia inducible factor-1 (Hif-1), but also cause oxidative base modifications in hypoxic response elements (HREs) of hypoxia-inducible genes. When the hypoxia-induced base modifications are suppressed, Hif-1 fails to associate with the HRE of the VEGF promoter, and VEGF mRNA accumulation is blunted. The mechanism linking base modifications to transcription is unknown. Here we determined whether recruitment of base excision DNA repair (BER) enzymes in response to hypoxia-induced promoter modifications was required for transcription complex assembly and VEGF mRNA expression. Using chromatin immunoprecipitation analyses in pulmonary artery endothelial cells, we found that hypoxia-mediated formation of the base oxidation product 8-oxoguanine (8-oxoG) in VEGF HREs was temporally associated with binding of Hif-1α and the BER enzymes 8-oxoguanine glycosylase 1 (Ogg1) and redox effector factor-1 (Ref-1)/apurinic/apyrimidinic endonuclease 1 (Ape1) and introduction of DNA strand breaks. Hif-1α colocalized with HRE sequences harboring Ref-1/Ape1, but not Ogg1. Inhibition of BER by small interfering RNA-mediated reduction in Ogg1 augmented hypoxia-induced 8-oxoG accumulation and attenuated Hif-1α and Ref-1/Ape1 binding to VEGF HRE sequences and blunted VEGF mRNA expression. Chromatin immunoprecipitation-sequence analysis of 8-oxoG distribution in hypoxic pulmonary artery endothelial cells showed that most of the oxidized base was localized to promoters with virtually no overlap between normoxic and hypoxic data sets. Transcription of genes whose promoters lost 8-oxoG during hypoxia was reduced, while those gaining 8-oxoG was elevated. Collectively, these findings suggest that the BER pathway links hypoxia-induced introduction of oxidative DNA modifications in promoters of hypoxia-inducible genes to transcriptional

  13. A Two-Component Assay for Hypoxia Incorporating Long-Term Nitroreduction and Short-Term DNA-Damage Allows Differentiation of the Three Hypoxia Sub-types.

    PubMed

    Koch, Cameron J

    2018-05-10

    Hypoxia in tumors has many well-characterized effects that are known to prevent optimal cancer treatment. Despite the existence of a large number of assays that have supported hypoxia as an important diagnostic, there is no routine clinical assay in use, and anti-hypoxia therapies have often not included parallel hypoxia measurements. Even with a functioning hypoxia assay, it is difficult to match the oxygen dependence of treatment resistance to that of the assay, and this mismatch can vary substantially from assay to assay and even from tumor to tumor [e.g., caused by endogenous variations in non-protein sulfhydryls (NPSH)]. An underlying concern is the current inability to measure the three types of hypoxia; in particular, cycling hypoxia can affect all aspects of detection and treatment strategy. Here we present data that help validate a new two-component hypoxia assay recently suggested by our laboratory. This assay incorporates the long-term bioreduction of the 2-nitroimidazole, EF5, and the short-term production of γ-H2AX (e.g., time of ionizing radiation exposure). The former can be calibrated to provide the average tissue pO 2 over the EF5 exposure time while the latter provides the combined sum of microenvironmental radiation response modifiers (e.g., oxygen and NPSH) at the time of irradiation. Importantly, formation of γ-H2AX is not dependent on blood flow, while EF5 binding is only minimally so, due to the rapid and extensive diffusion characteristics of lipophilic compounds. While both individual assays have their limitations, which are addressed in this article, their combination can dissect the type of hypoxia present. In particular, a mismatch between the two assays can directly detect cycling hypoxia in a therapeutically relevant manner. Preliminary use of this two-component assay in small PC3 tumors showed essentially no binding of EF5. Similarly, there were no tumor regions (for uniform irradiation with 12 Gy) with the low levels of γ-H2AX

  14. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade

    PubMed Central

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases. PMID:27069362

  15. Fleet behavior is responsive to a large-scale environmental disturbance: Hypoxia effects on the spatial dynamics of the northern Gulf of Mexico shrimp fishery

    PubMed Central

    Purcell, Kevin M.; Nance, James M.; Smith, Martin D.; Bennear, Lori S.

    2017-01-01

    The northwestern Gulf of Mexico shelf experiences one of the largest seasonal hypoxic zones in the western hemisphere. Hypoxia (dissolved oxygen, DO ≤ 2.0 mg·L-1) is most severe from May to August during the height of the Gulf shrimp fishery, but its effects on the fishery are not well known. Prior studies indicate that hypoxia alters the spatial dynamics of shrimp and other species through habitat loss and aggregation in nearby oxygenated refuge habitats. We hypothesized that hypoxia-induced changes in the distribution of shrimp also alter the spatial dynamics of the Gulf shrimp fleet. We integrated data on the geographic distribution of shrimp tows and bottom DO to evaluate the effects of hypoxia on spatial patterns in shrimping effort. Our analyses indicate that shrimping effort declines in low DO waters on both the Texas and Louisiana shelf, but that considerable effort still occurs in low DO waters off Louisiana, likely because riverine nutrients fuel both benthic production and low bottom DO in the same general regions. The response of the shrimp fleet to hypoxia on the Louisiana shelf was complex with shifts in effort inshore, offshore, westward, and eastward of the hypoxic zone, as well as to an oxygenated area between two hypoxia regimes associated with the Mississippi and the Atchafalaya River outflows. In contrast, effort on the Texas shelf mostly shifted offshore in response to low DO but also shifted inshore in some years. Spatial patterns in total shrimping effort were driven primarily by the number of shrimp tows, consistent with aggregation of the fleet outside of hypoxic waters, though tow duration also declined in low DO waters. Overall, our results demonstrate that hypoxia alters the spatial dynamics of the Gulf shrimp fishery with potential consequences for harvest interactions and the economic condition of the fishery. PMID:28837674

  16. Fleet behavior is responsive to a large-scale environmental disturbance: Hypoxia effects on the spatial dynamics of the northern Gulf of Mexico shrimp fishery.

    PubMed

    Purcell, Kevin M; Craig, J Kevin; Nance, James M; Smith, Martin D; Bennear, Lori S

    2017-01-01

    The northwestern Gulf of Mexico shelf experiences one of the largest seasonal hypoxic zones in the western hemisphere. Hypoxia (dissolved oxygen, DO ≤ 2.0 mg·L-1) is most severe from May to August during the height of the Gulf shrimp fishery, but its effects on the fishery are not well known. Prior studies indicate that hypoxia alters the spatial dynamics of shrimp and other species through habitat loss and aggregation in nearby oxygenated refuge habitats. We hypothesized that hypoxia-induced changes in the distribution of shrimp also alter the spatial dynamics of the Gulf shrimp fleet. We integrated data on the geographic distribution of shrimp tows and bottom DO to evaluate the effects of hypoxia on spatial patterns in shrimping effort. Our analyses indicate that shrimping effort declines in low DO waters on both the Texas and Louisiana shelf, but that considerable effort still occurs in low DO waters off Louisiana, likely because riverine nutrients fuel both benthic production and low bottom DO in the same general regions. The response of the shrimp fleet to hypoxia on the Louisiana shelf was complex with shifts in effort inshore, offshore, westward, and eastward of the hypoxic zone, as well as to an oxygenated area between two hypoxia regimes associated with the Mississippi and the Atchafalaya River outflows. In contrast, effort on the Texas shelf mostly shifted offshore in response to low DO but also shifted inshore in some years. Spatial patterns in total shrimping effort were driven primarily by the number of shrimp tows, consistent with aggregation of the fleet outside of hypoxic waters, though tow duration also declined in low DO waters. Overall, our results demonstrate that hypoxia alters the spatial dynamics of the Gulf shrimp fishery with potential consequences for harvest interactions and the economic condition of the fishery.

  17. Hypoxia promotes luteal cell death in bovine corpus luteum.

    PubMed

    Nishimura, Ryo; Komiyama, Junichi; Tasaki, Yukari; Acosta, Tomas J; Okuda, Kiyoshi

    2008-03-01

    Low oxygen caused by a decreasing blood supply is known to induce various responses of cells, including apoptosis. The present study was conducted to examine whether low-oxygen conditions (hypoxia) induce luteal cell apoptosis in cattle. Bovine midluteal cells incubated under hypoxia (3% O(2)) showed significantly more cell death than did those incubated under normoxia (20% O(2)) at 24 and 48 h of culture, and had significantly lower progesterone (P4) levels starting at 8 h. Characteristic features of apoptosis, such as shrunken nuclei and DNA fragmentation, were observed in cells cultured under hypoxia for 48 h. Hypoxia increased the mRNA expressions of BNIP3 and caspase 3 at 24 and 48 h of culture. Hypoxia had no significant effect on the expressions of BCL2 and BAX mRNA. Hypoxia also increased BNIP3 protein, and activated caspase-3. Treatment of P4 attenuated cell death, caspase-3 mRNA expression, and caspase-3 activity under hypoxia. Overall results of the present study indicate that hypoxia induces luteal cell apoptosis by enhancing the expression of proapoptotic protein, BNIP3, and by activating caspase-3, and that the induction of apoptosis by hypoxia is partially caused by a decrease in P4 production. Because hypoxia suppresses P4 synthesis in bovine luteal cells, we suggest that oxygen deficiency caused by a decreasing blood supply in bovine corpus luteum is one of the major factors contributing to both functional and structural luteolysis.

  18. Modulation of human sinus node function by systemic hypoxia

    NASA Technical Reports Server (NTRS)

    Eckberg, D. L.; Bastow, H., III; Scruby, A. E.

    1982-01-01

    The present study was conducted to determine whether bradycardia develops during systemic hypoxia in supine conscious human volunteers when respiratory frequency and tidal volume are maintained at constant levels. The obtained results suggest that mild hypoxia provokes cardioacceleration in humans, independent of changes of ventilation or baroreflex responsiveness. The earliest cardioacceleration is more prominent in the inspiratory than in the expiratory phase of respiration, and occurs with very small reductions of arterial oxygen saturation. Moderate systemic hypoxia dampens fluctuations of heart rate during the respiratory cycle.

  19. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Minamino, Tohru; Christou, Helen; Hsieh, Chung-Ming; Liu, Yuxiang; Dhawan, Vijender; Abraham, Nader G.; Perrella, Mark A.; Mitsialis, S. Alex; Kourembanas, Stella

    2001-07-01

    Chronic hypoxia causes pulmonary hypertension with smooth muscle cell proliferation and matrix deposition in the wall of the pulmonary arterioles. We demonstrate here that hypoxia also induces a pronounced inflammation in the lung before the structural changes of the vessel wall. The proinflammatory action of hypoxia is mediated by the induction of distinct cytokines and chemokines and is independent of tumor necrosis factor- signaling. We have previously proposed a crucial role for heme oxygenase-1 (HO-1) in protecting cardiomyocytes from hypoxic stress, and potent anti-inflammatory properties of HO-1 have been reported in models of tissue injury. We thus established transgenic mice that constitutively express HO-1 in the lung and exposed them to chronic hypoxia. HO-1 transgenic mice were protected from the development of both pulmonary inflammation as well as hypertension and vessel wall hypertrophy induced by hypoxia. Significantly, the hypoxic induction of proinflammatory cytokines and chemokines was suppressed in HO-1 transgenic mice. Our findings suggest an important protective function of enzymatic products of HO-1 activity as inhibitors of hypoxia-induced vasoconstrictive and proinflammatory pathways.

  20. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment

    PubMed Central

    Deep, Gagan; Panigrahi, Gati K.

    2017-01-01

    Prostate cancer (PCA) is the leading malignancy in men and the second leading cause of cancer-related deaths. Hypoxia (low O2 condition) is considered an early event in prostate carcinogenesis associated with an aggressive phenotype. In fact, clinically, hypoxia and hypoxia-related biomarkers are associated with treatment failure and disease progression. Hypoxia-inducible factor 1 (HIF-1) is the key factor that is activated under hypoxia, and mediates adaptation of cells to hypoxic conditions through regulating the expression of genes associated with angiogenesis, epithelial-to-mesenchymal transition (EMT), metastasis, survival, proliferation, metabolism, stemness, hormone-refractory progression, and therapeutic resistance. Besides HIF-1, several other signaling pathways including PI3K/Akt/mTOR, NADPH oxidase (NOX), Wnt/β-catenin, and Hedgehog are activated in cancer cells under hypoxic conditions, and also contribute in hypoxia-induced biological effects in HIF-1-dependent and -independent manners. Hypoxic cancer cells cause extensive changes in the tumor microenvironment both local and distant, and recent studies have provided ample evidence supporting the crucial role of nanosized vesicles “exosomes” in mediating hypoxia-induced tumor microenvironment remodeling. Exosomes’ role has been reported in hypoxia-induced angiogenesis, stemness, activation of cancer-associated fibroblasts (CAFs), and EMT. Together, existing literature suggests that hypoxia plays a predominant role in PCA growth and progression, and PCA could be effectively prevented and treated via targeting hypoxia/hypoxia-related signaling pathways. PMID:27279239

  1. Two-year temporal response of benthic macrofauna and sediments to hypoxia in a tropical semi-enclosed bay (Cienfuegos, Cuba).

    PubMed

    Díaz Asencio, Lisbet; Helguera, Yusmila; Fernández-Garcés, Raúl; Gómez-Batista, Miguel; Rosell, Guillermo; Hernández, Yurisbey; Pulido, Anabell; Armenteros, Maickel

    2016-03-01

    Hypoxia is the depletion of dissolved oxygen below 2 mg O(2)/L. Relatively few studies on hypoxia and its effects on benthic macrofauna have been done in tropical marine ecosystems. This study describes the temporal response of the water column, sediments and macrofauna to seasonal hypoxia in a semi-enclosed bay (Cienfuegos, Caribbean Sea). The Calisito site was sampled monthly from June 2010 until February 2012, yielding 21 sampling times. At each sampling event water and sediment samples were collected for measuring the abiotic variables (temperature, salinity, dissolved oxygen, nutrients, redox potential discontinuity, silt/clay and organic matter content) and macrofauna (abundance and species richness). Temperature and surface salinity followed a typical temporal pattern during the summer/rainy and the winter/dry periods. Salinity stratification occurred in the rainy period, lasting three months in 2010 and six months in 2011. The bottom water dissolved oxygen indicated hypoxic and anoxic events during the wet periods of 2010 and 2011 associated with salinity stratification, low hydrodynamics and oxidation of the accumulated organic matter. Over the study period, 817 individuals were collected and identified. Polychaetes were the dominant group in terms of abundance (57 % of total) followed by mollusks (41%). Hypoxia (and occasionally anoxia) caused strong deleterious effects on the abundance and species richness of macrofaunal communities in the study site. The most abundant polychaetes were opportunistic species with high tolerance to hypoxic conditions: Prionospio steenstrupi, Polydora sp.and Paraprionospio pinnata. Most of them colonized relatively fast once hypoxia ended. Persistent species such as Caecum pulchellum and Parvanachis obesa were present during hypoxia with fluctuating densities and apparently recover to higher abundances when normoxic conditions are re-established. Macoma tenta and Tellina consobrina colonized approximately 1-2 months later

  2. Intravenous Heroin Induces Rapid Brain Hypoxia and Hyperglycemia that Precede Brain Metabolic Response.

    PubMed

    Solis, Ernesto; Cameron-Burr, Keaton T; Shaham, Yavin; Kiyatkin, Eugene A

    2017-01-01

    Heroin use and overdose have increased in recent years as people transition from abusing prescription opiates to using the cheaper street drug. Despite a long history of research, many physiological effects of heroin and their underlying mechanisms remain unknown. Here, we used high-speed amperometry to examine the effects of intravenous heroin on oxygen and glucose levels in the nucleus accumbens (NAc) in freely-moving rats. Heroin within the dose range of human drug use and rat self-administration (100-200 μg/kg) induced a rapid, strong, but transient drop in NAc oxygen that was followed by a slower and more prolonged rise in glucose. Using oxygen recordings in the subcutaneous space, a densely-vascularized site with no metabolic activity, we confirmed that heroin-induced brain hypoxia results from decreased blood oxygen, presumably due to drug-induced respiratory depression. Respiratory depression and the associated rise in CO 2 levels appear to drive tonic increases in NAc glucose via local vasodilation. Heroin-induced changes in oxygen and glucose were rapid and preceded the slow and prolonged increase in brain temperature and were independent of enhanced intra-brain heat production, an index of metabolic activation. A very high heroin dose (3.2 mg/kg), corresponding to doses used by experienced drug users in overdose conditions, caused strong and prolonged brain hypoxia and hyperglycemia coupled with robust initial hypothermia that preceded an extended hyperthermic response. Our data suggest heroin-induced respiratory depression as a trigger for brain hypoxia, which leads to hyperglycemia, both of which appear independent of subsequent changes in brain temperature and metabolic neural activity.

  3. Intravenous Heroin Induces Rapid Brain Hypoxia and Hyperglycemia that Precede Brain Metabolic Response

    PubMed Central

    Cameron-Burr, Keaton T.; Shaham, Yavin

    2017-01-01

    Heroin use and overdose have increased in recent years as people transition from abusing prescription opiates to using the cheaper street drug. Despite a long history of research, many physiological effects of heroin and their underlying mechanisms remain unknown. Here, we used high-speed amperometry to examine the effects of intravenous heroin on oxygen and glucose levels in the nucleus accumbens (NAc) in freely-moving rats. Heroin within the dose range of human drug use and rat self-administration (100–200 μg/kg) induced a rapid, strong, but transient drop in NAc oxygen that was followed by a slower and more prolonged rise in glucose. Using oxygen recordings in the subcutaneous space, a densely-vascularized site with no metabolic activity, we confirmed that heroin-induced brain hypoxia results from decreased blood oxygen, presumably due to drug-induced respiratory depression. Respiratory depression and the associated rise in CO2 levels appear to drive tonic increases in NAc glucose via local vasodilation. Heroin-induced changes in oxygen and glucose were rapid and preceded the slow and prolonged increase in brain temperature and were independent of enhanced intra-brain heat production, an index of metabolic activation. A very high heroin dose (3.2 mg/kg), corresponding to doses used by experienced drug users in overdose conditions, caused strong and prolonged brain hypoxia and hyperglycemia coupled with robust initial hypothermia that preceded an extended hyperthermic response. Our data suggest heroin-induced respiratory depression as a trigger for brain hypoxia, which leads to hyperglycemia, both of which appear independent of subsequent changes in brain temperature and metabolic neural activity. PMID:28593192

  4. Brain stem NO modulates ventilatory acclimatization to hypoxia in mice.

    PubMed

    El Hasnaoui-Saadani, R; Alayza, R Cardenas; Launay, T; Pichon, A; Quidu, P; Beaudry, M; Léon-Velarde, F; Richalet, J P; Duvallet, A; Favret, F

    2007-11-01

    The objective of our study was to assess the role of neuronal nitric oxide synthase (nNOS) in the ventilatory acclimatization to hypoxia. We measured the ventilation in acclimatized Bl6/CBA mice breathing 21% and 8% oxygen, used a nNOS inhibitor, and assessed the expression of N-methyl-d-aspartate (NMDA) glutamate receptor and nNOS (mRNA and protein). Two groups of Bl6/CBA mice (n = 60) were exposed during 2 wk either to hypoxia [barometric pressure (PB) = 420 mmHg] or normoxia (PB = 760 mmHg). At the end of exposure the medulla was removed to measure the concentration of nitric oxide (NO) metabolites, the expression of NMDA-NR1 receptor, and nNOS by real-time RT-PCR and Western blot. We also measured the ventilatory response [fraction of inspired O(2) (Fi(O(2))) = 0.21 and 0.08] before and after S-methyl-l-thiocitrulline treatment (SMTC, nNOS inhibitor, 10 mg/kg ip). Chronic hypoxia caused an increase in ventilation that was reduced after SMTC treatment mainly through a decrease in tidal volume (Vt) in normoxia and in acute hypoxia. However, the difference observed in the magnitude of acute hypoxic ventilatory response [minute ventilation (Ve) 8% - Ve 21%] in acclimatized mice was not different. Acclimatization to hypoxia induced a rise in NMDA receptor as well as in nNOS and NO production. In conclusion, our study provides evidence that activation of nNOS is involved in the ventilatory acclimatization to hypoxia in mice but not in the hypoxic ventilatory response (HVR) while the increased expression of NMDA receptor expression in the medulla of chronically hypoxic mice plays a role in acute HVR. These results are therefore consistent with central nervous system plasticity, partially involved in ventilatory acclimatization to hypoxia through nNOS.

  5. Hypoxia-based strategies for regenerative dentistry-Views from the different dental fields.

    PubMed

    Müller, Anna Sonja; Janjić, Klara; Lilaj, Bledar; Edelmayer, Michael; Agis, Hermann

    2017-09-01

    The understanding of the cell biological processes underlying development and regeneration of oral tissues leads to novel regenerative approaches. Over the past years, knowledge on key roles of the hypoxia-based response has become more profound. Based on these findings, novel regenerative approaches for dentistry are emerging, which target cellular oxygen sensors. These approaches include hypoxia pre-conditioning and pharmacologically simulated hypoxia. The increase in studies on hypoxia and hypoxia-based strategies in regenerative dentistry highlights the growing attention to hypoxia's role in regeneration and its underlying biology, as well as its application in a therapeutic setting. In this narrative review, we present the current knowledge on the role of hypoxia in oral tissues and review the proposed hypoxia-based approaches in different fields of dentistry, including endodontics, orthodontics, periodontics, and oral surgery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Gene Expression Profiling of the Hypoxia Signaling Pathway in Hypoxia-Inducible Factor 1α Null Mouse Embryonic Fibroblasts

    PubMed Central

    Vengellur, Ajith; Woods, Barbara G.; Ryan, Heather E.; Johnson, Randall S.; Lapres, John J.

    2003-01-01

    Hypoxia is defined as a deficiency of oxygen reaching the tissues of the body, and it plays a critical role in development and pathological conditions, such as cancer. Once tumors outgrow their blood supply, their central portion becomes hypoxic and the tumor stimulates angiogenesis through the activation of the hypoxia-inducible factors (HIFs). HIFs are transcription factors that are regulated in an oxygen-dependent manner by a group of prolyl hydroxylases (known as PHDs or HPHs). Our understanding of hypoxia signaling is limited by our incomplete knowledge of HIF target genes. cDNA microarrays and a cell line lacking a principal HIF protein, HIF1α, were used to identify a more complete set of hypoxia-regulated genes. The microarrays identified a group of 286 clones that were significantly influenced by hypoxia and 54 of these were coordinately regulated by cobalt chloride. The expression profile of HIF1α −/− cells also identified a group of downregulated genes encoding enzymes involved in protecting cells from oxidative stress, offering an explanation for the increased sensitivity of HIF1α −/− cells to agents that promote this type of response. The microarray studies confirmed the hypoxia-induced expression of the HIF regulating prolyl hydroxylase, PHD2. An analysis of the members of the PHD family revealed that they are differentially regulated by cobalt chloride and hypoxia. These results suggest that HIF1α is the predominant isoform in fibroblasts and that it regulates a wide battery of genes critical for normal cellular function and survival under various stresses. PMID:14686790

  7. Effects of Five Nights under Normobaric Hypoxia on Sleep Quality.

    PubMed

    Hoshikawa, Masako; Uchida, Sunao; Osawa, Takuya; Eguchi, Kazumi; Arimitsu, Takuma; Suzuki, Yasuhiro; Kawahara, Takashi

    2015-07-01

    The purpose of this study was to evaluate the effects of five nights' sleep under normobaric hypoxia on ventilatory acclimatization and sleep quality. Seven men initially slept for six nights under normoxia and then for five nights under normobaric hypoxia equivalent to a 2000-m altitude. Nocturnal polysomnograms (PSGs), arterial blood oxygen saturation (SpO2), and respiratory events were recorded on the first and fifth nights under both conditions. The hypoxic ventilatory response (HVR), hypercapnic ventilatory response (HCVR), and resting end-tidal CO2 (resting PETCO2) were measured three times during the experimental period. The duration of slow-wave sleep (SWS: stage N3) and the whole-night delta (1-3 Hz) power of nonrapid eye movement (NREM) sleep EEG decreased on the first night under hypoxia. This hypoxia-induced sleep quality deterioration on the first night was accompanied by a lower mean and minimum SpO2, a longer time spent with SpO2 below 90% (<90% SpO2 time), and more episodes of respiratory disturbance. On the fifth night, the SWS duration and whole-night delta power did not differ between the conditions. Although the mean SpO2 under hypoxia was still lower than under normoxia, the minimum SpO2 increased, and the <90% SpO2 time and number of episodes of respiratory disturbance decreased during the five nights under hypoxia. The HVR increased and resting PETCO2 decreased after five nights under hypoxia. The results suggest that five nights under hypoxia improves the sleep quality. This may be derived from improvements of respiratory disturbances, the minimum SpO2, and <90% SpO2 time.

  8. Hypoxia induces mucin expression and secretion in human bronchial epithelial cells.

    PubMed

    Zhou, Xiangdong; Tu, Jing; Li, Qi; Kolosov, Victor P; Perelman, Juliy M

    2012-12-01

    The study objective was to investigate the role of hypoxia-inducible factor 1 (HIF-1) in the transcriptional activation of MUC5AC in human bronchial epithelial (HBE) 16 cells under hypoxia conditions and the effect of hypoxia on expression and secretion of MUC5AC. Cells were incubated in hypoxia medium. Serial deletions or mutations of the MUC5AC promoter were cloned in the reporter pGL3-basic plasmid (Promega Biotech Co, Ltd, Beijing, China). These reporter plasmids were cotransfected with HIF-1α small interfering RNA. Hypoxia markedly increased the level of MUC5AC secretion and the transcriptional activity of MUC5AC promoters. Western blot analysis showed that HIF-1α and MUC5AC proteins were strongly increased after HBE16 cells were exposed to hypoxic conditions. Treatment of HBE16 cells with HIF-1α inhibitor (YC-1) or HIF-1α small interfering RNA significantly inhibited the expression of HIF-1α and MUC5AC, and the secretion of MUC5AC. Depletion of the promoter sequence did not reduce the MUC5AC promoter activity to hypoxia. Luciferase assay indicated that HRE in the MUC5AC promoter was in the region from -120 to +54. Promoter sequence analysis showed that 1 HRE site at -65 plays an important role in hypoxia activation of the MUC5AC. The inactivation of the HRE site using site-directed mutagenesis led to the complete loss of induction by hypoxia, which further confirmed the key role of the HRE site. MUC5AC expression and secretion are upregulated in response to hypoxia. The HRE site at -65 in the MUC5AC promoter and the HIF-1α are the major regulators for the cellular response against hypoxia in human bronchial epithelial cells. Copyright © 2012 Mosby, Inc. All rights reserved.

  9. Guinea Pig as a Model to Study the Carotid Body Mediated Chronic Intermittent Hypoxia Effects.

    PubMed

    Docio, Inmaculada; Olea, Elena; Prieto-LLoret, Jesus; Gallego-Martin, Teresa; Obeso, Ana; Gomez-Niño, Angela; Rocher, Asuncion

    2018-01-01

    Clinical and experimental evidence indicates a positive correlation between chronic intermittent hypoxia (CIH), increased carotid body (CB) chemosensitivity, enhanced sympatho-respiratory coupling and arterial hypertension and cardiovascular disease. Several groups have reported that both the afferent and efferent arms of the CB chemo-reflex are enhanced in CIH animal models through the oscillatory CB activation by recurrent hypoxia/reoxygenation episodes. Accordingly, CB ablation or denervation results in the reduction of these effects. To date, no studies have determined the effects of CIH treatment in chemo-reflex sensitization in guinea pig, a rodent with a hypofunctional CB and lacking ventilatory responses to hypoxia. We hypothesized that the lack of CB hypoxia response in guinea pig would suppress chemo-reflex sensitization and thereby would attenuate or eliminate respiratory, sympathetic and cardiovascular effects of CIH treatment. The main purpose of this study was to assess if guinea pig CB undergoes overactivation by CIH and to correlate CIH effects on CB chemoreceptors with cardiovascular and respiratory responses to hypoxia. We measured CB secretory activity, ventilatory parameters, systemic arterial pressure and sympathetic activity, basal and in response to acute hypoxia in two groups of animals: control and 30 days CIH exposed male guinea pigs. Our results indicated that CIH guinea pig CB lacks activity elicited by acute hypoxia measured as catecholamine (CA) secretory response or intracellular calcium transients. Plethysmography data showed that only severe hypoxia (7% O 2 ) and hypercapnia (5% CO 2 ) induced a significant increased ventilatory response in CIH animals, together with higher oxygen consumption. Therefore, CIH exposure blunted hyperventilation to hypoxia and hypercapnia normalized to oxygen consumption. Increase in plasma CA and superior cervical ganglion CA content was found, implying a CIH induced sympathetic hyperactivity. CIH

  10. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Hong; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012; Wu, Xinyi, E-mail: xywu8868@163.com

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cellsmore » has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response

  11. Sulforaphane reduces molecular response to hypoxia in ovarian tumor cells independently of their resistance to chemotherapy.

    PubMed

    Pastorek, Michal; Simko, Veronika; Takacova, Martina; Barathova, Monika; Bartosova, Maria; Hunakova, Luba; Sedlakova, Olga; Hudecova, Sona; Krizanova, Olga; Dequiedt, Franck; Pastorekova, Silvia; Sedlak, Jan

    2015-07-01

    One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.

  12. Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats.

    PubMed

    Taylor, Natalie C; Li, Aihua; Nattie, Eugene E

    2005-07-15

    Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor (5-HT1A) agonist (R)-(+)-8-hydroxy-2(di-n-propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 mM DPAT into the MRR significantly decreased absolute ventilation values(VE) during 7% CO2 breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume (VT) and not in frequency (f), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 mM) changed room air breathing pattern by increasing f and decreasing VT. As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO2 during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 mM DPAT into the MRR did not change the ventilatory response to 10% O2. Additionally, 10 and 30 mM DPAT MRR microdialysis decreased body temperature, and 30 mM DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT1A receptors are also involved in thermoregulation and arousal.

  13. The Effect of Hypoxia on Mesenchymal Stem Cell Biology

    PubMed Central

    Ejtehadifar, Mostafa; Shamsasenjan, Karim; Movassaghpour, Aliakbar; Akbarzadehlaleh, Parvin; Dehdilani, Nima; Abbasi, Parvaneh; Molaeipour, Zahra; Saleh, Mahshid

    2015-01-01

    Although physiological and pathological role of hypoxia have been appreciated in mammalians for decades however the cellular biology of hypoxia more clarified in the past 20 years. Discovery of the transcription factor hypoxia-inducible factor (HIF)-1, in the 1990s opened a new window to investigate the mechanisms behind hypoxia. In different cellular contexts HIF-1 activation show variable results by impacting various aspects of cell biology such as cell cycle, apoptosis, differentiation and etc. Mesenchymal stem cells (MSC) are unique cells which take important role in tissue regeneration. They are characterized by self-renewal capacity, multilineage potential, and immunosuppressive property. Like so many kind of cells, hypoxia induces different responses in MSCs by HIF- 1 activation. The activation of this molecule changes the growth, multiplication, differentiation and gene expression profile of MSCs in their niche by a complex of signals. This article briefly discusses the most important effects of hypoxia in growth kinetics, signalling pathways, cytokine secretion profile and expression of chemokine receptors in different conditions. PMID:26236651

  14. The geochemical proxies for the eutrophic and hypoxia in the Changjiang estuary: evidence from sedimentary records

    NASA Astrophysics Data System (ADS)

    Xuwen, F.

    2013-12-01

    Three cores were selected in the Changjiang Estuary to study potential hundrend-years eutrophication and hypoxia. The sediment record in the Changjiang Estuary mud area (CEMA) within the region of pronounced hypoxia showed that an increase in TOC (21%), biomarkers (141%) and δ13 Corg (1.6‰PDB ) occurred since 1950s and a marked increase since 1970s. Some redox sensitive elements (RSEs) have been enriched significantly since the late 1960s to 1970s, the rates of Mo/Al, Cd/Al and As/Al increased about 83%, 73% and 50% respectively. And the contents of some biogenic elements also increased since the late 1960s, e.g. Ca(129%), Sr(65%) and P(38%) respectively. For the core sediment in the Cheju Island mud area (SCIMA) outside the hypoxia region, the organic geochemical indicators (TOC, biomarkers and δ13Corg ) increased in difference degrees before 1950s~1970s and then were almost the constant. The RSEs were controlled by 'grain size effects' which indicated no hypoxia occurred. For the core sediment in the Zhejiang coastal mud area (ZCMA) within the region of milder hypoxia, the distribution of biomarkers is highly similar to the CEMA, but the other indictactors such as δ13 Corg et al.were different from the above two cores. Productivity in the SCIMA have been mainly influenced by climate ocean circulation changes over the last 100 years. Productivities in the hypoxia areas were corresponding with the fertilizer consumption and high nutrient inputs from the Changjiang River, which stimulated the algae (e g. brassicasterol, dinosterol) blooming and resulted an enrichment of organic matter. Hypoxia invoked organic matter preserved in the sediment. This study concluded that biomarkers in sediment could be as the eutrophic proxies in the Changjiang Estuary and its adjacent region, and δ13 Corg, RSEs and biogenic elements could be as the proxies to trace or reconstruct history of eutrophication and hypoxia in the CEMA.

  15. Progressive hypoxia decouples activity and aerobic performance of skate embryos

    PubMed Central

    Di Santo, Valentina; Tran, Anna H.; Svendsen, Jon C.

    2016-01-01

    Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, Scrit). Below Scrit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation. PMID:27293746

  16. Progressive hypoxia decouples activity and aerobic performance of skate embryos.

    PubMed

    Di Santo, Valentina; Tran, Anna H; Svendsen, Jon C

    2016-01-01

    Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, S crit). Below S crit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation.

  17. Expression of EGFR Under Tumor Hypoxia: Identification of a Subpopulation of Tumor Cells Responsible for Aggressiveness and Treatment Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoogsteen, Ilse J., E-mail: i.hoogsteen@rther.umcn.nl; Marres, Henri A.M.; Hoogen, Franciscus J.A. van den

    2012-11-01

    Purpose: Overexpression of epidermal growth factor receptor (EGFR) and tumor hypoxia have been shown to correlate with worse outcome in several types of cancer including head-and-neck squamous cell carcinoma. Little is known about the combination and possible interactions between the two phenomena. Methods and Materials: In this study, 45 cases of histologically confirmed squamous cell carcinomas of the head and neck were analyzed. All patients received intravenous infusions of the exogenous hypoxia marker pimonidazole prior to biopsy. Presence of EGFR, pimonidazole binding, and colocalization between EGFR and tumor hypoxia were examined using immunohistochemistry. Results: Of all biopsies examined, respectively, 91%more » and 60% demonstrated EGFR- and pimonidazole-positive areas. A weak but significant association was found between the hypoxic fractions of pimonidazole (HFpimo) and EGFR fractions (F-EGFR) and between F-EGFR and relative vascular area. Various degrees of colocalization between hypoxia and EGFR were found, increasing with distance from the vasculature. A high fraction of EGFR was correlated with better disease-free and metastasis-free survival, whereas a high degree of colocalization correlated with poor outcome. Conclusions: Colocalization of hypoxia and EGFR was demonstrated in head-and-neck squamous cell carcinomas, predominantly at longer distances from vessels. A large amount of colocalization was associated with poor outcome, which points to a survival advantage of hypoxic cells that are also able to express EGFR. This subpopulation of tumor cells might be indicative of tumor aggressiveness and be partly responsible for treatment resistance.« less

  18. Hypoxia decreases creatine uptake in cardiomyocytes, while creatine supplementation enhances HIF activation.

    PubMed

    Santacruz, Lucia; Arciniegas, Antonio Jose Luis; Darrabie, Marcus; Mantilla, Jose G; Baron, Rebecca M; Bowles, Dawn E; Mishra, Rajashree; Jacobs, Danny O

    2017-08-01

    Creatine (Cr), phosphocreatine (PCr), and creatine kinases (CK) comprise an energy shuttle linking ATP production in mitochondria with cellular consumption sites. Myocytes cannot synthesize Cr: these cells depend on uptake across the cell membrane by a specialized creatine transporter (CrT) to maintain intracellular Cr levels. Hypoxia interferes with energy metabolism, including the activity of the creatine energy shuttle, and therefore affects intracellular ATP and PCr levels. Here, we report that exposing cultured cardiomyocytes to low oxygen levels rapidly diminishes Cr transport by decreasing V max and K m Pharmacological activation of AMP-activated kinase (AMPK) abrogated the reduction in Cr transport caused by hypoxia. Cr supplementation increases ATP and PCr content in cardiomyocytes subjected to hypoxia, while also significantly augmenting the cellular adaptive response to hypoxia mediated by HIF-1 activation. Our results indicate that: (1) hypoxia reduces Cr transport in cardiomyocytes in culture, (2) the cytoprotective effects of Cr supplementation are related to enhanced adaptive physiological responses to hypoxia mediated by HIF-1, and (3) Cr supplementation increases the cellular ATP and PCr content in RNCMs exposed to hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. Thermoregulatory responses to exercise at a fixed rate of heat production are not altered by acute hypoxia.

    PubMed

    Coombs, Geoff B; Cramer, Matthew N; Ravanelli, Nicholas; Imbeault, Pascal; Jay, Ollie

    2017-05-01

    This study sought to assess the within-subject influence of acute hypoxia on exercise-induced changes in core temperature and sweating. Eight participants [1.75 (0.06) m, 70.2 (6.8) kg, 25 (4) yr, 54 (8) ml·kg -1 ·min -1 ] completed 45 min of cycling, once in normoxia (NORM; [Formula: see text] = 0.21) and twice in hypoxia (HYP1/HYP2; [Formula: see text]= 0.13) at 34.4(0.2)°C, 46(3)% RH. These trials were designed to elicit 1 ) two distinctly different %V̇o 2peak [NORM: 45 (8)% and HYP1: 62 (7)%] at the same heat production (H prod ) [NORM: 6.7 (0.6) W/kg and HYP1: 7.0 (0.5) W/kg]; and 2 ) the same %V̇o 2peak [NORM: 45 (8)% and HYP2: 48 (5)%] with different H prod [NORM: 6.7 (0.6) W/kg and HYP2: 5.5 (0.6) W/kg]. At a fixed %V̇o 2peak , changes in rectal temperature (ΔT re ) and changes in esophageal temperature (ΔT es ) were greater at end-exercise in NORM [ΔT re : 0.76 (0.19)°C; ΔT es : 0.64 (0.22)°C] compared with HYP2 [ΔT re : 0.56 (0.22)°C, P < 0.01; ΔT es : 0.42 (0.21)°C, P < 0.01]. As a result of a greater H prod ( P < 0.01) in normoxia, and therefore evaporative heat balance requirements, to maintain a similar %V̇o 2peak compared with hypoxia, mean local sweat rates (LSR) from the forearm, upper back, and forehead were greater (all P < 0.01) in NORM [1.10 (0.20) mg·cm -2 ·min -1 ] compared with HYP2 [0.71 (0.19) mg·cm -2 ·min -1 ]. However, at a fixed H prod , ΔT re [0.75 (0.24)°C; P = 0.77] and ΔT es [0.63 (0.29)°C; P = 0.69] were not different in HYP1, compared with NORM. Likewise, mean LSR [1.11 (0.20) mg·cm -2 ·min -1 ] was not different ( P = 0.84) in HYP1 compared with NORM. These data demonstrate, using a within-subjects design, that hypoxia does not independently influence thermoregulatory responses. Additionally, further evidence is provided to support that metabolic heat production, irrespective of %V̇o 2peak , determines changes in core temperature and sweating during exercise. NEW & NOTEWORTHY Using a within

  20. Aspergillus fumigatus mitochondrial electron transport chain mediates oxidative stress homeostasis, hypoxia responses and fungal pathogenesis.

    PubMed

    Grahl, Nora; Dinamarco, Taisa Magnani; Willger, Sven D; Goldman, Gustavo H; Cramer, Robert A

    2012-04-01

    We previously observed that hypoxia is an important component of host microenvironments during pulmonary fungal infections. However, mechanisms of fungal growth in these in vivo hypoxic conditions are poorly understood. Here, we report that mitochondrial respiration is active in hypoxia (1% oxygen) and critical for fungal pathogenesis. We generated Aspergillus fumigatus alternative oxidase (aoxA) and cytochrome C (cycA) null mutants and assessed their ability to tolerate hypoxia, macrophage killing and virulence. In contrast to ΔaoxA, ΔcycA was found to be significantly impaired in conidia germination, growth in normoxia and hypoxia, and displayed attenuated virulence. Intriguingly, loss of cycA results in increased levels of AoxA activity, which results in increased resistance to oxidative stress, macrophage killing and long-term persistence in murine lungs. Thus, our results demonstrate a previously unidentified role for fungal mitochondrial respiration in the pathogenesis of aspergillosis, and lay the foundation for future research into its role in hypoxia signalling and adaptation. © 2012 Blackwell Publishing Ltd.

  1. Cutaneous Microvascular Blood Flow and Reactivity in Hypoxia

    PubMed Central

    Treml, Benedikt; Kleinsasser, Axel; Stadlbauer, Karl-Heinz; Steiner, Iris; Pajk, Werner; Pilch, Michael; Burtscher, Martin; Knotzer, Hans

    2018-01-01

    As is known, hypoxia leads to an increase in microcirculatory blood flow of the skin in healthy volunteers. In this pilot study, we investigated microcirculatory blood flow and reactive hyperemia of the skin in healthy subjects in normobaric hypoxia. Furthermore, we examined differences in microcirculation between hypoxic subjects with and without short-term acclimatization, whether or not skin microvasculature can acclimatize. Fourty-six healthy persons were randomly allocated to either short-term acclimatization using intermittent hypoxia for 1 h over 7 days at an FiO2 0.126 (treatment, n = 23) or sham short-term acclimatization for 1 h over 7 days at an FiO2 0.209 (control, n = 23). Measurements were taken in normoxia and at 360 and 720 min during hypoxia (FiO2 0.126). Microcirculatory cutaneous blood flow was assessed with a laser Doppler flowmeter on the forearm. Reactive hyperemia was induced by an ischemic stimulus. Measurements included furthermore hemodynamics, blood gas analyses and blood lactate. Microcirculatory blood flow increased progressively during hypoxia (12.3 ± 7.1–19.0 ± 8.1 perfusion units; p = 0.0002) in all subjects. The magnitude of the reactive hyperemia was diminished during hypoxia (58.2 ± 14.5–40.3 ± 27.4 perfusion units; p = 0.0003). Short-term acclimatization had no effect on microcirculatory blood flow. When testing for a hyperemic response of the skin's microcirculation we found a diminished signal in hypoxia, indicative for a compromised auto-regulative circulatory capacity. Furthermore, hypoxic short-term acclimatization did not affect cutaneous microcirculatory blood flow. Seemingly, circulation of the skin was unable to acclimatize using a week-long short-term acclimatization protocol. A potential limitation of our study may be the 7 days between acclimatization and the experimental test run. However, there is evidence that the hypoxic ventilatory response, an indicator of acclimatization, is increased for 1 week after

  2. Lymphoidal involution and delayed homograft rejection in hypoxia-exposed mice.

    NASA Technical Reports Server (NTRS)

    Kmetz, J. M.; Anthony, A.

    1972-01-01

    Investigation of the relationship between histologic and cytochemical response patterns of the thymus, spleen, and lymph nodes of mice exposed to moderate hypoxia (380 mm Hg), and study, by histologic analysis, of the effect of hypoxia exposure on the skin homograft reaction used as an index of immunologic potential. The results obtained include the finding that functional changes in lymphatic organs occur during early weeks of hypoxia acclimation and that these changes probably reduce the ability of an animal to react to an immunological challenge.

  3. Size restricted silymarin suspension evokes integrated adaptive response against acute hypoxia exposure in rat lung.

    PubMed

    Paul, Subhojit; Arya, Aditya; Gangwar, Anamika; Bhargava, Kalpana; Ahmad, Yasmin

    2016-07-01

    Despite its extraordinary antioxidant capacity, the clinical usage of silymarin has remained restricted to amelioration of hepatic pathology. Perhaps its low bioavailability and uneven bio-distribution, owing to its poor aqueous solubility, are two main causes that have dampened the clinical applicability and scope of this preparation. We took these two challenges and suggested an unexplored application of silymarin. Apart from liver, two of the most susceptible vital organs at the highest risk of oxidative stress are brain and lung, especially during reduced oxygen saturation (hypoxia) at anatomical level. Hypoxia causes excess generation of radicals primarily in the lungs as it is the first organ at the interphase of atmosphere and organism making it the most prone and vulnerable to oxidative stress and the first responder against hypobaric hypoxia. As our first objective, we improved the silymarin formulation by restricting its size to the lower threshold and then successfully tested the prophylactic and therapeutic action in rat lung challenged with simulated hypobaric hypoxia. After dose optimization, we observed that 50mg/kg BW silymarin as size restricted and homogenous aqueous suspension successfully minimized the reactive oxygen species and augmented the antioxidant defense by significant upregulation of catalase and superoxide dismutase and reduced glutathione. Moreover, the well-established hypoxia markers and proteins related to hypoxia adaptability, hif1a and VEGF were differentially regulated conferring significant reduction in the inflammation caused by hypobaric hypoxia. We therefore report,the unexplored potential benefits of silymarin for preventing high altitude associated pathophysiology further paving its road to clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Inhibition of hypoxia-associated response and kynurenine production in response to hyperbaric oxygen as mechanisms involved in protection against experimental cerebral malaria.

    PubMed

    Bastos, Marcele F; Kayano, Ana Carolina A V; Silva-Filho, João Luiz; Dos-Santos, João Conrado K; Judice, Carla; Blanco, Yara C; Shryock, Nathaniel; Sercundes, Michelle K; Ortolan, Luana S; Francelin, Carolina; Leite, Juliana A; Oliveira, Rafaella; Elias, Rosa M; Câmara, Niels O S; Lopes, Stefanie C P; Albrecht, Letusa; Farias, Alessandro S; Vicente, Cristina P; Werneck, Claudio C; Giorgio, Selma; Verinaud, Liana; Epiphanio, Sabrina; Marinho, Claudio R F; Lalwani, Pritesh; Amino, Rogerio; Aliberti, Julio; Costa, Fabio T M

    2018-03-20

    Cerebral malaria (CM) is a multifactorial syndrome involving an exacerbated proinflammatory status, endothelial cell activation, coagulopathy, hypoxia, and accumulation of leukocytes and parasites in the brain microvasculature. Despite significant improvements in malaria control, 15% of mortality is still observed in CM cases, and 25% of survivors develop neurologic sequelae for life-even after appropriate antimalarial therapy. A treatment that ameliorates CM clinical signs, resulting in complete healing, is urgently needed. Previously, we showed a hyperbaric oxygen (HBO)-protective effect against experimental CM. Here, we provide molecular evidence that HBO targets brain endothelial cells by decreasing their activation and inhibits parasite and leukocyte accumulation, thus improving cerebral microcirculatory blood flow. HBO treatment increased the expression of aryl hydrocarbon receptor over hypoxia-inducible factor 1-α (HIF-1α), an oxygen-sensitive cytosolic receptor, along with decreased indoleamine 2,3-dioxygenase 1 expression and kynurenine levels. Moreover, ablation of HIF-1α expression in endothelial cells in mice conferred protection against CM and improved survival. We propose that HBO should be pursued as an adjunctive therapy in CM patients to prolong survival and diminish deleterious proinflammatory reaction. Furthermore, our data support the use of HBO in therapeutic strategies to improve outcomes of non-CM disorders affecting the brain.-Bastos, M. F., Kayano, A. C. A. V., Silva-Filho, J. L., Dos-Santos, J. C. K., Judice, C., Blanco, Y. C., Shryock, N., Sercundes, M. K., Ortolan, L. S., Francelin, C., Leite, J. A., Oliveira, R., Elias, R. M., Câmara, N. O. S., Lopes, S. C. P., Albrecht, L., Farias, A. S., Vicente, C. P., Werneck, C. C., Giorgio, S., Verinaud, L., Epiphanio, S., Marinho, C. R. F., Lalwani, P., Amino, R., Aliberti, J., Costa, F. T. M. Inhibition of hypoxia-associated response and kynurenine production in response to hyperbaric oxygen

  5. Tyrosine hydroxylase expression and activity in the rat brain: differential regulation after long-term intermittent or sustained hypoxia.

    PubMed

    Gozal, Evelyne; Shah, Zahoor A; Pequignot, Jean-Marc; Pequignot, Jacqueline; Sachleben, Leroy R; Czyzyk-Krzeska, Maria F; Li, Richard C; Guo, Shang-Z; Gozal, David

    2005-08-01

    Tyrosine hydroxylase, a hypoxia-regulated gene, may be involved in tissue adaptation to hypoxia. Intermittent hypoxia, a characteristic feature of sleep apnea, leads to significant memory deficits, as well as to cortex and hippocampal apoptosis that are absent after sustained hypoxia. To examine the hypothesis that sustained and intermittent hypoxia induce different catecholaminergic responses, changes in tyrosine hydroxylase mRNA, protein expression, and activity were compared in various brain regions of male rats exposed for 6 h, 1 day, 3 days, and 7 days to sustained hypoxia (10% O(2)), intermittent hypoxia (alternating room air and 10% O(2)), or normoxia. Tyrosine hydroxylase activity, measured at 7 days, increased in the cortex as follows: sustained > intermittent > normoxia. Furthermore, activity decreased in the brain stem and was unchanged in other brain regions of sustained hypoxia-exposed rats, as well as in all regions from animals exposed to intermittent hypoxia, suggesting stimulus-specific and heterotopic catecholamine regulation. In the cortex, tyrosine hydroxylase mRNA expression was increased, whereas protein expression remained unchanged. In addition, significant differences in the time course of cortical Ser(40) tyrosine hydroxylase phosphorylation were present in the cortex, suggesting that intermittent and sustained hypoxia-induced enzymatic activity differences are related to different phosphorylation patterns. We conclude that long-term hypoxia induces site-specific changes in tyrosine hydroxylase activity and that intermittent hypoxia elicits reduced tyrosine hydroxylase recruitment and phosphorylation compared with sustained hypoxia. Such changes may not only account for differences in enzyme activity but also suggest that, with differential regional brain susceptibility to hypoxia, recruitment of different mechanisms in response to hypoxia will elicit region-specific modulation of catecholamine response.

  6. Hand temperature responses to local cooling after a 10-day confinement to normobaric hypoxia with and without exercise.

    PubMed

    Keramidas, M E; Kölegård, R; Mekjavic, I B; Eiken, O

    2015-10-01

    The study examined the effects of a 10-day normobaric hypoxic confinement (FiO2: 0.14), with [hypoxic exercise training (HT); n = 8)] or without [hypoxic ambulatory (HA; n = 6)] exercise, on the hand temperature responses during and after local cold stress. Before and after the confinement, subjects immersed their right hand for 30 min in 8 °C water [cold water immersion (CWI)], followed by a 15-min spontaneous rewarming (RW), while breathing either room air (AIR), or a hypoxic gas mixture (HYPO). The hand temperature responses were monitored with thermocouples and infrared thermography. The confinement did not influence the hand temperature responses of the HA group during the AIR and HYPO CWI and the HYPO RW phases; but it impaired the AIR RW response (-1.3 °C; P = 0.05). After the confinement, the hand temperature responses were unaltered in the HT group throughout the AIR trial. However, the average hand temperature was increased during the HYPO CWI (+0.5 °C; P ≤ 0.05) and RW (+2.4 °C; P ≤ 0.001) phases. Accordingly, present findings suggest that prolonged exposure to normobaric hypoxia per se does not alter the hand temperature responses to local cooling; yet, it impairs the normoxic RW response. Conversely, the combined stimuli of continuous hypoxia and exercise enhance the finger cold-induced vasodilatation and hand RW responses, specifically, under hypoxic conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Sequence and functional characterization of hypoxia-inducible factors, HIF1α, HIF2αa, and HIF3α, from the estuarine fish, Fundulus heteroclitus

    PubMed Central

    Townley, Ian K.; Karchner, Sibel I.; Skripnikova, Elena; Wiese, Thomas E.; Hahn, Mark E.

    2017-01-01

    The hypoxia-inducible factor (HIF) family of transcription factors plays central roles in the development, physiology, pathology, and environmental adaptation of animals. Because many aquatic habitats are characterized by episodes of low dissolved oxygen, fish represent ideal models to study the roles of HIF in the response to aquatic hypoxia. The estuarine fish Fundulus heteroclitus is found in habitats prone to hypoxia. It responds to low oxygen via behavioral, physiological, and molecular changes, and one member of the HIF family, HIF2α, has been previously described. Herein, cDNA sequencing, phylogenetic analyses, and genomic approaches were used to determine other members of the HIFα family from F. heteroclitus and their relationships to HIFα subunits from other vertebrates. In vitro and cellular approaches demonstrated that full-length forms of HIF1α, HIF2α, and HIF3α independently formed complexes with the β-subunit, aryl hydrocarbon receptor nuclear translocator, to bind to hypoxia response elements and activate reporter gene expression. Quantitative PCR showed that HIFα mRNA abundance varied among organs of normoxic fish in an isoform-specific fashion. Analysis of the F. heteroclitus genome revealed a locus encoding a second HIF2α—HIF2αb—a predicted protein lacking oxygen sensing and transactivation domains. Finally, sequence analyses demonstrated polymorphism in the coding sequence of each F. heteroclitus HIFα subunit, suggesting that genetic variation in these transcription factors may play a role in the variation in hypoxia responses among individuals or populations. PMID:28039194

  8. Sequence and functional characterization of hypoxia-inducible factors, HIF1α, HIF2αa, and HIF3α, from the estuarine fish, Fundulus heteroclitus.

    PubMed

    Townley, Ian K; Karchner, Sibel I; Skripnikova, Elena; Wiese, Thomas E; Hahn, Mark E; Rees, Bernard B

    2017-03-01

    The hypoxia-inducible factor (HIF) family of transcription factors plays central roles in the development, physiology, pathology, and environmental adaptation of animals. Because many aquatic habitats are characterized by episodes of low dissolved oxygen, fish represent ideal models to study the roles of HIF in the response to aquatic hypoxia. The estuarine fish Fundulus heteroclitus is found in habitats prone to hypoxia. It responds to low oxygen via behavioral, physiological, and molecular changes, and one member of the HIF family, HIF2α, has been previously described. Herein, cDNA sequencing, phylogenetic analyses, and genomic approaches were used to determine other members of the HIFα family from F. heteroclitus and their relationships to HIFα subunits from other vertebrates. In vitro and cellular approaches demonstrated that full-length forms of HIF1α, HIF2α, and HIF3α independently formed complexes with the β-subunit, aryl hydrocarbon receptor nuclear translocator, to bind to hypoxia response elements and activate reporter gene expression. Quantitative PCR showed that HIFα mRNA abundance varied among organs of normoxic fish in an isoform-specific fashion. Analysis of the F. heteroclitus genome revealed a locus encoding a second HIF2α-HIF2αb-a predicted protein lacking oxygen sensing and transactivation domains. Finally, sequence analyses demonstrated polymorphism in the coding sequence of each F. heteroclitus HIFα subunit, suggesting that genetic variation in these transcription factors may play a role in the variation in hypoxia responses among individuals or populations. Copyright © 2017 the American Physiological Society.

  9. Time-dependent changes in protein expression in rainbow trout muscle following hypoxia.

    PubMed

    Wulff, Tune; Jokumsen, Alfred; Højrup, Peter; Jessen, Flemming

    2012-04-18

    Adaptation to hypoxia is a complex process, and individual proteins will be up- or down-regulated in order to address the main challenges at any given time. To investigate the dynamics of the adaptation, rainbow trout (Oncorhynchus mykiss) was exposed to 30% of normal oxygen tension for 1, 2, 5 and 24 h respectively, after which muscle samples were taken. The successful investigation of numerous proteins in a single study was achieved by selectively separating the sarcoplasmic proteins using 2-DE. In total 46 protein spots were identified as changing in abundance in response to hypoxia using one-way ANOVA and multivariate data analysis. Proteins of interest were subsequently identified by MS/MS following tryptic digestion. The observed regulation following hypoxia in skeletal muscle was determined to be time specific, as only a limited number of proteins were regulated in response to more than one time point. The cellular response to hypoxia included regulation of proteins involved in maintaining iron homeostasis, energy levels and muscle structure. In conclusion, this proteome-based study presents a comprehensive investigation of the expression profiles of numerous proteins at four different time points. This increases our understanding of timed changes in protein expression in rainbow trout muscle following hypoxia. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Hypoxia promotes production of neural crest cells in the embryonic head.

    PubMed

    Scully, Deirdre; Keane, Eleanor; Batt, Emily; Karunakaran, Priyadarssini; Higgins, Debra F; Itasaki, Nobue

    2016-05-15

    Hypoxia is encountered in either pathological or physiological conditions, the latter of which is seen in amniote embryos prior to the commencement of a functional blood circulation. During the hypoxic stage, a large number of neural crest cells arise from the head neural tube by epithelial-to-mesenchymal transition (EMT). As EMT-like cancer dissemination can be promoted by hypoxia, we investigated whether hypoxia contributes to embryonic EMT. Using chick embryos, we show that the hypoxic cellular response, mediated by hypoxia-inducible factor (HIF)-1α, is required to produce a sufficient number of neural crest cells. Among the genes that are involved in neural crest cell development, some genes are more sensitive to hypoxia than others, demonstrating that the effect of hypoxia is gene specific. Once blood circulation becomes fully functional, the embryonic head no longer produces neural crest cells in vivo, despite the capability to do so in a hypoxia-mimicking condition in vitro, suggesting that the oxygen supply helps to stop emigration of neural crest cells in the head. These results highlight the importance of hypoxia in normal embryonic development. © 2016. Published by The Company of Biologists Ltd.

  11. Dual‑sensitive HRE/Egr1 promoter regulates Smac overexpression and enhances radiation‑induced A549 human lung adenocarcinoma cell death under hypoxia.

    PubMed

    Li, Chang-Feng; Chen, Li-Bo; Li, Dan-Dan; Yang, Lei; Zhang, Bao-Gang; Jin, Jing-Peng; Zhang, Ying; Zhang, Bin

    2014-08-01

    The aim of this study was to construct an expression vector carrying the hypoxia/radiation dual‑sensitive chimeric hypoxia response element (HRE)/early growth response 1 (Egr‑1) promoter in order to overexpress the therapeutic second mitochondria‑derived activator of caspases (Smac). Using this expression vector, the present study aimed to explore the molecular mechanism underlying radiotherapy‑induced A549 human lung adenocarcinoma cell death and apoptosis under hypoxia. The plasmids, pcDNA3.1‑Egr1‑Smac (pE‑Smac) and pcDNA3.1‑HRE/Egr-1‑Smac (pH/E‑Smac), were constructed and transfected into A549 human lung adenocarcinoma cells using the liposome method. CoCl2 was used to chemically simulate hypoxia, followed by the administration of 2 Gy X‑ray irradiation. An MTT assay was performed to detect cell proliferation and an Annexin V‑fluorescein isothiocyanate apoptosis detection kit was used to detect apoptosis. Quantitative polymerase chain reaction and western blot analyses were used for the detection of mRNA and protein expression, respectively. Infection with the pE‑Smac and pH/E‑Smac plasmids in combination with radiation and/or hypoxia was observed to enhance the expression of Smac. Furthermore, Smac overexpression was found to enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis. The cytochrome c/caspase‑9/caspase‑3 pathway was identified to be involved in this regulation of apoptosis. Plasmid infection in combination with X‑ray irradiation was found to markedly induce cell death under hypoxia. In conclusion, the hypoxia/radiation dual‑sensitive chimeric HRE/Egr‑1 promoter was observed to enhance the expression of the therapeutic Smac, as well as enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis under hypoxia. This apoptosis was found to involve the mitochondrial pathway.

  12. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.

    PubMed

    de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E

    2015-01-15

    Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers. Copyright © 2015 the American Physiological Society.

  13. Developing vascular and hypoxia based theranostics in solid tumors

    NASA Astrophysics Data System (ADS)

    Koonce, Nathan A.

    Tissue hypoxia was recognized for its biological attenuating effects on ionizing radiation over a century ago and is a characteristic feature of many solid tumors. Clinical and experimental evidence indicates tumor hypoxia plays diverse and key roles in tumor progression, angiogenesis, and resistance to chemotherapy/radiotherapy. Hypoxia has known effects on progression and resistance to several standard treatment approaches and the significant history of study might suggest diagnostic imaging and therapeutic interventions would be routine in oncological practice. Curiously, this is not the case and the research results involved in this report will attempt to better understand and contribute to why this gap in knowledge exists and a rationale for harnessing the potential of detecting and targeting hypoxia. Despite the addition of oxygen and reversal of hypoxia being known as the best radiosensitizer, hypoxia remains unexploited in clinical cancer therapy. The studies reported herein detail development of a novel imaging technique to detect a subtype of tumor hypoxia, vascular hypoxia or hypoxemia, with a 17-fold increase (p<0.05) in uptake of pimonidazole targeted microbubbles observed compared to controls. This technique creates the potential to study the role of hypoxemia in progression and therapeutic response. Additionally, description of a nanoparticle-based therapy that targets tumor areas associated with tumor hypoxia and the tumor microenvironment in general is reported. TNF-loaded nanoparticles combined with radiotherapy resulted in a 5.25-fold growth delay that was found to be synergistic (p<0.05) and suggests clinical evaluation is warranted. An additional study to evaluate an approach to use thermal ablation of intratumoral hypoxia by an image-guided technique developed in our group is described along with a sequence dependence of radiation preceding ablation. A final study on the use of galectin-1 antagonist to significantly decrease (p<0.05) hypoxia

  14. TH-E-202-02: The Use of Hypoxia PET Imaging for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humm, J.

    2016-06-15

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand

  15. Effects of natural and human-induced hypoxia on coastal benthos

    NASA Astrophysics Data System (ADS)

    Levin, L. A.; Ekau, W.; Gooday, A. J.; Jorissen, F.; Middelburg, J. J.; Naqvi, S. W. A.; Neira, C.; Rabalais, N. N.; Zhang, J.

    2009-10-01

    Coastal hypoxia (defined here as <1.42 ml L-1; 62.5 μM; 2 mg L-1, approx. 30% oxygen saturation) develops seasonally in many estuaries, fjords, and along open coasts as a result of natural upwelling or from anthropogenic eutrophication induced by riverine nutrient inputs. Permanent hypoxia occurs naturally in some isolated seas and marine basins as well as in open slope oxygen minimum zones. Responses of benthos to hypoxia depend on the duration, predictability, and intensity of oxygen depletion and on whether H2S is formed. Under suboxic conditions, large mats of filamentous sulfide oxidizing bacteria cover the seabed and consume sulfide. They are hypothesized to provide a detoxified microhabitat for eukaryotic benthic communities. Calcareous foraminiferans and nematodes are particularly tolerant of low oxygen concentrations and may attain high densities and dominance, often in association with microbial mats. When oxygen is sufficient to support metazoans, small, soft-bodied invertebrates (typically annelids), often with short generation times and elaborate branchial structures, predominate. Large taxa are more sensitive than small taxa to hypoxia. Crustaceans and echinoderms are typically more sensitive to hypoxia, with lower oxygen thresholds, than annelids, sipunculans, molluscs and cnidarians. Mobile fish and shellfish will migrate away from low-oxygen areas. Within a species, early life stages may be more subject to oxygen stress than older life stages. Hypoxia alters both the structure and function of benthic communities, but effects may differ with regional hypoxia history. Human-caused hypoxia is generally linked to eutrophication, and occurs adjacent to watersheds with large populations or agricultural activities. Many occurrences are seasonal, within estuaries, fjords or enclosed seas of the North Atlantic and the NW Pacific Oceans. Benthic faunal responses, elicited at oxygen levels below 2 ml L-1, typically involve avoidance or mortality of large

  16. Regulation of Carotid Body Oxygen Sensing by Hypoxia-Inducible Factors

    PubMed Central

    Prabhakar, Nanduri R.; Semenza, Gregg L.

    2015-01-01

    Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Carotid body responses to hypoxia are not uniform but instead exhibit remarkable inter-individual variations. The molecular mechanisms underlying variations in carotid body O2 sensing are not known. Hypoxia-inducible factor-1 (HIF-1) and HIF-2 mediate transcriptional responses to hypoxia. This article reviews the emerging evidence that proper expression of the HIF-α isoforms is a key molecular determinant for carotid body O2 sensing. HIF-1α deficiency leads to a blunted carotid body hypoxic response, which is due to increased abundance of HIF-2α, elevated anti-oxidant enzyme activity, and a reduced intracellular redox state. Conversely, HIF-2α deficiency results in augmented carotid body sensitivity to hypoxia, which is due to increased abundance of HIF-1α, elevated pro-oxidant enzyme activity, and an oxidized intracellular redox state. Double heterozygous mice with equally reduced HIF-1α and HIF-2α showed no abnormality in redox state or carotid body O2 sensing. Thus, mutual antagonism between HIF-α isoforms determines the redox state and thereby establishes the set point for hypoxic sensing by the carotid body. PMID:26265380

  17. Alterations of hypoxia-inducible factor-1 alpha in the hippocampus of mice acutely and repeatedly exposed to hypoxia.

    PubMed

    Shao, Guo; Gao, Cui-Ying; Lu, Guo-Wei

    2005-01-01

    This work aims at investigating the effects of hypoxic preconditioning on hypoxia-inducible factor-1 alpha (HIF-1alpha) expression in the hippocampus of mice during acute and repeated hypoxic exposures. The mice were randomly divided into three groups and exposed, respectively, to hypoxia for 4 runs (group H4), 1 run (group H1), and 0 run (group H0). Reverse transcription-polymerase chain reaction (RT-PCR), Western blot, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation were used to examine the HIF-1alpha responses in the mouse hippocampus following exposure to hypoxia. The tolerance of mice to hypoxia increased significantly following acute and repetitive exposure to autoprogressive hypoxia. Total mRNA, total protein, and nuclear protein were extracted from the hippocampus for RT-PCR, Western blot, and EMSA, respectively. The HIF-1alpha mRNA levels were found to be increased in group H1 and decreased in group H4. The HIF-1alpha protein levels and HIF-1 DNA-binding activities were increased in group H1 and markedly increased in group H4. One of the HIF-1 target genes, vascular endothelial growth factor, increased in group H4. HIF-1 activation is thought to be involved in the protection of the brain of hypoxic preconditioned mice. Copyright 2005 S. Karger AG, Basel

  18. Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis.

    PubMed

    Ji, Rui-Cheng

    2014-04-28

    Hypoxia and lymphangiogenesis are closely related processes that play a pivotal role in tumor invasion and metastasis. Intratumoral hypoxia is exacerbated as a result of oxygen consumption by rapidly proliferating tumor cells, insufficient blood supply and poor lymph drainage. Hypoxia induces functional responses in lymphatic endothelial cells (LECs), including cell proliferation and migration. Multiple factors (e.g., ET-1, AP-1, C/EBP-δ, EGR-1, NF-κB, and MIF) are involved in the events of hypoxia-induced lymphangiogenesis. Among them, HIF-1α is known to be the master regulator of cellular oxygen homeostasis, mediating transcriptional activation of lymphangiogenesis via regulation of signaling cascades like VEGF-A/-C/-D, TGF-β and Prox-1 in experimental and human tumors. Although the underlying molecular mechanisms remain incompletely elucidated, the investigation of lymphangiogenesis in hypoxic conditions may provide insight into potential therapeutic targets for lymphatic metastasis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and hypoxia.

    PubMed

    Hu, Menghong; Wu, Fangli; Yuan, Mingzhe; Li, Qiongzhen; Gu, Yedan; Wang, Youji; Liu, Qigen

    2015-11-01

    Bloom forming algae and hypoxia are considered to be two main co-occurred stressors associated with eutrophication. The aim of this study was to evaluate the interactive effects of harmful algae Microcystis aeruginosa and hypoxia on an ecologically important mussel species inhabiting lakes and reservoirs, the triangle sail mussel Hyriopsis cumingii, which is generally considered as a bio-management tool for eutrophication. A set of antioxidant enzymes involved in immune defence mechanisms and detoxification processes, i.e. glutathione-S-transferases (GST), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), lysozyme (LZM) in mussel haemolymph were analyzed during 14days exposure along with 7days depuration duration period. GST, GSH, SOD, GPX and LZM were elevated by toxic M. aeruginosa exposure, while CAT activities were inhibited by such exposure. Hypoxia influenced the immune mechanisms through the activation of GSH and GPX, and the inhibition of SOD, CAT, and LZM activities. Meanwhile, some interactive effects of M. aeruginosa, hypoxia and time were observed. Independently of the presence or absence of hypoxia, toxic algal exposure generally increased the five tested enzyme activities of haemolymph, except CAT. Although half of microcystin could be eliminated after 7days depuration, toxic M. aeruginosa or hypoxia exposure history showed some latent effects on most parameters. These results revealed that toxic algae play an important role on haemolymph parameters alterations and its toxic effects could be affected by hypoxia. Although the microcystin depuration rate of H. cumingii is quick, toxic M. aeruginosa and/or hypoxia exposure history influenced its immunological mechanism recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mitochondrial targeting of HIF-1α inhibits hypoxia-induced apoptosis independently of its transcriptional activity.

    PubMed

    Li, Hong-Sheng; Zhou, Yan-Ni; Li, Lu; Li, Sheng-Fu; Long, Dan; Chen, Xue-Lu; Zhang, Jia-Bi; Li, You-Ping; Feng, Li

    2018-04-25

    The transcription factor hypoxia inducible factor-1α (HIF-1α) mediates adaptive responses to hypoxia by nuclear translocation and regulation of gene expression. Mitochondrial changes are critical for the adaptive response to hypoxia. However, the transcriptional and non-transcriptional mechanisms by which HIF-1α regulates mitochondria under hypoxia are poorly understood. Here, we examined the subcellular localization of HIF-1α in human cells and identified a small fraction of HIF-1α that translocated to the mitochondria after exposure to hypoxia or hypoxia-mimicking pharmacological agents. To probe the function of this HIF-1α population, we ectopically expressed a mitochondrial-targeted form of HIF-1α (mito-HIF-1α). Expression of mito-HIF-1α was sufficient to attenuate apoptosis induced by exposure to hypoxia or H 2 O 2 -induced oxidative stress. Moreover, mito-HIF-1α expression reduced the production of reactive oxygen species, the collapse of mitochondrial membrane potential, and the expression of mitochondrial DNA-encoded mRNA in response to hypoxia. However, these functions of mito-HIF-1α were independent of its conventional transcriptional activity. Finally, the livers of mice with CCl 4 -induced fibrosis showed a progressive increase in HIF-1α association with the mitochondria, indicating the clinical relevance of this finding. These data suggested that mitochondrial HIF-1α protects against apoptosis independently of its well-known role as a transcription factor. Copyright © 2018. Published by Elsevier Inc.

  1. Reducing intratumour acute hypoxia through bevacizumab treatment, referring to the response of quiescent tumour cells and metastatic potential

    PubMed Central

    Masunaga, S; Liu, Y; Tanaka, H; Sakurai, Y; Suzuki, M; Kondo, N; Maruhashi, A; Ono, K

    2011-01-01

    Objectives The aim was to evaluate the influence of bevacizumab on intratumour oxygenation status and lung metastasis following radiotherapy, with specific reference to the response of quiescent (Q) cell populations within irradiated tumours. Methods B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2-deoxyuridine (BrdU) to label all proliferating (P) cells. They received γ-ray irradiation following treatment with the acute hypoxia-releasing agent nicotinamide or local mild temperature hyperthermia (MTH) with or without the administration of bevacizumab under aerobic conditions or totally hypoxic conditions, achieved by clamping the proximal end of the tumours. Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In the other tumour-bearing mice, macroscopic lung metastases were enumerated 17 days after irradiation. Results 3 days after bevacizumab administration, acute hypoxia-rich total cell population in the tumour showed a remarkably enhanced radiosensitivity to γ-rays, and the hypoxic fraction (HF) was reduced, even after MTH treatment. However, the hypoxic fraction was not reduced after nicotinamide treatment. With or without γ-ray irradiation, bevacizumab administration showed some potential to reduce the number of lung metastases as well as nicotinamide treatment. Conclusion Bevacizumab has the potential to reduce perfusion-limited acute hypoxia and some potential to cause a decrease in the number of lung metastases as well as nicotinamide. PMID:21586505

  2. Hypoxia regulates macrophage functions in inflammation.

    PubMed

    Murdoch, Craig; Muthana, Munitta; Lewis, Claire E

    2005-11-15

    The presence of areas of hypoxia is a prominent feature of various inflamed, diseased tissues, including malignant tumors, atherosclerotic plaques, myocardial infarcts, the synovia of joints with rheumatoid arthritis, healing wounds, and sites of bacterial infection. These areas form when the blood supply is occluded and/or unable to keep pace with the growth and/or infiltration of inflammatory cells in a given area. Macrophages are present in all tissues of the body where they normally assist in guarding against invading pathogens and regulate normal cell turnover and tissue remodeling. However, they are also known to accumulate in large numbers in such ischemic/hypoxic sites. Recent studies show that macrophages then respond rapidly to the hypoxia present by altering their expression of a wide array of genes. In the present study, we outline and compare the phenotypic responses of macrophages to hypoxia in different diseased states and the implications of these for their progression and treatment.

  3. Effects of a Single Bout of Interval Hypoxia on Cardiorespiratory Control in Patients With Type 1 Diabetes

    PubMed Central

    Duennwald, Tobias; Bernardi, Luciano; Gordin, Daniel; Sandelin, Anna; Syreeni, Anna; Fogarty, Christopher; Kytö, Janne P.; Gatterer, Hannes; Lehto, Markku; Hörkkö, Sohvi; Forsblom, Carol; Burtscher, Martin; Groop, Per-Henrik

    2013-01-01

    Hypoxemia is common in diabetes, and reflex responses to hypoxia are blunted. These abnormalities could lead to cardiovascular/renal complications. Interval hypoxia (IH) (5–6 short periods of hypoxia each day over 1–3 weeks) was successfully used to improve the adaptation to hypoxia in patients with chronic obstructive pulmonary disease. We tested whether IH over 1 day could initiate a long-lasting response potentially leading to better adaptation to hypoxia. In 15 patients with type 1 diabetes, we measured hypoxic and hypercapnic ventilatory responses (HCVRs), ventilatory recruitment threshold (VRT-CO2), baroreflex sensitivity (BRS), blood pressure, and blood lactate before and after 0, 3, and 6 h of a 1-h single bout of IH. All measurements were repeated on a placebo day (single-blind protocol, randomized sequence). After IH (immediately and after 3 h), hypoxic and HCVR increased, whereas the VRT-CO2 dropped. No such changes were observed on the placebo day. Systolic and diastolic blood pressure increased, whereas blood lactate decreased after IH. Despite exposure to hypoxia, BRS remained unchanged. Repeated exposures to hypoxia over 1 day induced an initial adaptation to hypoxia, with improvement in respiratory reflexes. Prolonging the exposure to IH (>2 weeks) in type 1 diabetic patients will be a matter for further studies. PMID:23733200

  4. Pulmonary hemodynamics responses to hypoxia and/or CO2 inhalation during moderate exercise in humans.

    PubMed

    Doutreleau, Stéphane; Enache, Irina; Pistea, Cristina; Geny, Bernard; Charloux, Anne

    2018-03-03

    In this study, we hypothesized that adding CO 2 to an inhaled hypoxic gas mixture will limit the rise of pulmonary artery pressure (PAP) induced by a moderate exercise. Eight 20-year-old males performed four constant-load exercise tests on cycle at 40% of maximal oxygen consumption in four conditions: ambient air, normobaric hypoxia (12.5% O 2 ), inhaled CO 2 (4.5% CO 2 ), and combination of hypoxia and inhaled CO 2 . Doppler echocardiography was used to measure systolic (s)PAP, cardiac output (CO). Total pulmonary resistance (TPR) was calculated. Arterialized blood pH was 7.40 at exercise in ambient and hypoxia conditions, whereas CO 2 inhalation and combined conditions showed acidosis. sPAP increases from rest in ambient air to exercise ranged as follows: ambient + 110%, CO 2 inhalation + 135%, combined + 184%, hypoxia + 217% (p < 0.001). CO was higher when inhaling O 2 -poor gas mixtures with or without CO 2 (~ 17 L min -1 ) than in the other conditions (~ 14 L min -1 , p < 0.001). Exercise induced a significant decrease in TPR in the four conditions (p < 0.05) but less marked in hypoxia (- 19% of the resting value in ambient air) than in ambient (- 33%) and in both CO 2 inhalation and combined condition (- 29%). We conclude that (1) acute CO 2 inhalation did not significantly modify pulmonary hemodynamics during moderate exercise. (2) CO 2 adjunction to hypoxic gas mixture did not modify CO, despite a higher CaO 2 in combined condition than in hypoxia. (3) TPR was lower in combined than in hypoxia condition, limiting sPAP increase in combined condition.

  5. Acute effects of head-down tilt and hypoxia on modulators of fluid homeostasis

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Cintron, N. M.; Pietrzyk, R. A.; Scotto, P.; Loeppky, J. A.

    1994-01-01

    In an effort to understand the interaction between acute postural fluid shifts and hypoxia on hormonal regulation of fluid homeostasis, the authors measured the responses to head-down tilt with and without acute exposure to normobaric hypoxia. Plasma atrial natriuretic peptide (ANP), cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP), plasma aldosterone (ALD), and plasma renin activity (PRA) were measured in six healthy male volunteers who were exposed to a head-down tilt protocol during normoxia and hypoxia. The tilt protocol consisted of a 17 degrees head-up phase (30 minutes), a 28 degrees head-down phase (1 hour), and a 17 degrees head-up recovery period (2 hours, with the last hour normoxic in both experiments). Altitude equivalent to 14,828 ft was simulated by having the subjects breathe an inspired gas mixture with 13.9% oxygen. The results indicate that the postural fluid redistribution associated with a 60-minute head-down tilt induces the release of ANP and cGMP during both hypoxia and normoxia. Hypoxia increased cGMP, cAMP, ALD, and PRA throughout the protocol and significantly potentiated the increase in cGMP during head-down tilt. Hypoxia had no overall effect on the release of ANP, but appeared to attenuate the increase with head-down tilt. This study describes the acute effects of hypoxia on the endocrine response during fluid redistribution and suggests that the magnitude, but not the direction, of these changes with posture is affected by hypoxia.

  6. Hypoxia alters testicular functions of marine medaka through microRNAs regulation.

    PubMed

    Tse, Anna Chung-Kwan; Li, Jing-Woei; Wang, Simon Yuan; Chan, Ting-Fung; Lai, Keng Po; Wu, Rudolf Shiu-Sun

    2016-11-01

    Hypoxia is a global environmental concern and poses a significant threat to aquatic ecosystems, including the sustainability of natural fish populations. The deleterious effects of hypoxia on fish reproductive fitness, as mediated by disruption of sex hormones and gene expression along the Brain-Pituitary-Gonad axis, have been well documented. Recently, we further demonstrated that the observed disruption of steroidogenesis in the ovary of marine medaka Oryzias melastigma is mediated through microRNAs (miRNAs). More importantly, we reported the transgenerational epigenetic effect of hypoxia on the male reproductive impairment of marine medaka. This study attempts to elucidate the function of miRNAs and its potential role in the transgenerational effect of hypoxia in the male medaka testis, using small RNA sequencing. A total of 558 miRNAs were found in the testis, of which 9 were significant upregulated and 5 were downregulated by hypoxia. Bioinformatics analysis further revealed that among the 2885 genes targeted by the hypoxia-responsive miRNAs, many are closely related to stress response, cell cycle, epigenetic modification, sugar metabolism and cell motion. Furthermore, the integrated analysis of transcriptome data and the result of target gene prediction demonstrated 108 genes and 65 genes were concordantly upregulated and downregulated, respectively. In which, euchromatic histone-lysine N-methyltransferase 2, the epigenetic regulator of transgenerational reproductive impairment caused by hypoxia, is found to be targeted by miR-125-5p. The present findings not only reveal that miRNAs are crucial downstream mediators of hypoxic stress in fish male gonad, but also shed light on the underlying epigenetic mechanism for the reproductive impairments of hypoxia on male fish, including the observed transgenerational effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Metabolic and cardiorespiratory responses of summer flounder Paralichthys dentatus to hypoxia at two temperatures.

    PubMed

    Capossela, K M; Brill, R W; Fabrizio, M C; Bushnell, P G

    2012-08-01

    To quantify the tolerance of summer flounder Paralichthys dentatus to episodic hypoxia, resting metabolic rate, oxygen extraction, gill ventilation and heart rate were measured during acute progressive hypoxia at the fish's acclimation temperature (22° C) and after an acute temperature increase (to 30° C). Mean ±s.e. critical oxygen levels (i.e. the oxygen levels below which fish could not maintain aerobic metabolism) increased significantly from 27 ± 2% saturation (2·0 ± 0·1 mg O(2) l(-1)) at 22° C to 39 ± 2% saturation (2·4 ± 0·1 mg O(2) l(-1)) at 30° C. Gill ventilation and oxygen extraction changed immediately with the onset of hypoxia at both temperatures. The fractional increase in gill ventilation (from normoxia to the lowest oxygen level tested) was much larger at 22° C (6·4-fold) than at 30° C (2·7-fold). In contrast, the fractional decrease in oxygen extraction (from normoxia to the lowest oxygen levels tested) was similar at 22° C (1·7-fold) and 30° C (1·5-fold), and clearly smaller than the fractional changes in gill ventilation. In contrast to the almost immediate effects of hypoxia on respiration, bradycardia was not observed until 20 and 30% oxygen saturation at 22 and 30° C, respectively. Bradycardia was, therefore, not observed until below critical oxygen levels. The critical oxygen levels at both temperatures were near or immediately below the accepted 2·3 mg O(2) l(-1) hypoxia threshold for survival, but the increase in the critical oxygen level at 30° C suggests a lower tolerance to hypoxia after an acute increase in temperature. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  8. Fetal endocrine and metabolic adaptations to hypoxia: the role of the hypothalamic-pituitary-adrenal axis

    PubMed Central

    Newby, Elizabeth A.; Myers, Dean A.

    2015-01-01

    In utero, hypoxia is a significant yet common stress that perturbs homeostasis and can occur due to preeclampsia, preterm labor, maternal smoking, heart or lung disease, obesity, and high altitude. The fetus has the extraordinary capacity to respond to stress during development. This is mediated in part by the hypothalamic-pituitary-adrenal (HPA) axis and more recently explored changes in perirenal adipose tissue (PAT) in response to hypoxia. Obvious ethical considerations limit studies of the human fetus, and fetal studies in the rodent model are limited due to size considerations and major differences in developmental landmarks. The sheep is a common model that has been used extensively to study the effects of both acute and chronic hypoxia on fetal development. In response to high-altitude-induced, moderate long-term hypoxia (LTH), both the HPA axis and PAT adapt to preserve normal fetal growth and development while allowing for responses to acute stress. Although these adaptations appear beneficial during fetal development, they may become deleterious postnatally and into adulthood. The goal of this review is to examine the role of the HPA axis in the convergence of endocrine and metabolic adaptive responses to hypoxia in the fetus. PMID:26173460

  9. Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells.

    PubMed

    Sørensen, Brita Singers; Busk, Morten; Olthof, Nadine; Speel, Ernst-Jan; Horsman, Michael R; Alsner, Jan; Overgaard, Jens

    2013-09-01

    HPV associated Head and Neck Squamous Cell Carcinoma (HNSCC) represents a distinct subgroup of HNSCC characterized by a favorable prognosis and a distinct molecular biology. Previous data from the randomized DAHANCA 5 trial indicated that HPV positive tumors did not benefit from hypoxic modifications by Nimorazole during radiotherapy, whereas a significant benefit was observed in the HPV negative tumors. However, more studies have demonstrated equal frequencies of hypoxic tumors among HPV-positive and HPV-negative tumors. The aim of the present study was to determine radiosensitivity, the impact of hypoxia and the effect of Nimorazole in HPV positive and HPV negative cell lines. The used cell lines were: UDSCC2, UMSCC47 and UPCISCC90 (HPV positive) and FaDuDD, UTSCC33 and UTSCC5 (HPV negative). Cells were cultured under normoxic or hypoxic conditions, and gene expression levels of previously established hypoxia induced genes were assessed by qPCR. Cells were irradiated with various doses under normoxia, hypoxia or hypoxia +1mM Nimorazole, and the clonogenic survival was determined. The HPV positive and HPV negative cell lines exhibited similar patterns of upregulation of hypoxia induced genes in response to hypoxia. The HPV positive cell lines were up to 2.4 times more radiation sensitive than HPV negative cell lines. However, all HPV positive cells displayed the same response to hypoxia in radiosensitivity, with an OER in the range 2.3-2.9, and a sensitizer effect of Nimorazole of 1.13-1.29, similar to HPV negative cells. Although HPV positive cells had a markedly higher radiosensitivity compared to HPV negative cells, they displayed the same relative radioresistance under hypoxia and the same relative sensitizer effect of Nimorazole. The clinical observation that HPV positive patients do not seem to benefit from Nimorazole treatment is not due to inherent differences in hypoxia sensitivity or response to Nimorazole, but can be accounted for by the overall higher

  10. Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells.

    PubMed

    Michaud, Maude D; Robitaille, Geneviève A; Gratton, Jean-Philippe; Richard, Darren E

    2009-06-01

    Sphingosine-1-phosphate (S1P) is a potent bioactive phospholipid responsible for a variety of vascular cell responses. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of genes essential for adaptation to low oxygen. S1P and HIF-1 are both important mediators of vascular cell responses such as migation, proliferation, and survival. Studies have shown that nonhypoxic stimuli can activate HIF-1 in oxygenated conditions. Here, we attempt to determine whether S1P can modulate the vascular activation of HIF-1. We show that in vascular endothelial and smooth muscle cells, activation of the S1P type-2 receptor by S1P strongly increases HIF-1 alpha protein levels, the active subunit of HIF-1. This is achieved through pVHL-independent stabilization of HIF-1 alpha. We demonstrate that the HIF-1 nuclear complex, formed on S1P stimulation, is transcriptionally active and specifically binds to a hypoxia-responsive elements. Moreover, S1P activates the expression of genes known to be closely regulated by HIF-1. Our results identify S1P as a novel and potent nonhypoxic activator of HIF-1. We believe that understanding the role played by HIF-1 in S1P gene regulation will have a strong impact on different aspects of vascular biology.

  11. Comparative and Experimental Studies on the Genes Altered by Chronic Hypoxia in Human Brain Microendothelial Cells

    PubMed Central

    Mata-Greenwood, Eugenia; Goyal, Dipali; Goyal, Ravi

    2017-01-01

    Background : Hypoxia inducible factor 1 alpha (HIF1A) is a master regulator of acute hypoxia; however, with chronic hypoxia, HIF1A levels return to the normoxic levels. Importantly, the genes that are involved in the cell survival and viability under chronic hypoxia are not known. Therefore, we tested the hypothesis that chronic hypoxia leads to the upregulation of a core group of genes with associated changes in the promoter DNA methylation that mediates the cell survival under hypoxia. Results : We examined the effect of chronic hypoxia (3 days; 0.5% oxygen) on human brain micro endothelial cells (HBMEC) viability and apoptosis. Hypoxia caused a significant reduction in cell viability and an increase in apoptosis. Next, we examined chronic hypoxia associated changes in transcriptome and genome-wide promoter methylation. The data obtained was compared with 16 other microarray studies on chronic hypoxia. Nine genes were altered in response to chronic hypoxia in all 17 studies. Interestingly, HIF1A was not altered with chronic hypoxia in any of the studies. Furthermore, we compared our data to three other studies that identified HIF-responsive genes by various approaches. Only two genes were found to be HIF dependent. We silenced each of these 9 genes using CRISPR/Cas9 system. Downregulation of EGLN3 significantly increased the cell death under chronic hypoxia, whereas downregulation of ERO1L, ENO2, adrenomedullin, and spag4 reduced the cell death under hypoxia. Conclusions : We provide a core group of genes that regulates cellular acclimatization under chronic hypoxic stress, and most of them are HIF independent. PMID:28620317

  12. Dexamethasone mimics aspects of physiological acclimatization to 8 hours of hypoxia but suppresses plasma erythropoietin

    PubMed Central

    Liu, Chun; Croft, Quentin P. P.; Kalidhar, Swati; Brooks, Jerome T.; Herigstad, Mari; Smith, Thomas G.; Dorrington, Keith L.

    2013-01-01

    Dexamethasone ameliorates the severity of acute mountain sickness (AMS) but it is unknown whether it obtunds normal physiological responses to hypoxia. We studied whether dexamethasone enhanced or inhibited the ventilatory, cardiovascular, and pulmonary vascular responses to sustained (8 h) hypoxia. Eight healthy volunteers were studied, each on four separate occasions, permitting four different protocols. These were: dexamethasone (20 mg orally) beginning 2 h before a control period of 8 h of air breathing; dexamethasone with 8 h of isocapnic hypoxia (end-tidal Po2 = 50 Torr); placebo with 8 h of air breathing; and placebo with 8 h of isocapnic hypoxia. Before and after each protocol, the following were determined under both euoxic and hypoxic conditions: ventilation; pulmonary artery pressure (estimated using echocardiography to assess maximum tricuspid pressure difference); heart rate; and cardiac output. Plasma concentrations of erythropoietin (EPO) were also determined. Dexamethasone had no early (2-h) effect on any variable. Both dexamethasone and 8 h of hypoxia increased euoxic values of ventilation, pulmonary artery pressure, and heart rate, together with the ventilatory sensitivity to acute hypoxia. These effects were independent and additive. Eight hours of hypoxia, but not dexamethasone, increased the sensitivity of pulmonary artery pressure to acute hypoxia. Dexamethasone, but not 8 h of hypoxia, increased both cardiac output and systemic arterial pressure. Dexamethasone abolished the rise in EPO induced by 8 h of hypoxia. In summary, dexamethasone enhances ventilatory acclimatization to hypoxia. Thus, dexamethasone in AMS may improve oxygenation and thereby indirectly lower pulmonary artery pressure. PMID:23393065

  13. SIMULATED RESPONSES OF THE GULF OF MEXICO HYPOXIA TO VARIATIONS IN CLIMATE AND ANTHROPOGENIC NUTRIENT LOADING. (R827785E02)

    EPA Science Inventory

    A mathematical model was used to simulate monthly responses of the Gulf of Mexico hypoxia to variations in climate and anthropogenic nutrient loading over a 45-year period. We examined six hypothetical future scenarios that are based on observed and projected changes in the Mi...

  14. Oxidative stress response to acute hypobaric hypoxia and its association with indirect measurement of increased intracranial pressure: a field study

    PubMed Central

    Strapazzon, Giacomo; Malacrida, Sandro; Vezzoli, Alessandra; Dal Cappello, Tomas; Falla, Marika; Lochner, Piergiorgio; Moretti, Sarah; Procter, Emily; Brugger, Hermann; Mrakic-Sposta, Simona

    2016-01-01

    High altitude is the most intriguing natural laboratory to study human physiological response to hypoxic conditions. In this study, we investigated changes in reactive oxygen species (ROS) and oxidative stress biomarkers during exposure to hypobaric hypoxia in 16 lowlanders. Moreover, we looked at the potential relationship between ROS related cellular damage and optic nerve sheath diameter (ONSD) as an indirect measurement of intracranial pressure. Baseline measurement of clinical signs and symptoms, biological samples and ultrasonography were assessed at 262 m and after passive ascent to 3830 m (9, 24 and 72 h). After 24 h the imbalance between ROS production (+141%) and scavenging (−41%) reflected an increase in oxidative stress related damage of 50–85%. ONSD concurrently increased, but regression analysis did not infer a causal relationship between oxidative stress biomarkers and changes in ONSD. These results provide new insight regarding ROS homeostasis and potential pathophysiological mechanisms of acute exposure to hypobaric hypoxia, plus other disease states associated with oxidative-stress damage as a result of tissue hypoxia. PMID:27579527

  15. Thermoregulatory and metabolic responses to hypoxia in the oviparous lizard, Phrynocephalus przewalskii.

    PubMed

    He, Jianzheng; Xiu, Minghui; Tang, Xiaolong; Wang, Ningbo; Xin, Ying; Li, Weixin; Chen, Qiang

    2013-06-01

    The effects of hypoxia on behavioral thermoregulation, rate of heating and cooling, hysteresis of heart rate, and standard metabolic rate (SMR) were investigated in Phrynocephalus przewalskii, a small size toad headed lizard. Preferred temperature (T(b)) descended when lizards were exposed to severe hypoxia (8% O(2) and 6% O(2)) for 22 h, and lizards were able to maintain preferred T(b) after one week at 12% and 8% O(2) respectively. The period of heating increased after being treated with hypoxia (12% and 8% O(2)) for one week. Hysteresis of heart rate appeared at any given body temperature and oxygen level except at 39 °C and 40 °C at 8% O(2). SMR significantly increased after one-week acclimatization to 12% and 8% O(2) when ambient temperature (T(a)) was 25 °C, however, it did not change at 35 °C. Thus, we suggest that P. przewalskii has special thermoregulatory and metabolic mechanisms to acclimatize to the hypoxic environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Effects of natural and human-induced hypoxia on coastal benthos

    NASA Astrophysics Data System (ADS)

    Levin, L. A.; Ekau, W.; Gooday, A. J.; Jorissen, F.; Middelburg, J. J.; Naqvi, W.; Neira, C.; Rabalais, N. N.; Zhang, J.

    2009-04-01

    Coastal hypoxia (<1.42 ml L-1; 62.5 μM; 2 mg L-1, approx. 30% oxygen saturation) occurs seasonally in many estuaries, fjords, and along open coasts subject to upwelling or excessive riverine nutrient input, and permanently in some isolated seas and marine basins. Underlying causes of hypoxia include enhanced nutrient input from natural causes (upwelling) or anthropogenic origin (eutrophication) and reduction of mixing by limited circulation or enhanced stratification; combined these lead to higher surface water production, microbial respiration and eventual oxygen depletion. Advective inputs of low-oxygen waters may initiate or expand hypoxic conditions. Responses of estuarine, enclosed sea, and open shelf benthos to hypoxia depend on the duration, predictability, and intensity of oxygen depletion and on whether H2S is formed. Under suboxic conditions, large mats of filamentous sulfide oxidizing bacteria cover the seabed and consume sulfide, thereby providing a detoxified microhabitat for eukaryotic benthic communities. Calcareous foraminiferans and nematodes are particularly tolerant of low oxygen concentrations and may attain high densities and dominance, often in association with microbial mats. When oxygen is sufficient to support metazoans, small, soft-bodied invertebrates (typically annelids), often with short generation times and elaborate branchial structures, predominate. Large taxa are more sensitive than small taxa to hypoxia. Crustaceans and echinoderms are typically more sensitive to hypoxia, with lower oxygen thresholds, than annelids, sipunculans, molluscs and cnidarians. Mobile fish and shellfish will migrate away from low-oxygen areas. Within a species, early life stages may be more subject to oxygen stress than older life stages. Hypoxia alters both the structure and function of benthic communities, but effects may differ with regional hypoxia history. Human-caused hypoxia is generally linked to eutrophication, and occurs adjacent to watersheds

  17. Intermittent hypercapnic hypoxia during sleep does not induce ventilatory long-term facilitation in healthy males.

    PubMed

    Deacon, Naomi L; McEvoy, R Doug; Stadler, Daniel L; Catcheside, Peter G

    2017-09-01

    Intermittent hypoxia-induced ventilatory neuroplasticity is likely important in obstructive sleep apnea pathophysiology. Although concomitant CO 2 levels and arousal state critically influence neuroplastic effects of intermittent hypoxia, no studies have investigated intermittent hypercapnic hypoxia effects during sleep in humans. Thus the purpose of this study was to investigate if intermittent hypercapnic hypoxia during sleep induces neuroplasticity (ventilatory long-term facilitation and increased chemoreflex responsiveness) in humans. Twelve healthy males were exposed to intermittent hypercapnic hypoxia (24 × 30 s episodes of 3% CO 2 and 3.0 ± 0.2% O 2 ) and intermittent medical air during sleep after 2 wk washout period in a randomized crossover study design. Minute ventilation, end-tidal CO 2 , O 2 saturation, breath timing, upper airway resistance, and genioglossal and diaphragm electromyograms were examined during 10 min of stable stage 2 sleep preceding gas exposure, during gas and intervening room air periods, and throughout 1 h of room air recovery. There were no significant differences between conditions across time to indicate long-term facilitation of ventilation, genioglossal or diaphragm electromyogram activity, and no change in ventilatory response from the first to last gas exposure to suggest any change in chemoreflex responsiveness. These findings contrast with previous intermittent hypoxia studies without intermittent hypercapnia and suggest that the more relevant gas disturbance stimulus of concomitant intermittent hypercapnia frequently occurring in sleep apnea influences acute neuroplastic effects of intermittent hypoxia. These findings highlight the need for further studies of intermittent hypercapnic hypoxia during sleep to clarify the role of ventilatory neuroplasticity in the pathophysiology of sleep apnea. NEW & NOTEWORTHY Both arousal state and concomitant CO 2 levels are known modulators of the effects of intermittent hypoxia on

  18. Significance of manipulating tumour hypoxia and radiation dose rate in terms of local tumour response and lung metastatic potential, referring to the response of quiescent cell populations

    PubMed Central

    Masunaga, S; Matsumoto, Y; Kashino, G; Hirayama, R; Liu, Y; Tanaka, H; Sakurai, Y; Suzuki, M; Kinashi, Y; Maruhashi, A; Ono, K

    2010-01-01

    The purpose of this study was to evaluate the influence of manipulating intratumour oxygenation status and radiation dose rate on local tumour response and lung metastases following radiotherapy, referring to the response of quiescent cell populations within irradiated tumours. B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2′-deoxyuridine (BrdU) to label all proliferating (P) cells. They received γ-ray irradiation at high dose rate (HDR) or reduced dose rate (RDR) following treatment with the acute hypoxia-releasing agent nicotinamide or local hyperthermia at mild temperatures (MTH). Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the quiescent (Q) and total (proliferating + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumour-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Following HDR irradiation, nicotinamide and MTH enhanced the sensitivity of the total and Q-cell populations, respectively. The decrease in sensitivity at RDR irradiation compared with HDR irradiation was slightly inhibited by MTH, especially in Q cells. Without γ-ray irradiation, nicotinamide treatment tended to reduce the number of lung metastases. With γ-rays, in combination with nicotinamide or MTH, especially the former, HDR irradiation decreased the number of metastases more remarkably than RDR irradiation. Manipulating both tumour hypoxia and irradiation dose rate have the potential to influence lung metastasis. The combination with the acute hypoxia-releasing agent nicotinamide may be more promising in HDR than RDR irradiation in terms of reducing the number of lung metastases. PMID:20739345

  19. Different hematologic responses to hypoxia in Sherpas and Quechua Indians.

    PubMed

    Winslow, R M; Chapman, K W; Gibson, C C; Samaja, M; Monge, C C; Goldwasser, E; Sherpa, M; Blume, F D; Santolaya, R

    1989-04-01

    Previous studies of the erythropoietic response to hypoxia in high-altitude natives suggest that the hematocrit and hemoglobin values in Himalayan natives (Sherpas) are lower than expected for the altitude, perhaps because of a genetic adaptation. However, differences in sampling techniques and experimental methods make comparisons difficult. Our studies were carried out to compare the erythropoietic response with the same altitude in age-matched natives of the Himalayas and Andes by the same experimental techniques. Healthy male subjects were selected in Ollagüe, Chile (n = 29, 27.3 +/- 5.9 yr) and in Khunde, Nepal (n = 30, 24.7 +/- 3.8 yr). Both of these villages are located at 3,700 m above sea level. Hematologic measurements confirmed lower hematocrit values in Nepal (48.4 +/- 4.5%) than in Chile (52.2 +/- 4.6%) (P less than 0.003). When subjects were matched for hematocrit, erythropoietin concentrations in Chile were higher than in Nepal (P less than 0.01). Detailed measurements of blood O2 affinity in Nepal showed no differences in shape or position of the O2 equilibrium curve between Sherpas and Western sojourners. Our results indicate that although Quechua Indians have higher hematocrits than Sherpas living at the same altitude, nevertheless they may be functionally anemic.

  20. Hypoxia awareness training for aircrew: a comparison of two techniques.

    PubMed

    Singh, Bhupinder; Cable, Gordon G; Hampson, Greg V; Pascoe, Glenn D; Corbett, Mark; Smith, Adrian

    2010-09-01

    Major hazards associated with hypoxia awareness training are the risks of decompression sickness, barotrauma, and loss of consciousness. An alternate method has been developed which combines exposure to a simulated altitude of 10,000 ft (3048 m) with breathing of a gas mixture containing 10% oxygen and 90% nitrogen. The paradigm, called Combined Altitude and Depleted Oxygen (CADO), places the subjects at a physiological altitude of 25,000 ft (7620 m) and provides demonstration of symptoms of hypoxia and the effects of pressure change. CADO is theoretically safer than traditional training at a simulated altitude of 25,000 ft (7620 m) due to a much lower risk of decompression sickness (DCS) and has greater fidelity of training for fast jet aircrew (mask-on hypoxia). This study was conducted to validate CADO by comparing it with hypobaric hypoxia. There were 43 subjects who were exposed to two regimens of hypoxia training: hypobaric hypoxia (HH) at a simulated altitude of 25,000 ft (7620 m) and CADO. Subjective, physiological, and performance data of the subjects were collected, analyzed, and compared. There were no significant differences in the frequency and severity of the 24 commonly reported symptoms, or in the physiological response, between the two types of hypoxia exposure. CADO is similar to HH in terms of the type and severity of symptoms experienced by subjects, and appears to be an effective, useful, and safe tool for hypoxia training.

  1. Interrelated Roles for the Aryl Hydrocarbon Receptor and Hypoxia Inducible Factor-1α in the Immune Response to Infection

    PubMed Central

    Wagage, Sagie; Hunter, Christopher A.

    2015-01-01

    Cells of the immune system utilize multiple mechanisms to respond to environmental signals and recent studies have demonstrated roles for two closely related proteins, the aryl hydrocarbon receptor (AHR) and hypoxia inducible factor-1α (HIF1α), in these processes. The AHR is a transcription factor that is activated by diverse ligands found in the diet and environmental pollution as well as by microbial and host-derived products. In contrast, HIF1α is a transcription factor that is active under low oxygen conditions and mediates cellular responses to hypoxia. These evolutionarily conserved proteins have roles in the interrelated processes of metabolism, tumorigenesis, and vascular development. Additionally, the AHR and HIF1α have multiple effects on innate and adaptive immunity. This article provides an overview of the biology of these transcription factors and reviews the effects of AHR and HIF1α signaling on immunity to infection. There are many parallels between these two pathways and their functions highlight the importance of AHR and HIF1α activity particularly at barrier surfaces in coordinating responses to pathogens.

  2. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans.

    PubMed

    Fatemian, Marzieh; Herigstad, Mari; Croft, Quentin P P; Formenti, Federico; Cardenas, Rosa; Wheeler, Carly; Smith, Thomas G; Friedmannova, Maria; Dorrington, Keith L; Robbins, Peter A

    2016-03-01

    Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8-h isocapnic exposure to hypoxia (end-tidal P(O2)=55 Torr) in a purpose-built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (G(pO2)) and hyperoxic hypercapnia, the latter divided into peripheral (G(pCO2)) and central (G(cCO2)) components. Substantial acclimatization was observed in both ventilation and PASP, the latter being 40% greater in women than men. No correlation was found between the magnitudes of pulmonary ventilatory and pulmonary vascular responses. For G(pO2), G(pCO2) and G(cC O2), but not the sensitivity of PASP to acute hypoxia, the magnitude of the increase during acclimatization was proportional to the pre-acclimatization value. Additionally, the change in G(pO2) during acclimatization to hypoxia correlated well with most other measures of ventilatory acclimatization. Of the initial measurements prior to sustained hypoxia, only G(pCO2) predicted the subsequent rise in ventilation and change in G(pO2) during acclimatization. We conclude that the magnitudes of the ventilatory and pulmonary vascular responses to sustained hypoxia are predominantly determined by different factors and that the initial G(pCO2) is a modest predictor of ventilatory acclimatization. © 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological

  3. Hypoxia inducible factors in hepatocellular carcinoma

    PubMed Central

    Chen, Chu; Lou, Tao

    2017-01-01

    Hepatocellular carcinoma is one of the most prevalent and lethal cancers with limited therapeutic options. Pathogenesis of this disease involves tumor hypoxia and the activation of hypoxia inducible factors. In this review, we describe the current understanding of hypoxia signaling pathway and summarize the expression, function and target genes of hypoxia inducible factors in hepatocellular carcinoma. We also highlight the recent progress in hypoxia-targeted therapeutic strategies in hepatocellular carcinoma and discuss further the future efforts for the study of hypoxia and/or hypoxia inducible factors in this deadly disease. PMID:28493839

  4. Interspecific variation in hypoxia tolerance, swimming performance and plasticity in cyprinids that prefer different habitats.

    PubMed

    Fu, Shi-Jian; Fu, Cheng; Yan, Guan-Jie; Cao, Zhen-Dong; Zhang, An-Jie; Pang, Xu

    2014-02-15

    This study quantified and compared hypoxia tolerance and swim performance among cyprinid fish species from rapid-, slow- and intermediate-flow habitats (four species per habitat) in China. In addition, we explored the effects of short-term acclimation on swim performance, maximum metabolic rate (M(O2,max)) and gill remodelling to detect habitat-associated patterns of plastic response to hypoxia. Indices of hypoxia tolerance included oxygen threshold for loss of equilibrium (LOE50) and aquatic surface respiration (ASR50), and critical oxygen tension for routine metabolic rate (Pcrit). Critical swimming speed (Ucrit) and M(O2,max) were measured under normoxic and hypoxic conditions after 48 h acclimation to normoxia and hypoxia, and gill remodelling was estimated after 48 h of hypoxia exposure. Both traditional ANCOVA and phylogenetically independent contrast (PDANOVA) analyses showed that fish species from rapid-flow habitats exhibited lower LOE50 compared with fish from intermediate- and slow-flow habitats. Habitat-specific differences in Pcrit and Ucrit were detected using PDANOVA but not traditional ANCOVA analyses, with fish species from rapid-flow habitats exhibiting lower Pcrit but higher Ucrit values compared with fish from intermediate- and slow-flow habitats. Fish species from rapid-flow habitats were also characterized by less plasticity in swim performance and gill morphology in response to hypoxia acclimation compared with species from slow-flow habitats, but a greater drop in swim performance in response to acute hypoxia exposure. The study detected a habitat-specific difference in hypoxia tolerance, swimming performance and its plasticity among fish from habitats with different flow conditions, possibly because of the long-term adaptation to the habitat caused by selection stress. The PDANOVA analyses were more powerful than traditional statistical analyses according to the habitat effects in both hypoxia tolerance and swimming performance in this

  5. The orphan receptor hepatic nuclear factor 4 functions as a transcriptional activator for tissue-specific and hypoxia-specific erythropoietin gene expression and is antagonized by EAR3/COUP-TF1.

    PubMed

    Galson, D L; Tsuchiya, T; Tendler, D S; Huang, L E; Ren, Y; Ogura, T; Bunn, H F

    1995-04-01

    The erythropoietin (Epo) gene is regulated by hypoxia-inducible cis-acting elements in the promoter and in a 3' enhancer, both of which contain consensus hexanucleotide hormone receptor response elements which are important for function. A group of 11 orphan nuclear receptors, transcribed and translated in vitro, were screened by the electrophoretic mobility shift assay. Of these, hepatic nuclear factor 4 (HNF-4), TR2-11, ROR alpha 1, and EAR3/COUP-TF1 bound specifically to the response elements in the Epo promoter and enhancer and, except for ROR alpha 1, formed DNA-protein complexes that had mobilities similar to those observed in nuclear extracts of the Epo-producing cell line Hep3B. Moreover, both anti-HNF-4 and anti-COUP antibodies were able to supershift complexes in Hep3B nuclear extracts. Like Epo, HNF-4 is expressed in kidney, liver, and Hep3B cells but not in HeLa cells. Transfection of a plasmid expressing HNF-4 into HeLa cells enabled an eightfold increase in the hypoxic induction of a luciferase reporter construct which contains the minimal Epo enhancer and Epo promoter, provided that the nuclear hormone receptor consensus DNA elements in both the promoter and the enhancer were intact. The augmentation by HNF-4 in HeLa cells could be abrogated by cotransfection with HNF-4 delta C, which retains the DNA binding domain of HNF-4 but lacks the C-terminal activation domain. Moreover, the hypoxia-induced expression of the endogenous Epo gene was significantly inhibited in Hep3B cells stably transfected with HNF-4 delta C. On the other hand, cotransfection of EAR3/COUP-TF1 and the Epo reporter either with HNF-4 into HeLa cells or alone into Hep3B cells suppressed the hypoxia induction of the Epo reporter. These electrophoretic mobility shift assay and functional experiments indicate that HNF-4 plays a critical positive role in the tissue-specific and hypoxia-inducible expression of the Epo gene, whereas the COUP family has a negative modulatory role.

  6. miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS.

    PubMed

    Wu, Min-Zu; Cheng, Wei-Chung; Chen, Su-Feng; Nieh, Shin; O'Connor, Carolyn; Liu, Chia-Lin; Tsai, Wen-Wei; Wu, Cheng-Jang; Martin, Lorena; Lin, Yaoh-Shiang; Wu, Kou-Juey; Lu, Li-Fan; Izpisua Belmonte, Juan Carlos

    2017-10-01

    The mechanisms by which hypoxic tumours evade immunological pressure and anti-tumour immunity remain elusive. Here, we report that two hypoxia-responsive microRNAs, miR-25 and miR-93, are important for establishing an immunosuppressive tumour microenvironment by downregulating expression of the DNA sensor cGAS. Mechanistically, miR-25/93 targets NCOA3, an epigenetic factor that maintains basal levels of cGAS expression, leading to repression of cGAS during hypoxia. This allows hypoxic tumour cells to escape immunological responses induced by damage-associated molecular pattern molecules, specifically the release of mitochondrial DNA. Moreover, restoring cGAS expression results in an anti-tumour immune response. Clinically, decreased levels of cGAS are associated with poor prognosis for patients with breast cancer harbouring high levels of miR-25/93. Together, these data suggest that inactivation of the cGAS pathway plays a critical role in tumour progression, and reveal a direct link between hypoxia-responsive miRNAs and adaptive immune responses to the hypoxic tumour microenvironment, thus unveiling potential new therapeutic strategies.

  7. miR25/93 mediates hypoxia-induced immunosuppression by repressing cGAS

    PubMed Central

    Wu, Min-Zu; Cheng, Wei-Chung; Chen, Su-Feng; Nieh, Shin; O’Connor, Carolyn; Liu, Chia-Lin; Tsai, Wen-Wei; Wu, Cheng-Jang; Martin, Lorena; Lin, Yaoh-Shiang; Wu, Kou-Juey; Lu, Li-Fan

    2017-01-01

    The mechanisms by which hypoxic tumors evade immunological pressure and anti-tumor immunity remain elusive. Here, we report that two hypoxia-responsive microRNAs, miR25 and miR93, are important for establishing an immunosuppressive tumor microenvironment by down-regulating expression of the DNA-sensor cGAS. Mechanistically, miR25/93 targets NCOA3, an epigenetic factor that maintains basal levels of cGAS expression, leading to repression of cGAS upon hypoxia. This allows hypoxic tumor cells to escape immunological responses induced by damage-associated molecular pattern molecules (DAMPs), specifically the release of mtDNA. Moreover, restoring cGAS expression results in an anti-tumor immune response. Clinically, decreased levels of cGAS are associated with poor prognosis for patients with breast cancer harboring high levels of miR25/93. Together, these data suggest that inactivation of the cGAS pathway plays a critical role in tumor progression, and reveals a direct link between hypoxia-responsive miRNAs and adaptive immune responses to the hypoxic tumor microenvironment, thus unveiling potential new therapeutic strategies. PMID:28920955

  8. Regulation of type II transmembrane serine proteinase TMPRSS6 by hypoxia-inducible factors: new link between hypoxia signaling and iron homeostasis.

    PubMed

    Lakhal, Samira; Schödel, Johannes; Townsend, Alain R M; Pugh, Christopher W; Ratcliffe, Peter J; Mole, David R

    2011-02-11

    Hepcidin is a liver-derived hormone with a key role in iron homeostasis. In addition to iron, it is regulated by inflammation and hypoxia, although mechanisms of hypoxic regulation remain unclear. In hepatocytes, hepcidin is induced by bone morphogenetic proteins (BMPs) through a receptor complex requiring hemojuvelin (HJV) as a co-receptor. Type II transmembrane serine proteinase (TMPRSS6) antagonizes hepcidin induction by BMPs by cleaving HJV from the cell membrane. Inactivating mutations in TMPRSS6 lead to elevated hepcidin levels and consequent iron deficiency anemia. Here we demonstrate that TMPRSS6 is up-regulated in hepatic cell lines by hypoxia and by other activators of hypoxia-inducible factor (HIF). We show that TMPRSS6 expression is regulated by both HIF-1α and HIF-2α. This HIF-dependent up-regulation of TMPRSS6 increases membrane HJV shedding and decreases hepcidin promoter responsiveness to BMP signaling in hepatocytes. Our results reveal a potential role for TMPRSS6 in hepcidin regulation by hypoxia and provide a new molecular link between oxygen sensing and iron homeostasis.

  9. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  10. Hypoxia modulates CCR7 expression in head and neck cancers.

    PubMed

    Basheer, Haneen A; Pakanavicius, Edvinas; Cooper, Patricia A; Shnyder, Steven D; Martin, Lisette; Hunter, Keith D; Vinader, Victoria; Afarinkia, Kamyar

    2018-05-01

    The chemokine receptor CCR7 is expressed on lymphocytes and dendritic cells and is responsible for trafficking of these cells in and out of secondary lymphoid organs. It has recently been shown that CCR7 expression is elevated in a number of cancers, including head and neck cancers, and that its expression correlates to lymph node (LN) metastasis. However, little is known about the factors that can induce CCR7 expression in head and neck cancers. We compared the protein expression and functional responses of CCR7 under normoxia and hypoxia in head and neck cancer cell lines OSC-19, FaDu, SCC-4, A-253 and Detroit-562 cultured as monolayers, spheroids, and grown in vivo as xenografts in balb/c mice. In addition, we analysed the correlation between hypoxia marker HIF-1α and CCR7 expression in a tissue microarray comprising 80 clinical samples with various stages and grades of malignant tumour and normal tissue. Under hypoxia, the expression of CCR7 is elevated in both in vitro and in vivo models. Furthermore, in malignant tissue, a correlation is observed between hypoxia marker HIF-1α and CCR7 across all clinical stages. This correlation is also strong in early histological grade of tumours. Hypoxia plays a role in the regulation of the expression of CCR7 and it may contribute to the development of a metastatic phenotype in head and neck cancers through this axis. Copyright © 2018. Published by Elsevier Ltd.

  11. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.

    PubMed

    Chicco, Adam J; Le, Catherine H; Gnaiger, Erich; Dreyer, Hans C; Muyskens, Jonathan B; D'Alessandro, Angelo; Nemkov, Travis; Hocker, Austin D; Prenni, Jessica E; Wolfe, Lisa M; Sindt, Nathan M; Lovering, Andrew T; Subudhi, Andrew W; Roach, Robert C

    2018-05-04

    Metabolic responses to hypoxia play important roles in cell survival strategies and disease pathogenesis in humans. However, the homeostatic adjustments that balance changes in energy supply and demand to maintain organismal function under chronic low oxygen conditions remain incompletely understood, making it difficult to distinguish adaptive from maladaptive responses in hypoxia-related pathologies. We integrated metabolomic and proteomic profiling with mitochondrial respirometry and blood gas analyses to comprehensively define the physiological responses of skeletal muscle energy metabolism to 16 days of high-altitude hypoxia (5260 m) in healthy volunteers from the AltitudeOmics project. In contrast to the view that hypoxia down-regulates aerobic metabolism, results show that mitochondria play a central role in muscle hypoxia adaptation by supporting higher resting phosphorylation potential and enhancing the efficiency of long-chain acylcarnitine oxidation. This directs increases in muscle glucose toward pentose phosphate and one-carbon metabolism pathways that support cytosolic redox balance and help mitigate the effects of increased protein and purine nucleotide catabolism in hypoxia. Muscle accumulation of free amino acids favor these adjustments by coordinating cytosolic and mitochondrial pathways to rid the cell of excess nitrogen, but might ultimately limit muscle oxidative capacity in vivo Collectively, these studies illustrate how an integration of aerobic and anaerobic metabolism is required for physiological hypoxia adaptation in skeletal muscle, and highlight protein catabolism and allosteric regulation as unexpected orchestrators of metabolic remodeling in this context. These findings have important implications for the management of hypoxia-related diseases and other conditions associated with chronic catabolic stress. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Major Differences in Hypoxia Tolerance and P38 Regulation Among Different Renal Cells.

    PubMed

    Shi, Qianqian; Shi, Jian; Luo, Fengbao; Song, Guanglai; He, Xiaozhou; Xia, Ying

    2018-01-01

    Mitogen-activated protein kinases (MAPKs) are involved in the cellular response to hypoxia and their dysregulation may contribute to the progression and pathology of diverse human renal diseases. Recent studies suggest that the regulation of MAPK responses to hypoxic stress may be different in different cells, even within the same organ. However, it is unclear if MAPKs are differentially regulated in different renal cells in hypoxia. This work was carried out to clarify this fundamental issue. We cultured normal rat kidney epithelial (NRK-52E) cells, human kidney epithelial (HK-2) cells and human renal cell adenocarcinoma (769-P) cells simultaneously under normoxia and hypoxia (1% O2) for 24-72 hours. The protein levels of P-ERK1/2, ERK1/2, P-p38, p38 and eEF2K were detected by western blotting. The morphology of all cells was examined using light microscopy. Under the same hypoxic condition, P-ERK1/2 was up-regulated in all renal cells. Meanwhile,P-p38 in NRK-52E cells was markedly increased after hypoxia for 24-72 hours, while it appeared to show no appreciable change in HK-2 and 769-P cells exposed to hypoxia for 24-48 hours and significantly decreased in these cells after 72 hours hypoxia. On the other hand, hypoxia markedly down-regulated the expression of eukaryotic elongation factor-2 kinase (eEF2K) in all three cells. Under microscopy, NRK-52E cells had no visible injury after 72 hours hypoxia, while HK-2 and 769-P cells were mostly damaged under the same condition. Our data suggest that in response to prolonged hypoxic stress, ERK1/2 and p38 are differentially regulated in three renal cells, while eEF2K is largely down-regulated in all of these cells. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. Modeling the spatial distribution of chronic tumor hypoxia: implications for experimental and clinical studies.

    PubMed

    Powathil, Gibin; Kohandel, Mohammad; Milosevic, Michael; Sivaloganathan, Siv

    2012-01-01

    Tumor oxygenation status is considered one of the important prognostic markers in cancer since it strongly influences the response of cancer cells to various treatments; in particular, to radiation therapy. Thus, a proper and accurate assessment of tumor oxygen distribution before the treatment may highly affect the outcome of the treatment. The heterogeneous nature of tumor hypoxia, mainly influenced by the complex tumor microenvironment, often makes its quantification very difficult. The usual methods used to measure tumor hypoxia are biomarkers and the polarographic needle electrode. Although these techniques may provide an acceptable assessment of hypoxia, they are invasive and may not always give a spatial distribution of hypoxia, which is very useful for treatment planning. An alternative method to quantify the tumor hypoxia is to use theoretical simulations with the knowledge of tumor vasculature. The purpose of this paper is to model tumor hypoxia using a known spatial distribution of tumor vasculature obtained from image data, to analyze the accuracy of polarographic needle electrode measurements in quantifying hypoxia, to quantify the optimum number of measurements required to satisfactorily evaluate the tumor oxygenation status, and to study the effects of hypoxia on radiation response. Our results indicate that the model successfully generated an accurate oxygenation map for tumor cross-sections with known vascular distribution. The method developed here provides a way to estimate tumor hypoxia and provides guidance in planning accurate and effective therapeutic strategies and invasive estimation techniques. Our results agree with the previous findings that the needle electrode technique gives a good estimate of tumor hypoxia if the sampling is done in a uniform way with 5-6 tracks of 20-30 measurements each. Moreover, the analysis indicates that the accurate measurement of oxygen profile can be very useful in determining right radiation doses to the

  14. Hypoxia and fetal heart development.

    PubMed

    Patterson, A J; Zhang, L

    2010-10-01

    Fetal hearts show a remarkable ability to develop under hypoxic conditions. The metabolic flexibility of fetal hearts allows sustained development under low oxygen conditions. In fact, hypoxia is critical for proper myocardial formation. Particularly, hypoxia inducible factor 1 (HIF-1) and vascular endothelial growth factor play central roles in hypoxia-dependent signaling in fetal heart formation, impacting embryonic outflow track remodeling and coronary vessel growth. Although HIF is not the only gene involved in adaptation to hypoxia, its role places it as a central figure in orchestrating events needed for adaptation to hypoxic stress. Although "normal" hypoxia (lower oxygen tension in the fetus as compared with the adult) is essential in heart formation, further abnormal hypoxia in utero adversely affects cardiogenesis. Prenatal hypoxia alters myocardial structure and causes a decline in cardiac performance. Not only are the effects of hypoxia apparent during the perinatal period, but prolonged hypoxia in utero also causes fetal programming of abnormality in the heart's development. The altered expression pattern of cardioprotective genes such as protein kinase c epsilon, heat shock protein 70, and endothelial nitric oxide synthase, likely predispose the developing heart to increased vulnerability to ischemia and reperfusion injury later in life. The events underlying the long-term changes in gene expression are not clear, but likely involve variation in epigenetic regulation.

  15. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions.

    PubMed

    Ding, Lingtao; Yang, Minlie; Zhao, Tianlan; Lv, Guozhong

    2017-05-01

    Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose-induced hypoxia-inducible factor 1 (HIF-1)-mediated transcription defects. Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF-1α-induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF-1α/p300/CREB. To test whether p300, CREB or p300+CREB co-overexpression was sufficient to rescue the HIF-1-mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co-overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose-induced angiogenesis defect is rescuable by p300 and CREB co-overexpression. Chronic high glucose treatment resulted in impaired HIF-1-induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose-induced HIF-1α transcription defects. In contrast, co-overexpression of p300 and CREB dramatically ameliorated high glucose-induced impairment of HIF-1-mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co-overexpression of p300 and CREB rectifies the dissociation of HIF-1α-p300-CREB protein complex in chronic high glucose-treated cells. Both p300 and CREB are required for the function integrity of HIF-1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF-1α. © 2016 The Authors. Journal of Diabetes

  16. Hypoxia and Mucosal Inflammation

    PubMed Central

    Colgan, Sean P.; Campbell, Eric L.; Kominsky, Douglas J.

    2016-01-01

    Sites of inflammation are defined by significant changes in metabolic activity. Recent studies have suggested that O2 metabolism and hypoxia play a prominent role in inflammation so-called “inflammatory hypoxia,” which results from a combination of recruited inflammatory cells (e.g., neutrophils and monocytes), the local proliferation of multiple cell types, and the activation of multiple O2-consuming enzymes during inflammation. These shifts in energy supply and demand result in localized regions of hypoxia and have revealed the important function off the transcription factor HIF (hypoxia-inducible factor) in the regulation of key target genes that promote inflammatory resolution. Analysis of these pathways has provided multiple opportunities for understanding basic mechanisms of inflammation and has defined new targets for intervention. Here, we review recent work addressing tissue hypoxia and metabolic control of inflammation and immunity. PMID:27193451

  17. Hypoxia-related brain dysfunction in forensic medicine.

    PubMed

    Suslo, R; Trnka, J; Siewiera, J; Drobnik, J

    2015-01-01

    Blood gases levels imbalances belong to important factors triggering central nervous system (CNS) functional disturbances. Hypoxia can be illness-related, like in many COPD patients, or it may be caused by broad range of external or iatrogenic factors - including influence of drugs depressing respiration, failure to keep the patient's prosthesis-supported airways patent, or a mistake in the operation of medical equipment supporting patient's respiration. Hypoxia, especially when it is not accompanied by rapid carbon dioxide retention, can go unnoticed for prolonged times, deepening existing CNS disorders, sometimes rapidly triggering their manifestation, or evoking quite new conditions and symptoms - like anxiety, agitation, aggressive behavior, euphoria, or hallucinations. Those, in turn, often result in situations raising interest in law enforcement institutions which need forensic medicine specialist's assistance and opinion. The possibility of illness or drug-related hypoxia, especially in terminal patients, is used to raise questions about the patients' ability to properly express their will in the way demanded by law - it also must be considered as a factor limiting the patients' responsibility in case they commit crimes. The possibility of hallucinations in hypoxia patients limits their credibility as witnesses or even their ability to report crime or sexual abuse they have been subjected to.

  18. Combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the physiological responses of triangle sail mussel Hyriopsis cumingii.

    PubMed

    Hu, Menghong; Wu, Fangli; Yuan, Mingzhe; Liu, Qigen; Wang, Youji

    2016-04-05

    The single and combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the energy budget of triangle sail mussel Hyriopsis cumingii were determined in terms of scope for growth (SfG). Mussels were exposed to different combinations of toxic M. aeruginosa (0%, 50%, and 100% of total dietary dry weight) and dissolved oxygen concentrations (1, 3, and 6.0mg O2l(-1)) with a 3×3 factorial design for 14 days, followed by a recovery period with normal conditions for 7 days. Microcystin contents in mussel tissues increased with the increase in the exposed M. aeruginosa concentration at each sampling time. Adverse physiological responses of H. cumingii under toxic M. aeruginosa and hypoxic exposure were found in terms of clearance rate, absorption efficiency, respiration rate, excretion rate, and SfG. Results emphasized the importance of combined effects of hypoxia and toxic cyanobacteria on H. cumingii bioenergetic parameters, highlighted the interactive effects of toxic algae and hypoxia, and implied that the two stressors affected H. cumingii during the exposure period and showed carryover effects later. Thus, if H. cumingii is used as a bioremediation tool to eliminate M. aeruginosa, the waters should be oxygenated. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Air-breathing behavior and physiological responses to hypoxia and air exposure in the air-breathing loricariid fish, Pterygoplichthys anisitsi.

    PubMed

    da Cruz, André Luis; da Silva, Hugo Ribeiro; Lundstedt, Lícia Maria; Schwantes, Arno Rudi; Moraes, Gilberto; Klein, Wilfried; Fernandes, Marisa Narciso

    2013-04-01

    Hypoxic water and episodic air exposure are potentially life-threatening conditions that fish in tropical regions can face during the dry season. This study investigated the air-breathing behavior, oxygen consumption, and respiratory responses of the air-breathing (AB) armored catfish Pterygoplichthys anisitsi. The hematological parameters and oxygen-binding characteristics of whole blood and stripped hemoglobin and the intermediate metabolism of selected tissue in normoxia, different hypoxic conditions, and after air exposure were also examined. In normoxia, this species exhibited high activity at night and AB behavior (2-5 AB h(-1)). The exposure to acute severe hypoxia elicited the AB behavior (4 AB h(-1)) during the day. Under progressive hypoxia without access to the water surface, the fish were oxyregulators with a critical O2 tension, calculated as the inspired water O2 pressure, as 47 ± 2 mmHg. At water O2 tensions lower than 40 mmHg, the fish exhibited continuous apnea behavior. The blood exhibited high capacity for transporting O2, having a cathodic hemoglobin component with a high Hb-O2 affinity. Under severe hypoxia, the fish used anaerobic metabolism to maintain metabolic rate. Air exposure revealed physiological and biochemical traits similar to those observed under normoxic conditions.

  20. Hypoxia regulates alternative splicing of HIF and non-HIF target genes.

    PubMed

    Sena, Johnny A; Wang, Liyi; Heasley, Lynn E; Hu, Cheng-Jun

    2014-09-01

    Hypoxia is a common characteristic of many solid tumors. The hypoxic microenvironment stabilizes hypoxia-inducible transcription factor 1α (HIF1α) and 2α (HIF2α/EPAS1) to activate gene transcription, which promotes tumor cell survival. The majority of human genes are alternatively spliced, producing RNA isoforms that code for functionally distinct proteins. Thus, an effective hypoxia response requires increased HIF target gene expression as well as proper RNA splicing of these HIF-dependent transcripts. However, it is unclear if and how hypoxia regulates RNA splicing of HIF targets. This study determined the effects of hypoxia on alternative splicing (AS) of HIF and non-HIF target genes in hepatocellular carcinoma cells and characterized the role of HIF in regulating AS of HIF-induced genes. The results indicate that hypoxia generally promotes exon inclusion for hypoxia-induced, but reduces exon inclusion for hypoxia-reduced genes. Mechanistically, HIF activity, but not hypoxia per se is found to be necessary and sufficient to increase exon inclusion of several HIF targets, including pyruvate dehydrogenase kinase 1 (PDK1). PDK1 splicing reporters confirm that transcriptional activation by HIF is sufficient to increase exon inclusion of PDK1 splicing reporter. In contrast, transcriptional activation of a PDK1 minigene by other transcription factors in the absence of endogenous HIF target gene activation fails to alter PDK1 RNA splicing. This study demonstrates a novel function of HIF in regulating RNA splicing of HIF target genes. ©2014 American Association for Cancer Research.

  1. [Regulatory role of hypoxia inducible factor-1 alpha in the changes of contraction of vascular smooth muscle cell induced by hypoxia].

    PubMed

    Zhang, Yuan; Liu, Liang-ming; Ming, Jia; Yang, Guang-ming; Chen, Wei

    2007-11-01

    To observe the regulatory role and mechanism of hypoxia inducible factor-1 alpha (HIF-1 alpha) in the contractile changes of vascular smooth muscle cell (VSMC) induced by hypoxia. Cells were divided into three groups: normal, hypoxia and oligomycin treated groups. VSMC and vascular endothelial cell (VEC) were co-cultured in Transwell models with the hypoxic time of 0, 0.5, 1, 2, 3, 4 and 6 hours respectively. The contractile response of VSMC to norepinephrine were determined by measuring the fluorescent infiltration rate in the lower chamber. The mRNA expression of HIF-1 alpha, endothelial-nitric oxide synthase (eNOS), inducible-nitric oxide synthase(iNOS), heme oxygenase-1 (HO-1) and cyclooxygenase-2 (COX-2) were determined by reverse transcription-polymerase chain reaction (RT-PCR). VSMC contraction was increased at the early stage of hypoxia with the 1.53-fold increase at 0.5 hour as compared to the normal group (P<0 .01), and decreased gradually at the prolonged period of hypoxia with the drop of 30% at 6 hours as compared to the normal group (P<0.05). Oligomycin treatment significantly inhibited the increase of VSMC contraction at early stage, while improved it at late hypoxic period with the 6 hours increase of 12.8% (P<0.05). HIF-1 alpha, iNOS, COX-2 and HO-1 mRNA exhibited a time-dependent increase following hypoxia, and peaked at 6, 2, 3 and 4 hours respectively, they were increased 1.62, 3.23, 2.26 and 2.86-folds as compared with normal group (all P<0.01). iNOS, COX-2 and HO-1 mRNA expression were fluctuated in the normal range following oligomycin administration (all P>0.05). Hypoxia can elicit a biphasic changes of VSMC contraction, and HIF-1 alpha seems to play an important role in the regulation of VSMC contraction induced by hypoxia by regulating eNOS, iNOS, COX-2 and HO-1 expression.

  2. Hypoxia potentiates microRNA-mediated gene silencing through posttranslational modification of Argonaute2.

    PubMed

    Wu, Connie; So, Jessica; Davis-Dusenbery, Brandi N; Qi, Hank H; Bloch, Donald B; Shi, Yang; Lagna, Giorgio; Hata, Akiko

    2011-12-01

    Hypoxia contributes to the pathogenesis of various human diseases, including pulmonary artery hypertension (PAH), stroke, myocardial or cerebral infarction, and cancer. For example, acute hypoxia causes selective pulmonary artery (PA) constriction and elevation of pulmonary artery pressure. Chronic hypoxia induces structural and functional changes to the pulmonary vasculature, which resembles the phenotype of human PAH and is commonly used as an animal model of this disease. The mechanisms that lead to hypoxia-induced phenotypic changes have not been fully elucidated. Here, we show that hypoxia increases type I collagen prolyl-4-hydroxylase [C-P4H(I)], which leads to prolyl-hydroxylation and accumulation of Argonaute2 (Ago2), a critical component of the RNA-induced silencing complex (RISC). Hydroxylation of Ago2 is required for the association of Ago2 with heat shock protein 90 (Hsp90), which is necessary for the loading of microRNAs (miRNAs) into the RISC, and translocation to stress granules (SGs). We demonstrate that hydroxylation of Ago2 increases the level of miRNAs and increases the endonuclease activity of Ago2. In summary, this study identifies hypoxia as a mediator of the miRNA-dependent gene silencing pathway through posttranslational modification of Ago2, which might be responsible for cell survival or pathological responses under low oxygen stress.

  3. Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1.

    PubMed

    Ruthenborg, Robin J; Ban, Jae-Jun; Wazir, Anum; Takeda, Norihiko; Kim, Jung-Whan

    2014-09-01

    Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.

  4. Seven Passive 1-h Hypoxia Exposures Do Not Prevent AMS in Susceptible Individuals.

    PubMed

    Faulhaber, Martin; Pocecco, Elena; Gatterer, Hannes; Niedermeier, Martin; Huth, Maike; Dünnwald, Tobias; Menz, Verena; Bernardi, Luciano; Burtscher, Martin

    2016-12-01

    The present study evaluated the effects of a preacclimatization program comprising seven passive 1-h exposures to 4500-m normobaric hypoxia on the prevalence and severity of acute mountain sickness (AMS) during a subsequent exposure to real high altitude in persons susceptible to AMS. The project was designed as a randomized controlled trial including 32 healthy female and male participants with known susceptibility to AMS symptoms. After baseline measurements, participants were randomly assigned to the hypoxia or the control group to receive the preacclimatization program (seven passive 1-h exposures within 7 d to normobaric hypoxia or sham hypoxia). After completing preacclimatization, participants were transported (bus, cog railway) to real high altitude (3650 m, Mönchsjoch Hut, Switzerland) and stayed there for 45 h (two nights). Symptoms of AMS and physiological responses were determined repeatedly. AMS incidence and severity did not significantly differ between groups during the high-altitude exposure. In total, 59% of the hypoxia and 67% of the control group suffered from AMS at one or more time points during the high-altitude exposure. Hypoxic and hypercapnic ventilatory responses were not affected by the preacclimatization program. Resting ventilation at high altitude tended to be higher (P = 0.06) in the hypoxia group compared with the control group. No significant between-group differences were detected for heart rate variability, arterial oxygen saturation, and hematological and ventilatory parameters during the high-altitude exposure. Preacclimatization using seven passive 1-h exposures to normobaric hypoxia corresponding to 4500 m did not prevent AMS development during a subsequent high-altitude exposure in AMS-susceptible persons.

  5. Antenatal Hypoxia and Pulmonary Vascular Function and Remodeling

    PubMed Central

    Papamatheakis, Demosthenes G.; Blood, Arlin B.; Kim, Joon H.; Wilson, Sean M.

    2015-01-01

    This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression. PMID:24063380

  6. The effect of acute hypoxia on short-circuit current and epithelial resistivity in biopsies from human colon.

    PubMed

    Carra, Graciela E; Ibáñez, Jorge E; Saraví, Fernando D

    2013-09-01

    In isolated colonic mucosa, decreases in short-circuit current (ISC) and transepithelial resistivity (RTE) occur when hypoxia is either induced at both sides or only at the serosal side of the epithelium. We assessed in human colon biopsies the sensitivity to serosal-only hypoxia and mucosal-only hypoxia and whether Na, K-ATPase blockade with ouabain interacts with hypoxia. Biopsy material from patients undergoing colonoscopy was mounted in an Ussing chamber for small samples (1-mm2 window). In a series of experiments we assessed viability and the electrical response to the mucolytic, dithiothreitol (1 mmol/l). In a second series, we explored the effect of hypoxia without and with ouabain. In a third series, we evaluated the response to a cycle of hypoxia and reoxygenation induced at the serosal or mucosal side while keeping the oxygenation of the opposite side. 1st series: Dithiothreitol significantly decreased the unstirred layer and ISC but increased RTE. 2nd series: Both hypoxia and ouabain decreased ISC, but ouabain increased RTE and this effect on RTE prevailed even during hypoxia. 3rd series: Mucosal hypoxia caused lesser decreases of ISC and RTE than serosal hypoxia; in the former, but not in the latter, recovery was complete upon reoxygenation. In mucolytic concentration, dithiothreitol modifies ISC and RTE. Oxygen supply from the serosal side is more important to sustain ISC and RTE in biopsy samples. The different effect of hypoxia and Na, K-ATPase blockade on RTE suggests that their depressing effect on ISC involves different mechanisms.

  7. Effect of hypoxia on lung gene expression and proteomic profile: insights into the pulmonary surfactant response

    PubMed Central

    Olmeda, Bárbara; Umstead, Todd M.; Silveyra, Patricia; Pascual, Alberto; López-Barneo, José; Phelps, David S.; Floros, Joanna; Pérez-Gil, Jesús

    2014-01-01

    Exposure of lung to hypoxia has been previously reported to be associated with significant alterations in the protein content of bronchoalveolar lavage (BAL) and lung tissue. In the present work we have used a proteomic approach to describe the changes in protein complement induced by moderate long-term hypoxia (rats exposed to 10% O2 for 72 hours) in BAL and lung tissue, with a special focus on the proteins associated with pulmonary surfactant, which could indicate adaptation of this system to limited oxygen availability. The analysis of the general proteomic profile indicates a hypoxia-induced increase in proteins associated with inflammation both in lavage and lung tissue. Analysis at mRNA and protein levels revealed no significant changes induced by hypoxia on the content in surfactant proteins or their apparent oligomeric state. In contrast, we detected a hypoxia-induced significant increase in the expression and accumulation of hemoglobin in lung tissue, at both mRNA and protein levels, as well as an accumulation of hemoglobin both in BAL and associated with surface-active membranes of the pulmonary surfactant complex. Evaluation of pulmonary surfactant surface activity from hypoxic rats showed no alterations in its spreading ability, ruling out inhibition by increased levels of serum or inflammatory proteins. PMID:24576641

  8. The role of hypoxia and HIF1α in the regulation of STAR-mediated steroidogenesis in granulosa cells.

    PubMed

    Kowalewski, Mariusz Pawel; Gram, Aykut; Boos, Alois

    2015-02-05

    The adaptive responses to hypoxia are mediated by hypoxia-inducible factor 1 alpha (HIF1α). Its role, however, in regulating steroidogenesis remains poorly understood. We examined the role of hypoxia and HIF1α in regulating steroid acute regulatory protein (STAR) expression and steroidogenesis in immortalized (KK1) mouse granulosa cells under progressively lowering O2 concentrations (20%, 15%, 10%, 5%, 1%). Basal and dbcAMP-stimulated progesterone synthesis was decreased under severe hypoxia (1% and 5% O2). The partial hypoxia revealed opposing effects, with a significant increase in steroidogenic response at 10% O2 in dbcAMP-treated cells: Star-promoter activity, mRNA and protein expression were increased. The hypoxia-stimulated STAR expression was PKA-dependent. Binding of HIF1α to the Star-promoter was potentiated under partial hypoxia. Inhibition of the transcriptional activity or expression of HIF1α suppressed STAR-expression. HIF1α appears to be a positive regulator of basal and stimulated STAR-expression, which under partial hypoxia is capable of increasing the steroidogenic capacity of granulosa cells. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Sensors, transmitters, and targets in mitochondrial oxygen shortage-a hypoxia-inducible factor relay story.

    PubMed

    Dehne, Nathalie; Brüne, Bernhard

    2014-01-10

    Cells sense and respond to a shortage of oxygen by activating the hypoxia-inducible transcription factors HIF-1 and HIF-2 and evoking adaptive responses. Mitochondria are at the center of a hypoxia sensing and responding relay system. Under normoxia, reactive oxygen species (ROS) and nitric oxide (NO) are HIF activators. As their individual flux rates determine their diffusion-controlled interaction, predictions how these radicals affect HIF appear context-dependent. Considering that the oxygen requirement for NO formation limits its role in activating HIF to conditions of ambient oxygen tension. Given the central role of mitochondrial complex IV as a NO target, especially under hypoxia, allows inhibition of mitochondrial respiration by NO to spare oxygen thus, raising the threshold for HIF activation. HIF targets seem to configure a feedback-signaling circuit aimed at gradually adjusting mitochondrial function. In hypoxic cancer cells, mitochondria redirect Krebs cycle intermediates to preserve their biosynthetic ability. Persistent HIF activation lowers the entry of electron-delivering compounds into mitochondria to reduce Krebs cycle fueling and β-oxidation, attenuates the expression of electron transport chain components, limits mitochondria biosynthesis, and provokes their removal by autophagy. Mitochondria can be placed central in a hypoxia sensing-hypoxia responding circuit. We need to determine to which extent and how mitochondria contribute to sense hypoxia, explore whether modulating their oxygen-consuming capacity redirects hypoxic responses in in vivo relevant disease conditions, and elucidate how the multiple HIF targets in mitochondria shape conditions of acute versus chronic hypoxia.

  10. Severity-dependent influence of isocapnic hypoxia on reaction time is independent of neurovascular coupling.

    PubMed

    Caldwell, Hannah G; Coombs, Geoff B; Tymko, Michael M; Nowak-Flück, Daniela; Ainslie, Philip N

    2018-05-01

    With exposure to acute normobaric hypoxia, global cerebral oxygen delivery is maintained via increases in cerebral blood flow (CBF); therefore, regional and localized changes in oxygen tension may explain neurocognitive impairment. Neurovascular coupling (NVC) is the close temporal and regional relationship of CBF to changes in neural activity and may aid in explaining the localized CBF response with cognitive activation. High-altitude related cognitive impairment is likely affected by hypocapnic cerebral vasoconstriction that may influence regional CBF regulation independent of hypoxia. We assessed neurocognition and NVC following 30 min of acute exposure to isocapnic hypoxia (decreased partial pressure of end-tidal oxygen; P ET O 2 ) during moderate hypoxia (MOD HX; 55 mm Hg P ET O 2 ), and severe hypoxia (SEV HX; 45 mm Hg P ET O 2 ) in 10 healthy individuals (25.5 ± 3.3 yrs). Transcranial Doppler ultrasound was used to assess mean posterior and middle cerebral blood velocity (PCAv and MCAv, respectively) and neurocognitive performance was assessed via validated computerized tests. The main finding was that reaction time (i.e., kinesthetic and visual-motor ability via Stroop test) was selectively impaired in SEV HX (-4.6 ± 5.2%, P = 0.04), but not MOD HX, while complex cognitive performance (e.g., psychomotor speed, cognitive flexibility, processing speed, executive function, and motor speed) was unaffected with hypoxia (P > 0.05). Additionally, severity of hypoxia had no effect on NVC (PCAv CON vs. SEV HX relative peak response 13.7 ± 6.4% vs. 16.2 ± 11.5%, P = 0.71, respectively). In summary, severe isocapnic hypoxia impaired reaction time, but not complex cognitive performance or NVC. These findings have implications for recreational and military personnel who may experience acute hypoxia. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Hypoxia in the Northern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H

    2010-01-01

    Since 1985, scientists have been documenting a hypoxic zone in the Gulf of Mexico each year. The hypoxic zone, an area of low dissolved oxygen that cannot support marine life, generally manifests itself in the spring. Since marine species either die or flee the hypoxic zone, the spread of hypoxia reduces the available habitat for marine species, which are important for the ecosystem as well as commercial and recreational fishing in the Gulf. Since 2001, the hypoxic zone has averaged 16,500 km{sup 2} during its peak summer months, an area slightly larger than the state of Connecticut, and ranged frommore » a low of 8,500 km{sup 2} to a high of 22,000 km{sup 2}. To address the hypoxia problem, the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force (or Task Force) was formed to bring together representatives from federal agencies, states, and tribes to consider options for responding to hypoxia. The Task Force asked the White House Office of Science and Technology Policy to conduct a scientific assessment of the causes and consequences of Gulf hypoxia through its Committee on Environment and Natural Resources (CENR). In 2000 the CENR completed An Integrated Assessment: Hypoxia in the Northern Gulf of Mexico (or Integrated Assessment), which formed the scientific basis for the Task Force's Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Action Plan, 2001). In its Action Plan, the Task Force pledged to implement ten management actions and to assess progress every 5 years. This reassessment would address the nutrient load reductions achieved, the responses of the hypoxic zone and associated water quality and habitat conditions, and economic and social effects. The Task Force began its reassessment in 2005. In 2006 as part of the reassessment, USEPA's Office of Water, on behalf of the Task Force, requested that the U.S. Environmental Protection Agency (USEPA) Science Advisory Board (SAB) convene an independent

  12. Effects of Hypoxia and Hypercapnic Hypoxia on Oxygen Transport and Acid-Base Status in the Atlantic Blue Crab, Callinectes sapidus, During Exercise.

    PubMed

    Lehtonen, Mark P; Burnett, Louis E

    2016-11-01

    The responses of estuarine invertebrates to hypoxic conditions are well established. However, many studies have investigated hypoxia as an isolated condition despite its frequent co-occurrence with hypercapnia (elevated CO 2 ). Although many studies suggest deleterious effects, hypercapnia has been observed to improve blue crab walking performance in hypoxia. To investigate the physiological effects of combined hypercapnic hypoxia, we measured Po 2 , pH, [l-lactate], Pco 2 , and total O 2 in pre- and postbranchial hemolymph sampled from blue crabs during walking exercise. Crabs walked at 8 m min -1 on an aquatic treadmill in normoxic (100% air saturation), moderately hypoxic (50%), and severely hypoxic (20%) seawater with and without the addition of hypercapnia (about 2% CO 2 ). Respiration was almost completely aerobic in normoxic conditions, with little buildup of lactate. During exercise under severe hypoxia, lactate increased from 1.4 to 11.0 mM, indicating a heavy reliance on anaerobic respiration. The O 2 saturation of arterial hemocyanin was 47% in severe hypoxia after 120 min, significantly lower than in normoxia (80%). However, the addition of hypercapnia significantly increased the percentage saturation of arterial hemocyanin in severe hypoxia to 92% after 120 min of exercise, equivalent to normoxic levels. Hypercapnia in severe hypoxia also caused a marked increase in hemolymph Pco 2 (around 1.1 kPa), but caused only a minor decrease in pH of 0.1 units. We suggest that the improved O 2 saturation at the gills results from a specific effect of molecular CO 2 on hemocyanin oxygen binding affinity, which works independently of and counter to the effects of decreased pH. © 2016 Wiley Periodicals, Inc.

  13. Hypoxia-mediated alterations and their role in the HER-2/neuregulated CREB status and localization

    PubMed Central

    Steven, André; Leisz, Sandra; Sychra, Katharina; Hiebl, Bernhard; Wickenhauser, Claudia; Mougiakakos, Dimitrios; Kiessling, Rolf; Denkert, Carsten; Seliger, Barbara

    2016-01-01

    The cAMP-responsive element-binding protein (CREB) is involved in the tumorigenicity of HER-2/neu-overexpressing murine and human tumor cells, but a link between the HER-2/neu-mediated CREB activation, its posttranslational modification and localization and changes in the cellular metabolism, due to an altered (tumor) microenvironment remains to be established. The present study demonstrated that shRNA-mediated silencing of CREB in HER-2/neu-transformed cells resulted in decreased tumor formation, which was associated with reduced angiogenesis, but increased necrotic and hypoxic areas in the tumor. Hypoxia induced pCREBSer133, but not pCREBSer121 expression in HER-2/neu-transformed cells. This was accompanied by upregulation of the hypoxia-inducible genes GLUT1 and VEGF, increased cell migration and matrix metalloproteinase-mediated invasion. Treatment of HER-2/neu+ cells with signal transduction inhibitors targeting in particular HER-2/neu was able to revert hypoxia-controlled CREB activation. In addition to changes in the phosphorylation, hypoxic response of HER-2/neu+ cells caused a transient ubiquitination and SUMOylation as well as a co-localization of nuclear CREB to the mitochondrial matrix. A mitochondrial localization of CREB was also demonstrated in hypoxic areas of HER-2/neu+ mammary carcinoma lesions. This was accompanied by an altered gene expression pattern, activity and metabolism of mitochondria leading to an increased respiratory rate, oxidative phosphorylation and mitochondrial membrane potential and consequently to an enhanced apoptosis and reduced cell viability. These data suggest that the HER-2/neu-mediated CREB activation caused by a hypoxic tumor microenvironment contributes to the neoplastic phenotype of HER-2/neu+ cells at various levels. PMID:27409833

  14. Temporal Responses of Coastal Hypoxia to Nutrient Loading and Physical Controls.

    EPA Science Inventory

    The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Because of the negative effects hypoxia has on many organisms, extensive efforts have been made to reduce the size ...

  15. Carotid body potentiation during chronic intermittent hypoxia: implication for hypertension

    PubMed Central

    Del Rio, Rodrigo; Moya, Esteban A.; Iturriaga, Rodrigo

    2014-01-01

    Autonomic dysfunction is involved in the development of hypertension in humans with obstructive sleep apnea, and animals exposed to chronic intermittent hypoxia (CIH). It has been proposed that a crucial step in the development of the hypertension is the potentiation of the carotid body (CB) chemosensory responses to hypoxia, but the temporal progression of the CB chemosensory, autonomic and hypertensive changes induced by CIH are not known. We tested the hypothesis that CB potentiation precedes the autonomic imbalance and the hypertension in rats exposed to CIH. Thus, we studied the changes in CB chemosensory and ventilatory responsiveness to hypoxia, the spontaneous baroreflex sensitivity (BRS), heart rate variability (HRV) and arterial blood pressure in pentobarbital anesthetized rats exposed to CIH for 7, 14, and 21 days. After 7 days of CIH, CB chemosensory and ventilatory responses to hypoxia were enhanced, while BRS was significantly reduced by 2-fold in CIH-rats compared to sham-rats. These alterations persisted until 21 days of CIH. After 14 days, CIH shifted the HRV power spectra suggesting a predominance of sympathetic over parasympathetic tone. In contrast, hypertension was found after 21 days of CIH. Concomitant changes between the gain of spectral HRV, BRS, and ventilatory hypoxic chemoreflex showed that the CIH-induced BRS attenuation preceded the HRV changes. CIH induced a simultaneous decrease of the BRS gain along with an increase of the hypoxic ventilatory gain. Present results show that CIH-induced persistent hypertension was preceded by early changes in CB chemosensory control of cardiorespiratory and autonomic function. PMID:25429271

  16. Arabidopsis CML38, a Calcium Sensor That Localizes to Ribonucleoprotein Complexes under Hypoxia Stress1[OPEN

    PubMed Central

    McClintock, Carlee; Li, Tian

    2016-01-01

    During waterlogging and the associated oxygen deprivation stress, plants respond by the induction of adaptive programs, including the redirected expression of gene networks toward the synthesis of core hypoxia-response proteins. Among these core response proteins in Arabidopsis (Arabidopsis thaliana) is the calcium sensor CML38, a protein related to regulator of gene silencing calmodulin-like proteins (rgsCaMs). CML38 transcripts are up-regulated more than 300-fold in roots within 6 h of hypoxia treatment. Transfer DNA insertional mutants of CML38 show an enhanced sensitivity to hypoxia stress, with lowered survival and more severe inhibition of root and shoot growth. By using yellow fluorescent protein (YFP) translational fusions, CML38 protein was found to be localized to cytosolic granule structures similar in morphology to hypoxia-induced stress granules. Immunoprecipitation of CML38 from the roots of hypoxia-challenged transgenic plants harboring CML38pro::CML38:YFP followed by liquid chromatography-tandem mass spectrometry analysis revealed the presence of protein targets associated with messenger RNA ribonucleoprotein (mRNP) complexes including stress granules, which are known to accumulate as messenger RNA storage and triage centers during hypoxia. This finding is further supported by the colocalization of CML38 with the mRNP stress granule marker RNA Binding Protein 47 (RBP47) upon cotransfection of Nicotiana benthamiana leaves. Ruthenium Red treatment results in the loss of CML38 signal in cytosolic granules, suggesting that calcium is necessary for stress granule association. These results confirm that CML38 is a core hypoxia response calcium sensor protein and suggest that it serves as a potential calcium signaling target within stress granules and other mRNPs that accumulate during flooding stress responses. PMID:26634999

  17. Long-term and stable correction of uremic anemia by intramuscular injection of plasmids containing hypoxia-regulated system of erythropoietin expression

    PubMed Central

    Wang, Yarong; Du, Dewei; Li, Zhanting; Wei, Junxia; Yang, Angang

    2012-01-01

    Relative deficiency in production of glycoprotein hormone erythropoietin (Epo) is a major cause of renal anemia. This study planned to investigate whether the hypoxia-regulated system of Epo expression, constructed by fusing Epo gene to the chimeric phosphoglycerate kinase (PGK) hypoxia response elements (HRE) in combination with cytomegalovirus immediate-early (CMV IE) basal gene promoter and delivered by plasmid intramuscular injection, might provide a long-term physiologically regulated Epo secretion expression to correct the anemia in adenine-induced uremic rats. Plasmid vectors (pHRE-Epo) were synthesized by fusing human Epo cDNA to the HRE/CMV promoter. Hypoxia-inducible activity of this promoter was evaluated first in vitro and then in vivo in healthy and uremic rats (n = 30 per group). The vectors (pCMV-Epo) in which Epo expression was directed by a constitutive CMV gene promoter served as control. ANOVA and Student's t-test were used to analyze between-group differences. A high-level expression of Epo was induced by hypoxia in vitro and in vivo. Though both pHRE-Epo and pCMV-Epo corrected anemia, the hematocrit of the pCMV-Epo-treated rats exceeded the normal (P < 0.05), but that of the pHRE-Epo-treated rats didn't. Hypoxia-regulated system of Epo gene expression constructed by fusing Epo to the HRE/CMV promoter and delivered by plasmid intramuscular injection may provide a long-term and stable Epo expression and secretion in vivo to correct the anemia in adenine-induced uremic rats. PMID:22990115

  18. Integrative genomics reveals hypoxia inducible genes that are associated with a poor prognosis in neuroblastoma patients.

    PubMed

    Applebaum, Mark A; Jha, Aashish R; Kao, Clara; Hernandez, Kyle M; DeWane, Gillian; Salwen, Helen R; Chlenski, Alexandre; Dobratic, Marija; Mariani, Christopher J; Godley, Lucy A; Prabhakar, Nanduri; White, Kevin; Stranger, Barbara E; Cohn, Susan L

    2016-11-22

    Neuroblastoma is notable for its broad spectrum of clinical behavior ranging from spontaneous regression to rapidly progressive disease. Hypoxia is well known to confer a more aggressive phenotype in neuroblastoma. We analyzed transcriptome data from diagnostic neuroblastoma tumors and hypoxic neuroblastoma cell lines to identify genes whose expression levels correlate with poor patient outcome and are involved in the hypoxia response. By integrating a diverse set of transcriptome datasets, including those from neuroblastoma patients and neuroblastoma derived cell lines, we identified nine genes (SLCO4A1, ENO1, HK2, PGK1, MTFP1, HILPDA, VKORC1, TPI1, and HIST1H1C) that are up-regulated in hypoxia and whose expression levels are correlated with poor patient outcome in three independent neuroblastoma cohorts. Analysis of 5-hydroxymethylcytosine and ENCODE data indicate that at least five of these nine genes have an increase in 5-hydroxymethylcytosine and a more open chromatin structure in hypoxia versus normoxia and are putative targets of hypoxia inducible factor (HIF) as they contain HIF binding sites in their regulatory regions. Four of these genes are key components of the glycolytic pathway and another three are directly involved in cellular metabolism. We experimentally validated our computational findings demonstrating that seven of the nine genes are significantly up-regulated in response to hypoxia in the four neuroblastoma cell lines tested. This compact and robustly validated group of genes, is associated with the hypoxia response in aggressive neuroblastoma and may represent a novel target for biomarker and therapeutic development.

  19. Hypoxia-Inducible Factor Prolyl Hydroxylases are Oxygen Sensors in the Brain

    DTIC Science & Technology

    2005-03-01

    astrocytes. It has been appreciated that increased HIF-1α protein levels are commonly found in several cancer types (Zhong, De Marzo et al. 1999...A 98(17): 9630-5. Zhong, H., A. M. De Marzo , et al. (1999). "Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their...rat brain” Discussion 17-23 Bibliography 24 -31 ix INTRODUCTION Vertebrate cells possess adaptive responses to hypoxia

  20. Chronic hypoxia-induced alteration of presynaptic protein profiles and neurobehavioral dysfunction are averted by supplemental oxygen in Lymnaea stagnalis.

    PubMed

    Fei, G-H; Feng, Z-P

    2008-04-22

    Chronic hypoxia causes neural dysfunction. Oxygen (O(2)) supplements have been commonly used to increase the O(2) supply, yet the therapeutic benefit of this treatment remains controversial due to a lack of cellular and molecular evidence. In this study, we examined the effects of short-burst O(2) supplementation on neural behavior and presynaptic protein expression profiles in a simple chronic hypoxia model of snail Lymnaea stagnalis. We reported that hypoxia delayed the animal response to light stimuli, suppressed locomotory activity, induced expression of stress-response proteins, hypoxia inducible factor-1alpha (HIF-1alpha) and heat shock protein 70 (HSP70), repressed syntaxin-1 (a membrane-bound presynaptic protein) and elevated vesicle-associated membrane protein-1 (VAMP-1) (a vesicle-bound presynaptic protein) level. O(2) supplements relieved suppression of neural behaviors, and corrected hypoxia-induced protein alterations in a dose-dependent manner. The effectiveness of supplemental O(2) was further evaluated by determining time courses for recovery of neural behaviors and expression of stress response proteins and presynaptic proteins after relief from hypoxia conditions. Our findings suggest that O(2) supplement improves hypoxia-induced adverse alterations of presynaptic protein expression and neurobehaviors, however, the optimal level of O(2) required for improvement is protein specific and system specific.

  1. Prolonged prenatal hypoxia selectively disrupts collecting duct patterning and postnatal function in male mouse offspring.

    PubMed

    Walton, Sarah L; Singh, Reetu R; Little, Melissa H; Bowles, Josephine; Li, Joan; Moritz, Karen M

    2018-04-20

    In this study we investigated whether hypoxia during late pregnancy impairs kidney development in mouse offspring, and also whether this has long-lasting consequences affecting kidney function in adulthood. Hypoxia disrupted growth of the kidney, particularly the collecting duct network, in juvenile male offspring. By mid-late adulthood, these mice developed early signs of kidney disease, notably a compromised response to water deprivation. Female offspring showed no obvious signs of impaired kidney development and did not develop kidney disease, suggesting a underlying protection mechanism from the hypoxia insult. These results help us better understand the long-lasting impact of gestational hypoxia on kidney development and the increased risk of chronic kidney disease. Prenatal hypoxia is a common perturbation to arise during pregnancy, and can lead to adverse health outcomes in later life. The long-lasting impact of prenatal hypoxia on postnatal kidney development and maturation of the renal tubules, particularly the collecting duct system, is relatively unknown. Here, we used a model of moderate chronic maternal hypoxia throughout late gestation (12% O 2 exposure from E14.5 until birth). Histological analyses revealed marked changes in the tubular architecture of male hypoxia-exposed neonates as early as postnatal day 7, with disrupted medullary development and altered expression of Ctnnb1, and Crabp2 (encoding a retinoic acid binding protein). Kidneys of RARElacZ line offspring exposed to hypoxia showed reduced β-galactosidase activity indicating reduced retinoic acid-directed transcriptional activation. Wildtype male mice exposed to hypoxia had an early decline in urine concentrating capacity, evident at 4 months of age. At 12 months of age, hypoxia-exposed male mice displayed a compromised response to a water deprivation challenge which was was correlated with altered cellular composition of the collecting duct and diminished expression of AQP2. There

  2. Chronic hypoxia suppresses the CO2 response of solitary complex (SC) neurons from rats.

    PubMed

    Nichols, Nicole L; Wilkinson, Katherine A; Powell, Frank L; Dean, Jay B; Putnam, Robert W

    2009-09-30

    We studied the effect of chronic hypobaric hypoxia (CHx; 10-11% O(2)) on the response to hypercapnia (15% CO(2)) of individual solitary complex (SC) neurons from adult rats. We simultaneously measured the intracellular pH and firing rate responses to hypercapnia of SC neurons in superfused medullary slices from control and CHx-adapted adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. We found that CHx caused the percentage of SC neurons inhibited by hypercapnia to significantly increase from about 10% up to about 30%, but did not significantly alter the percentage of SC neurons activated by hypercapnia (50% in control vs. 35% in CHx). Further, the magnitudes of the responses of SC neurons from control rats (chemosensitivity index for activated neurons of 166+/-11% and for inhibited neurons of 45+/-15%) were the same in SC neurons from CHx-adapted rats. This plasticity induced in chemosensitive SC neurons by CHx appears to involve intrinsic changes in neuronal properties since they were the same in synaptic blockade medium.

  3. Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia.

    PubMed

    Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai

    2018-02-17

    The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

  4. Alteration of carotid body chemoreflexes after neonatal intermittent hypoxia and caffeine treatment in rat pups.

    PubMed

    Julien, Cécile A; Joseph, Vincent; Bairam, Aida

    2011-08-15

    In human neonates, caffeine therapy for apnoea of prematurity, especially when associated with hypoxemia, is maintained for several weeks after birth. In the present study, we used newborn rats and whole-body plethysmography to test whether chronic exposure to neonatal caffeine treatment (NCT), alone or combined with neonatal intermittent hypoxia (n-IH) alters: (1) baseline ventilation and response to hypoxia (12% O(2), 20 min); and (2) response to acute i.p. injection of caffeine citrate (20 mg/kg) or domperidone, a peripheral dopamine D2 receptor antagonist (1 mg/kg). Four groups of rats were studied as follows: raised under normal conditions with daily gavage with water (NWT) or NCT, or exposed to n-IH (n-IH+NWT and n-IH+NCT) from postnatal days 3 to 12. In n-IH+NCT rats, baseline ventilation was higher than in the other groups. Caffeine or domperidone enhanced baseline ventilation only in NWT and n-IH+NWT rats, but neither caffeine nor domperidone affected the hypoxic ventilatory response in these groups. In n-IH+NWT rats, the response during the early phase of hypoxia (<10 min) was higher than in other groups. During the late response phase to hypoxia (20 min), ventilation was lower in n-IH+NWT and n-IH+NCT rats compared to NWT or NCT, and were not affected by caffeine or domperidone injection. NCT or caffeine injection decreased baseline apnoea frequency in all groups. These data suggest that chronic exposure to NCT alters both carotid body dopaminergic and adenosinergic systems and central regulation of breathing under baseline conditions and in response to hypoxia. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Hypoxia diminishes the protective function of white-matter astrocytes in the developing brain.

    PubMed

    Agematsu, Kota; Korotcova, Ludmila; Morton, Paul D; Gallo, Vittorio; Jonas, Richard A; Ishibashi, Nobuyuki

    2016-01-01

    White-matter injury after surgery is common in neonates with cerebral immaturity secondary to in utero hypoxia. Astrocytes play a central role in brain protection; however, the reaction of astrocytes to hypothermic circulatory arrest (HCA) remains unknown. We investigated the role of astrocytes in white-matter injury after HCA and determined the effects of preoperative hypoxia on this role, using a novel mouse model. Mice were exposed to hypoxia from days 3 to 11, which is equivalent to the third trimester in humans (prehypoxia, n = 49). Brain slices were transferred to a chamber perfused by cerebrospinal fluid. Oxygen-glucose deprivation (OGD) was performed to simulate ischemia-reperfusion/reoxygenation resulting from circulatory arrest under hypothermia. Astrocyte reactions were compared with preoperative normoxia (prenormoxia; n = 45). We observed astrocyte activation after 25°C ischemia-reperfusion/reoxygenation in prenormoxia (P < .01). Astrocyte number after OGD correlated with caspase-3(+) cells (rho = .77, P = .001), confirming that astrogliosis is an important response after HCA. At 3 hours after OGD, astrocytes in prenormoxia had already proliferated and become activated (P < .05). Conversely, astrocytes that developed under hypoxia did not display these responses. At 20 hours after ischemia-reperfusion/reoxygenation, astrogliosis was not observed in prehypoxia, demonstrating that hypoxia altered the response of astrocytes to insult. In contrast to prenormoxia, caspase-3(+) cells in prehypoxia increased after ischemia reperfusion/reoxygenation, compared with control (P < .01). Caspase-3(+) cells were more common with prehypoxia than with prenormoxia (P < .001), suggesting that lack of astrogliosis permits increased white-matter injury. Preoperative hypoxia alters the neuroprotective function of astrocytes. Restoring this function before surgery may be a therapeutic option to reduce postoperative white-matter injury in the immature brain. Copyright

  6. In vitro downregulated hypoxia transcriptome is associated with poor prognosis in breast cancer.

    PubMed

    Abu-Jamous, Basel; Buffa, Francesca M; Harris, Adrian L; Nandi, Asoke K

    2017-06-15

    Hypoxia is a characteristic of breast tumours indicating poor prognosis. Based on the assumption that those genes which are up-regulated under hypoxia in cell-lines are expected to be predictors of poor prognosis in clinical data, many signatures of poor prognosis were identified. However, it was observed that cell line data do not always concur with clinical data, and therefore conclusions from cell line analysis should be considered with caution. As many transcriptomic cell-line datasets from hypoxia related contexts are available, integrative approaches which investigate these datasets collectively, while not ignoring clinical data, are required. We analyse sixteen heterogeneous breast cancer cell-line transcriptomic datasets in hypoxia-related conditions collectively by employing the unique capabilities of the method, UNCLES, which integrates clustering results from multiple datasets and can address questions that cannot be answered by existing methods. This has been demonstrated by comparison with the state-of-the-art iCluster method. From this collection of genome-wide datasets include 15,588 genes, UNCLES identified a relatively high number of genes (>1000 overall) which are consistently co-regulated over all of the datasets, and some of which are still poorly understood and represent new potential HIF targets, such as RSBN1 and KIAA0195. Two main, anti-correlated, clusters were identified; the first is enriched with MYC targets participating in growth and proliferation, while the other is enriched with HIF targets directly participating in the hypoxia response. Surprisingly, in six clinical datasets, some sub-clusters of growth genes are found consistently positively correlated with hypoxia response genes, unlike the observation in cell lines. Moreover, the ability to predict bad prognosis by a combined signature of one sub-cluster of growth genes and one sub-cluster of hypoxia-induced genes appears to be comparable and perhaps greater than that of known

  7. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    PubMed

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 +/- 0.3 vs. 1.7 +/- 0.2 ng ml-1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways.

  8. Is hypoxia training good for muscles and exercise performance?

    PubMed

    Vogt, Michael; Hoppeler, Hans

    2010-01-01

    Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.

  9. Intermittent Hypoxia Increases Insulin Resistance in Genetically Obese Mice

    PubMed Central

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-01-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J−Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 ± 11 mg dl−1 on day 0 to 138 ± 10 mg dl−1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 ± 0.3 vs. 1.7 ± 0.2 ng ml−1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 ± 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 ± 1.1 ng ml−1 at baseline to 9.8 ± 1.8 ng ml−1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways. PMID:12878760

  10. Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors.

    PubMed

    Xiong, Xianrong; Fu, Mei; Lan, Daoliang; Li, Jian; Zi, Xiangdong; Zhong, Jincheng

    2015-01-01

    Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators, which play crucial roles in tumor angiogenesis and mammalian development, and regulate the transcription of genes involved in oxygen homeostasis in response to hypoxia. However, information on HIF-1α and HIF-2α in yak (Bos grunniens) is scarce. The complete coding region of yak HIF-2α was cloned, its mRNA expression in several tissues were determined, and the expression levels were compared with those of closely related low-altitude cattle (Bos taurus), and the methylation status of promoter regions were analyzed to better understand the roles of HIF-1α and HIF-2α in domesticated yak. The yak HIF-2α cDNA was cloned and sequenced in the present work reveals the evolutionary conservation through multiple sequence alignment, although 15 bases changed, resulting in 8 amino acid substitutions in the translated proteins in cattle. The tissue-specific expression results showed that HIF-1α is ubiquitously expressed, whereas HIF-2α expression is limited to endothelial tissues (kidney, heart, lung, spleen, and liver) and blood in yak. Both HIF-1α and HIF-2α expressions were higher in yak tissues than in cattle. The HIF-1α expression level is much higher in yak than cattle in these organs, except for the lung (P < 0.05), but the HIF-2α gene is significantly different in the heart, spleen, and kidney (P < 0.05). Furthermore, the methylation levels in the 5' flanking regulatory regions of HIF-1α and HIF-2α in yak kidney were significantly decreased than cattle counterparts (P < 0.05). Identifying these genes and the comparison of different expressions facilitates the understanding of the biological high-altitude hypoxic stress response mechanism and may assist current medical research to understand hypoxia-related diseases.

  11. Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise.

    PubMed

    Dobashi, Kohei; Fujii, Naoto; Watanabe, Kazuhito; Tsuji, Bun; Sasaki, Yosuke; Fujimoto, Tomomi; Tanigawa, Satoru; Nishiyasu, Takeshi

    2017-08-01

    To investigate the effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. Ten males performed three 30-s bouts of high-intensity cycling [Ex1 and Ex2: constant-workload at 80% of the power output in the Wingate anaerobic test (WAnT), Ex3: WAnT] interspaced with 4-min recovery periods under normoxic (Control), hypocapnic or hypoxic (2500 m) conditions. Hypocapnia was developed through voluntary hyperventilation for 20 min prior to Ex1 and during each recovery period. End-tidal CO 2 pressure was lower before each exercise in the hypocapnia than control trials. Oxygen uptake ([Formula: see text]) was lower in the hypocapnia than control trials (822 ± 235 vs. 1645 ± 245 mL min -1 ; mean ± SD) during Ex1, but not Ex2 or Ex3, without a between-trial difference in the power output during the exercises. Heart rates (HRs) during Ex1 (127 ± 8 vs. 142 ± 10 beats min -1 ) and subsequent post-exercise recovery periods were lower in the hypocapnia than control trials, without differences during or after Ex2, except at 4 min into the second recovery period. [Formula: see text] did not differ between the control and hypoxia trials throughout. These results suggest that during three 30-s bouts of high-intensity intermittent cycling, (1) hypocapnia reduces the aerobic metabolic rate with a compensatory increase in the anaerobic metabolic rate during the first but not subsequent exercises; (2) HRs during the exercise and post-exercise recovery periods are lowered by hypocapnia, but this effect is diminished with repeated exercise bouts, and (3) moderate hypoxia (2500 m) does not affect the metabolic response during exercise.

  12. Metabolic depression and the evolution of hypoxia tolerance in threespine stickleback, Gasterosteus aculeatus.

    PubMed

    Regan, Matthew D; Gill, Ivan S; Richards, Jeffrey G

    2017-11-01

    Anthropogenic increases in global temperature and agricultural runoff are increasing the prevalence of aquatic hypoxia throughout the world. We investigated the potential for a relatively rapid evolution of hypoxia tolerance using two isolated (for less than 11 000 years) populations of threespine stickleback: one from a lake that experiences long-term hypoxia (Alta Lake, British Columbia) and one from a lake that does not (Trout Lake, British Columbia). Loss-of-equilibrium (LOE) experiments revealed that the Alta Lake stickleback were significantly more tolerant of hypoxia than the Trout Lake stickleback, and calorimetry experiments revealed that the enhanced tolerance of Alta Lake stickleback may be associated with their ability to depress metabolic rate (as indicated by metabolic heat production) by 33% in hypoxia. The two populations showed little variation in their capacities for O 2 extraction and anaerobic metabolism. These results reveal that intraspecific variation in hypoxia tolerance can develop over relatively short geological timescales, as can metabolic rate depression, a complex biochemical response that may be favoured in long-term hypoxic environments. © 2017 The Author(s).

  13. Hypoxia Strongly Affects Mitochondrial Ribosomal Proteins and Translocases, as Shown by Quantitative Proteomics of HeLa Cells.

    PubMed

    Bousquet, Paula A; Sandvik, Joe Alexander; Arntzen, Magnus Ø; Jeppesen Edin, Nina F; Christoffersen, Stine; Krengel, Ute; Pettersen, Erik O; Thiede, Bernd

    2015-01-01

    Hypoxia is an important and common characteristic of many human tumors. It is a challenge clinically due to the correlation with poor prognosis and resistance to radiation and chemotherapy. Understanding the biochemical response to hypoxia would facilitate the development of novel therapeutics for cancer treatment. Here, we investigate alterations in gene expression in response to hypoxia by quantitative proteome analysis using stable isotope labeling with amino acids in cell culture (SILAC) in conjunction with LCMS/MS. Human HeLa cells were kept either in a hypoxic environment or under normoxic conditions. 125 proteins were found to be regulated, with maximum alteration of 18-fold. In particular, three clusters of differentially regulated proteins were identified, showing significant upregulation of glycolysis and downregulation of mitochondrial ribosomal proteins and translocases. This interaction is likely orchestrated by HIF-1. We also investigated the effect of hypoxia on the cell cycle, which shows accumulation in G1 and a prolonged S phase under these conditions. Implications. This work not only improves our understanding of the response to hypoxia, but also reveals proteins important for malignant progression, which may be targeted in future therapies.

  14. Hypoxic preconditioning facilitates acclimatization to hypobaric hypoxia in rat heart.

    PubMed

    Singh, Mrinalini; Shukla, Dhananjay; Thomas, Pauline; Saxena, Saurabh; Bansal, Anju

    2010-12-01

    Acute systemic hypoxia induces delayed cardioprotection against ischaemia-reperfusion injury in the heart. As cobalt chloride (CoCl₂) is known to elicit hypoxia-like responses, it was hypothesized that this chemical would mimic the preconditioning effect and facilitate acclimatization to hypobaric hypoxia in rat heart. Male Sprague-Dawley rats treated with distilled water or cobalt chloride (12.5 mg Co/kg for 7 days) were exposed to simulated altitude at 7622 m for different time periods (1, 2, 3 and 5 days). Hypoxic preconditioning with cobalt appreciably attenuated hypobaric hypoxia-induced oxidative damage as observed by a decrease in free radical (reactive oxygen species) generation, oxidation of lipids and proteins. Interestingly, the observed effect was due to increased expression of the antioxidant proteins hemeoxygenase and metallothionein, as no significant change was observed in antioxidant enzyme activity. Hypoxic preconditioning with cobalt increased hypoxia-inducible factor 1α (HIF-1α) expression as well as HIF-1 DNA binding activity, which further resulted in increased expression of HIF-1 regulated genes such as erythropoietin, vascular endothelial growth factor and glucose transporter. A significant decrease was observed in lactate dehydrogenase activity and lactate levels in the heart of preconditioned animals compared with non-preconditioned animals exposed to hypoxia. The results showed that hypoxic preconditioning with cobalt induces acclimatization by up-regulation of hemeoxygenase 1 and metallothionein 1 via HIF-1 stabilization. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society of Great Britain.

  15. Acute hypoxia stress induced abundant differential expression genes and alternative splicing events in heart of tilapia.

    PubMed

    Xia, Jun Hong; Li, Hong Lian; Li, Bi Jun; Gu, Xiao Hui; Lin, Hao Ran

    2018-01-10

    Hypoxia is one of the critical environmental stressors for fish in aquatic environments. Although accumulating evidences indicate that gene expression is regulated by hypoxia stress in fish, how genes undergoing differential gene expression and/or alternative splicing (AS) in response to hypoxia stress in heart are not well understood. Using RNA-seq, we surveyed and detected 289 differential expressed genes (DEG) and 103 genes that undergo differential usage of exons and splice junctions events (DUES) in heart of a hypoxia tolerant fish, Nile tilapia, Oreochromis niloticus following 12h hypoxic treatment. The spatio-temporal expression analysis validated the significant association of differential exon usages in two randomly selected DUES genes (fam162a and ndrg2) in 5 tissues (heart, liver, brain, gill and spleen) sampled at three time points (6h, 12h, and 24h) under acute hypoxia treatment. Functional analysis significantly associated the differential expressed genes with the categories related to energy conservation, protein synthesis and immune response. Different enrichment categories were found between the DEG and DUES dataset. The Isomerase activity, Oxidoreductase activity, Glycolysis and Oxidative stress process were significantly enriched for the DEG gene dataset, but the Structural constituent of ribosome and Structural molecule activity, Ribosomal protein and RNA binding protein were significantly enriched only for the DUES genes. Our comparative transcriptomic analysis reveals abundant stress responsive genes and their differential regulation function in the heart tissues of Nile tilapia under acute hypoxia stress. Our findings will facilitate future investigation on transcriptome complexity and AS regulation during hypoxia stress in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherbakov, Alexander M., E-mail: alex.scherbakov@gmail.com; Stefanova, Lidia B.; Sorokin, Danila V.

    2013-12-10

    The tolerance of cancer cells to hypoxia depends on the combination of different factors – from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial–mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ frommore » estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O{sub 2} atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK – the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as

  17. No Detectable Hypoxia in Malignant Salivary Gland Tumors: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijffels, Karien; Hoogsteen, Ilse J.; Lok, Jasper

    2009-04-01

    Purpose: Hypoxia is detected in most solid tumors and is associated with malignant progression and adverse treatment outcomes. However, the oxygenation status of malignant salivary gland tumors has not been previously studied. The aim of this study was to investigate the potential clinical relevance of hypoxia in this tumor type. Methods and Materials: Twelve patients scheduled for surgical resection of a salivary gland tumor were preoperatively injected with the hypoxia marker pimonidazole and the proliferation marker iododeoxyuridine. Tissue samples of the dissected tumor were immunohistochemically stained for blood vessels, pimonidazole, carbonic anhydrase-IX, glucose transporters-1 and -3 (Glut-1, Glut-3), hypoxia-inducible factor-1{alpha},more » iododeoxyuridine, and epidermal growth factor receptor. The tissue sections were quantitatively assessed by computerized image analysis. Results: The tissue material from 8 patients was of sufficient quality for quantitative analysis. All tumors were negative for pimonidazole binding, as well as for carbonic anhydrase-IX, Glut-1, Glut-3, and hypoxia-inducible factor-1{alpha}. The vascular density was high, with a median value of 285 mm{sup -2} (range, 209-546). The iododeoxyuridine-labeling index varied from <0.1% to 12.2% (median, 2.2%). Epidermal growth factor receptor expression levels were mostly moderate to high. In one-half of the cases, nuclear expression of epidermal growth factor receptor was observed. Conclusion: The absence of detectable pimonidazole binding, as well as the lack of expression of hypoxia-associated proteins in all tumors, indicates that malignant salivary gland tumors are generally well oxygenated. It is unlikely that hypoxia is a relevant factor for their clinical behavior and treatment responsiveness.« less

  18. Effects of the nitric oxide synthase inhibitor L-NMMA on cerebrovascular and cardiovascular responses to hypoxia and hypercapnia in humans.

    PubMed

    Ide, Kojiro; Worthley, Matthew; Anderson, Todd; Poulin, Marc J

    2007-10-01

    Cerebral blood flow is highly sensitive to alterations in the partial pressures of O(2) and CO(2) (P(O(2)) and P(CO(2)), respectively) in the arterial blood. In humans, the extent to which nitric oxide (NO) is involved in this regulation is unclear. We hypothesized that the NO synthase (NOS) inhibitor N(G)-monomethyl-l-arginine (l-NMMA), attenuates the sensitivity of middle cerebral artery blood velocity (V(p)) to isocapnic hypoxia (end-tidal P(O(2)) = 50 Torr) and euoxic hypercapnia (end-tidal P(CO(2)) = +9 Torr above resting values) in 10 volunteers (age, 28.7 +/- 1.3 years; height, 179.2 +/- 2.4 cm; weight, 78.0 +/- 3.7 kg; mean +/- s.e.m.). The techniques of transcranial Doppler ultrasound and dynamic end-tidal forcing were used to measure(V(p)), and control end-tidal P(O(2)) and end-tidal P(CO(2)), respectively. At baseline (isocapnic euoxia), following intravenous administration of l-NMMA, mean arterial blood pressure (MAP) increased (76.3 +/- 7.3 to 86.2 +/- 9.4 mmHg) and heart rate (HR) decreased (59.5 +/- 9.0 to 55.2 +/- 9.5 beats min(-1)) but (V(p)) was unchanged. Hypoxia-induced increases in MAP, HR and were similar with and without l-NMMA (5.0 +/- 0.7 versus 7.1 +/- 1.0 mmHg, 11.5 +/- 1.4 versus 12.4 +/- 1.5 beats min(-1), 6.5 +/- 0.8 versus 6.6 +/- 0.8 cm s(-1) for DeltaMAP, DeltaHR and Delta , respectively). Hypercapnia-induced increases in MAP, HR and (V(p)) were similar with and without l-NMMA (7.4 +/- 3.1 versus 8.1 +/- 2.2 mmHg, 10.4 +/- 4.6 versus 10.0 +/- 4.2 beats min(-1), 16.5 +/- 1.5 versus 17.6 +/- 1.5 cm s(-1) for DeltaMAP, DeltaHR and Delta(V(p)) , respectively) but the sensitivity of the(V(p)) response at the removal of hypercapnia was attenuated with l-NMMA. In young healthy humans, pharmacological blockade of nitric oxide synthesis does not affect the increases in cerebral blood flow with hypoxia and hypercapnia, suggesting that nitric oxide is not required for the cerbrovascular responses to hypoxia and hypercapnia.

  19. Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor {alpha}/retinoid X receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.

    2007-12-21

    In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferasemore » I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.« less

  20. Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans

    PubMed Central

    Basaran, Kemal Erdem; Villongco, Michael; Ho, Baran; Ellis, Erika; Zarndt, Rachel; Antonova, Julie; Hopkins, Susan R.; Powell, Frank L.

    2016-01-01

    Ventilatory acclimatization to hypoxia is a time-dependent increase in ventilation and the hypoxic ventilatory response (HVR) that involves neural plasticity in both carotid body chemoreceptors and brainstem respiratory centers. The mechanisms of such plasticity are not completely understood but recent animal studies show it can be blocked by administering ibuprofen, a nonsteroidal anti-inflammatory drug, during chronic hypoxia. We tested the hypothesis that ibuprofen would also block the increase in HVR with chronic hypoxia in humans in 15 healthy men and women using a double-blind, placebo controlled, cross-over trial. The isocapnic HVR was measured with standard methods in subjects treated with ibuprofen (400mg every 8 hrs) or placebo for 48 hours at sea level and 48 hours at high altitude (3,800 m). Subjects returned to sea level for at least 30 days prior to repeating the protocol with the opposite treatment. Ibuprofen significantly decreased the HVR after acclimatization to high altitude compared to placebo but it did not affect ventilation or arterial O2 saturation breathing ambient air at high altitude. Hence, compensatory responses prevent hypoventilation with decreased isocapnic ventilatory O2-sensitivity from ibuprofen at this altitude. The effect of ibuprofen to decrease the HVR in humans provides the first experimental evidence that a signaling mechanism described for ventilatory acclimatization to hypoxia in animal models also occurs in people. This establishes a foundation for the future experiments to test the potential role of different mechanisms for neural plasticity and ventilatory acclimatization in humans with chronic hypoxemia from lung disease. PMID:26726885

  1. Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans.

    PubMed

    Basaran, Kemal Erdem; Villongco, Michael; Ho, Baran; Ellis, Erika; Zarndt, Rachel; Antonova, Julie; Hopkins, Susan R; Powell, Frank L

    2016-01-01

    Ventilatory acclimatization to hypoxia is a time-dependent increase in ventilation and the hypoxic ventilatory response (HVR) that involves neural plasticity in both carotid body chemoreceptors and brainstem respiratory centers. The mechanisms of such plasticity are not completely understood but recent animal studies show it can be blocked by administering ibuprofen, a nonsteroidal anti-inflammatory drug, during chronic hypoxia. We tested the hypothesis that ibuprofen would also block the increase in HVR with chronic hypoxia in humans in 15 healthy men and women using a double-blind, placebo controlled, cross-over trial. The isocapnic HVR was measured with standard methods in subjects treated with ibuprofen (400 mg every 8 hrs) or placebo for 48 hours at sea level and 48 hours at high altitude (3,800 m). Subjects returned to sea level for at least 30 days prior to repeating the protocol with the opposite treatment. Ibuprofen significantly decreased the HVR after acclimatization to high altitude compared to placebo but it did not affect ventilation or arterial O2 saturation breathing ambient air at high altitude. Hence, compensatory responses prevent hypoventilation with decreased isocapnic ventilatory O2-sensitivity from ibuprofen at this altitude. The effect of ibuprofen to decrease the HVR in humans provides the first experimental evidence that a signaling mechanism described for ventilatory acclimatization to hypoxia in animal models also occurs in people. This establishes a foundation for the future experiments to test the potential role of different mechanisms for neural plasticity and ventilatory acclimatization in humans with chronic hypoxemia from lung disease.

  2. Adenosine and Hypoxia-Inducible Factor Signaling in Intestinal Injury and Recovery

    PubMed Central

    Eltzschig, Holger K.

    2013-01-01

    The gastrointestinal mucosa has proven to be an interesting tissue in which to investigate disease-related metabolism. In this review, we outline some of the evidence that implicates hypoxia-mediated adenosine signaling as an important signature within both healthy and diseased mucosa. Studies derived from cultured cell systems, animal models, and human patients have revealed that hypoxia is a significant component of the inflammatory microenvironment. These studies have revealed a prominent role for hypoxia-induced factor (HIF) and hypoxia signaling at several steps along the adenine nucleotide metabolism and adenosine receptor signaling pathways. Likewise, studies to date in animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes. Ongoing studies to define potential similarities with and differences between innate and adaptive immune responses will continue to teach us important lessons about the complexity of the gastrointestinal tract. Such information has provided new insights into disease pathogenesis and, importantly, will provide insights into new therapeutic targets. PMID:21942704

  3. Tumor necrosis is an important hallmark of aggressive endometrial cancer and associates with hypoxia, angiogenesis and inflammation responses

    PubMed Central

    Stefansson, Ingunn M.; Birkeland, Even; Bø, Trond Hellem; Øyan, Anne M.; Trovik, Jone; Kalland, Karl-Henning; Jonassen, Inge; Salvesen, Helga B.; Wik, Elisabeth; Akslen, Lars A.

    2015-01-01

    Aims Tumor necrosis is associated with aggressive features of endometrial cancer and poor prognosis. Here, we investigated gene expression patterns and potential treatment targets related to presence of tumor necrosis in primary endometrial cancer lesions. Methods and Results By DNA microarray analysis, expression of genes related to tumor necrosis reflected multiple tumor-microenvironment interactions like tissue hypoxia, angiogenesis and inflammation pathways. A tumor necrosis signature of 38 genes and a related patient cluster (Cluster I, 67% of the cases) were associated with features of aggressive tumors such as type II cancers, estrogen receptor negative tumors and vascular invasion. Further, the tumor necrosis signature was increased in tumor cells grown in hypoxic conditions in vitro. Multiple genes with increased expression are known to be activated by HIF1A and NF-kB. Conclusions Our findings indicate that the presence of tumor necrosis within primary tumors is associated with hypoxia, angiogenesis and inflammation responses. HIF1A, NF-kB and PI3K/mTOR might be potential treatment targets in aggressive endometrial cancers with presence of tumor necrosis. PMID:26485755

  4. Tumor necrosis is an important hallmark of aggressive endometrial cancer and associates with hypoxia, angiogenesis and inflammation responses.

    PubMed

    Bredholt, Geir; Mannelqvist, Monica; Stefansson, Ingunn M; Birkeland, Even; Bø, Trond Hellem; Øyan, Anne M; Trovik, Jone; Kalland, Karl-Henning; Jonassen, Inge; Salvesen, Helga B; Wik, Elisabeth; Akslen, Lars A

    2015-11-24

    Tumor necrosis is associated with aggressive features of endometrial cancer and poor prognosis. Here, we investigated gene expression patterns and potential treatment targets related to presence of tumor necrosis in primary endometrial cancer lesions. By DNA microarray analysis, expression of genes related to tumor necrosis reflected multiple tumor-microenvironment interactions like tissue hypoxia, angiogenesis and inflammation pathways. A tumor necrosis signature of 38 genes and a related patient cluster (Cluster I, 67% of the cases) were associated with features of aggressive tumors such as type II cancers, estrogen receptor negative tumors and vascular invasion. Further, the tumor necrosis signature was increased in tumor cells grown in hypoxic conditions in vitro. Multiple genes with increased expression are known to be activated by HIF1A and NF-kB. Our findings indicate that the presence of tumor necrosis within primary tumors is associated with hypoxia, angiogenesis and inflammation responses. HIF1A, NF-kB and PI3K/mTOR might be potential treatment targets in aggressive endometrial cancers with presence of tumor necrosis.

  5. Effects of hypoxia on dopamine concentration and the immune response of White Shrimp ( Litopenaeus vannamei)

    NASA Astrophysics Data System (ADS)

    Hu, Fawen; Pan, Luqing; Jing, Futao

    2009-03-01

    Effects of hypoxia on the dopamine concentration and the immune response of White Shrimp Litopenaeus vannamei were studied. The results showed that hypoxia had significant effects on the concentration of dopamine (DA) in the haemolymph, haemocyte count, phenoloxidase activity, phagocytic activity of haemocytes and bacteriolytic and antibacterial activity in the haemolymph ( P<0.05). The concentration of the dopamine in haemolymph reached its maximum in the 3.0 and 1.5 mg L-1 DO groups at 12 h and 6 h, and then returned to normal after 24 h and 12 h, respectively. All immune parameters decreased with the reduction of dissolved oxygen. Total haemocyte count (THC), the hyaline cells and semi-granular cells in the 3.0 mg L-1 DO group became stable after 12 h, while granular cells did so after 24 h. The THC and different haemocyte count (DHC) in the 1.5 mg L-1 DO group became stable after 24 h. Phenoloxidase activity and bacteriolytic activity in the 3.0 and 1.5 mg L-1 DO groups reached their stable levels after 24 h and 12 h respectively, while phagocytic activity and antibacterial activity became stable after 24 and 12, and 36 and 24 h, respectively. It was also indicated that the changes of dopamine concentrations in haemolymph, haemocyte count and phenoloxidase activity were obviously related to the exposure time under hypoxic conditions.

  6. Adaptive Myogenesis under Hypoxia

    PubMed Central

    Yun, Zhong; Lin, Qun; Giaccia, Amato J.

    2005-01-01

    Previous studies have indicated that myoblasts can differentiate and repair muscle injury after an ischemic insult. However, it is unclear how hypoxia or glucose deprivation in the ischemic microenvironment affects myoblast differentiation. We have found that myogenesis can adapt to hypoxic conditions. This adaptive mechanism is accompanied by initial inhibition of the myoD, E2A, and myogenin genes followed by resumption of their expression in an oxygen-dependent manner. The regulation of myoD transcription by hypoxia is correlated with transient deacetylation of histones associated with the myoD promoter. It is noteworthy that, unlike the differentiation of other cell types such as preadipocytes or chondroblasts, the effect of hypoxia on myogenesis is independent of HIF-1, a ubiquitous regulator of transcription under hypoxia. While myogenesis can also adapt to glucose deprivation, the combination of severe hypoxia and glucose deprivation found in an ischemic environment results in pronounced loss of myoblasts. Our studies indicate that the ischemic muscle can be repaired via the adaptive differentiation of myogenic precursors, which depends on the levels of oxygen and glucose in the ischemic microenvironment. PMID:15798192

  7. Carotid Body Ablation Abrogates Hypertension and Autonomic Alterations Induced by Intermittent Hypoxia in Rats.

    PubMed

    Del Rio, Rodrigo; Andrade, David C; Lucero, Claudia; Arias, Paulina; Iturriaga, Rodrigo

    2016-08-01

    Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, enhances carotid body (CB) chemosensory responses to hypoxia and produces autonomic dysfunction, cardiac arrhythmias, and hypertension. We tested whether autonomic alterations, arrhythmogenesis, and the progression of hypertension induced by CIH depend on the enhanced CB chemosensory drive, by ablation of the CB chemoreceptors. Male Sprague-Dawley rats were exposed to control (Sham) conditions for 7 days and then to CIH (5% O2, 12/h 8 h/d) for a total of 28 days. At 21 days of CIH exposure, rats underwent bilateral CB ablation and then exposed to CIH for 7 additional days. Arterial blood pressure and ventilatory chemoreflex response to hypoxia were measured in conscious rats. In addition, cardiac autonomic imbalance, cardiac baroreflex gain, and arrhythmia score were assessed during the length of the experiments. In separate experimental series, we measured extracellular matrix remodeling content in cardiac atrial tissue and systemic oxidative stress. CIH induced hypertension, enhanced ventilatory response to hypoxia, induced autonomic imbalance toward sympathetic preponderance, reduced baroreflex gain, and increased arrhythmias and atrial fibrosis. CB ablation normalized blood pressure, reduced ventilatory response to hypoxia, and restored cardiac autonomic and baroreflex function. In addition, CB ablation reduced the number of arrhythmias, but not extracellular matrix remodeling or systemic oxidative stress, suggesting that reductions in arrhythmia incidence during CIH were related to normalization of cardiac autonomic balance. Present results show that autonomic alterations induced by CIH are critically dependent on the CB and support a main role for the CB in the CIH-induced hypertension. © 2016 American Heart Association, Inc.

  8. Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC.

    PubMed

    Joseph, Joel P; Harishankar, M K; Pillai, Aruthra Arumugam; Devi, Arikketh

    2018-05-01

    Hypoxia, a condition of low oxygen tension in tissues, has emerged as a crucial factor in tumor pathophysiology. Hypoxic microenvironment gives rise to altered cellular metabolism and triggers varied molecular responses. These responses promote tumor progression and confer radiation resistance and chemo resistance to tumors. The predominant molecules that are associated with hypoxia research are the hypoxia inducible factors (HIFs). HIFs are known to regulate a large group of genes that are involved in cell survival, proliferation, motility, metabolism, pH regulation, extracellular matrix function, inflammatory cell recruitment and angiogenesis by inducing the expression of their downstream target genes. The process of epithelial to mesenchymal transition (EMT) has been associated with metastasis in cancer. Reports also suggest that hypoxia triggers EMT in several types of cancer including breast cancer, prostate cancer and oral cancer. Oral cancer is a predominant cancer in Central and South East Asia. However, in the recent times, the incidence rates of oral cancer have been increasing in Northern and Eastern Europe as well. This review articulates the role of hypoxia and the associated factors like HIFs in inducing EMT in oral cancer (OSCC). Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Developmental Hypoxia Has Negligible Effects on Long-Term Hypoxia Tolerance and Aerobic Metabolism of Atlantic Salmon (Salmo salar).

    PubMed

    Wood, Andrew T; Clark, Timothy D; Andrewartha, Sarah J; Elliott, Nicholas G; Frappell, Peter B

    Exposure to developmental hypoxia can have long-term impacts on the physiological performance of fish because of irreversible plasticity. Wild and captive-reared Atlantic salmon (Salmo salar) can be exposed to hypoxic conditions during development and continue to experience fluctuating oxygen levels as juveniles and adults. Here, we examine whether developmental hypoxia impacts subsequent hypoxia tolerance and aerobic performance of Atlantic salmon. Individuals at 8°C were exposed to 50% (hypoxia) or 100% (normoxia) dissolved oxygen (DO) saturation (as percent of air saturation) from fertilization for ∼100 d (800 degree days) and then raised in normoxic conditions for a further 15 mo. At 18 mo after fertilization, aerobic scope was calculated in normoxia (100% DO) and acute (18 h) hypoxia (50% DO) from the difference between the minimum and maximum oxygen consumption rates ([Formula: see text] and [Formula: see text], respectively) at 10°C. Hypoxia tolerance was determined as the DO at which loss of equilibrium (LOE) occurred in a constantly decreasing DO environment. There was no difference in [Formula: see text], [Formula: see text], or aerobic scope between fish raised in hypoxia or normoxia. There was some evidence that hypoxia tolerance was lower (higher DO at LOE) in hypoxia-raised fish compared with those raised in normoxia, but the magnitude of the effect was small (12.52% DO vs. 11.73% DO at LOE). Acute hypoxia significantly reduced aerobic scope by reducing [Formula: see text], while [Formula: see text] remained unchanged. Interestingly, acute hypoxia uncovered individual-level relationships between DO at LOE and [Formula: see text], [Formula: see text], and aerobic scope. We discuss our findings in the context of developmental trajectories and the role of aerobic performance in hypoxia tolerance.

  10. Metabolism, hypoxia and the diabetic heart.

    PubMed

    Heather, Lisa C; Clarke, Kieran

    2011-04-01

    The diabetic heart becomes metabolically remodelled as a consequence of exposure to abnormal circulating substrates and hormones. Fatty acid uptake and metabolism are increased in the type 2 diabetic heart, resulting in accumulation of intracellular lipid intermediates and an increased contribution of fatty acids towards energy generation. Cardiac glucose uptake and oxidation are decreased, predominantly due to increased fatty acid metabolism, which suppresses glucose utilisation via the Randle cycle. These metabolic changes decrease cardiac efficiency and energetics in both humans and animal models of diabetes. Diabetic hearts have decreased recovery following ischemia, indicating a reduced tolerance to oxygen-limited conditions. There is evidence that diabetic hearts have a compromised hypoxia signalling pathway, as hypoxia-inducible factor (HIF) and downstream signalling from HIF are reduced following ischemia. Failure to activate HIF under oxygen-limited conditions results in less angiogenesis, and an inability to upregulate glycolytic ATP generation. Given that glycolysis is already suppressed in the diabetic heart under normoxic conditions, the inability to upregulate glycolysis in response to hypoxia may have deleterious effects on ATP production. Thus, impaired HIF signalling may contribute to metabolic and energetic abnormalities, and impaired collateral vessel development following myocardial infarction in the type 2 diabetic heart. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Hypoxia-independent upregulation of placental hypoxia inducible factor-1α gene expression contributes to the pathogenesis of preeclampsia.

    PubMed

    Iriyama, Takayuki; Wang, Wei; Parchim, Nicholas F; Song, Anren; Blackwell, Sean C; Sibai, Baha M; Kellems, Rodney E; Xia, Yang

    2015-06-01

    Accumulation of hypoxia inducible factor-1α (HIF-1α) is commonly an acute and beneficial response to hypoxia, whereas chronically elevated HIF-1α is associated with multiple disease conditions, including preeclampsia, a serious hypertensive disease of pregnancy. However, the molecular basis underlying the persistent elevation of placental HIF-1α in preeclampsia and its role in the pathogenesis of preeclampsia are poorly understood. Here we report that Hif-1α mRNA and HIF-1α protein were elevated in the placentas of pregnant mice infused with angiotensin II type I receptor agonistic autoantibody, a pathogenic factor in preeclampsia. Knockdown of placental Hif-1α mRNA by specific siRNA significantly attenuated hallmark features of preeclampsia induced by angiotensin II type I receptor agonistic autoantibody in pregnant mice, including hypertension, proteinuria, kidney damage, impaired placental vasculature, and elevated maternal circulating soluble fms-like tyrosine kinase-1 levels. Next, we discovered that Hif-1α mRNA levels and HIF-1α protein levels were induced in an independent preeclampsia model with infusion of the inflammatory cytokine tumor necrosis factor superfamily member 14 (LIGHT). SiRNA knockdown experiments also demonstrated that elevated HIF-1α contributed to LIGHT-induced preeclampsia features. Translational studies with human placentas showed that angiotensin II type I receptor agonistic autoantibody or LIGHT is capable of inducing HIF-1α in a hypoxia-independent manner. Moreover, increased HIF-1α was found to be responsible for angiotensin II type I receptor agonistic autoantibody or LIGHT-induced elevation of Flt-1 gene expression and production of soluble fms-like tyrosine kinase-1 in human villous explants. Overall, we demonstrated that hypoxia-independent stimulation of HIF-1α gene expression in the placenta is a common pathogenic mechanism promoting disease progression. Our findings reveal new insight to preeclampsia and highlight

  12. Chronic hypobaric hypoxia increases isolated rat fast-twitch and slow-twitch limb muscle force and fatigue.

    PubMed

    El-Khoury, R; Bradford, A; O'Halloran, K D

    2012-01-01

    Chronic hypoxia alters respiratory muscle force and fatigue, effects that could be attributed to hypoxia and/or increased activation due to hyperventilation. We hypothesized that chronic hypoxia is associated with phenotypic change in non-respiratory muscles and therefore we tested the hypothesis that chronic hypobaric hypoxia increases limb muscle force and fatigue. Adult male Wistar rats were exposed to normoxia or hypobaric hypoxia (PB=450 mm Hg) for 6 weeks. At the end of the treatment period, soleus (SOL) and extensor digitorum longus (EDL) muscles were removed under pentobarbitone anaesthesia and strips were mounted for isometric force determination in Krebs solution in standard water-jacketed organ baths at 25 °C. Isometric twitch and tetanic force, contractile kinetics, force-frequency relationship and fatigue characteristics were determined in response to electrical field stimulation. Chronic hypoxia increased specific force in SOL and EDL compared to age-matched normoxic controls. Furthermore, chronic hypoxia decreased endurance in both limb muscles. We conclude that hypoxia elicits functional plasticity in limb muscles perhaps due to oxidative stress. Our results may have implications for respiratory disorders that are characterized by prolonged hypoxia such as chronic obstructive pulmonary disease (COPD).

  13. Cardiovascular function in term fetal sheep conceived, gestated and studied in the hypobaric hypoxia of the Andean altiplano.

    PubMed

    Herrera, Emilio A; Rojas, Rodrigo T; Krause, Bernardo J; Ebensperger, Germán; Reyes, Roberto V; Giussani, Dino A; Parer, Julian T; Llanos, Aníbal J

    2016-03-01

    High-altitude hypoxia causes intrauterine growth restriction and cardiovascular programming. However, adult humans and animals that have evolved at altitude show certain protection against the effects of chronic hypoxia. Whether the highland fetus shows similar protection against high altitude gestation is unclear. We tested the hypothesis that high-altitude fetal sheep have evolved cardiovascular compensatory mechanisms to withstand chronic hypoxia that are different from lowland sheep. We studied seven high-altitude (HA; 3600 m) and eight low-altitude (LA; 520 m) pregnant sheep at ∼90% gestation. Pregnant ewes and fetuses were instrumented for cardiovascular investigation. A three-period experimental protocol was performed in vivo: 30 min of basal, 1 h of acute superimposed hypoxia (∼10% O2) and 30 min of recovery. Further, we determined ex vivo fetal cerebral and femoral arterial function. HA pregnancy led to chronic fetal hypoxia, growth restriction and altered cardiovascular function. During acute superimposed hypoxia, LA fetuses redistributed blood flow favouring the brain, heart and adrenals, whereas HA fetuses showed a blunted cardiovascular response. Importantly, HA fetuses have a marked reduction in umbilical blood flow versus LA. Isolated cerebral arteries from HA fetuses showed a higher contractile capacity but a diminished response to catecholamines. In contrast, femoral arteries from HA fetuses showed decreased contractile capacity and increased adrenergic contractility. The blunting of the cardiovascular responses to hypoxia in fetuses raised in the Alto Andino may indicate a change in control strategy triggered by chronic hypoxia, switching towards compensatory mechanisms that are more cost-effective in terms of oxygen uptake. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  14. Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling.

    PubMed

    Senavirathna, Lakmini Kumari; Huang, Chaoqun; Yang, Xiaoyun; Munteanu, Maria Cristina; Sathiaseelan, Roshini; Xu, Dao; Henke, Craig A; Liu, Lin

    2018-02-09

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and typically fatal lung disease with a very low survival rate. Excess accumulation of fibroblasts, myofibroblasts and extracellular matrix creates hypoxic conditions within the lungs, causing asphyxiation. Hypoxia is, therefore, one of the prominent features of IPF. However, there have been few studies concerning the effects of hypoxia on pulmonary fibroblasts. In this study, we investigated the molecular mechanisms of hypoxia-induced lung fibroblast proliferation. Hypoxia increased the proliferation of normal human pulmonary fibroblasts and IPF fibroblasts after exposure for 3-6 days. Cell cycle analysis demonstrated that hypoxia promoted the G1/S phase transition. Hypoxia downregulated cyclin D1 and A2 levels, while it upregulated cyclin E1 protein levels. However, hypoxia had no effect on the protein expression levels of cyclin-dependent kinase 2, 4, and 6. Chemical inhibition of hypoxia-inducible factor (HIF)-2 reduced hypoxia-induced fibroblast proliferation. Moreover, silencing of Nuclear Factor Activated T cell (NFAT) c2 attenuated the hypoxia-mediated fibroblasts proliferation. Hypoxia also induced the nuclear translocation of NFATc2, as determined by immunofluorescence staining. NFAT reporter assays showed that hypoxia-induced NFAT signaling activation is dependent on HIF-2, but not HIF-1. Furthermore, the inhibition or silencing of HIF-2, but not HIF-1, reduced the hypoxia-mediated NFATc2 nuclear translocation. Our studies suggest that hypoxia induces the proliferation of human pulmonary fibroblasts through NFAT signaling and HIF-2.

  15. Effect of treatment with nasal continuous positive airway pressure on ventilatory response to hypoxia and hypercapnia in patients with sleep apnea syndrome.

    PubMed

    Spicuzza, Lucia; Bernardi, Luciano; Balsamo, Rossella; Ciancio, Nicola; Polosa, Riccardo; Di Maria, Giuseppe

    2006-09-01

    The increase in peripheral chemoreflex sensitivity in patients with obstructive sleep apnea (OSA) is associated with activation of autonomic nervous system and hemodynamic responses. Nasal CPAP (nCPAP) is an effective treatment for OSA, but little is known on its effect on chemoreflex sensitivity. To assess the effect of nCPAP treatment or placebo (sham nCPAP) on ventilatory control in patients with OSA. Sleep laboratory of Azienda Ospedaliera Garibaldi. Twenty-five patients with moderate-to-severe OSA. Patients were randomly assigned to either therapeutic nCPAP (use of optimal pressure, n = 15) or sham nCPAP (suboptimal pressure of 1 to 2 cm H2O, n = 10) in a double-blind fashion and treated for 1 month. A rebreathing test to assess ventilatory response to normocapnic hypoxia and normoxic hypercapnia was performed at basal condition and after 1 month of treatment. The use of therapeutic nCPAP or sham nCPAP did not affect daytime percentage of arterial oxygen saturation (SaO2%) or end-tidal P(CO2). The normocapnic hypoxic ventilatory response was reduced after 1 month of treatment with nCPAP (the slope was 1.08 +/- 0.02 L/min/SaO2% at basal condition and 0.53 +/- 0.07 L/min/SaO2% after 1 month of treatment, p = 0.008) [mean +/- SD], but not in patients treated with sham nCPAP (slope, 0.83 +/- 0.09 L/min/SaO2% and 0.85 +/- 0.19 L/min/SaO2% at basal condition and after 1 month, respectively). The normoxic hypercapnic ventilatory response remained unchanged after 1 month in both groups. No changes in ventilatory response to either hypoxia or hypercapnia were observed after a single night of nCPAP treatment. The ventilatory response to hypoxia is reduced during regular treatment, but not after short-term treatment, with nCPAP. Readjusted peripheral oxygen chemosensitivity during nCPAP treatment may be a side effect of both reduced sympathetic activity and increased baroreflex activity, or a possible continuous positive airway pressure-related mechanism leading to a

  16. The hypoxia signalling pathway in haematological malignancies

    PubMed Central

    Irigoyen, Marta; García-Ruiz, Juan Carlos; Berra, Edurne

    2017-01-01

    Haematological malignancies are tumours that affect the haematopoietic and the lymphatic systems. Despite the huge efforts to eradicate these tumours, the percentage of patients suffering resistance to therapies and relapse still remains significant. The tumour environment favours drug resistance of cancer cells, and particularly of cancer stem/initiating cells. Hypoxia promotes aggressiveness, metastatic spread and relapse in most of the solid tumours. Furthermore, hypoxia is associated with worse prognosis and resistance to conventional treatments through activation of the hypoxia-inducible factors. Haematological malignancies are not considered solid tumours, and therefore, the role of hypoxia in these diseases was initially presumed to be inconsequential. However, hypoxia is a hallmark of the haematopoietic niche. Here, we will review the current understanding of the role of both hypoxia and hypoxia-inducible factors in different haematological tumours. PMID:28415662

  17. Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas.

    PubMed

    Miranda-Gonçalves, Vera; Granja, Sara; Martinho, Olga; Honavar, Mrinalini; Pojo, Marta; Costa, Bruno M; Pires, Manuel M; Pinheiro, Célia; Cordeiro, Michelle; Bebiano, Gil; Costa, Paulo; Reis, Rui M; Baltazar, Fátima

    2016-07-19

    Glioblastomas (GBM) present a high cellular heterogeneity with conspicuous necrotic regions associated with hypoxia, which is related to tumor aggressiveness. GBM tumors exhibit high glycolytic metabolism with increased lactate production that is extruded to the tumor microenvironment through monocarboxylate transporters (MCTs). While hypoxia-mediated regulation of MCT4 has been characterized, the role of MCT1 is still controversial. Thus, we aimed to understand the role of hypoxia in the regulation of MCT expression and function in GBM, MCT1 in particular. Expression of hypoxia- and glycolytic-related markers, as well as MCT1 and MCT4 isoforms was assessed in in vitro and in vivo orthotopic glioma models, and also in human GBM tissues by immunofluorescence/immunohistochemistry and Western blot. Following MCT1 inhibition, either pharmacologically with CHC (α-cyano-4-hydroxynnamic acid) or genetically with siRNAs, we assessed GBM cell viability, proliferation, metabolism, migration and invasion, under normoxia and hypoxia conditions. Hypoxia induced an increase in MCT1 plasma membrane expression in glioma cells, both in in vitro and in vivo models. Additionally, treatment with CHC and downregulation of MCT1 in glioma cells decreased lactate production, cell proliferation and invasion under hypoxia. Moreover, in the in vivo orthotopic model and in human GBM tissues, there was extensive co-expression of MCT1, but not MCT4, with the GBM hypoxia marker CAIX. Hypoxia-induced MCT1 supports GBM glycolytic phenotype, being responsible for lactate efflux and an important mediator of cell survival and aggressiveness. Therefore, MCT1 constitutes a promising therapeutic target in GBM.

  18. Hypoxia tolerance and responses to hypoxic stress during heart and skeletal muscle inflammation in Atlantic salmon (Salmo salar).

    PubMed

    Lund, Morten; Krudtaa Dahle, Maria; Timmerhaus, Gerrit; Alarcon, Marta; Powell, Mark; Aspehaug, Vidar; Rimstad, Espen; Jørgensen, Sven Martin

    2017-01-01

    Heart and skeletal muscle inflammation (HSMI) is associated with Piscine orthoreovirus (PRV) infection and is an important disease in Atlantic salmon (Salmo salar) aquaculture. Since PRV infects erythrocytes and farmed salmon frequently experience environmental hypoxia, the current study examined mutual effects of PRV infection and hypoxia on pathogenesis and fish performance. Furthermore, effects of HSMI on hypoxia tolerance, cardiorespiratory performance and blood oxygen transport were studied. A cohabitation trial including PRV-infected post-smolts exposed to periodic hypoxic stress (4 h of 40% O2; PRV-H) at 4, 7 and 10 weeks post-infection (WPI) and infected fish reared under normoxic conditions (PRV) was conducted. Periodic hypoxic stress did not influence infection levels or histopathological changes in the heart. Individual incipient lethal oxygen saturation (ILOS) was examined using a standardized hypoxia challenge test (HCT). At 7 WPI, i.e. peak level of infection, both PRV and PRV-H groups exhibited reduced hypoxia tolerance compared to non-infected fish. Three weeks later (10 WPI), during peak levels of pathological changes, reduced hypoxia tolerance was still observed for the PRV group while PRV-H performed equal to non-infected fish, implying a positive effect of the repeated exposure to hypoxic stress. This was in line with maximum heart rate (fHmax) measurements, showing equal performance of PRV-H and non-infected groups, but lower fHmax above 19°C as well as lower temperature optimum (Topt) for aerobic scope for PRV, suggesting reduced cardiac performance and thermal tolerance. In contrast, the PRV-H group had reduced hemoglobin-oxygen affinity compared to non-infected fish. In conclusion, Atlantic salmon suffering from HSMI have reduced hypoxia tolerance and cardiac performance, which can be improved by preconditioning fish to transient hypoxic stress episodes.

  19. Hypoxia tolerance and responses to hypoxic stress during heart and skeletal muscle inflammation in Atlantic salmon (Salmo salar)

    PubMed Central

    Krudtaa Dahle, Maria; Timmerhaus, Gerrit; Alarcon, Marta; Powell, Mark; Aspehaug, Vidar; Rimstad, Espen; Jørgensen, Sven Martin

    2017-01-01

    Heart and skeletal muscle inflammation (HSMI) is associated with Piscine orthoreovirus (PRV) infection and is an important disease in Atlantic salmon (Salmo salar) aquaculture. Since PRV infects erythrocytes and farmed salmon frequently experience environmental hypoxia, the current study examined mutual effects of PRV infection and hypoxia on pathogenesis and fish performance. Furthermore, effects of HSMI on hypoxia tolerance, cardiorespiratory performance and blood oxygen transport were studied. A cohabitation trial including PRV-infected post-smolts exposed to periodic hypoxic stress (4 h of 40% O2; PRV-H) at 4, 7 and 10 weeks post-infection (WPI) and infected fish reared under normoxic conditions (PRV) was conducted. Periodic hypoxic stress did not influence infection levels or histopathological changes in the heart. Individual incipient lethal oxygen saturation (ILOS) was examined using a standardized hypoxia challenge test (HCT). At 7 WPI, i.e. peak level of infection, both PRV and PRV-H groups exhibited reduced hypoxia tolerance compared to non-infected fish. Three weeks later (10 WPI), during peak levels of pathological changes, reduced hypoxia tolerance was still observed for the PRV group while PRV-H performed equal to non-infected fish, implying a positive effect of the repeated exposure to hypoxic stress. This was in line with maximum heart rate (fHmax) measurements, showing equal performance of PRV-H and non-infected groups, but lower fHmax above 19°C as well as lower temperature optimum (Topt) for aerobic scope for PRV, suggesting reduced cardiac performance and thermal tolerance. In contrast, the PRV-H group had reduced hemoglobin-oxygen affinity compared to non-infected fish. In conclusion, Atlantic salmon suffering from HSMI have reduced hypoxia tolerance and cardiac performance, which can be improved by preconditioning fish to transient hypoxic stress episodes. PMID:28700748

  20. THE EFFECT OF ADRENAL MEDULLECTOMY ON METABOLIC RESPONSES TO CHRONIC INTERMITTENT HYPOXIA

    PubMed Central

    Shin, Mi-Kyung; Han, Woobum; Bevans-Fonti, Shannon; Jun, Jonathan C.; Punjabi, Naresh M.; Polotsky, Vsevolod Y.

    2014-01-01

    Obstructive sleep apnea causes intermittent hypoxia (IH) and is associated with insulin resistance and type 2 diabetes. IH increases plasma catecholamine levels, which may increase insulin resistance and suppress insulin secretion. The objective of this study was to determine if adrenal medullectomy (MED) prevents metabolic dysfunction in IH. MED or sham surgery was performed in 60 male C57BL/6J mice, which were then exposed to IH or control conditions (intermittent air) for 6 weeks. IH increased plasma epinephrine and norepinephrine levels, increased fasting blood glucose and lowered basal and glucose-stimulated insulin secretion. MED decreased baseline epinephrine and prevented the IH induced increase in epinephrine, whereas the norepinephrine response remained intact. MED improved glucose tolerance in mice exposed to IH, attenuated the impairment in basal and glucose-stimulated insulin secretion, but did not prevent IH-induced fasting hyperglycemia or insulin resistance. We conclude that the epinephrine release from the adrenal medulla during IH suppresses insulin secretion causing hyperglycemia. PMID:25179887

  1. Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): Hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD)

    PubMed Central

    Piontkivska, Helen; Chung, J. Sook; Ivanina, Anna V.; Sokolov, Eugene P.; Techa, Sirinart; Sokolova, Inna M.

    2010-01-01

    Oxygen homeostasis is crucial for development, survival and normal function of all metazoans. A family of transcription factors called hypoxia-inducible factors (HIF) is critical in mediating the adaptive responses to reduced oxygen availability. The HIF transcription factor consists of a constitutively expressed β subunit and an oxygen-dependent α subunit; the abundance of the latter determines the activity of HIF and is regulated by a family of O2- and Fe2+-dependent enzymes prolyl hydroxylases (PHDs). Currently very little is known about the function of this important pathway and the molecular structure of its key players in hypoxia-tolerant intertidal mollusks including oysters, which are among the animal champions of anoxic and hypoxic tolerance and thus can serve as excellent models to study the role of HIF cascade in adaptations to oxygen deficiency. We have isolated transcripts of two key components of the oxygen sensing pathway - the oxygen-regulated HIF-α subunit and PHD - from an intertidal mollusk, the eastern oyster Crassostrea virginica, and determined the transcriptional responses of these two genes to anoxia, hypoxia and cadmium (Cd) stress. HIF-α and PHD homologs from eastern oysters C. virginica show significant sequence similarity and share key functional domains with the earlier described isoforms from vertebrates and invertebrates. Phylogenetic analysis shows that genetic diversification of HIF and PHD isoforms occurred within the vertebrate lineage indicating functional diversification and specialization of the oxygen-sensing pathways in this group, which parallels situation observed for many other important genes. HIF-α and PHD homologs are broadly expressed at the mRNA level in different oyster tissues and show transcriptional responses to prolonged hypoxia in the gills consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. Similarity in amino acid sequence, domain structure and transcriptional

  2. Hypoxia preconditioning protection of corneal stromal cells requires HIF1alpha but not VEGF.

    PubMed

    Xing, Dongmei; Bonanno, Joseph A

    2009-05-18

    Hypoxia preconditioning protects corneal stromal cells from stress-induced death. This study determined whether the transcription factor HIF-1alpha (Hypoxia Inducible Factor) is responsible and whether this is promulgated by VEGF (Vascular Endothelial Growth Factor). Cultured bovine stromal cells were preconditioned with hypoxia in the presence of cadmium chloride, a chemical inhibitor of HIF-1alpha, and HIF-1alpha siRNA to test if HIF-1alpha activity is needed for hypoxia preconditioning protection from UV-irradiation induced cell death. TUNEL assay was used to detect cell apoptosis after UV-irradiation. RT-PCR and western blot were used to detect the presence of HIF-1alpha and VEGF in transcriptional and translational levels. During hypoxia (0.5% O2), 5 muM cadmium chloride completely inhibited HIF-1alpha expression and reversed the protection by hypoxia preconditioning. HIF-1alpha siRNA (15 nM) reduced HIF-1alpha expression by 90% and produced a complete loss of protection provided by hypoxia preconditioning. Since VEGF is induced by hypoxia, can be HIF-1alpha dependent, and is often protective, we examined the changes in transcription of VEGF and its receptors after 4 h of hypoxia preconditioning. VEGF and its receptors Flt-1 and Flk-1 are up-regulated after hypoxia preconditioning. However, the transcription and translation of VEGF were paradoxically increased by siHIF-1alpha, suggesting that VEGF expression in stromal cells is not down-stream of HIF-1alpha. These findings demonstrate that hypoxia preconditioning protection in corneal stromal cells requires HIF-1alpha, but that VEGF is not a component of the protection.

  3. Postconditioning with repeated mild hypoxia protects neonatal hypoxia-ischemic rats against brain damage and promotes rehabilitation of brain function.

    PubMed

    Deng, Qingqing; Chang, Yanqun; Cheng, Xiaomao; Luo, Xingang; Zhang, Jing; Tang, Xiaoyuan

    2018-05-01

    Mild hypoxia conditioning induced by repeated episodes of transient ischemia is a clinically applicable method for protecting the brain against injury after hypoxia-ischemic brain damage. To assess the effect of repeated mild hypoxia postconditioning on brain damage and long-term neural functional recovery after hypoxia-ischemic brain damage. Rats received different protocols of repeated mild hypoxia postconditioning. Seven-day-old rats with hypoxia ischemic brain damage (HIBD) from the left carotid ligation procedure plus 2 h hypoxic stress (8% O 2 at 37 °C) were further receiving repeated mild hypoxia intermittently. The gross anatomy, functional analyses, hypoxia inducible factor 1 alpha (HIF-1a) expression, and neuronal apoptosis of the rat brains were subsequently examined. Compared to the HIBD group, rats postconditioned with mild hypoxia had elevated HIF-1a expression, more Nissl-stain positive cells in their brain tissue and their brains functioned better in behavioral analyses. The recovery of the brain function may be directly linked to the inhibitory effect of HIF-1α on neuronal apoptosis. Furthermore, there were significantly less neuronal apoptosis in the hippocampal CA1 region of the rats postconditioned with mild hypoxia, which might also be related to the higher HIF-1a expression and better brain performance. Overall, these results suggested that postconditioning of neonatal rats after HIBD with mild hypoxia increased HIF-1a expression, exerted a neuroprotective effect and promoted neural functional recovery. Repeated mild hypoxia postconditioning protects neonatal rats with HIBD against brain damage and improves neural functional recovery. Our results may have clinical implications for treating infants with HIBD. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Observations on autoregulation in skeletal muscle - The effects of arterial hypoxia

    NASA Technical Reports Server (NTRS)

    Pohost, G. M.; Newell, J. B.; Hamlin, N. P.; Powell, W. J., Jr.

    1976-01-01

    An experimental study was carried out on 25 mongrel dogs of both sexes to re-evaluate autoregulation of blood flow in skeletal muscle, with particular reference to the steady-state resistance and transient response in muscle blood flow following a square wave increase in arterial perfusion pressure and to the examination of the effect of arterial hypoxia on this transient response. The data emphasize the importance of considering the transient changes in blood flow in evaluating the autoregulatory response in skeletal muscle. For quantification purposes, a parameter termed alpha is introduced which represents the ratio between the increase in blood flow from baseline to peak and the return of blood flow from the peak to the new steady-state. Such a quantification of the transient response in flow with step increases in perfusion pressure demonstrates substantial transient responses under conditions of normal oxygenation and progressive attenuation of flow transients with increasing hypoxia.

  5. Normobaric hypoxia inhalation test vs. response to airline flight in healthy passengers.

    PubMed

    Kelly, Paul T; Swanney, Maureen P; Frampton, Chris; Seccombe, Leigh M; Peters, Matthew J; Beckert, Lutz E

    2006-11-01

    There is little data available to determine the normal response to normobaric hypoxia inhalation testing (NHIT) and air travel. Quantifying a healthy response may assist in the evaluation of passengers considered at risk for air travel. The aims of this study were: (1) to quantify the degree of desaturation in healthy subjects during a NHIT and air travel; and (2) assess the validity of the NHIT when compared with actual in-flight responses. There were 15 healthy adults (age 23-57; 10 women) who volunteered for this study. Preflight tests included lung function, arterial blood gas, pulse oximetry (SpO2), and NHIT (inspired oxygen 15%). SpO2 and cabin pressure were measured continuously on each subject during a commercial air flight (mean cabin altitude 2178 m; range 1719-2426 m). In-flight oxygenation was compared with the preflight NHIT. Lung function testing results were normal. There was significant desaturation (SpO2) during the NHIT (pre: 98 +/- 2%; post: 92 +/- 2%) and at cruising altitude (pre: 97 +/- 1%; cruise: 92 +/- 2%). There was no difference between the final NHIT SpO2 and the mean in-flight SpO2. There was a significant difference between the lowest in-flight SpO2 (88 +/- 2%) vs. the lowest NHIT SpO2, (90 +/- 2%). Oxygen saturation decreases significantly during air travel in normal individuals. In this group of healthy passengers the NHIT approximates some, but not all, aspects of in-flight oxygenation. These results can be used to describe a normal response to the NHIT and air-travel.

  6. Senescence responsive transcriptional element

    DOEpatents

    Campisi, Judith; Testori, Alessandro

    1999-01-01

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  7. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia

    PubMed Central

    Arbogast, Tara E.; Moya, Esteban A.; Fu, Zhenxing; Powell, Frank L.

    2017-01-01

    Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, PiO2 = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly (P < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia. NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti

  8. Developmental study of the distribution of hypoxia-induced factor-1 alpha and microtubule-associated protein 2 in children's brainstem: comparison between controls and cases with signs of perinatal hypoxia.

    PubMed

    Coveñas, R; González-Fuentes, J; Rivas-Infante, E; Lagartos-Donate, M J; Cebada-Sánchez, S; Arroyo-Jiménez, M M; Insausti, R; Marcos, P

    2014-06-20

    Perinatal asphyxia and hypoxia are common causes of morbidity in neonates. Prenatal birth associated with hypoxemia often results in several disorders because of the lack of oxygen in the brain. Survival rates from perinatal hypoxia have improved, but appropriate treatments for recovery are still limited, with great impact on patients, their families, society in general and health systems. The aim of this work is to contribute to a better understanding of the cellular mechanisms underlying the brainstem responses to hypoxia. For this purpose, distributions of two proteins, hypoxia-inducible factor-1 alpha (HIF-1α) and microtubule-associated protein 2 (MAP-2) were analyzed in brainstems of 11 children, four of them showing neuropathological evidence of brain hypoxia. They were included in control or hypoxic groups, and then in several subgroups according to their age. Immunohistochemical labeling for these proteins revealed only cell bodies containing HIF-1α, and both cell bodies and fibers positive for MAP-2 in the children's brainstems. The distribution of HIF-1α was more restricted than that of MAP-2, and it can be suggested that the expression of HIF-1α increased with age. The distribution pattern of MAP-2 in the medulla oblongata could be more due to age-related changes than to a response to hypoxic damage, whereas in the pons several regions, such as the nucleus ambiguus or the solitary nucleus, showed different immunolabeling patterns in controls and hypoxic cases. The distribution patterns of these two proteins suggest that some brainstem regions, such as the reticular formation or the central gray, could be less affected by conditions of hypoxia. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Hypobaric Hypoxia Exacerbates the Neuroinflammatory Response to Traumatic Brain Injury

    PubMed Central

    Goodman, Michael D.; Makley, Amy T.; Huber, Nathan L.; Clarke, Callisia N.; Friend, Lou Ann W.; Schuster, Rebecca M.; Bailey, Stephanie R.; Barnes, Stephen L.; Dorlac, Warren C.; Johannigman, Jay A.; Lentsch, Alex B.; Pritts, Timothy A.

    2015-01-01

    Objective To determine the inflammatory effects of time-dependent exposure to the hypobaric environment of simulated aeromedical evacuation following traumatic brain injury (TBI). Methods Mice were subjected to a blunt TBI or sham injury. Righting reflex response (RRR) time was assessed as an indicator of neurologic recovery. Three or 24 h (Early and Delayed groups, respectively) after TBI, mice were exposed to hypobaric flight conditions (Fly) or ground-level control (No Fly) for 5 h. Arterial blood gas samples were obtained from all groups during simulated flight. Serum and cortical brain samples were analyzed for inflammatory cytokines after flight. Neuron specific enolase (NSE) was measured as a serum biomarker of TBI severity. Results TBI resulted in prolonged RRR time compared with sham injury. After TBI alone, serum levels of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC) were increased by 6 h post-injury. Simulated flight significantly reduced arterial oxygen saturation levels in the Fly group. Post-injury altitude exposure increased cerebral levels of IL-6 and macrophage inflammatory protein-1α (MIP-1α), as well as serum NSE in the Early but not Delayed Flight group compared to ground-level controls. Conclusions The hypobaric environment of aero-medical evacuation results in significant hypoxia. Early, but not delayed, exposure to a hypobaric environment following TBI increases the neuroinflammatory response to injury and the severity of secondary brain injury. Optimization of the post-injury time to fly using serum cytokine and biomarker levels may reduce the potential secondary cerebral injury induced by aeromedical evacuation. PMID:20850781

  10. Drivers of Variability of Diel-Cycling and Episodic Hypoxia In ...

    EPA Pesticide Factsheets

    Eutrophication of coastal ecosystems is a longstanding environmental concern, exacerbated by population growth and associated nutrient pollution, and ultimately resulting in increased incidence of hypoxia. Shallow and highly productive estuaries and embayments are particularly susceptible to diel-cycling hypoxia, associated with day-night cycles of production and respiration, which can cause extreme excursions in dissolved oxygen (DO) concentrations from anoxia to super-saturation within a single day. Diel oxygen dynamics in these systems are complex, and may be influenced by wind forcing, vertical and horizontal mixing, variation in freshwater inflow, cloud cover, and temperature. To better understand the environmental drivers of periodic hypoxia, this study examined four northern Gulf of Mexico Estuaries (Weeks Bay, AL; Wolf Bay, AL; Fowl River, AL; and St. Louis Bay, MS). Dissolved oxygen varied strongly on a diel basis in all four systems, with periods of sustained low oxygen (>24 h) observed in both Weeks Bay and Wolf Bay. The duration and persistence of hypoxia further varied in response to changing salinity regimes and regional weather. These results underscore the dynamic nature of hypoxia in shallow estuarine systems, and highlight the importance of combining fixed site continuous monitoring data with spatial hydrographic surveys to accurately resolve DO dynamics. This abstract is submitted for presentation at the CERF conference held Nov 8-12 in Oregon

  11. Cardiorespiratory responses to hypoxia in the African catfish, Clarias gariepinus (Burchell 1822), an air-breathing fish.

    PubMed

    Belão, T C; Leite, C A C; Florindo, L H; Kalinin, A L; Rantin, F T

    2011-10-01

    The African catfish, Clarias gariepinus, possesses a pair of suprabranchial chambers located in the dorsal-posterior part of the branchial cavity having extensions from the upper parts of the second and fourth gill arches, forming the arborescent organs. This structure is an air-breathing organ (ABO) and allows aerial breathing (AB). We evaluated its cardiorespiratory responses to aquatic hypoxia. To determine the mode of air-breathing (obligate or accessory), fish had the respiratory frequency (f (R)) monitored and were subjected to normoxic water (PwO(2) = 140 mmHg) without becoming hyperactive for 30 h. During this period, all fish survived without displaying evidences of hyperactivity and maintained unchanged f (R), confirming that this species is a facultative air-breather. Its aquatic O(2) uptake ([Formula: see text]) was maintained constant down to a critical PO(2) (PcO(2)) of 60 mmHg, below which [Formula: see text] declined linearly with further reductions of inspired O(2) tension (PiO(2)). Just above the PcO(2) the ventilatory tidal volume (V (T)) increased significantly along with gill ventilation ([Formula: see text]), while f (R) changed little. Consequently, the water convection requirement [Formula: see text] increased steeply. This threshold applied to a cardiac response that included reflex bradycardia. AB was initiated at PiO(2) = 140 mmHg (normoxia) and air-breathing episodes increased linearly with more severe hypoxia, being significantly higher at PiO(2) tensions below the PcO(2). Air-breathing episodes were accompanied by bradycardia pre air-breath, to tachycardia post air-breath.

  12. A theoretical stochastic control framework for adapting radiotherapy to hypoxia

    NASA Astrophysics Data System (ADS)

    Saberian, Fatemeh; Ghate, Archis; Kim, Minsun

    2016-10-01

    Hypoxia, that is, insufficient oxygen partial pressure, is a known cause of reduced radiosensitivity in solid tumors, and especially in head-and-neck tumors. It is thus believed to adversely affect the outcome of fractionated radiotherapy. Oxygen partial pressure varies spatially and temporally over the treatment course and exhibits inter-patient and intra-tumor variation. Emerging advances in non-invasive functional imaging offer the future possibility of adapting radiotherapy plans to this uncertain spatiotemporal evolution of hypoxia over the treatment course. We study the potential benefits of such adaptive planning via a theoretical stochastic control framework using computer-simulated evolution of hypoxia on computer-generated test cases in head-and-neck cancer. The exact solution of the resulting control problem is computationally intractable. We develop an approximation algorithm, called certainty equivalent control, that calls for the solution of a sequence of convex programs over the treatment course; dose-volume constraints are handled using a simple constraint generation method. These convex programs are solved using an interior point algorithm with a logarithmic barrier via Newton’s method and backtracking line search. Convexity of various formulations in this paper is guaranteed by a sufficient condition on radiobiological tumor-response parameters. This condition is expected to hold for head-and-neck tumors and for other similarly responding tumors where the linear dose-response parameter is larger than the quadratic dose-response parameter. We perform numerical experiments on four test cases by using a first-order vector autoregressive process with exponential and rational-quadratic covariance functions from the spatiotemporal statistics literature to simulate the evolution of hypoxia. Our results suggest that dynamic planning could lead to a considerable improvement in the number of tumor cells remaining at the end of the treatment course

  13. Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation.

    PubMed

    Maybin, Jacqueline A; Murray, Alison A; Saunders, Philippa T K; Hirani, Nikhil; Carmeliet, Peter; Critchley, Hilary O D

    2018-01-23

    Heavy menstrual bleeding (HMB) is common and debilitating, and often requires surgery due to hormonal side effects from medical therapies. Here we show that transient, physiological hypoxia occurs in the menstrual endometrium to stabilise hypoxia inducible factor 1 (HIF-1) and drive repair of the denuded surface. We report that women with HMB have decreased endometrial HIF-1α during menstruation and prolonged menstrual bleeding. In a mouse model of simulated menses, physiological endometrial hypoxia occurs during bleeding. Maintenance of mice under hyperoxia during menses decreases HIF-1α induction and delays endometrial repair. The same effects are observed upon genetic or pharmacological reduction of endometrial HIF-1α. Conversely, artificial induction of hypoxia by pharmacological stabilisation of HIF-1α rescues the delayed endometrial repair in hypoxia-deficient mice. These data reveal a role for HIF-1 in the endometrium and suggest its pharmacological stabilisation during menses offers an effective, non-hormonal treatment for women with HMB.

  14. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle

    PubMed Central

    Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Prakash, Y. S.

    2015-01-01

    Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs). Methods and Results 48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia. Conclusions Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy. PMID:26192455

  15. Involvement of aquaporin NIP1;1 in the contrasting tolerance response to root hypoxia in Prunus rootstocks.

    PubMed

    Mateluna, Patricio; Salvatierra, Ariel; Solis, Simón; Nuñez, Gabriel; Pimentel, Paula

    2018-05-12

    Prunus species have been classified as moderately sensitive to root hypoxia, but with a certain intrageneric tolerance degree to oxygen deficiency. Previously, RNA-seq analysis described the transcriptomic reconfiguration of two Prunus rootstocks contrasting to root hypoxia, which included the shift from aerobic to anaerobic metabolism. Here, we studied the relationship between lactate accumulation and the functionality of an aquaporin differentially expressed in 'Mariana 2624', a plum-based (Prunus cerasifera x Prunus munsoniana) rootstock tolerant to root hypoxia stress, and 'Mazzard F12/1', a cherry-based (Prunus avium) rootstock sensitive to root hypoxia stress. In the root hypoxia-sensitive rootstock, higher levels of lactate and LDH1 gene expression were found in roots exposed to oxygen deprivation. Concomitantly, we detected an increase in the mRNA abundance of Prunus spp. NIP1;1, a putative lactic acid transporter. Intriguingly, the high expression of PruavNIP1;1 is not linked to a lower lactic acid content in the roots of 'Mazzard F12/1'. To study this phenomenon, we calculated the force required for the transit of a lactic acid molecule through Prunus spp. NIP1;1 channels. Comparing the calculated forces, we identified steric hindrances in PruavNIP1;1 given by the residues Phe107 and Trp88 in the NPA region and ar/R filter, respectively. The functionality of both channels was corroborated by the restoration of the lactic acid transport and the differential lactic acid sensitive-phenotypes of the yeast strain Δjen1 complemented with PruavNIP1;1 and PrucxmNIP1;1. Our findings provide new insights into the mechanisms involved in determining hypoxia tolerance between closely related species, such as plum and cherry. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. Midcervical neuronal discharge patterns during and following hypoxia

    PubMed Central

    Sandhu, M. S.; Baekey, D. M.; Maling, N. G.; Sanchez, J. C.; Reier, P. J.

    2014-01-01

    Anatomical evidence indicates that midcervical interneurons can be synaptically coupled with phrenic motoneurons. Accordingly, we hypothesized that interneurons in the C3–C4 spinal cord can display discharge patterns temporally linked with inspiratory phrenic motor output. Anesthetized adult rats were studied before, during, and after a 4-min bout of moderate hypoxia. Neuronal discharge in C3–C4 lamina I–IX was monitored using a multielectrode array while phrenic nerve activity was extracellularly recorded. For the majority of cells, spike-triggered averaging (STA) of ipsilateral inspiratory phrenic nerve activity based on neuronal discharge provided no evidence of discharge synchrony. However, a distinct STA phrenic peak with a 6.83 ± 1.1 ms lag was present for 5% of neurons, a result that indicates a monosynaptic connection with phrenic motoneurons. The majority (93%) of neurons changed discharge rate during hypoxia, and the diverse responses included both increased and decreased firing. Hypoxia did not change the incidence of STA peaks in the phrenic nerve signal. Following hypoxia, 40% of neurons continued to discharge at rates above prehypoxia values (i.e., short-term potentiation, STP), and cells with initially low discharge rates were more likely to show STP (P < 0.001). We conclude that a population of nonphrenic C3–C4 neurons in the rat spinal cord is synaptically coupled to the phrenic motoneuron pool, and these cells can modulate inspiratory phrenic output. In addition, the C3–C4 propriospinal network shows a robust and complex pattern of activation both during and following an acute bout of hypoxia. PMID:25552641

  17. Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor.

    PubMed

    Knowles, Helen J; Schaefer, Karl-Ludwig; Dirksen, Uta; Athanasou, Nicholas A

    2010-07-16

    Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma. HIF-1alpha and HIF-2alpha immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration. 17/56 Ewing's tumours were HIF-1alpha-positive, 15 HIF-2alpha-positive and 10 positive for HIF-1alpha and HIF-2alpha. Expression of HIF-1alpha and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1alpha and HIF-2alpha in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2alpha in Ewing's. Downstream transcription was HIF-1alpha-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by >or= 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration. Co-localisation of HIF-1alpha and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in in vivo induction of HIF. In vitro data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.

  18. Exercise Improves Mood State in Normobaric Hypoxia.

    PubMed

    Seo, Yongsuk; Fennell, Curtis; Burns, Keith; Pollock, Brandon S; Gunstad, John; McDaniel, John; Glickman, Ellen

    2015-11-01

    The purpose of this study was to quantify the efficacy of using exercise to alleviate the impairments in mood state associated with hypoxic exposure. Nineteen young, healthy men completed Automated Neuropsychological Assessment Metrics-4(th) Edition (ANAM4) versions of the mood state test before hypoxia exposure, after 60 min of hypoxia exposure (12.5% O(2)), and during and after two intensities of cycling exercise (40% and 60% adjusted Vo(2max)) under the same hypoxic conditions. Peripheral oxygen saturation (Spo(2)) and regional cerebral oxygen saturation (rSo(2)) were continuously monitored. At rest in hypoxia, Total Mood Disturbance (TMD) was significantly increased compared to baseline in both the 40% and 60% groups. TMD was significantly decreased during exercise compared to rest in hypoxia. TMD was also significantly decreased during recovery compared to rest in hypoxia. Spo(2) significantly decreased at 60 min rest in hypoxia, during exercise, and recovery compared to baseline. Regional cerebral oxygen saturation was also reduced at 60 min rest in hypoxia, during exercise, and recovery compared to baseline. The current study demonstrated that exercise at 40% and 60% of adjusted Vo(2max) attenuated the adverse effects of hypoxia on mood. These findings may have significant applied value, as negative mood states are known to impair performance in hypoxia. Further studies are needed to replicate the current finding and to clarify the possible mechanisms associated with the potential benefits of exercise on mood state in normobaric hypoxia.

  19. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helbig, Linda; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Koi, Lydia

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluatedmore » 150 days after irradiation, and the dose to control 50% of tumors (TCD{sub 50}) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD{sub 50}, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD{sub 50}. Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement

  20. Hypoxia-induced HIF1α targets in melanocytes reveal a molecular profile associated with poor melanoma prognosis

    PubMed Central

    Loftus, Stacie K.; Baxter, Laura L.; Cronin, Julia C.; Fufa, Temesgen D.; Pavan, William J.

    2017-01-01

    Summary Hypoxia and HIF1α signaling direct tissue-specific gene responses regulating tumor progression, invasion and metastasis. By integrating HIF1α knockdown and hypoxia-induced gene expression changes, this study identifies a melanocyte-specific, HIF1α-dependent/hypoxia-responsive gene expression signature. Integration of these gene expression changes with HIF1α ChIP-Seq analysis identifies 81 HIF1α direct target genes in melanocytes. The expression levels for ten of the HIF1α direct targets – GAPDH, PKM, PPAT, DARS, DTWD1, SEH1L, ZNF292, RLF, AGTRAP, and GPC6 – are significantly correlated with reduced time of Disease Free Status (DFS) in melanoma by logistic regression (P-value =0.0013) and ROC curve analysis (AUC= 0.826, P-value<0.0001). This HIF1α-regulated profile defines a melanocyte-specific response under hypoxia, and demonstrates the role of HIF1α as an invasive cell state gatekeeper in regulating cellular metabolism, chromatin and transcriptional regulation, vascularization and invasion. PMID:28168807

  1. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis

    PubMed Central

    Natsuizaka, Mitsuteru; Naganuma, Seiji; Kagawa, Shingo; Ohashi, Shinya; Ahmadi, Azal; Subramanian, Harry; Chang, Sanders; Nakagawa, Kei J.; Ji, Xinjun; Liebhaber, Stephen A.; Klein-Szanto, Andres J.; Nakagawa, Hiroshi

    2012-01-01

    Insulin-like growth factor binding protein (IGFBP)-3 regulates cell proliferation and apoptosis in esophageal squamous cell carcinoma (ESCC) cells. We have investigated how the hypoxic tumor microenvironment in ESCC fosters the induction of IGFBP3. RNA interference experiments revealed that hypoxia-inducible factor (HIF)-1α, but not HIF-2α, regulates IGFBP3 mRNA induction. By chromatin immunoprecipitation and transfection assays, HIF-1α was found to transactivate IGFBP3 through a novel hypoxia responsive element (HRE) located at 57 kb upstream from the transcription start site. Metabolic labeling experiments demonstrated hypoxia-mediated inhibition of global protein synthesis. 7-Methyl GTP-cap binding assays suggested that hypoxia suppresses cap-dependent translation. Experiments using pharmacological inhibitors for mammalian target of rapamycin (mTOR) suggested that a relatively weak mTOR activity may be sufficient for cap-dependent translation of IGFBP3 under hypoxic conditions. Bicistronic RNA reporter transfection assays did not validate the possibility of an internal ribosome entry site as a potential mechanism for cap-independent translation for IGFBP3 mRNA. Finally, IGFBP3 mRNA was found enriched to the polysomes. In aggregate, our study establishes IGFBP3 as a direct HIF-1α target gene and that polysome enrichment of IGFBP3 mRNA may permit continuous translation under hypoxic conditions.—Natsuizaka, M., Naganuma, S., Kagawa, S., Ohashi, S., Ahmadi, A., Subramanian, H., Chang, S., Nakagawa, K. J., Ji, X., Liebhaber, S. A., Klein-Szanto, A. J., Nakagawa, H. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis. PMID:22415309

  2. Oxidative phosphorylation of liver mitochondria from mice acclimatized to hypobaric hypoxia

    NASA Astrophysics Data System (ADS)

    Leon-Velarde, F.; Whittembury, J.; Monge, C.

    1986-09-01

    Mice exposed to intermittent hypobaric hypoxia for 20 hours a day, 6 days a week, develop extracellular adaptive responses similar to those found in humans exposed to oxygen tension equivalent to that found at an altitude of 4500 m. Isolated liver mitochondria from these animals show no significant differences in rates of substrate-stimulated respiration, ADP-stimulated respiration and the respiratory control ratio (RCR), when compared with sea level controls. Undetectable or negligible differences in these parameters are also noted when sea level animals are exposed for one hour to severe hypoxia (7% O2). We therefore conclude that the oxidative phosphorylation capacity of the isolated mouse liver mitochondria remains unaltered in both acute and chronic hypoxia. However the in vivo oxygen consumption by mice at this degree of hypoxia was markedly reduced. Lack of observable changes in oxidative phosphorylation could be accounted for by extracellular adaptations in mitochondria isolated from acclimatized animals. This explanation, however, is not consistent with the lack of changes on oxidative phosphorylation in mitochondria isolated from mice undergoing acute hypoxia at sea level. It is then suggested that isolated mitochondrial preparations are of limited value for investigating biochemical mechanisms underlying the variation of cellular respiration occurring in vivo.

  3. Ancestry explains the blunted ventilatory response to sustained hypoxia and lower exercise ventilation of Quechua altitude natives.

    PubMed

    Brutsaert, Tom D; Parra, Esteban J; Shriver, Mark D; Gamboa, Alfredo; Rivera-Ch, Maria; León-Velarde, Fabiola

    2005-07-01

    Andean high-altitude (HA) natives have a low (blunted) hypoxic ventilatory response (HVR), lower effective alveolar ventilation, and lower ventilation (VE) at rest and during exercise compared with acclimatized newcomers to HA. Despite blunted chemosensitivity and hypoventilation, Andeans maintain comparable arterial O(2) saturation (Sa(O(2))). This study was designed to evaluate the influence of ancestry on these trait differences. At sea level, we measured the HVR in both acute (HVR-A) and sustained (HVR-S) hypoxia in a sample of 32 male Peruvians of mainly Quechua and Spanish origins who were born and raised at sea level. We also measured resting and exercise VE after 10-12 h of exposure to altitude at 4,338 m. Native American ancestry proportion (NAAP) was assessed for each individual using a panel of 80 ancestry-informative molecular markers (AIMs). NAAP was inversely related to HVR-S after 10 min of isocapnic hypoxia (r = -0.36, P = 0.04) but was not associated with HVR-A. In addition, NAAP was inversely related to exercise VE (r = -0.50, P = 0.005) and ventilatory equivalent (VE/Vo(2), r = -0.51, P = 0.004) measured at 4,338 m. Thus Quechua ancestry may partly explain the well-known blunted HVR (10, 35, 36, 57, 62) at least to sustained hypoxia, and the relative exercise hypoventilation at altitude of Andeans compared with European controls. Lower HVR-S and exercise VE could reflect improved gas exchange and/or attenuated chemoreflex sensitivity with increasing NAAP. On the basis of these ancestry associations and on the fact that developmental effects were completely controlled by study design, we suggest both a genetic basis and an evolutionary origin for these traits in Quechua.

  4. [Chronic hypoxia and cardiovascular risk : Clinical significance of different forms of hypoxia].

    PubMed

    Koehler, U; Hildebrandt, O; Krönig, J; Grimm, W; Otto, J; Hildebrandt, W; Kinscherf, R

    2018-06-01

    It is of fundamental importance to differentiate whether chronic hypoxia occurs intermittently or persistently. While chronic intermittent hypoxia (CIH) is found typically in patients with obstructive sleep apnea (OAS), chronic persistent hypoxia (CPH) is typically diagnosed in patients with chronic lung disease. Cardiovascular risk is markedly increased in patients with CIH compared to patients with CPH. The frequent change between oxygen desaturation and reoxygenation in patients with CIH is associated with increased hypoxic stress, increased systemic inflammation, and enhanced adrenergic activation followed by endothelial dysfunction and increased arteriosclerosis. The pathophysiologic consequences of CPH are less well understood. The relationship between CPH and the development of pulmonary hypertension, pulmonary heart disease as well as polycythemia has been established.

  5. Multifunctional Micelles Dually Responsive to Hypoxia and Singlet Oxygen: Enhanced Photodynamic Therapy via Interactively Triggered Photosensitizer Delivery.

    PubMed

    Li, Juanjuan; Meng, Xuan; Deng, Jian; Lu, Di; Zhang, Xin; Chen, Yanrui; Zhu, Jundong; Fan, Aiping; Ding, Dan; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2018-05-23

    Nanoparticulate antitumor photodynamic therapy (PDT) has been suffering from the limited dose accumulation in tumor. Herein, we report dually hypoxia- and singlet oxygen-responsive polymeric micelles to efficiently utilize the photosensitizer deposited in the disease site and hence facilely improve PDT's antitumor efficacy. Tailored methoxy poly(ethylene glycol)-azobenzene-poly(aspartic acid) copolymer conjugate with imidazole as the side chains was synthesized. The conjugate micelles (189 ± 19 nm) obtained by self-assembly could efficiently load a model photosensitizer, chlorin e6 (Ce6) with a loading of 4.1 ± 0.5% (w/w). The facilitated cellular uptake of micelles was achieved by the triggered azobenzene collapse that provoked poly(ethylene glycol) shedding; rapid Ce6 release was enabled by imidazole oxidation that induced micelle disassembly. In addition, the singlet oxygen-mediated cargo release not only addressed the limited diffusion range and short half-life of singlet oxygen but also decreased the oxygen level, which could in turn enhance internalization and increase the intracellular Ce6 concentration. The hypoxia-induced dePEGylation and singlet oxygen-triggered Ce6 release was demonstrated both in aqueous buffer and in Lewis lung carcinoma (LLC) cells. The cellular uptake study demonstrated that the dually responsive micelles could deliver significantly more Ce6 to the cells, which resulted in a substantially improved cytotoxicity. This concurred well with the superior in vivo antitumor ability of micelles in a LLC tumor-bearing mouse model. This study presented an intriguing nanoplatform to realize interactively triggered photosensitizer delivery and improved antitumor PDT efficacy.

  6. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation.

    PubMed

    Arya, Aditya; Sethy, Niroj Kumar; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana

    2013-01-01

    Cerium oxide nanoparticles (nanoceria) are effective at quenching reactive oxygen species (ROS) in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]). Animals were injected intraperitoneally with either a dose of 0.5 μg/kg body weight/week of nanoceria (T and T+H groups) or vehicle (C and H groups) for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. Spherical nanoceria of 7-10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti-inflammatory properties of nanoceria

  7. Hypoxia-sensitive reporter system for high-throughput screening.

    PubMed

    Tsujita, Tadayuki; Kawaguchi, Shin-ichi; Dan, Takashi; Baird, Liam; Miyata, Toshio; Yamamoto, Masayuki

    2015-02-01

    The induction of anti-hypoxic stress enzymes and proteins has the potential to be a potent therapeutic strategy to prevent the progression of ischemic heart, kidney or brain diseases. To realize this idea, small chemical compounds, which mimic hypoxic conditions by activating the PHD-HIF-α system, have been developed. However, to date, none of these compounds were identified by monitoring the transcriptional activation of hypoxia-inducible factors (HIFs). Thus, to facilitate the discovery of potent inducers of HIF-α, we have developed an effective high-throughput screening (HTS) system to directly monitor the output of HIF-α transcription. We generated a HIF-α-dependent reporter system that responds to hypoxic stimuli in a concentration- and time-dependent manner. This system was developed through multiple optimization steps, resulting in the generation of a construct that consists of the secretion-type luciferase gene (Metridia luciferase, MLuc) under the transcriptional regulation of an enhancer containing 7 copies of 40-bp hypoxia responsive element (HRE) upstream of a mini-TATA promoter. This construct was stably integrated into the human neuroblastoma cell line, SK-N-BE(2)c, to generate a reporter system, named SKN:HRE-MLuc. To improve this system and to increase its suitability for the HTS platform, we incorporated the next generation luciferase, Nano luciferase (NLuc), whose longer half-life provides us with flexibility for the use of this reporter. We thus generated a stably transformed clone with NLuc, named SKN:HRE-NLuc, and found that it showed significantly improved reporter activity compared to SKN:HRE-MLuc. In this study, we have successfully developed the SKN:HRE-NLuc screening system as an efficient platform for future HTS.

  8. Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas

    PubMed Central

    Miranda-Gonçalves, Vera; Granja, Sara; Martinho, Olga; Honavar, Mrinalini; Pojo, Marta; Costa, Bruno M.; Pires, Manuel M.; Pinheiro, Célia; Cordeiro, Michelle; Bebiano, Gil; Costa, Paulo; Reis, Rui M.; Baltazar, Fátima

    2016-01-01

    Background Glioblastomas (GBM) present a high cellular heterogeneity with conspicuous necrotic regions associated with hypoxia, which is related to tumor aggressiveness. GBM tumors exhibit high glycolytic metabolism with increased lactate production that is extruded to the tumor microenvironment through monocarboxylate transporters (MCTs). While hypoxia-mediated regulation of MCT4 has been characterized, the role of MCT1 is still controversial. Thus, we aimed to understand the role of hypoxia in the regulation of MCT expression and function in GBM, MCT1 in particular. Methods Expression of hypoxia- and glycolytic-related markers, as well as MCT1 and MCT4 isoforms was assessed in in vitro and in vivo orthotopic glioma models, and also in human GBM tissues by immunofluorescence/immunohistochemistry and Western blot. Following MCT1 inhibition, either pharmacologically with CHC (α-cyano-4-hydroxynnamic acid) or genetically with siRNAs, we assessed GBM cell viability, proliferation, metabolism, migration and invasion, under normoxia and hypoxia conditions. Results Hypoxia induced an increase in MCT1 plasma membrane expression in glioma cells, both in in vitro and in vivo models. Additionally, treatment with CHC and downregulation of MCT1 in glioma cells decreased lactate production, cell proliferation and invasion under hypoxia. Moreover, in the in vivo orthotopic model and in human GBM tissues, there was extensive co-expression of MCT1, but not MCT4, with the GBM hypoxia marker CAIX. Conclusion Hypoxia-induced MCT1 supports GBM glycolytic phenotype, being responsible for lactate efflux and an important mediator of cell survival and aggressiveness. Therefore, MCT1 constitutes a promising therapeutic target in GBM. PMID:27331625

  9. Hypoxia in Invasion and Metastasis

    DTIC Science & Technology

    2007-08-01

    hypoxia and activating HIF-1 downregulate the DNA mismatch repair proteins ( mlh1 and/or msh2), a group of important proteins for maintaining genetic...Investigate the hypoxia and activating HIF-1 downregulate the DNA mismatch repair proteins ( mlh1 and/or msh2) (Month 7-12) Methods: We performed a parallel...inducible factors from invasive tumor cells. Changes in the level of multiple hypoxia related factor (HIF-1) and DNA mismatch repair proteins ( MLH1 , MSH2

  10. A Four-Way Comparison of Cardiac Function with Normobaric Normoxia, Normobaric Hypoxia, Hypobaric Hypoxia and Genuine High Altitude

    PubMed Central

    Boos, Christopher John; O’Hara, John Paul; Mellor, Adrian; Hodkinson, Peter David; Tsakirides, Costas; Reeve, Nicola; Gallagher, Liam; Green, Nicholas Donald Charles; Woods, David Richard

    2016-01-01

    Background There has been considerable debate as to whether different modalities of simulated hypoxia induce similar cardiac responses. Materials and Methods This was a prospective observational study of 14 healthy subjects aged 22–35 years. Echocardiography was performed at rest and at 15 and 120 minutes following two hours exercise under normobaric normoxia (NN) and under similar PiO2 following genuine high altitude (GHA) at 3,375m, normobaric hypoxia (NH) and hypobaric hypoxia (HH) to simulate the equivalent hypoxic stimulus to GHA. Results All 14 subjects completed the experiment at GHA, 11 at NN, 12 under NH, and 6 under HH. The four groups were similar in age, sex and baseline demographics. At baseline rest right ventricular (RV) systolic pressure (RVSP, p = 0.0002), pulmonary vascular resistance (p = 0.0002) and acute mountain sickness (AMS) scores were higher and the SpO2 lower (p<0.0001) among all three hypoxic groups (GHA, NH and HH) compared with NN. At both 15 minutes and 120 minutes post exercise, AMS scores, Cardiac output, septal S’, lateral S’, tricuspid S’ and A’ velocities and RVSP were higher and SpO2 lower with all forms of hypoxia compared with NN. On post-test analysis, among the three hypoxia groups, SpO2 was lower at baseline and 15 minutes post exercise with GHA (89.3±3.4% and 89.3±2.2%) and HH (89.0±3.1 and (89.8±5.0) compared with NH (92.9±1.7 and 93.6±2.5%). The RV Myocardial Performance (Tei) Index and RVSP were significantly higher with HH than NH at 15 and 120 minutes post exercise respectively and tricuspid A’ was higher with GHA compared with NH at 15 minutes post exercise. Conclusions GHA, NH and HH produce similar cardiac adaptations over short duration rest despite lower SpO2 levels with GHA and HH compared with NH. Notable differences emerge following exercise in SpO2, RVSP and RV cardiac function. PMID:27100313

  11. Physiological effects of intermittent hypoxia.

    PubMed

    Powell, F L; Garcia, N

    2000-01-01

    Intermittent hypoxia (IH), or periodic exposure to hypoxia interrupted by return to normoxia or less hypoxic conditions, occurs in many circumstances. In high altitude mountaineering, IH is used to optimize acclimatization although laboratory studies have not generally revealed physiologically significant benefits. IH enhances athletic performance at sea level if blood oxygen capacity increases and the usual level of training is not decreased significantly. IH for high altitude workers who commute from low altitude homes is of considerable practical interest and the ideal commuting schedule for physical and mental performance is being studied. The effect of oxygen enrichment at altitude (i.e., intermittent normoxia on a background of chronic hypoxia) on human performance is under study also. Physiological mechanisms of IH, and specifically the differences between effects of IH and acute or chronic continuous hypoxia remains to be determined. Biomedical researchers are defining the molecular and cellular mechanisms for effects of hypoxia on the body in health and disease. A comparative approach may provide additional insight about the biological significance of these effects.

  12. Lung Oxidative Damage by Hypoxia

    PubMed Central

    Araneda, O. F.; Tuesta, M.

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described. PMID:22966417

  13. Oxidative Stress and Hypoxia Contribute to Alzheimer's Disease Pathogenesis: Two Sides of the Same Coin

    PubMed Central

    Guglielmotto, Michela; Tamagno, Elena; Danni, Oliviero

    2009-01-01

    While it is well established that stroke and cerebral hypoperfusion are risk factors for Alzheimer's disease (AD), the molecular link between ischemia/hypoxia and amyloid precursor protein (APP) processing has only been recently established. Here we review the role of the release of reactive oxygen species (ROS) by the mitochondrial electron chain in response to hypoxia, providing evidence that hypoxia fosters the amyloidogenic APP processing through a biphasic mechanism that up-regulates β-secretase activity, which involves an early release of ROS and an activation of HIF-1α. PMID:19705038

  14. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  15. Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy

    PubMed Central

    Javan, Bita; Shahbazi, Majid

    2017-01-01

    Transcriptional targeting is the best approach for specific gene therapy. Hypoxia is a common feature of the tumour microenvironment. Therefore, targeting gene expression in hypoxic cells by placing transgene under the control of a hypoxia-responsive promoter can be a good strategy for cancer-specific gene therapy. The hypoxia-inducible gene expression system has been investigated more in suicide gene therapy and it can also be of great help in knocking down cancer gene therapy with siRNAs. However, this system needs to be optimised to have maximum efficacy with minimum side effects in normal tissues. The combination of tissue-/tumour-specific promoters with HRE core sequences has been found to enhance the specificity and efficacy of this system. In this review, hypoxia-inducible gene expression system as well as gene therapy strategies targeting tumour hypoxia will be discussed. This review will also focus on hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation systems developed for cancer-specific gene therapy. PMID:28798809

  16. Metabolic Response of Dungeness Crab Larvae Exposed to Elevated CO2 and Hypoxia

    NASA Astrophysics Data System (ADS)

    Nichols, Z.; Busch, S.; McElhany, P.

    2015-12-01

    Ocean acidification (OA) and deoxygenation, both resulting from rising atmospheric CO2 levels, are lowering the pH and oxygen levels of global oceans. Assessing the impacts of OA and deoxygenation on harvested species is crucial for guiding resource management with the aim of maintaining healthy and sustainable populations. The Dungeness crab, Cancer magister, is an important species ecologically and economically for the US West Coast. Crabs transition through four main stages: zoea, megalopa, juvenile, and adult. Each stage results in a different morphology and behavior, and as a result, is exposed to various environmental parameters, such as pH and dissolved oxygen (DO). The first two stages exhibit diel vertical migration while the final stages are benthic. Our study focused on the megalopae stage and their metabolic response to OA and hypoxia. We exposed wild-caught megalopae to a pH x DO cross, producing treatment waters with combinations of low or high pH and O2, all maintained at 12˚C. Closed-chamber respirometry was used to compare standard metabolic rates in a common garden setting with high pH/high DO conditions. We predict that the megalopae exposed to the low pH/high DO treatment will have a higher metabolic rate than those exposed to the high pH/high DO treatment. This may be a result of homeostatic processes increasing to return the megalopae's internal pH back to equilibrium. We predict that the high pH/low DO treatment will cause a decrease in metabolism when compared to the high pH/high DO treatment due to the megalopae conserving oxygen in a limiting environment. If results support our hypothesis, they would suggest that OA and hypoxia affects Dungeness crabs in sublethal ways.

  17. Interactive effects of temperature and hypoxia on heart rate and oxygen consumption of the 3-day old chicken embryo.

    PubMed

    Mortola, Jacopo P; Wills, Kathryn; Trippenbach, Teresa; Al Awam, Khalid

    2010-03-01

    In the chick embryo at day 3, gas exchange occurs by diffusion and oxygen consumption (V(O(2))) does not depend on the cardiovascular convection of O(2). Whether or not this is the case in hypoxia is not known and represents the aim of the study. The heart of chicken embryos at 72 h (stage HH18) was filmed through a window of the eggshell by a camera attached to a microscope. Stroke volume was estimated from the changes in heart silhouette between systole and diastole. V(O(2))was measured by a closed system methodology. In normoxia, a decrease in temperature (T) from 39 to 31 degrees C had parallel depressant effects on V(O(2))and HR. At 39 degrees C, a progressive decrease in O(2) lowered V(O(2)); HR was maintained until the O(2) threshold of approximately 15%. In severe hypoxia (4% O(2)) V(O(2))and HR were, respectively, approximately 12% and approximately 62% of normoxia. At 32 degrees C the hypoxic threshold for HR was significantly lower. During constant hypoxia (7% O(2)) V(O(2))did not respond to T, while the HR response was preserved. Stroke volume changed little with changes in T or O(2), except at 6 and 4% O(2), when it decreased by approximately 20 and 30%. In embryos growth-retarded because of incubation in chronic hypoxia, V(O(2))and HR responses to T and hypoxia were similar to those of normal embryos. We conclude that in the early embryo during hypoxia cardiovascular O(2) convection is not responsible for the drop in V(O(2)). The generalised hypometabolic response, in combination with the extremely small cardiac V(O(2)), probably explains the minor effects of hypoxia on cardiac activity. Copyright 2009 Elsevier Inc. All rights reserved.

  18. Effect of hypoxia on the retina and superior colliculus of neonatal pigs

    PubMed Central

    Ruzafa, Noelia; Rey-Santano, Carmen; Mielgo, Victoria; Pereiro, Xandra; Vecino, Elena

    2017-01-01

    Purpose To evaluate the effect of hypoxia on the neonatal pig retina and brain, we analysed the retinal ganglion cells (RGCs) and neurons in the superior colliculus, as well as the response of astrocytes in both these central nervous system (CNS) structures. Methods Newborn pigs were exposed to 120 minutes of hypoxia, induced by decreasing the inspiratory oxygen fraction (FiO2: 10–15%), followed by a reoxygenation period of 240 minutes (FiO2: 21–35%). RGCs were quantified using Brn3a, a specific nuclear marker for these cells, and apoptosis was assessed through the appearance of active caspase-3. A morphometric analysis of the cytoskeleton of astrocytes (identified with GFAP) was performed in both the retina and superior colliculus. Results Hypoxia produced no significant change in the RGCs, although, it did induce a 37.63% increase in the number of active caspase-3 positive cells in the superior colliculus. This increase was particularly evident in the superficial layers of the superior colliculus, where 56.93% of the cells were positive for active caspase-3. In addition, hypoxia induced changes in the morphology of the astrocytes in the superior colliculus but not in the retina. Conclusions Hypoxia in the neonatal pig does not affect the retina but it does affect more central structures in the brain, increasing the number of apoptotic cells in the superior colliculus and inducing changes in astrocyte morphology. This distinct sensibility to hypoxia may pave the way to design specific approaches to combat the effects of hypoxia in specific areas of the CNS. PMID:28407001

  19. Multifunctional albumin-MnO₂ nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response.

    PubMed

    Prasad, Preethy; Gordijo, Claudia R; Abbasi, Azhar Z; Maeda, Azusa; Ip, Angela; Rauth, Andrew Michael; DaCosta, Ralph S; Wu, Xiao Yu

    2014-04-22

    Insufficient oxygenation (hypoxia), acidic pH (acidosis), and elevated levels of reactive oxygen species (ROS), such as H2O2, are characteristic abnormalities of the tumor microenvironment (TME). These abnormalities promote tumor aggressiveness, metastasis, and resistance to therapies. To date, there is no treatment available for comprehensive modulation of the TME. Approaches so far have been limited to regulating hypoxia, acidosis, or ROS individually, without accounting for their interdependent effects on tumor progression and response to treatments. Hence we have engineered multifunctional and colloidally stable bioinorganic nanoparticles composed of polyelectrolyte-albumin complex and MnO2 nanoparticles (A-MnO2 NPs) and utilized the reactivity of MnO2 toward peroxides for regulation of the TME with simultaneous oxygen generation and pH increase. In vitro studies showed that these NPs can generate oxygen by reacting with H2O2 produced by cancer cells under hypoxic conditions. A-MnO2 NPs simultaneously increased tumor oxygenation by 45% while increasing tumor pH from pH 6.7 to pH 7.2 by reacting with endogenous H2O2 produced within the tumor in a murine breast tumor model. Intratumoral treatment with NPs also led to the downregulation of two major regulators in tumor progression and aggressiveness, that is, hypoxia-inducible factor-1 alpha and vascular endothelial growth factor in the tumor. Combination treatment of the tumors with NPs and ionizing radiation significantly inhibited breast tumor growth, increased DNA double strand breaks and cancer cell death as compared to radiation therapy alone. These results suggest great potential of A-MnO2 NPs for modulation of the TME and enhancement of radiation response in the treatment of cancer.

  20. Changes in respiratory control after three hours of isocapnic hypoxia in humans

    PubMed Central

    Mahamed, Safraaz; Cunningham, David A; Duffin, James

    2003-01-01

    Despite the obvious role of hypoxia in eliciting respiratory acclimatisation in humans, the function of the peripheral chemoreflex is uncertain. We investigated this uncertainty using 3 h of isocapnic hypoxia as a stimulus (end-tidal PCO2, 0.5–1.0 mmHg above eucapnia; end-tidal PO2, 50 mmHg), hypothesising that this stimulus would induce an enhancement of the peripheral chemoreflex ventilatory response to hypoxia. Current evidence conflicts as to whether this enhancement is mediated by an increase in the sensitivity or a decrease in the threshold of the peripheral chemoreflex ventilatory response to carbon dioxide. Employing a modified rebreathing technique to assess chemoreflex function, we found evidence of the latter in nine healthy volunteers (six male, three female). Testing consisted of pairs of isoxic rebreathing tests at high and low levels of oxygen, performed before, immediately after and 1 h after a 3 h isocapnic hypoxic exposure. No parameters changed significantly in the high-oxygen rebreathing tests. In the low-oxygen rebreathing tests there were no changes in non-chemoreflex ventilatory drives, or in the sensitivity to carbon dioxide, but the carbon dioxide response threshold decreased (≈1.5 mmHg) immediately after exposure, and the decrease persisted for 1 h (one-way repeated-measures ANOVA; P < 0.05). We repeated the protocol in five of the original nine volunteers, but this time exposing them to isocapnic normoxia. No trends or significant changes were observed in any of the rebreathing test parameters. These findings demonstrate that in the earliest stages of acclimatisation, there is a decrease in the threshold of the peripheral chemoreflex response to carbon dioxide, which persists for at least 1 h after the return to normoxia. We suggest that ventilatory acclimatisation to hypoxia results from this decreased threshold, reflecting an increase in the activity of the peripheral chemoreflex. PMID:12562969

  1. Kruppel-like factor 2 inhibits hypoxia-inducible factor 1alpha expression and function in the endothelium.

    PubMed

    Kawanami, Daiji; Mahabeleshwar, Ganapati H; Lin, Zhiyong; Atkins, G Brandon; Hamik, Anne; Haldar, Saptarsi M; Maemura, Koji; Lamanna, Joseph C; Jain, Mukesh K

    2009-07-31

    Hypoxia-inducible factor 1 (HIF-1) is a central regulator of the hypoxic response in many cell types. In endothelial cells, HIF-1 induces the expression of key proangiogenic factors to promote angiogenesis. Recent studies have identified Kruppel-like factor 2 (KLF2) as a potent inhibitor of angiogenesis. However, the role of KLF2 in regulating HIF-1 expression and function has not been evaluated. KLF2 expression was induced acutely by hypoxia in endothelial cells. Adenoviral overexpression of KLF2 inhibited hypoxia-induced expression of HIF-1alpha and its target genes such as interleukin 8, angiopoietin-2, and vascular endothelial growth factor in endothelial cells. Conversely, knockdown of KLF2 increased expression of HIF-1alpha and its targets. Furthermore, KLF2 inhibited hypoxia-induced endothelial tube formation, whereas endothelial cells from mice with haploinsufficiency of KLF2 showed increased tube formation in response to hypoxia. Consistent with this ex vivo observation, KLF2 heterozygous mice showed increased microvessel density in the brain. Mechanistically, KLF2 promoted HIF-1alpha degradation in a von Hippel-Lindau protein-independent but proteasome-dependent manner. Finally, KLF2 disrupted the interaction between HIF-1alpha and its chaperone Hsp90, suggesting that KLF2 promotes degradation of HIF-1alpha by affecting its folding and maturation. These observations identify KLF2 as a novel inhibitor of HIF-1alpha expression and function. Therefore, KLF2 may be a target for modulating the angiogenic response in disease states.

  2. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yanlong; Department of Medicine, University of Louisville, Louisville, KY; Wang, Chunhong

    2012-10-15

    Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl{sub 2}), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physicalmore » hypoxia (1% oxygen) and CoCl{sub 2} treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl{sub 2} administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl{sub 2}-induced reactive oxygen species (ROS) formation and completely negated CoCl{sub 2}-induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl{sub 2} administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl{sub 2} increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl{sub 2}-induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and

  3. Temporal dynamics of lactate concentration in the human brain during acute inspiratory hypoxia

    PubMed Central

    Harris, Ashley D; Roberton, Victoria H; Huckle, Danielle L; Saxena, Neeraj; Evans, C John; Murphy, Kevin; Hall, Judith E; Bailey, Damian M; Mitsis, Georgios; Edden, Richard A E; Wise, Richard G

    2012-01-01

    Purpose To demonstrate the feasibility of measuring the temporal dynamics of cerebral lactate concentration and examine these dynamics in human subjects using MRS during hypoxia. Methods A respiratory protocol consisting of 10 min baseline normoxia, 20 min inspiratory hypoxia and ending with 10 min normoxic recovery was used, throughout which lactate-edited MRS was performed. This was repeated four times in three subjects. A separate session was performed to measure blood lactate. Impulse response functions using end-tidal oxygen and blood lactate as system inputs and cerebral lactate as the system output were examined to describe the dynamics of the cerebral lactate response to a hypoxic challenge. Results The average lactate increase was 20%±15% during the last half of the hypoxic challenge. Significant changes in cerebral lactate concentration were observed after 400s. The average relative increase in blood lactate was 188%±95%. The temporal dynamics of cerebral lactate concentration was reproducibly demonstrated with 200s time bins of MRS data (coefficient of variation 0.063±0.035 between time bins in normoxia). The across subject coefficient of variation was 0.333. Conclusions The methods for measuring the dynamics of the cerebral lactate response developed here would be useful to further investigate the brain’s response to hypoxia. PMID:23197421

  4. Acetylcholine Esterase Activity and Behavioral Response in Hypoxia Induced Neonatal Rats: Effect of Glucose, Oxygen and Epinephrine Supplementation

    ERIC Educational Resources Information Center

    Chathu, Finla; Krishnakumar, Amee; Paulose, Cheramadathikudyil S.

    2008-01-01

    Brain damage due to an episode of hypoxia remains a major problem in infants causing deficit in motor and sensory function. Hypoxia leads to neuronal functional failure, cerebral palsy and neuro-developmental delay with characteristic biochemical and molecular alterations resulting in permanent or transitory neurological sequelae or even death.…

  5. Dexamethasone impairs hypoxia-inducible factor-1 function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, A.E.; Huck, G.; Stiehl, D.P.

    2008-07-25

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of {alpha}- and {beta}-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1{alpha} levels in the cytosol of HepG2 cells, while nuclear HIF-1{alpha} levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in amore » reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients.« less

  6. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Mazumder, B.; Fox, P. L.

    2000-01-01

    A role of the copper protein ceruloplasmin (Cp) in iron metabolism is suggested by its ferroxidase activity and by the tissue iron overload in hereditary Cp deficiency patients. In addition, plasma Cp increases markedly in several conditions of anemia, e.g. iron deficiency, hemorrhage, renal failure, sickle cell disease, pregnancy, and inflammation. However, little is known about the cellular and molecular mechanism(s) involved. We have reported that iron chelators increase Cp mRNA expression and protein synthesis in human hepatocarcinoma HepG2 cells. Furthermore, we have shown that the increase in Cp mRNA is due to increased rate of transcription. We here report the results of new studies designed to elucidate the molecular mechanism underlying transcriptional activation of Cp by iron deficiency. The 5'-flanking region of the Cp gene was cloned from a human genomic library. A 4774-base pair segment of the Cp promoter/enhancer driving a luciferase reporter was transfected into HepG2 or Hep3B cells. Iron deficiency or hypoxia increased luciferase activity by 5-10-fold compared with untreated cells. Examination of the sequence showed three pairs of consensus hypoxia-responsive elements (HREs). Deletion and mutation analysis showed that a single HRE was necessary and sufficient for gene activation. The involvement of hypoxia-inducible factor-1 (HIF-1) was shown by gel-shift and supershift experiments that showed HIF-1alpha and HIF-1beta binding to a radiolabeled oligonucleotide containing the Cp promoter HRE. Furthermore, iron deficiency (and hypoxia) did not activate Cp gene expression in Hepa c4 hepatoma cells deficient in HIF-1beta, as shown functionally by the inactivity of a transfected Cp promoter-luciferase construct and by the failure of HIF-1 to bind the Cp HRE in nuclear extracts from these cells. These results are consistent with in vivo findings that iron deficiency increases plasma Cp and provides a molecular mechanism that may help to understand these

  7. Diffractive micro-optical element with nonpoint response

    NASA Astrophysics Data System (ADS)

    Soifer, Victor A.; Golub, Michael A.

    1993-01-01

    Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.

  8. Curtailed respiration by repeated vs. isolated hypoxia in maturing piglets is unrelated to NTS ME or SP levels.

    PubMed

    Waters, K A; Laferrière, A; Paquette, J; Goodyer, C; Moss, I R

    1997-08-01

    In early development, respiratory disorders can produce recurring hypoxic episodes during sleep. To examine possible effects of daily repeated vs. isolated hypoxic hypoxia, cardiorespiratory functions and central, respiratory-related neuromodulator levels in 21- to 32-day-old, chronically instrumented, unsedated piglets were compared between a fifth sequential daily hypoxia and an isolated hypoxia (10% O2-90% N2 for 30 min). Diaphragmatic electromyographic activity, heart rate and arterial pressure, and pH and gas tensions were measured. In vivo microdialysis, via chronically implanted guides, served to sample interstitial substance P (SP) and methionine-enkephalin (ME) at the level of the respiratory-related nucleus tractus solitarii (NTS). Compared with an isolated hypoxia, repeated hypoxia resulted in 1) lower respiratory frequency (f), ventilation equivalent, and arterial pH, higher arterial PO2 during hypoxia, and lower f in recovery from hypoxia; and 2) increased SP concentrations but no change in ME concentrations. We conclude that, in these maturing swine, repeated vs. isolated hypoxic exposure curtails respiratory responses to hypoxia by a mechanism(s) unrelated to SP or ME levels at the NTS.

  9. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase.

    PubMed

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina; Görlach, Agnes

    2015-11-10

    Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. FA might serve as a novel therapeutic option combating PH.

  10. Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-β in cardiac myocytes.

    PubMed

    Shyu, Kou-Gi; Cheng, Wen-Pin; Wang, Bao-Wei; Chang, Hang

    2014-03-01

    The expression of MURC (muscle-restricted coiled-coil protein), a hypertrophy-regulated gene, increases during pressure overload. Hypoxia can cause myocardial hypertrophy; however, how hypoxia affects the regulation of MURC in cardiomyocytes undergoing hypertrophy is still unknown. The aim of the present study was to test the hypothesis that hypoxia induces MURC expression in cardiomyocytes during hypertrophy. The expression of MURC was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia and in an in vivo model of AMI (acute myocardial infarction) to induce myocardial hypoxia in adult rats. MURC protein and mRNA expression were significantly enhanced by hypoxia. MURC proteins induced by hypoxia were significantly blocked after the addition of PD98059 or ERK (extracellular-signal-regulated kinase) siRNA 30 min before hypoxia. Gel-shift assay showed increased DNA-binding activity of SRF (serum response factor) after hypoxia. PD98059, ERK siRNA and an anti-TGF-β (transforming growth factor-β) antibody abolished the SRF-binding activity enhanced by hypoxia or exogenous administration of TGF-β. A luciferase promoter assay demonstrated increased transcriptional activity of SRF in cardiomyocytes by hypoxia. Increased βMHC (β-myosin heavy chain) and BNP (B-type natriuretic peptide) protein expression and increased protein synthesis was identified after hypoxia with the presence of MURC in hypertrophic cardiomyocytes. MURC siRNA inhibited the hypertrophic marker protein expression and protein synthesis induced by hypoxia. AMI in adult rats also demonstrated increased MURC protein expression in the left ventricular myocardium. In conclusion, hypoxia in cultured rat neonatal cardiomyocytes increased MURC expression via the induction of TGF-β, SRF and the ERK pathway. These findings suggest that MURC plays a role in hypoxia-induced hypertrophy in cardiomyocytes.

  11. Inherited hypoxia: A new challenge for reoligotrophicated lakes under global warming

    NASA Astrophysics Data System (ADS)

    Jenny, Jean-Philippe; Arnaud, Fabien; Alric, Benjamin; Dorioz, Jean-Marcel; Sabatier, Pierre; Meybeck, Michel; Perga, Marie-Elodie

    2014-12-01

    The Anthropocene is characterized by a worldwide spread of hypoxia, among other manifestations, which threatens aquatic ecosystem functions, services, and biodiversity. The primary cause of hypoxia onset in recent decades is human-triggered eutrophication. Global warming has also been demonstrated to contribute to the increase of hypoxic conditions. However, the precise role of both environmental forcings on hypoxia dynamics over the long term remains mainly unknown due to a lack of historical monitoring. In this study, we used an innovative paleolimnological approach on three large European lakes to quantify past hypoxia dynamics and to hierarchies the contributions of climate and nutrients. Even for lake ecosystems that have been well oxygenated over a millennia-long period, and regardless of past climatic fluctuations, a shift to hypoxic conditions occurred in the 1950s in response to an unprecedented rise in total phosphorus concentrations above 10 ± 5 µg P L-1. Following this shift, hypoxia never disappeared despite the fact that environmental policies succeeded in drastically reducing lake phosphorus concentrations. During that period, decadal fluctuations in hypoxic volume were great, ranging between 0.5 and 8% of the total lake volumes. We demonstrate, through statistical modeling, that these fluctuations were essentially driven by climatic factors, such as river discharge and air temperature. In lakes Geneva and Bourget, which are fed by large river systems, fluctuations in hypoxic volume were negatively correlated with river discharge. In contrast, the expansion of hypoxia has been related only to warmer air temperatures at Annecy, which is fed by small river systems. Hence, we outline a theoretical framework assuming that restored lake ecosystems have inherited hypoxia from the eutrophication period and have shifted to a new stable state with new key controls of water and ecosystem quality. We suggest that controlling river discharge may be a

  12. Effect of chronic perinatal hypoxia on the role of rho-kinase in pulmonary artery contraction in newborn lambs

    PubMed Central

    Terry, Michael H.; Merritt, Travis A.; Papamatheakis, Demosthenes G.; Blood, Quintin; Ross, Jonathon M.; Power, Gordon G.; Longo, Lawrence D.; Wilson, Sean M.

    2013-01-01

    Exposure to chronic hypoxia during gestation predisposes infants to neonatal pulmonary hypertension, but the underlying mechanisms remain unclear. Here, we test the hypothesis that moderate continuous hypoxia during gestation causes changes in the rho-kinase pathway that persist in the newborn period, altering vessel tone and responsiveness. Lambs kept at 3,801 m above sea level during gestation and the first 2 wk of life were compared with those with gestation at low altitude. In vitro studies of isolated pulmonary arterial rings found a more forceful contraction in response to KCl and 5-HT in high-altitude compared with low-altitude lambs. There was no difference between the effects of blockers of various pathways of extracellular Ca2+ entry in low- and high-altitude arteries. In contrast, inhibition of rho-kinase resulted in significantly greater attenuation of 5-HT constriction in high-altitude compared with low-altitude arteries. High-altitude lambs had higher baseline pulmonary artery pressures and greater elevations in pulmonary artery pressure during 15 min of acute hypoxia compared with low-altitude lambs. Despite evidence for an increased role for rho-kinase in high-altitude arteries, in vivo studies found no significant difference between the effects of rho-kinase inhibition on hypoxic pulmonary vasoconstriction in intact high-altitude and low-altitude lambs. We conclude that chronic hypoxia in utero results in increased vasopressor response to both acute hypoxia and serotonin, but that rho-kinase is involved only in the increased response to serotonin. PMID:23152110

  13. Impaired peripheral vasodilation during graded systemic hypoxia in healthy older adults: role of the sympathoadrenal system

    PubMed Central

    Richards, Jennifer C.; Crecelius, Anne R.; Larson, Dennis G.; Luckasen, Gary J.

    2017-01-01

    Systemic hypoxia is a physiological and pathophysiological stress that activates the sympathoadrenal system and, in young adults, leads to peripheral vasodilation. We tested the hypothesis that peripheral vasodilation to graded systemic hypoxia is impaired in older healthy adults and that this age-associated impairment is due to attenuated β-adrenergic mediated vasodilation and elevated α-adrenergic vasoconstriction. Forearm blood flow was measured (Doppler ultrasound), and vascular conductance (FVC) was calculated in 12 young (24 ± 1 yr) and 10 older (63 ± 2 yr) adults to determine the local dilatory responses to graded hypoxia (90, 85, and 80% O2 saturations) in control conditions, following local intra-arterial blockade of β-receptors (propranolol), and combined blockade of α- and β-receptors (phentolamine + propranolol). Under control conditions, older adults exhibited impaired vasodilation to hypoxia compared with young participants at all levels of hypoxia (peak ΔFVC at 80% SpO2 = 4 ± 6 vs. 35 ± 8%; P < 0.01). During β-blockade, older adults actively constricted at 85 and 80% SpO2 (peak ΔFVC at 80% SpO2 = −13 ± 6%; P < 0.05 vs. control), whereas the response in the young was not significantly impacted (peak ΔFVC = 28 ± 8%). Combined α- and β-blockade increased the dilatory response to hypoxia in young adults; however, older adults failed to significantly vasodilate (peak ΔFVC at 80% SpO2= 12 ± 11% vs. 58 ± 11%; P < 0.05). Our findings indicate that peripheral vasodilation to graded systemic hypoxia is significantly impaired in older adults, which cannot be fully explained by altered sympathoadrenal control of vascular tone. Thus, the impairment in hypoxic vasodilation is likely due to attenuated local vasodilatory and/or augmented vasoconstrictor signaling with age. NEW & NOTEWORTHY We found that the lack of peripheral vasodilation during graded systemic hypoxia with aging is not mediated by

  14. Tissue hypoxia during ischemic stroke: adaptive clues from hypoxia-tolerant animal models.

    PubMed

    Nathaniel, Thomas I; Williams-Hernandez, Ashley; Hunter, Anan L; Liddy, Caroline; Peffley, Dennis M; Umesiri, Francis E; Imeh-Nathaniel, Adebobola

    2015-05-01

    The treatment and prevention of hypoxic/ischemic brain injury in stroke patients remain a severe and global medical issue. Numerous clinical studies have resulted in a failure to develop chemical neuroprotection for acute, ischemic stroke. Over 150 estimated clinical trials of ischemic stroke treatments have been done, and more than 200 drugs and combinations of drugs for ischemic and hemorrhagic strokes have been developed. Billions of dollars have been invested for new scientific breakthroughs with only limited success. The revascularization of occluded cerebral arteries such as anti-clot treatments of thrombolysis has proven effective, but it can only be used in a 3-4.5h time frame after the onset of a stroke, and not for every patient. This review is about novel insights on how to resist tissue hypoxia from unconventional animal models. Ability to resist tissue hypoxia is an extraordinary ability that is not common in many laboratory animals such as rat and mouse models. For example, we can learn from a naked mole-rat, Chrysemys picta, how to actively regulate brain metabolic activity to defend the brain against fluctuating oxygen tension and acute bouts of oxidative stress following the onset of a stroke. Additionally, a euthermic arctic ground squirrel can teach us how the brain of a stroke patient can remain well oxygenated during tissue hypoxia with no evidence of cellular stress. In this review, we discuss how these animals provide us with a system to gain insight into the possible mechanisms of tissue hypoxia/ischemia. This issue is of clinical significance to stroke patients. We describe specific physiological and molecular adaptations employed by different animals' models of hypoxia tolerance in aquatic and terrestrial environments. We highlight how these adaptations might provide potential clues on strategies to adapt for the clinical management of tissue hypoxia during conditions such as stroke where oxygen demand fails to match the supply. Copyright

  15. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia.

    PubMed

    Stokes, Jennifer A; Arbogast, Tara E; Moya, Esteban A; Fu, Zhenxing; Powell, Frank L

    2017-04-01

    Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, Pi O 2  = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly ( P < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia. NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti

  16. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves.

    PubMed

    Kim, Hyojin; Choi, Dongsu; Suh, Mi Chung

    2017-06-01

    An increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis and may allow plants to cope with oxygen deficiency. The hydrophobic cuticle layer consisting of cutin polyester and cuticular wax is the first barrier to protect the aerial parts of land plants from environmental stresses. In the present study, we investigated the role of cuticle membrane in Arabidopsis responses to oxygen deficiency. TEM analysis showed that the epidermal cells of hypoxia-treated Arabidopsis stems and leaves possessed a thinner electron-translucent cuticle proper and a more electron-dense cuticular layer. A reduction in epicuticular wax crystal deposition was observed in SEM images of hypoxia-treated Arabidopsis stem compared with normoxic control. Cuticular transpiration was more rapid in hypoxia-stressed leaves than in normoxic control. Total wax and cutin loads decreased by approximately 6-12 and 12-22%, respectively, and the levels of C29 alkanes, secondary alcohols, and ketones, C16:0 ω-hydroxy fatty acids, and C18:2 dicarboxylic acids were also prominently reduced in hypoxia-stressed Arabidopsis leaves and/or stems relative to normoxic control. Genome-wide transcriptome and quantitative RT-PCR analyses revealed that the expression of several genes involved in the biosynthesis and transport of cuticular waxes and cutin monomers were downregulated more than fourfold, but no significant alterations were detected in the transcript levels of fatty acid biosynthetic genes, BCCP2, PDH-E1α, and ENR1 in hypoxia-treated Arabidopsis stems and leaves compared with normoxic control. Taken together, an increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis. The present study elucidates one of the cuticle-related adaptive responses that may allow plants to cope with low oxygen levels.

  17. Cardiopulmonary responses to acute hypoxia, head-down tilt and fluid loading in anesthetized dogs

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Scotto, P.; Riedel, C.; Avasthi, P.; Koshukosky, V.; Chick, T. W.

    1991-01-01

    Cardiopulmonary responses to acute hypoxia (HY), fluid loading by saline infusion (FL), and head-down tilt (HD) of mechanically ventilated anesthetized dogs were investigated by measuring thermodynamics and pulmonary gas exchange. It was found that HD decreased the total respiratory compliance both during HY and normoxia (NO) and that the reduction in compliance by FL was twice as large as by HD. Superimposing HD on HY doubled the increase in vascular resistance due to HY alone. In the systemic circulation, HD lowered the resistance to below NO levels. There was a significant positive correlation between the changes in blood volume and in pulmonary artery pressure for experimental transitions, suggesting that a shift in blood volume from systemic to pulmonary circulations and changes in the total blood volume may contribute substantially to these apparent changes in resistance.

  18. Scientific Assessment of Hypoxia in US Coastal Waters ...

    EPA Pesticide Factsheets

    Report from the Interagency Working Group on Harmful Algal Blooms, Hypoxia and Human Health. Joint Subcommittee on Ocean Science and Technology (JOST) This report was prepared by a task force associated with the IWG-4H that included representatives of Federal agencies participating in the science and management of coastal hypoxia. It builds on earlier reports to assess hypoxia in U.S. coastal waters (CENR 2003) by updating the assessments and summarizing the major advances in hypoxia research during the past five years. Specifically, this report draws on An Assessment of Coastal Hypoxia and Eutrophication in U.S. Waters (CENR 2003), which was called for in HABHRCA 1998, and The State of Hypoxia in United States Estuarine and Coastal Waters (Diaz 2009). This report also recommends priorities for future hypoxia-related research across the U.S. government.

  19. Regulation of erythropoiesis by hypoxia-inducible factors

    PubMed Central

    Haase, Volker H.

    2012-01-01

    A classic physiologic response to systemic hypoxia is the increase in red blood cell production. Hypoxia-inducible factors (HIFs) orchestrate this response by inducing cell-type specific gene expression changes that result in increased erythropoietin (EPO) production in kidney and liver, in enhanced iron uptake and utilization and in adjustments of the bone marrow microenvironment that facilitate erythroid progenitor maturation and proliferation. In particular HIF-2 has emerged as the transcription factor that regulates EPO synthesis in the kidney and liver and plays a critical role in the regulation of intestinal iron uptake. Its key function in the hypoxic regulation of erythropoiesis is underscored by genetic studies in human populations that live at high-altitude and by mutational analysis of patients with familial erythrocytosis. This review provides a perspective on recent insights into HIF-controlled erythropoiesis and iron metabolism, and examines cell types that have EPO-producing capability. Furthermore, the review summarizes clinical syndromes associated with mutations in the O2-sensing pathway and the genetic changes that occur in high altitude natives. The therapeutic potential of pharmacologic HIF activation for the treatment of anemia is discussed. PMID:23291219

  20. ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate.

    PubMed

    Keenan, Melissa M; Liu, Beiyu; Tang, Xiaohu; Wu, Jianli; Cyr, Derek; Stevens, Robert D; Ilkayeva, Olga; Huang, Zhiqing; Tollini, Laura A; Murphy, Susan K; Lucas, Joseph; Muoio, Deborah M; Kim, So Young; Chi, Jen-Tsan

    2015-10-01

    In order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future.

  1. ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate

    PubMed Central

    Keenan, Melissa M.; Liu, Beiyu; Tang, Xiaohu; Wu, Jianli; Cyr, Derek; Stevens, Robert D.; Ilkayeva, Olga; Huang, Zhiqing; Tollini, Laura A.; Murphy, Susan K.; Lucas, Joseph; Muoio, Deborah M.; Kim, So Young; Chi, Jen-Tsan

    2015-01-01

    In order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future. PMID:26452058

  2. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    PubMed

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  3. The role of branchial and orobranchial O2 chemoreceptors in the control of aquatic surface respiration in the neotropical fish tambaqui (Colossoma macropomum): progressive responses to prolonged hypoxia.

    PubMed

    Florindo, Luiz H; Leite, Cléo A C; Kalinin, Ana L; Reid, Stephen G; Milsom, William K; Rantin, F Tadeu

    2006-05-01

    The present study examined the role of branchial and orobranchial O(2) chemoreceptors in the cardiorespiratory responses, aquatic surface respiration (ASR), and the development of inferior lip swelling in tambaqui during prolonged (6 h) exposure to hypoxia. Intact fish (control) and three groups of denervated fish (bilateral denervation of cranial nerves IX+X (to the gills), of cranial nerves V+VII (to the orobranchial cavity) or of cranial nerves V alone), were exposed to severe hypoxia (Pw(O)2=10 mmHg) for 360 min. Respiratory frequency (fr) and heart rate (fh) were recorded simultaneously with ASR. Intact (control) fish increased fr, ventilation amplitude (V(AMP)) and developed hypoxic bradycardia in the first 60 min of hypoxia. The bradycardia, however, abated progressively and had returned to normoxic levels by the last hour of exposure to hypoxia. The changes in respiratory frequency and the hypoxic bradycardia were eliminated by denervation of cranial nerves IX and X but were not affected by denervation of cranial nerves V or V+VII. The V(AMP) was not abolished by the various denervation protocols. The fh in fish with denervation of cranial nerves V or V+VII, however, did not recover to control values as in intact fish. After 360 min of exposure to hypoxia only the intact and IX+X denervated fish performed ASR. Denervation of cranial nerve V abolished the ASR behavior. However, all (control and denervated (IX+X, V and V+VII) fish developed inferior lip swelling. These results indicate that ASR is triggered by O(2) chemoreceptors innervated by cranial nerve V but that other mechanisms, such as a direct effect of hypoxia on the lip tissue, trigger lip swelling.

  4. Iron and oxygen sensing: a tale of 2 interacting elements?

    PubMed

    Simpson, Robert J; McKie, Andrew T

    2015-02-01

    Iron and oxygen metabolism are intimately linked with one another. A change in the level of either metabolite results in activation of common pathways. At the heart of these responses lies a group of iron and oxygen dependent enzymes called prolyl hydroxylases. Prolyl hydroxylases (PHDs) require both iron and oxygen for optimal activity and their biological activity is to carry out the critical post-translational modification of the addition of a hydroxyl group to specific proline residues within Hypoxia Inducible Factor (HIFs)-well known transcription factors originally thought to regulate responses to hypoxia but which are now known to regulate key iron metabolism proteins too. The addition of the hydroxyl group ultimately leads to the unbiquitylation and destruction of HIFs, thus PHDs control appropriate HIF transcriptional responses depending on cellular oxygen or iron levels. There are two major HIFs; HIF1α and HIF2α. In terms of responses to iron HIF2α is of major importance in key tissues such as the intestine where several iron transporters (Ferroportin, Dcytb) contain HREs within their promoters which bind HIF2α. Furthermore the recent discovery that HIF2α contains a 5' iron responsive element (IRE) has underlined the importance of HIF2α as a major player in iron metabolism. This review brings together recent findings with regard to the HIF2α/IRP network as well as other aspects of iron sensing in cells and tissues.

  5. Autophagy degrades hypoxia inducible factors

    PubMed Central

    DePavia, Adela; Jonasch, Eric; Liu, Xian-De

    2016-01-01

    ABSTRACT Hypoxia inducible factors are subjected to degradation by the ubiquitin-proteasome system (UPS), macroautophagy, and chaperone-mediated autophagy. The E3 ligases, ubiquitination, autophagy receptor proteins, and oxygen are determinants that direct hypoxia-inducible factors to different degradation pathways. PMID:27308629

  6. Tetrahydrobiopterin in antenatal brain hypoxia-ischemia-induced motor impairments and cerebral palsy.

    PubMed

    Vasquez-Vivar, Jeannette; Shi, Zhongjie; Luo, Kehuan; Thirugnanam, Karthikeyan; Tan, Sidhartha

    2017-10-01

    Antenatal brain hypoxia-ischemia, which occurs in cerebral palsy, is considered a significant cause of motor impairments in children. The mechanisms by which antenatal hypoxia-ischemia causes brain injury and motor deficits still need to be elucidated. Tetrahydrobiopterin is an important enzyme cofactor that is necessary to produce neurotransmitters and to maintain the redox status of the brain. A genetic deficiency of this cofactor from mutations of biosynthetic or recycling enzymes is a well-recognized factor in the development of childhood neurological disorders characterized by motor impairments, developmental delay, and encephalopathy. Experimental hypoxia-ischemia causes a decline in the availability of tetrahydrobiopterin in the immature brain. This decline coincides with the loss of brain function, suggesting this occurrence contributes to neuronal dysfunction and motor impairments. One possible mechanism linking tetrahydrobiopterin deficiency, hypoxia-ischemia, and neuronal injury is oxidative injury. Evidence of the central role of the developmental biology of tetrahydrobiopterin in response to hypoxic ischemic brain injury, especially the development of motor deficits, is discussed. Copyright © 2017. Published by Elsevier B.V.

  7. Human immune circadian system in prolonged mild hypoxia during simulated flights.

    PubMed

    Coste, Olivier; Van Beers, Pascal; Bogdan, André; Touitou, Yvan

    2007-01-01

    An impairment of immunity is reported after long-haul flights, and the mild hypobaric hypoxia caused by pressurization in the passenger airline cabin may contribute to it. In this controlled crossover study, the effects of two levels of hypoxia, equivalent to 8000 and 12,000 feet above sea level, on the rhythm of CD3, CD4, and CD8 lymphocytes and plasma concentrations of the immunoglobulins A, G, and M were assessed. Fourteen healthy male volunteers, aged 23 to 39 years, spent 8.5 h in a hypobaric chamber (08:00 to 16:30 h), simulating an altitude condition at 8,000 feet. This was followed by an additional 8.5 h study four weeks later simulating altitude conditions at 12,000 feet. The variables were assayed every 2 h over two 24 h cycles (control and hypoxic-exposure cycles). No significant effect of hypoxia on the studied circadian immune profiles were found. Therefore, the authors conclude that mild hypobaric hypoxia does not seem to be responsible for any quantitative changes during long-haul flights in the immune assays commonly used in routine clinical medicine practice.

  8. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoigawa, Yoshiaki; Juntendo University School of Medicine, Tokyo; Kishimoto, Koshi N., E-mail: kishimoto@med.tohoku.ac.jp

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes.more » We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.« less

  9. Mechanisms Regulating the Cardiac Output Response to Cyanide Infusion, a Model of Hypoxia

    PubMed Central

    Liang, Chang-seng; Huckabee, William E.

    1973-01-01

    When tissue metabolic changes like those of hypoxia were induced by intra-aortic infusion of cyanide in dogs, cardiac output began to increase after 3 to 5 min, reached a peak (220% of the control value) at 15 min, and returned to control in 40 min. This pattern of cardiac output rise was not altered by vagotomy with or without atropine pretreatment. However, this cardiac output response could be differentiated into three phases by pretreating the animals with agents that block specific activities of the sympatho-adrenal system. First, ganglionic blockade produced by mecamylamine or sympathetic nerve blockade by bretylium abolished the middle phase of the cardiac output seen in the untreated animal, but early and late phases still could be discerned. Second, beta-adrenergic receptor blockade produced by propranolol shortened the total duration of the cardiac output rise by abolishing the late phase. Third, when given together, propranolol and mecamylamine (or bretylium) prevented most of the cardiac output rise that follows the early phase. When cyanide was given to splenectomized dogs, the duration of the cardiac output response was not shortened, but the response became biphasic, resembling that seen after chemical sympathectomy. A similar biphasic response of the cardiac output also resulted from splenic denervation; sham operation or nephrectomy had no effect on the monophasic pattern of the normal response. Splenic venous blood obtained from cyanide-treated dogs, when infused intraportally, caused an increase in cardiac output in recipient dogs; similar infusion of arterial blood had no effects. These results suggest that the cardiac output response to cyanide infusion consists of three components: an early phase, related neither to the autonomic nervous system nor to circulating catecholamines; a middle phase, caused by a nonadrenergic humoral substance released from the spleen by sympathetic stimulation; and a late phase, dependent upon adrenergic receptors

  10. Hypoxia induces cyclophilin B through the activation of transcription factor 6 in gastric adenocarcinoma cells.

    PubMed

    Jeong, Kwon; Kim, Kiyoon; Kim, Hunsung; Oh, Yoojung; Kim, Seong-Jin; Jo, Yunhee; Choe, Wonchae

    2015-06-01

    Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions.

  11. Hypoxia induces cyclophilin B through the activation of transcription factor 6 in gastric adenocarcinoma cells

    PubMed Central

    JEONG, KWON; KIM, KIYOON; KIM, HUNSUNG; OH, YOOJUNG; KIM, SEONG-JIN; JO, YUNHEE; CHOE, WONCHAE

    2015-01-01

    Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions. PMID:26137159

  12. Xanthine oxidase and the fetal cardiovascular defence to hypoxia in late gestation ovine pregnancy

    PubMed Central

    Kane, Andrew D; Hansell, Jeremy A; Herrera, Emilio A; Allison, Beth J; Niu, Youguo; Brain, Kirsty L; Kaandorp, Joepe J; Derks, Jan B; Giussani, Dino A

    2014-01-01

    Hypoxia is a common challenge to the fetus, promoting a physiological defence to redistribute blood flow towards the brain and away from peripheral circulations. During acute hypoxia, reactive oxygen species (ROS) interact with nitric oxide (NO) to provide an oxidant tone. This contributes to the mechanisms redistributing the fetal cardiac output, although the source of ROS is unknown. Here, we investigated whether ROS derived from xanthine oxidase (XO) contribute to the fetal peripheral vasoconstrictor response to hypoxia via interaction with NO-dependent mechanisms. Pregnant ewes and their fetuses were surgically prepared for long-term recording at 118 days of gestation (term approximately 145 days). After 5 days of recovery, mothers were infused i.v. for 30 min with either vehicle (n = 11), low dose (30 mg kg−1, n = 5) or high dose (150 mg kg−1, n = 9) allopurinol, or high dose allopurinol with fetal NO blockade (n = 6). Following allopurinol treatment, fetal hypoxia was induced by reducing maternal inspired O2 such that fetal basal decreased approximately by 50% for 30 min. Allopurinol inhibited the increase in fetal plasma uric acid and suppressed the fetal femoral vasoconstrictor, glycaemic and lactate acidaemic responses during hypoxia (all P < 0.05), effects that were restored to control levels with fetal NO blockade. The data provide evidence for the activation of fetal XO in vivo during hypoxia and for XO-derived ROS in contributing to the fetal peripheral vasoconstriction, part of the fetal defence to hypoxia. The data are of significance to the understanding of the physiological control of the fetal cardiovascular system during hypoxic stress. The findings are also of clinical relevance in the context of obstetric trials in which allopurinol is being administered to pregnant women when the fetus shows signs of hypoxic distress. PMID:24247986

  13. Endothelial microvesicles in hypoxic hypoxia diseases.

    PubMed

    Deng, Fan; Wang, Shuang; Xu, Riping; Yu, Wenqian; Wang, Xianyu; Zhang, Liangqing

    2018-05-29

    Hypoxic hypoxia, including abnormally low partial pressure of inhaled oxygen, external respiratory dysfunction-induced respiratory hypoxia and venous blood flow into the arterial blood, is characterized by decreased arterial oxygen partial pressure, resulting in tissue oxygen deficiency. The specific characteristics include reduced arterial oxygen partial pressure and oxygen content. Hypoxic hypoxia diseases (HHDs) have attracted increased attention due to their high morbidity and mortality and mounting evidence showing that hypoxia-induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of HHDs-related vascular endothelial injury. Interestingly, endothelial microvesicles (EMVs), which can be induced by hypoxia, hypoxia-induced oxidative stress, coagulation and inflammation in HHDs, have emerged as key mediators of intercellular communication and cellular functions. EMVs shed from activated or apoptotic endothelial cells (ECs) reflect the degree of ECs damage, and elevated EMVs levels are present in several HHDs, including obstructive sleep apnoea syndrome and chronic obstructive pulmonary disease. Furthermore, EMVs have procoagulant, proinflammatory and angiogenic functions that affect the pathological processes of HHDs. This review summarizes the emerging roles of EMVs in the diagnosis, staging, treatment and clinical prognosis of HHDs. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Dietary nano-selenium relieves hypoxia stress and, improves immunity and disease resistance in the Chinese mitten crab (Eriocheir sinensis).

    PubMed

    Qin, Fenju; Shi, Miaomiao; Yuan, Hongxia; Yuan, Linxi; Lu, Wenhao; Zhang, Jie; Tong, Jian; Song, Xuehong

    2016-07-01

    Hypoxia is a relevant physiological challenge for crab culture, and the hemolymph plays a crucial role in response to the hypoxia. In a 60 d feeding trial, Chinese mitten crabs (Eriocheir sinensis) fed a diet containing 0.2 mg/kg nano-selenium (nanoSe) showed a significantly increased weight gain rate (WGR) and a reduced feed coefficient (FC) compared to those fed diets with 0, 0.1, 0.4, 0.8, and 1.6 mg/kg nanoSe. Another 90 d feeding trial was conducted to determine the influence of dietary nanoSe on the immune response in juvenile Chinese mitten crabs kept under the condition of hypoxia. The results showed that hypoxia stress resulted in significantly increased hemocyte counts (THC, LGC, SGC, and HC), expression levels of the hemocyanin gene and protein, lactic acid level, and antioxidant capacity (T-AOC activities, SOD activities, GSH-Px and GSH content) in hemolymph supernatant. When these crabs were infected with Aeromonas hydrophila bacteria, hypoxia exposure increased mortality, but it was alleviated by a diet supplemented with 0.2 mg/kg nanoSe. The up-regulative effects of nanoSe (0.2 mg/kg) on antioxidant capacity, hemocyte counts, and hemocyanin expression under hypoxia exposure were further strengthened throughout, whereas lactic acid levels induced by hypoxia stress were restored. Thus, the observations in this study indicate that the level of dietary nanoSe is important in regulating immunity and disease resistance in crabs kept under hypoxia stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    PubMed Central

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  16. The role of hypoxia-inducible factor-2 in digestive system cancers.

    PubMed

    Zhao, J; Du, F; Shen, G; Zheng, F; Xu, B

    2015-01-15

    Hypoxia is an all but ubiquitous phenomenon in cancers. Two known hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, primarily mediate the transcriptional response to hypoxia. Despite the high homology between HIF-1α and HIF-2α, emerging evidence suggests differences between both molecules in terms of transcriptional targets as well as impact on multiple physiological pathways and tumorigenesis. To date, much progress has been made toward understanding the roles of HIF-2α in digestive system cancers. Indeed, HIF-2α has been shown to regulate multiple aspects of digestive system cancers, including cell proliferation, angiogenesis and apoptosis, metabolism, metastasis and resistance to chemotherapy. These findings make HIF-2α a critical regulator of this malignant phenotype. Here we summarize the function of HIF-2 during cancer development as well as its contribution to tumorigenesis in digestive system malignancies.

  17. The role of hypoxia-inducible factor-2 in digestive system cancers

    PubMed Central

    Zhao, J; Du, F; Shen, G; Zheng, F; Xu, B

    2015-01-01

    Hypoxia is an all but ubiquitous phenomenon in cancers. Two known hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, primarily mediate the transcriptional response to hypoxia. Despite the high homology between HIF-1α and HIF-2α, emerging evidence suggests differences between both molecules in terms of transcriptional targets as well as impact on multiple physiological pathways and tumorigenesis. To date, much progress has been made toward understanding the roles of HIF-2α in digestive system cancers. Indeed, HIF-2α has been shown to regulate multiple aspects of digestive system cancers, including cell proliferation, angiogenesis and apoptosis, metabolism, metastasis and resistance to chemotherapy. These findings make HIF-2α a critical regulator of this malignant phenotype. Here we summarize the function of HIF-2 during cancer development as well as its contribution to tumorigenesis in digestive system malignancies. PMID:25590810

  18. Hypoxia: The Force that Drives Chronic Kidney Disease

    PubMed Central

    Fu, Qiangwei; Colgan, Sean P; Shelley, Carl Simon

    2016-01-01

    In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are disproportionally high. Consequently, as life expectancy increases and the baby-boom generation reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it has been demonstrated that leukocytes also become activated independent of the hypoxic response of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes directly sensing hypoxia and responding by transcriptional induction of the genes that encode the β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional mechanisms would appear to represent a promising new therapeutic strategy. PMID:26847481

  19. Effects of hypoxia on archaeal communities in Gulf of Mexico sediments

    EPA Science Inventory

    Sediments may contribute significantly to Louisiana continental shelf “dead zone” hypoxia but limited information hinders understanding how sediment biogeochemistry differs between normoxic and hypoxic seasons. Archaea of the family Thaumarchaeota are largely responsible for nit...

  20. Intracellular pathways triggered by the selective FLT-1-agonist placental growth factor in vascular smooth muscle cells exposed to hypoxia.

    PubMed

    Bellik, Lydia; Vinci, Maria Cristina; Filippi, Sandra; Ledda, Fabrizio; Parenti, Astrid

    2005-10-01

    We have previously shown that hypoxia makes vascular smooth muscle cells (VSMCs) responsive to placental growth factor (PlGF) through the induction of functional fms-like tyrosine kinase (Flt-1) receptors. The aim of this study was to investigate the molecular mechanisms involved in the PlGF effects on proliferation and contraction of VSMCs previously exposed to hypoxia (3% O2). In cultured rat VSMCs exposed to hypoxia, PlGF increased the phosphorylation of protein kinase B (Akt), p38 and STAT3; activation of STAT3 was higher than that of other kinases. In agreement with this finding, the proliferation of hypoxia-treated VSMCs in response to PlGF was significantly impaired by the p38 and the phosphatidylinositol 3-kinase inhibitors SB202190 and LY294002, respectively, and was almost completely prevented by AG490, a janus tyrosine kinase (JAK)/signal transducer and activator of transcription (STAT) inhibitor. Since hypoxia was able to reverse the vasorelaxant effect of PlGF into a vasoconstrictor response, the mechanism of this latter effect was also investigated. Significant Flt-1 activity was measured in isolated preparations from rat aorta exposed to hypoxia. Inhibitors of mitogen-activated protein kinase kinase, Akt and STAT3 induced a modest inhibition of the vasoconstrictor response to PlGF, while the p38 inhibitor SB202190 markedly impaired the PlGF-induced contractile response. These effects were selectively mediated by Flt-1 without any involvement of foetal liver kinase-1 receptors. These data are the first evidence that different intracellular pathways activated by Flt-1 receptor in VSMCs are involved in diverse biological effects of PlGF: while mitogen activated protein kinase kinase/extracellular signal regulated kinase(1/2) and JAK/STAT play a role in VSMC proliferation, p38 is involved in VSMC contraction. These findings may highlight the role of PlGF in vascular pathology.

  1. Nocturnal Hypoxia and Loss of Kidney Function

    PubMed Central

    Ahmed, Sofia B.; Ronksley, Paul E.; Hemmelgarn, Brenda R.; Tsai, Willis H.; Manns, Braden J.; Tonelli, Marcello; Klarenbach, Scott W.; Chin, Rick; Clement, Fiona M.; Hanly, Patrick J.

    2011-01-01

    Background Although obstructive sleep apnea (OSA) is more common in patients with kidney disease, whether nocturnal hypoxia affects kidney function is unknown. Methods We studied all adult subjects referred for diagnostic testing of sleep apnea between July 2005 and December 31 2007 who had serial measurement of their kidney function. Nocturnal hypoxia was defined as oxygen saturation (SaO2) below 90% for ≥12% of the nocturnal monitoring time. The primary outcome, accelerated loss of kidney function, was defined as a decline in estimated glomerular filtration rate (eGFR) ≥4 ml/min/1.73 m2 per year. Results 858 participants were included and followed for a mean study period of 2.1 years. Overall 374 (44%) had nocturnal hypoxia, and 49 (5.7%) had accelerated loss of kidney function. Compared to controls without hypoxia, patients with nocturnal hypoxia had a significant increase in the adjusted risk of accelerated kidney function loss (odds ratio (OR) 2.89, 95% confidence interval [CI] 1.25, 6.67). Conclusion Nocturnal hypoxia was independently associated with an increased risk of accelerated kidney function loss. Further studies are required to determine whether treatment and correction of nocturnal hypoxia reduces loss of kidney function. PMID:21559506

  2. Fetal in vivo continuous cardiovascular function during chronic hypoxia

    PubMed Central

    Allison, B. J.; Brain, K. L.; Niu, Y.; Kane, A. D.; Herrera, E. A.; Thakor, A. S.; Botting, K. J.; Cross, C. M.; Itani, N.; Skeffington, K. L.; Beck, C.

    2016-01-01

    Key points The in vivo fetal cardiovascular defence to chronic hypoxia has remained by and large an enigma because no technology has been available to induce significant and prolonged fetal hypoxia whilst recording longitudinal changes in fetal regional blood flow as the hypoxic pregnancy is developing.We introduce a new technique able to maintain chronically instrumented maternal and fetal sheep preparations under isobaric chronic hypoxia for most of gestation, beyond levels that can be achieved by high altitude and of relevance in magnitude to the human intrauterine growth‐restricted fetus.This technology permits wireless recording in free‐moving animals of longitudinal maternal and fetal cardiovascular function, including beat‐to‐beat alterations in pressure and blood flow signals in regional circulations.The relevance and utility of the technique is presented by testing the hypotheses that the fetal circulatory brain sparing response persists during chronic fetal hypoxia and that an increase in reactive oxygen species in the fetal circulation is an involved mechanism. Abstract Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean PaO2 levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery

  3. Neurotrophic Properties, Chemosensory Responses and Neurogenic Niche of the Human Carotid Body.

    PubMed

    Ortega-Sáenz, Patricia; Villadiego, Javier; Pardal, Ricardo; Toledo-Aral, Juan José; López-Barneo, José

    2015-01-01

    The carotid body (CB) is a polymodal chemoreceptor that triggers the hyperventilatory response to hypoxia necessary for the maintenance of O(2) homeostasis essential for the survival of organs such as the brain or heart. Glomus cells, the sensory elements in the CB, are also sensitive to hypercapnia, acidosis and, although less generally accepted, hypoglycemia. Current knowledge on CB function is mainly based on studies performed on lower mammals, but the information on the human CB is scant. Here we describe the structure, neurotrophic properties, and cellular responses to hypoxia and hypoglycemia of CBs dissected from human cadavers. The adult CB parenchyma contains clusters of chemosensitive glomus (type I) and sustentacular (type II) cells as well as nestin-positive progenitor cells. This organ also expresses high levels of the dopaminotrophic glial cell line-derived neurotrophic factor (GDNF). GDNF production and the number of progenitor and glomus cells were preserved in the CBs of human subjects of advanced age. As reported for other mammalian species, glomus cells responded to hypoxia by external Ca(2+)-dependent increase of cytosolic [Ca(2+)] and quantal catecholamine release. Human glomus cells are also responsive to hypoglycemia and together the two stimuli, hypoxia and hypoglycemia, can potentiate each other's effects. The chemo-sensory responses of glomus cells are also preserved at an advanced age. Interestingly, a neurogenic niche similar to that recently described in rodents is also preserved in the adult human CB. These new data on the cellular and molecular physiology of the CB pave the way for future pathophysiological studies involving this organ in humans.

  4. Hypoxia sensitivity of a voltage-gated potassium current in porcine intrapulmonary vein smooth muscle cells.

    PubMed

    Dospinescu, Ciprian; Widmer, Hélène; Rowe, Iain; Wainwright, Cherry; Cruickshank, Stuart F

    2012-09-01

    Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K(+) current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced a transient contractile response that was 56 ± 7% of the control response (80 mM KCl). This contraction required extracellular Ca(2+) and was sensitive to Ca(2+) channel blockade. Blockade of K(+) channels by tetraethylammonium chloride (TEA) or 4-aminopyridine (4-AP) reversibly inhibited the hypoxia-mediated contraction. Single-isolated PVSMC (typically 159.1 ± 2.3 μm long) had mean resting membrane potentials (RMP) of -36 ± 4 mV with a mean membrane capacitance of 108 ± 3.5 pF. Whole cell patch-clamp recordings identified a rapidly activating, partially inactivating K(+) current (I(KH)) that was hypoxia, TEA, and 4-AP sensitive. I(KH) was insensitive to Penitrem A or glyburide in PVSMC and had a time to peak of 14.4 ± 3.3 ms and recovered in 67 ms following inactivation at +80 mV. Peak window current was -32 mV, suggesting that I(KH) may contribute to PVSMC RMP. The molecular identity of the potassium channel is not clear. However, RT-PCR, using porcine pulmonary artery and vein samples, identified Kv(1.5), Kv(2.1), and BK, with all three being more abundant in the PV. Both artery and vein expressed STREX, a highly conserved and hypoxia-sensitive BK channel variant. Taken together, our data support the hypothesis that hypoxic inhibition of I(KH) would contribute to hypoxic-induced contraction in PVSMC.

  5. Salinity effects on behavioural response to hypoxia in the non-native Mayan cichlid Cichlasoma urophthalmus from Florida Everglades wetlands.

    PubMed

    Schofield, P J; Loftus, W F; Fontaine, J A

    2009-04-01

    This study quantified the hypoxia tolerance of the Mayan cichlid Cichlasoma urophthalmus over a range of salinities. The species was very tolerant of hypoxia, using aquatic surface respiration (ASR) and buccal bubble holding when oxygen tensions dropped to <20 mmHg (c. 1.0 mg l(-1)) and 6 mmHg, respectively. Salinity had little effect on the hypoxia tolerance of C. urophthalmus, except that bubble holding was more frequent at the higher salinities tested. Levels of aggression were greatest at the highest salinity. The ASR thresholds of C. urophthalmus were similar to native centrarchid sunfishes from the Everglades, however, aggression levels for C. uropthalmus were markedly higher.

  6. Cyclophilin B is involved in p300-mediated degradation of CHOP in tumor cell adaptation to hypoxia.

    PubMed

    Jeong, K; Kim, H; Kim, K; Kim, S-J; Hahn, B-S; Jahng, G-H; Yoon, K-S; Kim, S S; Ha, J; Kang, I; Choe, W

    2014-03-01

    The regulation of CCAAT/enhancer-binding protein-homologous protein (CHOP), an endoplasmic reticulum (ER) stress-response factor, is key to cellular survival. Hypoxia is a physiologically important stress that induces cell death in the context of the ER, especially in solid tumors. Although our previous studies have suggested that Cyclophilin B (CypB), a molecular chaperone, has a role in ER stress, currently, there is no direct information supporting its mechanism under hypoxia. Here, we demonstrate for the first time that CypB is associated with p300 E4 ligase, induces ubiquitination and regulates the proteasomal turnover of CHOP, one of the well-known pro-apoptotic molecules under hypoxia. Our findings show that CypB physically interacts with the N-terminal α-helix domain of CHOP under hypoxia and cooperates with p300 to modulate the ubiquitination of CHOP. We also show that CypB is transcriptionally induced through ATF6 under hypoxia. Collectively, these findings demonstrate that CypB prevents hypoxia-induced cell death through modulation of ubiquitin-mediated CHOP protein degradation, suggesting that CypB may have an important role in the tight regulation of CHOP under hypoxia.

  7. Cyclophilin B is involved in p300-mediated degradation of CHOP in tumor cell adaptation to hypoxia

    PubMed Central

    Jeong, K; Kim, H; Kim, K; Kim, S-J; Hahn, B-S; Jahng, G-H; Yoon, K-S; Kim, S S; Ha, J; Kang, I; Choe, W

    2014-01-01

    The regulation of CCAAT/enhancer-binding protein-homologous protein (CHOP), an endoplasmic reticulum (ER) stress-response factor, is key to cellular survival. Hypoxia is a physiologically important stress that induces cell death in the context of the ER, especially in solid tumors. Although our previous studies have suggested that Cyclophilin B (CypB), a molecular chaperone, has a role in ER stress, currently, there is no direct information supporting its mechanism under hypoxia. Here, we demonstrate for the first time that CypB is associated with p300 E4 ligase, induces ubiquitination and regulates the proteasomal turnover of CHOP, one of the well-known pro-apoptotic molecules under hypoxia. Our findings show that CypB physically interacts with the N-terminal α-helix domain of CHOP under hypoxia and cooperates with p300 to modulate the ubiquitination of CHOP. We also show that CypB is transcriptionally induced through ATF6 under hypoxia. Collectively, these findings demonstrate that CypB prevents hypoxia-induced cell death through modulation of ubiquitin-mediated CHOP protein degradation, suggesting that CypB may have an important role in the tight regulation of CHOP under hypoxia. PMID:24270407

  8. The influence of chronic hypoxia upon chemoreception

    PubMed Central

    Powell, Frank L.

    2007-01-01

    Carotid body chemoreceptors are essential for time-dependent changes in ventilatory control during chronic hypoxia. Early theories of ventilatory acclimatization to hypoxia focused on time-dependent changes in known ventilatory stimuli, such as small changes in arterial pH that may play a significant role in some species. However, plasticity in the cellular and molecular mechanisms of carotid body chemoreception play a major role in ventilatory acclimatization to hypoxia in all species studied. Chronic hypoxia causes changes in (a) ion channels (potassium, sodium, calcium) to increase glomus cell excitability, and (b) neurotransmitters (dopamine, acetylcholine, ATP) and neuromodulators (endothelin-1) to increase carotid body afferent activity for a given PO2 and optimize O2-sensitivity. O2-sensing heme-containing molecules in the carotid body have not been studied in chronic hypoxia. Plasticity in medullary respiratory centers processing carotid body afferent input also contributes to ventilatory acclimatization to hypoxia. It is not known if the same mechanisms occur in patients with chronic hypoxemia from lung disease or high altitude natives. PMID:17291837

  9. Glucocorticoids suppress hypoxia-induced COX-2 and hypoxia inducible factor-1α expression through the induction of glucocorticoidinduced leucine zipper

    PubMed Central

    Lim, Wonchung; Park, Choa; Shim, Myeong Kuk; Lee, Yong Hee; Lee, You Mie; Lee, YoungJoo

    2014-01-01

    Background and Purpose The COX-2/PGE2 pathway in hypoxic cancer cells has important implications for stimulation of inflammation and tumourigenesis. However, the mechanism by which glucocorticoid receptors (GRs) inhibit COX-2 during hypoxia has not been elucidated. Hence, we explored the mechanisms underlying glucocorticoid-mediated inhibition of hypoxia-induced COX-2 in human distal lung epithelial A549 cells. Experimental Approach The expressions of COX-2 and glucocorticoid-induced leucine zipper (GILZ) in A549 cells were determined by Western blot and/or quantitative real time-PCR respectively. The anti-invasive effect of GILZ on A549 cells was evaluated using the matrigel invasion assay. Key Results The hypoxia-induced increase in COX-2 protein and mRNA levels and promoter activity were suppressed by dexamethasone, and this effect of dexamethasone was antagonized by the GR antagonist RU486. Overexpression of GILZ in A549 cells also inhibited hypoxia-induced COX-2 expression levels and knockdown of GILZ reduced the glucocorticoid-mediated inhibition of hypoxia-induced COX-2 expression, indicating that the inhibitory effects of dexamethasone on hypoxia-induced COX-2 are mediated by GILZ. GILZ suppressed the expression of hypoxia inducible factor (HIF)-1α at the protein level and affected its signalling pathway. Hypoxia-induced cell invasion was also dramatically reduced by GILZ expression. Conclusion and Implications Dexamethasone-induced upregulation of GILZ not only inhibits the hypoxic-evoked induction of COX-2 expression and cell invasion but further blocks the HIF-1 pathway by destabilizing HIF-1α expression. Taken together, these findings suggest that the suppression of hypoxia-induced COX-2 by glucocorticoids is mediated by GILZ. Hence, GILZ is a potential key therapeutic target for suppression of inflammation under hypoxia. PMID:24172143

  10. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell (PAEC) plasma membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, G.B.; Block, E.R.

    1990-02-26

    Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxicmore » (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.« less

  11. Systemic Hypoxia Changes the Organ-Specific Distribution of Vascular Endothelial Growth Factor and Its Receptors

    NASA Astrophysics Data System (ADS)

    Marti, Hugo H.; Risau, Werner

    1998-12-01

    Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.

  12. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  13. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines.

    PubMed

    Vorrink, Sabine U; Severson, Paul L; Kulak, Mikhail V; Futscher, Bernard W; Domann, Frederick E

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126). Exposure to 1% O2 prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Normobaric Hypoxia Effects on Balance Measured by Computerized Dynamic Posturography.

    PubMed

    Wagner, Dale R; Saunders, Skyler; Robertson, Brady; Davis, John E

    2016-09-01

    Wagner, Dale R., Skyler Saunders, Brady Robertson, and John E. Davis. Normobaric hypoxia effects on balance measured by computerized dynamic posturography. High Alt Med Biol. 17:222-227, 2016.-Background/Aim: Equilibrium was measured by computerized dynamic posturography at varying levels of normobaric hypoxia before and after exercise. Following a familiarization trial, 12 males (27.3 ± 7.1 years) completed three sessions in random order on a NeuroCom SMART Balance Master: a sham trial at the ambient altitude of 1500 m and simulated altitudes of 3000 and 5000 m created by a hypoxic generator. The NeuroCom provided composite scores for a sensory organization test of equilibrium and a motor control test to assess the appropriate motor response. Additional information on somatosensory, visual, and vestibular responses was obtained. Each session consisted of 20 minutes of rest followed by the NeuroCom test, then 10 minutes of exercise, and 10 minutes of recovery followed by a second NeuroCom test, all while connected to the hypoxic generator. Mean differences were identified with a two-way (pre/postexercise and altitude condition), repeated-measures analysis of variance. The composite sensory score was significantly lower (p < 0.001) during the 5000 m trial (73.4 ± 12.0) compared to the 1500 m (80.8 ± 7.0) and 3000 m (84.1 ± 5.0) altitudes. The inability to ignore inaccurate visual cues in a situation of visual conflict was the most common sensory error. Motor control was not affected by altitude or exercise. These results suggest that moderate hypoxia does not affect balance, but severe hypoxia significantly reduces equilibrium. Furthermore, it appears that the alterations in equilibrium are primarily from impairments in visual function.

  15. Hypoxia regulates microRNA expression in the human carotid body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkrtchian, Souren, E-mail: souren.mkrtchian@ki.se; Lee, Kian Leong, E-mail: csilkl@nus.edu.sg; Kåhlin, Jessica

    The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentiallymore » regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins. - Highlights: • Hypoxia triggers differential expression of many miRNAs in the human carotid body. • This can lead to the upregulation of proliferation and immune response functions. • CB expression profile in the carotid body resembles the miRNA expression pattern in the brain. • miRNAs are involved in the regulation of carotid body functions including oxygen sensing.« less

  16. Histone deacetylase 5 promotes the migration and invasion of hepatocellular carcinoma via increasing the transcription of hypoxia-inducible factor-1α under hypoxia condition.

    PubMed

    Ye, Ming; Fang, Zejun; Gu, Hongqian; Song, Rui; Ye, Jiangwei; Li, Hongzhang; Wu, Zhiguang; Zhou, Shenghui; Li, Peng; Cai, Xiang; Ding, Xiaokun; Yu, Songshan

    2017-06-01

    Hypoxia plays a critical role in the progression and metastasis of hepatocellular carcinoma by activating the key transcription factor, hypoxia-inducible factor-1. This study aims to identify the novel mechanisms underlying the dysregulation of hypoxia-inducible factor-1α in hepatocellular carcinoma. We found that histone deacetylase 5, a highly expressed histone deacetylase in hepatocellular carcinoma, strengthened the migration and invasion of hepatocellular carcinoma cells under hypoxia but not normoxia condition. Furthermore, histone deacetylase 5 induced the transcription of hypoxia-inducible factor-1α by silencing homeodomain-interacting protein kinase-2 expression, which was also dependent on hypoxia. And then knockdown of hypoxia-inducible factor-1α decreased the expressions of mesenchymal markers, N-cadherin, and Vimentin, as well as matrix metalloproteinases, MMP7 and MMP9; however, the epithelial marker, E-cadherin, increased. Phenotype experiments showed that the migration and invasion of hepatocellular carcinoma cells were impaired by knockdown of histone deacetylase 5 or hypoxia-inducible factor-1α but rescued when eliminating homeodomain-interacting protein kinase-2 in hepatocellular carcinoma cells, which suggested the critical role of histone deacetylase 5-homeodomain-interacting protein kinase-2-hypoxia-inducible factor-1α pathway in hypoxia-induced metastasis. Finally, clinical analysis confirmed the positive correlation between histone deacetylase 5 and hypoxia-inducible factor-1α in hepatocellular carcinoma specimens and a relatively poor prognosis for the patients with high levels of histone deacetylase 5 and hypoxia-inducible factor-1α. Taken together, our findings demonstrated a novel mechanism underlying the crosstalk between histone deacetylase 5 and hypoxia-inducible factor-1 in hepatocellular carcinoma.

  17. Hypoxia-induced Bcl-2 expression in endothelial cells via p38 MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cui-Li, E-mail: zhangcuili@hotmail.com; Song, Fei; Zhang, Jing

    Angiogenesis and apoptosis are reciprocal processes in endothelial cells. Bcl-2, an anti-apoptotic protein, has been found to have angiogenic activities. The purpose of this study was to determine the role of Bcl-2 in hypoxia-induced angiogenesis in endothelial cells and to investigate the underlying mechanisms. Human aortic endothelial cells (HAECs) were exposed to hypoxia followed by reoxygenation. Myocardial ischemia and reperfusion mouse model was used and Bcl-2 expression was assessed. Bcl-2 expression increased in a time-dependent manner in response to hypoxia from 2 to 72 h. Peak expression occurred at 12 h (3- to 4-fold, p < 0.05). p38 inhibitor (SB203580)more » blocked hypoxia-induced Bcl-2 expression, whereas PKC, ERK1/2 and PI3K inhibitors did not. Knockdown of Bcl-2 resulted in decreased HAECs' proliferation and migration. Over-expression of Bcl-2 increased HAECs' tubule formation, whereas knockdown of Bcl-2 inhibited this process. In this model of myocardial ischemia and reperfusion, Bcl-2 expression was increased and was associated with increased p38 MAPK activation. Our results showed that hypoxia induces Bcl-2 expression in HAECs via p38 MAPK pathway.« less

  18. Mesophytic Root Responses to O[subscript 2

    ERIC Educational Resources Information Center

    Lynagh, Peter

    2013-01-01

    Hypoxic and anoxic stresses on mesophytes cause a waste of plant productivity. Many phenotypic responses of roots to hypoxia have long been known, and now genotypic and biochemical responses are being elucidated. Hypoxia causes activation of dozens of specific genes that help the plant to survive hypoxia. It is now clear that mesophytes actively…

  19. Systemic hypoxia enhances exercise-mediated bactericidal and subsequent apoptotic responses in human neutrophils.

    PubMed

    Wang, Jong-Shyan; Chiu, Ya-Ting

    2009-10-01

    Phagocytosis and oxidative burst are critical host defense mechanisms in which neutrophils clear invading pathogens. Clearing phagocytic neutrophils by triggering apoptosis is an essential process for controlling inflammation. This study elucidates how various exercise bouts with/without hypoxia affected neutrophil bactericidal activity and subsequent apoptosis in humans. Fifteen sedentary males performed six distinct experimental tests in an air-conditioned normobaric hypoxia chamber: two normoxic exercises [strenuous exercise (SE; up to maximal O2 consumption) and moderate exercise (ME; 50% maximal O2 consumption for 30 min) while exposed to 21% O2], two hypoxic exercises (ME for 30 min while exposed to 12% and 15% O2), and two hypoxic exposures (resting for 30 min while exposed to 12% and 15% O2). The results showed that 1) plasma complement-C3a desArg/C4a desArg/C5a concentrations were increased, 2) expressions of L-selectin/lymphocyte functin-associated antigen-1/Mac-1/C5aR on neutrophils were enhanced, 3) phagocytosis of neutrophils to Esherichia coli and release of neutrophil oxidant products by E. coli were elevated, and 4) E. coli-induced phosphotidylserine exposure or caspase-3 activation of neutrophils were promoted immediately and 2 h after both 12% O2 exposure at rest and with ME as well as normoxic SE. Although neither normoxic ME nor breathing 15% O2 at rest influenced these complement- and neutrophil-related immune responses, ME at both 12% and 15% O2 resulted in enhanced complement activation in the blood, expressions of opsonic/complement receptors on neutrophils, or the bactericidal activity and apoptosis of neutrophils. Moreover, the increased neutrophil oxidant production and apoptosis by normoxic SE and hypoxic ME were ameliorated by treating neutrophils with diphenylene iodonium (a NADPH oxidase inhibitor). Therefore, we conclude that ME at 12-15% O2 enhances bactericidal capacity and facilitates the subsequent apoptosis of neutrophils.

  20. Balancing tissue perfusion demands: cardiovascular dynamics of Cancer magister during exposure to low salinity and hypoxia.

    PubMed

    McGaw, Iain J; McMahon, Brian R

    2003-01-01

    Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed

  1. Combination effects of sorafenib with PI3K inhibitors under hypoxia in colorectal cancer.

    PubMed

    Bhatia, Dimple R; Thiagarajan, Padma

    2016-01-01

    This study reports the influence of hypoxia on response of colorectal cancer cells to anticancer effects of sorafenib in combination with PI3K inhibitors GDC-0941 and BEZ-235. All hypoxic exposures were carried out at 1% O 2 /5% CO 2 . Antiproliferation activity was evaluated by 48 hours propidium iodide and 14 days clonogenic assay. Protein levels were evaluated by fluorescence ELISA. Metabolites lactate and glucose were evaluated biochemically. In the 48-hour proliferation assay, sorafenib acted synergistically with GDC-0941 but not with BEZ-235. In long-term colony-forming assays, both GDC-0941 and BEZ-235 were shown to potentiate the antiproliferative activity of sorafenib. At the molecular level, the synergism is mediated through inhibition of pAKT, pS6, p4EBP1, pERK, cyclin D1, and Bcl-2. No change in hypoxia-inducible factor-1α (HIF-1α) levels was observed in cells treated with the combination of compounds under hypoxia. A significant reduction in glucose uptake and lactate release was observed in cells treated with the combination of compounds under normoxia and hypoxia. Combinations of sorafenib with PI3K inhibitors BEZ-235 and GDC-0941 are efficacious under hypoxia. Thus, these anticancer combinations have a potential to overcome the hypoxia-mediated resistance mechanisms to antiproliferative agents in cancer therapy.

  2. Salinity effects on behavioural response to hypoxia in the non-native Mayan cichlid Cichlasoma urophthalmus from Florida Everglades wetlands

    USGS Publications Warehouse

    Schofield, P.J.; Loftus, W.F.; Fontaine, J.A.

    2009-01-01

    This study quantified the hypoxia tolerance of the Mayan cichlid Cichlasoma urophthalmus over a range of salinities. The species was very tolerant of hypoxia, using aquatic surface respiration (ASR) and buccal bubble holding when oxygen tensions dropped to <20 mmHg (c. 1??0 mg l-1) and 6 mmHg, respectively. Salinity had little effect on the hypoxia tolerance of C. urophthalmus, except that bubble holding was more frequent at the higher salinities tested. Levels of aggression were greatest at the highest salinity. The ASR thresholds of C. urophthalmus were similar to native centrarchid sunfishes from the Everglades, however, aggression levels for C. uropthalmus were markedly higher. ?? 2009 The Fisheries Society of the British Isles.

  3. Impact of Transient Acute Hypoxia on the Developing Mouse EEG

    PubMed Central

    Zanelli, S.; Goodkin, H.P.; Kowalski, S.; Kapur, J.

    2015-01-01

    Hypoxemic events are common in sick preterm and term infants and represent the most common cause of seizures in the newborn period. Neonatal seizures often lack clinical correlates and are only recognized by electroencephalogram (EEG). The mechanisms leading from a hypoxic/ischemic insult to acute seizures in neonates remain poorly understood. Further, the effects of hypoxia on EEG at various developmental stages have not been fully characterized in neonatal animals, in part due to technical challenges. We evaluated the impact of hypoxia on neonatal mouse EEG to define periods of increased susceptibility to seizures during postnatal development. Hippocampal and cortical electrodes were implanted stereotaxically in C57BL/6 mice from postnatal age 3 (P3) to P15. Following recovery, EEG recording were obtained during baseline, acute hypoxia (4% FiO2 for 4 min) and reoxygenation. In baseline recordings, maturation of EEG was characterized by the appearance of a more continuous background pattern that replaced alternating high and low amplitude activity. Clinical seizures during hypoxia were observed more frequently in younger animals (100% P3-4, 87.5% P5-6, 93% P7-8, 83% P9-10, 33% P11-12, 17% P15, r2=0.81) and also occurred at higher FiO2 in younger animals (11.2±1.1% P3-P6 vs. 8.9±0.8% P7-12, p<0.05). Background attenuation followed the initial hypoxemic seizure; progressive return to baseline during reoxygenation was observed in survivors. Electrographic seizures without clinical manifestations were observed during reoxygenation, again more commonly in younger animals (83% P3-4, 86% P5-6, 75% P7-8, 71% P9-10, 20% P11-12, r2=0.82). All P15 animals died with this duration and degree of hypoxia. Post-ictal abnormalities included burst attenuation and post-anoxic myoclonus and were more commonly seen in older animals. In summary, neonatal mice exposed to brief and severe hypoxia followed by rapid reoxygenation reliably develop seizures and the response to hypoxia

  4. Intermittent hypoxia increases arterial blood pressure in humans through a Renin-Angiotensin system-dependent mechanism.

    PubMed

    Foster, Glen E; Hanly, Patrick J; Ahmed, Sofia B; Beaudin, Andrew E; Pialoux, Vincent; Poulin, Marc J

    2010-09-01

    Intermittent hypoxia (IH) is believed to contribute to the pathogenesis of hypertension in obstructive sleep apnea through mechanisms that include activation of the renin-angiotensin system. The objective of this study was to assess the role of the type I angiotensin II receptor in mediating an increase in arterial pressure associated with a single 6-hour IH exposure. Using a double-blind, placebo-controlled, randomized, crossover study design, we exposed 9 healthy male subjects to sham IH, IH with placebo medication, and IH with the type I angiotensin II receptor antagonist losartan. We measured blood pressure, cerebral blood flow, and ventilation at baseline and after exposure to 6 hours of IH. An acute isocapnic hypoxia experimental protocol was conducted immediately before and after exposure to IH. IH with placebo increased resting mean arterial pressure by 7.9+/-1.6 mm Hg, but mean arterial pressure did not increase with sham IH (1.9+/-1.5 mm Hg) or with losartan IH (-0.2+/-2.4 mm Hg; P<0.05). Exposure to IH prevented the diurnal decrease in the cerebral blood flow response to hypoxia, independently of the renin-angiotensin system. Finally, in contrast to other models of IH, the acute hypoxic ventilatory response did not change throughout the protocol. IH increases arterial blood pressure through activation of the type I angiotensin II receptor, without a demonstrable impact on the cerebrovascular or ventilatory response to acute hypoxia.

  5. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling1[OPEN

    PubMed Central

    Eysholdt-Derzsó, Emese

    2017-01-01

    When plants encounter soil water logging or flooding, roots are the first organs to be confronted with reduced gas diffusion resulting in limited oxygen supply. Since roots do not generate photosynthetic oxygen, they are rapidly faced with oxygen shortage rendering roots particularly prone to damage. While metabolic adaptations to low oxygen conditions, which ensure basic energy supply, have been well characterized, adaptation of root growth and development have received less attention. In this study, we show that hypoxic conditions cause the primary root to grow sidewise in a low oxygen environment, possibly to escape soil patches with reduced oxygen availability. This growth behavior is reversible in that gravitropic growth resumes when seedlings are returned to normoxic conditions. Hypoxic root bending is inhibited by the group VII ethylene response factor (ERFVII) RAP2.12, as rap2.12-1 seedlings show exaggerated primary root bending. Furthermore, overexpression of the ERFVII member HRE2 inhibits root bending, suggesting that primary root growth direction at hypoxic conditions is antagonistically regulated by hypoxia and hypoxia-activated ERFVIIs. Root bending is preceded by the establishment of an auxin gradient across the root tip as quantified with DII-VENUS and is synergistically enhanced by hypoxia and the auxin transport inhibitor naphthylphthalamic acid. The protein abundance of the auxin efflux carrier PIN2 is reduced at hypoxic conditions, a response that is suppressed by RAP2.12 overexpression, suggesting antagonistic control of auxin flux by hypoxia and ERFVII. Taken together, we show that hypoxia triggers an escape response of the primary root that is controlled by ERFVII activity and mediated by auxin signaling in the root tip. PMID:28698356

  6. Chronic intermittent hypoxia-hypercapnia blunts heart rate responses and alters neurotransmission to cardiac vagal neurons.

    PubMed

    Dyavanapalli, Jhansi; Jameson, Heather; Dergacheva, Olga; Jain, Vivek; Alhusayyen, Mona; Mendelowitz, David

    2014-07-01

    Patients with obstructive sleep apnoea experience chronic intermittent hypoxia-hypercapnia (CIHH) during sleep that elicit sympathetic overactivity and diminished parasympathetic activity to the heart, leading to hypertension and depressed baroreflex sensitivity. The parasympathetic control of heart rate arises from pre-motor cardiac vagal neurons (CVNs) located in nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). The mechanisms underlying diminished vagal control of heart rate were investigated by studying the changes in blood pressure, heart rate, and neurotransmission to CVNs evoked by acute hypoxia-hypercapnia (H-H) and CIHH. In vivo telemetry recordings of blood pressure and heart rate were obtained in adult rats during 4 weeks of CIHH exposure. Retrogradely labelled CVNs were identified in an in vitro brainstem slice preparation obtained from adult rats exposed either to air or CIHH for 4 weeks. Postsynaptic inhibitory or excitatory currents were recorded using whole cell voltage clamp techniques. Rats exposed to CIHH had increases in blood pressure, leading to hypertension, and blunted heart rate responses to acute H-H. CIHH induced an increase in GABAergic and glycinergic neurotransmission to CVNs in NA and DMNX, respectively; and a reduction in glutamatergic neurotransmission to CVNs in both nuclei. CIHH blunted the bradycardia evoked by acute H-H and abolished the acute H-H evoked inhibition of GABAergic transmission while enhancing glycinergic neurotransmission to CVNs in NA. These changes with CIHH inhibit CVNs and vagal outflow to the heart, both in acute and chronic exposures to H-H, resulting in diminished levels of cardioprotective parasympathetic activity to the heart as seen in OSA patients. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  7. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia.

    PubMed

    Lerman, Oren Z; Galiano, Robert D; Armour, Mary; Levine, Jamie P; Gurtner, Geoffrey C

    2003-01-01

    Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P < 0.001) and was not significantly stimulated by hypoxia (1% O(2)), whereas wild-type fibroblast migration was up-regulated nearly twofold in hypoxic conditions (P < 0.05). Diabetic fibroblasts produced twice the amount of pro-matrix metalloproteinase-9 as normal fibroblasts, as measured by both gelatin zymography and enzyme-linked immunosorbent assay (P < 0.05). Adult diabetic fibroblasts exhibited a sevenfold impairment in vascular endothelial growth factor (VEGF) production (4.5 +/- 1.3 pg/ml versus 34.8 +/- 3.3 pg/ml, P < 0.001) compared to wild-type fibroblasts. Moreover, wild-type fibroblast production of VEGF increased threefold in response to hypoxia, whereas diabetic fibroblast production of VEGF was not up-regulated in hypoxic conditions (P < 0.001). To address the question whether these differences resulted from chronic hyperglycemia or absence of the leptin receptor, fibroblasts were harvested from newborn db/db mice before the onset of diabetes (4 to 5 weeks old). These fibroblasts showed no impairments in VEGF production under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show

  8. Brain blood flow and blood pressure during hypoxia in the epaulette shark Hemiscyllium ocellatum, a hypoxia-tolerant elasmobranch.

    PubMed

    Söderström, V; Renshaw, G M; Nilsson, G E

    1999-04-01

    The key to surviving hypoxia is to protect the brain from energy depletion. The epaulette shark (Hemiscyllium ocellatum) is an elasmobranch able to resist energy depletion and to survive hypoxia. Using epi-illumination microscopy in vivo to observe cerebral blood flow velocity on the brain surface, we show that cerebral blood flow in the epaulette shark is unaffected by 2 h of severe hypoxia (0.35 mg O2 l-1 in the respiratory water, 24 C). Thus, the epaulette shark differs from other hypoxia- and anoxia-tolerant species studied: there is no adenosine-mediated increase in cerebral blood flow such as that occurring in freshwater turtles and cyprinid fish. However, blood pressure showed a 50 % decrease in the epaulette shark during hypoxia, indicating that a compensatory cerebral vasodilatation occurs to maintain cerebral blood flow. We observed an increase in cerebral blood flow velocity when superfusing the normoxic brain with adenosine (making sharks the oldest vertebrate group in which this mechanism has been found). The adenosine-induced increase in cerebral blood flow velocity was reduced by the adenosine receptor antagonist aminophylline. Aminophylline had no effect upon the maintenance of cerebral blood flow during hypoxia, however, indicating that adenosine is not involved in maintaining cerebral blood flow in the epaulette shark during hypoxic hypotension.

  9. MTA1 and MTA3 Regulate HIF1a Expression in Hypoxia-Treated Human Trophoblast Cell Line HTR8/Svneo

    PubMed Central

    Wang, Kai; Chen, Ying; Ferguson, Susan D.; Leach, Richard E.

    2015-01-01

    Hypoxia plays an important role in placental trophoblast differentiation and function during early pregnancy. Hypoxia-inducible factor 1 alpha (HIF1a) is known to regulate cellular adaption to hypoxic conditions. However, our current understanding of the role of HIF1a in trophoblast physiology is far from complete. Metastasis Associated Protein 1 and 3 (MTA1 and MTA3) are components of the Nucleosome Remodeling and Deacetylase (NuRD) complex, a chromatin remodeling complex, and are highly expressed in term placental trophoblasts. However, the role of MTA1 and MTA3 in the hypoxic placental environment of early pregnancy is unknown. In the present study, we examined the association among MTA1, MTA3 and HIF1a expression under hypoxic conditions in trophoblasts both in vivo and in vitro. We first investigated the localization of MTA1 and MTA3 with HIF1a expression in the placental trophoblast of 1st trimester placenta via immunohistochemistry. Our data reveals that under physiologically hypoxic environment, MTA1 and MTA3 along with HIF1a are highly expressed by villous trophoblasts. Next, we investigated the effect of hypoxia on these genes in vitro using the first trimester-derived HTR8/SVneo cell line and observed up-regulation of MTA1 and MTA3 as well as HIF1a protein following hypoxia treatment. To investigate the direct effect of MTA1 and MTA3 upon HIF1a, we over-expressed MTA1 and MTA3 genes in HTR8/SVneo cells respectively and examined protein levels of HIF1a via Western blot as well as HIF1a target gene expression using a luciferase assay driven by a hypoxia-response element promoter (HRE-luciferase). We found that over-expressions of MTA1 and MTA3 up-regulate both HIF1a protein level and HRE-luciferase activity under hypoxic condition. In summary, both MTA1 and MTA3 are induced by hypoxia and up-regulate HIF1a expression and HIF1a target gene expression in trophoblasts. These data suggest that MTA1 and MTA3 play critical roles in trophoblast function and

  10. Effects of hypoxia and non-lethal shell damage on shell mechanical and geochemical properties of a calcifying polychaete

    NASA Astrophysics Data System (ADS)

    Leung, Jonathan Y. S.; Cheung, Napo K. M.

    2018-06-01

    Calcification is a vital biomineralization process where calcifying organisms construct their calcareous shells for protection. While this process is expected to deteriorate under hypoxia, which reduces the metabolic energy yielded by aerobic respiration, some calcifying organisms were shown to maintain normal shell growth. The underlying mechanism remains largely unknown, but may be related to changing shell mineralogical properties, whereby shell growth is sustained at the expense of shell quality. Thus, we examined whether such plastic response is exhibited to alleviate the impact of hypoxia on calcification by assessing the shell growth and shell properties of a calcifying polychaete in two contexts (life-threatening and unthreatened conditions). Although hypoxia substantially reduced respiration rate (i.e., less metabolic energy produced), shell growth was only slightly hindered without weakening mechanical strength under unthreatened conditions. Unexpectedly, hypoxia did not undermine defence response (i.e., enhanced shell growth and mechanical strength) under life-threatening conditions, which may be attributed to the changes in mineralogical properties (e.g., increased calcite / aragonite) to reduce the energy demand for calcification. While more soluble shells (e.g., increased Mg / Ca in calcite) were produced under hypoxia as the trade-off, our findings suggest that mineralogical plasticity could be fundamental for calcifying organisms to maintain calcification under metabolic stress conditions.

  11. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    PubMed

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  12. One- and three-time mild hypobaric hypoxia modifies expression of mitochondrial thioredoxin-2 in hippocampus of rat.

    PubMed

    Stroev, Sergey Alexandrovich; Tjulkova, Ekaterina Iosifovna; Samoilov, Michail Olegovich; Pelto-Huikko, Markku Tapio

    2011-01-01

    Our previous study demonstrated that preconditioning by 3-times repetitive mild hypoxia significantly augmented expression of mitochondrial thioredoxin-2 (Trx-2) at 3 h after subsequent acute severe hypoxia in rat hippocampus. However, it was unclear whether this augmentation was due to build up of Trx-2 by mild hypoxia before severe hypoxia or by modification of reaction to severe hypoxia itself. To answer on this question we study the expression level during and after preconditioning without subsequent severe hypoxia. Trx-2 expression was studied by immunocytochemistry 3 h and 24 h after first session and 3 h and 24 h after last session of 3-times (spaced at 24 h) mild hypobaric hypoxia (360 Torr, 2h). At 3 h after 1-time hypoxia (first session of 3-time hypoxia) the total number of Trx-2-immunoreactive cells (Nt) was significantly decreased in contrast with control in CA2, CA3 and DG. The number of cells with intensive expression of Trx-2 (Ni) was reduced in CA1 and CA3. At 24 h after the same 1-time hypoxia Nt was lower than in control and at 3 h time-point in all hippocampal areas studied (CA1, CA2, CA3 and DG); Ni was decreased only compared to control in CA1 and CA3. At 3 h after last session of 3-times hypoxia Nt and Ni were significantly down regulated in comparison with control only in CA1. At 24 h after it Nt was significantly decreased compared to control in CA1, CA2 and CA3 (in DG the decrease was not statistically significant) but in all areas was higher than at 24 h after 1-time hypoxia. Dynamics of Nt changes from 3-hours after single to 24-hours after triple moderate hypoxia had the wave phase character. These findings indicate that Trx-2 expression in most areas of hippocampus was decreased to 24 h after 3-time mild hypoxia. Thus the augmentation of Trx-2 expression in hippocampal neurons of preconditioned animals in response to subsequent severe hypoxia is caused obviously not by Trx-2 accumulation during preconditioning sessions but by

  13. Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway

    PubMed Central

    Wang, Xiuwen; Li, Ji; Wu, Dongjin; Bu, Xiangpeng

    2015-01-01

    Neuronal cells are highly sensitive to hypoxia and may be subjected to apoptosis when exposed to hypoxia. Several apoptosis-related genes and miRNAs involve in hypoxia-induced apoptosis. This study aimed to examine the role of HIF1α-miR-204-BCL-2 pathway in hypoxia-induced apoptosis in neuronal cells. Annexin V/propidium iodide assay was performed to analyze cell apoptosis in AGE1.HN and PC12 cells under hypoxic or normoxic conditions. The expression of BCL-2 and miR-204 were determined by Western blot and qRT-PCR. The effects of miR-204 overexpression or knockdown on the expression of BCL-2 were evaluated by luciferase assay and Western blot under hypoxic or normoxic conditions. HIF-1α inhibitor YC-1 and siHIF-1α were employed to determine the effect of HIF-1α on the up-regulation of miR-204 and down-regulation of BCL-2 induced by hypoxia. Apoptosis assay showed the presence of apoptosis induced by hypoxia in neuronal cells. Moreover, we found that hypoxia significantly down-regulated the expression of BCL-2, and increased the mRNA level of miR-204 in neuronal cells than that in control. Bioinformatic analysis and luciferase reporter assay demonstrated that miR-204 directly targeted and regulated the expression of BCL-2. Specifically, the expression of BCL-2 was inhibited by miR-204 mimic and enhanced by miR-204 inhibitor. Furthermore, we detected that hypoxia induced cell apoptosis via HIF-1α/miR-204/BCL-2 in neuronal cells. This study demonstrated that HIF-1α-miR-204-BCL-2 pathway contributed to apoptosis of neuronal cells induced by hypoxia, which could potentially be exploited to prevent spinal cord ischemia–reperfusion injury. PMID:26350953

  14. In vivo retinal and choroidal hypoxia imaging using a novel activatable hypoxia-selective near-infrared fluorescent probe.

    PubMed

    Fukuda, Shinichi; Okuda, Kensuke; Kishino, Genichiro; Hoshi, Sujin; Kawano, Itsuki; Fukuda, Masahiro; Yamashita, Toshiharu; Beheregaray, Simone; Nagano, Masumi; Ohneda, Osamu; Nagasawa, Hideko; Oshika, Tetsuro

    2016-12-01

    Retinal hypoxia plays a crucial role in ocular neovascular diseases, such as diabetic retinopathy, retinopathy of prematurity, and retinal vascular occlusion. Fluorescein angiography is useful for identifying the hypoxia extent by detecting non-perfusion areas or neovascularization, but its ability to detect early stages of hypoxia is limited. Recently, in vivo fluorescent probes for detecting hypoxia have been developed; however, these have not been extensively applied in ophthalmology. We evaluated whether a novel donor-excited photo-induced electron transfer (d-PeT) system based on an activatable hypoxia-selective near-infrared fluorescent (NIRF) probe (GPU-327) responds to both mild and severe hypoxia in various ocular ischemic diseases animal models. The ocular fundus examination offers unique opportunities for direct observation of the retina through the transparent cornea and lens. After injection of GPU-327 in various ocular hypoxic diseases of mouse and rabbit models, NIRF imaging in the ocular fundus can be performed noninvasively and easily by using commercially available fundus cameras. To investigate the safety of GPU-327, electroretinograms were also recorded after GPU-327 and PBS injection. Fluorescence of GPU-327 increased under mild hypoxic conditions in vitro. GPU-327 also yielded excellent signal-to-noise ratio without washing out in vivo experiments. By using near-infrared region, GPU-327 enables imaging of deeper ischemia, such as choroidal circulation. Additionally, from an electroretinogram, GPU-327 did not cause neurotoxicity. GPU-327 identified hypoxic area both in vivo and in vitro.

  15. Approximate Simulation of Acute Hypobaric Hypoxia with Normobaric Hypoxia

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Wessel, J. H., III

    2011-01-01

    INTRODUCTION. Some manufacturers of reduced oxygen (O2) breathing devices claim a comparable hypobaric hypoxia (HH) training experience by providing F(sub I) O2 < 0.209 at or near sea level pressure to match the ambient O2 partial pressure (iso-pO2) of the target altitude. METHODS. Literature from investigators and manufacturers indicate that these devices may not properly account for the 47 mmHg of water vapor partial pressure that reduces the inspired partial pressure of O2 (P(sub I) O2). Nor do they account for the complex reality of alveolar gas composition as defined by the Alveolar Gas Equation. In essence, by providing iso-pO2 conditions for normobaric hypoxia (NH) as for HH exposures the devices ignore P(sub A)O2 and P(sub A)CO2 as more direct agents to induce signs and symptoms of hypoxia during acute training exposures. RESULTS. There is not a sufficient integrated physiological understanding of the determinants of P(sub A)O2 and P(sub A)CO2 under acute NH and HH given the same hypoxic pO2 to claim a device that provides isohypoxia. Isohypoxia is defined as the same distribution of hypoxia signs and symptoms under any circumstances of equivalent hypoxic dose, and hypoxic pO2 is an incomplete hypoxic dose. Some devices that claim an equivalent HH experience under NH conditions significantly overestimate the HH condition, especially when simulating altitudes above 10,000 feet (3,048 m). CONCLUSIONS. At best, the claim should be that the devices provide an approximate HH experience since they only duplicate the ambient pO2 at sea level as at altitude (iso-pO2 machines). An approach to reduce the overestimation is to at least provide machines that create the same P(sub I)O2 (iso-P(sub I)O2 machines) conditions at sea level as at the target altitude, a simple software upgrade.

  16. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    PubMed

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  17. Concepts in hypoxia reborn

    PubMed Central

    2010-01-01

    The human fetus develops in a profoundly hypoxic environment. Thus, the foundations of our physiology are built in the most hypoxic conditions that we are ever likely to experience: the womb. This magnitude of exposure to hypoxia in utero is rarely experienced in adult life, with few exceptions, including severe pathophysiology in critical illness and environmental hypobaric hypoxia at high altitude. Indeed, the lowest recorded levels of arterial oxygen in adult humans are similar to those of a fetus and were recorded just below the highest attainable elevation on the Earth's surface: the summit of Mount Everest. We propose that the hypoxic intrauterine environment exerts a profound effect on human tolerance to hypoxia. Cellular mechanisms that facilitate fetal well-being may be amenable to manipulation in adults to promote survival advantage in severe hypoxemic stress. Many of these mechanisms act to modify the process of oxygen consumption rather than oxygen delivery in order to maintain adequate tissue oxygenation. The successful activation of such processes may provide a new chapter in the clinical management of hypoxemia. Thus, strategies employed to endure the relative hypoxia in utero may provide insights for the management of severe hypoxemia in adult life and ventures to high altitude may yield clues to the means by which to investigate those strategies. PMID:20727228

  18. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent.

    PubMed

    Hobo, T; Asada, M; Kowyama, Y; Hattori, T

    1999-09-01

    ACGT-containing ABA response elements (ABREs) have been functionally identified in the promoters of various genes. In addition, single copies of ABRE have been found to require a cis-acting, coupling element to achieve ABA induction. A coupling element 3 (CE3) sequence, originally identified as such in the barley HVA1 promoter, is found approximately 30 bp downstream of motif A (ACGT-containing ABRE) in the promoter of the Osem gene. The relationship between these two elements was further defined by linker-scan analyses of a 55 bp fragment of the Osem promoter, which is sufficient for ABA-responsiveness and VP1 activation. The analyses revealed that both motif A and CE3 sequence were required not only for ABA-responsiveness but also for VP1 activation. Since the sequences of motif A and CE3 were found to be similar, motif-exchange experiments were carried out. The experiments demonstrated that motif A and CE3 were interchangeable by each other with respect to both ABA and VP1 regulation. In addition, both sequences were shown to be recognized by a VP1-interacting, ABA-responsive bZIP factor TRAB1. These results indicate that ACGT-containing ABREs and CE3 are functionally equivalent cis-acting elements. Furthermore, TRAB1 was shown to bind two other non-ACGT ABREs. Based on these results, all these ABREs including CE3 are proposed to be categorized into a single class of cis-acting elements.

  19. Construction of mutant TKGFP for real-time imaging of temporal dynamics of HIF-1 signal transduction activity mediated by hypoxia and reoxygenation in tumors in living mice.

    PubMed

    Hsieh, Chia-Hung; Kuo, Jung-Wen; Lee, Yi-Jang; Chang, Chi-Wei; Gelovani, Juri G; Liu, Ren-Shyan

    2009-12-01

    The herpes simplex virus type 1 thymidine kinase (HSV1-tk)/green fluorescent protein (TKGFP) dual-reporter gene and a multimodality imaging approach play a critical role in monitoring therapeutic gene expression, immune cell trafficking, and protein-protein interactions in translational molecular-genetic imaging. However, the cytotoxicity and low temporal resolution of TKGFP limits its application in studies that require a rapid turnover of the reporter. The purpose of this study was to construct a novel mutant TKGFP fusion reporter gene with low cytotoxicity and high temporal resolution for use in the real-time monitoring of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor 1 (HIF-1) signal transduction activity mediated by hypoxia and reoxygenation in vitro and in vivo. Destabilized TKGFP was produced by inserting the nuclear export signal (NES) sequence at the N terminus and fusing the degradation domain of mouse ornithine decarboxylase (dMODC) at the C terminus. The stability of TKGFP in living NG4TL4 cells was determined by Western blot analysis, HSV1-tk enzyme activity assay, and flow cytometric analysis. The suitability of NESTKGFP:dMODC as a transcription reporter was investigated by linking it to a promoter consisting of 8 copies of hypoxia-responsive elements, whose activities depend on HIF-1. The dynamic transcriptional events mediated by hypoxia and reoxygenation were monitored by NESTKGFP:dMODC or TKGFP and determined by optical imaging and PET. Unlike TKGFP, NESTKGFP:dMODC was unstable in the presence of cycloheximide and showed a short half-life of protein and enzyme activity. Rapid turnover of NESTKGFP:dMODC occurred in a 26S proteasome-dependent manner. Furthermore, NESTKGFP:dMODC showed an upregulated expression and low cytotoxicity in living cells. Studies of hypoxia-responsive TKGFP and NESTKGFP:dMODC expression showed that NESTKGFP:dMODC as a reporter gene had better temporal resolution than did TKGFP for monitoring the

  20. Imaging hypoxia using 3D photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.

    2010-02-01

    Purpose: The objective is to develop a multivariate in vivo hemodynamic model of tissue oxygenation (MiHMO2) based on 3D photoacoustic spectroscopy. Introduction: Low oxygen levels, or hypoxia, deprives cancer cells of oxygen and confers resistance to irradiation, some chemotherapeutic drugs, and oxygen-dependent therapies (phototherapy) leading to treatment failure and poor disease-free and overall survival. For example, clinical studies of patients with breast carcinomas, cervical cancer, and head and neck carcinomas (HNC) are more likely to suffer local reoccurrence and metastasis if their tumors are hypoxic. A novel method to non invasively measure tumor hypoxia, identify its type, and monitor its heterogeneity is devised by measuring tumor hemodynamics, MiHMO2. Material and Methods: Simulations are performed to compare tumor pO2 levels and hypoxia based on physiology - perfusion, fractional plasma volume, fractional cellular volume - and its hemoglobin status - oxygen saturation and hemoglobin concentration - based on in vivo measurements of breast, prostate, and ovarian tumors. Simulations of MiHMO2 are performed to assess the influence of scanner resolutions and different mathematic models of oxygen delivery. Results: Sensitivity of pO2 and hypoxic fraction to photoacoustic scanner resolution and dependencies on model complexity will be presented using hemodynamic parameters for different tumors. Conclusions: Photoacoustic CT spectroscopy provides a unique ability to monitor hemodynamic and cellular physiology in tissue, which can be used to longitudinally monitor tumor oxygenation and its response to anti-angiogenic therapies.